COMPAQ

Alpha 21164 Microprocessor
Hardware Reference Manual

Order Number: EC-QP99C-TE

Revision/Update Information: This is a revised manual. It supersedes
theDigital Semiconductor 21164 Alpha
Microprocessor Hardware Reference
Manual (EC-QP99B-TE).

Compag Computer Corporation

December 1998
The information in this publication is subject to change without notice.

COMPAQ COMPUTER CORPORATION SHALL NOT BE LIABLE FOR TECHNICAL OR EDITORIAL
ERRORS OR OMISSIONS CONTAINED HEREIN, NOR FOR INCIDENTAL OR CONSEQUENTIAL DAM-
AGES RESULTING FROM THE FURNISHING, PERFORMANCE, OR USE OF THISMATERIAL. THIS
INFORMATION IS PROVIDED "ASIS* AND COMPAQ COMPUTER CORPORATION DISCLAIMS ANY
WARRANTIES, EXPRESS, IMPLIED OR STATUTORY AND EXPRESSLY DISCLAIMS THE IMPLIED WAR-
RANTIES OF MERCHANTABILITY, FITNESS FOR PARTICULAR PURPOSE, GOOD TITLE AND AGAINST
INFRINGEMENT.

This publication contains information protected by copyright. No part of this publication may be photocopied or
reproduced in any form without prior written consent from Compag Computer Corporation.

©1998 Compaq Computer Corporation. All rights reserved. Printed in U.S.A.

COMPAQ, DIGITAL, DIGITAL UNIX, OpenVMS, VAX, VMS, and the Compaq logo registered in United States
Patent and Trademark Office.

GRAFOIL isaregistered trademark of Union Carbide Corporation.
|EEE is aregistered trademark of The Institute of Electrical and Electronics Engineers, Inc.
Windows NT is a trademark of Microsoft Corporation.

Other product names mentioned herein may be trademarks and/or registered trademarks of their respective
companies.

Preface

1 Introduction

11
111
112
113
1.2

The Architecture
Addressing.
Integer Data Types

Contents

Floating-Point Data TYpesS oottt e
21164 Microprocessor Featuresot e

2 Internal Architecture

21
211
2111
2112
2.1.13
2114
2115
212
2.13
214
2141
2142
2143
2144
215
2.16
2161
2.1.6.2
2.1.6.3
2164

21164 Microarchitecture

Instruction Fetch/Decode Unitand Branch Unit.
Instruction Decode and ISSue.
Instruction Prefetch.
Branch Execution
Instruction Translation Buffer

Interrupts

Integer Execution Unit e
Floating-Point Execution Unit i
Memory Address Translation Unit.
Data Translation Buffer.
Load Instruction and the Miss Address File

Dcache Control
Write Buffer. . .

and Store Instructions.

Cache Control and Bus Interface Unit.

Cache Organization
Data Cache. . .

InstructionCache
Second-Level Cache i

External Cache

1-1

1-2
1-3

2-1
2-3
2-4
2-4
2-6
2-7
2-8

2-10
2-10
2-11
2-11
2-12
2-12
2-13
2-13
2-13
2-13
2-14
2-14

217 Serial Read-Only Memory Interface.
2.2 Pipeline Organization i e
221 Pipeline Stages and InstructionIssue
2.2.2 Aborts and EXCEpPiONS.ottt
2.2.3 Nonissue Conditions
2.3 Scheduling and Issuing Rules.
23.1 Instruction Class Definition and Instruction Slotting.
2.3.2 Coding Guidelines
2.3.3 Instruction Latenciest
2331 Producer—Producer Latency
234 ISsSUue RUIESo e
2.4 Replay Traps. . . oo e
25 Miss Address File and Load-MergingRules
25.1 Merging RUIES e
25.2 Read Requeststothe CBU i e
253 Load Instructions to Noncacheable Space
254 MAF Entries and MAF Full Conditions.
255 FillOperation e
2.6 MTU Store Instruction Execution i
2.7 Write Buffer and the WMB Instruction.o
271 Write BUffer
2.7.2 Write Memory Barrier (WMB) Instruction.
2.7.3 Entry-Pointer QUEUES
2.7.4 Write Buffer Entry Processing
275 Ordering of Noncacheable Space Write Instructions.
2.8 Performance Measurement Support—Performance Counters.
29 Floating-Point Control Register. i e
2.10 Design EXamples
Hardware Interface

3.1 21164 Microprocessor Logic Symbol
3.2 21164 Signal Names and FUNCtions. i e

Clocks, Cache, and External Interface

4.1
41.1
4111
41.2
4.2
421
4.2.2
423

Introduction to the External
System Interface

Interface e

Commands and AdAresSSesSttt

Bcache Interface
Clocks................
CPUClock.........
System Clock.
Delayed System Clock

2-14
2-14
2-18
2-18
2-20
2-20
2-20
2-23
2-24
2-27
2-28
2-29
2-30
2-30
2-31
2-31
2-31
2-32
2-33
2-35
2-35
2-35
2-36
2-36
2-37
2-38
2-39
2-41

3-1

4-2
4-2
4-3
4-4
4-4
4-4
4-6

4.2.4 Reference ClOCK i

4241 Reference Clock Examples,
4.3 Physical Address Considerations i e e
43.1 Physical Address Regions.t e
4.3.2 Data Wrapping.oo i e
4.3.3 Noncached Read Operations i,
43.4 Noncached Write Operations.t
4.4 Bcache Structure
4.4.1 Duplicate Tag Store.t e e e
4411 Full Duplicate Tag Store.t e e e
4412 Partial Scache Duplicate Tag Store
4.4.2 Bcache Victim Buffers
45 Systems Withouta Bcache.
4.6 Cache CoherencCy e e
4.6.1 Cache Coherency BasiCsttt
4.6.2 Write Invalidate Cache Coherency Protocol Systems.
4.6.3 Write Invalidate Cache Coherency States.
46.3.1 Write Invalidate Protocol State Machines.
46.4 Flush Cache Coherency Protocol Systems
4.6.5 Flush-Based Protocol State Machines.
4.6.6 Cache Coherency Transaction Conflicts
46.6.1 CaSE .
4.6.6.2 CaSE 2 .
4.7 Lock MechanisSms e
4.8 21164-to-Bcache Transactions. it
48.1 Bcache Timing. e e e
4.8.2 Bcache Read Transaction (Private Read Operation).
4.8.3 Wave Pipeline
48.4 Bcache Write Transaction (Private Write Operation).
4.8.5 Synchronous Cache SUpport. e
4.8.6 Selecting Bcache Options
4.9 21164-Initiated System Transactionsttt
49.1 READ MISS—NoBcachec. e
49.2 READ MISS—Bcache e
49.3 FILL .o
49.4 READ MISSwith Victim. i
4941 READ MISS with Victim (Victim Buffer)
49.4.2 READ MISS with Victim (Without Victim Buffer).
495 WRITE BLOCK and WRITEBLOCK LOCK. oot
49.6 SETDIRTY @and LOCKt e
49.7 MEMORY BARRIER (MB). . ..ot
49.7.1 When to Use a MEMORY BARRIER Command
49.8 FETCH. . .o
4.9.9 FETCH M . e e
4.10 System-Initiated Transactions. i e
4.10.1 Sending Commandstothe 21164
4.10.2 Write Invalidate Protocol Commands.

Vi

41021
4.10.2.2
4.10.2.3
4.10.2.4
4.10.3
41031
4.10.3.2
4.10.3.3
411
4111
4.11.2
4113
4.11.4
4.11.5
41151
4.11.5.2
41153
41154
4.11.6
4.11.7
4.12
4.12.1
4.12.2
4.12.3
4.12.4
4.12.5
4.13
4.13.1
4.13.2
4.13.3
4.13.4
4.13.5
4.13.6
4.14
4.14.1
4.14.2
4.14.3
4.14.4
4.14.5
4.14.6
4.14.7
4.15
4.15.1
4.15.2
4.15.3

21164 Responses to Write Invalidate Protocol Commands

READ DIRTY and
INVALIDATE. . ..
SET SHARED. ..

READ DIRTY/INVALIDATE

Flush-Based Cache Coherency Protocol Commands.

21164 Responses
FLUSH

to Flush-Based Protocol Commands

Read/Write Spacing—Data Bus Contention
Usingidle_bc_handfill_h

Using data_bus_req_h
Tristate Overlap

READ orWRITEtOFILL.

BCACHE VICTIM

tOFILL. ...

System Bcache Commandto FILL.
FILL to Private Read or Write Operation

Auto DACK

Victim Write Back Under Misso
21164 Interface ReSIICONSot
FILL Operations After Other Transactions.
Command Acknowledge for WRITE BLOCK Commands
Systems Withouta Bcache i
Fast ProbeswithNoBcache,

WRITE BLOCK LOCK

21164/System Race Conditions
Rules for 21164 and System Use of External Interface.
READ MISS with Victim Example
idle_bc_handcack hRace Example
READ MISS with idle_bc_h Asserted Example.
READ MISS with Victim Abort Example
Bcache Hit Under READ MISS Example.,
Data Integrity, Bcache Errors, and Command/Address Errors

Data ECC and Parity .
Force Correction

Bcache Tag Data Parity. e
Bcache Tag Control Parity. e
Address and Command Parity.

FillError...........
Forcing 21164 Reset .
Interrupts.

Interrupt Signals During Initialization.
Interrupt Signals During Normal Operation

Interrupt Priority Level

4-53
4-54
4-55
4-56
4-58
4-59
4-60
4-61
4-62
4-63
4-63
4-64
4-66
4-67
4-67
4-67
4-69
4-71
4-72
4-74
4-75
4-75
4-75
4-75
4-76
4-77
4-78
4-78
4-79
4-80
4-82
4-83
4-84
4-84
4-85
4-87
4-87
4-87
4-87
4-87
4-88
4-88
4-89
4-89
4-89

Internal Processor Registers

51

511
51.2
5.1.3
514

515
51.6
517
5.1.8
5.1.9
5.1.10
5111
5.1.12
51.13
51.14
51.15
5.1.16
5.1.17
5.1.18
5.1.19
5.1.20
5.1.21
5.1.22
5.1.23
51.24
5.1.25
5.1.26
5.1.27
5.2
521
522
5.2.3
5.24
5.2.5

5.2.6
5.2.7
5.2.8
5.2.9
5.2.10
5.2.11
5.2.12
5.2.13

Instruction Fetch/Decode Unit and Branch Unit (IDU) IPRs

Istream Translation Buffer Tag Register (ITB_TAG)
Instruction Translation Buffer Page Table Entry (ITB_PTE) Register
Instruction Translation Buffer Address Space Number (ITB_ASN) Register.
Instruction Translation Buffer Page Table Entry Temporary (ITB_PTE_TEMP)
REgISter . .o
Instruction Translation Buffer Invalidate All Process (ITB_IAP) Register . ..
Instruction Translation Buffer Invalidate All (ITB_IA) Register.
Instruction Translation Buffer IS (ITB_IS) Register
Formatted Faulting Virtual Address (IFAULT_VA_FORM) Register
Virtual Page Table Base Register (IVPTBR)
Icache Parity Error Status (ICPERR_STAT) Register.
Icache Flush Control (IC_FLUSH_CTL) Register
Exception Address (EXC_ADDR) Register oo,
Exception Summary (EXC_SUM) Register
Exception Mask (EXC_MASK) Register,
PAL Base Address (PAL_BASE) Register
IDU Current Mode (ICM) Register.t
IDU Control and Status Register (ICSR) L.
Interrupt Priority Level Register (IPLR),
Interrupt ID (INTID) Register e
Asynchronous System Trap Request Register (ASTRR)
Asynchronous System Trap Enable Register (ASTER).
Software Interrupt Request Register (SIRR)
Hardware Interrupt Clear (HWINT_CLR) Register.
Interrupt Summary Register (ISR) o
Serial Line Transmit (SL_XMIT) Registero,
Serial Line Receive (SL_RCV) Register,
Performance Counter (PMCTR) Register,

Memory Address Translation Unit (MTU) IPRs.

Dstream Translation Buffer Address Space Number (DTB_ASN) Register .
Dstream Translation Buffer Current Mode (DTB_CM) Register
Dstream Translation Buffer Tag (DTB_TAG) Register
Dstream Translation Buffer Page Table Entry (DTB_PTE) Register.
Dstream Translation Buffer Page Table Entry Temporary (DTB_PTE_TEMP)
REgiSter . ..
Dstream Memory Management Fault Status (MM_STAT) Register
Faulting Virtual Address (VA) Register
Formatted Virtual Address (VA_FORM) Register
MTU Virtual Page Table Base Register (MVPTBR).
Dcache Parity Error Status (DC_PERR_STAT) Register
Dstream Translation Buffer Invalidate All Process (DTB_IAP) Register
Dstream Translation Buffer Invalidate All (DTB_IA) Register
Dstream Translation Buffer Invalidate Single (DTB_IS) Register

5-5
5-5
5-5
5-7

5-8
5-8

5-9
5-10
5-11
5-12
5-12
5-13
5-14
5-15
5-16
5-16
5-17
5-19
5-20
5-21
5-21
5-22
5-23
5-24
5-26
5-27
5-28
5-33
5-33
5-33
5-34
5-34

5-36
5-37
5-38
5-39
5-40
5-41
5-42
5-42
5-43

vii

viii

5.2.14 MTU Control Register (MCSR) e 5-44

5.2.15 Dcache Mode (DC_MODE) Register.t 5-46
5.2.16 Miss Address File Mode (MAF_MODE) Register 5-48
5.2.17 Dcache Flush (DC_FLUSH) Register 5-50
5.2.18 Alternate Mode (ALT_MODE) Register., 5-50
5.2.19 Cycle Counter (CC) RegiSter.t i e 5-51
5.2.20 Cycle Counter Control (CC_CTL) Register, 5-52
5.2.21 Dcache Test Tag Control (DC_TEST_CTL) Register 5-53
5.2.22 Dcache Test Tag (DC_TEST _TAG) Register 5-54
5.2.23 Dcache Test Tag Temporary (DC_TEST_TAG_TEMP) Register 5-56
53 External Interface Control (CBU) IPRS i 5-58
53.1 Scache Control (SC_CTL) Register (FFFFFOO00A8) 5-59
5.3.2 Scache Status (SC_STAT) Register (FFFFFOO0ES8). 5-62
5.3.3 Scache Address (SC_ADDR) Register (FFFFF00188) 5-65
5.3.4 Bcache Control (BC_CONTROL) Register (FFFFFO0128) 5-68
5.35 Bcache Configuration (BC_CONFIG) Register (FF FFFO 01C8).......... 5-74
5.3.6 Bcache Tag Address (BC_TAG_ADDR) Register (FF FFF0 0108). 5-77
5.3.7 External Interface Status (EI_STAT) Register (FF FFFO 0168)........... 5-79
5.3.8 External Interface Address (EI_ADDR) Register (FF FFF0 0148)......... 5-82
5.3.9 Fill Syndrome (FILL_SYN) Register (FFFFFO0068) 5-83
5.4 PALcode Storage Registerst 5-86
5.5 RESHIICHONS oo 5-87
55.1 CBU IPR PALcode Restrictions.o 5-87
55.2 PALcode Restrictions—Instruction Definitions. 5-88

Privileged Architecture Library Code

6.1 PALcode DesCription e e 6-1
6.2 PALMoOde ENVIrONMENL.o 6-2
6.3 InvoKiNg PALCOdE oo 6-3
6.4 PALcode Entry POINtS. o e 6-5
6.4.1 CALL _PAL ENtrY . . oo e e e e 6-5
6.4.2 PALcode Trap Entry Points i e 6-6
6.5 Required PALcode Function Codest 6-7
6.6 21164 Implementation of the Architecturally Reserved Opcodes............. 6-7
6.6.1 HW_LD InStruction. e e e 6-8
6.6.2 HW_ST InStruction. e 6-10
6.6.3 HW_REIInStruction e 6-11
6.6.4 HW_MFPR and HW_MTPR Instructions. 6-11

Initialization and Configuration

7.1 Input Signals sys_reset_land dc_ok_handBooting 7-1
7.1.1 Pin State withdc_ok hNotAsserted 7-6

7.2 Sysclk Ratioand Delay 7-6

7.3 Built-In Self-Test (BiSt)o 7-6
7.4 Serial Read-Only Memory Interface Port 7-6
7.4.1 Serial Instruction Cache Load Operation., 7-7
7.5 Serial Terminal Port e 7-8
7.6 Cache Initialization e 7-8
7.6.1 Icache Initialization i e 7-9
7.6.2 Flushing Dirty Blocks 7-9
7.7 External Interface Initialization 7-10
7.8 Internal Processor Register ResetState. 7-10
7.9 TIMEOULt RESEL. e e e 7-13
7.10 IEEE 1149.1 TeSt POt RESEeto oot e e 7-14

Error Detection and Error Handling

8.1 Error FIOWS . . .o 8-1
8.1.1 Icache Dataor Tag Parity Error. i 8-1
8.1.2 Scache Data Parity Error—Istream 8-2
8.1.3 Scache Tag Parity Error—Istream. i 8-2
8.14 Scache Data Parity Error—Dstream Read/Write, READ_DIRTY 8-3
8.1.5 Scache Tag Parity Error—Dstream or System Commands. 8-3
8.1.6 Dcache Data Parity Error. e 8-4
8.1.7 Dcache Tag Parity Error e 8-4
8.1.8 Istream Uncorrectable ECC or Data Parity Errors (Bcache or Memory) 8-5
8.1.9 Dstream Uncorrectable ECC or Data Parity Errors (Bcache or Memory) . . . 8-5
8.1.10 Bcache Tag Parity Errors—Istream. i, 8-6
8.1.11 Bcache Tag Parity Errors—Dstreamt 8-7
8.1.12 System Command/Address Parity Error 8-7
8.1.13 System Read Operations ofthe Bcache 8-8
8.1.14 Istream or Dstream Correctable ECC Error (Bcache or Memory) 8-8
8.1.15 Fill Timeout (FILL_ERROR_H) 8-9
8.1.16 System Machine Check. 8-9
8.1.17 IDU TIMEOUL. . . oottt e e e e e 8-9
8.1.18 cfal_handNotcack h i 8-10
8.2 MCHK FIOW. . . 8-10
8.3 Processor-Correctable Error Interrupt Flow (IPL31) 8-12
8.4 MCK_INTERRUPT FIOW. . . . ot 8-13
8.5 System-Correctable Error Interrupt Flow (IPL20). 8-13

Electrical Data

9.1 Electrical CharacteristiCs.o 9-1
9.2 DC CharaCteriStiCs . . v v vttt e e 9-2
9.2.1 Power Supply.o 9-2

10

11

9.2.2 Input Signal Pins

9.2.3 Output Signal Pins. e
9.3 Clocking Scheme e
9.3.1 INPUE CIOCKSo e
9.3.2 Clock Termination and Impedance Levels.
9.3.3 AC Coupling. . . oo e
9.4 AC CharaCteristiCs e
9.4.1 TestConfiguration
9.4.2 Pin Timing . ..o e
9.4.2.1 Backup Cache Loop Timingottt e e
9.4.2.2 sys_clk-Based Systems
9.4.23 Reference Clock-Based Systems.
9.4.3 Digital Phase-Locked LOOPt
9.4.4 Timing—Additional Signals
9.4.5 Timing of Test Features. it e e
9.45.1 Icache BiSt Operation Timing.t
9.45.2 Automatic SROM Load Timing.t
9.4.6 Clock TestModes
9.46.1 Normal (1x Clock) Mode. i
9.4.6.2 2x Clock Mode o
9.4.6.3 ChipTestMode e e i
9.4.6.4 Module TestMode o
9.4.6.5 Clock TestResetMode i
9.4.7 IEEE 1149.1 (JTAG) Performance
9.5 Power Supply Considerations.
9.5.1 Decoupling. . ..o
9511 Vdd Decouplingo
9.5.1.2 Vddi Decoupling
9.5.2 Power Supply Sequencing.

Thermal Management

10.1 Operating Temperature.ot e e e
10.2 Heat Sink Specifications
10.3 Thermal Design Considerations it

Mechanical Data and Packaging Information

111 Mechanical Specifications.
11.2 Signal Descriptions and Pin Assignment
11.2.1 Signal Pin Listso
11.2.2 Pin Assignment e

9-2
9-5

9-7

9-8

9-9

9-9
9-11
9-11
9-14
9-17
9-19
9-20
9-24
9-25
9-26
9-27
9-27
9-28
9-28
9-28
9-28
9-29
9-29
9-30
9-30
9-30
9-31

10-1
10-3
10-4

111
11-3
11-3
11-8

12 Testability and Diagnostics

12.1 Test POrt PiNS e 12-1
12.2 TestInterface e 12-2
12.2.1 IEEE 1149.1 Test Access Port i 12-2
12.2.2 Test Statls PiNsS. . .o 12-5
12.3 Boundary-Scan Register. e 12-6

A AlphaInstruction Set

Al Alpha Instruction Summary. A-1
Al1l Opcodes Reserved for COMPAQot A-9
Al.2 Opcodes Reserved for PALcode i A-9
A2 IEEE Floating-Point INStructionsottt e A-10
A3 VAX Floating-Point INStructions i A-12
A4 OpPCOde SUMMANYottt e e e e e e e e e e e e e e e A-12
A5 Required PALcode Function Codes i A-14
A.6 21164 Microprocessor IEEE Floating-Point Conformance A-14

B 21164 Microprocessor Specifications
C Serial Icache Load Predecode Values
D Errata Sheet

E Support, Products, and Documentation

E.1 CUSTIOMET SUPPOI. . o vt ettt e E-1
E.2 AlPha ProdUCts e E-2
E.3 Alpha Documentation E-2
E.4 Third—Party Documentationt E-3
Glossary
Index

Xi

Figures

2-1 21164 Microprocessor Block/Pipe Flow Diagram 2-2
2-2 Instruction Pipeline Stages e 2-15
2-3 Floating-Point Control Register (FPCR) Format. 2-39
2-4 Typical Uniprocessor Configuration 2-41
2-5 Typical Multiprocessor Configuration 2-42
2-6 Cacheless Multiprocessor Configuration. i, 2-43
3-1 21164 Microprocessor Logic Symbol 3-2
4-1 21164 System/Bcache Interface. 4-3
4-2 Clock Signals and Functions. e 4-6
4-3 21164 Uniprocessor CIoCKot 4-7
4-4 21164 Reference Clock for Multiprocessor Systems 4-9
4-5 ref_clk_in_h Initially Sampled Low 4-10
4-6 ref_clk_in_h Initially Sampled High 4-11
4-7 Full Scache Duplicate Tag Storet 4-15
4-8 Duplicate Tag Store Algorithm 4-16
4-9 Partial Scache Duplicate Tag Store it e 4-17
4-10 Cache SubsetHierarchy. i e 4-18
4-11 Write Invalidate Protocol: 21164 State Transitions. 4-22
4-12 Write Invalidate Protocol: System/Bus State Transitions 4-23
4-13 Flush-Based Protocol 21164 Statesot 4-25
4-14 Flush-Based Protocol System/Bus States 4-25
4-15 Bcache Read TransacCtion.ttt 4-29
4-16 Wave Pipeline Timing Diagram.t e 4-30
4-17 Bcache Write Transaction.u it e e 4-30
4-18 Synchronous Read Timing Diagram.t 4-33
4-19 Synchronous Write Timing Diagramt 4-33
4-20 READ MISS—No Bcache Timing Diagram. i, 4-38
4-21 READ MISS MOD—Bcache Timing Diagram. 4-40
4-22 READ MISS with Victim (Victim Buffer) Timing Diagram 4-43
4-23 READ MISS with Victim (Without Victim Buffer) Timing Diagram. 4-44
4-24 WRITE BLOCK Timing Diagram.o oo e e e e 4-46
4-25 SETDIRTY and LOCK Timing Diagramt 4-47
4-26 Algorithm for System Sending Commands to the 21164 4-50
4-27 READ DIRTY Timing Diagram (Scache Hit). 4-55
4-28 INVALIDATE Timing Diagram (Bcache Hit) 4-56
4-29 SET SHARED Timing Diagram. 4-57
4-30 FLUSH Timing Diagram (Scache Hit). 4-61
4-31 Read Timing Diagram (Scache Hit) 4-62
4-32 Driving the Command/Address BuUS i 4-63
4-33 Example of Using idle_bc_handfill_h 4-65
4-34 Usingdata bus req h i 4-66
4-35 READ MISS Completed First—Victim Buffer 4-68
4-36 READ MISS Second—No Victim Buffer. o 4-69
4-37 System Commandto FILLExample 1 i, 4-70

Xii

Xiii

System Commandto FILLExample 2
FILL to Private Read or Write Operation.,
Two Commands, Auto DACK Disabled.
Two Commands, Auto DACKEnabled
SYSCIK RAtO S 4 . ..o
SYSCIK RaAtio = 3. . . o
READ MISS with Victim Example.
idle_bc_handcack hRace Examples.
READ MISS with idle_bc_h Asserted Example

21164 Interrupt Signals.o
Istream Translation Buffer Tag Register ITB_TAG).,
Instruction Translation Buffer Page Table Entry (ITB_PTE) Register Write Format
Instruction Translation Buffer Page Table Entry (ITB_PTE) Register Read Format
Instruction Translation Buffer Address Space Number (ITB_ASN) Register
Instruction Translation Buffer IS (ITB_IS) Register.
Formatted Faulting Virtual Address (IFAULT_VA_FORM) Register (NT_Mode=0)
Formatted Faulting Virtual Address (IFAULT_VA_FORM) Register (NT_Mode=1)
Virtual Page Table Base Register (IVPTBR) (NT_Mode=0).................
Virtual Page Table Base Register (IVPTBR) (NT_Mode=1).................
Icache Parity Error Status (ICPERR_STAT) Register.
Exception Address (EXC_ADDR) Register.
Exception Summary (EXC_SUM) Register.c ...
Exception Mask (EXC_MASK) Register.t
PAL Base Address (PAL_BASE) Register
IDU Current Mode (ICM) RegiSter.ot e e
IDU Control and Status Register (ICSR). i i
Interrupt Priority Level Register (IPLR) i
Interrupt ID (INTID) Register. e
Asynchronous System Trap Request Register (ASTRR)
Asynchronous System Trap Enable Register (ASTER)
Software Interrupt Request Register (SIRR).
Hardware Interrupt Clear (HWINT_CLR) Register
Interrupt Summary Register (ISR).
Serial Line Transmit (SL_XMIT) Register.
Serial Line Receive (SL_RCV) Register.,
Performance Counter (PMCTR) Register. i,
Dstream Translation Buffer Address Space Number (DTB_ASN) Register
Dstream Translation Buffer Current Mode (DTB_CM) Register
Dstream Translation Buffer Tag (DTB_TAG) Register
Dstream Translation Buffer Page Table Entry (DTB_PTE) Register—Write Format
Dstream Translation Buffer Page Table Entry Temporary (DTB_PTE_TEMP)
REgISter . .. e
Dstream Memory Management Fault Status (MM_STAT) Register.
Faulting Virtual Address (VA) Register.t

4-71
4-72
4-73
4-73
4-74
4-75
4-80
4-81
4-82
4-83
4-84
4-85
4-88

5-6

5-7

5-7

5-9
5-10
5-10
5-11
5-11
5-12
5-13
5-14
5-15
5-16
5-16
5-17
5-19
5-20
5-21
5-21
5-22
5-23
5-24
5-26
5-27
5-28
5-33
5-33
5-34
5-35

5-36
5-37
5-38

5-34
5-35
5-36
5-37
5-38
5-39
5-40
5-41
5-42
5-43
5-44
5-45
5-46
5-47
5-48
5-49
5-50
5-51
5-52
5-53
5-54
5-55
5-56

A
[

PEEETT
ArOWONRFRPBRAODN

PEE

P
©O© 00N Ol

Formatted Virtual Address (VA_FORM) Register (NT_Mode=1)
Formatted Virtual Address (VA_FORM) Register (NT_Mode=0)

MTU Virtual Page Table Base

Register (MVPTBR)

Dcache Parity Error Status (DC_PERR_STAT) Register.
Dstream Translation Buffer Invalidate Single (DTB_IS) Register
MTU Control Register (MCSR) e
Dcache Mode (DC_MODE) RegiStert
Miss Address File Mode (MAF_MODE) Register

Alternate Mode (ALT_MODE)
Cycle Counter (CC) Register

Register.

Cycle Counter Control (CC_CTL) Register.
Dcache Test Tag Control (DC_TEST_CTL) Register.
Dcache Test Tag (DC_TEST _TAG) Register.
Dcache Test Tag Temporary (DC_TEST_TAG_TEMP) Register.
Scache Control (SC_CTL) Registert eie e
Scache Status (SC_STAT) RegiSter. e

Scache Address (SC_ADDR)

Register.

Bcache Control (BC_CONTROL) Register. i,
Bcache Configuration (BC_CONFIG) Register.
Bcache Tag Address (BC_TAG_ADDR) Registerccvuu...
External Interface Status (EI_STAT) Register

External Interface Address (EI

_ADDR)Register i

Fill Syndrome (FILL_SYN) Register e

HW_LD Instruction Format . .
HW_ST Instruction Format . .
HW_REI Instruction Format .

HW_MTPR and HW_MFPR Instruction Format
osc_clk_in_h,l Input Network and Terminations

Impedance vs Clock Input Fre
Input/Output Pin Timing
Bcache Timing
sys_clk System Timing
ref_clk System Timing.
BiSt Timing Event—Time Line
SROM Load Timing Event—T
Serial ROM Load Timing. . . .
Type 1 Heat Sink
Type 2 Heat Sink
Package Dimensions
21164 Top View (Pin Down) .
21164 Bottom View (Pin Up).
IEEE1149.1 Test Access Port
TAP Controller State Machine

QUENCY. « + v ettt e e e et e

imeLine.......

5-39
5-39
5-40
5-41
5-43
5-44
5-46
5-48
5-50
5-51
5-52
5-53
5-54
5-56
5-59
5-62
5-66
5-68
5-74
5-77
5-80
5-82
5-83

6-9
6-10
6-11
6-12

9-6

9-8
9-10
9-14
9-17
9-19
9-25
9-26
9-27
10-3
10-4
11-2
11-8
11-9
12-3
12-4

Xiv

Tables

2-1 Effect of Branching Instructions on the Branch—Prediction Stack 2-7
2-2 Pipeline Examples—AIll Casest e 2-16
2-3 Pipeline Examples—Integer Add 2-16
2-4 Pipeline Examples—Floating Add. 2-16
2-5 Pipeline Examples—Load (Dcache Hit) 2-17
2-6 Pipeline Examples—Load (Dcache MisS).o i, 2-17
2-7 Pipeline Examples—Store (Dcache Hit) 2-18
2-8 Instruction Classes and Slotting i 2-20
2-9 Instruction LatencCies.ot 2-25
2-10 Floating-Point Control Register Bit Descriptions. 2-39
3-1 21164 Signal DesCriptionso 3-4
3-2 21164 Signal Descriptions by Function. i i 3-16
4-1 CPU Clock Generation Control. e 4-5
4-2 System Clock DIVISOro e 4-6
4-3 System Clock Delay e 4-8
4-4 Physical MemMory ReQIONS. e e 4-12
4-5 Components for 21164 Write Invalidate Systems. 4-20
4-6 Bcache States for Cache Coherency Protocols 4-21
4-7 Components for 21164 Flush Cache Protocol Systems. 4-23
4-8 Bcache Options. 4-34
4-9 21164-Initiated Interface Commands 4-36
4-10 System-Initiated Interface Commands (Write Invalidate Protocol) 4-51
4-11 21164 Responses on addr_res_h<1:0> to Write Invalidate Protocol Commands 4-53
4-12 21164 Responses on addr_res_h<2>t0 21164 Commands 4-53
4-13 21164 Minimum Response Time to Write Invalidate Protocol Commands. 4-54
4-14 System-Initiated Interface Commands (Flush Protocol) 4-58
4-15 21164 Responses to Flush-Based Protocol Commands 4-59
4-16 21164 Responses on addr_res_h<2>t0 21164 Commands 4-59
4-17 Minimum 21164 Response Time to Flush Protocol Commands. 4-60
4-18 Data Check Bit Correspondenceto CBn. 4-86
4-19 Interrupt Priority Level Effect. 4-89
5-1 IDU, MTU, Dcache, and PALtemp IPREncodings, 5-1
5-2 Granularity Hint Bits in ITB_PTE_TEMP Read Format. 5-8
5-3 Icache Parity Error Status Register Fields 5-12
5-4 Exception Summary Register Fields. 5-14
5-5 IDU Control and Status Register Fields 5-17
5-6 Software Interrupt Request Register Fields 5-22
5-7 Hardware Interrupt Clear Register Fields 0., 5-23
5-8 Interrupt Summary Register Fields 5-24
5-9 Serial Line Transmit Register Fields 5-26
5-10 Serial Line Receive RegisterFields 5-27
5-11 Performance Counter Register Fields., 5-29
5-12 PMCTR Counter Select OptionS.ottt e e 5-30
5-13 Measurement Mode Controlt 5-32

XV

5-14
5-15
5-16
5-17
5-18
5-19
5-20
5-21
5-22
5-23
5-24
5-25
5-26
5-27
5-28
5-29
5-30
5-31
5-32
5-33
5-34
5-35
5-36
5-37

i

R IIIIIIQIQQIDI\‘I\‘CI»
A ONRPNRPNOOAMWNER
wNPEF- O

POEOPEOEOOOPOO®
PR R REROO~NOO

N

Dstream Memory Management Fault Status Register Fields

Formatted Virtual Address Register Fields
Dcache Parity Error Status Register Fields.
MTU Control Register Fields. i
Dcache Mode Register Fields.
Miss Address File Mode Register Fields.
Alternate Mode Register Settings e
Cycle Counter Control Register Fields
Dcache Test Tag Control Register Fields.
Dcache Test Tag Register Fields
Dcache Test Tag Temporary Register Fields
CBU Internal Processor Register Descriptions.
Scache Control Register Fields.
Scache Status Register Fields
SC_CMD Field DescCriptionsot e e
Scache Address Register Fields. i
Bcache Control Register Fields.
Bcache Configuration Register Fields.
Bcache Tag Address Register Fields i
Loading and Locking Rules for External Interface Registers
El_STAT Register Fields i i
Syndromes for Single-Bit Errors
CBU IPR PALcode ReStrictionso e
PALcode Restrictions Table
PALcode Trap Entry PoINts. e
Required PALcode Function Codest i
Opcodes Reserved for PALcodet
HW_LD Format DescCriptiont e e e e
HW_ST Format Description
HW_REI Format Description. e e
HW_MTPR and HW_MFPR Format Description
21164 Signal Pin Reset State.t e
Internal Processor Register ResetState.
21164 Absolute Maximum Ratingst
Operating Voltages oot
CMOS DC Input/Output Characteristicsot
Input Clock Specification.
Bcache LoOp Timingottt e e e
Normal Output Driver Characteristics it
Big Output Driver Characteristicsot e
21164 System Clock Output Timing (Sysclk=Tp),

21164 Reference Clock Input Timingot e

ref_clk System Timing Stages.

Input Timing for sys_clk_out- or ref_clk_in-Based Systems

Output Timing for sys_clk_out- or ref_clk_in-Based Systems.

Bcache Control Signal Timing. e

BiSt Timing for Some System Clock Ratios, Port Mode=Normal (System Cycles)

5-37
5-40
5-42
5-45
5-47
5-49
5-50
5-52
5-53
5-55
5-57
5-58
5-60
5-63
5-64
5-67
5-69
5-74
5-78
5-80
5-81
5-84
5-87
5-88

6-6

6-7

6-9
6-10
6-11
6-12

7-10
9-1
9-2
9-3

9-12
9-13
9-13
9-15
9-18
9-19
9-21
9-22
9-24
9-25

XVi

9-15 BiSt Timing for Some System Clock Ratios, Port Mode=Normal (CPU Cycles). . 9-26

9-16 SROM Load Timing for Some System Clock Ratios (System Cycles) 9-26
9-17 SROM Load Timing for Some System Clock Ratios (CPU Cycles) 9-27
9-18 Clock TEStMOUES ottt 9-28
9-19 IEEE 1149.1 Circuit Performance Specifications 9-29
10-1 ©.aatVarious Airflows. 10-1
10-2 Maximum T at Various Airflows. 10-2
11-1 Alphabetic Signal Pin List 11-3
12-1 21164 Test POrt PiNSo 12-1
12-2 Compliance Enable Inputs i 12-2
12-3 Instruction Register. 12-5
12-4 Boundary-Scan Register Organization 12-7
A-1 Instruction Format and Opcode Notation A-1
A-2 Architecture INStructions A-2
A-3 Opcodes Reserved for COMPAQ oottt e e e e A-9
A-4 Opcodes Reserved for PALcCOde e A-9
A-5 IEEE Floating-Point Instruction Function Codes. A-10
A-6 VAX Floating-Point Instruction Function Codes A-12
A-7 OpPCOde SUMMANYottt e et e e e e e e e e e e A-13
A-8 Required PALcode Function Codest i A-14
B-1 21164 Microprocessor Specifications. i B-1
D-1 Document Revision History. i e D-1

xvii

Preface

This manual provides information about the architecture, internal design, external
interface, and specifications of the Alpha 21164 microprocessor (referred to as the
21164) and its associated software.

Audience

Thisreference manual isfor system designers and programmers who use the 21164.

Manual Organization

This manual includes the following chapters and appendixes, and an index.

Chapter 1, Introduction, introduces the 21164 and provides an overview of the
Alphaarchitecture.

Chapter 2, Internal Architecture, describesthe major hardware functions and the
internal chip architecture. It describes performance measurement facilities, cod-
ing rules, and design examples.

Chapter 3, Hardware Interface, lists and describes the external hardware inter-
face signals.

Chapter 4, Clocks, Cache, and External Interface, describes the external bus
functions and transactions, lists bus commands, and describes the clock func-
tions.

Chapter 5, Internal Processor Registers, lists and describes the 21164 internal
processor register set.

Chapter 6, Privileged Architecture Library Code, describes the privileged archi-
tecture library code (PALcode).

Chapter 7, Initialization and Configuration, describes the initialization and con-
figuration sequence.

Chapter 8, Error Detection and Error Handling, describes error detection and
error handling.

XiX

Chapter 9, Electrical Data, provides electrical data and describes signal integrity
issues.

Chapter 10, Thermal Management, provides information about thermal manage-
ment.

Chapter 11, Mechanical Data and Packaging Information, provides mechanical
data and packaging information, including signal pin lists.

Chapter 12, Testability and Diagnostics, describes chip and system testability
features.

Appendix A, Alphalnstruction Set, summarizes the Alphainstruction set.

Appendix B, 21164 Microprocessor Specifications, summarizes the 21164 spec-
ifications.

Appendix C, Serial Icache Load Predecode Values, provides a C code example
that calcul ates the predecode values of a serial Icache load.

Appendix D, Errata Sheet, lists changes and revisions to this manual.

Appendix E, Support, Products, and Documentation, provides phone numbers
for support and lists related COMPAQ and third-party publications with order
information.

The Glossary lists and defines terms associated with the 21164.

The companion volume to this manual, the Alpha Architecture Reference Manual,
contains the Alpha architecture information.

Conventions

XX

This section defines product-specific terminol ogy, abbreviations, and other conven-
tions used throughout this manual.

Abbreviations

Binary Multiples

The abbreviationsK, M, and G (kilo, mega, and giga) represent binary multiples
and have the following values.

K = 219(1024)

M = 220(1,048,576)

G = 2%0(1,073,741,824)

For example:

2KB = 2kilobytes = 2x210pytes
4MB = 4megabytes = 4 x 22 pytes
8GB = 8gigabytes = 8x2%0pytes
Register Access

The abbreviations used to indicate the type of accessto register fields and bits
have the following definitions:

IGN — Ignore

Register bits specified as IGN are ignored when written and are UNPRE-
DICTABLE when read if not otherwise specified.

MBZ — Must Be Zero

Software must never place a nonzero value in bits and fields specified as
MBZ. Reads return unpredictable values. Such fields are reserved for future
use.

RAO — Read As One
Register bits specified as RAO return a 1 when read.
RAZ — Read As Zero
Register bits specified as RAZ return a 0 when read.
RC — Read To Clear

A register field specified as RC is written by hardware and remains
unchanged until read. The value may be read by software, at which point,
hardware may write a new value into the field.

XXi

XXii

RES — Reserved

Bits and fields specified as RES are reserved by COMPAQ and should not
be used; however, zeros can be written to reserved fields that cannot be
masked.

RO — Read Only

Bits and fields specified as RO can be read and are ignored (not written) on
writes.

RW — Read/Write
Bits and fields specified as RW can be read and written.
WOC — Write Zero to Clear

Bits and fields specified as WOC can be read. Writing a zero clears these bits
for the duration of the write; writing a one has no effect.

W1C — Write One to Clear

Bits and fields specified as W1C can be read. Writing a one clears these bits
for the duration of the write; writing a zero has no effect.

WO — Write Only

Bits and fields specified as WO can be written but not read.

Addresses

Unless otherwise noted, all addresses and offsets are hexadecimal.

Aligned and Unaligned

The termsaligned andnaturally aligned are interchangeable and refer to data objects
that are powers of two in size. An aligned datum of size &tored in memory at a

byte address that is a multiple &% ghat is, one that haslow-order zeros. For ex-
ample, an aligned 64-byte stack frame has a memory address that is a multiple of 64.

A datum of size 2is unaligned if it is stored in a byte address that is not a multiple
of 2,

Bit Notation

Multiple-bit fields can include contiguous and noncontiguous bits contained in angle
brackets (<>). Multiple contiguous bits are indicated by a pair of numbers separated
by acolon (:). For example, <9:7,5,2:0> specifies bits 9,8,7,5,2,1, and 0. Similarly,
single bits are frequently indicated with angle brackets. For example, <27> specifies
bit 27.

Caution
Cautions indicate potential damage to equipment or loss of data.

Data Units
The following data unit terminology is used throughout this manual.

Term Words Bytes Bits Other

Byte Yo 1 8 —

Word 1 2 16 —

Dword 2 4 32 Longword
Quadword 4 8 64 2 Dwords
External

Unless otherwise stated, externa means not contained in the 21164.

Numbering

All numbers are decimal or hexadecimal unless otherwise indicated. The prefix 0x
indicates a hexadecimal number. For example, 19 is decimal, but 0x19 and 0x19A
are hexadecimal (also see Addresses). Otherwise, the base is indicated by a sub-
script; for example, 100, is abinary number.

Ranges and Extents
Ranges are specified by a pair of numbers separated by two periods (..) and areinclu-
sive. For example, arange of integers 0..4 includes the integers 0, 1, 2, 3, and 4.

Extents are specified by a pair of numbersin angle brackets (<>) separated by a
colon (;) and are inclusive. Bit fields are often specified as extents. For example, bits
<7:3> specifiesbits 7, 6, 5, 4, and 3.

Security Holes

Security holes exist when unprivileged software (that is, software that is running out-
side of kernel mode) can:

XXiii

XXiv

e Affect the operation of another process without authorization from the operating
system.

* Amplify its privilege without authorization from the operating system.

e Communicate with another process, either overtly or covertly, without authoriza-
tion from the operating system.

Signal Names

Signal names are printed in lowercase, boldface type. Low-asserted signals are indi-
cated by the _| suffix, while high-asserted signals have the _h suffix. For example,
osc_clk_in_h isahigh-asserted signal, and osc_clk_in_| isalow-asserted signal.

Unpredictable and Undefined

Throughout this manual, the terms UNPREDICTABLE and UNDEFINED are used.
Their meanings are quite different and must be carefully distinguished.

In particular, only privileged software (that is, software running in kernel mode) can
trigger UNDEFINED operations. Unprivileged software cannot trigger UNDE-
FINED operations. However, either privileged or unprivileged software can trigger
UNPREDICTABLE results or occurrences.

UNPREDICTABLE results or occurrences do not disrupt the basic operation of the
processor. The processor continues to execute instructions in its normal manner. In
contrast, UNDEFINED operations can halt the processor or cause it to lose informa-
tion.

The terms UNPREDICTABLE and UNDEFINED can be further described as fol -
lows:

Unpredictable

e Resultsor occurrences specified as UNPREDICTABLE may vary from moment
to moment, implementation to implementation, and instruction to instruction
within implementations. Software can never depend on results specified as
UNPREDICTABLE.

e AnUNPREDICTABLE result may acquire an arbitrary value subject to afew
constraints. Such aresult may be an arbitrary function of the input operands or of
any state information that is accessible to the process in its current access mode.
UNPREDICTABLE results may be unchanged from their previous values.

Operations that produce UNPREDICTABLE results may also produce excep-
tions.

* An occurrence specified as UNPREDICTABLE may happen or not based on an
arbitrary choice function. The choice function is subject to the same constraints
as are UNPREDICTABLE results and, in particular, must not constitute a secu-
rity hole.

Specifically, UNPREDICTABLE results must hot depend upon, or be afunction
of the contents of memory locations or registers that are inaccessible to the cur-
rent process in the current access mode.

Also, operations that may produce UNPREDICTABLE results must not:

— Write or modify the contents of memory locations or registers to which the
current process in the current access mode does not have access.

— Halt or hang the system or any of its components.

For example, a security hole would exist if some UNPREDICTABLE result

depended on the value of a register in another process, on the contents of processor
temporary registers left behind by some previously running process, or on a
sequence of actions of different processes.

Undefined

e Operations specified as UNDEFINED may vary from moment to moment,
implementation to implementation, and instruction to instruction within imple-
mentations. The operation may vary in effect from nothing, to stopping system
operation.

* UNDEFINED operations may halt the processor or cause it to lose information.
However, UNDEFINED operations must not cause the processor to hang, that is,
reach an unhalted state from which there is no transition to anormal statein
which the machine executes instructions. Only privileged software (that is, soft-
ware running in kernel mode) may trigger UNDEFINED operations.

XXV

1

Introduction

This chapter provides a brief introduction to the Alpha architecture, COMPAQ'’s

RISC (reduced instruction set computing) architecture designed for high perfor-
mance. The chapter then summarizes the specific features of the Alpha 21164 micro-
processor (hereafter called the 21164) that implements the Alpha architecture.
Appendix A provides a list of Alpha instructions.

For a complete definition of the Alpha architecture, refer to the companion volume,
the Alpha Architecture Reference Manual.

1.1 The Architecture

The Alpha architecture is a 64-bit load and store RISC architecture designed with
particular emphasis on speed, multiple instruction issue, multiple processors, and
software migration from many operating systems.

All registers are 64 bits long and all operations are performed between 64-bit regis-
ters. All instructions are 32 bits long. Memory operations are either load or store
operations. All data manipulation is done between registers.

The Alpha architecture supports the following data types:
e 8-, 16, 32-, and 64-hit integers

e |EEE 32-bit and 64-hit floating-point formats

e VAX architecture 32-bit and 64-bit floating-point formats

In the Alpha architecture, instructions interact with each other only by one instruc-
tion writing to aregister or memory location and another instruction reading from
that register or memory location. This use of resources makes it easy to build imple-
mentations that issue multiple instructions every CPU cycle.

The 21164 uses a set of subroutines, called privileged architecture library code
(PALcode), that is specific to a particular Alpha operating system implementation
and hardware platform. These subroutines provide operating system primitives for
context switching, interrupts, exceptions, and memory management. These subrou-
tines can be invoked by hardware or CALL_PAL instructions. CALL_PAL instruc-

Introduction 1-1

The Architecture

tions use the function field of the instruction to vector to a specified subroutine.
PAL code is written in standard machine code with some implementation-specific
extensions to provide direct access to low-level hardware functions. PAL code sup-
ports optimizations for multiple operating systems, flexible memory-management
implementations, and multi-instruction atomic sequences.

The Alpha architecture performs byte shifting and masking with normal 64-bit, reg-
ister-to-register instructions and performs single-byte load and store instructions if
they are enabled by bit <17> of the ICSR.

1.1.1 Addressing

The basic addressable unit in the Alpha architecture is the 8-bit byte. The 21164 sup-
ports a 43-hit virtual address.

Virtual addresses as seen by the program are translated into physical memory
addresses by the memory-management mechanism. The 21164 supports a 40-bit
physical address.

1.1.2 Integer Data Types

Alpha architecture supports four integer data types.

Data Type Description

Byte A byteis 8 contiguous bits that start at an addressable byte boundary. A
byteisan 8-bit value. A byteis supported in Alpha architecture by the
EXTRACT, INSERT, LDBU, MASK, SEXTB, STB, and ZAP instruc-
tions.

Word A word is 2 contiguous bytes that start at an arbitrary byte boundary. A
word isa 16-bit value. A word is supported in Alpha architecture by the
EXTRACT, INSERT, LDWU, MASK, SEXTW, and STW instructions.

Longword A longword is 4 contiguous bytes that start at an arbitrary byte boundary. A
longword is a 32-bit value. A longword is supported in Alpha architecture
by sign-extended load and store instructions and by longword arithmetic
instructions.

Quadword A quadword is 8 contiguous bytes that start at an arbitrary byte boundary.
A quadword is supported in Alpha architecture by load and store instruc-
tions and quadword integer operate instructions.

1-2 Introduction

21164 Microprocessor Features

Note: Alphaimplementations may impose a significant performance penalty
when accessing operands that are not NATURALLY ALIGNED. Refer
to the Alpha Architecture Reference Manual for details.

1.1.3 Floating-Point Data Types
The 21164 supports the following floating-point data types:

e Longword integer format in floating-point unit
e Quadword integer format in floating-point unit
* |EEE floating-point formats

— S _floating

— T_floating
* VAX floating-point formats

— F_floating

— G_floating

— D_floating (limited support)

1.2 21164 Microprocessor Features

The 21164 microprocessor is a superscalar pipelined processor manufactured using
0.35-um CMOS technology. It is packaged in a 499-pin IPGA carrier and has remov-
able application-specific heat sinks. A number of configuration options allow its use
in a range of system designs ranging from extremely simple uniprocessor systems
with minimum component count to high-performance multiprocessor systems with
very high cache and memory bandwidth.

The 21164 can issue four Alpha instructions in a single cycle, thereby minimizing
the average cycles per instruction (CPI). A number of low-latency and/or high-
throughput features in the instruction issue unit and the onchip components of the
memory subsystem further reduce the average CPI.

The 21164 and associated PALcode implements IEEE single-precision and double-
precision, VAX F_floating and G_floating data types, and supports longword (32-
bit) and quadword (64-bit) integers. Byte (8-bit) and word (16-bit) support is pro-
vided by byte-manipulation instructions. Limited hardware support is provided for
the VAX D_floating data type. Partial hardware implementation is provided for the
architecturally optional FETCH and FETCH_M instructions.

Introduction 1-3

21164 Microprocessor Features

Other 21164 features include:
* A peak instruction execution rate of four times the CPU clock frequency.
* Theability to issue up to four instructions during each clock cycle.

e Anonchip, demand-paged memory-management unit with translation buffer,
which, when used with PAL code, can implement avariety of page table struc-
tures and tranglation algorithms. The unit consists of a 64-entry data transation
buffer (DTB) and a48-entry instruction translation buffer (ITB), with each entry
ableto map asingle 8KB page or agroup of 8, 64, or 512 8K B pages. The size of
each translation buffer entry’s group is specified by hint bits stored in the entry.
The DTB and ITB implement 7-bit address space numbers (ASN),
(MAX_ASN=127).

e Two onchip, high-throughput pipelined floating-point units, capable of execut-
ing both COMPAQ and | EEE floating-point data types.

* Anonchip, 8KB virtual instruction cache with 7-bit ASNs (MAX_ASN=127).
e Anonchip, dual-read-ported, 8K B data cache.
e Anonchip write buffer with six 32-byte entries.

e Anonchip, 96K B, 3-way, set-associative, write-back, second-level mixed
instruction and data cache.

e A 128-hit data bus with onchip parity and error correction code (ECC) support.

* Support for an optional external third-level cache. The size and access time of
the external third-level cache is programmable.

* Aninternal clock generator providing a high-speed clock used by the 21164, and
apair of programmable system clocks for use by the CPU module.

e Onchip performance counters to measure and analyze CPU and system perfor-
mance.

e Chip and module level test support, including an instruction cache test interface
to support chip and module level testing.

e A 3.3-V externa interface and 2.5-V internal interface.

Refer to Chapter 9 for 21164 dc and ac electrical characteristics. Refer to the Alpha
Architecture Reference Manual for a description of address space numbers (ASNS).

1-4 Introduction

2

Internal Architecture

This chapter provides both an overview of the 21164 microarchitecture and a system
designer’s view of the 21164 implementation of the Alpha architecture. The combi-
nation of the 21164 microarchitecture and privileged architecture library code (PAL-
code) defines the chip’s implementation of the Alpha architecture. If a certain piece
of hardware seems to be “architecturally incomplete,” the missing functionality is
implemented in PALcode. Chapter 6 provides more information on PALcode.

This chapter describes the major functional hardware units and is not intended to be
a detailed hardware description of the chip. It is organized as follows:

e 21164 microarchitecture

e Pipeline organization

e Scheduling and issuing rules

* Replay traps

* Missaddressfile (MAF) and load-merging rules
* MTU storeinstruction execution

e Write buffer and the WMB instruction

e Performance measurement support

e Floating-point control register

* Design examples

2.1 21164 Microarchitecture

The 21164 microprocessor is a high-performance implementation of COMPAQ’s
Alpha architecture. Figure 2-1 is a block diagram of the 21164 that shows the major
functional blocks relative to pipeline stage flow. The following paragraphs provide
an overview of the chip’s architecture and major functional units.

Internal Architecture 2-1

21164 Microarchitecture

Figure 2—-1 21164 Microprocessor Block/Pipe Flow Diagram

VIV'EBESO-CT

JUN 8JeyBIU| SNG PUE |01U0D BYoeD

JUN uone|suRI] SSaIppyY Alows

sauu3 z|
<
a4 samu3z ereq
ssaippy sng a1kg-ze ‘9 <— al01S
(diyoyo)
: padde-auq : Jagng Sim
; NP9 0 GNT
; (ayoeog) ayoed dmjoeg : Suld 01 ssaippy
““““““““ sassI
siig weansi b e (ssaippy [ea1sAyd) SSIN Weans uononisuj
eleq pue BANRID0SSY-18S ABM-E aSSIN Bl
uononasul o0ig aMd-p9 nERa 9 SNBSSV |y
5496 a4 U39
. SSalIppy Jajyng uonejsuel |
(ayoeos) ByoeD [9A3T-PUOIBS SSIN pesy-ena <
suid
014 eleq palod-peay [ena < exred |4
< paddep-1081Q pue 31015
xo1g ag-ze
nun iod-Buneol4 ot as <
<
(ayoeaq) ayoe) ereq Em 21607 M
pIe0QaIods
anss| [
e
1 lun 8podad/ydia4 uonannisu|
ua ,o._fooﬁu._ ,,nn__ﬂw T adid JoBatul L
A wg»m,uomm(
Bay Mu3-8Y
1un uonnoax3 Jebau o
nun uon 3 Al QYOM 3LAG AOND l Jabauy Jayng
‘1X3S ‘dND “INNI ‘LS 0 adid sebaju| m Y uone|suel |
‘a1 '14IHS '907 'dav uoponssu|
paddep-10811a
kw__m_._:s_ >oolg a1kg-ze
J1abayu| ays 21607
21607 xapuj
eleg 8IS 10IS ayoeg ¥oN
nun sabaju uononAsu uononsu|
ele(2101S Jayng
-) uonanssu|
Julod-buneol4 Joyng
3 liyay (=]
N Julod-Buneoly 7 L reals|
T‘ EE
JEISLEN]
juiod
-Buneoj4
J1aping pue adid ppy Julod-Buieold
[
Jepina eleq peo]
u04-6uneol
uun uonndax3 Julod-Buireoly
6S 8s LS 9s ss S €s s s 0s s

——sobe)s adid

Internal Architecture

2-2

21164 Microarchitecture

The 21164 microprocessor consists of the following internal sections:
e Clock generation logic (Section 4.2)

* Instruction fetch/decode unit and branch unit (IDU) (Section 2.1.1), which
includes:

— Instruction prefetcher and instruction decoder
— Instruction translation buffer
— Branch prediction
— Instruction slotting/issue
— Interrupt support
* |Integer execution unit (IEU) (Section 2.1.2)
* Hoating-point execution unit (FPU) (Section 2.1.3)
* Memory address trandation unit (MTU) (Section 2.1.4), which includes:
— Data translation buffer (DTB)
— Miss address file (MAF)
— Write buffer
Dcache control

e Cache control and businterface unit (CBU) with interface to external cache
(Section 2.1.5)

e Datacache (Dcache) (Section 2.1.6.1)

e |nstruction cache (Icache) (Section 2.1.6.2)

* Second-level cache (Scache) (Section 2.1.6.3)

* Serial read-only memory (SROM) interface (Section 2.1.7)

2.1.1 Instruction Fetch/Decode Unit and Branch Unit

The primary function of the instruction fetch/decode unit and branch unit (IDU) isto
manage and issue instructions to the IEU, MTU, and FPU. It a'so manages the
instruction cache. The IDU contains:

¢ Prefetcher and instruction buffer

e Instruction slot and issue logic

Internal Architecture 2-3

21164 Microarchitecture

* Program counter (PC) and branch prediction logic
e 48-entry instruction trandation buffers (ITBs)

e Abort logic

* Register conflict logic

e Interrupt and exception logic

2.1.1.1 Instruction Decode and Issue

The IDU decodes up to four instructions in parallel and checks that the required
resources are available for each instruction. The IDU issues only the instructions for
which all required resources are available. The IDU does not issueinstructions out of
order, even if the resources are available for alater instruction and not for an earlier
one.

In other words:

* If resources are available, and multiple issue is possible, then all four instruc-
tions are issued.

e |f resources are available only for alater instruction and not for an earlier one,
then only the instructions up to the latest one for which resources are available
are issued.

The IDU handles only NATURALLY ALIGNED groups of four instructions
(INT16). The IDU does not advance to a new group of four instructions until all
instructions in a group are issued. If a branch to the middle of an INT16 group
occurs, then the IDU attempts to issue the instructions from the branch target to the
end of the current INT16; the IDU then proceeds to the next INT16 of instructions
after all the instructionsin the target INT16 are issued. Thus, achieving maximum
issue rate and optimal performance requires that code be be scheduled properly and
that floating or integer NOP instructions be used to fill empty dots in the scheduled
instruction stream.

For more information on instruction scheduling and issuing, including detailed rules
governing multiple instruction issue, refer to Section 2.3.

2.1.1.2 Instruction Prefetch

The IDU contains an instruction prefetcher and a4-entry, 32-byte-per-entry, prefetch
buffer called the refill buffer. Each instruction cache (Icache) missis checked in the
refill buffer. If the refill buffer contains the instruction data, it fills the | cache and
instruction buffer simultaneoudly. If the refill buffer does not contain the necessary

2-4 Internal Architecture

21164 Microarchitecture

data, afetch and anumber of prefetches are sent to the MTU. One prefetch is sent
per cycle until each of the four entriesin the refill buffer isfilled or has a pending
fill. If these requests are al Scache hits, it is possible for instruction data to stream
into the IDU at the rate of one INT16 (four instructions) per cycle. The IDU can sus-
tain up to quad-instruction issue from this Scache fill stream, filling the Icache
simultaneously. The refill buffer holds all returned fill data until the datais required
by the IDU pipeline.

When there is a hit in the refill buffer, the 21164 waits until there is a “true” miss. A
“true” miss is one that misses in the Icache and then in the refill buffer. If an Icache
miss results in a refill buffer hit, prefetching is not started until all the data has been
moved from the refill buffer entry into the pipeline.

Each fill of the Icache by the refill buffer occurs when the instruction buffer stage in
the IDU pipeline requires a new INT16. The INT16 is written into the Icache and the
instruction buffer simultaneously. This can occur at a maximum rate of one Icache
fill per cycle. The actual rate depends on how frequently the instruction buffer stage
requires a new INT16, and on availability of data in the refill buffer.

Once an Icache miss occurs, the Icache enters fill mode. When the Icache is in fill
mode, the refill buffer is checked each cycle to see if it contains the next INT16
required by the instruction buffer.

When the required data is not available in the refill buffer (also a miss), the Icache is
checked for a hit while it awaits the arrival of the data from the Scache or beyond.
The IDU sends a read request to the CBU by means of the MTU. The CBU checks
the Scache and Bcache, and if the request misses in all caches, the CBU drives a
main memory request.

If there is an Icache hit at this time, the Icache returns to access mode and the
prefetcher stops sending fetches to the MTU. When a new program counter (PC) is
loaded (that is, taken branches), the Icache returns to access mode until the first miss.
The refill buffer receives and holds instruction data from fetches initiated before the
Icache returned to access mode.

The Icache has a 32-byte block size, whereas the refill buffer is able to load the
Icache with only one INT16 (16 bytes) per cycle. Therefore, each Icache block has
two valid bits, one for each 16-byte subblock.

Internal Architecture 2-5

21164 Microarchitecture

2.1.1.3 Branch Execution

2-6

When a branch or jump instruction is fetched from the Icache by the prefetcher, the
IDU needs one cycle to calcul ate the target PC before it is ready to fetch the target
instruction stream. In the second cycle after the fetch, the Icache is accessed at the
target address. Branch and PC prediction are hecessary to predict and begin fetching
the target instruction stream before the branch or jump instruction is issued.

The Icache records the outcome of branch instructions in a 2-bit history state pro-

vided for each instruction location in the Icache. Thisinformation is used as the pre-
diction for the next execution of the branch instruction. The 2-bit history stateisa
saturating counter that increments on taken branches and decrements on not-taken
branches. The branch is predicted taken on the top two count values and is predicted
not-taken on the bottom two count values. The history statusis not initialized on

Icache fill, therefore it may “remember” a branch that was evicted from the Icache
and subsequently reloaded.

The 21164 does not limit the number of branch predictions outstanding to one. It pre-
dicts branches even while waiting to confirm the prediction of previously predicted
branches. There can be one branch prediction pending for each of pipeline stages 3
and 4, plus up to four in pipeline stage 2. Refer to Section 2.2 for a description of
pipeline stages.

When a predicted branch is issued, the IEU or FPU checks the prediction. The
branch history table is updated accordingly. On branch mispredict, a mispredict trap
occurs and the IDU restarts execution from the correct PC.

The 21164 provides a 12-entry subroutine return stack that is controlled by decoding
the opcode (BSR, HW_REI, and JIMP/JSR/RET/JSR_COROUTINE), and
DISP<15:14> in IMP/JSR/RET/JSR_COROUTINE. The stack stores an Icache
index in each entry. The stack is implemented as a circular queue that wraps around
in the overflow and underflow cases.

Internal Architecture

21164 Microarchitecture

Table 2-1 lists the effect each of these instructions has on the state of the branch-pre-
diction stack.

Table 2-1 Effect of Branching Instructions on the Branch—~Prediction Stack

Stack Used for

Instruction Prediction? Effect on Stack
BSR, JSR No Push PC+4

RET Yes Pop

JMP, BR, BRxx No No effect
JSR_COROUTINE Yes Pop, then push PC+4
PAL entry No Push PC+4

HW_REI Yes Pop

The 21164 uses the Icache index hint in the JMP and JSR instructions to predict the
target PC. The Icache index hint in the instruction’s displacement field is used to
access the direct-mapped Icache. The upper bits of the PC are formed from the data
in the Icache tag store at that index. Later in the pipeline, the PC prediction is
checked against the actual PC generated by the IEU. A mismatch causes a PC
mispredict trap and restart from the correct PC. This is similar to branch prediction.

The RET, JSR_COROUTINE, and HW_REI instructions predict the next PC by
using the index from the subroutine return stack. The upper bits of the PC are formed
from the data in the Icache tag at that index. These predictions are checked against
the actual PC in exactly the same way that JIMP and JSR predictions are checked.

Changes from PALmode to native mode and vice versa are predicted on all PC pre-
dictions that use the subroutine return stack. In all cases, if the PC prediction is cor-
rect, the mode prediction will also be correct. Instruction stream (Istream)
prefetching is disabled when a PC prediction is outstanding.

2.1.1.4 Instruction Translation Buffer

The IDU includes a 48-entry, fully associative instruction translation buffer (ITB).
The buffer stores recently used Istream address translations and protection informa-
tion for pages ranging from 8KB to 4MB and uses a not-last-used replacement algo-
rithm.

Internal Architecture 2-7

21164 Microarchitecture

PAL code fillsand maintainsthe ITB. Each entry supports al four granularity hint bit
combinations, so that any single ITB entry can provide translation for up to 512 con-
tiguously mapped 8K B pages. The operating system, using PAL code, must ensure
that virtual addresses can only be mapped through asingle I TB entry or superpage
mapping at one time. Multiple simultaneous mapping can cause UNDEFINED
results.

While not executing in PALmode, the 43-bit virtual PC is routed to the ITB each
cycle. If the page table entry (PTE) associated with the PC is cached in the ITB, the
protection bits for the page that contains the PC are used by the IDU to do the neces-
sary access checks. If thereis an Icache miss and the PC is cached in the ITB, the
page frame number (PFN) and protection bits for the page that contains the PC are
used by the IDU to do the address translation and access checks.

The 21164's ITB supports 128 address space numbers (ASNs) (MAX_ASN=127) by
means of a 7-bit ASN field in each ITB entry. PALcode uses the hardware-specific
HW_MTPR instruction to write to the architecturally defined ITB_IAP register. This
has the effect of invalidating ITB entries that do not have their ASM bit set.

The 21164 provides two optional translation extensions called superpages. Access to
superpages is enabled using ICSR<SPE> and is allowed only while executing in
privileged mode.

* One superpage maps virtual address bits <39:13> to physical address bits
<39:13>, on aone-to-one basis, when virtual address bits <42:41> equal 2. This
maps the entire physical address space four times over to the quadrant of the vir-
tual address space.

e The other superpage maps virtual address bits <29:13> to physical address bits
<29:13>, on aone-to-one basis, and forces physical address bits <39:30>to 0
when virtual address bits <42:30> equal 1FFE,¢. This effectively maps a 30-bit
region of physical address spaceto asingle region of the virtual address space
defined by virtual address bits <42:30> = 1FFEg.

Access to either superpage mapping is allowed only while executing in kernel mode.
Superpage mapping allows the operating system to map al physical memory to a
privileged virtual memory region.

2.1.1.5 Interrupts

The IDU exception logic supports three sources of interrupts:

e Hardware interrupts

Internal Architecture

21164 Microarchitecture

There are seven level-sensitive hardware interrupt sources supplied by the fol-
lowing signals:

irq_h<3:0>

mch_hlt_irq_h

pwr_fail_irg_h

sys_ mch_chk_irqg_h
e Softwareinterrupts

There are 15 prioritized software interrupts sourced by the software interrupt
reguest register (SIRR) (see Section 5.1.22).

e Asynchronous system traps (ASTs)

There are four ASTs sourced by the asynchronous system trap request (ASTRR)
register.
The serial interrupt, the internally detected correctable error interrupt, the perfor-
mance counter interrupts, and irq_h<3:0> are all maskable by bitsin the ICSR (see
Section 5.1.17). The four AST traps are maskable by bitsin the ASTER (see
Section 5.1.21). In addition, the AST traps are qualified by the current processor
mode. All interrupts are disabled when the processor is executing PAL code.

Each interrupt source, or group of sources, is assigned an interrupt priority level

(IPL), as shown in Table 4-19. The current IPL is set using the IPLR register (see
Section 5.1.18). Any interrupts that have an equal or lower IPL are masked. When an
interrupt occurs that has an IPL greater than the value in the IPLR register, program
control passes to the INTERRUPT PALcode entry point. PALcode processes the
interrupt by reading the ISR (see Section 5.1.24) and the INTID register (see
Section 5.1.19).

2.1.2 Integer Execution Unit

The integer execution unit (IEU) contains two 64-bit integer execution pipelines, EO
and E1, which include the following:

e Two adders

* Twologic boxes

e A barrel shifter

e Byte-manipulation logic

e Aninteger multiplier

Internal Architecture 2-9

21164 Microarchitecture

The |EU also includes the 40-entry, 64-hit integer register file (IRF) that containsthe
32 integer registers defined by the Alpha architecture and 8 PAL shadow registers.
Theregister file has four read ports and two write ports that provide operandsto both
integer execution pipelines and accept results from both pipes. The register file also
accepts load instruction results (memory data) on the same two write ports.

2.1.3 Floating-Point Execution Unit

The onchip, pipelined floating-point unit (FPU) can execute both |IEEE and VAX
floating-point instructions. The 21164 supports IEEE S floating and T_floating data
types, and all rounding modes. It also supports VAX F_floating and G_floating data
types, and provides limited support for the D_floating format. The FPU contains:

e A 32-entry, 64-bit floating-point register file
e A user-accessible control register

e A floating-point multiply pipeline

e A floating-point add pipeline

The floating-point divide unit is associated with the floating-point add pipeline
but is not pipelined.

The FPU can accept two instructions every cycle, with the exception of floating-
point divideinstructions. The result latency for nondivide, floating-point instructions
isfour cycles.

Thefloating-point register file (FRF) hasfive read ports and four write ports. Four of
the read ports are used by the two pipelines to source operands. The remaining read
port is used by floating-point stores. Two of the write ports are used to write results
from the two pipelines. The other two write ports are used to write fills from float-
ing-point loads.

2.1.4 Memory Address Translation Unit

2-10

The memory address tranglation unit (MTU) contains three major sections:
e Datatrandation buffer (dual ported)

* Missaddressfile

e Write buffer addressfile

There are a pair of write ports on the floating-point register file devoted to loads and
fillsfor previous loads that missed. The MTU arbitrates between floating-point loads
that hit in the Dcache and floating-point fills from the CBU, making certain that only

Internal Architecture

21164 Microarchitecture

one register is written per fill port in each cycle. Floating-point loads that conflict
with CBU fills for use of these write ports are forced to miss in the Dcache so that
the CBU fill can execute.

The MTU receives up to two virtual addresses every cycle from the IEU. The trans-
lation buffer generates the corresponding physical addresses and access control
information for each virtual address. The 21164 implements a 43-bit virtual address
and a 40-bit physical address.

2.1.4.1 Data Translation Buffer

The 64-entry, fully associative, dual-read-ported data translation buffer (DTB) stores
recently used data stream (Dstream) page table entries (PTES). Each entry supports
al four granularity hint-bit combinations, so that asingle DTB entry can provide
translation for up to 512 contiguously mapped, 8KB pages. The trandation buffer
uses a not-last-used replacement algorithm.

For load and store instructions, and other MTU instructions requiring address trans-
lation, the effective 43-bit virtual addressis presented to the DTB. If the PTE of the
supplied virtual addressis cached in the DTB, the page frame number (PFN) and
protection bits for the page that contains the address are used by the MTU to com-
plete the address translation and access checks.

The DTB also supports the optional superpage extensions that are enabled using
ICSR<SPE>. The DTB superpage maps provide virtual-to-physical address transla-
tion for two regions of the virtual address space, as described in Section 2.1.1.4.

PAL code fills and maintains the DTB. The operating system, using PALcode, must
ensurethat virtual addresses be mapped either through asingle DTB entry or through
superpage mapping. Multiple simultaneous mapping can cause UNDEFINED
results. The only exception to thisruleisthat any given virtual page may be mapped
twice with identical datain two different DTB entries. This occursin operating sys-
tems, such as OpenVMS, which utilize virtually accessible page tables. If thelevel 1
page tableis accessed virtually, PAL code |oads the translation information twice;
once in the double-miss handler, and once in the primary handler. The PTE mapping
thelevel 1 page table must remain constant during accesses to this page to meet this
requirement.

2.1.4.2 Load Instruction and the Miss Address File

The MTU begins the execution of each load instruction by trandating the virtual

address and by accessing the data cache (Dcache). Translation and Dcache tag read
operations occur in parallel. If the addressed location is found in the Dcache (ahit),
then the data from the Dcache is formatted and written to either the integer register

Internal Architecture 2-11

21164 Microarchitecture

file (IRF) or floating-point register file (FRF). The formatting required depends on
the particular load instruction executed. If the datais not found in the Dcache (a
miss), then the address, target register number, and formatting information are
entered in the miss address file (MAF).

The MAF performs aload-merging function. When aload miss occurs, each MAF
entry is checked to seeif it contains aload miss that addresses the same Dcache (32-
byte) block. If it does, and certain merging rules are satisfied, then the new load miss
is merged with an existing MAF entry. This allows the MTU to service two or more
load misses with one datafill from the CBU.

Thereare six MAF entries for load misses and four more for IDU instruction fetches
and prefetches. Load misses are usually the highest MTU priority.

Refer to Section 2.5 for information on load-merging rules.

2.1.4.3 Dcache Control and Store Instructions

The Dcache follows awrite-through protocol. During the execution of a store
instruction, the MTU probes the Dcache to determine whether the location to be
overwritten is currently cached. If so (a Dcache hit), the Dcache is updated. Regard-
less of the Dcache state, the MTU forwards the data to the CBU.

A load instruction that is issued one cycle after a store instruction in the pipeline cre-
atesaconflict if both the load and store operations access the same memory location.
(The store instruction has not yet updated the location when the load instruction
readsit.) Thisconflict is handled by forcing the load instruction to take areplay trap;
that is, the IDU flushes the pipeline and restarts execution from the load instruction.
By the timethe load instruction arrives at the Dcache the second time, the conflicting
store instruction has written the Dcache and the load instruction is executed nor-
mally.

Replay traps can be avoided by scheduling the load instruction to issue three cycles
after the storeinstruction. If theload instruction is scheduled to issue two cycles after
the store instruction, then it will be issue-stalled for one cycle.

2.1.4.4 Write Buffer

2-12

The MTU contains awrite buffer that has six 32-byte entries, each of which holds
the data from one or more store instructions that access the same 32-byte block in
memory until the datais written into the Scache. The write buffer provides afinite,
high-bandwidth resource for receiving store data to minimize the number of CPU
stall cycles. The write buffer and associated WMB instruction are described in Sec-
tion 2.7.

Internal Architecture

21164 Microarchitecture

2.1.5 Cache Control and Bus Interface Unit

The cache control and bus interface unit (CBU) processes all accesses sent by the
MTU and implements all memory-related external interface functions, particularly
the coherence protocol functions for write-back caching. It controls the second-level
cache (Scache) and the optional board-level backup cache (Bcache). The CBU han-
diesall instruction and primary Dcache read misses, performsthe function of writing
datafrom the write buffer into the shared coherent memory subsystem, and has a
major role in executing the Alpha memory barrier (MB) instruction. The CBU also
controls the 128-hit bidirectional data bus, address bus, and 1/0 control. Chapter 4
describes the external interface.

2.1.6 Cache Organization

The 21164 has three onchip caches—a primary data cache (Dcache), a primary
instruction cache (Icache), and a second-level data and instruction cache (Scache).
All memory cellsin the onchip caches are fully static, 6-transistor, CMOS structures.

The 21164 also provides control for an optional board-level, external cache
(Bcache).

2.1.6.1 Data Cache

The data cache (Dcache) is a dual-read-ported, single-write-ported, 8KB cache. It is
awrite-through, read-allocate, direct-mapped, byte-accessible, physica cache with
32-byte blocks and data parity at the byte level.

2.1.6.2 Instruction Cache

The instruction cache (Icache) is an 8KB, virtual, direct-mapped cache with 32-byte
blocks. Each block tag contains:

e A 7-bit address space number (ASN) field as defined by the Alpha architecture
* A 1-bit address space match (ASM) field as defined by the Alpha architecture
e A 1-bit PALcode (physically addressed) indicator

Software, rather than |cache hardware, maintains | cache coherence with memory.

Internal Architecture 2-13

Pipeline Organization

2.1.6.3 Second-Level Cache

The second-level cache (Scache) is a 96K B, 3-way, set- associative, physical, write-
back, write-allocate, byte-accessible cache with 32-byte or 64-byte blocks and byte-
level data parity. It isamixed data and instruction cache. The Scacheisfully pipe-
lined; it processes read and write operations at the rate of one INT16 per CPU cycle
and can alternate between read and write accesses without bubble cycles.

When operating in 32-byte block mode, the Scache has 64- byte blocks with 32-byte
subblocks, one tag per block. If configured to 32 bytes, the Scache is organized as
three sets of 512 blocks, with each block divided into two 32-byte subblocks. If con-
figured to 64 bytes, the Scache is three sets of 512 64-byte blocks.

2.1.6.4 External Cache

The CBU implements control for an optional, external, direct-mapped, physical,
write-back, write-all ocate cache with 32-byte or 64-byte blocks. The 21164 supports
board-level cache sizesof 1, 2, 4, 8, 16, 32, and 64MB.

2.1.7 Serial Read-Only Memory Interface

The serial read-only memory (SROM) interface provides the initialization data load
path from a system SROM to the |cache. Chapter 7 provides information about the
SROM interface.

2.2 Pipeline Organization

The 21164 has a 7-stage (or 7-cycle) pipeline for integer operate and memory refer-
ence instructions, and a 9-stage pipeline for floating-point operate instructions. The
IDU maintains state for al pipeline stages to track outstanding register write opera-
tions.

Figure 2—2 shows the integer operate, memory reference, and floating-point operate
pipelines for the IDU, FPU, IEU, and MTU. The first four stages are executed in the
IDU. Remaining stages are executed by the IEU, FPU, MTU, and CBU. There are
bypass paths that allow the result of one instruction to be used as a source operand of
a following instruction before it is written to the register file.

Tables 2-2, 2-3, 2—-4, 2-5, 2-6, and 2—7 provide examples of events at various stages
of pipelining during instruction execution.

2-14 Internal Architecture

Figure 2—2 Instruction Pipeline Stages

Pipeline Organization

Instruction Cache Read

Instruction Buffer, Branch Decode,
Determine Next PC

Slot by Function Unit

Register File Access Checks,
Integer Register File Access

5 6 Arithmetic, logical, shift, and compare

instructions complete in pipeline stage 4
(1-cycle latency). CMOV completes in
stage 5 (2—cycle latency). IMULL has
an 8-cycle or 9—-cycle latency. CMOV
or BR can issue in parallel (0-cycle

latency) with a dependent CMP

Dteger Ic [1B [sL]AC
perate 0 1) 3 4
Pipeline

First Integer

Operate Stage

If Needed, Second Integer

Operate Stage

Write Integer Register File instruction.
Floating= I 1c | 1B | SL | AC
Point 19 |1 |2 |3 |4|5]|6]|7]8
Pipeline

File Access

First Floating—Point

Floating—Point Register

Operate Stage
Write Floating—Point Register File,

Last Floating—Point Operate Stage

memory IC | 1B | SL|AC
eference 0 1 2 3

Pipeline

4

Dcache Read Ends

Dcache Read Begins Q

Use Dcache Data, Store Writes
Dcache, Scache, Tag Access

Scache Data Access Begins

Scache Data Access Ends
Fill Dcache

Use Scache Data

HLOO019

Internal Architecture 2-15

Pipeline Organization

2-16

Table 2—2 Pipeline Examples—All Cases

Pipeline Stage

Events

0
1

Access | cache tag and data.

Buffer four instructions, check for branches, calculate branch displace-
ments, and check for Icache hit.

Slot-swap instructions around so they are headed for pipelines capable of
executing them. Stall preceding stagesif al instructionsin this stage can-
not issue simultaneously because of function unit conflicts.

Check the operands of each instruction to see that the sourceis valid and
available and that no write-write hazards exist. Read the IRF. Stall preced-
ing stages if any instruction cannot be issued. All source operands must be
available at the end of this stage for the instruction to issue.

Table 2—-3 Pipeline Examples—Integer Add

Pipeline Stage

Events

4
5
6

Perform the add operation.
Result is available for use by an operate function in this cycle.

Write the IRF. Result is available for use by an operate function in this
cycle.

Table 2—4 Pipeline Examples—Floating Add

Pipeline Stage

Events

© 00 N o o b

Read the FRF.

First stage of FPU add pipeline.

Second stage of FPU add pipeline.

Third stage of FPU add pipeline.

Fourth stage of FPU add pipeline. Write the FRF.

Result is available for use by an operate function in this cycle. For
instance, pipeline stage 5 of the user instruction can coincide with pipeline
stage 9 of the producer (latency of 4).

Internal Architecture

Pipeline Organization

Table 2-5 Pipeline Examples—Load (Dcache Hit)

Pipeline Stage! Events

4 Calculate the effective address. Begin the Dcache data and tag store
access.
5 Finish the Dcache data and tag store access. Detect Dcache hit. Format

the data as required. Scache arbitration defaults to pipe EO in anticipation
of apossible miss.

6 Write the IRF or FRF. Datais available for use by an operate function in
thiscycle.

Lpipe EO has not been defined at this point.

Table 2—-6 Pipeline Examples—Load (Dcache Miss)

Pipeline Stage! Events

4 Calculate the effective address. Begin the Dcache data and tag store
access.
5 Finish the Dcache data and tag store access. Detect Dcache miss. Scache

arbitration defaults to pipe EO in anticipation of a possible miss. If there
are load instructions in both EO and E1, the load instruction in E1 would
be delayed at |east one more cycle because default arbitration specul a-
tively assumes the load in EO will miss.

6 Begin Scache tag read operation.

7 Finish Scache tag read operation. Begin detecting Scache hit.

8 Finish detecting Scache hit. Begin accessing the correct Scache data
bank. (Bcache index at interface—Bcache access begins.)

9 Finish the Scache data bank access. Begin sending fill data from the
Scache.

10 Finish sending fill data from the Scache. Begin Dcache fill. Format the
data as required.

11 Finish the Dcache fill. Write the integer or floating-point register file.

12 Data is available for use by an operate function in this cycle.

Ipipes E0 and E1 have not been defined at this point.

Internal Architecture 2-17

Pipeline Organization

Table 2—7 Pipeline Examples—Store (Dcache Hit)

Pipeline Stage Events

4 Calculate the effective address. Begin the Dcache tag store access.

5 Finish the Dcache tag store access. Detect Dcache hit. Send store to the
write buffer simultaneoudly.

6 Write the Dcache data store if hit (write begins this cycle).

2.2.1 Pipeline Stages and Instruction Issue

The 21164 pipeline divides instruction processing into four static and a number of
dynamic stages of execution. The first four stages consist of the instruction fetch,
buffer and decode, slotting, and issue-check logic. These stages are static in that
instructions may remain valid in the same pipeline stage for multiple cycles while
waiting for aresource or stalling for other reasons. Dynamic stages (IEU and FPU)
always advance state and are unaffected by any stall in the pipeline. A pipeline stall
may occur while zero instructions issue, or while some instructions of a set of four
issue and the others are held at the issue stage. A pipeline stall impliesthat avalid
instruction is (or instructions are) presented to be issued but cannot proceed.

Upon satisfying all issue requirements, instructions are issued into their slotted pipe-
line. After issuing, instructions cannot stall in a subsequent pipeline stage. The issue
stage is responsible for ensuring that al resource conflicts are resolved before an
instruction is allowed to continue. The only means of stopping instructions after the
issue stage isan abort condition. (Theterm abort as used here isdifferent fromitsuse
in the Alpha Architecture Reference Manual.)

2.2.2 Aborts and Exceptions

2-18

Aborts result from a number of causes. In general, they can be grouped into two
classes, exceptions (including interrupts) and nonexceptions. The difference between
the two is that exceptions require that the pipeline be drained of all outstanding
instructions before restarting the pipeline at aredirected address. In either case, the
pipeline must be flushed of all instructions that were fetched subsequent to the
instruction that caused the abort condition (arithmetic exceptions are an exception to
thisrule). Thisincludes aborting some instructions of a multiple-issued set in the
case of an abort condition on the one instruction in the set.

Internal Architecture

Pipeline Organization

The nonexception case does not need to drain the pipeline of all outstanding instruc-
tions ahead of the aborting instruction. The pipeline can be restarted immediately at a
redirected address. Examples of nonexception abort conditions are branch mispre-
dictions, subroutine call/return mispredictions, and replay traps. Data cache misses
can cause aborts or issue stalls depending on the cycle-by-cycle timing.

In the event of an exception other than an arithmetic exception, the processor aborts
al instructionsissued after the exceptional instruction, as described in the preceding
paragraphs. Dueto the nature of some exception conditions, this may occur aslate as
the integer register file (IRF) write cycle. In the case of an arithmetic exception, the
processor may execute instructions issued after the exceptional instruction.

After aborting, the address of the exceptional instruction or the immediately subse-
guent instruction is latched in the EXC_ADDR internal processor register (IPR). In
the case of an arithmetic exception, EXC_ADDR contains the address of the instruc-
tion immediately after the last instruction executed. (Every instruction prior to the
last instruction executed was al so executed.) For machine check and interrupts,
EXC_ADDR pointsto the instruction immediately following the last instruction exe-
cuted. For the remaining cases, EXC_ADDR points to the exceptional instruction;
where, in all cases, its execution should naturally restart.

When the pipeline is fully drained, the processor begins instruction execution at the
address given by the PAL code dispatch. The pipelineis drained when all outstanding
write operations to both the IRF and FRF have completed and all outstanding
instructions have passed the point in the pipeline such that they are guaranteed to
complete without an exception in the absence of a machine check.

Replay traps are aborts that occur when an instruction requires a resource that is not
available at some point in the pipeline. These are usually MTU resources whose
availability could not be anticipated accurately at issue time (refer to Section 2.4). If
the necessary resource is not available when the instruction requiresit, the instruc-
tion is aborted and the IDU begins fetching at exactly that instruction, thereby
replaying the instruction in the pipeline. A slight variation on this is the load-miss-
and-use replay trap in which an operate instruction isissued just asa Dcache hit is

being evaluated to determine if one of the instruction’s operands is valid. If the result

is a Dcache miss, then the operate instruction is aborted and replayed.

Internal Architecture 2-19

Scheduling and Issuing Rules

2.2.3 Nonissue Conditions

There are two reasons for nonissue conditions. The first is a pipeline stall wherein a
valid instruction or set of instructions are prepared to issue but cannot dueto a
resource conflict (register conflict or function unit conflict). These types of nonissue
cycles can be minimized through code scheduling.

The second type of nonissue conditions consists of pipeline bubbles where thereis
no valid instruction in the pipeline to issue. Pipeline bubbles result from the abort
conditions described in the previous section. In addition, asingle pipeline bubble is
produced whenever a branch type instruction is predicted to be taken, including sub-
routine calls and returns.

Pipeline bubbles are reduced directly by the instruction buffer hardware and through
bubble squashing, but can aso be effectively minimized through careful coding
practices. Bubble squashing involves the ability of the first four pipeline stagesto
advance whenever a bubble or buffer slot is detected in the pipeline stage immedi-
ately ahead of it while the pipeline is otherwise stalled.

2.3 Scheduling and Issuing Rules

The following sections define the classes of instructions and provide rules for
instruction slotting, instruction issuing, and latency.

2.3.1 Instruction Class Definition and Instruction Slotting

2-20

The scheduling and multiple issue rules presented here are performance related only;

that is, there are no functional dependencies related to scheduling or multiple issu-

ing. The rules are defined in terms of instruction classes. Table 2—8 specifies all of

the instruction classes and the pipeline that executes the particular class. With a few
additional rules, the table provides the information necessary to determine the func-
tional resource conflicts that determine which instructions can issue in a given cycle.

Table 2-8 Instruction Classes and Slotting (Sheet 1 of 3)
Class Name Pipeline Instruction List
LD EO'or E12 All loads except LDx_L
ST EO All stores except STx_C
MBX EO LDx L, MB, WMB, STx_C, HW_L D-lock, HW_ST-cond,
FETCH
RX EO RS, RC

Internal Architecture

Scheduling and Issuing Rules

Table 2-8 Instruction Classes and Slotting (Sheet 2 of 3)

Class Name Pipeline

Instruction List

MXPR

IBR
FBR

IADD

ILOG
SEXT
SHIFT

CMOV

ICMP
IMULL
IMULQ
IMULH
FADD

FDIV
FMUL

EOor E1
(depends
on the IPR)

E1
FA3
=

EOor E1

EOor E1
EO
EO

EOor E1

EOor E1
EO
EO
EO
FA

FA

HW_MFPR, HW_MTPR

Integer conditional branches
Floating-point conditional branches

Jump-to-subroutine instructions: IMP, JSR, RET, or
JSR_COROUTINE, BSR, BR, HW_REI, CALLPAL

ADDL, ADDL/V, ADDQ, ADDQ/V, SUBL, SUBL/V, SUBQ,
SUBQ/V, SAADDL, SAADDQ, SSBADDL, SSADDQ, SASUBL,
SASUBQ, S8SUBL, S8SUBQ, LDA, LDAH

AND, BIS, XOR, BIC, ORNOT, EQV
SEXTB, SEXTW

SLL, SRL, SRA, EXTQL, EXTLL, EXTWL, EXTBL,
EXTQH, EXTLH, EXTWH, MSKQL, MSKLL, MSKWL,
MSKBL, MSKQH, MSKLH, MSKWH, INSQL, INSLL,
INSWL, INSBL, INSQH, INSLH, INSWH, ZABR, ZAPNOT

CMOVEQ, CMOVNE, CMOVLT, CMOVLE, CMOVGT,
CMOVGE, CMOVLBS, CMOVLBC

CMPEQ, CMPLT, CMPLE, CMPULT, CMPULE, CMPBGE
MULL, MULL/V

MULQ, MULQ/V

UMULH

Floating-point operates, including CPY SN and CPY SE, except
multiply, divide, and CPY S

Floating-point divide
Floating-point multiply

Internal Architecture 2-21

Scheduling and Issuing Rules

Table 2-8 Instruction Classes and Slotting (Sheet 3 of 3)

Class Name Pipeline Instruction List

FCPYS FM or FA CPYS, not including CPY SN or CPY SE

MISC EO RPCC, TRAPB
UNOP None UNOP®

L EU pipeline 0.

2|EU pipeline 1.

3FPU add pipeline.
4FPU multiply pipeline.
SUNOPisLDQ_U R31,0(Rx).

Slotting

The dotting function in the IDU determines which instructions will be sent forward
to attempt to issue. The slotting function detects and removes all static functional
resource conflicts. The set of instructions output by the slotting function will issueif
no register or other dynamic resource conflict is detected in stage 3 of the pipeline.
The dlotting algorithm follows:

Starting from the first (lowest addressed) valid instruction in the INT16 in stage
2 of the 21164 1DU pipeline, attempt to assign that instruction to one of the four
pipelines (EO, E1, FA, FM). If it is an instruction that can issue in either EO or
El, assign it to EOQ. However, if one of the following istrue, assign it to E1.

e EOisnotfreeand E1lisfree.
e Thenext integer instruction® in this INT16 can issue only in EO.

If the current instruction is one that can issuein either FA or FM, assign it to FA
unless FA isnot free. If itisan FA-only instruction, it must be assigned to FA. If
itisFM-only instruction, it must be assigned to FM. Mark the pipeline selected
by this process as taken and resume with the next sequential instruction. Stop
when an instruction cannot be allocated in an execution pipeline because any
pipeline it can use is already taken.

The dotting logic does not send instructions forward out of logical instruction order
because the 21164 always issues instructions in order. The slotting logic also
enforces the special rulesin the following list, stopping the slotting process when a
rule would be violated by allocating the next instruction an execution pipeline:

2-22

L1n this context, an integer instruction is one that can issuein one or both of EO or E1, but not
FA or FM.

Internal Architecture

Scheduling and Issuing Rules

e Aninstruction of class LD cannot be issued simultaneously with an instruction
of class ST.

* All ingtructions are discarded at the slotting stage after a predicted-taken IBR or
FBR classinstruction, or a JSR class instruction.

e After apredicted not-taken IBR or FBR, no other IBR, FBR, or JSR class can be
slotted together.

* Thefollowing cases are detected by the slotting logic:

— From lowest address to highest within an INT16, with the following arrange-
ment:

l-instruction, F-instruction, |I-instruction, |-instruction

I-instruction is any instruction that can issue in one or both of EO or E1.
F-instruction is any instruction that can issue in one or both of FA or FM.

— From lowest address to highest within an INT16, with the following arrange-
ment:

F-instruction, |-instruction, |I-instruction, |-instruction

When this type of case is detected, the first two instructions are forwarded to
the issue point in one cycle. The second two are sent only when the first two
have both issued, provided no other slotting rule would prevent the second
two from being slotted in the same cycle.

2.3.2 Coding Guidelines

Code should be scheduled according to latency and function unit availability. This is
good practice in most RISC architectures. Code alignment and the effects of split-
issué should be considered.

2 Split-issue i's the situation in which not all instructions sent from the slotting stage to the
issue stage issue. One or more stalls result.

Internal Architecture 2-23

Scheduling and Issuing Rules

Instructions [a] (the LDL) and [b] (the first ADDL) in the following example are
dotted together. Instruction [b] stalls (split-issue), thus preventing instruction [c]
from advancing to the issue stage:

Code exanpl e showi ng Code exanpl e showi ng

i ncorrect ordering correct ordering

(1) [a] LDL R2, 0 (R1) (1) [d] LDL R2, 0 (R1)
(3) [b] ADDL R2, R3, R4 (1) [e] NOP

(4) [c] ADDL R2, R5, R6 (3) [f] ADDL R2, R3, R4

(3) [g] ADDL R2, R5, R6

NOTES: The instructi on exanpl es are assunmed to begin on an | NT16
alignnent. (n) = Expected execute cycle.

Eventually [b] issues when the result of [a] is returned from a presumed Dcache hit.
Instruction [c] is delayed because it cannot advance to the issue stage until [b] issues.

In the improved sequence, the LDL [d] is slotted with the NOP [€]. Then the first
ADDL [f] isdlotted with the second ADDL [g] and those two instructions dual-issue.
This sequence takes one less cycle to complete than the first sequence.

2.3.3 Instruction Latencies

2-24

After dotting, instruction issueis governed by the availability of registersfor read or
write operations, and the availability of the floating divide unit and the integer multi-
ply unit. There are producer-consumer dependencies, producer-producer dependen-
cies (also known as write-after-write conflicts), and dynamic function unit
availability dependencies (integer multiply and floating divide). The IDU logic in
stage 3 of the 21164 pipeline detects all these conflicts.

The latency to produce a valid result for most instructionsis fixed. The exceptions

are loads that miss, floating-point divides, and integer multiplies. Table 2-9 gives the
latencies for each instruction class. A latency of 1 means that the result may be used
by an instruction issued one cycle after the producing instruction. Most latencies are
only a property of the producer. An exception is integer multiply latencies. There are
no variations in latency due to which a particular unit produces a given result relative
to the particular unit that consumes it. In the case of integer multiply, the instruction
is issued at the time determined by the standard latency numbers. The multiply’s
latency is dependent on which previous instructions produced its operands and when
they executed.

Internal Architecture

Scheduling and Issuing Rules

Table 2-9 Instruction Latencies (Sheet 1 of 2)

Additional Time Before
Result Available to Integer
Class Latency Multiply Unit3

LD Dcache hits, latency=2. lcycle
Dcache miss/Scache hit, latency=8 or longer.t

ST Store operations produce no result. —

MBX LDx L always Dcache misses, latency depends-en
memory subsystem state.)8T, latency depends
on memory subsystem state. MB, WMB, and
FETCH produce no result.

RX RS, RC, latency=1. 2 cycles

MXPR HW_MFPR, latency=1, 2, or longer, depending dnor 2 cycles
the IPR. HW_MTPR, produces no result.

IBR Produces no result. (Taken branch issue latency—
minimum = 1 cycle, branch mispredict penalty =
5 cycles.)

FBR Produces no result. (Taken branch issue latency—
minimum = 1 cycle, branch mispredict penalty =
5 cycles.)

JSR All but HW_REI, latency=1. 2 cycles
HW_REI produces no result.
(Issue latency-minimum 1 cycle.)

SEXT Latency=1. 2 cycles
IADD Latency=1. 2 cycles
ILOG Latency=12 2 cycles
SHIFT Latency=1. 2 cycles
CMOV Latency=2. 1 cycle
ICMP Latency=12 2 cycles

IMULL Latency=8, plus up to 2 cycles of added latency, 1 cycle
depending on the source of the d%ltaatency until
next IMULL, IMULQ, or IMULH instruction can
issue (if there are no data dependencies) is 4 cycles
plus the number of cycles added to the latency.

Internal Architecture 2-25

Scheduling and Issuing Rules

Table 2-9 Instruction Latencies (Sheet 2 of 2)

Additional Time Before
Result Available to Integer
Class Latency Multiply Unit3

IMULQ Latency=12, plus up to 2 cycles of added latency, 1cycle
depending on the source of the data.® Latency until
next IMULL, IMULQ, or IMULH instruction can
issue (if there are no data dependencies) is 8 cycles
plus the number of cycles added to the latency.

IMULH Latency=14, plusup to 2 cycles of added latency, 1cycle
depending on the source of the data.® Latency until
next IMULL, IMULQ, or IMULH instruction can
issue (if there are no data dependencies) is 8 cycles
plus the number of cycles added to the latency.

FADD Latency=4. —

FDIV Data-dependent latency: 15 to 31 single precisior;
22 to 60 double precision. Next floating divide can
be issued in the same cycle. The result of the previ-
ous divide is available, regardless of data dependen-
cies.

FMUL Latency=4. —
FCYPS Latency=4. —

MISC RPCC, latency=2. TRAPB produces no result. 1 cycle
UNOP UNOP produces no result. —

Iwhen idle, Scache arbitration predicts aload missin EO. If aload actually does missin EO, it is sent
to the Scache immediately. If it hits, and no other event in the CBU affects the operation, the
requested datais available for use in eight cycles. Otherwise, the request takes longer (possibly
much longer, depending on the state of the Scache and CBU). It should be possible to schedule
some unrolled code loops for Scache by using a data access pattern that takes advantage of the
MTU load-merging function, achieving high throughput with large data sets.

A special bypass provides an effective latency of 0 (zero) cyclesfor an ICMP or ILOG instruction
producing the test operand of an IBR or CMQV instruction. Thisis true only when the IBR or
CMOV instruction issuesin the same cycle asthe ICMP or ILOG instruction that produced the test
operand of the IBR or CMOV instruction. In all other cases, the effective latency of ICMP and
ILOG instruction is one cycle.

3The multi plier is unable to receive data from |EU bypass paths. The instruction issues at the
expected time, but its latency is increased by the time it takes for the input data to become avail-
able to the multiplier. For example, an IMULL instruction issued one cycle later than an ADDL
instruction, which produced one of its operands, has alatency of 10 (8 + 2). If the IMULL instruc-
tion isissued two cycles later than the ADDL instruction, the latency is 9 (8 + 1).

2-26 Internal Architecture

Scheduling and Issuing Rules

2.3.3.1 Producer—Producer Latency

Producer—producer latency, also known as write-after-write conflicts, cause issue-
stalls to preserve write order. If two instructions write the same register, they are
forced to do so in different cycles by the IDU. This is necessary to ensure that the
correct result is left in the register file after both instructions have executed. For most
instructions, the order in which they write the register file is dictated by issue order.
However IMUL, FDIV, and LD instructions may require more time than other
instructions to complete. Subsequent instructions that write the same destination reg-
ister are issue-stalled to preserve write ordering at the register file.

Conditions that involve an intervening producer—consumer conflict can occur com-
monly in a multiple-issue situation when a register is reused. In these cases, pro-
ducer—consumer latencies are equal to or greater than the required producer—
producer latency as determined by write ordering and therefore dictate the overall
latency.

An example of this case is shown in the following code:

LDQ R2,0(RO) ; R2 destination
ADDQ R2, R3, R4 ;w-rd conflict stalls execution waiting for R2
LDQ R2,D(R1) ;wr-wr conflict may dual issue when ADDQ i ssues

Producer—producer latency is generally determined by applying the rule that regis-
ter file write operations must occur in the correct order (enforced by IDU hardware).
Two IADD or ILOG class instructions that write the same register issue at least one
cycle apart. The same is true of a pair of CMOV-class instructions, even though their
latency is 2. For IMUL, FDIV, and LD instructions, producer—producer conflicts
with any subsequent instruction results in the second instruction being issue-stalled
until the IMUL, FDIV, or LD instruction is about to complete. The second instruc-
tion is issued as soon as it is guaranteed to write the register file at least one cycle
after the IMUL, FDIV, or LD instruction.

If a load writes a register, and within two cycles a subsequent instruction writes the
same register, the subsequent instruction is issued speculatively, assuming the load
hits. If the load misses, a load-miss-and-use trap is generated. This causes the second
instruction to be replayed by the IDU. When the second instruction again reaches the
issue point, it is issue-stalled until the load fill occurs.

Internal Architecture 2-27

Scheduling and Issuing Rules

2.3.4 Issue Rules

2-28

Thefollowing isalist of conditions that prevent the 21164 from issuing an instruc-
tion:

No instruction can be issued until all of its source and destination registers are
clean; that is, all outstanding write operations to the destination register are guar-
anteed to complete in issue order and there are no outstanding write operationsto
the source registers, or those write operations can be bypassed.

Technically, load-miss-and-use replay traps are an exception to thisrule. The

consumer of the load’s result issues, and is aborted, because a load was predicted
to hit and was discovered to miss just as the consumer instruction issued. In
practice, the only difference is that the latency of the consumer may be longer
than it would have been had the issue logic “known” the load would miss in time

to prevent issue.

Aninstruction of class LD cannot be issued in the second cycle after an instruc-
tion of class ST isissued.

No LD, ST, MXPR (to an MTU register), or MBX class instructions can be
issued after an M B instruction has been issued until the MB instruction has been
acknowledged by the CBU.

No LD, ST, MXPR (to an MTU register), or MBX class instructions can be
issued after a STx_C (or HW_ST-cond) instruction has been issued until the
MTU writes the success/failure result of the STx_C (HW_ST-cond) in its desti-
nation register.

No IMUL instructions can be issued if the integer multiplier is busy.

No floating-point divide instructions can be issued if the floating-point divider is
busy.

No instruction can be issued to pipe EO exactly two cycles before an integer mul-
tiplication completes.

No instruction can be issued to pipe FA exactly five cycles before afloating-
point divide completes.

No instruction can be issued to pipe EO or E1 exactly two cycles before an inte-
ger register fill is requested (speculatively) by the CBU, except IMULL,
IMULQ, and IMULH instructions and instructions that do not produce any
result.

Internal Architecture

Replay Traps

No LD, ST, or MBX class instructions can be issued to pipe EO or E1 exactly
one cycle before ainteger register fill is requested (speculatively) by the CBU.

No instruction issues after a TRAPB instruction until all previously issued
instructions are guaranteed to finish without generating atrap other than a
machine check.

All instructions sent to the issue stage (stage 3) by the slotting logic (stage 2) are
issued subject to the previous rules. If issueis prevented for agiven instruction at the
issue stage, al logically subsequent instructions at that stage are prevented from
issuing automatically. The 21164 only issuesinstructionsin order.

2.4 Replay Traps

There are no stalls after the instruction issue point in the pipeline. In some situations,
an MTU instruction cannot be executed because of insufficient resources (or some
other reason). These instructions trap and the IDU restarts their execution from the
beginning of the pipeline. Thisis called areplay trap. Replay traps occur in the fol-
lowing cases:

The write buffer isfull when astore instruction is executed and there are already
six write buffer entries allocated. The trap occurs even if the entry would have
merged in the write buffer.

A load instruction isissued in pipe EO when all six MAF entries are valid (not
available), or aload instruction issued in pipe E1 when five of the six MAF
entries are valid. The trap occurs even if the load instruction would have hit in
the Dcache or merged with an MAF entry.

Alphashared memory model order trap (Litmustest 1 trap): If aload instruction
issues that address matches with any missin the MAF, the load instruction is
aborted through areplay trap regardless of whether the newly issued load
instruction hits or missesin the Dcache. The address match is precise except that
it includes the case in which alongword access matches within a quadword
access. This ensures that the two loads execute in issue order.

L oad-after-store trap: A replay trap occursif aload instruction isissued in the
cycleimmediately following a store instruction that hits in the Dcache, and both
access the same location. The address match is exact for address bits <12:2>
(longword granularity), but ignores address bits <42:13>.

Internal Architecture 2-29

Miss Address File and Load-Merging Rules

* When aload instruction is followed, within one cycle, by any instruction that
uses the result of that load, and the load misses in the Dcache, the consumer
instruction traps and is restarted from the beginning of the pipeline. This occurs
because the consumer instruction is issued speculatively while the Dcache hit is
being evaluated. If the load misses in the Dcache, the speculative issue of the
consumer instruction was incorrect. The replay trap generally brings the con-
sumer instruction to the issue point before or simultaneously with the availability
of fill data.

2.5 Miss Address File and Load-Merging Rules

The following sections describe the miss address file (MAF) and its load-merging
function, and the load-merging rules that apply after aload miss.

2.5.1 Merging Rules

When aload miss occurs, each MAF entry is checked to see if it contains aload miss
that addresses the same 32-byte Dcache block. If it does, and certain merging rules
are satisfied, then the new load miss is merged with an existing MAF entry. This
allowsthe MTU to service two or more load misses with one datafill from the CBU.
The merging rules for an individual MAF entry are as follows.

* Merging only occursif the new load miss addresses adifferent INT8 from all
loads previously entered or merged to that MAF entry.

* Merging only occursif the new load missis the same access size as the load
instructions previoudy entered in that MAF entry. That is, quadword load
instructions merge only with other quadword load instructions and cacheable
longword load instructions merge only with other cacheable longword load
instructions. Noncacheable longword load misses are not merged.

* Inthe case of cacheable longword load instructions, both <02> address bits must
be the same. That is, cacheable longword load instructions with even addresses
merge only with other even cacheable longword load instructions, and cacheable
longword load instructions with odd addresses merge only with other odd cache-
able longword load instructions.

* The MAF does not merge floating-point and integer load misses in the same
entry.

2-30

3 Merging rules result primarily from limitations of the implementation.

Internal Architecture

Miss Address File and Load-Merging Rules

* Merging is prevented for the MAF entry a certain number of cycles after the
Scache access corresponding to the MAF entry begins. Merging is prevented for
that entry only if the Scache access hits. The minimum number of cycles of
merging isthree; the cycle in which the first load is issued, and the two subse-
guent cycles. This corresponds to the most optimistic case of aload miss being
forwarded to the Scache without delay (accounting for the cycle saved by the
bypass that sends new load misses directly to the Scache when there is nothing
€l se pending).

2.5.2 Read Requests to the CBU

When merging does not occur, anew MAF entry is alocated for the new [oad miss.
Merging is done for two load instructions issued simultaneously, which both missin
effect asif they were issued sequentially with the load from IEU pipe EO first. The
MTU sends aread request to the CBU for each MAF entry allocated.

A bypassis provided so that if the load instruction issuesin IEU pipe EO, and no

MAF requests are pending, the load instruction’s read request is sent to the CBU
immediately. Similarly, if a load instruction from IEU pipe E1 misses, and there was
no load instruction in pipe EO to begin with, the E1 load miss is sent to the CBU
immediately. In either case, the bypassed read request is aborted if the load hits in
the Dcache or merges in the MAF.

2.5.3 Load Instructions to Noncacheable Space

Merging is normally allowed for load instructions to noncacheable space (physical
address bit <39> = 1). It is prevented when MAF_MODE<03>=1 (see

Section 5.2.16). At the external interface, these read instructions tell the system envi-
ronment which INT32 is addressed and which of the INT8s within the INT32 are
actually accessed. Merging stops for a load instruction to noncacheable space as
soon as the CBU accepts the reference. This permits the system environment to
access only those INT8s that are actually requested by load instructions. For mem-
ory-mapped INT4 registers, the system environment must return the result of reading
each register within the INT8. This occurs because the 21164 only indicates those
INT8s that are accessed, not the exact length and offset of the access within each
INT8. Systems implementing memory-mapped registers with side effects from read
instructions should place each such register in a separate INT8 in memory.

2.5.4 MAF Entries and MAF Full Conditions

There are six MAF entries for load misses and four for IDU instruction fetches and
prefetches. Load misses are usually the highest MTU priority request.

Internal Architecture 2-31

Miss Address File and Load-Merging Rules

If the MAF isfull and aload instruction issuesin pipe EO, or if five of the six MAF
entries are valid and aload instruction issues in pipe E1, an MAF full trap occurs
causing the IDU to restart execution with the load instruction that caused the MAF
overflow. When the load instruction arrives at the MAF the second time, an MAF
entry may have become available. If not, the MAF full trap occurs again.

2.5.5 Fill Operation

2-32

Eventually, the CBU provides the data requested for agiven MAF entry (afill). If

thefill isinteger data and not floating-point data, the CBU requests that the IDU

allocate two consecutive “bubble” cycles in the IEU pipelines. The first bubble pre-
vents any instruction from issuing. The second bubble prevents only MTU instruc-
tions (particularly load and store instructions) from issuing. The fill uses the first
bubble cycle as it progresses down the IEU/MTU pipelines to format the data and
load the register file. It uses the second bubble cycle to fill the Dcache.

An instruction typically writes the register file in pipeline stage 6 (see Figure 2-2).
Because there is only one register file write port per integer pipeline, a no-instruction
bubble cycle is required to reserve a register file write port for the fill. A load or store
instruction accesses the Dcache in the second half of stage 4 and the first half of
stage 5. The fill operation writes the Dcache, making it unavailable for other
accesses at that time. Relative to the register file write operation, the Dcache (write)
access for a fill occurs a cycle later than the Dcache access for a load hit. Only load
and store instructions use the Dcache in the pipeline. Therefore, the second bubble
reserved for a fill is a no-MTU-instruction bubble.

The second bubble is a subset of the first bubble. When two fills are in consecutive
cycles, as in an Scache hit, then three total bubbles are allocated: two no-instruction
bubbles, followed by one no-MTU-instruction bubble. The bubbles are requested
speculatively before it is known whether the Scache or the optional external Bcache
will hit.

For fills from the CBU to floating-point registers, no cycle is allocated. Load instruc-
tions that conflict with the fill in the pipeline are forced to miss. Store instructions
that conflict in the pipeline force the fill to be aborted in order to keep the Dcache
available to the store operation. In all cases, the floating-point registers are filled as
dictated by the associated MAF entry. The FPU has separate write ports for fill data
as is necessary for this fill scheme.

Up to two floating or integer registers may be written for each CBU fill cycle. Fills
deliver 32 bytes in two cycles: two INT8s per cycle. The MAF merging rules ensure
that there is no more than one register to write for each INT8, so that there is a regis-

Internal Architecture

MTU Store Instruction Execution

ter file write port available for each INT8. After appropriate formatting, data from
each INT8 iswritten into the IRF or FRF provided there is a miss recorded for that
INTS.

Load misses are all checked against the write buffer contents for conflicts between
new load instructions and previously issued store instructions. Refer to Section 2.7
for more information on write operations.

LDL_L and LDQ_L instructions always allocate a new MAF entry. No load instruc-
tionsthat follow an LDL_L or LDQ_L instruction are allowed to merge with it. After
anLDL_L or LDQ L instruction isissued, the IDU does not issue any more MTU
instructions until the M TU has successfully senttheLDL_L or LDQ _L instruction to
the CBU. Thisguarantees correct ordering betweenan LDL_L or LDQ_L instruction
and a subsequent STL_C or STQ_C instruction even if they access different
addresses.

2.6 MTU Store Instruction Execution

Store instructions execute in the MTU by:

1. Reading the Dcache tag store instruction in the pipeline stage in which aload
instruction would read the Dcache

Checking for a hit in the next stage

Writing the Dcache data store instruction if thereisa hit in the second (follow-
ing) pipeline stage

Load instructions are not allowed to issuein the second cycle after astoreinstruction
(one bubble cycle). Other instructions can be issued in that cycle. Store instructions
can issue at the rate of one per cycle because store instructionsin the Dstream do not
conflict in their use of resources. The Dcache tag store and Dcache data store are the
principal resources. However, aload instruction uses the Dcache data store in the
same early stage that it uses the Dcache tag store. Therefore, aload instruction would
conflict with astoreinstruction if it were issued in the second cycle after any store
instruction. Refer to Section 2.2 for more information on store instruction execution
in the pipeline.

A load instruction that is issued one cycle after a store instruction in the pipeline cre-
ates aconflict if both access exactly the same memory location. This occurs because
the store instruction has not yet updated the location when the load instruction reads
it. Thisconflict is handled by forcing the load instruction to replay trap. The IDU

Internal Architecture 2-33

MTU Store Instruction Execution

2-34

flushes the pipeline and restarts execution from the load instruction. By the time the
load instruction arrives at the Dcache the second time, the conflicting store instruc-
tion has written the Dcache and the load instruction is executed normally.

Software should not load dataimmediately after storing it. The replay trap that is

incurred “costs” seven cycles. The best solution is to schedule the load instruction to
issue three cycles after the store. No issue stalls or replay traps will occur in that
case. If the load instruction is scheduled to issue two cycles after the store instruc-
tion, it will be issue-stalled for one cycle. This is not an optimal solution, but is pre-
ferred over incurring a replay trap on the load instruction.

For three cycles during store instruction execution, fills from the CBU are not placed
in the Dcache. Register fills are unaffected. There are conflicts that make it impossi-
ble to fill the Dcache in each of these cycles. Fills are prevented in cycles in which a
store instruction is in pipeline stage 4, 5, or 6. This always applies to fills of floating-
point data. Fills of integer data allocate bubble cycles, such that an integer fill never
conflicts with a store instruction in pipeline stages 4 or 5. Instead, a store instruction
that would have conflicted in stage 4 or 5 is issue-stalled but an integer fill will con-

flict with a store instruction in pipeline stage 6.

If a store instruction is stalled at the issue point for any reason, it interferes with fills
just as if it had been issued. This applies only to fills of floating-point data.

For each store instruction, a search of the MAF is done to detect load-before-store
hazards. If a store instruction is executed, and a load of the same address is present in
the MAF, two things happen:

1. Bits are set in each conflicting MAF entry to prevent its fill from being placed in
the Dcache when it arrives, and to prevent subsequent load instructions from
merging with that MAF entry.

2. Conflict bits are set with the store instruction in the write buffer to prevent the
store instruction from being issued until all conflicting load instructions have
been issued to the CBU.

Conflict checking is done at the 32-byte block granularity. This ensures proper
results from the load instructions and prevents incorrect data from being cached in
the Dcache.

A check is performed for each new store against store instructions in the write buffer
that have already been sent to the CBU but have not been completed. Section 2.7
describes this process.

Internal Architecture

Write Buffer and the WMB Instruction

2.7 Write Buffer and the WMB Instruction

The following sections describe the write buffer and the WMB instruction.

2.7.1 Write Buffer

The write buffer contains six fully associative 32-byte entries. The purpose of the
write buffer isto minimize the number of CPU stall cycles by providing afinite,
high-bandwidth resource for receiving store data. Thisis required because the 21164
can generate store data at the peak rate of one INT8 every CPU cycle. Thisis greater
than the average rate at which the Scache can accept the data if Scache misses occur.

In addition to HW_ST and other store instructions, the STQ _C, STL_C, FETCH,
and FETCH_M instructions are also written into the write buffer and sent offchip.
However, unlike store instructions, these write buffer-directed instructions are never
merged into awrite buffer entry with other instructions. A write buffer entry is
invalid if it does not contain one of these instructions.

2.7.2 Write Memory Barrier (WMB) Instruction

The memory barrier (MB) instruction is suitable for ordering memory references of
any kind. The WMB instruction forces ordering of write operations only (store
instructions). The WMB ingtruction has a special effect on the write buffer. When it
isexecuted, abit is setin every write buffer entry containing valid store data that will
prevent future store instructions from merging with any of the entries. Also, the next
entry to be allocated is marked with aWMB flag. At this point, the entry marked
with the WMB flag does not yet have valid datain it. When an entry marked with a
WMB flag isready to issueto the CBU, the entry is not issued until every previously
issued write instruction is complete. This ensures correct ordering between store
instructions issued before the WMB instruction and store instructions issued after it.

Each write buffer entry contains a content-addressable memory (CAM) for holding

physical address bits <39:05>, 32 bytes of data, eight INT4 mask bits (that indicate

which of the eight INT4sin the entry contain valid data), and miscellaneous control
bits. Among the control bits are the WMB flag, and a no-merge bit, which indicates
that the entry is closed to further merging.

Internal Architecture 2-35

Write Buffer and the WMB Instruction

2.7.3 Entry-Pointer Queues

Two entry-pointer queues are associated with the write buffer: afree-entry queue and
a pending-request queue. The free-entry queue contains pointers to available invalid
write buffer entries. The pending-request queue contains pointers to valid write
buffer entries that have not yet been issued to the CBU. The pending-request queue
is ordered in alocation order.

Each time the write buffer is presented with a store instruction, the physical address
generated by the instruction is compared to the address in each valid write buffer

entry that is open for merging. If the addressisin the same INT32 as an addressin a

valid write buffer entry (that also contains a store instruction), and the entry is open

for merging, then the new store data is merged into that entry and the entry’s INT4
mask bits are updated. If no matching address is found, or all entries are closed to
merging, then the store data is written into the entry at the top of the free-entry
gueue. This entry is validated, and a pointer to the entry is moved from the free-entry
queue to the pending-request queue.

2.7.4 Write Buffer Entry Processing

2-36

When two or more entries are in the pending-request queue, the MTU requests that
the CBU process the write buffer entry at the head of the pending-request queue.
Then the MTU removes the entry from the pending-request queue without placing it
in the free-entry queue. When the CBU has completely processed the write buffer
entry, it notifies the MTU, and the now invalid write buffer entry is placed in the
free-entry queue. The MTU may request that a second write buffer entry be pro-
cessed while waiting for the CBU to finish the first. The write buffer entries are
invalidated and placed in the free-entry queue in the order that the requests complete.
This order may be different from the order in which the requests were made.

The MTU sends write requests from the write buffer to the CBU. The CBU pro-
cesses these requests according to the cache coherence protocol. Typically, this
involves loading the target block into the Scache, making it writable, and then writ-
ing it. Because the Scache is write-back, this completes the operation.

The MTU requests that a write buffer entry be processed every 64 cycles, even if
there is only one valid entry. This ensures that write instructions do not wait forever
to be written to memory. (This is triggered by a free running timer.)

When an LDL_L or LDQ _L instruction is processed by the MTU, the MTU requests
processing of the next pending write buffer request. This increases the chances of the
write buffer being empty when an STL_C or STQ_C instruction is issued.

Internal Architecture

Write Buffer and the WMB Instruction

The MTU continues to request that write buffer entries be processed as long as one
of the following occurs:

* Onebuffer containsan STQ_C, STL_C, FETCH, or FETCH_M instruction.
e One buffer is marked by aWMB flag.

* AnMB instruction is being executed by the MTU.

This ensures that these instructions complete as quickly as possible.

Every store instruction that does not merge in the write buffer is checked against
every vaid entry. If any entry is an address match, then the WMB flag is set on the
newly allocated write buffer entry. This prevents the MTU from concurrently send-
ing two write instructions to exactly the same block in the CBU.

L oad misses are checked in the write buffer for conflicts. The granularity of this

check is an INT32. Any load instruction matching any write buffer entry’s address is
considered a hit even if it does not access an INT4 marked for update in that write
buffer entry. If a load hits in the write buffer, a conflict bit is set in the load instruc-
tion’'s MAF entry, which prevents the load instruction from being issued to the CBU
before the conflicting write buffer entry has been issued and completed. At the same
time, the no-merge bit is set in every write buffer entry with which the load hit. A
write buffer flush flag is also set. The MTU continues to request that write buffer
entries be processed until all the entries that were ahead of, and including, the con-
flicting write instructions at the time of the load hit have been processed.

Some write instructions cannot be processed in the Scache without external environ-
ment involvement. To support this, the MTU retransmits a write instruction at the
CBU's request. This situation arises when the Scache block is not dirty when the
write instruction is issued, or when the access misses in the Scache.

2.7.5 Ordering of Noncacheable Space Write Instructions

Special logic ensures that write instructions to noncacheable space are sent offchip in
the order in which their corresponding buffers were allocated (placed in the pending-
request queue).

Internal Architecture 2-37

Performance Measurement Support—Performance Counters

2.8 Performance Measurement Support—Performance
Counters

2-38

The 21164 contains a performance recording feature. The implementation of this
feature provides a mechanism to count various hardware events and causes an inter-
rupt upon counter overflow. Interrupts are triggered six cycles after the event, and
therefore, the exception PC may not reflect the exact instruction causing counter
overflow. Three counters are provided to alow accurate comparison of two variables
under a potentially nonrepeatable experimental condition. Counter inputs include:

| ssues

Nonissues

Total cycles

Pipe dry

Pipe freeze

Mispredicts and cache misses

Countsfor various instruction classifications

In addition, the 21164 provides one signal-pin input (perf_mon_h) to measure exter-
nal events at a maximum rate determined by the selected system clock speed (see
Table 5-12).

For information about counter control, refer to the following IPR descriptions:

Hardware interrupt clear (HWINT_CLR) register (see Section 5.1.23)
Interrupt summary register (I1SR) (see Section 5.1.24)

Performance counter (PMCTR) register (see Section 5.1.27)

Bcache control (BC_CONTROL) register bits <24:19> (see Section 5.3.4)

Internal Architecture

Floating-Point Control Register

2.9 Floating-Point Control Register

Figure 2—3 shows the format of the floating-point control register (FPCR) and
Table 2-10 describes the fields.

Figure 2—3 Floating-Point Control Register (FPCR) Format

31

rrrrrrrrrrr-r-r T
RAZ/IGN
| | |

DYN_RM
UNDZ

UNFD

INED
SUM

Table 2-10 Floating-Point Control Register Bit Descriptions

HLOO007

(Sheet 1 of 2)

Name Extent Description (Meaning When Set)

SUM <63> Summary bit. Records bitwise OR of FPCR exception bits. Equal to
FPCR<57 |56 | 55|54 | 53 | 52>

INED <62> Inexact disable. Suppress INE trap and place correct | EEE nontrap-
ping result in the destination register if the 21164 is capable of pro-
ducing correct IEEE nontrapping result.

UNFD <61> Underflow disable. Subset support: Suppress UNF trap if UNDZ is
also set and the /S qualifier is set on the instruction.

UNDZ <60> Underflow to zero. When set together with UNFD, on underflow,

the hardware places atrue zero (all 64 bits zero) in the destination
register rather than the denormal number specified by the |IEEE stan-
dard.

Internal Architecture 2-39

Floating-Point Control Register

2-40

Table 2-10 Floating-Point Control Register Bit Descriptions (Sheet 2 of 2)

Name

Extent

Description (Meaning When Set)

DYN_RM <59:58>

[0}V

INE

UNF

OVF

DZE

INV

OVFD

DZED

INVD

Reserved

<57>

<56>

<55>

<54>

<53>

<52>

<51>

<50>
<49>

<48:0>

Dynamic routing mode. Indicates the rounding mode to be used by
an IEEE floating-point operate instruction when the instruction’s
function field specifies dynamic mode (/D). The assignments are:

DYN IEEE Rounding Mode Selected
00 Chopped rounding mode

01 Minus infinity

10 Normal rounding

11 Plus infinity

Integer overflow. An integer arithmetic operation or a conversion
from floating to integer overflowed the destination precision.

Inexact result. A floating arithmetic or conversion operation gave a
result that differed from the mathematically exact result.

Underflow. A floating arithmetic or conversion operation under-
flowed the destination exponent.

Overflow. A floating arithmetic or conversion operation overflowed
the destination exponent.

Division by zero. An attempt was made to perform a floating divide
operation with a divisor of zero.

Invalid operation. An attempt was made to perform a floating arith-
metic, conversion, or comparison operation, and one or more of the
operand values were illegal.

Overflow disable. Not supported.
Division by zero disable. Not supported.
Invalid operation disable. Not supported.

Reserved. Read as zero; ignored when written.

Internal Architecture

Design Examples

2.10 Design Examples

The 21164 can be designed into many different uniprocessor and multiprocessor sys-
tem configurations. Figures 2—4, 2-5, and 2-6 illustrate three possible configura-
tions. These configurations employ additional system/memaory controller chipsets.

Figure 2—4 shows a typical uniprocessor system with a board-level cache. This sys-
tem configuration could be used in standalone or networked workstations.

Figure 2—4 Typical Uniprocessor Configuration

External

21164 |==>] Cache
Tag
[4

y

External
Cache
Data

Addr/cmd

A

Data

y

Main Memory
Memory) —
1/0 Bus and I/O
‘ ‘ ‘ Interface A A

DRAM DRAM
Banks Bank

LJ-04040.Al4

Internal Architecture 2-41

Design Examples

Figure 2-5 shows a typical multiprocessor system, each processor with a board-level
cache. Each interface controller must employ a duplicate tag store to maintain cache
coherency. This system configuration could be used in a networked database server
application.

Figure 2-5 Typical Multiprocessor Configuration

External External
21164 |=«>»{ Cache 21164 |=«>| Cache
Tag Tag
AA A AA A
Y Y
Addr/cmd Addr/cmd
External External
- »1 Cache - »1 Cache
Data Data
Data Data
Yy Yy
Bus o Duplicate Bus o Duplicate
nterface [« | o9 nterface [] 429
Store Store
A A
Y Y
System Bus
A A A A
Y Y Y Y
110 110
Bridge Memory Memory Bridge
A A
Y Y
1/0 Bus 1/0O Bus

LJ-04041.A14

2-42 Internal Architecture

Design Examples

Figure 2—6 shows a cacheless multiprocessor system. This system configuration
could be used in high-bandwith dedicated server applications.

Figure 2—6 Cacheless Multiprocessor Configuration

21164 21164
Bus Bus
Interface Interface

' i

System Bus

Py vy

1’0 Memor Memor 110
Bridge Y Y Bridge

! !

LJ-04039.A14

Internal Architecture 2-43

3

Hardware Interface

This chapter contains the 21164 microprocessor logic symbol and provides alist of
signal names and their functions.

3.1 21164 Microprocessor Logic Symbol
Figure 3—1 shows the logic symbol for the 21164 chip.

Hardware Interface 3-1

21164 Microprocessor Logic Symbol

Figure 3—1 21164 Microprocessor Logic Symbol

addr_bus_req_h
cack_h

cfail_h

dack_h
data_bus_req_h
fill_h

fill_error_h

fill_id_h
fill_nocheck_h
idle_bc_h

shared_h
system_lock_flag_h
big_drv_en_h
oe_we_active_low_h

irq_h<3:0>
mch_hlt_irg_h
pwr_fail_irq_h
sys_mch_chk_irq_h

clk_mode_h<2:0>
osc_clk_in_h
osc_clk_in_|
ref_clk_in_h
sys_reset_|
dc_ok_h
perf_mon_h
port_mode_h<1:0>
srom_data_h
tdi_h

temp_sense
tms_h

Vddi

vdd
Vss

3-2 Hardware Interface

21164

System/Bcache
Interface

UGBTI

Interrupts

Clocks

Test Modes and
Miscellaneous

WL

addr_h<39:4>

addr_cmd_par_h
addr_res_h<2:0>
cmd_h<3:0>

data_h<127:0>

data_check_h<15:0>
data_ram_oe_h
data_ram_we_h
index_h<25:4>
int4_valid_h<3:0>
scache_set_h<1:0>
st_clkl_h

st_clk2_h
tag_ctl_par_h
tag_data_h<38:20>

tag_data_par_h
tag_dirty_h
tag_ram_oe_h
tag_ram_we_h
tag_shared_h
tag_valid_h

victim_pending_h

cpu_clk_out_h
sys_clk_outl_h
sys_clk_outl_|
sys_clk_out2_h
sys_clk_out2_|
srom_clk_h
srom_oe_|
srom_present_|
tck_h

tdo_h
test_status_h<1:0>

trst_|

MK145506A

21164 Signal Names and Functions

3.2 21164 Signal Names and Functions

The 21164 iscontained in a499-pin interstitial pin grid array (IPGA) package. There
are 296 functional signal pins, 3 spare (unused) signal pins, 39 external power (Vdd)
pins, 65 internal power (Vddi) pins, and 96 ground (Vss) pins.

The following table defines the 21164 signal types referred to in this section:

Signal Type Definition

B Bidirectional
I Input only
O Output only

The remaining two tables describe the function of each 21164 external signal.

Table 3-1 lists all signals in alphanumeric order. This table provides full signal
descriptions. Table 3-2 lists signals by function and provides an abbreviated descrip-
tion.

Hardware Interface 3-3

21164 Signal Names and Functions

Table 3—1 21164 Signal Descriptions (Sheet 1 of 12)

Signal

Type Count Description

addr_h<39:4>

addr_bus reg_h

addr_cmd_par_h

addr_res h<1:0>

3-4

Hardware Interface

B

36

Address bus. These hidirectional signals provide the address of
the requested data or operation between the 21164 and the sys-
tem. If addr_h<39> is asserted, then the reference is to non-
cached, 1/0 memory space.

When the byte/word instructions are enabled and addr_h<39>
is asserted, 6 additional bits of information are communicated
over the pin bus. Two of the new bits are driven over
addr_h<38:37>, becoming transfer_size<1:0>, with thefol-
lowing values:

00 Size = 8 bytes
01 Size = 4 bytes
10 Size = 2 bytes
1 Size =1 byte

Address bus reguest. The system interface uses this signal to
gain control of the addr_h<39:4>, addr_cmd_par_h, and
cmd_h<3:0> pins (see Figure 4-32).

Address command parity. This is the odd parity bit on the cur-
rent command and address buses. The 21164 takes a machine

check if a parity error is detected. The system should do the
same if it detects an error.

Address response bits <1> and <0>. For system commands, the
21164 uses these pins to indicate the state of the block in the

Scache:

Bits Command Meaning

00 NOP Nothing.

01 NOACK Data not found or clean.
10 ACK/Scache Data from Scache.

11 ACK/Bcache Data from Bcache.

21164 Signal Names and Functions

Table 3—-1 21164 Signal Descriptions (Sheet 2 of 12)
Signal Type Count Description
addr_res h<2> (0] 1 Addressresponse bit <2>. For system commands, the 21164

big drv_en_h I 1
cack_h I 1
cfail_h I 1

uses this pin to indicate if the command hits in the Scache or
onchip load lock register.

Thissignal providesthe ability to change the output drive char-
acteristics of index<25:4>, st_clk1_h, st_clk2_h,

data ram_oe h, data ram_we h,tag ram_oe h, and
tag_ram_we_h. When asserted, big_drv_en_h increases the
drive capability of these signals by 50%, eliminating the need
to buffer these heavily loaded signals. This signal is defined
during power-up and must not change state during operation.

Command acknowledge. The system interface uses this signal
to acknowledge any one of the commands driven by the 21164.

Command fail. This signal has two uses. It can be asserted dur-
ing acack cycle of aWRITE BLOCK LOCK command to
indicate that the write operation is not successful. In this case,
both cack _h and cfail_h are asserted together. It can also be
asserted instead of cack _h to force an instruction fetch/decode
unit (IDU) timeout event. This causes the 21164 to do a partial
reset and trap to the machine check (MCHK) PAL code entry
point, which indicates a serious hardware error.

Hardware Interface 3-5

21164 Signal Names and Functions

Table 3—1 21164 Signal Descriptions (Sheet 3 of 12)
Signal Type Count Description
clk_mode_h<2:0> I 3 Clock test mode. These signals specify arelationship between

osc_clk_in_h,l and the CPU cycle time. These signals should
be deasserted in normal operation mode.

Bits Divisor Description

000 2 CPU clock frequency is one-half of input
clock frequency.

001 1 CPU clock frequency is equal to the input
clock frequency, but the onchip duty-cycle
equalizer is disabled.

010 4 CPU clock frequency isone-fourth of input
clock frequency.

o1 — Initialize the CPU clock, allowing the sys-
tem clock to be synchronized to a stable
reference clock.

101 1 CPU clock frequency is equal to input
clock frequency, and the onchip duty-cycle
equalizer is enabled.hisisthe preferred
mode for normal operation.

100/11x — Not valid configurations.

3-6 Hardware Interface

Table 3—1 21164 Signal Descriptions

21164 Signal Names and Functions

(Sheet 4 of 12)

Signal

Type Count Description

cmd_h<3:0>

B

4

Command bus. These signals drive and receive the commands
from the command bus. The following tables define the com-
mands that can be driven on thecmd_h<3:0> bus by the 21164
or the system. For additional information, refer to
Section4.1.1.1.

21164 Commands to System:

cmd_h
<3:0> Command Meaning
0000 NOP Nothing.
0001 LOCK Lock register address.
0010 FETCH The 21164 passesa FETCH
instruction to the system.
0011 FETCH_M The 21164 passesaFETCH_M
instruction to the system.
0100 MEMORY MB instruction.
BARRIER
0101 SET DIRTY Dirty bit set if shared bitis
clear.
0110 WRITEBLOCK Request to write a block.
0111 WRITEBLOCK Request to write a block with
LOCK lock.
1000 READ MISSO Request for data.
1001 READ MISSs1 Request for data.
1010 READ MISS Request for data; modify
MOD 0 intent.
1011 READ MISS Request for data; modify
MOD 1 intent.
1100 BCACHEVICTIM Bcache victim should be

removed.

Hardware Interface 3-7

21164 Signal Names and Functions

Table 3—-1 21164 Signal Descriptions (Sheet 5 of 12)
Signal Type Count Description
1101 — Reserved

1110 READ MISS STCO Request for data;xST data.
1111 READ MISS STC1 Request for data)xST data.

System Commands to 21164:

cmd_h

<3:0> Command Meaning

0000 NOP Nothing.

0001 FLUSH Removes block from caches;
return dirty data.

0010 INVALIDATE Invalidates the block from
caches.

0011 SET SHARED Block goes to the shared state.

0100 READ Read a block.

0101 READ DIRTY Read a block; set shared.

0111 READ DIRTY/INV Read ablock; invalidate.

cpu_clk_out_h (0] 1 CPU clock output. Thissignal is used for test purposes.

dack_h I 1 Dataacknowledge. The system interface uses this signal to
control datatransfer between the 21164 and the system.

data h<127:0> B 128 Databus. These signals are used to move data between the
21164, the system, and the Bcache.

data bus req_h I 1 Databusrequest. If the 21164 samples this signal asserted on
therising edge of sysclk n, then the 21164 does not drive the
data bus on the rising edge of sysclk n+1. Before asserting this
signal, the system should assert idle_bc_h for the correct num-
ber of cycles. If the 21164 samplesthis signal deasserted on the
rising edge of sysclk n, then the 21164 drives the data bus on
therising edge of sysclk n+1. For timing details, refer to
Section 4.11.4.

3-8 Hardware Interface

21164 Signal Names and Functions

Table 3—-1 21164 Signal Descriptions (Sheet 6 of 12)

Signal Type Count Description

data check h<15:0> B 16

data ram_oe h (0] 1
data ram_we h (0] 1
dc ok _h I 1
fill_h I 1
fill_error_h I 1
fill_id_h I 1
fill_nocheck _h 1
idle bc h I 1

Data check. These signals set even byte parity or INT8 ECC
for the current data cycle. Refer to Section 4.14.1 for informa-
tion on the purpose of each data_check_h bit.

Data RAM output enable. This signal is asserted for Bcache
read operations.

DataRAM write-enable. Thissignal is asserted for any Bcache
write operation. Refer to Section 5.3.5 for timing details.

dc voltage OK. Must be deasserted until dc voltage reaches
proper operating level. After that, dc_ok_h is asserted.

Fill warning. If the 21164 samples this signal asserted on the
rising edge of sysclk n, then the 21164 provides the address
indicated by fill_id_h to the Bcache on the rising edge of
sysclk n+1. The Bcache beginsto write in that sysclk. At the
end of sysclk n+1, the 21164 waits for the next sysclk and then
begins the write operation again if dack_h is not asserted.
Refer to Section 4.11.3 for timing details.

Fill error. If thissignal is asserted during afill from memory, it
indicates to the 21164 that the system has detected an invalid
address or hard error. The system still provides an apparently
normal read sequence with correct ECC/parity though the data
isnot valid. The 21164 traps to the machine check (MCHK)
PAL code entry point and indicates a serious hardware error.
fill_error_h should be asserted when the dataisreturned. Each
assertion produces a MCHK trap.

Fill identification. Asserted with fill_h to indicate which regis-
ter is used. The 21164 supports two outstanding load instruc-
tions. If thissignal is asserted when the 21164 samplesfill_h
asserted, then the 21164 provides the address from missregis-
ter 1. If it is deasserted, then the address in missregister O is
used for the read operation.

Fill checking off. If thissignal is asserted, then the 21164 does
not check the parity or ECC for the current data cycle on afill.

Idle Bcache. When asserted, the 21164 finishes the current
Bcache read or write operation but does not start a new read or
write operation until the signal is deasserted. The system inter-
face must assert thissignal in timeto idle the Bcache beforefill
data arrives.

Hardware Interface 3-9

21164 Signal Names and Functions

Table 3—1 21164 Signal Descriptions

(Sheet 7 of 12)

Signal Type Count Description

index_h<25:4> (0]
int4_valid_h<3:0> (0]

3-10 Hardware Interface

22
4

Index. These signalsindex the Bcache.

INT4 data valid. During write operations to noncached space,
these signals are used to indicate which INT4 bytes of data are
valid. Thisis useful for noncached write operations that have
been merged in the write buffer.

int4_valid_h<3:0> Write Meaning

Xxx1
XX1X
XIXX

IXXX

data h<31:0> valid
data h<63:32> valid
data h<95:64> valid
data_h<127:96> valid

During read operations to noncached space, these signals indi-
cate which INT8 bytes of a 32-byte block need to be read and
returned to the processor. Thisis useful for read operations to

noncached memory.

int4_valid_h<3:0> Read Meaning

Xxx1
XX1X
XIXX

IXXX

data h<63:0> valid
data h<127:64> valid
data h<191:128> valid
data h<255:192> valid

Note: For both read and write operations, multiple
int4_valid_h<3:0> bits can be set simultaneously.

When addr_h<39> is asserted, theint4_valid_h<3:0> signals
are considered the addr_h<3:0> hits required for byte/word
transactions. The functionality of these bitsistied to the value
stored in addr_h<38:37>.

Table 3—1 21164 Signal Descriptions

21164 Signal Names and Functions

(Sheet 8 of 12)

Signal

Type Count Description

For Read Transactions:

addr_h
<38:37>

int4_valid_h<3:0> Value

00
01

10

11

Valid INT8 mask

addr_h<3:2>vaidonint4 valid_h<3:2>;
int4_valid<1:0> undefined

addr_h<3:1> valid on int4_valid_h<3:1>;
int4_valid<0> undefined

addr_h<3:0> valid on int4_valid_h<3:0>

For Write Transactions:

addr_h

<38:37>

int4_valid_h<3:0> Value

00
01
10

11

Valid INT4 mask
Valid INT4 mask

addr_h<3:1>validonint4 valid_h<3:1>;
int4_valid<0> undefined

addr_h<3:0> valid on int4_valid_h<3:0>

Hardware Interface 3-11

21164 Signal Names and Functions

Table 3—-1 21164 Signal Descriptions (Sheet 9 of 12)
Signal Type Count Description
irg_h<3:0> I 4 System interrupt requests. These signals have multiple modes

mch_hlt_irg_h

oe we active low_h

3-12 Hardware Interface

of operation. During normal operation, these level-sensitive
signals are used to signal interrupt requests. During initializa-
tion, these signals are used to set up the CPU cycletimedivisor
for sys clk_outl_h,l asfollows:

irg_h<3> irq_h<2> irq_h<1> irg_h<0> Ratio

Low Low High High 3

Low High Low Low 4
Low High Low High 5
Low High High Low 6
Low High High High 7
High Low Low Low 8
High Low Low High 9

High Low High Low 10
High Low High High 11
High High Low Low 12
High High Low High 13
High High High Low 14
High High High High 15

Machine halt interrupt request. This signal has multiple modes

of operation. During initialization, this signal is used to set up
sys clk_out2_h,| delay (see Table 4-3). During normal opera-
tion, it is used to signal a halt request.

This signal provides the ability to control the polarity of the
offchip cache RAM control signalsiéta ram_ oe h,
data_ram_we h,tag_ram_oe h, andtag_ram_we_h). When

this signal is deasserted, the offchip cache signals are asserted
high. When this signal is asserted, the assertion levels of the
cache signals are inverted to a low level. This signal is defined
during power-up and must not change state during operation.

Table 3—1 21164 Signal Descriptions

21164 Signal Names and Functions

(Sheet 10 of 12)

Signal

Type Count Description

osc_clk_in_h
osc_clk_in_|

perf_mon_h

port_mode h<1:0>

pwr_fail_irg_h

ref_clk_in_h

scache set_h<1:0>

shared_h

srom_clk_h

srom_data h

srom_oe |

srom_present_|1

1
1

Oscillator clock inputs. These signals provide the differential
clock input that is the fundamental timing of the 21164. These
signals are driven at the same frequency as the internal clock
frequency (clk_mode_h<2:0> = 101).

Performance monitor. Thissignal can be used as an input to the
21164 internal performance monitoring hardware from offchip
events (such as bus activity). Refer to Section 5.1.27 for infor-
mation on the PMCTR register.

Select test port interface modes (normal, manufacturing, and
debug). For normal operation, both signals must be deasserted.

Power failure interrupt request. Thissignal has multiple modes

of operation. During initialization, this signal is used to set up
sys clk_out2 h,l delay (see Table 4-3). During normal opera-
tion, this signal is used to signal a power failure.

Reference clock input. Optional. Used to synchronize the tim-
ing of multiple microprocessors to a single reference clock. If
this signal is not used, it must be tieddd for proper opera-
tion.

Secondary cache set. During a read miss request, these signals
indicate the Scache set number that will be filled when the data
is returned. This information can be used by the system to
maintain a duplicate copy of the Scache tag store.

Keep block status shared. For systems without a Bcache, when
a WRITE BLOCK/NO VICTIM PENDING or WRITE

BLOCK LOCK command is acknowledged, this pin can be
used to keep the block status shared or private in the Scache.

Serial ROM clock. Supplies the clock that causes the SROM to
advance to the next bit. The cycle time of this clock is 128
times the cycle time of the CPU clock.

Serial ROM data. Input for the SROM.

Serial ROM output enable. Supplies the output enable to the
SROM.

Serial ROM present. Indicates that SROM is present and ready
to load the Icache.

Hardware Interface 3-13

21164 Signal Names and Functions

Table 3—-1 21164 Signal Descriptions

(Sheet 11 of 12)

Signal

Type Count Description

s _clkl h

s_clk2_h

sys clk_outl h
sys clk_outl |

sys clk_out2 h
sys clk_out2 |

sys mch_chk_irg_h

sys reset |

system_lock_flag h

tag ctl_par_h

tag_data_h<38:20>

tag_data par_h

tag_dirty h

o

3-14 Hardware Interface

1

19

STRAM clock. Clock for synchronously timed RAMs
(STRAMS). For Bcache, this signal is synchronous with
index_h<25:4> during private read and write operations, and
with sys clk_out1 h,l during read and fill operations.

BC_CONTROL<26> must be set to use this.

Thissignal isaduplicate of st_clk1 h, increasing the fanout
capability of the signal.

System clock outputs. Programmabl e system clock
(cpu_clk_out_h divided by avalue of 3 to 15) isused for
board-level cache and system logic.

System clock outputs. A version of sys clk_outl h,l delayed
by a programmable amount from 0 to 7 CPU cycles.

System machine check interrupt request. This signal has multi-
ple modes of operation. During initialization, it is used to set
up sys _clk_out2 h,| delay (see Table 4-3). During normal
operation, it is used to signal a machine interrupt check
request.

System reset. This signal protects the 21164 from damage dur-
ing initial power-up. It must be asserted udtl ok_h is

asserted. After that, it is deasserted and the 21164 begins its
reset sequence.

System lock flag. During fills, the 21164 logically ANDs the
value of the system copy with its own copy to produce the true
value of the lock flag.

Tag control parity. This signal indicates odd parity for
tag_valid_h, tag shared_h, andtag_dirty_h. During fills, the
system should drive the correct parity based on the state of the
valid, shared, and dirty bits.

Bcache tag data bits. This bit range supports 1MB to 64MB
Bcaches.

Tag data parity bit. This signal indicates odd parity for
tag_data _h<38:20>.

Tag dirty state bit. During fills, the system should assert this
signal if the 21164 request is a READ MISS MOD, and the
shared bit is not asserted. Refer to Table 4—6 for information
about Bcache protocol.

Table 3—1 21164 Signal Descriptions

21164 Signal Names and Functions

(Sheet 12 of 12)

Signal

Type Count Description

tag_ram_oe h

tag ram_we h

tag_shared_h

tag valid_h

tck_h
tdi_h

tdo_h

temp_sense

test_status h<1:0>

tms h
trtst |1
victim_pending_h

o

O

1

RN

Tag RAM output enable. This signal is asserted during any
Bcache read operation.

Tag RAM write-enable. Thissignal is asserted during any tag
write operation. During the first CPU cycle of awrite opera-
tion, the write pulse is deasserted. In the second and following
CPU cycles of awrite operation, the write pulseis asserted if
the corresponding bit in the write pulse register is asserted. Bits
BC_WE_CTL<8:0> control the shape of the pulse (see
Section 5.3.5).

Tag shared bit. During fills, the system should drive this signal
with the correct value to mark the cache block as shared. See
Table 4—6 for information about Bcache protocol.

Tag valid bit. During fills, this signal is asserted to indicate that
the block has valid data. See Table 4—6 for information about
Bcache protocol.

JTAG boundary-scan clock.
JTAG serial boundary-scan data-in signal.
JTAG serial boundary-scan data-out signal.

Temperature sense. This signal is used to measure the die tem-
perature and is for manufacturing use only. For normal opera-
tion, this signal must be left disconnected.

Icache test status. These signals are used for manufacturing test
purposes only to extract Icache test status information from the
chip.test_status h<0> is asserted if ICSR<39> is true, on

IDU timeout, or remains asserted if the Icache built-in self-test
(BiSt) fails. Also,test_status h<0> outputs the value written

by PALcode taest_status h<1> through IPR access. For
additional information, refer to Section 12.2.2.

JTAG test mode select signal.
JTAG test access port (TAP) reset signal.

Victim pending. When asserted, this signal indicates that the
current read miss has generated a victim.

IThis signal is shown as bidirectional. However, for normal operation, it isinput only. The output function is
used during manufacturing test and verification only.

Hardware Interface 3-15

21164 Signal Names and Functions

Table 3-2 lists signals by function and provides an abbreviated description.

Table 3—2 21164 Signal Descriptions by Function

(Sheet 1 of 3)

Signal Type Count Description

Clocks

clk_mode h<2:0> I 3 Clock test mode.
cpu_clk_out_h @] 1 CPU clock output.

osc clk_in_h|l I 2 Oscillator clock inputs.
ref_clk_in_h I 1 Reference clock input.

st _clkl h @) 1 Bcache STRAM clock output.
st _clk2 h @] 1 Bcache STRAM clock output.
sys clk_outl h,l @] 2 System clock outputs.

sys clk_out2 h,l @) 2 System clock outputs.

sys reset | I 1 Systemreset.

Bcache

big drv_en_h I 1 Increase drive capability enable.
data_h<127.0> B 128 Databus.

data _check h<15:0> B 16 Datacheck.

data ram_oe h @] 1 DataRAM output enable.
data ram_we h @) 1 DataRAM write-enable.
index_h<25:4> @] 22 Index.

oe we active low_h I 1 Assertion-level control signal.
tag_ctl_par_h B 1 Tagcontrol parity.

tag_data h<38:20> B 19 Bcachetag data bits.
tag_data par_h B 1 Tag data parity bit.

tag_dirty h B 1 Tagdirty state bit.
tag_ram_oe h @) 1 Tag RAM output enable.
tag_ram_we h 0] 1 Tag RAM write-enable.
tag_shared_h B 1 Tag shared hit.

3-16 Hardware Interface

21164 Signal Names and Functions

Table 3—2 21164 Signal Descriptions by Function

(Sheet 2 of 3)

Signal Type Count Description
tab_valid_h B 1 Tagvadlid bit.

System Interface

addr_h<39:4> B 36 Addressbus.

addr_bus req_h I 1 Address busrequest.
addr_cmd_par_h B 1 Address command parity.
addr_res h<2:0> @] 3 Addressresponse.
cack_h I 1 Command acknowledge.
cfail_h I 1 Command fail.
cmd_h<3:0> B 4 Command bus.

dack_h I 1 Dataacknowledge.

data bus req_h I 1 Databusrequest.

fill_h I 1 Fill warning.
fill_error_h I 1 Fill error.

fill_id_h I 1 Fill identification.
fill_nocheck_h I 1 Fill checking off.

idle bc h I 1 IdleBcache.
int4_valid_h<3:0> @] 4 INT4 datavalid.

scache set_h<1:0> @) 2 Secondary cache set.
shared_h I 1 Keepblock status shared.
system_lock_flag_h I 1 Systemlock flag.
victim_pending_h @] 1 Victim pending.
Interrupts

irg_h<3:0> I 4 System interrupt requests.
mch_hlt_irg_h I Machine halt interrupt request.
pwr_fail irg_h I 1 Power fail interrupt request.

Hardware Interface 3-17

21164 Signal Names and Functions

Table 3—2 21164 Signal Descriptions by Function (Sheet 3 of 3)
Signal Type Count Description
sys mch_chk_irg_h I 1 System machine check interrupt request.

Test Modes and Miscellaneous

dc ok _h I 1 dcvoltage OK.

perf_mon_h I 1 Performance monitor.

port_ mode h<1.0> I 2 Select test port interface mode (normal, manufac-
turing, and debug).

srom_clk_h @] 1 Seria ROM clock.

srom_data_h I 1 Seriad ROM data

srom_oe | @) 1 Serial ROM output enable.

srom_present_|* B 1 Serial ROM present.

tck_h B 1 JTAG boundary-scan clock.

tdi_h I 1 JTAG seria boundary-scan datain.

tdo h @) 1 JTAG seria boundary-scan data out.

temp_sense | 1 Temperature sense.

test_status h<1.0> @) 2 Icachetest status.

tms_h I 1 JTAG test mode select.

trst |1 B 1 JTAG test access port (TAP) reset.

IThis signal is shown as bidirectional. However, for normal operation, it isinput only. The output
function is used during manufacturing test and verification only.

3-18 Hardware Interface

A

Clocks, Cache, and External Interface

This chapter describes the 21164 microprocessor externa interface, which includes
the backup cache (Bcache) and system interfaces. It also describes the clock cir-
cuitry, locks, interrupt signals, and ECC/parity generation. It is organized as follows:

e Introduction to the external interface

e Clocks

e Physical address considerations

* Bcache structure and operation

* Cache coherency

e Locks mechanisms

e 21164-to-Bcache transactions

e 21164-initiated system transactions

e System-initiated transactions

* Databus and command/address bus contention
e 21164 interface restrictions

e 21164/system race conditions

e Dataintegrity, Bcache errors, and command/address errors
* Interrupts

Chapter 3 lists and defines all 21164 hardware interface signal pins. Chapter 9
describes the 21164 hardware interface electrical requirements.

Clocks, Cache, and External Interface 4-1

Introduction to the External Interface

4.1 Introduction to the External Interface

A 21164-based system can be divided into three major sections:
e 21164 microprocessor
* Optional external Bcache
e System interface logic
— Optional duplicate tag store
— Optional lock register
— Optional victim buffers

The 21164 external interface is flexible and mandates few design rules, allowing a
wide range of prospective systems. The interface includes a 128-bit bidirectional
data bus, a 36-bit bidirectional address bus, and several control signals.

Read and write speeds of the optional Bcache array can be programmed by means of
register bits. Read and write speeds are independent of each other and the system
interface clock frequency.

The cache system supports a selectable 32-byte or 64-byte block size.

Figure 4-1 shows a simplified view of the external interface. The function and pur-
pose of each signal is described in Chapter 3.

4.1.1 System Interface

4-2

This section describes the system or external bus interface. The system interface is
made up of bidirectional address and command buses, a data bus that is shared with
the Bcache interface, and several control signals.

The system interface is under the control of the bus interface unit (BIU) in the CBU.
The system interface is a 128-bit bidirectional data bus.

The cycle time of the system interface is programmable to speeds of 3 to 15 times the
CPU cycle time (sysclk ratio). All system interface signals are driven or sampled by
the 21164 on the rising edge of sigag clk_outl h. In this chapter, this edge is
sometimes referred to as “sysclk.” Precisely when interface signals rise and fall does
not matter as long as they meet the setup and hold times specified in Chapter 9.

Clocks, Cache, and External Interface

Introduction to the External Interface

Figure 4-1 21164 System/Bcache Interface

21164 System Memory
addr_h<39:4> N and 1/0

M addr_bus_req_h

addr_cmd_par_h

addr_res_h<2:0>

cack_h

cfail_h
cmd_h<3:0>
dack_h
data_bus_req_h
fil_h System
fill_error_h Interface
fill_id_h
fill_nocheck_h
idle_bc_h
int4_valid_h<3:0> Optional
scache_set_h<1:0> Lock

Register
sharedh |4

Victim
system_lock_flag_h
Scache % _lock_flag_| Buffers

victim_pending_h | | e

Duplicate
~N Tag
Store

data_h<127:0>

index_h<25:4>

{Optional | t """""""" 1 """"""" i

Tag State Bcache

Victim

Buffer SRAM V,D,S,P SRAM

.......................... I X S y Bcache
tag_data_h<38:20>,p T H ‘ Interface

tag_valid_h
tag_dirty_h
tag_shared_h |

|
tag_ctl_par_h | |
data_check_h<15:0> |
irg_h<3:0>

mch_hlt_irq_h

pwr_fail_irq_h Interrupts
sys_mch_chk_irg_h

N

MK145504A
4.1.1.1 Commands and Addresses

The 21164 can take up to two commands from the system at atime. The Scache or
Bcache or both are probed to determine what must be done with the command.

e If nothing isto be done, the 21164 acknowledges receiving the command.

* If aBcacheread, set shared, or invalidate operation is required, the 21164 per-
forms the task as soon as the Bcache becomes free. The 21164 acknowledges
receiving the command at the start of the Bcache transaction.

Clocks, Cache, and External Interface 4-3

Clocks

There aretwo miss and two victim buffersin the BIU. They can hold one or two miss
addresses and one or two Scache victim addresses, or up to two shared write opera-
tionsat atime.

* A miss occurs when the 21164 searches its caches but does not find the
addressed block. The 21164 can queue two misses to the system.

e An Scache victim occurs when the 21164 deallocates a dirty block from the
Scache.

4.1.2 Bcache Interface

The 21164 includes an interface and control for an optional backup cache (Bcache).
The Bcache interface is made up of the following:

e A 128-hit data bus (which it shares with the system interface)
* Index address hits (index_h<25:4>)
* Tag and state bits for determining hit and coherence

e SRAM output and write control signals

4.2 Clocks
The 21164 develops three clock signals that are available at output pins:

Signal Description

cpu_clk_out_h A 21164 internal clock that may or may not drive the system clock.
sys clk_outl h, A clock of programmable speed supplied to the external interface.

sys clk_out2 h, A delayed copy of sys clk_outl h,l. The delay isprogrammable and is
an integer number of cpu_clk_out_h periods.

The 21164 may useref_clk_in_h as areference clock when generating
sys clk_outl h,l and sys clk_out2_h,l. The behavior of the programmable clocks
during the reset sequence is described in Section 7.1.

4.2.1 CPU Clock

The 21164 uses the differential input clock linesosc_clk _in_h,l as asource to gen-
erateits CPU clock. Theinput signals clk_mode _h<2:0> control generation of the
CPU clock, as listed in Table 4-1 and as shown in Figure 4-2.

4-4 Clocks, Cache, and External Interface

Clocks

The 21164 uses clk_mode_h<2> to provide onchip capability to equalize the duty

cycle of the input clock (eliminating the need for a 2x oscillator). When
clk_mode_h<2> is asserted, the equalizing circuitry, callegymmetrator, is

enabled, and the internal CPU clock is driven at the same frequency as the
osc_clk_h,I differential input. When this signal is deasserted, the symmetrator is dis-
abled.

Table 4-1 CPU Clock Generation Control

Mode clk_mode_h<2:0> Divisor Description

Normal 0 0O 21 Usual operation—CPU clock frequency
is ¥ input frequency.

Chip test 0 0 1 1 CPU clock frequency is the same as the
input clock frequency to accommodate
chip testers. Symmetrator is disabled.

Module test 01 0 4 CPU clock frequency is ¥4 input fre-
guency to accommodate module testers.

Reset 0 1 1 — Initializes CPU clock, allowing system
clock to be synchronized to a stable ref-
erence clock. Symmetrator is enabled.

Normal 1 0 1 1 CPU clock frequency is the same as the
input clock frequency.
Reserved 100/11x — Reserved for COMPAQ.

Ipivide by 2 or 4 should be used to obtain the best internal clock.

Caution: A clock source should always be providedosa clk_in_h,| when sig-
naldc_ok_h is asserted.

Clocks, Cache, and External Interface 4-5

Clocks

Figure 4-2 Clock Signals and Functions

cpu_clk_out_h

sys_clk_outl_h, |

21164
osc_clk_in_h, | CPU Clock Digita
clk_mode_h<2:0> Divider — P M Symmetrator

- (11, 12, or /4)

ref_clk_in_h 1‘

L System Clock
irq_h<3:0> Divider

(/3 through /15)

mch_hlt_irq_h L System Clock
pwr_fail_irq_h Delay

sys_mch_chk_irq_h

(0 through 7)

sys_reset_|
dc_okay_h

sys_clk_out2_h, |

4.2.2 System Clock

4-6

Table 4-2 System Clock Divisor

MK145502A

The CPU clock isthe source clock used to generate the system clock

sys clk_outl h,l. The system clock divider controls the frequency of

sys clk_outl h,l. Thedivisor, 3to 15, is obtained from the four interrupt lines

irg_h<3:0> at power-up as listed in Table 4-2. The system clock frequency is deter-
mined by dividing the ratio into the CPU clock frequency. Refer to Section 7.2 for
information on sysclk behavior during reset.

(Sheet 1 of 2)

irg_h<3> irg_h<2> irg_h<1> irg_h<0> Ratio
Low Low High High 3
Low High Low Low 4
Low High Low High 5
Low High High Low 6
Low High High High 7

Clocks, Cache, and External Interface

Clocks

Table 4-2 System Clock Divisor (Sheet 2 of 2)
irg_h<3> irg_h<2> irg_h<1> irg_h<0> Ratio

High Low Low Low 8

High Low Low High 9

High Low High Low 10

High Low High High 11

High High Low Low 12

High High Low High 13

High High High Low 14

High High High High 15

Figure 4-3 shows the 21164 driving the system clock on a uniprocessor system.

Figure 4-3 21164 Uniprocessor Clock

Memory
ASIC

sys_clk_out

21164

Bus
ASIC

LJ-05355.A14

4.2.3 Delayed System Clock

The system clock sys clk_outl h,l isthe source clock for the delayed system clock
sys clk_out2_h,l. These clock signals provide flexible timing for system use. The
delay unit, from 0to 7 CPU CLK cycles, is obtained from the three interrupt signals:
mch_hlt_irqg_h, pwr_fail _irg_h, and sys mch_chk_irg_h at power-up, aslisted in
Table 4-3. The output of this programmable divider is symmetric if the divisor is

Clocks, Cache, and External Interface 4-7

Clocks

even. The output is asymmetric if the divisor is odd. When the divisor is odd, the
clock ishigh for an extracycle. Refer to Section 7.2 for information on sysclk behav-
ior during reset.

Table 4-3 System Clock Delay

sys_mch_chk_irq_h pwr_fail_irq_h mch_hlt_irqg_h Delay Cycles
Low Low Low 0
Low Low High 1
Low High Low 2
Low High High 3
High Low Low 4
High Low High 5
High High Low 6
High High High 7

4.2.4 Reference Clock

4-8

The 21164 provides areference clock input so that other CPUs and system devices
can be synchronized in multiprocessor systems. If aclock is asserted on signal
ref _clk_in_h, thenthe sys clk_outl h,l signas are synchronized to that reference
clock. The reference clock input should be connected to Vdd if the input is not to be
used.

The 21164 synchronizesthe sys clk_outl h frequency withtheref_clk_in_h signal
by means of adigital phase-locked loop (DPLL). The DPLL does not lock the two
frequencies, but rather, creates awindow. To accomplish this, the frequency of signal
sys_clk_out1 must be slightly higher, but no greater than 0.35% higher, than that of
signal ref_clk_in_h. This causes the rising edge of sys clk_out1 to drift back
toward therising edge of ref_clk_in_h. The 21164 detects when the edges meet and
stalls the internal clock generator for one osc_clk_in cycle. This movestherising
edge of sys clk_out1 back in front of ref_clk_in_h.

Figure 4—4 shows a multiprocessor 21164 system synchronized to a reference clock.

Clocks, Cache, and External Interface

Clocks

Figure 4-4 21164 Reference Clock for Multiprocessor Systems

Memory
ASIC

ref_clk_in sys_clk_out
21164

Bus
ASIC

Reference
Clock

Memory
ASIC

ref_clk_in sys_clk_out
21164

Bus
ASIC

4.2.4.1 Reference Clock Examples

This section contains example calculations of setting time in systems that use the
DPLL for synchronization.

After sys clk_outl h,l hasstabilized (20 cyclesafter irq_h<3:0> have settled) there
will beadelay before sys clk_outl h,| comesintolock withref_clk_in_h. Thetwo
cases for this event are described in the following examples.

Case 1: ref_clk_in_h Initially Sampled Low by DPLL

When the DPLL initially samplesref_clk_in_h inthe low state, as shown in

Figure 4-5, it slips its internal cycle repeatedly until it samp#eglk_in_h in the
high state. After it samplagf_clk_in_h in the high state, the DPLL stays in lock
mode.

Clocks, Cache, and External Interface 4-9

Clocks

Figure 4-5 ref_clk_in_h Initially Sampled Low

e LU U UL L

(Internal)

sys clk outl h —— ——,—L
ref_clk_in_h —Im

LJ-04000.A14

Note: Thetiming diagram shows asys clk_outl h,l ratio of 4.

The worst case (slowest) maximum rate at which the DPLL will dip itsinternal
cycle (the frequency of phase slips) is calculated from the lock range specification of
0.35%. In effect, an average of 0.35% period is added to each sys clk_outl h,l
period until lock mode is reached.

SettlingTime = RefClockLowRatio x RefClockPeriod
0.0035

Note: The reference clock low ratio equals the portion of the reference clock
period that ref _clk_in_hislow.

Assuming the worst caseref_clk_in_h duty cycleis 60/40 to 40/60:

SettlingTime = _0.6 x RefClockPeriod= 171 x RefClockPeriod
0.0035

Depending upon the sys clk_outl h,l ratio, the DPLL may come into lock much
more quickly. The DPLL may insert phase slips more frequently at smaller
sys clk_outl h,l ratios.

Case 2: ref_clk_in_h Initially Sampled High by DPLL

When the DPLL initially samplesref_clk_in_h inthe high state, as shownin
Figure 4—6, it will not slip its internal cycle until it sampte$ clk_in_h in the low
state. After it samplesf_clk_in_h in the low state, the DPLL stays in lock mode.

4-10 Clocks, Cache, and External Interface

Physical Address Considerations

Figure 4—6 ref_clk_in_h Initially Sampled High

e L LU U UH UL

(Internal)

sys clk outl h —— —

ref_clk_in_h I r

LJ-04001.Al4

Therateat whichsys clk_outl h,l gainsonref clk_in_h dependson the difference
in frequency of the two signals. Assuming that:

ref_clk_in_hisnominally selected to run 0.175% slower thansys clk_outl h,l
(inthe center of the specified lock range),

and that worst case deviation of 200 PPM from the specified frequency for
ref clk_in_handosc clk_in_h|l,

Then the worst case (smallest) frequency differenceis calculated to be,
0.00175 - 200PPM - 200PPM = 0.00135 = 0.135%

SettlingTime = RefClockHighRatio x RefClockPeriod
0.00135

Note: The reference clock high ratio equals the portion of theref clk_in_h
period that ref_clk_in_h ishigh.

Assuming the worst caseref_clk_in_h duty cycleis 60/40 to 40/60:

SettlingTime = _0.6 x RefClockPeriod= 444 x RefClockPeriod
0.00135

4.3 Physical Address Considerations

This section lists and describes the physical address regions. Cache and data wrap-
ping characteristics of physical addresses are also described.

4.3.1 Physical Address Regions
Physical memory of the 21164 is divided into three regions.

Clocks, Cache, and External Interface 4-11

Physical Address Considerations

1. Thefirst region isthefirst half of the physical address space. It istreated by the
21164 as memory-like.

2. The second region is the second half of the physical address space except for a
1MB region reserved for CBU IPRs. It istreated by the 21164 as noncachable.

3. Thethird region isthe 1IMB region reserved for CBU IPRs.

In the first region, write invalidate caching, write merging, and load merging are all
permitted. All 21164 accessesin thisregion are 32-byte or 64-byte depending on the
programmable block size.

The 21164 does not cache data accessed in the second and third region of the physi-
cal address space; 21164 read accesses in these regions are always INT32 requests.
Load merging is permitted, but the request includes amask to tell the system envi-
ronment which INT8s are accessed. Write merging is permitted. Write accesses are
INT32 regquests with a mask indicating which INT4s are actually modified.

The 21164 never writes more than 32 bytes at atime in noncached space.

The 21164 does not broadcast accesses to the CBU IPR region if they map to aCBU
IPR. Accessesin this region, that are not to a defined CBU IPR, produce
UNDEFINED results. The system should not probe this region.

Table 4-4 shows the 21164 physical memory regions.

Table 4—4 Physical Memory Regions

Region Address Range Description

Memory-like 00 0000 0000 — Write invalidate cached, load, and store merging
7F FFFF FFFRg allowed.

Noncacheable 80 0000 0000 —Not cached, load merging limited.
FF FFEF FFFRg

IPR region FF FFFO 0000 — Accesses do not appear on the interface unless an
FF FFFF FFFRg undefined location is accessed (which produces
UNDEFINED results).

4.3.2 Data Wrapping

The 21164 requires that wrapped read operations be performed on INT16 bound-
aries. READ, READ DIRTY, and FLUSH commands are all wrapped on INT16
boundaries as described here. The valid wrap orders for 64-byte blocks are selected
by addr_h<5:4>. They are:

0,1,2,3

4-12 Clocks, Cache, and External Interface

Physical Address Considerations

) 01 31
) 31 OY
2,1

2-byte blocks, the valid wrap orders are selected by addr_h<4>. They are:

0,1

1,0
Similarly, when the system interface supplies acommand that returns data from the
21164 caches, the values that the system drives on addr _h<5:4> determine the order
in which datais supplied by the 21164.

WRITE BLOCK and WRITE BLOCK LOCK commands from the 21164 are not
wrapped. They awayswrite INT16 0, 1, 2, and 3. BCACHE VICTIM commands
provide the data with the same wrap order as the read miss that produced them.

OFr N

W Wk

For

4.3.3 Noncached Read Operations

Read operationsto physical addressesthat haveaddr h<39> asserted are not cached
in the Dcache, Scache, or Bcache. They are merged like other read operationsin the
miss address file (MAF). To prevent several read operations to noncached memory
from being merged into a single 32-byte bus request, software must insert memory
barrier (MB) instructions or set MAF_MODE IPR bit I0_NMERGE). The MAF
merges as many Dstream read operations together as it can and sends the request to
the BIU through the Scache.

Rather than merging two 32-byte requests into a single 64-byte request, the BIU
requests aREAD MISS from the system. Signalsint4_valid_h<3:0> indicate which
of the four quadwords are being requested by software. The system should return the
fill datato the 21164 as usual. The 21164 does not write the Dcache, Scache, or
Bcache with thefill data. The requested datais written in the register file or Icache.

Note: A specia case using int4_valid_h<3:0> occurs during an Icachefill. In
this case the entire returned block is valid although int4_valid_h<3:0>
indicates zero.

4.3.4 Noncached Write Operations

Write operations to physical addresses that have addr _h<39> asserted are not writ-
ten to any of the caches. These write operations are merged in the write buffer before
being sent to the system. If software does not want write operations to merge, it must
insert MB or WMB instructions between them.

Clocks, Cache, and External Interface 4-13

Bcache Structure

When the write buffer decides to write data to noncached memory, the BIU requests
aWRITE BLOCK. During each datacycle, int4_valid_h<3:0> indicates which
INT4swithin the INT16 are valid.

4.4 Bcache Structure

The 21164 supportsa l, 2, .. ., 32, and 64MB Bcache. The size is under program
control and is specified by BC_CONF<2:0> (BC_SIZE<2:0>).

The Bcache block size may consist of 32-byte or 64-byte blocks. The Scache also
supports either 32-byte or 64-byte blocks. The block size must be the same for both
and is selected using SC_CTL<SC BLK_SIZE>.

Industry-standard static RAMs (SRAMSs) may be connected to the 21164 without
many extra components, although fanout buffers may be required for theindex lines.
The SRAMs are directly controlled by the 21164, and the Bcache data lines are con-
nected to the 21164 data bus.

The 21164 partitions physical address (addr_h<39:5>) into an index field and a tag
field. The 21164 presentsindex_ h<25:4> and tag_data_h<38:20> to the Bcache
interface. Thetag size required is Bcache size/block_size.

The system designer uses the signal lines needed for a particular size Bcache. For
example, the smallest Bcache (1IMB) needsindex_h<19:4> to address the cache
block while the tag field would betag_data h<38:20>.

Only those bits that are actually needed for the amount of cached system main mem-
ory need to be stored in the Bcache tag, although the 21164 uses all the relevant tag
address bitsfor that Bcache size on itstag compare. A larger Bcache uses more index
bits and fewer tag address bits.

The CPU databusis 16 bytes wide (128 hits) and thus each Bcache transaction
requires two data cycles for a 32-byte block or four data cycles for a 64-byte block.

4.4.1 Duplicate Tag Store

In systems that have aBcache, it is possible to build afull copy of the Bcache tag
store. This data can then be used to filter requests coming off the system bus to the
21164.

In systemswithout aBcacheit is possible to build afull or partial copy of the Scache
tag store and to model the contents of the Scache victim buffers.

4-14 Clocks, Cache, and External Interface

Bcache Structure

4.4.1.1 Full Duplicate Tag Store

The complete Bcache duplicate tag store would contain an entry for each Bcache
block and each victim buffer. Each entry would contain state bits for the VALID,
SHARED, and DIRTY status bits along with part or all of addr_h<38:20> for a
Bcache block. The part of addr_h<38:20> stored in an entry depends upon the size
of the Bcache.

In a system without a Bcache a full Scache duplicate tag store may be maintained.

The full Scache duplicate tag store should contain three sets of 512 entries—one for
each of the three Scache sets. It should also have two entries for the two Scache vic-
tim buffers. SignaVvictim_pending_h is used to indicate that the current READ
command displaced a dirty block from the Scasbache _set_h<1:0>, into the

Scache victim buffer. The Scache duplicate tag store should be updated accordingly.

Figure 4-7 is a simplified diagram showing the signal lines of interest.

Figure 4—7 Full Scache Duplicate Tag Store

scache_set_h<1:.0> ———>] > >
Set0 Set 1 Set 2
addr_h<14:6> ———> >
(Index)]]] \

tag_shared_h,
tag_dirty_h,
tag_valid_h
addr_h<39:15>

(Tag Data) (+ Y %

Victim Victim

Buffer 0 Buffer 1

victim_pending_h % *

LJ-04002.A14

The system should use the algorithm shown in Figure 4-8 to maintain the duplicate
tag store.

Clocks, Cache, and External Interface 4-15

Bcache Structure

Figure 4-8 Duplicate Tag Store Algorithm

Push new entry into
duplicate tag store.

No

Yes

Put BUFO into BUF1.

Put victim in BUFO.

I

LJ-04003.A14

4.4.1.2 Partial Scache Duplicate Tag Store

System designers may also choose to build a partial Scache duplicate tag store such

as that shown in Figure 4-9. This store contains one or more bits of tag data for each
block in the Scache, and for the two victim buffers inside 21164. If a system bus
transaction hits in the partial duplicate tag store, then the block may be in the Scache.
If a system bus transaction misses in the partial duplicate tag store, then the block is
not in the Scache. Signailctim_pending_h is used to indicate that the current

READ command displaced a dirty block from the Scastaghe set_h<1:0>, into

the Scache victim buffer. The Scache duplicate tag store should be updated accord-
ingly.

4-16 Clocks, Cache, and External Interface

Systems Without a Bcache

Figure 4-9 Partial Scache Duplicate Tag Store

scache_set_h<1:0> ——» > >

Set0 Set 1 Set 2
addr_h<14:6> ——>»] > >
(Index)

| | |

addr_h<m:n>
(Part of <39:15> Tag Data)

)

Victim Victim
Buffer »1 Buffer
0 1
victim_pending_h * %

LJ-04004.A14

4.4.2 Bcache Victim Buffers

A Bcache victim is generated when the 21164 deallocates a dirty block from the
Bcache. Each time a Bcache victim is produced, the 21164 asserts
victim_pending_h and stops reading the Bcache until the system takes the current
victim. Then Bcache transactions resume.

External logic may help improve system performance by implementing any number
of victim buffers that act as temporary storage that can be written faster and with
lower latency than system memory. The victim buffers hold Bcache victims and
enable the Bcache location to befilled with datafrom the desired address. Datain the
victim buffers will be written to memory at alater time. This action reduces the time
that the 21164 iswaiting for data.

4.5 Systems Without a Bcache

Systems that do not employ a Bcache should |eave the bidirectional signals
tag_data par_h, tag _dirty _h, tag valid_h, tag shared_h, and

tag_data h<38:20> disconnected. Pull-down structures within the 21164 prevent
these signals from attaining undefined logic levels.

In systems with no Bcache, the Scache block size must be set to 64 bytes.

In systems with no Bcache, signa idle_bc_h is not required and should be perma-
nently deasserted.

Clocks, Cache, and External Interface 4-17

Cache Coherency

4.6 Cache Coherency

Cache coherency is aconcern for single and multiprocessor 21164-based systems as
there may be several caches on a processor module and several more in multiproces-
sor systems.

The system hardware designer need not be concerned about Icache and Dcache

coherency. Coherency of the Icache is a software concern—it is flushed with an IMB
(PALcode) instruction. The 21164 maintains coherency between the Dcache and the
Scache.

If the system does not have a Bcache, the system designer must create mechanisms
in the system interface logic to support cache coherency between the Scache, main
memory, and other caches in the system.

If the system has a Bcache, the 21164 maintains cache coherency between the
Scache and the Bcache. The Scache is a subset of the Bcache. In this case the
designer must create mechanisms in the system interface logic to support cache
coherency between the Bcache, main memory, and other caches in the system.

4.6.1 Cache Coherency Basics

The 21164 systems maintain the cache coherency and hierarchy shown in
Figure 4-10.

Figure 4-10 Cache Subset Hierarchy

System Main Memory

Bcache
(optional)

Scache

MK145501.A14

4-18 Clocks, Cache, and External Interface

Cache Coherency

The following tasks must be performed to maintain cache coherency:

e The CBU in the 21164 maintains coherency in the Dcache and keeps it as a sub-
set of the Scache.

e |f anoptional Bcacheis present, then the 21164 maintains the Scache as a subset
of the Bcache. The Scache is set-associative but is kept a subset of the larger
externally implemented direct-mapped Bcache.

e System logic must help the 21164 to keep the Bcache coherent with main mem-
ory and other cachesin the system.

e Thelcacheisnot asubset of any cache and also is not kept coherent with the
memory system.

The 21164 requires the system to allow only one change to ablock at atime. This
means that if the 21164 gains the bus to read or write a block, no other node on the
bus should be allowed to access that block until the data has been moved.

The 21164 provides hardware mechanismsto support several cache coherency proto-
cols. The protocols can be separated into two classes. write invalidate cache coher-
ency protocol and flush cache coherency protocol.

Write Invalidate Cache Coherency Protocol

The write invalidate cache coherency protocol is best suited for shared memory
multiprocessors.

The write invalidate protocol allows for shared data in the cache. If aBcache
(optional) is used, then a duplicate tag store is required. If a Bcache is not used, the
duplicate tag store is not required but the module designer may include an Scache
duplicate tag store.

Requiring the duplicate tag store if there is a Bcache allows the 21164 to process sys-
tem commands in the Bcache without probing to see if the block is present (system
logic knows the block is present). Thisresults in higher performance for these trans-
actions.

If aBcacheis not used, the modul e designer may include an Scache duplicate tag
store to improve system performance.

Flush Cache Coherency Protocol

This protocol is best suited for low-cost single-processor systems. It istypically used
by an /O subsystem to ensure that data coherence is maintained when DMA transac-
tions are performed. Flush protocol does not allow shared datain the cache.

Clocks, Cache, and External Interface 4-19

Cache Coherency

Flush protocol does not require a duplicate tag store. Because the duplicate tag store
isoptional for this protocol, the Bcacheis probed for each transaction to determine if
the block is present. If the block is present, the requested action is taken; if the block
is not present, the command is still acknowledged, but no other action is taken.

Section 4.6.2 and Section 4.6.3 describe the write invalidate cache coherency proto-
col in more detail while Section 4.6.4 and Section 4.6.5 provide a more detailed
description of flush cache coherency protocol. The system commands that are used
to maintain cache coherency are described in more detail in Section 4.10.

4.6.2 Write Invalidate Cache Coherency Protocol Systems

All 21164-based systems that implement the write invalidate cache protocol must

have the combinations of components listed in Table 4-5. For example, a system
such as that listed in write invalidate (3), having an Scache and Bcache, is required to
have a Bcache duplicate tag store and a lock register.

Table 4-5 Components for 21164 Write Invalidate Systems

Cache Protocol Scache gﬁ?)?ir::ilte Tag Beache [B)ﬁz?i:;e Tag I};(()e(g:jli(ster
Writeinvalidate (1) Yes No No No No

Writeinvalidate (2) Yes Yes (full or partial) No No Required
Writeinvalidate (3) Yes No Yes Required (full) Required

Write Invalidate 1

This system has no external cache, duplicate tag store, or lock register. The 21164
must be made aware of all memory data transactions that occur on the system bus.
System logic uses an INVALIDATE, READ DIRTY, or READ DIRTY/INVALI-

DATE transaction to the 21164 to maintain cache coherency and to support the lock
mechanism.

Write Invalidate 2

This system has an external Scache duplicate tag store and lock register. System
logic uses the duplicate Scache tag store and lock register to partially or completely
filter out unneeded transactions to the 21164. System logic maintains the lock mech-
anism status and initiates transactions that affect Scache coherency.

4-20 Clocks, Cache, and External Interface

Cache Coherency

Write Invalidate 3

This system has an external Bcache, Bcache duplicate tag store, and lock register. An
Scache duplicate tag store is not needed because the Scache is a subset of the
Bcache. This system operates similarly to the write invalidate 2 system, except that
the cache is larger. Write invalidate systems with a Bcache require afull Bcache
duplicate tag store because the 21164 assumes that a duplicate tag store has been
used to completely filter out unneeded transactions. Therefore, the 21164 does not
probe the Bcache when system commands are received, but assumes that they will
hit in the Bcache.

4.6.3 Write Invalidate Cache Coherency States

Each processor in the system must be able to read and write data asif al transactions
were going onto the system bus to memory or 1/0 modules. Therefore, the system
bus is the point at which cache coherency must be maintained.

Table 4-6 describes the Bcache states that determine cache coherency protocol for
21164 systems.

Table 4-6 Bcache States for Cache Coherency Protocols

validl Shared! Dirty! State of Cache Line
0 X X Not valid.

1 0 0 Valid for read or write operations. This cache line contains
the only cached copy of the block and the copy in memory is
identical to thisline.

1 0 1 Valid for read or write operations. This cache line contains
the only cached copy of the block. The contents of the block
have been modified more recently than the copy in memory.

1 1 0 Valid for read or write operations. This block may bein
another CPU’s cache.

1 1 1 Valid for read or write operations. This block may be in
another CPU’s cache. The contents of the block have been
modified more recently than the copy in memory.

1Thetag_valid_h, tag_shared_h, and tag_dirty_h signals are described in Table 3-1.

Note: Unlike some other systems, the 21164 will not take an update to a shared
block, but instead will invalidate the block.

Clocks, Cache, and External Interface 4-21

Cache Coherency

4.6.3.1 Write Invalidate Protocol State Machines

Figure 4-11 shows the 21164 cache state transitions that can occur as a result of
21164 transactions to the system. Figure 4—12 shows the 21164 cache state transi-
tions maintained by the 21164 as a result of transactions by other nodes on the sys-
tem bus. These two figures both represent the same state machine. They show
transitions caused by the 21164, and by the system, separately for clarity.

Note: The abbreviations “I,S,D” indicate the INVALID, SHARED, and
DIRTY states.

Figure 4-11 Write Invalidate Protocol: 21164 State Transitions

READ (S)

(CPU Read Operation)
READ MISS MOD

(CPU read for
write intent.)

SET DIRTY*
(CPU Write Operation)

(CQWQ/ 0)

NS
WRITE BLOCK (S) VV,,}@@(OC
(CPU Write Operation) O,

WRITE BLOCK** (S)
(CPU Write Operation)

Write Block** (S)
(CPU Write Operation)

* Optionally this transition can be configured to occur without
a SET DIRTY command being issued externally.

** Only allowed in no_Bcache systems. LJ-04036.A14

4-22 Clocks, Cache, and External Interface

Cache Coherency

Figure 4-12 Write Invalidate Protocol: System/Bus State Transitions

READ DIRTY

SET SHARED (Bus Read Operation)

(Bus Read Operation)

READ DIRTY
(Bus Read Operation)

LJ-04042.Al4

4.6.4 Flush Cache Coherency Protocol Systems

All 21164-based systems that implement the flush cache protocol must have the
combinations of components listed in Table 4—7. For example, a system such as that
listed in flush (3), having a Bcache and a Bcache duplicate tag store, is required to
have a lock register.

Table 4—7 Components for 21164 Flush Cache Protocol Systems

Cache Protocol Scache gﬁi?itzte Tag Beache gﬁ?)fiiite Tag II;Z;li(ster
Flush Protocol (1) Yes No No No No
Flush Protocol (1.5) Yes Yes (full or partial) No No Required
Flush Protocol (2) Yes No Yes No No
Flush Protocol (3) Yes No Yes Yes (partial/full) Required

Flush-Based 1

This system has no external cache, duplicate tag store, or lock register. System logic
notifies the 21164 of all memory data read operations that occur on the system bus
by using the interface READ command. The 21164 returns data if the block is dirty.

Clocks, Cache, and External Interface 4-23

Cache Coherency

System logic notifiesthe 21164 of all memory datawrite operations that occur on the
system bus by using the interface FLUSH command. The 21164 invalidates the
block in cache, provides the data to the system if the block was dirty, and updates the
lock mechanism status.

Flush-Based 1.5

This system has no external cache, but does contain a partial or full duplicate tag
store for the Scache and the onchip Scache victim buffers. The SET_DIRTY and
LOCK commands should be enabled. The LOCK register isrequired.

System logic notifies the 21164 of all memory data read operations that hit in the
duplicate tag store by using the READ command. The 21164 provides the system
with a copy of the dirty data.

System logic notifies the 21164 of all memory data write operations that hit in the
duplicate tag store by using the FLUSH command. The 21164 provides the dirty data
and then invalidates the block.

Flush-Based 2

This system has an external cache but no duplicate tag store or lock register. System
logic and 21164 operation isidentical to operation for the flush-based 1 system.

Flush-Based 3

This system has an external cache, a Bcache duplicate tag store, and lock register.
System logic notifies the 21164 of all memory data read operations that occur on the
system bus to addresses that are valid in the Bcache duplicate tag store. System logic
uses the READ command and the 21164 returns data if the block is dirty.

System logic uses the FLUSH command to notify the 21164 of all memory data
write transactions that occur on the system bus to addresses that are valid in the
Bcache duplicate tag store. If the block is dirty, the 21164 provides the block data
and invalidates the block in cache in any case.

System logic updates its lock mechanism status.

Flush-based systems with a Bcache do not require a full Bcache duplicate tag
because the 21164 always probes the Bcache in response to system commands.

4-24 Clocks, Cache, and External Interface

Cache Coherency

4.6.5 Flush-Based Protocol State Machines

Figure 4-13 shows the 21164 cache state transitions that can occur as a result of
transactions with the system. Figure 4—-14 shows the 21164 cache state transitions
maintained by the 21164 as a result of transactions by other nodes on the system bus.
These two figures both represent the same state machine. They show transitions
caused by the 21164, and by the system, separately for clarity.

Note: The abbreviations “I”, “S”, and “D” indicate the INVALID, SHARED,
and DIRTY states.

Figure 4-13 Flush-Based Protocol 21164 States

SET DIRTY*
(CPU Write Operation)

*Optionally this transition can be configured to
occur without a SET DIRTY command being issued externally.
Refer to BC_CONTROL<EI_CMD_GRP2>.

LJ-04038.Al4

Figure 4-14 Flush-Based Protocol System/Bus States

(DMA Read Operation) (DMA Read Operation)
LJ-04037.Al4

4.6.6 Cache Coherency Transaction Conflicts

Cache coherency conflictsthat can occur during system operation are described here.
Systems should be designed to avoid these conflicts.

Clocks, Cache, and External Interface 4-25

Lock Mechanisms

46.6.1 Case 1

If the 21164 requests a READ MISS MOD transaction, it expects the block to be
returned SHARED, DIRTY. However, if the system returns the data

SHARED, DIRTY, the 21164 followswith aWRITE BLOCK command. This might
cause amultiprocessor system to have live-lock problems, a condition that can cause
long delays in writing from the 21164 to memory.

4.6.6.2 Case 2

If the 21164 attempts to write a clean/private block of memory, it sendsa SET
DIRTY command to the system. The system could be sending a SET SHARED or
INVALIDATE command to the 21164 at the same time for the same block. The bus
is the coherence point in the system; therefore, if the bus has already changed the
state of the block to shared, setting the dirty bit isincorrect. The 21164 will not
resend the SET DIRTY command when the ownership of the ADDRESS/CMD bus
is returned. The write will be restarted and will use the new tag state to generate a
new system request.

Another possibility isfor the system to send an INVALIDATE instruction at the
same time the 21164 is attempting to do aWRITE BLOCK transaction to the same
block. In this case, the 21164 aborts the WRITE BLOCK transaction, services the
INVALIDATE instruction, then restarts the write transaction, which produces a
READ MISS command.

In both of these cases, if the SET DIRTY or WRITE BLOCK transaction is started
by the 21164 and then interrupted by the system, the 21164 resumes the same trans-
action unless the system request was to the same block as the request the 21164 had
started. In this case, the 21164 request is restarted internally by the CPU and it is
UNPREDICTABLE what transaction the 21164 presents next to the system.

4.7 Lock Mechanisms

TheLDx_L ingruction isforced to missin the Dcache. When the Scache isread, the

BlIU’s lock IPR is loaded with the physical address and the lock flag set. The BIU
sends a LOCK command to the system so that it can load its own lock register. The
system lock register is used only if the locked block is displaced from the cache sys-
tem.

The lock flag is cleared if any of the following events occur:

* Any write operation from the bus addresses the locked block (FLUSH, INVALI-
DATE, or READ DIRTY/INV).

4-26 Clocks, Cache, and External Interface

Lock Mechanisms

* AnSTx_Cisexecuted by the processor.
* Thelocked block is refilled from memory and system_lock_flag_h iscleared.

The system copy of the lock register is required on systems that have a duplicate tag

store to filter write traffic. The direct-mapped |cache, Dcache, and Bcache; along

with the subsetting rules, branch prediction, and I stream prefetching, can cause a

lock to always fail because of constant Scache thrashing of the locked block. Each

time a block isloaded into the Scache, the value of the lock register islogically

ANDed with the value of signal system_lock_flag_h. If the locked block isdis-

placed from the cache system, the 21164 does not “see” bus write operations to the
locked block. In this case, the system’s copy of the lock register corrects the proces-
sor copy of the lock flag when the block is filled into the cache, using signal
system_lock flag_h.

Systems that do not have duplicate tag stores, and send all probe traffic to the 21164,
are not required to implement a lock register or lock flag. Such systems should per-
manently assert signgfstem_lock_flag_h.

When the SX_C instruction is issued, the IDU stops issuing memory-type instruc-
tions. The store updates the Dcache in the usual way, and places itself in the write
buffer. It is not merged with other pending write operations. The write buffer is
flushed.

When the write buffer arrives at an)X§T instruction in cached memory, it probes

the Scache to check the block state. When the GPpasses through the Scache, an
INVALIDATE command is sent to the Dcache. If_the_lock flag is clear, the 6T

fails. If the block is SHAREDDIRTY, the write buffer writes the TC data into

the Scache. Success is written to the register file and the IDU begins issuing memory
instructions again. If the block is in the shared state, the BIU requests a WRITE
BLOCK transaction. If the system CACKs the WRITE BLOCK transaction, the
Scache is written and the IDU starts as previously stated.

When the write buffer arrives at an ST instruction in noncached memory, it

probes the Scache to check the block state. The Scache misses, the state of the lock
flag is ignored, and the BIU requests a WRITE BLOCK LOCK transaction. If the
system CACKs the WRITE BLOCK LOCK transaction, the IDU starts as stated pre-
viously. If cfail_h is asserted along wittack_h, then the SX_C fails.

Clocks, Cache, and External Interface 4-27

21164-to-Bcache Transactions

4.8 21164-to-Bcache Transactions

When initiating an |stream or Dstream data transaction, the 21164 first tries the
Icache or Dcache, respectively. If that accessis unsuccessful, then the Scache will be
tried next. If that fails, then the 21164 tries the Bcache.

The 21164 interface to the system and Bcache isin the CBU. The CBU provides
address and control signals for transactions to and from the Bcache and the system
interface logic. The CBU also transfers data across the 128-bit bidirectional data bus.

The 21164 controls all Bcache transactions and will be able to process read and write
hits to the Bcache without assistance from the system. When system logic writes to
or reads from the Bcache, it transfers data to and from the Bcache but only under the
direct control of the 21164.

Note: Timing diagrams do not explicitly show tristated buses. For examples of
tristate timing, refer to Section 4.11.

4.8.1 Bcache Timing

Bcache cycle time may be faster than, identical to, or slower than, that of the sysclk.
If the system isinvolved in a Bcache transaction, each read or write operation starts
on asysclk edge. It is the responsibility of the system to control the rate of Bcache
transactions by using thedack_h signal. Read and write operationsthat are private to
the 21164 and Bcache may start on any CPU clock. Thereis no relation between
sysclk and private Bcache accesses.

Bcache timing is configured using the BC_CONFIG and BC_CONTROL IPRs.
Section 5.3.4 and Section 5.3.5 show the layout of these registers. Theseregistersare
normally configured by 21164 initialization code.

Bcache read timing and write timing are programmable. Read speed is selected using
BC_CONFIG<7:4> (BC_RD_SPD<3:0>). Write speed is selected using
BC_CONFIG<11:8> (BC_WR_ SPD<3:0>).

4.8.2 Bcache Read Transaction (Private Read Operation)

Figure 4-15 shows an example of the timing for a private read operation to Bcache
by the 21164. BC_CONFIG<BC_RD_SPD> (read speed) is set to 4 CPU cycles, the
minimum read time (maximum read speed).

4-28 Clocks, Cache, and External Interface

21164-to-Bcache Transactions

Figure 4-15 Bcache Read Transaction

Arrows indicate when 21164

clocks Bcache data into the
pad ring.

CPU Clock Cycles
index_h<25:4> :>< 10 >< 11 >< 12 >< 13 ><
data_h<127:0> >< DO >< D1 >< D2

tag_ram_oe_h

data_ram_oe_h

LJ-04005.A14

The index increments through four 16-byte addresses, each being asserted for four
CPU cycles. The Bcache logic waits BC_CONFIG<BC_RD_SPD<3:0> cycles
before recieving the data.

The 21164 always delays one cycle before asserting thetag_ram_oe h and
data ram_oe_h lines. The lines are deasserted when the fourth index addressis
deasserted.

4.8.3 Wave Pipeline

The wave pipeline isimplemented to improve performance for systems that use 64-
byte block size. It is not supported for systems with 32-byte block size.

Thewave pipelineiscontrolled using BC_CONFIG<7:4> (BC_RD_SPD<3:0>) and
BC CTL<31,18:17> (BC_WAVE<2:0>).

BC _CONFIG<7:4> (BC_RD_SPD<3:0>) is set to the latency of the Bcache read
transaction. BC_CTL<31,18:17> (BC_ WAV E<2:0>) is set to the number of cycles
to subtract from BC_RD_SPD to get the Bcache repetition rate.

For example, if BC_RD_SPD isset to 6 and BC_WAVE<1:0> isset to 2, it takes 6
cyclesfor valid datato arrive at the pins, but a new read starts every 4 cycles.

The read repetition rate must be greater than 2. For example, it is not permitted to set
BC RD _SPD to5and BC_ WAVE<1.0>to 3.

Clocks, Cache, and External Interface 4-29

21164-to-Bcache Transactions

The example shown in Figure 4-16 has BC_RD_SPD=6, BC_WAVE<1:0>=2.

Figure 4-16 Wave Pipeline Timing Diagram

Arrows indicate when 21164
clocks Bcache data into the
pad ring.

. :>< 10 >< 11 >< 12 >< 13 ><
index_h<25:4>

DO D1 D2

data_h<127:0> b3

tag_ram_oe_h J
data_ram_oe_h J

g

LJ-04034.A15

4.8.4 Bcache Write Transaction (Private Write Operation)

Figure 4-17 shows an example of the timing for a private write operation to Bcache
by the 21164. BC_CONFIG<BC_WR_SPD> (write speed) is set to 4 CPU cycles,
the minimum time.

Figure 4-17 Bcache Write Transaction

CPUClockCycles [T U U U UTUUUULUUUUUUL
index_h<25:4> X 10 X i1 X 12 X 138 X
data_h<127.0> X pbo X b1 X b2 X b3 X

data_ram_we_h 20[21 22|23 | \ \ \ \ \

tag_ram_we_h 2021 2223 | \ \ \ \ \

HLO027

The index increments through four 16-byte addresses, each being asserted for four
cycles. The 21164 aways delays one cycle then drives the data associated with each
index.

4-30 Clocks, Cache, and External Interface

21164-to-Bcache Transactions

Signalstag_ram_we h and data_ram_we_h are asserted high for two cycles
because the BC_CONFIG<28:20> (BC_WE_ CTL<8:0>) isset to 6.
BC_CONFIG<22:21> being set causes the write-enable lines to be asserted during
the second and third CPU cycles. BC_CONFIG<20,23> being clear causesthe write-
enable linesto not be asserted during the first and fourth CPU cycles.

The Bcache maximum read or write time is 10 cycles. The minimum read or write
timeis 4 cycles; except that in 32-byte mode, the minimum read timeis 5 cycles. So
the index and data can be asserted from 4 to 10 cycles. The write-enable signals can
be asserted from 0 to 9 cycles. If BC_CONFIG<28:20> (BC_WE_CTL<8:0>) is set
to 0, the write-enable signals will not be asserted. If the 9-bit field is set to 1FF 4,
then the write-enable signals will be asserted for 9 CPU cycles.

4.8.5 Synchronous Cache Support

The 366-MHz and faster versions of the 21164 have an enhanced synchronous-cache
capability. The 21164 supports synchronous caches built from either register flow-

through or register latch synchronous SRAMs (SSRAMS). Thereis no support for
register—register-style SSRAMs or for any form of SSRAM that requires delay write.

The support for the earlier versions was provided through a new pin stalbdd h

that clocks the SSRAM. The sigrsal clk_h is deasserted when the cache is idle and
asserts when the cache is accessed. It remains asserted high for exactly 2 CPU
cycles, then it deasserts for the remainder of the cache access.

For the 366-MHz and faster versions of the 21164stthebk _h signal is renamed to
st_clk1l _h and a duplicate signal is added,clk2_h. Additional support includes:

* Programmable delaysfor st_clkl handst_clk2 h

* Programmable write-to-read bubble

* Threecycleread rates

e Four cycles of wave pipelining

e Better timing of st_clkx_h for write operations

e Programmable assertion of OE and WE signals

There are four transactions between the CPU, the cache, and the system:
* Private read operation

* Private write operation

e Fill operation

Clocks, Cache, and External Interface 4-31

21164-to-Bcache Transactions

* System read operation

The description of each operation shows a sample pin-bus timing for the CPU. All
the timing is based on a cache with aread speed of 6, wave pipelining of 2, and a
write speed of 4.

Note: Thereisno need for the private read rate, the private write rate, the fill
rate, and the system read rate to be related in any way. The 21164 makes
sure the clock completes each transaction before changing the clock rate
for the next transaction type. For example, the system works fine with a
read latency of 6 with arepetition rate of 4, a private write rate of 5, and
asysclk ratio of 6 for performing fill operations and system read opera-
tions.

For private read operations, the 21164 provides an st_clkx_h pulse each time the
index isdriven from the chip. For private write operations, the earlier versions of the
21164 provide an st_clkx_h pulse each time the index is driven from the chip. For
366 MHz or faster versions, the 21164 providesthe st_clkx_h pulse one CPU cycle
after the index is driven from the chip. The WE signal should be programmed to
assert in the first cycle of the write, with write data following one cycle after the
index.

Note: For synchronous caches to work, BC_CONTROL <26>
(FLUSH_SC VTM) must be 1.

The timing for synchronous read and write operations is shown in Figure 4-18 and
Figure 4-19.

4-32 Clocks, Cache, and External Interface

21164-to-Bcache Transactions

Figure 4-18 Synchronous Read Timing Diagram

Arrows indicate when the

21164 clocks Bcache data
into the pad ring.

CPU Clock Cycles

index_h<25:4> 10 1 12 13
st_clkx_h J ‘ ‘ ‘ ‘ ‘ ‘ ‘
data_h<127:0> DO D1 D2 D3

tag_ram_oe_h
data_ram_oe_h

1 .1-N53A0 Al4

Figure 4-19 Synchronous Write Timing Diagram
CPU Clock Cycles

index_h<25:4> 10 11 12 13

st oloch I I S s

data_h<127:0> DO D1 D2 D3

tag_ram_oe_h J ‘ ‘ ‘ ‘ ‘

data_ram_oe_h J ‘ ‘ ‘ ‘ ‘

LJ-05370.A14

Clocks, Cache, and External Interface 4-33

21164-to-Bcache Transactions

4.8.6 Selecting Bcache Options

Table 4-8 lists the variables to consider when designing and implementing a Bcache.

Table 4-8 Bcache Options

Parameter Selection

Sysclk ratio (3-15) ____ CPUcycles

Cache protocol, write invalidate or flush _

Cache block size 64/32 ____ -byteblock

ECC or byte parity _

Bcache present? _
Bcache size (1MB to 64MB) ____MB
Bcache read speed (4-15) __ CPUcycles
Bcache wave pipelining (0-4) _ CPUcycles

Bcache victim buffer?
Bcache write speed (4-15)

Bcache read-to-write spacing (1-7)
Bcache write-to-read spacing (0-1)
Bcache fill write pulse offset (1-7)
Bcache write pulse (bit mask 9-0)
Assertion of OE and WE signals (H or L)
Asynchronous or synchronous SRAM
st_clk delay (0-1)

Enable LOCK and SET DIRTY commands?

Enable MEMORY BARRIER (MB) commands?

4-34 Clocks, Cache, and External Interface

21164-Initiated System Transactions

4.9 21164-Initiated System Transactions

This section describes how commands are used to move data between the 21164 and
its cache system.

Note: Timing diagrams do not explicitly show tristated buses. For examples of
tristate timing, refer to Section 4.11.

The 21164 starts an external transaction when:

* It encounters a “miss.”

e A LOCK command isinvoked.

* A WRITE command isdirected at a shared block.

* A WRITE command is directed at a clean block in Scache.

e The CPU addresses a honcached region of memory.

* The 21164 executesa FETCH, FETCH_M, or MB instruction.

For example, the sequence for a 21164-initiated transaction caused by a Bcache miss
is.

* Atthestart of aBcache transaction, the 21164 checks the tag and tag control sta-
tus of the target block.

e |f thereisatag mismatch or the Valid bit is clear, a Bcache miss has occurred
and the 21164 starts an external READ MISS transaction that tells the system
logic to access and return data.

* System logic acknowledges acceptance of the command from the 21164 by
asserting cack_h.

e Because the transaction is aread operation, requiring a FILL transaction, the
transaction is broken (pended) while system logic obtains the FILL data.

e Atalater time, the system assertsfill_h.

* The 21164 will assert the tag and tag control bits, and will control the write
action during the FILL transaction.

* The system logic provides the data. As each of the two (or four) data cycles
becomes valid, the system logic asserts dack_h to cause the 21164 to sample to
data and writeit into the Bcache.

Clocks, Cache, and External Interface 4-35

21164-Initiated System Transactions

Interface commands from the 21164 to the system are driven on the cmd_h<3:0>
signals. Table 4-9 lists and describes the set of interface commands.

Table 4-9 21164-Initiated Interface Commands (Sheet 1 of 3)
cmd_h R

Command <3:0> Description

NOP 0000 The NOP command is driven by the owner of thecmd_h bus
when it has no tasks queued.

LOCK 0001 TheLOCK command is used to load the system lock register
with anew lock register address. The state of the system lock
register flag is used on each fill to update the 21164’s copy of
the lock flag. Refer to Section 4.7 for more information.

FETCH 0010 The 21164 passes a FETCH instruction to the system when the
FETCH instruction is executed.

FETCH_M 0011 The 21164 passes a FETCH_M instruction to the system when
the FETCH_M instruction is executed.

MEMORY 0100 The 21164 issues the MEMORY BARRIER command when

BARRIER an MB instruction is executed. This command should be used
to synchronize read and write accesses with other processors in
the system. The 21164 stops issuing memory reference instruc-
tions and waits for the command to be acknowledged before
continuing.

SET DIRTY 0101 Dirty bit set if shared bit is clear. The 21164 uses the SET

WRITE BLOCK 0110

DIRTY command when it wants to write a clean, private block
in its Scache and it wants the dirty bit set in the duplicate tag
store. The 21164 does not proceed with the write until a CACK
response is received from the system. When the CACK is
received, the 21164 attempts to set the dirty bit. If the shared
bit is still clear, the dirty bit is set and the write operation is
completed. If the shared bit is set, the dirty bit is not set and the
21164 requests a WRITE BLOCK transaction. The copy of the
dirty bit in the Bcache is not updated until the block is removed
from the Scache.

Request to write a block. When the 21164 wants to write a
block of data back to memory, it drives the command, address,
and first INT16 of data on a sysclk edge. The 21164 outputs
the next INT16 of data wheatack h is received. When the
system assertsack_h, the 21164 removes the command and
address from the bus and begins the write of the Scache. Signal
cack_h can be asserted before all the data is removed.

4-36 Clocks, Cache, and External Interface

21164-Initiated System Transactions

Table 4-9 21164-Initiated Interface Commands (Sheet 2 of 3)
cmd_h R

Command <3:0> Description

WRITEBLOCK 0111 Request to write ablock with lock. This command isidentical

LOCK toaWRITE BLOCK command except that the cfail_h signal
may be asserted by the system, indicating that the data cannot
be written. This command isonly used for STx_C in hon-
cached space.

READ MISSO 1000 Request for data. This command indicates that the 21164 has
probed its caches and that the addressed block is not present.

READ MISS1 1001 Request for data. This command indicates that the 21164 has
probed its caches and that the addressed block is not present.

READ MISS 1010 Request for data; modify intent. This command indicates that

MODO the 21164 plans to write to the returned cache block. Normally,
the dirty bit should be set when the tag status is returned to the
21164 on a Bcachefill.

READ MISS 1011 Request for data; modify intent. This command indicates that

MOD1 the 21164 plans to write to the returned cache block. Normally,
the dirty bit should be set when the tag statusiis returned to the
21164 on a Bcachefill.

BCACHE 1100 Bcachevictim should be removed. If thereisavictim buffer in

VICTIM the system, this command is used to pass the address of the vic-

tim to the system. The READ MISS command that produced
the victim precedes the BCACHE VICTIM command. Signal
victim_pending_h is asserted during the READ MISS com-
mand to indicate that aBCACHE VICTIM command is wait-
ing, and that the Bcache is starting the read of the victim data.

If the system does not have a victim buffer, the BCACHE
VICTIM command precedes the READ MISS commands. The
BCACHE VICTIM command isdriven, along with the address
of the victim. At the same time, the Bcache isread to provide
the victim data.

If the system does have a victim buffer, and it asserts signal
dack _h any time before the BCACHE VICTIM command is
driven, then address bitsaddr _h<5:4> of the address sent with
the BCACHE VICTIM command are UNPREDICTABLE.
The system must use the values of addr _h<5:4> that were sent
with the READ MISS command that produced the victim.

Clocks, Cache, and External Interface 4-37

21164-Initiated System Transactions

Table 4-9 21164-Initiated Interface Commands (Sheet 3 of 3)
cmd_h R

Command <3:0> Description

— 1101 Spare.

READ MISS 1110 Request for data, $TC data.

STCO

READ MISS 1111 Request for data, $TC data.

STC1

4.9.1 READ MISS—No Bcache

A read operation to the Dcache misses causing aread operation to the Scache, which

also misses. After the Scache miss there is no Bcache probe—the 21164 sends a
READ MISS command to the system. The system acknowledges receipt of the
READ MISS by assertingack_h as shown in Figure 4-20.

Figure 4-20 READ MISS—No Bcache Timing Diagram

sys_clk_out ﬂﬂﬁMﬂﬁﬁﬂﬂﬂﬂmﬁ_ﬂﬂﬂﬂﬁ_ﬂﬁJ

RMO : ! RM1 : © ! RMO ! ! RM1 & :© :© © ' ' RMO

cmd_h<30>?:):(:):(“>:<31<‘ 6 Gmn 6 Gmmnn"—-
addr_h<39:4> DCX e)D()D()D(S S FFO
TN R NI N]
diah

data_h<127:0>

HLOO020

4-38 Clocks, Cache, and External Interface

21164-Initiated System Transactions

4.9.2 READ MISS—Bcache

The 21164 starts a Bcache read operation on any CPU clock. Theindex is asserted to
the RAM for a programmable number of CPU cyclesin the range of 4 to 15. Thetag
is accessed at the same time. At the end of the first read operation, the 21164 latches
the data and tag information and begins the read operation of the next 16 bytes of
data. Thetag is checked for a hit. If thereisamiss, aREAD MISS or READ MISS
MOD command, along with the address, is queued to thecmd_h<3:0> bus. It
appears on the interface at the next sysclk edge.

Figure 4-21 shows the timing of a Bcache read and the resulting READ MISS MOD
request. The system immediately asseatk _h to acknowledge the command. This
allows the 21164 to make additional READ MISS requests. It is also possible for the
system to defer assertionazck_h until the fill data is returned. This allows the sys-
tem to usemd_h<0> for the value ofill_id_h. The assertion afack_h should

arrive no later than the last fidlack_h.

The only difference between a READ MISS and a READ MISS MOD sequence on
the bus is thatag_dirty_h should be asserted during the Bcache fill associated with
a READ MISS MOD.

Note: A READ MISS command witlint4 valid_h<3:0> of zero is a request
for Istream data whilet4 valid_h<3:0> of nonzero is a request for
Dstream data.

Clocks, Cache, and External Interface 4-39

21164-Initiated System Transactions

Figure 4-21 READ MISS MOD—Bcache Timing Diagram

R e o e T e e T T s 0 B O

addr_bus_req_h

cmd_h<3:0> WRMMLY X RMMO X

victim_pending_h

addr_h<39:4> Y9900 X X__scE0 X FRRO

cack_h] [1

addr_res_h<2:0>

fill_h T
1

fill_id_h

idle_bc_h
9900 5CE0

. 7 7
index_h<25:4> 5a00 X Y9910 _X__X5CFoX 5CEO X 9900 X 9910 X 9920 X 9930 X 5CE0 X
data_h<127:0> —y X X Do X p1 X b2 X b3 X Do

dack_h |

data_ram_oe_h L]

data_ram_we _h M re e T
tag_ram_oe_h R L]
tag_ram_we_h ML e re
tag_data_h<38:20> X X X
tag_dirty_h |

tag_shared_h 7 M

tag_valid_h T

LJ-04009.A14

4-40 Clocks, Cache, and External Interface

21164-Initiated System Transactions

4.9.3 FILL

The 21164 provides an st_clkx_h pulse a certain number of cycles after the rising
edge of the system clock, determined by the value of the FILL_WE_OFFSET<2:0>
field in the BC_CONFIG register (see Section 5.3.5). The value must be from 1to 7
and cannot be greater than the SYSCLK ratio. This allows the SSRAM write opera-
tion to take place later in the SY SCLK cycle, allowing more time for the data to get
to the 21164.

Signalsfill_h, fill_id_h, andfill_error_h are used to control the return of fill datato

the 21164 and the Bcache, if it is present. Signal idle_bc_h must be used to stop

CPU requestsin the Bcache in such away that the Bcache will be idle when thefill

data arrives (but not the FILL command). Signal fill_h should be asserted at least

two sysclk periods before the fill data arrives. Signal fill_id_h should be asserted at

the same time to indicate whether the FILL isfor aREAD MISS0 or READ MISS1
operation. The 21164 uses this information to select the correct fill address. Figure

4-21 shows the timing of a FILL command. Refer also to Section 4.11.3 for more
information on using signalgle bc_h andfill_h.

If signalsfill_h andfill_id_h are asserted at the rising edge of sysclk N, then at the
rising edge of sysclk N+1, the 21164 tristadeta_h<127:0>, asserts the Bcache
index, and begins a Bcache write operation. The system should drive the data onto
the data bus and assddck_h before the end of the sysclk cycle. At the end of the
write time, the 21164 waits for the next sysclk edgdatk _h has not been asserted,
the Bcache write operation starts again at the same indiackfh is asserted, the
index advances to the next part of the fill and the write operation begins again. The
system must provide the data atatk_h signal at the correct sysclk edges to com-
plete the fill correctly. For example, if the Bcache requires 17 ns to write, and the
sysclk is 12 ns, then two sysclk cycles are required for each write operation.

The 21164 calculates and asséats valid_h and writes the Bcache tag store with
each INT16 of data. The system is required to drive sigaglshared h,
tag_dirty_h, andtag_ctl_par_h with the correct value for the entire FILL transac-
tion.

At the end of the FILL transaction, the 21164 will not assatéd ram_oe _h or

begin to drive the data bus until the fifth CPU cycle after the sysclk that loads the last
DACK. If systems require more time to turn off their drivers, they must use
idle_bc_h in combination wittdata bus reg_h to stop 21164 requests, and not

send any system requests.

Clocks, Cache, and External Interface 4-41

21164-Initiated System Transactions

4.9.4 READ MISS with Victim

The 21164 supports two models for removing displaced dirty blocks from the
Bcache. Thefirst assumes that the system does not contain avictim buffer. In this
case, the victim must be read from the Bcache before the new block can be
reguested. In the second case, where the system has a victim buffer, the 21164
reguests the new block from memory while it starts to read the victim from the
Bcache. The VICTIM command and address follows the miss request.

In either case, the 21164 treats a miss/victim as a single transaction. If the assertion
of addr_bus req_horidle_bc_h causesthe BIU sequencer to reset, both the READ
MISS and BCACHE VICTIM transactions are restarted from the beginning. For
example, if the 21164 is operating in victim first mode, and it sendsa BCACHE
VICTIM command to the system, then the system sends an INVALIDATE request to
the 21164. The 21164 processes the INVALIDATE request and then restarts the
READ operation and resends the BCACHE VICTIM command and data, and then
processes the READ MISS.

Section 4.9.4.1 and Section 4.9.4.2 describe each of these methods of victim process-
ing.
4.9.4.1 READ MISS with Victim (Victim Buffer)

When the miss is detected, if the system has a victim buffer, the 21164 waits for the

next sysclk, then asserts a READ MISS command, the read miss address, the
victim_pending_h signal, and indexes the Bcache to begin the read operation of the
victim. When the system asserts cack_h, the 21164 sends out aNOP command along

with the victim address. In the following cycle the BCACHE_VICTIM command is
driven. Each assertion of dack _h causes the Bcache index to advance to the next part

of the block. Figure 4—22 shows the timing of a READ MISS command with a vic-
tim.

4-42 Clocks, Cache, and External Interface

21164-Initiated System Transactions

Figure 4-22 READ MISS with Victim (Victim Buffer) Timing Diagram

sys_clk_outl_h |))))

addr_bus_req_h

cmd_h<3:0> : : p RMO 3 > _Bcache Victim
victim_pending_h - . . :
addr_h<39:4> FEFO X BFA0 X © 4006F80 : X T 5FAO

cack_h : : . |_'—| . |_'j

addr_res_h<2:0>

I S A N N M T ¥
fillid h L inonn
idle_bc_h 3

index_h<25:4> 9860 > 580 »5rA0 B0 xErB0). 5ro0. < ><ora0 Ere0;

data_h<127:0> = X XXX X oo oo ms - X X

dack_h - i [l o
atnamoen
wogmwen | . . . g
agramoen | —————————
mgramwen | L Lo iononnn moran
tag_data_h<38:20>. ; ; ; ; ; ; : : : :
wg gy

tag_shared_h

tag_valid_h

LJ-05360.A14

4.9.4.2 READ MISS with Victim (Without Victim Buffer)

If the system does not contain a victim buffer, the 21164 stops reading the Bcache as
soon as the missis detected. This occurs while the second INT16 datais on
data h<127:0>, as shown in Figure 4-23.

A BCACHE VICTIM command is asserted at the next sysclk along with the victim
address. A Bcache read operation of the victim is also started at the sysclk edge.

Clocks, Cache, and External Interface 4-43

21164-Initiated System Transactions

When dack_h isreceived for the first INT16 of the victim, the 21164 begins reading
the next INT16 of the victim. The signal cack_h can be sent any time before the last
dack_h isasserted or with the last dack _h assertion.

The 21164 sends the READ MISS command after the last dack _h isreceived.
Figure 4-23 shows the timing of a victim being removed.

Notice the data wrap sequence of this transaction—D2, D3, DO, and D1.

Figure 4-23 READ MISS with Victim (Without Victim Buffer) Timing Diagram

sys_clk_outl_h | ‘ ‘ ‘ ‘ ‘ ‘ ‘ |

addr_bus_req_h

cmd_h<3:0> Bcach%victim M:
victim_pending_h !—]
addr_h<39:4> %SFBO 40053FAO 5F80 5FA03 9900%
cackh 7 LT L
addr_res_h<2:0> ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
fill_h
fill_id_h
deben 7
index_h<25:4> o
stekoh [Lo
data_h<127:0> %DZ %D3 %DO %Dl
dckh 1
data_ram_oe_h u '

data_ram_we_h

tag_ram_oe_h J

tag_ram_we_h

tag_data_h<38:20>

tag_dirty_h 3 3
tag_shared_h

tag_valid_h

HLOO010

4-44 Clocks, Cache, and External Interface

21164-Initiated System Transactions

4.9.5 WRITE BLOCK and WRITE BLOCK LOCK

The WRITE BLOCK command is used to complete write operations to shared data,
to remove Scache victimsin systems without a Bcache, and to complete write opera-
tions to noncached memory.

The WRITE BLOCK LOCK command follows the same protocol. The LOCK quali-

fier allows the system to be more “conservative” on interlocked write operations to
noncached memory space. Refer to Section 4.7 for more information on lock mecha-
nisms.

The WRITE BLOCK command to cached memory regions that source data from the
Scache sends data to the system and also causes the data to be written in the Bcache.

The 21164 asserts the WRITE BLOCK command, along with the address and the
first 16 bytes of data, at the start of a sysclk. If the system removes ownership of the
cmd_h<3:0> bus, the 21164 retains the WRITE command and waits for bus owner-
ship to be returned. If the block in question is invalidated, the 21164 restarts the write
operation. This results in the READ MISS MOD request instead.

When the system takes the first part of the data, it astsksh. This causes the
21164 to drive the next 16 bytes of data on the same sysclk edge.

If the system assertack_h, the 21164 outputs the next command in the next sysclk.
Receipt of signatack_h indicates to the 21164 that the write operation will be
taken, and that it is safe to update the Scache with the new version of the block.

During each cycle, thimt4 valid_h<3:0> signals indicate which INT4 parts of the
write operation are really being written by the processor. For write operations to
cached memory, all of the data is valid. For write operations to noncached memory,
only those INT4 with thént4_valid_h<n> signal asserted are valid. See the defini-
tion forint4_valid_h<n> in Table 3-1.

Figure 4—24 shows the timing of a WRITE BLOCK command.

Clocks, Cache, and External Interface 4-45

21164-Initiated System Transactions

Figure 4-24 WRITE BLOCK Timing Diagram

sys_clk_outl_h _l_l_’_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_1_|_1_|_1_|_1_

addr_bus_req_h

WI:RITE BLC;CK WRI'IéE BLOCI:< LOCK
cmd_h<3:0> . < : : > > :
victim_pending_h _ : : : : : :
: : : : : FFF0000040
addr_h<39:4> 4700 ; C X
addr_res_h<2:0> ~ ; ; ; ; 0 ; ;
fill_h
idle_bc_h

index_h<25:4>

st_clkx_h

data_h<127:0>
dack_h

data_ram_oe_h

data_ram_we_h

tag_ram_oe_h

tag_ram_we_h

tag_data_h<38:20>

tag_dirty_h .
tag_shared_h
tag_valid h ™ '

LJ-05363.Al4

4.9.6 SET DIRTY and LOCK

Figure 4-25 shows the timing of a SET DIRTY and a LOCK operation.

The 21164 uses the SET DIRTY transaction to inform a duplicate tag store that a
cached block is changing from the SHARHDIRTY state to the SHAREIDIRTY
state. Whemrack_h is received from the system, the 21164 sets the dirty bit. If a SET
SHARED or INVALIDATE command is received for the same block, the 21164
responds with a WRITE BLOCK or READ MISS MOD command.

4-46 Clocks, Cache, and External Interface

21164-Initiated System Transactions

The SET DIRTY and LOCK commands must be enabled in any system that contains
aduplicate tag store. The 21164 usesthe SET DIRTY command to update the dirty
bit in the duplicate tag store.

The 21164 uses the LOCK command to pass the address of aLDx_L to the system.
A system lock register isrequired in any system that filters write traffic with a dupli-
cate tag store. If the locked block is displaced from the 21164 caches, the 21164 uses
the value of the system lock register to determine if the LDx_L/STx_C sequence
should pass or fail.

The system may use BC_CONTROL<EI_CMD_GRP2> to modify operation for
these commands.

e |f BC_CONTROL<ElI CMD_GRP2> isset, the 21164 is alowed to issue SET
DIRTY and LOCK commands to the system interface. The system logic
acknowledges receipt of these commands.

e |f BC_CONTROL<EI_CMD_GRP2>isclear, the SET_DIRTY command will
never be driven by the 21164. It isUNPREDICTABLE if the LOCK commandis
driven. However, the system should never assert cack _h for the command when
BC_CONTROL<EI_CMD_GRP2> isclear.

Figure 4-25 SET DIRTY and LOCK Timing Diagram

sys_elk outh 7 MU UL U

addr_bus_reqg_h

FETCH LOCK MB SET_DIRTY

emd_h<s0> T3 X0 X X 0 X X0 XX
victim_pending_h
addr_h<39:4> TYVYT XX XX XX
cack_h 1 1 L 1
V = Valid

LJ-04013.Al4

Clocks, Cache, and External Interface 4-47

System-Initiated Transactions

4.9.7 MEMORY BARRIER (MB)

The 21164 may encounter aMEMORY BARRIER (MB) instruction when executing
the instruction stream. The action taken by the 21164 depends upon the state of
BC CONTROL<3> (EI_CMD_ GRP3).

e |f BC_CONTROL<EI_CMD_GRP3> isset, the 21164 drains its pipeline and
buffers, then issues an MB command to the system interface. The system logic
must empty its buffers and complete all pending transactions before acknowl-
edging receipt for the MB command by asserting cack_h.

* |f BC_CONTROL<EI_CMD_GRP3> isclear, the 21164 never drivesaMB
command to the interface command pins.

Note: The address presented on addr _h<39:4> during aMB transaction is
UNPREDICTABLE.

4.9.7.1 When to Use a MEMORY BARRIER Command

If the system interface buffers invalidate between the duplicate tag store and the
21164, then the system interface must enable the MB command and drain all invali-
dates before asserting cack_h in response to an MB command.

4.9.8 FETCH

The 21164 passes a FETCH command to the system when it executes a FETCH

instruction. The system responds to the command by asserting cack_h. This com-

mand acts as a “hint” to the system. The system may respond with optional behavior
as a result of this hint (refer to thépha Architecture Reference Manual).

49.9 FETCH_M

The 21164 passes a FETCH_M (fetch with modify intent) command to the system
when it executes a FETCH_M instruction.

4.10 System-Initiated Transactions

System commands to the 21164, are driven ogrtite h<3:0> signal lines. Before
driving these signals, the system must gain control of the command and address
buses by usingddr_bus req_h, as described in Section 4.11.1. The algorithm used
by the 21164 for accepting system commands to be processed in parallel by the
21164 is presented in Section 4.10.1.

4-48 Clocks, Cache, and External Interface

System-Initiated Transactions

System-initiated commands may be separated into two protocol groups. The group
of commands used by write invalidate protocol systemsislisted and described in
Section 4.10.2. The group of commands used by flush-based protocol systemsis
listed and described in Section 4.10.3.

Note: Timing diagrams do not explicitly show tristated buses. For examples of
tristate timing, refer to Section 4.11.
4.10.1 Sending Commands to the 21164

The rules used by the CBU BIU to process commands sent by the system to the
21164 arelisted in Section 4.13.1.

The 21164 can hold two outstanding commands from the system at any time. The
algorithm used by the system to send commands to the 21164 without overflowing
the two CBU BIU command buffers is shown in Figure 4-26.

Clocks, Cache, and External Interface 4-49

System-Initiated Transactions

Figure 4-26 Algorithm for System Sending Commands to the 21164

‘ Start ’

A

Set count to zero.

Send command.

Increment count.

CPU response
equal to
ACK/Scache
?

READ or FLUSH

or READ DIRTY INV

or READ DIRTY,
?

Receive data.

No
Decrement count.

CPU
response equals
(ACK/Bcache
or NACK)
?

Decrement count.

No '

LJ-04014.A14

4-50 Clocks, Cache, and External Interface

System-Initiated Transactions

4.10.2 Write Invalidate Protocol Commands

All 21164-based systems that use the write invalidate protocol are expected to use
the READ DIRTY, READ DIRTY/INVALIDATE, INVALIDATE, and SET
SHARED commandsto keep the state of each block up to date. These commands are

defined in Table 4-10.

Table 4-10 System-Initiated Interface Commands (Write Invalidate

Protocol) (Sheet 1 of 2)
cmd_h N
Command <3:0> Description
NOP 0000 The NOP command is driven by the owner of thecmd_h<3:0>

INVALIDATE 0010

bus when it has no tasks queued.

Remove the block. When the system issues the INVALIDATE
command, the 21164 probes its Scache. If the block is found, the
21164 responds with ACK/Scache and invalidates the block. If
the block is not found, and the system does not contain a Bcache,
the 21164 responds with a NOACK.

If the system contains a Bcache, the system is assumed to have
filtered all requests by using the duplicate tag store. Therefore,
the block is assumed to be present in the Bcache. The 21164
responds with ACK/Bcache, and the block is changed to the
invalid state without probing.

Clocks, Cache, and External Interface 4-51

System-Initiated Transactions

Table 4-10 System-Initiated Interface Commands (Write Invalidate
Protocol) (Sheet 2 of 2)

cmd_h
<3:0>

SET SHARED 0011 Block goesto the shared state. The SET SHARED command is
used by the system to change the state of ablock in the cache sys-
tem to shared. The shared bit in the Scacheis set if the block is
present. The Bcache tag is written to the shared not dirty state.
The 21164 assumes that this action is correct, because the system
would have sent a READ DIRTY command if the dirty bit were
Set.

Command Description

If the block is found in the Scache, the 21164 responds with
ACK/Scache. Otherwisg, if the system contains a Bcache, the
block is assumed to be in the Becache, and the 21164 responds
with ACK/Bcache. If the system does not contain a Bcache, and
the block is not found in the Scache, the 21164 responds with
NOACK.

READ DIRTY 0101 Read ablock; set shared. The READ DIRTY command probes
the Scache to seeif the requested block is present and dirty. If the
block is not found, or if the block is clean, and the system does
not contain a Bcache, the 21164 responds with NOACK. If the
block isfound and dirty in the Scache, the 21164 responds with
ACK/Scache and drives the data on the data_h<127:0> bus. If
the block is not found in the Scache, and the system contains a
Bcache, the block is assumed to be in the Bcache. The 21164
responds with ACK/Bcache, indexes the Bcache to read the
block, and changes the block status to the shared dirty state.

READ DIRTY/ 0111 Read ablock; invalidate. Thiscommand isidentical tothe READ
INVALIDATE DIRTY command except that if the block is present in the caches,
it will be invalidated from the caches.

4-52 Clocks, Cache, and External Interface

System-Initiated Transactions

4.10.2.1 21164 Responses to Write Invalidate Protocol Commands

The 21164 responses on addr_res_h<1:0> to write invalidate protocol commands
are listed in Table 4-11.

Table 4-11 21164 Responses on addr_res_h<1:0> to Write Invalidate Protocol
Commands

Bcache Scache addr_res_h<1:0>

INVALIDATE and SET SHARED Commands

No Bcache Scache Miss NOACK
No Bcache Scache Hit ACK/Scache
Bcache Hit/Miss Scache Hit/Miss ACK/Bcache

READ DIRTY and READ DIRTY/INVALIDATE Commands

No Bcache Scache Miss NOACK
No Bcache Scache Hit, Not Dirty NOACK
No Bcache Scache Hit, Dirty ACK/Scache
Bcache Scache Hit, Dirty ACK/Scache
Bcache Scache Miss ACK/Bcache

The signabddr_res h<2> allows a system without a duplicate tag store to deter-
mine if a block is present in the Scache or lock register. The system logic can use this
information to correctly assetrag_shared_h in a multiprocessor system.

The 21164 responds to the READ, FLUSH, READ DIRTY, SET SHARED and
READ DIRTY/INVALIDATE commands oraddr_res _h<2>, as listed in
Table 4-12.

Table 4-12 21164 Responses on addr_res_h<2> to 21164 Commands

Scache Lock Register addr_res_h<2>
Miss Miss 0
Miss Hit 1
Hit Miss 1
Hit Hit 1

Clocks, Cache, and External Interface 4-53

System-Initiated Transactions

Table 4-13 presents the 21164 best case response time to system commands in a

write invalidate protocol system.

Table 4-13 21164 Minimum Response Time to Write Invalidate Protocol

Commands

Cache Status Response

Number of sys_clk_outl_h,l Cycles

No Bcache NOACK

No Bcache ACK/Scache

Bcache NOACK, ACK/Scache,
ACK/Bcache

8 CPU cycles rounded up to next
sys clk_outl h,l cycles

12 CPU cycles rounded up to next
sys clk_outl h,l cycles

10 CPU cycles rounded up to next
sys clk_outl h,l cycles

4.10.2.2 READ DIRTY and READ DIRTY/INVALIDATE

The READ DIRTY command is used to read modified data from the cache system.
The block status changes from DIRTY, SHAREDDIRTY, SHARED.

Figure 4-27 shows the timing of a READ DIRTY command that hits in the Scache.
The 21164 drives data starting at the rising edge of the sysclk that drives

addr_res h<2:0>. The Bcache data and tag state are updated as each INT16 is
passed to the system. If the data had not been found in the Scache, the Bcache would
have been indexed on the rising edge of the syclk that ddulre res h<2:0>. The

index would advance to the next INT16 datalask _h pulses arrive. The Bcache

tag would be written with the updated state during the second INT16 data cycle.

The READ DIRTY/INVALIDATE command is identical to the READ DIRTY com-
mand except that the block is changed to VAléither than to SHARED.

4-54 Clocks, Cache, and External Interface

System-Initiated Transactions

Figure 4-27 READ DIRTY Timing Diagram (Scache Hit)

SIS N Y T
addr_bus_req_h _|—| : : : : : : :
cmd_h<3:0>)(REAI:; DIRTY>E<
victim_pending_h
addr_h<39:4> 5 5 >< 0600 ><

cack_h

. ACK/Scache .
addr_res_h<2:0> - " NOP D G G

idle_bc_h

index_h<25:4> ~ - T o . - 3 000 3001 35 002 3¢ 003 3 000 ;

stekch L1 LTIl
data_h<127:0> © T T T X oo X o Koo

dack_h . . . [

=L

data_ram_oe_h

data_ram_we_h

tag_ram_oe_h

tag_ram_we_h

tag_data_h<38:20> >< : : : P

|

tag_dirty_h

tag_shared_h |

tag_valid_h

LJ-05364.Al4

4.10.2.3 INVALIDATE

The INVALIDATE command can be used to remove a block from the cache system.
Unlike the FLUSH command, any modified datawill not be read. The Scacheis
probed and invalidated if the block isfound. The Bcache isinvalidated without prob-
ing. Figure 4-28 shows the timing of an INVALIDATE transaction.

Clocks, Cache, and External Interface 4-55

System-Initiated Transactions

Figure 4-28 INVALIDATE Timing Diagram (Bcache Hit)

sys_clk_outl_h ‘ | | ‘ ‘ ‘ ‘ ‘ ‘ ‘
addr_bus_req_h : : : : : : :

cmd_h<3:.0> 1 > _INVALIDATE

victim_pending_h

addr_h<39:4> o X oopo 1 1 0

cack_h

ACK/Bcache

addr_res_h<2:0>

idle_bc_h

index_h<25:4> . 0000 3 3 3 © 0000
st_clkx_h : : 1]
data_h<127:0> ‘

dack_h ‘ : ‘ ‘ ‘
data_ram_oe_h S

data_ram_we h ‘ ‘ ‘ ‘
tag_ram_oe_h]

tag_ram_we h 1 : - I

tag_data_h<38:20>

tag_dirty_h

tag_shared_h

tag_valid_h

HLO013

4.10.2.4 SET SHARED

When the 21164 receives a SET SHARED command, it probes the Scache and

changes the state of the block to SHARED if it is found. The 21164 “assumes” that
the block is in the Bcache and writes the state of the tag to SHARED, DIRTY
Figure 4—29 shows the timing of a SET SHARED command.

4-56 Clocks, Cache, and External Interface

Figure 4-29 SET SHARED Timing Diagram

sys_clk_outl_h
addr_bus_req_h
cmd_h<3:0>

victim_pending_h
addr_h<39:4>
cack_h
addr_res_h<2:0>
idle_bc_h
index_h<25:4>
st_clkx_h
data_h<127:0>
dack_h
data_ram_oe_h
data_ram_we_h
tag_ram_oe_h
tag_ram_we_h
tag_data_h<38:20>
tag_dirty_h
tag_shared_h
tag_valid_h

System-Initiated Transactions

100D0

>< 0020 >< 0000 Xioooo)ﬁ(

HI 0014

Clocks, Cache, and External Interface 4-57

System-Initiated Transactions

4.10.3 Flush-Based Cache Coherency Protocol Commands

All 21164-based systems that use the flush protocol are expected to use the READ
and FLUSH commands defined in Table 4—14 to maintain cache coherency.

Table 4-14 System-Initiated Interface Commands (Flush Protocol)

Command

cmd_h
<3:0>

Description

NOP

FLUSH

READ

0000

0001

0100

The NOP command is driven by the owner of thecmd_h<3:0>
bus when it has no tasks queued.

Remove block from caches; return dirty data. The FLUSH com-
mand causes a block to be removed from the 21164 cache sys-
tem. If the block is not found, the 21164 responds with NOACK.
If the block isfound and the block is clean, the 21164 responds
with NOACK. The block isinvalidated in the Dcache, Scache,
and Bcache. If the block isfound and is dirty, the 21164 responds
with ACK/Scache or ACK/Bcache. If the dataisfound dirty in
the Scache, it is driven at the interface in the same sysclk as the
ACK/Scache. If the datais found dirty in the Bcache, the Bcache
read starts on the same sysclk as ACK. The block isinvalidated
in the Dcache, Scache, and Bcache.

Read ablock. The READ command probes the Scache and
Bcache to seeif the requested block is present. If the block is
present and dirty, the 21164 responds with ACK/Scache or ACK/
Bcache. If the dataisin Scache, the data is driven on the
data_h<127:0> busin the same sysclk asthe ACK. If thedatais
in the Bcache, a Bcache read operation beginsin the same sysclk
asthe ACK. If the block is not present in either cache, the 21164
responds with aNOACK on addr_res _h<1:0>.

4-58 Clocks, Cache, and External Interface

System-Initiated Transactions

4.10.3.1 21164 Responses to Flush-Based Protocol Commands

The system responds to flush-based protocol commands on addr_res _h<1:0>, as
shown in Table 4-15.

Table 4-15 21164 Responses to Flush-Based Protocol Commands

READ and FLUSH Commands

Bcache Status Scache Status 21164 Response
No Bcache Scache Miss NOACK

No Bcache Scache Hit, Not Dirty NOACK

No Bcache Scache Hit, Dirty ACK/Scache
Bcache Miss Scache Miss NOACK

Bcache Hit Scache Hit, Dirty ACK/Scache
Bcache Hit, Not Dirty Scache Misg/Hit, Not Dirty NOACK

Bcache Hit, Dirty Scache Miss ACK/Bcache

The signabddr_res h<2> allows a system without a duplicate tag store to deter-
mine if a block is present in the Scache or lock register. The system logic can use this
information to correctly assetrag_shared_h in a multiprocessor system.

The 21164 responds to the READ, FLUSH, READ DIRTY, SET SHARED, and
READ DIRTY/INVALIDATE commands oraddr_res _h<2>, as listed in
Table 4-16.

Table 4-16 21164 Responses on addr_res_h<2> to 21164 Commands

Scache Lock Register addr_res_h<2>
Miss Miss 0
Miss Hit 1
Hit Miss 1
Hit Hit 1

Clocks, Cache, and External Interface 4-59

System-Initiated Transactions

Table 4-17 presents the 21164 best case response time to system commands in a
flush protocol system.

Table 4-17 Minimum 21164 Response Time to Flush Protocol Commands

Cache Status Response Number of sys_clk_outl_h,l Cycles
No Bcache NOACK 8 CPU cycles rounded up to next
sys clk_outl h,l cycles
No Bcache ACK/Scache 12 CPU cycles rounded up to next
sys clk_outl h,l cycles
Bcache NOACK, ACK/Scache, 10 CPU cyclesplus<BC _RD_SPD> rounded up
ACK/Bcache to next sys clk_outl h,l cycles

4.10.3.2 FLUSH

The FLUSH command is used to remove blocks from the 21164 cache system.
Figure 4-30 shows the timing of a FLUSH transaction.

If the block is DIRTY, the 21164 will respond with an ACK and the system must read
data from the cache, usinigck h to control the rate at which data is supplied, and
write it to memory.

In the timing diagram shown in Figure 4—-30, the cache block state changes from
DIRTY, SHARED, VALID to DIRTY, SHARED, VALID . When the block state
changes to VALID the state of SHARED and DIRTY does not matter.

4-60 Clocks, Cache, and External Interface

System-Initiated Transactions

Figure 4-30 FLUSH Timing Diagram (Scache Hit)

sys_clk_outl_h
addr_bus_req_h
cmd_h<3:0>

victim_pending_h
addr_h<39:4>
cack_h
addr_res_h<2:0>
idle_bc_h
index_h<25:4>
st_clkx_h
data_h<127:0>
dack_h
data_ram_oe_h

data_ram_we_h

o Xmusn X o

0 X dwo X o

ACK/Scache

0 > 3 008 3 009 X 00A X 00B

tag_ram_oe_h y—|_ﬂ
tag_ram_we_h : :
tag_data_h<38:20> “Fcoo (o : S
tag_dirty_h
tag_shared_h : :
tag_valid_h W

4.10.3.3 READ

HLOO015

The READ command is used by the system to read DIRTY datafrom the 21164. The
tag control status does not change. Figure 4-31 shows the timing and tag control sta-
tus of a READ transaction.

Clocks, Cache, and External Interface 4-61

Data Bus and Command/Address Bus Contention

Figure 4-31 Read Timing Diagram (Scache Hit)
SYCHETSYS B I e e 0 o o I
addr bus_req h [] ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘

cmd_h<3:.0> o READ : : : o

victim_pending_h

addr_h<39:4> o0 0080 1 1 1 0

cack_h

ACK/Scache

addr_res_h<2:0>

idle_bc_h
index_h<25:4> 3 L0 > 3 008 3 x 009 00A 008 -
st_clkx_h [T ﬁ_ﬂ_ﬂ_ﬂ__
data_h<127:0> : : KX % oo) b1 X o2 X ps X X
dack_h 1 3 1 1 1 ! : : ! 1
data_ram_oe_h 1 3 L 1 1 : : : B
data_ram_we_h 3 3 1 : 1 InEinEinEinEEEE
wgmoeh {7 F
wgramweh . JLILILIL
tag_data_h<38:20> " FCOO : o : : — ;

tag_dirty_h

tag_shared_h

tag_valid_h

HLO016
4.11 Data Bus and Command/Address Bus Contention

The data bus is composed of data _h<127:0> and data_check h<15:0>. The com-
mand/address bus is composed of cmd_h<3:0>, addr_h<39:4>, and
addr_cmd_par_h.

The following sections describe situations that have contention for use of the data
bus or contention for use of the command/address bus.

4-62 Clocks, Cache, and External Interface

Data Bus and Command/Address Bus Contention

4.11.1 Command/Address Bus

Figure 4-32 shows the 21164 and the system alternately driving the command/
address bus. If signatidr_bus req_h is asserted at the rising edge of sysclk N, the
next cycle on the command/address bus belongs to the system. The 21164 turns off
its drivers at the rising edge of sysclk N. While the system must turn on its drivers
between sysclk N and sysclk N+1, it must ensure that the drivers do not turn on
before the 21164 drivers turn off. The 21164 samples the state of the command/
address bus at the end of sysclk N+hddir_bus req_h remains asserted, the sys-

tem should continue to drive the command/address bus.

Figure 4-32 Driving the Command/Address Bus

N N+1 N+2

l l i

addr_bus_req_h / \

21164 Drive) { :

System Drive)

21164 Sample Point —1
MK-1455-03

To pass control of the command/address bus back to the 21164, the system should
turn off its drivers during a sysclk and deassert addr_bus req_h. The 21164 does

not sample the state of the busif addr_bus req_h is deasserted. The 21164 drives
the command/address bus at the rising edge of sysclk N+2.

On every 21164 sample point, the cmd_h<3:0>, addr_h<39:4>, and
addr_cmd_par_h signals must be valid, and the parity must be correct unless
BC_CONTROL<DIS SYS PAR>isset. If DIS SYS PARisclear,
addr_cmd_par_h must be valid for the address and command, even when the
address isirrelevant, because the system is driving aNOP on cmd_h<3:0>.

4.11.2 Read/Write Spacing—Data Bus Contention

The databus, data_h<127:0>, can be driven by the 21164, the Bcache array, or the
system.

Clocks, Cache, and External Interface 4-63

Data Bus and Command/Address Bus Contention

In the case of private Bcache write operations followed by private Bcache read oper-
ations, the 21164 stops driving the data bus well in advance of the Bcache turning on.

For private Bcache read operations followed by private Bcache write operations, the
21164 inserts a programmable number of CPU cycles between the read and the write
operation. This allows time for the Bcache drivers to turn off before the 21164 data
drivers are turned on.

Note: Thisrule aso appliesto WRITE BLOCK, WRITE BLOCK LOCK,
READ, READ DIRTY, READ DIRTY/INV, and FLUSH commands.

4.11.3 Using idle_bc_h and fill_h

The 21164 uses theidle_bc_h and fill_h signalsto fill datainto the Scache, the
Bcache, or both. The system must assert theidle_bc_h signal early enough to ensure
that the 21164 completes any Bcache transaction it might have started while waiting
for thefill data.

Signal fill_h is asserted a fixed number of sysclk cycles before the start of afill
transaction.

At the end of thefill, the 21164 waits five CPU cycles before starting aread or write
operation. This time should allow the system to turn off its drivers. If, in practice,
thisis not enough time, the system may assert data_bus req_h to gain additional
cycles.

Calculating Time to Assertidle_bc_h

The equations for calculating length of time to assertidle bc_h are:

read_hit_idle = 2+ (block_size/16) x BC_RD_SPD +
tristate_ram_turn_off - 3 x wave_pipelining;

read_miss_idle = 6 + BC_RD_SPD + Sysclk_ratio + tristate_ RAM_turn_off;
write_idle = 4 + (block_size/16) x BC_WRT_SPD + tristate_21164_turn_off;

When using these equations, the turn-off times should be expressed as an integer
number of CPU clock periods. Take the largest of the three times and then round up
to the next sysclk boundary.

When determining the tristate turn-off times, if the system will not turn onitsdrivers
for some number of nanoseconds after the 21164 starts driving Bcache
index_h<25:4>; thistime can be used to reduce the tristate_turn_off time.

4-64 Clocks, Cache, and External Interface

Data Bus and Command/Address Bus Contention

For example, if the sysclk ratio is 6 (the caches use a 64-byte block size), Bcache
read/write speed is 5, with no wave pipelining, 2 cyclesfor tristate read, O cycles for
tristate_write, then the equations would work out to:

read_hit_idle = 2+(64/16)x 5+2-3x 0 = 24
read_miss_idle = 6+5+6+2 = 19
write_idle = 4+(64/16)x 5+0 = 24

Maximum of (24/6), (19/6), (24/6) =4

In this example wave_pipelining = 0 makes only the partial product zero, not the
entire equation.

If the 21164 samplesidle_bc_h asserted at sysclk edge N, the earliest time that the
system can allow the 21164 to samplefill_h asserted is at sysclk edge N+3. The
21164 drives index_h<25:4> to fill the Bcache on sysclk edge N+4.

Systems without a Bcache are not required to assert idle_bc_h to use the
data_bus req_h signal.

Figure 4-33 Example of Using idle_bc_h and fill_h

N N+1 N+2 N+3 N+4

sys_clk_outl_h,l

idle_bc_h] |
fill_h [
dack_h | L
index_ne25:4> Ko Xw Xz Xo X
data<127.0> oo X o X o2 X 2 X

LJ-04020.A14

Clocks, Cache, and External Interface 4-65

Data Bus and Command/Address Bus Contention

Minimum idle_bc_h time

If the system contains a Bcache, and the write ratio of the Bcache is greater than or
equal to twice the sysclk ratio, then the minimumidle _bc_h assertion timeistwo
sysclk cycles.

For example, if the Bcache write speed is 10, and the sysclk ratio is 4, then any asser-
tion of idle_bc_h must be for two or more sysclk cycles.

4.11.4 Using data_bus_req_h

Thesignal data_bus req_h can be used along with theidle _bc_h signal to prevent
the 21164 and the Bcache from driving the data bus. In general, the system should
not need to use this feature but it may be useful if the system places other devices on
the data bus.

To gain control of the data bus, the system must ensure that the Bcache isidle by
asserting idle_bc_h for the required time. It can then assert data_bus req_h. If
data bus req_h isreceived asserted at the rising edge of sysclk N, the 21164 stops
driving the bus on the rising edge of sysclk N+1.

To return the busto the 21164, the system should deassert data bus req_h and then
deassert idle_bc_h on the next sysclk.

Figure 4-34 Using data_bus_req_h

sys_clk_outl_h,l

idle_bc_h J |
data_bus_req_h

21164 Drive

LJ-04021.Al4

4-66 Clocks, Cache, and External Interface

Data Bus and Command/Address Bus Contention

4.11.5 Tristate Overlap

Theaddr_h<39:4>, cmd_h<3:0>, data_h<127:0>, and tag_data h<38:20> buses
must be operated in such away that no more than one driver may drive the bus at a
time. This section describes particular cases where tristate overlap may be aproblem
that needs to be corrected using features described in previous sections.

The “owner” of each bus must drive the bus to some value for each cycle. Tristate
drivers in the 21164 turn on and off very fast (in the 0.5-ns to 1.0-ns range). At the
other end of the range, SRAM memory devices turn on and off slowly (in the 7.0-ns
to 10.0-ns range). Generally, system drivers fall somewhere in the middle.

4.11.5.1 READ or WRITE to FILL

The time required to tristate the 21164 drivers at the end of a WRITE command, or
the Bcache drivers at the end of a READ command is part alléandrc_h equation.

4.11.5.2 BCACHE VICTIM to FILL

The time to turn off the Bcache drivers at the end of a BCACHE VICTIM is fixed by
the 21164 design. The system must allow for this time before starting a FILL.

There are two READ MISS with victim cases to consider. In one case, the READ
MISS operation will be completed first because the system logic contains a victim
buffer. In the other case the READ MISS operation will be completed second
because the system logic does not have a victim buffer.

READ MISS Completed First—Victim Buffer

Thefina dack_h will be sampled by the 21164 on the rising edge of sysclk. If the
corresponding rising CPU clock edgeislabeled N, then data ram_oe _h will deas-
sert at the rising edge of CPU clock N+4.

Clocks, Cache, and External Interface 4-67

Data Bus and Command/Address Bus Contention

Figure 4-35 READ MISS Completed First—Victim Buffer

N N+1 N+2 N+3 N+4

XRRE

sys_clk_outl_h J | ’—\ ’7

dack_h 4,—‘
index<25:4> 3 >< ><

data_h<127:0> b3 >< >>

data_ram_oe_h |

LJ-04022.Al4

READ MISS Second—No Victim Buffer

Thefinal dack_h will be sampled by 21164 on the rising edge of sysclk. If the corre-
sponding rising CPU clock edgeislabeled N, then the READ MISS command will
arrive on the next sysclk edge, and thedata ram_oe_h will deassert at therising
edge of CPU clock N+S+1, where Sisthe sysclk ratio. If the sysclk ratiois 3, it will
take an extra sysclk to send the READ MISS command, so thedata ram_oe_h will
deassert at N+2S+1.

4-68 Clocks, Cache, and External Interface

Data Bus and Command/Address Bus Contention

Figure 4-36 READ MISS Second—No Victim Buffer

N N+S N+S+1

A

CPU Clock Cycles
sys_clk_outl_h |

cmd_h<3:0> >< READ MISS

dack_h 4,—\
index<25:4> 13 >< ><
data_h<127:0> D3 >< >>>
data_ram_oe_h \—

LJ-04023.A14

4.11.5.3 System Bcache Command to FILL

At the end of a system command that uses the Bcache, the system must provide
enough time for the Bcache drivers to turn off before returning any fill data.

Thefina dack_h will be sampled by the 21164 on the rising edge of sysclk. If the
corresponding rising CPU clock edgeislabeled N, data ram_oe_h will deassert at
the rising edge of CPU clock N+5.

Clocks, Cache, and External Interface 4-69

Data Bus and Command/Address Bus Contention

Figure 4-37 System Command to FILL Example 1

N N+1 N+2 N+3 N+4 N+5

RRRER

cruanaayees | LU U U U U U UL UUUUUU UL
sys_clk_outl_h J u ‘ ‘ ‘ ‘ ’ ‘ L

dack_h 4,—‘
index<25:4> s >< >< Fo ><
data_h<127:0> b3 >< > > > <<< Do >C

data_ram_oe_h ‘

fill_h

A side effect of thisisthe earliest assertion of fill_h after a system command. The
system must allow time for data_ram_oe_h to turn off and the RAMsto stop driv-
ing the bus before the system drives the fill data.

If the system command was a SET SHARED or an INVALIDATE command, the
system must allow time for the 21164 to compl ete the Bcache tag write operation and
then for the drivers to turn off before driving thetag_shared_h, tag_dirty_h, and
tag_ctl_par_h lines.

LJ-04024.A14

The 21164 begins the tag write operation one CPU cycle after the responseis sent to

the system. The write transaction will take BC_WRT_SPD cyclesto complete. Dur-

ing the write transaction, data_ram_oe_h will be asserted but not tag ram_oe h.

At the end of the write transaction, tag_ram_oe_h will pulse for one CPU cycle,

then both will go off. Refer to Figure 4—38 if the response is driven at the rising edge
of CPU clock N, themlata ram_oe_h will fall at N+2+BC_WRT_SPD, or N+6 for

a 4-cycle write speed.

4-70 Clocks, Cache, and External Interface

Data Bus and Command/Address Bus Contention

Figure 4-38 System Command to FILL Example 2

N N+2+BC_WRT_SPD

: :

sys_clk_outl_h J—’ ‘ ‘ ‘ J
addr_res_h<1:0> ACK/Beache ><
index<25:4> >< TAG WRITE ><
data_h<127:0> >>>
tag_ram_oe_h m

data_ram_oe_h ‘

LJ-04025.A14
4.11.5.4 FILL to Private Read or Write Operation

At the end of the fill, the 21164 does not begin to drive the data bus until the fifth
CPU cycle after the sysclk that loads the last dack _h. The 21164 does not assert
data_ram_oe_h until the fifth cycle after the sysclk that |oads the last dack_h.

Systems requiring more time to turn off their drivers must not send any more

requests and must use idle_bc_h and data_bus req_h at the end of thefill to stop
21164 requests.

Clocks, Cache, and External Interface 4-71

Data Bus and Command/Address Bus Contention

Figure 4-39 FILL to Private Read or Write Operation

N N+1 N+2 N+3 N+4 N+5

REARA

sys_clk_outl_h ‘ ‘ ‘ J
dack_h
index<25:4> s >< >< o
data_h<127:0> o3 >>> <<< >
data_ram_oe_h

LJ-04026.A14

4.11.6 Auto DACK

The 21164 microprocessor provides the new Auto DACK option that can be used by
systems that implement 64-byte cache blocks and have a sysclk ratio of 4 or 5. The
Auto DACK option, controlled explicitly by BC_CONTROL<32> (the
AUTO_DACK hit), can improve pin bandwidth utilization by improving the effi-
ciency of certain back-to-back pin-bus operations.

When BC_CONTROL<32> iscleared (the reset state), the 21164 responds to
dack_h asearlier versions of the 21164 have. However, when BC_CONTROL<32>
is set, the 21164 automatically latches the last 16 bytes of afill on the rising edge of
sys _clk_outl_h following the assertion of dack_h on the third data transfer. This
allows the 21164 to be more aggressive in starting the next command.

Note: Even though Auto DACK isenabled, the system interface must assert
dack_h ontherising edge of thesys clk_outl h signal that latched the
last 16 bytes.

Figures 4-40 and 4-41 show the advantage of this feature. Figure 4—-40 shows a sys-

tem with BC_CONTROL<32> cleared and a sysclk ratio of 4, performing two back-
to-back WRITE BLOCK pin-bus operations. There are two idle bus cycles between

4-72 Clocks, Cache, and External Interface

Data Bus and Command/Address Bus Contention

the assertion of the last dack_h for the first operation and the start of the second
operation. Figure 4-41 shows a system with BC_CONTROL<32> set and a sysclk
ratio of 4. One idle bus cycle is eliminated.

Figure 4-40 Two Commands, Auto DACK Disabled

sys_clk_outl_h
cmd_h<3:0>

addr_h<39:4>
victim_pending_h
addr_bus_req_h

fil_h
idle_bc_h

cack_h
dack_h
index_h<25:4>

data_h<127:0>
data_ram_oe_h

T e

H

LT e

Write: Block Write Block

XXXXXXXX 277277777

)

| | |
o) oapCape)X XX a2)Xz)
o) Xz X=X (=)

2
s

LJ-05375.Al4

Figure 4-41 Two Commands, Auto DACK Enabled

sys_clk_outl_h
cmd_h<3:0>

addr_h<39:4>
victim_pending_h
addr_bus_req_h

fill_h

idle_bc_h

cack_h
dack_h
index_h<25:4>

data_h<127:0>

data_ram_oe_h

Ija

JEEEEERE SRR

Write: Block Write Block

XXXXXXXX 77777777

j]

| |

)
QI
)
9

LJ-05376.A14

Clocks, Cache, and External Interface 4-73

Data Bus and Command/Address Bus Contention

4.11.7 Victim Write Back Under Miss

The 21164 microprocessor provides another new option, the victim write back
option, that allows systems without any offchip cache to improve pin bandwidth uti-
lization. This option, controlled by the BC_CONTROL <35> (the
VTM_WRT_BACK hit), improves the way dirty evicted cache lines (called victims)
are processed.

When BC_CONTROL<35> iscleared (the reset state), write block operations are
held off whilefillsare pending (asin earlier versions of the 21164). This hasthe side
effect of preventing internal cache victims being written back to memory.

When BC_CONTROL<35> is set, the 21164 attempts to write back internal cache
victimswhilefills are pending, although victim processing can proceed only if there
are no other read operations to process.

This option also imposes some additional timing requirements on the system inter-
face. Theidle bc_h signal must be asserted before afill can be returned. If the
sysclk ratio is 3, then idle_bc_h should be asserted for at least 2 sysclk periods
beforefill_h is asserted. If the sysclk ratio is 24, then idle_bc_h should be asserted
for at least 1 sysclk period beforefill_h is asserted.

Figures 4-42 and 4-43 show the timing for each case.

Figure 4-42 sysclk Ratio =>4

fill_h
idle_bc_h ‘
dack_h ‘ L
index_h<25:4> oooo
data_h<127:0> @Q@@

LJ-05377.Al4

4-74 Clocks, Cache, and External Interface

21164 Interface Restrictions

Figure 4-43 sysclk Ratio = 3

sys_clk_outl_h

fil_h ﬁ
idle_bc_h ‘ ‘
dack_h ‘ L
index_h<25:4> i0 i1 i2 i3
data_h<127:0> do d1 d2 d3

LJ-05378.Al14

412 21164 Interface Restrictions
This section lists restrictions on the use of 21164 interface features.

4.12.1 FILL Operations After Other Transactions

If the system has removed data from the 21164 with any of the system commands, or
completed aWRITE_BLOCK, or removed a Bcache victim from the Bcache, and
wants to follow any of these transactions with aFILL, then the earliest point the sys-
tem can assert the fill_h signal is at the sysclk after the last assertion of dack_h.
However, fill_h can be asserted at the sysclk with the last dack_h if the sysclk ratio
is greater than 3.

FILL operationsfollowed by FILL operations are specia cases. FILL operations can
be pipelined back-to-back so that 100% of the data bus bandwidth can be used.

4.12.2 Command Acknowledge for WRITE BLOCK Commands

When the 21164 requestsa WRITE BLOCK or WRITE BLOCK LOCK operation,
the system can acknowledge the data by asserting dack _h before asserting cack_h.
The system must assert cack_h no later than the last assertion of dack_h.

4.12.3 Systems Without a Bcache

Systems without a Bcache must set a 64-byte block size.

If systems without a Bcache have an Scache duplicate tag store, they are required to
maintain tags for the two blocks in the 21164 Scache victim buffer.

Clocks, Cache, and External Interface 4-75

21164 Interface Restrictions

4.12.4 Fast Probes with No Bcache

If BC_CONTROL<BC _ENABLED>=0, then the 21164 processes system requests
while other commands are being processed by the interface. The 21164 does not wait
for the interface to become idle before processing system requests. This creates race
conditions for the state of a cache block.

For example, if acertain block is being filled private-clean, and the system sends a
SET SHARED command for the block, the SET SHARED command must be
delayed until the fill completes and records the correct end state for the block,
shared-clean. The system must avoid changing the state of ablock that isin transit.

The restrictions are as follows:

* The system may not send a request to the 21164 for a block that has been filled
until one sysclk after the last dack_h if the sysclk ratio is greater than 3.

e The system may not send arequest to the 21164 for a block that has been filled
until two sysclks after the last dack_h if the sysclk ratio is 3.

* The system may not send arequest to the 21164 for a block that has completed a
WRITE BLOCK command until one sysclk after the last dack_h.

* The system may not send arequest to the 21164 for a block that has completed a
SET DIRTY command until one sysclk after the cack_h for the SET DIRTY
command.

4-76 Clocks, Cache, and External Interface

21164 Interface Restrictions

* The system cannot issue a FLUSH, READ, READ DIRTY, or READ DIRTY
INV command to an address that will access the same Scache index (defined by
addr_h<14:6>) as apending READ MISS or READ MISS MOD operation dur-
ing the time periods highlighted in the following chart:

Sysclk cycle relative to the 21164 valid fill_h pin sample for the

Sysclk READ MISS or READ MISS MOD operation

Ratio -3 FILL Valid

Asshown in the chart, theillegal cycle range changes for different sysclk ratios.

If BC_CONTROL<BC_ENABLED>=1, al system requests are delayed to avoid
race conditions.

4.12.5 WRITE BLOCK LOCK

A WRITE BLOCK LOCK transaction is caused by a store conditional instruction to
1/0O space. Two octawords of data are provided by the 21164, each requiring the sys-
tem to assert dack_h. If the system asserts dack_h for the first octaword, and asserts
cack_h and cfail_h together, the 21164 hangs.

If dack_h, cack_h, and cfail_h are asserted for the second INT16 of data, the write
operation will be failed correctly.

If cack_h and cfail_h are asserted at any time without asserting dack_h, the write
operation will be failed correctly.

Clocks, Cache, and External Interface 4-77

21164/System Race Conditions

4.13 21164/System Race Conditions

When certain sequences of transactions occur on the interface between the 21164,
the Bcache and the system race conditions may occur. The rules for use of the inter-
face by the 21164 and the system are listed in Section 4.13.1.

Examples of race conditions to be avoided are described and illustrated in
Section 4.13.2 through Section 4.13.6.

4.13.1 Rules for 21164 and System Use of External Interface

This section goes over the rules for determining the order in which 21164 and system
requests are allowed by the CBU BIU. In general, the order allowed is determined by
use of cmd_h<3:0>, idle_bc_h, and fill_h.

1

If idle_bc_h isnot asserted and there are no valid requestsin the BIU command
buffer, then the BIU is free to perform any 21164 request.

If aFILL transaction is pending, the BIU only produces another READ MISS
command, with a possible BCACHE VICTIM command. The BIU will not
attempt any other command.

Theassertion of idle_bc _h, or the sending of a system command other than NOP
to the 21164, causesthe BlU toidle. If the BIU has acommand loaded in the pad
ring, it removes the command and replaces it with a NOP command. The state of
cmd_h<3:0> is unpredictable until theidle condition ends.

Theidle condition ends when the 21164 receives adeasserted idle_bc_h, and the
21164 has responded to all the system commands that were sent.

The system must not assert cack_h during the idle condition.

Thereisone exception to rules 3, 4, and 5. If idle_bc_h or a system command
arrives while the 21164 is reading the Bcache, and that read transaction turns
intoaREAD MISS transaction, and it does not produce avictim, then the 21164
|oads the miss into the pad ring. The system may assert cack_h for this READ
MISS request at any time.

If cack_h is asserted at the sametime asidle bc _h or avalid system request,
cack_h wins and the command istaken by the system. Signal cack_h should not
be asserted if idle_bc_h has been asserted or avalid system command is under

way.
A READ MISSwithaBCACHE VICTIM transaction is treated as an atomic

pair. The command order, READ MISS then BCACHE VICTIM or BCACHE
VICTIM then READ MISS, is programmable. Either way, if the first command

4-78 Clocks, Cache, and External Interface

21164/System Race Conditions

is acknowledged with cack _h, then both commands must be acknowledged with
cack_h and all the data acknowledged with dack_h, before the 21164 responds
to any other request.

9. The cack_h acknowledgment for aWRITE BLOCK or BCACHE VICTIM
transaction must be received by the 21164 with or before the last dack_h
acknowledgment of the data. For WRITE BLOCK and BCACHE VICTIM
transactions, it is possible to acknowledge all but the last data, and then decide to
do something el se.

10. For aREAD MISS transaction, cack_h must be received with or before the last
data acknowledgment (dack_h) for the requested FILL operation.

11. If a21164 request isinterrupted by an idle condition, the 21164 restarts the same
command unless:

a A system request isreceived that changes the state of the block made by
the original 21164 request.

For example, if the 21164 is requesting aWRITE BLOCK and the sys-
tem sends an INVALIDATE command to the same block, then the
WRITE BLOCK command will not be restarted.

b. If the system does not have a Bcache, and aWRITE BLOCK command
to write an Scache victim back is interrupted, then the WRITE BLOCK
command will not be restarted if a higher priority request arrivesin the
BIU.

4.13.2 READ MISS with Victim Example

In this example, the 21164 asserts a READ MISS command with avictim. The sys-
tem asserts dack_h for two data cycles received from the Bcache and then asserts
idle_bc_h. This causesthe 21164 to remove the READ MISS command with victim
pending. The 21164 reasserts the READ MISS and BCACHE VICTIM commands,
if needed, at alater time.

Clocks, Cache, and External Interface 4-79

21164/System Race Conditions

Figure 4-44 READ MISS with Victim Example

0 1 2 3 4 5 6 7 8 9 10 11 12

sys_clk_outl_h Cycles
cmd_h<3:0> nNoP X READ MISS >< NOP
addr_h<39:4> >< ><
victim_pending_h |

addr_bus_req_h

idle_bc_h |

cack_h

index<25:4>

dack_h ,_\ ,_\
° X X
Ao X =

= X
X

data_ram_oe_h |

data_h<127:0> ><

4.13.3 idle_bc_h and cack_h Race Example

In thisexample, idle bc_h and cack_h are asserted in the same sysclk. The system
takes the READ MISS and BCACHE VICTIM commands before doing anything

else. Thelast dack_h meetsthe requirement that the cack _h arrive before or with the
last dack_h.

4-80 Clocks, Cache, and External Interface

21164/System Race Conditions

Figure 4-45 idle_bc_h and cack_h Race Examples

0 1 2 3 4 5 6 7 8 9 10 11 12

sys_clk_outl_h Cycles
cmd_h<3:0> NoP >< READ MISS BCACHE VICTIM >< NOP
addr_h<39:4> >< >< ><
victim_pending_h |

addr_bus_req_h

idle_bc_h |

cack_h ,_‘ ,_\

i
index<25:4> >< 10 >< 1 >< 12 >< 13 ><
data_h<127:0> >< DO >< D1 >< D2 >< D3 ><
data_ram_oe_h L

LJ-04028.Al14

Clocks, Cache, and External Interface 4-81

21164/System Race Conditions

4.13.4 READ MISS with idle_bc_h Asserted Example

In this example, the 21164 has started a Bcache read operation that misses. The sig-
nal idle_bc_h isasserted, but no victim was created, so the READ MISS request is
loaded into the pad ring. The system then takes the request.

Figure 4-46 READ MISS with idle_bc_h Asserted Example

0 1 2 3 4 5 6 7 8 9 10 11 12
sys_clk_outl_h Cycles
cmd_h<3:0> NOP >< READ MISS >< NOP

addr_h<39:4> >< ><

victim_pending_h

addr_bus_req_h

idle_bc_h
cack_h

dack_h

index<25:4>

data_h<127:0> X DO >< D1 ><
data_ram_oe_h

LJ-04029.A14

4-82 Clocks, Cache, and External Interface

21164/System Race Conditions

4.13.5 READ MISS with Victim Abort Example

In this example, the 21164 produces a READ MISS command with avictim and is
waiting for the system to take it when the system takes the bus and requests a READ
DIRTY transaction. The 21164 drives the READ MISS request for one more cycle
after it gets command of the bus and then removes the request. The 21164 then
responds to the READ DIRTY command and drives index_h<25:4> to read the
Bcache. The 21164 restarting the Bcache read operation, requesting the read miss
with victim, is not shown in the timing diagram. If the victim block was invalidated
by the system request, the 21164 produces a clean READ MISS transaction.

Figure 4-47 READ MISS with Victim Abort Example

1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

X reno wiss X 5220 N ew)(NOP
TR0
victim_pending_h |
addr_bus_req_h ,—l
addr_res_h<2:0> NOP >@< NOP

idle_bc_h

cmd_h<3:0> NOP

addr_h<39:4>

cack_h

DX e e -
data_ 112705 X o0 X o X o X o X
Bl | i

LJ-04030.A14

index<25:4>

data_ram_oe_h

Clocks, Cache, and External Interface 4-83

Data Integrity, Bcache Errors, and Command/Address Errors

4.13.6 Bcache Hit Under READ MISS Example

In this example, the 21164 produces a READ MISS transaction and requests a fill
from the system. A Bcache hit to index j take places while waiting for the fill. The
system then returns the requested data in two bursts, asserting cack_h at the same
time as the last assertion of dack_h.

Figure 4-48 Bcache Hit Under READ MISS Example

sysclk

cmd_h<3:0> NOP >< READ MISS >< NOP

addr_h<39:4> >< | ><

victim_pending_h

addr_bus_req_h

fill_h l—\
idle_bc_h L
cack_h l—‘
dack_h | u L
index<25:4> n-uaaa-nn 2 ><£><
X=X

I
sun rszror [T oo I o) o)
data_ram_oe_h

LJ-04031.A14

4.14 Data Integrity, Bcache Errors, and Command/Address
Errors

Mechanisms for ensuring that errors on data received by the 21164 from the Bcache,
the system, or both are described in this section. Tag data and tag control errors are
described. Command/address bus parity protection is also described.

4-84 Clocks, Cache, and External Interface

Data Integrity, Bcache Errors, and Command/Address Errors

4.14.1 Data ECC and Parity

The 21164 supports INT8 error correction code (ECC) for the external Bcache and
memory system. ECC is generated by the CPU for each INT8 that is written into the
Bcache. FILL datafrom the Bcache to the system is not checked for errors. The
receiving node detects any ECC errors.

Uncorrected data from the Bcache or system is sent to the Dcache, and register files.
If acorrectable error is detected (single bit error) the machine traps and thefill is
replayed with corrected data.

Double bit errors are detected. If the system indicates that the data should not be
checked, then no checking or correcting is performed.

Each data bus cycle delivers one INT 16 worth of data. ECC is calculated as
ECC(data<063:000>) and ECC(data<127:064>). Figure 4—49 shows the code. Two
IDT49C460 or AMD29C660 chips can be cascaded to produce this ECC code. A
single IDT49C466 chip also supports this ECC code.

The code provides single bit correct, double bit detect, and all 1s and all Os detect.

If the 21164 is in parity mode, it generates byte parity and places it on
data _check _h<15:0> for write operations. Parity is checked for read operations.
Parity fordata_h<7:0> is driven on signadlata_check h<0> and so on.

Figure 4-49 ECC Code
11 1111 1111 2222 2222 2233 3333 3333 4444 4444 4455 5555 5555 6666 cccc ccce

0123 4567 8901 2345 6789 0123 4567 8901 2345 6789 0123 4567 8901 2345 6789 0123 0123 4567

csoO .111 .1.. 11.1 ..1. .111 .1..11.1 ..1.1...1.11 ..1,11.11...1.11 ..1.11.11

¢cB1 111.1.1.1.2.1...111.1.1.121.2.1...112.1.1.2.1.21...112. 1.12. 1.1. 1... .1..
CB2 1..171..2 .212. .2.221..121..127 .12. .2.22..22..17 .11. .1.11..1212..2 .12. .1.1 ..1.
¢cB3 11.. .1117 ...1121.. 12.. .1112 ...111.. 11.. .2112 ...1 11.. 11.. .111 ...111.. ... 1....
CB4 L.11 1111 ... L 11 ..11 1111 11 ..11 1111 11 ..11 1111 11 ... 1...
CB5 1111 1111 1111 1117 1111 1111 1111 11111..
CB6 1111 12211 o 1111 1111 22271 112121 ... oo o 1111 11111.
CB7 1111 1111 1111 1111 1111 1111 12211 1211 1
CB2 and CB3 are calculated for CDD parity (an odd number of "1"s counting

the CB)

CBO, CB1, CB4, CB5, CB6 and CB7 are calculated for EVEN parity (an even

number of "1"s counting the CB) LJ-03461.A14

Clocks, Cache, and External Interface 4-85

Data Integrity, Bcache Errors, and Command/Address Errors

The correspondence of data check bitsto CBn is shown in Table 4-18.

Table 4-18 Data Check Bit Correspondenceto CB n

data_check_h

CBn Upper 64 Bits Lower 64 Bits
CBO <8> <0>
CB1 <9> <1>
CB2 <10> <2>
CB3 <11> <3>
CB4 <12> <4>
CB5 <13> <5>
CB6 <14> <6>
CB7 <15> <7>

For x4 RAMs, the following bit arrangement detects nibble errors:

CBO Bl B B6
B2 DO DA Db

B3 B4 Dr 8

Br 2 B D1
DL D6 D0 D13
9 D14 D18 el
D2 D16 D17 De2
D5 D19 Ce0 D3
Ce4 25 D27 D8O
Ce6 28 29 DBl
82 B4 B85 D87
33 D86 D88 D40
B9 D41 D43 D46
D42 D44 DAS DAY
D48 D60 Dbl D63
D9 b2 [b4 D66
65 DO67 [B9 D62
68 D60 D61 D63

4-86 Clocks, Cache, and External Interface

Data Integrity, Bcache Errors, and Command/Address Errors

4.14.2 Force Correction

Setting BC_CTL<4> (CORR_FILL_DAT), forces the 21164 to route fill datafrom
the Bcache or memory through error correction logic before being driven to the
Scache or Dcache. If the error is correctable, it is transparent to the 21164.

4.14.3 Bcache Tag Data Parity

Thesigna linetag_data par_h isused to maintain parity over
tag_data h<38:20>. A Bcache tag data parity error is usually not recoverable.

A Bcache hit is determined based on the tag alone, not the tag parity bit. The CBU
records the Bcache probe address and the tag value read from the Bcache. A tag data

parity error causes atrap to privileged architecture library code (PALcode), which
handles the error condition.

4.14.4 Bcache Tag Control Parity

Thesignal tag_ctl_par_h isused to maintain parity over tag_shared_h,

tag_valid_h, andtag_dirty_h. A Bcache tag control parity error is usually not
recoverable.

A Bcache victim is processed according to the tag control status alone, not the tag
control parity bit. The CBU records the Bcache probe address and the tag control
value read from the Bcache. A tag control parity error causes atrap to PALcode,
which handles the error condition.

4.14.5 Address and Command Parity

Thesignal lineaddr_cmd_par_h isused to maintain odd parity over addr _h<39:4>
and cmd_h<3:0>. These signals are driven by the 21164 or by the system, using the
protocol described in Section 4.11.1.

4.14.6 Fill Error

Thesignal fill_error_h isasserted by the system to notify the 21164 that afill error
has occurred.

In systemsin which afill error timeout is not expected, such as a small system with
fixed accesstime, it islikely that the 21164 internal IDU timeout logic would detect
astall if the system fails to complete afill transaction.

Systemsin which afill error timeout could occur should contain logic to detect fill
timeouts and cleanly terminate the transaction with the 21164.

Clocks, Cache, and External Interface 4-87

Interrupts

To properly terminate afill in an error case, thefill_error_h lineis asserted for one
cycle and the normal fill sequence involving linesfill_h, fill_id_h, and dack_his
generated by the system.

Asserting fill_error_h forces atrap to the PALcode at the MCHK entry point but has
no other effect.

4.14.7 Forcing 21164 Reset

Assertion of cfail_h in asysclk cyclein which cack_h is deasserted causes the
21164 to execute a partial interna reset and then trap to the MCHK entry point in
PALcode. The current command, if any, and all pending fills, and all pending system
commands are cleared. The 21164 will completeits partial reset in 128 CPU cycles,
then begin execution of the machine check PALcode flow. The system should not
send a request to the 21164 during this time.

This mechanism is used by the 21164 to restore itself and the system to a consistent
state after command or address parity error or atimeout error. Refer also to
Section 8.1.18.

4.15 Interrupts

4-88

The 21164 has seven interrupt signals that have different uses during initialization
and normal operation.

Figure 4-50 shows the 21164 interrupt signals.

Figure 4-50 21164 Interrupt Signals

21164

irq_h<3:0>
mch_hlt_irg_h
pwr_fail_irg_h
sys_mch_chk_irg_h

>

LJ-05387.A14

Clocks, Cache, and External Interface

Interrupts

4.15.1 Interrupt Signals During Initialization

The 21164 interrupt signals work in tandem with the sys reset | signal to set the val-
ues for clock ratios and clock delays. During initialization, the 21164 reads system
clock configuration parameters from the interrupt pins. Section 4.2.2 and

Section 4.2.3 describe how the interrupt signals are used to set system clock values
when the system isiinitialized.

4.15.2 Interrupt Signals During Normal Operation

During normal operation, interrupt signals indicate interrupt requests from externa
devices such as the real-time clock and 1/O controllers.

4.15.3 Interrupt Priority Level

Table 4-19 shows which interrupts are enabled for a given interrupt priority level
(IPL). An interrupt is enabled if the current IPL is less than the target IPL of the

interrupt.

Table 4-19 Interrupt Priority Level Effect (Sheet 1 of 2)
Interrupt Source Target IPL Source
Software Interrupt Request 1 1 Internal
Software Interrupt Request 2 2 Internal
Software Interrupt Request 3 3 Internal
Software Interrupt Request 4 4 Internal
Software Interrupt Request 5 5 Internal
Software Interrupt Request 6 6 Internal
Software Interrupt Request 7 7 Internal
Software Interrupt Request 8 8 Internal
Software Interrupt Request 9 9 Internal
Software Interrupt Request 10 10 Internal
Software Interrupt Request 11 1 Internal
Software Interrupt Request 12 12 Internal
Software Interrupt Request 13 13 Internal
Software Interrupt Request 14 14 Internal

Clocks, Cache, and External Interface 4-89

Interrupts

Table 4-19 Interrupt Priority Level Effect (Sheet 2 of 2)
Interrupt Source Target IPL Source

Software Interrupt Request 15 15 Internal
Asynchronous system trap ATR pending (for 2 Internal

current or more privileged mode)

Performance counter interrupt 29 Internal

Powerfail interrupt! 30 pwr_fail_irq_h
System machine check interrupt?, internally 31 sys mch_chk_irg_h
detected correctable error interrupt pending and internal

External interrupt 20* 202 irq_h<0>

External interrupt 211 212 irq_h<1>

External interrupt 221 222 irq_h<2>

External interrupt 231 232 irgq_h<3>

Halt!

Serial line interrupt

Masked only by exe- mch_hlt_irq_h
cuting in PALmode.

Masked only by exe- Interna
cuting in PALmode.

IThese interrupts are from external sources. In some cases, the system environment provides the
logic-OR of multiple interrupt sources at the same IPL to a particular pin.
2The external interrupts 20-23 are separately maskable by setting the appropriate bitsin the ICSR

register.

When the processor receives an interrupt request and that request is enabled, an
interrupt is reported or delivered to the exception logic if the processor is not cur-
rently executing PALcode. Before vectoring to the interrupt service PAL dispatch
address, the pipeline is completely drained to the point that instructions issued before
entering the PAL code cannot trap (implied TRAPB).

Therestart addressis saved in the exception address (EXC_ ADDR) IPR and the
processor enters PALmode. The cause of the interrupt can be determined by examin-
ing the state of the INTID and ISR registers.

Hardware interrupt requests are level-sensitive and, therefore, may be removed
before an interrupt is serviced. PALcode must verify that the interrupt actually indi-
cated in INTID isto be serviced at an IPL higher than the current IPL. If it isnot,
PAL code should ignore the spurious interrupt.

4-90 Clocks, Cache, and External Interface

5

Internal Processor Registers

This chapter describes the 21164 microprocessor internal processor registers (IPRS).
It is organized as follows:

e |nstruction fetch/decode unit and branch unit (IDU) IPRs
e Memory address trandation unit (MTU) IPRs

e Cache control and bus interface unit (CBU) IPRs

* PAL storageregisters

* Restrictions

IDU, MTU, data cache (Dcache), and PALtemp IPRs are accessible to PAL code by
means of the HW_MTPR and HW_MFPR instructions. Table 5-1 lists the IPR num-
bers for these instructions.

CBU, second-level cache (Scache), and backup cache (Bcache) IPRs are accessible
in the physical address region FF FFFO 0000 to FF FFFF FFFF. Table 5-25 summa-
rizes the CBU, Scache, and Bcache IPRs. Table 5-37 lists restrictions on the IPRs.

Note: Unless explicitly stated, IPRs are not cleared or set by hardware on chip
or timeout reset.

Table 5-1 IDU, MTU, Dcache, and PALtemp IPR Encodings (Sheet 1 of 4)
IPR Mnemonic Access Index;g IDU Slots to Pipe

IDU_IPRs

ISR R 100 El

ITB_TAG w 101 El

ITB_PTE R/W 102 El

ITB_ASN R/W 103 El

ITB_PTE_TEMP R 104 El

ITB_IA w 105 El

Internal Processor Registers 5-1

5-2

Table 5-1 IDU, MTU, Dcache, and PALtemp IPR Encodings

(Sheet 2 of 4)

IPR Mnemonic Access Index,;g IDU Slots to Pipe
ITB_IAP w 106 El
ITB_IS w 107 El
SIRR R/W 108 El
ASTRR R/W 109 El
ASTER RIW 10A El
EXC_ADDR R/W 10B El
EXC_SUM R/WOC 10C El
EXC_MASK R 10D El
PAL_BASE R/W 10E El
ICM R/W 10F El
IPLR R/W 110 El
INTID R 11 El
IFAULT_VA_FORM R 112 El
IVPTBR R/W 113 El
HWINT_CLR w 115 El
SL_XMIT w 116 El
SL_RCV R 117 El
ICSR R/W 118 El
IC_FLUSH_CTL w 119 El
ICPERR_STAT R/W1C 11A El
PMCTR R/W 1cC El
PALtemp_IPRs

PALtempO R/W 140 El
PALtempl RIW 141 El
PALtemp2 RIW 142 El
PALtemp3 R/W 143 E1l

Internal Processor Registers

Table 5-1 IDU, MTU, Dcache, and PALtemp IPR Encodings (Sheet 3 of 4)

IPR Mnemonic Access Index,;g IDU Slots to Pipe
PALtemp4 R/W 144 El
PALtemp5 R/W 145 El
PALtemp6 R/W 146 El
PALtemp7 R/W 147 El
PALtemp8 R/W 148 El
PALtemp9 R/W 149 El
PALtemp10 R/W 14A El
PALtempll R/W 14B El
PALtempl2 R/W 14C El
PALtempl3 R/W 14D El
PALtempl4 R/W 14E El
PALtempl5 R/W 14F El
PALtempl6 R/W 150 El
PALtempl7 R/W 151 El
PALtempl8 R/W 152 El
PALtempl9 R/W 153 El
PALtemp20 R/W 154 El
PALtemp21 R/W 155 El
PALtemp22 R/W 156 El
PALtemp23 R/W 157 El
MTU_IPRs

DTB_ASN w 200 EO
DTB_CM w 201 EO
DTB_TAG w 202 EO
DTB_PTE R/W 203 EO
DTB_PTE_TEMP R 204 EO

Internal Processor Registers ~ 5-3

5-4

Table 5-1 IDU, MTU, Dcache, and PALtemp IPR Encodings

(Sheet 4 of 4)

IPR Mnemonic Access Index,;g IDU Slots to Pipe
MM_STAT R 205 EO
VA R 206 EO
VA_FORM R 207 EO
MVPTBR w 208 EO
DTB_IAP w 209 EO
DTB_IA w 20A EO
DTB_IS w 20B EO
ALT_MODE w 20C EO
CcC w 20D EO
CC_CTL w 20E EO
MCSR R/W 20F EO
DC_FLUSH w 210 EO
DC_PERR_STAT R/W1C 212 EO
DC_TEST_CTL R/W 213 EO
DC_TEST_TAG RW 214 EO
DC_TEST_TAG_TEMP R/W 215 EO
DC_MODE R/W 216 EO
MAF_MODE R/W 217 EO

Internal Processor Registers

Instruction Fetch/Decode Unit and Branch Unit (IDU) IPRs

5.1 Instruction Fetch/Decode Unit and Branch Unit (IDU) IPRs

The IDU internal processor registers (IPRs) are described in Section 5.1.1 through
Section 5.1.27.

5.1.1 Istream Translation Buffer Tag Register (ITB_TAG)

ITB_TAG isawrite-only register written by hardware on an ITBMISS/IACCVIO,
with the tag field of the faulting virtual address. To ensure theintegrity of theinstruc-
tion translation buffer (ITB), the TAG and page table entry (PTE) fields of an ITB
entry are updated simultaneously by awrite operation to the ITB_PTE register. This
write operation causes the contents of the ITB_TAG register to be written into the tag
field of the ITB location, which is determined by a not-last-used replacement algo-
rithm. The PTE field is obtained from the HW_MTPR ITB_PTE instruction. Figure
5-1 shows the ITB_TAG register format.

Figure 5-1 Istream Translation Buffer Tag Register (ITB_TAG)

31 1312 00

rrrrrrorrrrrrrrerrrorrpr T T T T T T
VEE)

LJ-03473.A14

5.1.2 Instruction Translation Buffer Page Table Entry (ITB_PTE) Register
ITB_PTE isaread/write register.

Write Format

A write operation to this register writes both the PTE and TAG fields of an ITB loca
tion determined by a not-last-used replacement algorithm. The TAG and PTE fields
are updated simultaneoudly to ensure the integrity of the ITB. A write operation to
the ITB_PTE register increments the not-last- used (NLU) pointer, which alows for
writing the entire set of ITB PTE and TAG entries. If the HW_MTPR ITB_PTE
instruction falls in the shadow of a trapping instruction, the NLU pointer may be
incremented multiple times. The TAG field of the ITB location is determined by the

Internal Processor Registers 5-5

Instruction Fetch/Decode Unit and Branch Unit (IDU) IPRs

5-6

contents of the ITB_TAG register. The PTE field is provided by the HW_ MTPR
ITB_PTE instruction. Write operationsto this register use the memory format bits, as
described in the Alpha Architecture Reference Manual. Figure 5-2 shows the
ITB_PTE register write format.

Figure 5-2 Instruction Translation Buffer Page Table Entry (ITB_PTE) Register
Write Format

31 12 1110 09 08 07 06 05 04 03 00

rrrrrrrrrrr T T T I T
1GN IGN

L1 |
I—ASM

GH
IGN
KRE
ERE
SRE
URE

rrrry et rr T Tt T T T T
IGN]}PFI\K?Q:]}-?’?

LJ-03474.Al14
Read Format

A read of the ITB_PTE requirestwo instructions. A read of the ITB_PTE register
returns the PTE pointed to by the NLU pointer to the ITB_PTE_TEMP register and
incrementsthe NLU pointer. If the HW_MFPR ITB_PTE instruction fallsin the
shadow of atrapping instruction, the NLU pointer may be incremented multiple
times. A zero value isreturned to the integer register file. A second read of the
ITB_PTE_TEMP register returns the PTE to the general-purpose integer register file
(IRF). Figure 5-3 shows the ITB_PTE register read format.

Internal Processor Registers

Instruction Fetch/Decode Unit and Branch Unit (IDU) IPRs

Figure 5-3 Instruction Translation Buffer Page Table Entry (ITB_PTE) Register
Read Format

31 2928 22 21201918 17 141312 00

‘ ASM
KRE
ERE
SRE
URE
GHD<2:0>

LJ-03475.A14

5.1.3 Instruction Translation Buffer Address Space Number (ITB_ASN)
Register

ITB_ASN isaread/write register that contains the address space humber (ASN) of
the current process. Figure 5—4 shows the ITB_ASN register format.

Figure 5-4 Instruction Translation Buffer Address Space Number (ITB_ASN)

Register
31 1110 04 03 00
[O I O R I T Tl [
RAZ/IGN ASN<6:0> RAZ/IGN
I e S A I I I I | 1 |
63 32
T T
RAZ/IGN
I e

1.1-03476 Al4

Internal Processor Registers ~ 5-7

Instruction Fetch/Decode Unit and Branch Unit (IDU) IPRs

5.1.4 Instruction Translation Buffer Page Table Entry Temporary
(ITB_PTE_TEMP) Register

ITB_PTE_TEMP isaread-only holding register for ITB_PTE read data. A read of
the ITB_PTE register returns data to thisregister. A second read of the
ITB_PTE_TEMP register returns data to the general-purpose integer register file
(IRF). Figure 5-3 shows the ITB_PTE register format.

Table 5-2 shows the GHD settings for the ITB_PTE_TEMP register.

Table 5-2 Granularity Hint Bits in ITB_PTE_TEMP Read Format

Name Extent Type Description

GHD <29> RO Set if granularity hint equals 01, 10, or 11.
GHD <30> RO Set if granularity hint equals 10 or 11.
GHD <31> RO Set if granularity hint equals 11.

5.1.5 Instruction Translation Buffer Invalidate All Process (ITB_IAP)
Register

ITB_IAP is a write-only register. Any write operation to this register invalidates all
ITB entries that have an address space match (ASM) bit that equals zero.

5.1.6 Instruction Translation Buffer Invalidate All (ITB_IA) Register

ITB_IA is a write-only register. A write operation to this register invalidates all ITB
entries, and resets the ITB not-last-used (NLU) pointer to its initial state. RESET
PALcode must execute an HW_MTPR ITB_IA instruction in order to initialize the
NLU pointer.

5-8 Internal Processor Registers

Instruction Fetch/Decode Unit and Branch Unit (IDU) IPRs

5.1.7 Instruction Translation Buffer IS (ITB_IS) Register

ITB_ISisawrite-only register. Writing avirtual address to this register invalidates
the ITB entry that meets either of the following criteria:

* AnITB entry whose virtual address (VA) field matches ITB_1S<42:13> and
whose ASN field matches ITB_ASN<10:04>.

* AnITB entry whose VA field matches ITB_1S<42:13> and whose ASM hit is
Set.

Figure 5-5 shows the ITB_IS register format.

Figure 5-5 Instruction Translation Buffer IS (ITB_IS) Register

31 1312 00

vt Tt T T T T T
IGN }YAT‘Z:}:LST

LJ-03478.A14

Internal Processor Registers ~ 5-9

Instruction Fetch/Decode Unit and Branch Unit (IDU) IPRs

5.1.8 Formatted Faulting Virtual Address (IFAULT_VA_FORM) Register

IFAULT_VA_FORM isaread-only register containing the formatted faulting virtual
addresson an ITBMISS/IACCVIO (except on IACCV10s generated by sign-check
errors). The formatted faulting address generated depends on whether NT superpage

mapping is enabled through ICSR bit SPE<0>. Figure 5—6 shows the
IFAULT_VA_FORM register format in non-NT mode.

Figure 5-6 Formatted Faulting Virtual Address (IFAULT_VA_FORM) Register
(NT_Mode=0)

VPTB<63:33>
I e e s I

L VA<42:13>
LJ-03479.A14

Figure 5—-7 shows the IFAULT_VA_ FORM register format in NT mode.

Figure 5-7 Formatted Faulting Virtual Address (IFAULT_VA_FORM) Register
(NT_Mode=1)

313029 22 21 0302 00

\ o N R A U LA I O R R]
RAZ VA<31:13> RAZ
\ N S N N s | |

I VPTB<63:30>

LJ-03480.A14

5-10 Internal Processor Registers

Instruction Fetch/Decode Unit and Branch Unit (IDU) IPRs

5.1.9 Virtual Page Table Base Register (IVPTBR)

IVPTBR is aread/write register. Bits <32:30> are UNDEFINED on aread of this
register in non-NT mode. Figure 5-8 shows the IVPTBR format in non-NT mode.

Figure 5-8 Virtual Page Table Base Register (IVPTBR) (NT_Mode=0)

313029 00
\ -
IGN RAZ/IGN
| I e e e
63 33 32
T
VPTB<63:33> G
N I O L | | N O I A I A A\
MA0602.Al4

Figure 5-9 shows the IVPTBR format in NT mode.

Figure 5-9 Virtual Page Table Base Register (IVPTBR) (NT_Mode=1)
313029 00
\ et

R S s s e A N
\ VPTB<63:30>

1.-03481 Al4

Internal Processor Registers 5-11

Instruction Fetch/Decode Unit and Branch Unit (IDU) IPRs

5.1.10 Icache Parity Error Status (ICPERR_STAT) Register

ICPERR_STAT isaread/write register. The Icache parity error status bits may be
cleared by writing a 1 to the appropriate bits. Figure 5-10 and Table 5-3 describe the
ICPERR_STAT register format.

Figure 5-10 Icache Parity Error Status (ICPERR_STAT) Register

31 1312 1110 00

rrrrr T T T T T T T T T T T T 1T 1T T T 1T T T
RAZ/IGN RAZ/IGN

N S I I I

| [DPE

TPE

TMR

LJ-03482.A14

Table 5-3 Icache Parity Error Status Register Fields

Name Extent Type Description

DPE <11> wicC Data parity error

TPE <12> wicC Tag parity error

TMR <13> WwiC Timeout reset error or cfail_h/no cack_h error

5.1.11 Icache Flush Control (IC_FLUSH_CTL) Register

IC_FLUSH_CTL isawrite-only register. Writing any vaue to this register flushes
the entire Icache.

5-12 Internal Processor Registers

Instruction Fetch/Decode Unit and Branch Unit (IDU) IPRs

5.1.12 Exception Address (EXC_ADDR) Register

EXC_ADDR is aread/write register used to restart the system after exceptions or
interrupts. The HW_REI instruction causes areturn to the instruction pointed to by
the EXC_ADDR register. Thisregister can be written both by hardware and soft-
ware. Hardware write operations occur as aresult of exceptions/interrupts and
CALL_PAL instructions. Hardware write operations that occur as aresult of excep-
tiong/interrupts take precedence over al other write operations.

In case of an exception/interrupt, hardware writes a program counter (PC) to thisreg-
ister. In case of precise exceptions, thisisthe PC value of the instruction that caused
the exception. In case of imprecise exceptionginterrupts, this is the PC value of the
next instruction that would have issued if the exception/interrupt was not reported.

In case of a CALL_PAL instruction, the PC value of the next instruction after the
CALL_PAL iswrittento EXC_ADDR.

Bit <00> of thisregister is used to indicate PALmode. On aHW_REI instruction, the
mode of the system is determined by bit <00> of EXC_ADDR. Figure 5-11 shows
the EXC_ADDR register format.

Figure 5-11 Exception Address (EXC_ADDR) Register

31 00
T rr T rrrrrTrTTd

2>
A I I Y I N O I

L PAL
RAZ/IGN

1.1-03483 Al4

Internal Processor Registers 5-13

Instruction Fetch/Decode Unit and Branch Unit (IDU) IPRs

5.1.13 Exception Summary (EXC_SUM) Register

EXC_SUM isaread/write register that records the different arithmetic traps that

occur between EXC_SUM write operations. Any write operation to this register

clears bits <16:10>. Figure 5-12 and Table 5-4 describe the EXC_SUM register for-
mat.

Figure 5-12 Exception Summary (EXC_SUM) Register

31 17 16 1514 1312 1110 09 00

‘ ‘ SwC
INV
DZE
FOV
UNF
INE
[0}V

LJ-03484.A14

Table 5-4 Exception Summary Register Fields (Sheet 1 of 2)

Name Extent Type Description

SWC <10> WA Indicates software completion possible. This bit is set after a
floating-point instruction containing the /S modifier com-
pletes with an arithmetic trap and if all previous floating-
point instructions that trapped since the last HW_MTPR
EXC_SUM instruction also contained the /S modifier.

The SWC hit is cleared whenever afloating-point instruction
without the /S modifier completes with an arithmetic trap.
The bit remains cleared regardless of additional arithmetic
traps until the register is written by an HW_ MTPR instruc-
tion. The bit is always cleared upon any HW_MTPR write
operation to the EXC_SUM register.

INV <11> WA Indicates invalid operation.
DZE <12> WA Indicates divide by zero.
FOv <13> WA Indicates floating-point overflow.

5-14 Internal Processor Registers

Instruction Fetch/Decode Unit and Branch Unit (IDU) IPRs

Table 5-4 Exception Summary Register Fields (Sheet 2 of 2)

Name Extent Type Description

UNF <14> WA Indicates floating-point underflow.
INE <15> WA Indicates floating inexact error.
[e)V} <16> WA Indicates floating-point execution unit (FPU) convert to inte-

ger overflow or integer arithmetic overflow.

5.1.14 Exception Mask (EXC_MASK) Register

EXC_MASK isaread/write register that records the destinations of instructions that
have caused an arithmetic trap between EXC_MASK write operations. The destina-
tion is recorded as a single bit mask in the 64-bit IPR representing FO-F31 and
10-131. A write operation to EXC_ SUM clearsthe EXC_MASK register.

Figure 5-13 shows the EXC_MASK register format.

Figure 5-13 Exception Mask (EXC_MASK) Register

31 00
e rrrrrr Tt
131130129 1110
I e e A s
63 32
\ e rrrrr T
F31 F30 F29 F1 FO
| I e e S e A

1.1-03485.Al4

Internal Processor Registers 5-15

Instruction Fetch/Decode Unit and Branch Unit (IDU) IPRs

5.1.15 PAL Base Address (PAL_BASE) Register

PAL_BASE isaread/write register containing the base address for PALcode. The
register is cleared by hardware on reset. Figure 5-14 shows the PAL_BASE register
format.

Figure 5-14 PAL Base Address (PAL_BASE) Register

31 14 13 00

T T T T
PAL_BASE<39:14> RAZ/IGN
S S S N A

63 40 39 32

rrrrrrrrrr T T T T
RAZ/IGN PAL_BASE<39:14>
S I O

1.1-03486.A14

5.1.16 IDU Current Mode (ICM) Register

ICM isaread/write register containing the current mode bits of the architecturally
defined processor status, as described in the Alpha Architecture Reference Manual.
Figure 5-15 shows the ICM register format.

Figure 5-15 IDU Current Mode (ICM) Register
31 05 04 03 02 00
T T 1T T T 1T T T 1T T T T I T T T T T T T T T 7T 1 T 1
N e [
I—RAZ/IGN
CMO

CM1

RAZ/IGN

LJ-03487.Al4

5-16 Internal Processor Registers

Instruction Fetch/Decode Unit and Branch Unit (IDU) IPRs

5.1.17 IDU Control and Status Register (ICSR)

ICSR isaread/write register containing |DU-related control and status information.
Figure 5-16 and Table 5-5 describe ICSR format.

Figure 5-16 IDU Control and Status Register (ICSR)

31 30 29 28 27 26 25 24 23 20 19 18 17 16 10 09 08 07 00

T 1 1 T T T 1 T T 1
RAZ/IGN
Ll Ll L

LU
RAZ/IGN
Ll

PME<1:0>
BSE

MBZ
RAZ/IGN
IMSK<3:0>
TMM
TMD

FPE

HWE
SPE<1:0>
SDE
RAZ/IGN

63 40 39 38 37 36 35 34 33 32

I— CRDE
SLE

— FMS
FBT
FBD
MBO
ISTA
TST

LJ-05352.A14

Table 5-5 IDU Control and Status Register Fields (Sheet 1 of 3)

Name Extent Type Description

PME<1l:0> <09:08> RW,0 Performance counter master enable bits. If both
PME<1> and PME<O> are clear, al perfor-
mance countersinthe PMCTR IPR are disabled.
If either PME<1> or PME<0O> are set, the
counter is enabled according to the settings of
the PMCTR CTL fields.

BSE <17> RW,0 If set, enables support for byte and word data
structures.
Reserved <18> RW,0 Test mode bit, must be zero.

Internal Processor Registers 5-17

Instruction Fetch/Decode Unit and Branch Unit (IDU) IPRs

Table 5-5 IDU Control and Status Register Fields (Sheet 2 of 3)

Name

Extent

Type

Description

IMSK<3:0>

TMM

TMD

FPE

HWE

SPE<1:0>

SDE
CRDE

FMS

FBT

FBD

<23:20>

<24>

<25>

<26>

<27>

<29:28>

<30>
<32>
<33>
<34>

<35>

<36>

5-18 Internal Processor Registers

RW,0

RW,0

RW,0

RW,0

RwW,0

RW,0

RW,0
RW,0
RW,0
RwW,0

RW,0

RW,0

If set, each IMSK <3:0> signal disables the cor-
responding IRQ_ H<3:0> interrupt.

If set, the timeout counter counts 5 thousand
cycles before asserting timeout reset. If clear, the
timeout counter counts 1 billion cycles before
asserting timeout reset.

If set, disablesthe IDU timeout counter. Does
not affect cfail_h/no cack_h error.

If set, floating-point instructions may be issued.
If clear, floating-point instructions cause FEN
exceptions.

If set, alows PALRES instructions to be issued
in kernel mode.

If SPE<1> is set, it enables superpage mapping
of Istream virtual address VA<39:13> directly to
physical address PA<39:13> assuming
VA<42:41> = 10. Virtual address bit VA<40> is
ignored in this translation. Accessis allowed
only in kernel mode.

If SPE<0> isset (NT mode), it enables super-
page mapping of Istream virtual addresses
VA<42:30> = 1FFE,g4 directly to physical
address PA<39:30> = 0;4. VA<30:13> is
mapped directly to PA<30:13>. Accessis
allowed only in kernel mode.

If set, enables PAL shadow registers.
If set, enables correctable error interrupts.
If set, enables serid line interrupts.

If set, forces miss on | cache references. MBZ in
normal operation.

If set, forces bad |cache tag parity. MBZ in nor-
mal operation.

If set, forces bad Icache data parity. MBZ in nor-
mal operation.

Instruction Fetch/Decode Unit and Branch Unit (IDU) IPRs

Table 5-5 IDU Control and Status Register Fields (Sheet 3 of 3)
Name Extent Type Description
Reserved <37> Rw,1 Reserved to COMPAQ. Must be one.
ISTA <38> RO Reading thisbit indicates ICACHE BIST status.
If set, ICACHE BIST was successful.
TST <39> RW,0 Writing a 1 to this bit asserts the

test_status h<1> signal.

5.1.18 Interrupt Priority Level Register (IPLR)

IPLR isaread/write register that is accessed by PAL code to set the value of the inter-
rupt priority level (IPL). Whenever hardware detects an interrupt whose target IPL is
greater than the value in IPLR<04:00>, an interrupt is taken. Figure 5—17 shows the
IPLR register format. Refer to Table 4—19 for information on which interrupts are
enabled for a given IPL.

Figure 5-17 Interrupt Priority Level Register (IPLR)

31 05 04 00

LJ-03489.A14

Internal Processor Registers 5-19

Instruction Fetch/Decode Unit and Branch Unit (IDU) IPRs

5.1.19 Interrupt ID (INTID) Register

INTID isaread-only register that is written by hardware with the target IPL of the
highest priority pending interrupt. The hardware recognizes an interrupt if the |PL
being read is greater than the IPL given by |PLR<04:00>.

Interrupt service routines may use the value of this register to determine the cause of
the interrupt. PAL code, for the interrupt service, must ensurethat the IPL in INTID is
greater than the I PL specified by IPLR. Thisrestriction is required because alevel-
sensitive hardware interrupt may disappear before the interrupt service routineis
entered (passive release).

The contents of INTID are not correct on a HALT interrupt because this particular
interrupt does not have atarget IPL at which it can be masked. When a HALT inter-
rupt occurs, INTID indicates the next highest priority pending interrupt. PAL code for
interrupt service must check the interrupt summary register (ISR) to determine if a
HALT interrupt has occurred. Figure 5-18 shows the INTID register format.

Figure 5-18 Interrupt ID (INTID) Register

31 05 04 00
et T
RAZ/IGN INTID<4:0>
I e e | | | |
63 32
N U A
RAZ/IGN
I

LJ-03490.A14

5-20 Internal Processor Registers

Instruction Fetch/Decode Unit and Branch Unit (IDU) IPRs

5.1.20 Asynchronous System Trap Request Register (ASTRR)

ASTRR is aread/write register containing bits to request asynchronous system trap
(AST) interrupts in each of the four processor modes (U,S,E,K). In order to generate
an AST interrupt, the corresponding enable bit in the ASTER must be set and the
current processor mode given in the ICM<04:03> should be equal to or higher than
the mode associated with the AST request. Figure 5-19 shows the ASTRR format.

Figure 5-19 Asynchronous System Trap Request Register (ASTRR)

31 04 03 02 0100

L KAR
EAR

SAR
UAR

rrrrrrrrroerrrrrrr T T T T T T T
RAZ/IGN
| | | |

LJ-03491.A14

5.1.21 Asynchronous System Trap Enable Register (ASTER)

ASTER isaread/write register containing bitsto enable corresponding asynchronous
system trap (AST) interrupt requests. Figure 5—-20 shows the ASTER format.

Figure 5-20 Asynchronous System Trap Enable Register (ASTER)

31 04 03 02 01 00

\i KAE
EAE
SAE
UAE

rrrrrrerrerrerrrrr T T T
RlAZ/IG{\l

LJ-03492.Al4

Internal Processor Registers 5-21

Instruction Fetch/Decode Unit and Branch Unit (IDU) IPRs

5.1.22 Software Interrupt Request Register (SIRR)

SIRR is aread/write register used to control software interrupt requests. A software
request for a particular IPL may be requested by setting the appropriate bit in
SIRR<15:01>. Figure 5-21 and Table 5-6 describe the SIRR format.

Figure 5-21 Software Interrupt Request Register (SIRR)

31 19 18 04 03 00
Tl o R
RAZ/IGN SIRR<15:1> RAZ/IGN
I S S N B N I A N [1 | | [
63 32
T T
RAZ/IGN
I O O O [|| | N S N A

1.1-03493 Al4

Table 5-6 Software Interrupt Request Register Fields

Name Extent Type Description

SIRR<15:1> <18:04> RwW Request software interrupts.

5-22 Internal Processor Registers

Instruction Fetch/Decode Unit and Branch Unit (IDU) IPRs

5.1.23 Hardware Interrupt Clear (HWINT_CLR) Register

HWINT_CLRisawrite-only register used to clear edge-sensitive hardware interrupt
requests. Figure 5-22 and Table 5-7 describe the HWINT _CLR register format.

Figure 5-22 Hardware Interrupt Clear (HWINT_CLR) Register

3130 29 28 27 26 00
\ rrrrrrrrrrrrrr T T T T T T T T
IGN IGN
| e s
‘ PCOC
PC1C
pPC2C
63 34 33 32
rrrrrrrrrrrrrrrr T T T T T T T T
IGN
e e e S S s

L CRDC
SLC
1.1-03495.A14

Table 5—7 Hardware Interrupt Clear Register Fields

Name Extent Type Description

PCOC <27> wicC Clears performance counter O interrupt requests.
PC1C <28> wicC Clears performance counter 1 interrupt requests.
pC2C <29> wicC Clears performance counter 2 interrupt requests.
CRDC <32> Wwi1C Clears correctable read data interrupt requests.
SLC <33> wicC Clears serid lineinterrupt requests.

Internal Processor Registers 5-23

Instruction Fetch/Decode Unit and Branch Unit (IDU) IPRs

5.1.24 Interrupt Summary Register (ISR)

ISR is aread-only register containing information about all pending hardware, soft-
ware, and asynchronous system trap (AST) interrupt requests. Figure 5-23 and
Table 5-8 describe the ISR format. Refer to Table 4—-19 for a description of which
interrupts are enabled for a given interrupt priority level (IPL).

Figure 5-23 Interrupt Summary Register (ISR)

3130 29 28 27 26 25 24 23 22 212019 18

| |
L ASTRR<3:0>

and ASTER<3:0>

ATR
120

121

122

123

PCO

PC1

PC2

PFL

MCK

Table 5-8 Interrupt Summary Register Fields

\
|
| CRD
SLI

HLT

LJ03496A.Al4

(Sheet 1 of 2)

Name Extent Type Description
ASTRR<3:0> <03:00> RO Boolean AND of ASTRR<USEK> with
and ASTER<USEK> used to indicate enabled AST

ASTER<3:0> requests.

SISR<15:1> <18:04> RO,0 Software interrupt requests 15 through 1 corre-
sponding to IPL 15 through 1.

ATR <19> RO Set if any AST request and corresponding
enable bit is set and if the processor modeis
equal to or higher than the AST request mode.

120 <20> RO External hardware interruptire_h<0>.

121 <21> RO External hardware interrupire_h<1>.

122 <22> RO External hardware interruptre_h<2>.

5-24

Internal Processor Registers

Instruction Fetch/Decode Unit and Branch Unit (IDU) IPRs

Table 5-8 Interrupt Summary Register Fields (Sheet 2 of 2)
Name Extent Type Description
123 <23> RO External hardware interruptirg_h<3>.
PCO <27> RO External hardware interrupt—performance
counter O (IPL 29).
PC1 <28> RO External hardware interrupt—performance
counter 1 (IPL 29).
PC2 <29> RO External hardware interrupt—performance
counter 2 (IPL 29).
PFL <30> RO External hardware interrupt—power failure
(IPL 30).
MCK <31> RO External hardware interrupt—system machine
check (IPL 31).
CRD <32> RO Correctable ECC errors (IPL 31).
SLI <33> RO Serial line interrupt.
HLT <34> RO External hardware interrupt—halt.

Internal Processor Registers 5-25

Instruction Fetch/Decode Unit and Branch Unit (IDU) IPRs

5.1.25 Serial Line Transmit (SL_XMIT) Register

SL_XMIT isawrite-only register used to transmit bit-serial data out of the micro-
processor chip under the control of a software timing loop. The value of the TMT bit
is transmitted offchip on the srom_clk_h signal. In normal operation mode (not in
debugging mode), the srom_clk_h signal serves both the serial line transmission and
the Icache serial ROM interface (see Section 7.5). Figure 5-24 and Table 5-9
describe the SL_XMIT register format.

Figure 5-24 Serial Line Transmit (SL_XMIT) Register

31 08 07 06 00

‘ ™T

LJ-03497.A14

Table 5-9 Serial Line Transmit Register Fields

Name Extent Type Description

TMT <07> WO,1 Serid line transmit data

5-26 Internal Processor Registers

Instruction Fetch/Decode Unit and Branch Unit (IDU) IPRs

5.1.26 Serial Line Receive (SL_RCV) Register

SL_RCV isaread-only register used to receive bit-serial data under the control of a
softwaretiming loop. The RCV bitinthe SL_RCV register isfunctionally connected
tothe srom_data_h signal. A serial line interrupt is requested whenever atransition
is detected on the srom_data_h signal and the SLE bit in the ICSR is set. During
normal operations (not in test mode), the srom_data_h signal serves both the serial
line reception and the I cache serial ROM (SROM) interface (see Section 7.5).
Figure 5-25 and Table 5-10 describe the SL_RCYV register format.

Figure 5-25 Serial Line Receive (SL_RCV) Register

31 07 06 05 00
rrrrrrrrrrrrrr T T T T T T T T T T
RAZ RAZ
S s [I
I RCV
63 32

LJ-03498.A14

Table 5-10 Serial Line Receive Register Fields

Name Extent Type Description

RCV <06> RO Serial line receive data

Internal Processor Registers 5-27

Instruction Fetch/Decode Unit and Branch Unit (IDU) IPRs

5.1.27 Performance Counter (PMCTR) Register

PMCTR is aread/write register that controls the three onchip performance counters.

Figure 5-26 and Table 5-11 describe the PMCTR format. Performance counter inter-
rupt requests are summarized in Section 5.1.24. CBU inputs to the counter select
options are described in the PM_ MUX_SEL<5:0> bits of Table 5-30. Section 2.8
describes the performance measurement support features.

Note: The arrangement of the select option tables is not meant to imply any
restrictions on permitted combinations of selections. The only cases in
which the selection for one counter influences another’s count is
SEL1=8 (SEL2=2, 3, other).

Figure 5-26 Performance Counter (PMCTR) Register

313029 16 1514 13 12 11 10 09 08 07 04 03 00
[U0 T \ \ P klk] T D1 I

u CTR2<13:0> CTLO|CTL1|CTL2 ok SEL1<3:0>| SEL2<3:0>
I O O I I I | | | | | | | | |

SELO

63 48 47 32

T T
CTRO0<15:0> CTR1<15:0>

N N I I S A B N I I S I

MAOG01A.Al4

5-28 Internal Processor Registers

Instruction Fetch/Decode Unit and Branch Unit (IDU) IPRs

Table 5-11 Performance Counter Register Fields

Name

Extent

Type

Description

CTR0<15:0>

CTR1<15:0>
SELO
Ku

CTR2<13:0>
CTLO<1:0>

CTL1<1:0>

CTL2<1:0>

Kp

Kk

SEL1<3:0>
SEL2<3:0>

<63:48>

<47:32>
<31>
<30>

<29:16>
<15:14>

<13:12>

<11:10>

<09>

<08>

<07:04>
<03:00>

RwW

RwW
RwW
RW

RW
RwW,0

RwW,0

RW,0

RW

RW

RW
RW

A 16-bit counter of events selected by SEL0 and
enabled by CTL0<1:0>.

A 16-bit counter.
Counter0 Select—refer to Table 5-12.

Kill user mode—disables all counters in user
mode (refer to Table 5-13).

14-bit counter

CTRO counter control:
00 counter disable, interrupt disable
01 counter enable, interrupt disable
10 counter enable, interrupt at count 65536
(Refer to Section 5.1.23 and Section 5.1.24.)
11 counter enable, interrupt at count 256

CTR1 counter control:
00 counter disable, interrupt disable
01 counter enable, interrupt disable
10 counter enable, interrupt at count 65536
11 counter enable, interrupt at count 256

CTR2 counter control:
00 counter disable, interrupt disable
01 counter enable, interrupt disable
10 counter enable, interrupt at count 16384
11 counter enable, interrupt at count 256

Kill PALmode—disables all counters in
PALmode (refer to Table 5-13).

Kill kernel, executive, supervisor mode—dis-
ables all counters in kernel, executive, and
supervisor modes (refer to Table 5-13). Ku=1,
Kp=1, and Kk=1 enables counters in executive
and supervisor modes only.

Counterl Select—refer to Table 5-12.
Counter2 Select—refer to Table 5-12.

Internal Processor Registers 5-29

Instruction Fetch/Decode Unit and Branch Unit (IDU) IPRs

5-30

Table 5-12 shows the PMCTR counter select options.

Table 5-12 PMCTR Counter Select Options

(Sheet 1 of 2)

Counter0 Counterl Counter2
SELO0<0> SEL1<3:0> SEL2<3:0>
0:Cycles 0x0: nonissue cycles 0x0: long(>15 cycle) stalls

1:Instructions

Valid instruction in S3 but none issued.

Ox1: split-issue cycles

Some, but not all, instructions at S3 issued.

0x2: pipe-dry cycles
No valid instruction at S3.

0x3: replay trap
A replay trap occurred.

0x4: single-issue cycles
Exactly one instruction issued.

0x5: dual-issue cycles
Exactly two instructions issued.

0x6: triple-issue cycles
Exactly three instructions issued.

0x7: quad-issue cycles
Exactly four instructions issued.

0x8: jsr-ret if sel2=PC-M

Instruction issued if sel2 is PC-M.

0x8: cond-branch if sel2=BR-M
Instruction issued if sel2 is BR-M

0x8: al flow-change instructions if sel2=!

(PC-M or BR-M)
0x9: IntOpsissued
OxA: FPOps issued
OxB: loads issued
OxC: stores issued
OxD: Icache issued

OXE: Dcache accesses

Internal Processor Registers

Ox1: reserved

0x2: PC-mispredicts

0x3: BR-mispredicts

0x4: Icache/RFB misses

Ox5: ITB misses

0x6: Dcache LD misses

Ox7: DTB misses

0x8: LDsmerged in MAF

0x9: LDU replay traps
OxA:WB/MAF full replay traps

Instruction Fetch/Decode Unit and Branch Unit (IDU) IPRs

Table 5-12 PMCTR Counter Select Options

(Sheet 2 of 2)

Counter0 Counterl
SELO0<0> SEL1<3:0>

Counter2
SEL2<3:0>

OxF: pick CBU input 1

0xB: external perf_mon_h
input. This countsin CPU
cycles, but input is sampled in
sysclk cycles. The external sta-
tusperf_mon_h is sampled
once per system clock and held
through the system clock
period. This means that
“sysclock ratio” counts occur
for each system clock cycle in
which the status is true.

OxC: CPU cycles

OxD: MB stall cycles

OXE: LDxL instructions issued
OxF: pick CBU input 2

Internal Processor Registers 5-31

Instruction Fetch/Decode Unit and Branch Unit (IDU) IPRs

Table 5-13 Measurement Mode Control

Kill Bit Settings

Measurement Mode Desired Ku Kp Kk
Program 0 0 0
PAL only 1 0 1
OS only (kernel, executive, supervisor) 1 1 0
User only 0 1 1
All except PAL 0 1 0
OS + PAL (not user) 1 0 0
User + PAL (not kernel, executive, and supervisor) 0 0 1

Executive and supervisor onIy1 1 1 1

In thisinstance, Kk means kill kernel only. The combination Ku=1, Kp=1, and Kk=1 is used to
gather events for the executive and supervisor modes only.

Note: Both the user and the operating system can make PAL subroutine calls
that put the machine in PALmode. The “OS only,” “user only,” and
“executive and supervisor only” modes do not measure the events dur-
ing the PAL subroutine calls made by the OS or user. The “OS + PAL"
and “user + PAL” modes should be used carefully. “OS + PAL” mode
measures the events during the PAL calls made by the user, whereas
“user + PAL" mode measures the events during the PAL calls made by
the OS.

5-32 Internal Processor Registers

Memory Address Translation Unit (MTU) IPRs

5.2 Memory Address Translation Unit (MTU) IPRs

The MTU internal processor registers (IPRs) are described in Section 5.2.1 through
Section 5.2.23.

5.2.1 Dstream Translation Buffer Address Space Number (DTB_ASN)
Register

DTB_ASN isawrite-only register that must be written with an exact duplicate of the
ITB_ASN register ASN field. Figure 5-27 shows the DTB_ASN register format.

Figure 5-27 Dstream Translation Buffer Address Space Number (DTB_ASN)
Register

LJ-03499.A14

5.2.2 Dstream Translation Buffer Current Mode (DTB_CM) Register

DTB_CM isawrite-only register that must be written with an exact duplicate of the
IDU current mode (ICM) register CM field. These bits indicate the current mode of
the machine, as described in the Alpha Architecture Reference Manual.

Figure 5-28 shows the DTB_CM register format.

Figure 5-28 Dstream Translation Buffer Current Mode (DTB_CM) Register

31 05040302 00
rrrrrrrrrrrrr T r T T T T T T T T T [T
IGN IGN
S S S S S s O e |
L cmo
M1
63 32
rrrrrrrrrrrrrrrrrr T T T T T T T T T
IGN
e e A S |

LJ-03500.Al4

Internal Processor Registers 5-33

Memory Address Translation Unit (MTU) IPRs

5.2.3 Dstream Translation Buffer Tag (DTB_TAG) Register

DTB_TAG isawrite-only register that writes the DTB tag and the contents of the
DTB_PTE register to the DTB. To ensure the integrity of the DTBs, the DTB’s PTE
array is updated simultaneously from the internal DTB_PTE register when the
DTB_TAG register is written.

The entry to be written is chosen at the time of the DTB_TAG write operation by a
not-last-used replacement algorithm implemented in hardware. A write operation to
the DTB_TAG register increments the translation buffer (TB) entry pointer of the
DTB, which allows writing the entire set of DTB PTE and TAG entries. The TB

entry pointer is initialized to entry zero and the TB valid bits are cleared on chip reset
but not on timeout reset. Figure 5-29 shows the DTB_TAG register format.

Figure 5-29 Dstream Translation Buffer Tag (DTB_TAG) Register

31 1312 00

rrrrrrrrrr T T T T T T T T T T
IGN VA<42:13>
S S e s S

1.1-03501.Al4

5.2.4 Dstream Translation Buffer Page Table Entry (DTB_PTE) Register

DTB_PTE isaread/write register representing the 64- entry DTB page table entries
(PTESs). The entry to be written is chosen by a not-last-used replacement algorithm
implemented in hardware. Write operationsto DTB_PTE use the memory format bit
positions, as described in the Alpha Architecture Reference Manual, with the excep-
tion that some fields are ignored. In particular, the page frame number (PFN) valid
bit is not stored in the DTB.

To ensure the integrity of the DTB, the PTE is actually written to atemporary regis-
ter and is not transferred to the DTB until the DTB_TAG register iswritten. Asa
result, writing the DTB_PTE and then reading without an intervening DTB_TAG
write operation does not return the data previously written to the DTB_PTE register.

5-34 Internal Processor Registers

Memory Address Translation Unit (MTU) IPRs

Read operations of the DTB_PTE require two instructions. First, aread from the
DTB_PTE sendsthe PTE datato the DTB_PTE_TEMP register. A zero valueis
returned to the integer register file (IRF) on aDTB_PTE read operation. A second
instruction reading from the DTB_PTE_TEMP register returns the PTE entry to the
register file. Reading the DTB_PTE register increments the TB entry pointer of the
DTB, which allows reading the entire set of DTB PTE entries. Figure 5-30 shows
the DTB_PTE register format.

Note: The Alpha Architecture Reference Manual provides descriptions of the
fields of the PTE.

Figure 5-30 Dstream Translation Buffer Page Table Entry (DTB_PTE)
Register—Write Format

31 16 1514 13 12 1110 09 08 07 06 05 04 03 02 01 00
T r T T T T \

E IGN
FOR
FOW
IGN
L ASM
L GH<1:0>
IGN
KRE
ERE
SRE
URE
KWE
EWE
SWE
UWE

LJ-03502.A14

Internal Processor Registers 5-35

Memory Address Translation Unit (MTU) IPRs

5.2.5 Dstream Translation Buffer Page Table Entry Temporary
(DTB_PTE_TEMP) Register

DTB_PTE _TEMP isaread-only holding register used for DTB_PTE data. Read
operations of the DTB_PTE require two instructions to return the PTE data to the
register file. Thefirst reads the DTB_PTE register to the DTB_PTE_TEMP register
and returns zero to the register file. The second returnsthe DTB_PTE_ TEMP regis-

ter to the integer register file (IRF). Figure 5-31 shows the DTB_PTE_TEMP regis-
ter format.

Figure 5—31 Dstream Translation Buffer Page Table Entry Temporary (DTB_PTE_TEMP)
Register

31 1312 10 09 08 07 06 05 04 03 02 01 00

rrrrrrrrrrrr T T T T
PFN<39:13> RAZ

S S A A

L FOR
FOW
KRE
L ERE
L—— SRE
URE
KWE
EWE
SWE
UWE
PFN<39:13>

63 39 38 32

rrrrrrorrrrrrrr o T T T
RAZ }TF'\}I<3}9:1F>}

LJ-03503.Al4

5-36 Internal Processor Registers

Memory Address Translation Unit (MTU) IPRs

5.2.6 Dstream Memory Management Fault Status (MM_STAT) Register

MM _STAT isaread-only register that stores information on Dstream faults and
Dcache parity errors. The VA, VA_FORM, and MM _STAT registers are locked

against further updates until software reads the VA register. The MM_STAT bits are
only modified by hardware when the register is not locked and a memory manage-
ment error, DTB miss, or Dcache parity error occurs. The MM _STAT register is not
unlocked or cleared on reset. Figure 5-32 and Table 5-14 describe the MM_STAT
register format.

Figure 5-32 Dstream Memory Management Fault Status (MM_STAT) Register

31 17 16 1110 06 05 04 03 02 0100

[Due

FOR

FOW
DTB_MISS
BAD_VA
63 32
I L L L L L I O L L O L O I L L
RAZ
T e e I O
LJ-03504.A14
Table 5-14 Dstream Memory Management Fault Status Register
Fields (Sheet 1 of 2)
Name Extent Type Description
WR <00> RO Set if reference that caused error was awrite
operation.
ACV <01> RO Set if reference caused an access violation.
Includes bad virtual address.
FOR <02> RO Set if reference was aread operation and the
PTE FOR bit was set.
FOW <03> RO Set if reference was awrite operation and the
PTE FOW bit was set.
DTB_MISS <04> RO Set if referenceresulted inaDTB miss.

Internal Processor Registers 5-37

Memory Address Translation Unit (MTU) IPRs

Table 5-14 Dstream Memory Management Fault Status Register

Fields (Sheet 2 of 2)
Name Extent Type Description
BAD_VA <05> RO Set if reference had a bad virtual address.
RA <10:06> RO RA field of the faulting instruction.
OPCODE <16:11> RO Opcode field of the faulting instruction.

5.2.7 Faulting Virtual Address (VA) Register

VA isaread-only register. When Dstream faults, DTB misses, or Dcache parity
errors occur, the effective virtual address associated with the fault, miss, or error is
latched in the VA register. The VA, VA_FORM, and MM _STAT registers are locked
against further updates until software reads the VA register. The VA register is not
unlocked on reset. Figure 5—-33 shows the VA register format.

Figure 5-33 Faulting Virtual Address (VA) Register

31 00

e rrrrrrrrrrrrr ettt
Virtual Address
I e I s s S A I A

LJ-03505.A14

5-38 Internal Processor Registers

Memory Address Translation Unit (MTU) IPRs

5.2.8 Formatted Virtual Address (VA_FORM) Register

VA_FORM isaread-only register containing the virtual page table entry (PTE)
address calculated as a function of the faulting virtual address and the virtua page
table base (VA and MVPTBR registers). Thisis done as a performance enhancement
to the Dstream TBmiss PAL flow.

The virtual addressisformatted as a 32-bit PTE when the NT_Mode bit

(MCSR<01>) is set (see Figure 5-34). VA_ FORM is locked on any Dstream fault,
DTB miss, or Dcache parity error. The VA, VA_FORM, and MM_STAT registers are
locked against further updates until software reads the VA register. The VA_FORM
register is not unlocked on reset. Figure 5-35 shows the VA_FORM register format
when MCSR<01> is clear.

Figure 5-34 Formatted Virtual Address (VA_FORM) Register (NT_Mode=1)

313029 22 21 03 02 00

l T T T T T T T T [
RAZ VA<31:13> RAZ
| I S S A A I | |

{ VPTB<63:30>

LJ-03507.A14

Figure 5-35 Formatted Virtual Address (VA_FORM) Register (NT_Mode=0)

31 0302 00

rrrrrrrrrrrrrrrrrrnrr T T T T T [T
VA<42:13> RAZ
S S S A I I s A ||

rrrrrrrrrrrrrrr T T T T
| VXPT]B<613:313>}

L VA<42:13>

LJ-03506.A14

Internal Processor Registers 5-39

Memory Address Translation Unit (MTU) IPRs

Table 5-15 describes the VA_FORM register fields.

Table 5-15 Formatted Virtual Address Register Fields

Name Extent Type Description

NT_Mode=0

VPTB <63:33> RO Virtual page table base address as stored in
MVPTBR

VA<42:13> <32:03> RO Subset of the original faulting virtual address

NT_Mode=1

VPTB <63:30> RO Virtual page table base address as stored in
MVPTBR

VA<31:13> <21.03> RO Subset of the original faulting virtual address

5.2.9 MTU Virtual Page Table Base Register (MVPTBR)

MVPTBR is a write-only register containing the virtual address of the base of the
page table structure. It is stored in the MTU to be used in calculating the VA_FORM
value for the Dstream TBmiss PAL flow. Unlike the VA register, the MVPTBR is not
locked against further updates when a Dstream fault, DTB Miss, or Dcache parity
error occurs. Figure 5-36 shows the MVPTBR format.

Figure 5-36 MTU Virtual Page Table Base Register (MVPTBR)
313029 00
A N D D B B I I

[S e e s |
{ VPTB<63:30>

LJ-03508.A14

5-40 Internal Processor Registers

Memory Address Translation Unit (MTU) IPRs

5.2.10 Dcache Parity Error Status (DC_PERR_STAT) Register

DC_PERR_STAT isaread/write register that locks and stores Dcache parity error
status. The VA, VA_FORM, and MM_STAT registers are locked against further
updates until software reads the VA register. If aDcache parity error is detected
while the Dcache parity error status register is unlocked, the error statusis loaded
into DC_PERR_STAT<05:02>. The LOCK bit is set and the register is locked
against further updates (except for the SEO bit) until software writesa 1 to clear the
LOCK bit.

The SEO bit is set when a Dcache parity error occurs while the Dcache parity error
status register is locked. Once the SEO bit is set, it islocked against further updates
until the software writesa 1to DC_PERR_STAT<00> to unlock and clear the bit.
The SEO bit is not set when Dcache parity errors are detected on both pipes within
the same cycle. In this particular situation, the pipe0/pipel Dcache parity error status
bits indicate the existence of a second parity error. The DC_PERR_STAT register is
not unlocked or cleared on reset.

Figure 5-37 and Table 5-16 describe the DC_PERR_STAT register format.

Figure 5-37 Dcache Parity Error Status (DC_PERR_STAT) Register

31 06 05 04 03 02 0100

\i SEO
LOCK
DPO
DP1

TPO
TP1

LJ-03509.Al14

Internal Processor Registers 5-41

Memory Address Translation Unit (MTU) IPRs

Table 5-16 Dcache Parity Error Status Register Fields

Name Extent Type Description

SEO <00> wicC Set if second Dcache parity error occurred in a
cycle after the register was locked. The SEO bit
isnot set as aresult of a second parity error that
occurs within the same cycle as thefirst.

LOCK <01> wiC Set if parity error is detected in Dcache. Bits
<05:02> are locked against further updateswhen
this bit is set. Bits <05:02> are cleared when the
LOCK hit is cleared.

DPO <02> RO Set on data parity error in Dcache bank 0.

DP1 <03> RO Set on data parity error in Dcache bank 1.

TPO <04> RO Set on tag parity error in Dcache bank 0.

TP1 <05> RO Set on tag parity error in Dcache bank 1.

5.2.11 Dstream Translation Buffer Invalidate All Process (DTB_IAP)

Register

DTB_IAPisawrite-only register. Any write operation to this register invalidates all
datatrangdlation buffer (DTB) entries in which the address space match (ASM) bit is

egual to zero.

5.2.12 Dstream Translation Buffer Invalidate All (DTB_IA) Register

5-42

DTB_IA isawrite-only register. Any write operation to this register invalidates all
64 DTB entries, and resets the DTB not-last-used (NLU) pointer to itsinitial state.

Internal Processor Registers

Memory Address Translation Unit (MTU) IPRs

5.2.13 Dstream Translation Buffer Invalidate Single (DTB_IS) Register

DTB_ISisawrite-only register. Writing a virtual address to this register invalidates
the DTB entry that meets either of the following criteria:

* A DTB entry whose VA field matches DTB_1S<42:13> and whose ASN field
matches DTB_ASN<63:57>.

* A DTB entry whose VA field matches DTB_1S<42:13> and whose ASM bhit is
Set.

Figure 5-38 shows the DTB_IS register format.

Figure 5-38 Dstream Translation Buffer Invalidate Single (DTB_IS) Register

31 13 12 00
L U L L L L L
VA<42:13> IGN
e Y
63 43 42 32
L L L O U L L

IGN VA<42:13>
I e Y I
LJ-03510.A14
Note: The DTB_ISregister iswritten before the normal 1DU trap point. The

DTB invaidate single operation is aborted by the IDU only for the fol-
lowing trap conditions:

e ITB miss
e PC mispredict
* Whenthe HW_MTPR DTB_ISisexecuted in user mode

Internal Processor Registers 5-43

Memory Address Translation Unit (MTU) IPRs

5.2.14 MTU Control Register (MCSR)

MCSR is aread/write register that controls features and records statusin the MTU.
Thisregister is cleared on chip reset but not on timeout reset. Figure 5-39 and
Table 5-17 describe the MCSR format.

Figure 5-39 MTU Control Register (MCSR)

31 06 05 04 03 02 01 00
T]
RAZ/IGN
A T T T T I I I I I |
L M_BIG_ENDIAN
L SP<1:0>
MBZ
E_BIG_ENDIAN
MBZ
63 32
Tt T
RAZ/IGN
I O T S N s O |
LJ-03511.Al4

5-44 Internal Processor Registers

Memory Address Translation Unit (MTU) IPRs

Table 5-17 MTU Control Register Fields

Name Extent Type Description

M BIG_ <00> RW,0 MTU Big Endian mode enable. When set, bit 2

ENDIAN of the physical addressisinverted for al long-
word Dstream references.

SP<1:0> <02:01> RW,0 Superpage mode enables.

Note: Superpage accessis only allowed in ker-
nel mode.

SP<1> enables superpage mapping when
VA<42:41> = 2. In thismode, virtual addresses
VA<39:13> are mapped directly to physical
addresses PA<39:13>. Virtual address bit
VA<40> isignored in this translation.

SP<0> enables one-to-one superpage mapping
of Dstream virtual addresses with VA<42:30> =
1FFE;g. In this mode, virtual addresses
VA<29:13> are mapped directly to physical
addresses PA<29:13>, with bits <39:30> of
physical address set to 0. SP<0> isthe
NT_Mode bit that is used to control virtual
address formatting on a read operation from the
VA_FORM register.

Reserved <03> RwW,0 Reserved to COMPAQ. Must be zero (MBZ).
E BIG_ <04> RwW,0 IEU Big Endian mode enable. This bit is sent to
ENDIAN the |EU to enable Big Endian support for the

EXTxx, MSKxx and INSxx byte instructions.

This bit causes the shift amount to be inverted
(one’s-complemented) prior to the shifter opera-
tion.

Reserved <05> RW,0 Reserved to COMPAQ. Must be zero (MBZ).

Internal Processor Registers 5-45

Memory Address Translation Unit (MTU) IPRs

5.2.15 Dcache Mode (DC_MODE) Register

DC_MODE isaread/write register that controls diagnostic and test modes in the
Dcache. Thisregister is cleared on chip reset but not on timeout reset. Figure 5-40
and Table 5-18 describe the DC_MODE register format.

Note: The following bit settings are required for normal operation:

DC_ENA=1
DC_FHIT =0
DC_BAD_PARITY =0
DC_PERR_DISABLE =0

Figure 5-40 Dcache Mode (DC_MODE) Register
31 04 03 02 01 00

\: DC_ENA

DC_FHIT
DC_BAD_PARITY
DC_PERR_DISABLE

LJ-03512.A14

5-46 Internal Processor Registers

Memory Address Translation Unit (MTU) IPRs

Table 5-18 Dcache Mode Register Fields

Name Extent

Type

Description

DC_ENA <00>

DC FHIT <01>

DC BAD_ <02>
PARITY

DC_PERR_ <03>
DISABLE

RW,0

RW,0

RW,0

RW,0

Software Dcache enable. When set, the
DC_ENA hit enables the Dcache. When clear,
the Dcache command is not updated by ST or
FILL operations, and al LD operations are
forced to missin the Dcache. Must be one
(MBO) in normal operation.

Dcache force hit. When set, the DC_FHIT bit
forces all Dstream references to hit in the
Dcache. Must be zero in normal operation.

When set, the DC_BAD_PARITY bit invertsthe
data parity inputs to the Dcache on integer
stores. This has the effect of putting bad data
parity into the Dcache on integer stores that hit
in the Dcache. This bit has no effect on the tag
parity written to the Dcache during FILL opera-
tions, or the data parity written to the CBU write
data buffer on integer store instructions.

Floating-point store instructions should not be
issued when this bit is set because it may result
in bad parity being written to the CBU write data
buffer. Must be zero (MBZ) in normal operation.

When set, theDC_PERR_DISABLE bit disables
Dcache parity error reporting. When clear, this
bit enables all Dcache tag and data parity errors.
Parity error reporting is enabled during all other
Dcache test modes unless this bit is explicitly
set. Must be zero (MBZ) in normal operation.

Internal Processor Registers 5-47

Memory Address Translation Unit (MTU) IPRs

5.2.16 Miss Address File Mode (MAF_MODE) Register

MAF_MODE is aread/write register that controls diagnostic and test modesin the
MTU miss address file (MAF). Thisregister is cleared on chip reset.
MAF_MODE<05> isaso cleared on timeout reset. Figure 5-41 and Table 5-19
describe the MAF_MODE register format.

Note: The following bit settings are required for normal operation:

DREAD_NOMERGE =0
WB_FLUSH_ALWAYS =0
WB_NOMERGE =0
MAF_ARB_DISABLE =0
WB_CNT_DISABLE =0

Figure 5-41 Miss Address File Mode (MAF_MODE) Register

31 08 07 06 05 04 03 02 01 00

L DREAD_NOMERGE
WB_FLUSH_ALWAYS

L WB_NOMERGE
I0_NMERGE
WB_CNT_DISABLE
MAF_ARB_DISABLE
DREAD_PENDING (Read-Only)
WB_PENDING (Read-Only)

LJO3513A.Al4

5-48 Internal Processor Registers

Memory Address Translation Unit (MTU) IPRs

Table 5-19 Miss Address File Mode Register Fields

Name Extent Type Description

DREAD_ <00> RwW,0 Miss address file (MAF) DREAD Merge Disable. When set,

NOMERGE this bit disables all merging in the DREAD portion of the
MAF. Any load instruction that isissued when
DREAD_NOMERGE isset isforced to alocate anew entry.
Subsequent merging to that entry is not allowed (even if
DREAD_NOMERGE iscleared). Must be zero (MBZ) in
normal operation.

WB_FLUSH_ <01> RW,0 When set, this bit forces the write buffer to flush whenever

ALWAY S thereisavalid WB entry. Must be zero (MBZ) in normal
operation.

WB_ <02> RW,0 When set, this bit disables all merging in the write buffer.

NOMERGE Any storeinstruction that isissued when WB_NOMERGE is
set isforced to alocate a new entry. Subsequent merging to
that entry is not allowed (even if WB_ NOMERGE is
cleared). Must be zero (MBZ) in normal operation.

IO_NMERGE <03> RW,0 When set, this bit prevents loads from 1/O space (address bit
<39>=1) from merging in the MAF. Should be zero (SBZ) in
typical operation.

WB_CNT_ <04> RW,0 When set, this bit disables the 64-cycle WB counter in the

DISABLE MAF arbiter. The top entry of the WB arbitrates at low prior-
ity only when aLDx_L instruction isissued or asecond WB
entry is made. Must be zero (MBZ) in normal operation.

MAF ARB_ <05> RwW,0 When set, this bit disables all DREAD and WB requestsin

DISABLE the MAF arbiter. WB_Reissue, Replay, Iref, and MB
requests are not blocked from arbitrating for the Scache.
Thisbit is cleared on both timeout and chip reset. Must be
zero (MBZ) in normal operation.

DREAD_ <06> R,0 Indicates the status of the MAF DREAD file. When set,

PENDING there are one or more outstanding DREAD requestsin the
MAF file. When clear, there are no outstanding DREAD
requests.

WB_ <07> R,0 This bit indicates the status of the MAF WB file. When set,

PENDING there are one or more outstanding WB requestsin the MAF

file. When clear, there are no outstanding WB requests.

Internal Processor Registers 5-49

Memory Address Translation Unit (MTU) IPRs

5.2.17 Dcache Flush (DC_FLUSH) Register

DC_FLUSH isawrite-only register. A write operation to this register clears al the
valid bits in both banks of the Dcache.

5.2.18 Alternate Mode (ALT_MODE) Register

ALT_MODE isawrite-only register that specifies the alternate processor mode used
by some HW_LD and HW_ST instructions. Figure 5-42 and Table 5-20 describe the
ALT_MODE register format.

Figure 5-42 Alternate Mode (ALT_MODE) Register

31 05040302 00

rrrrrrrrrrrrrrrr Tt T T T T T Tl
IGN AM | IGN

LJ-03514.Al14

Table 5-20 Alternate Mode Register Settings

ALT_MODE<04:03> Mode

00 Kernel

01 Executive
10 Supervisor
11 User

5-50 Internal Processor Registers

Memory Address Translation Unit (MTU) IPRs

5.2.19 Cycle Counter (CC) Register

CCisaread/write register. The 21164 supports it as described in the Alpha Architec-
ture Reference Manual. The low half of the counter, when enabled, increments once
each CPU cycle. The upper half of the CC register isthe counter offset. An
HW_MTPR instruction writes CC<63:32>. Bits <31:00> are unchanged.
CC_CTL<32> isused to enable or disable the cycle counter. The CC<31:00> iswrit-
tento CC_CTL by an HW_MTPR instruction.

The CC register isread by the RPCC instruction as defined in the Alpha Architecture
Reference Manual. The RPCC instruction returns a 64-bit value. The cycle counter is
enabled to increment only three cycles after the MTPR CC_CTL (with
CC_CTL<32> set) instruction isissued. This meansthat an RPCC instruction issued
four cyclesafter an HW_MTPR CC_CTL instruction that enablesthe counter readsa
value that is one greater than the initial count.

The CC register is disabled on chip reset. Figure 5—-43 shows the CC register format.

Figure 5-43 Cycle Counter (CC) Register
31 00

LJ-03515.A14

Internal Processor Registers 5-51

Memory Address Translation Unit (MTU) IPRs

5.2.20 Cycle Counter Control (CC_CTL) Register

CC_CTL isawrite-only register that writes the low 32 bits of the cycle counter to
enable or disable the counter. Bits CC<31:04> are written with the value in
CC_CTL<31:04> onaHW_MTPR instruction to the CC_CTL register. Bits
CC<03:00> are written with zero. Bits CC<63:32> are not changed. If
CC_CTL<32> is set, then the counter is enabled; otherwise, the counter is disabled.
Figure 5-44 and Table 5-21 describe the CC_CTL register format.

Figure 5-44 Cycle Counter Control (CC_CTL) Register

31 04 03 00
rrrrrrrrrrrrrTr T T T T T T T T T T T 71
COUNT<31:04> IGN
S e A I N I | 1 11
63 3332
rrrrrrrrrrrrrrrrrr T T T T T T T T T T
IGN
I e I A s s |
L cc_ena

1.J-03516.A14

Table 5-21 Cycle Counter Control Register Fields

Name Extent Type Description

COUNT<31:04> <31.04> WO Cycle count. Thisvalueisloaded into
CC<31:04>.

CC_ENA <32> WO Cycle Counter enable. When set, this bit

enablesthe CC register to begin incrementing
3 cycleslater. An RPCC issued 4 cycles after
CC_CTL<32> is written “sees” the initial
count incremented by 1.

5-52 Internal Processor Registers

Memory Address Translation Unit (MTU) IPRs

5.2.21 Dcache Test Tag Control (DC_TEST_CTL) Register

DC_TEST_CTL isaread/write register used exclusively for testing and diagnostics.

An address written to this register is used to index into the Dcache array when read-

ing or writing to the DC_TEST_TAG register. Figure 5-45 and Table 5-22 describe
the DC_TEST_CTL register format. Section 5.2.22 describes how this register is
used.

Figure 5-45 Dcache Test Tag Control (DC_TEST_CTL) Register

31 1312 03 02 01 00

rrrrrrrrr T T T T T T T T T T
RAZ/IGN INDEX<12:3>
S S s s s N N N T |

L BANKO
BANK1

IGN/RAZ

1.1-03517 Al4

Table 5-22 Dcache Test Tag Control Register Fields

Name Extent Type Description

BANKO <00> RW Dcache BankO enable. When set, reads from
DC_TEST_TAG return the tag from Dcache
bank0, writesto DC_TEST_TAG writeto
Dcache bank0. When clear, reads from
DC_TEST_TAG return the tag from Dcache
bank1.

BANK1 <01> RW Dcache Bank1 enable. When set, writes to
DC_TEST_TAG write to Dcache bank1. This
bit has no effect on reads.

INDEX<12:3> <12:03> RwW Dcachetag index. Thisfield is used on reads
from and writesto the DC_TEST_TAG register
to index into the Dcache tag array.

Internal Processor Registers 5-53

Memory Address Translation Unit (MTU) IPRs

5.2.22 Dcache Test Tag (DC_TEST_TAG) Register

5-54

DC_TEST_TAG isaread/write register used exclusively for testing and diagnostics.
When DC_TEST_TAG isread, thevalueinthe DC_TEST CTL register isused to
index into the Dcache. The value in the tag, tag parity, valid, and data parity bits for
that index are read out of the Dcache and loaded into the DC_TEST _TAG_TEMP
register. A zero value is returned to the integer register file (IRF). If BANKO is set,
the read operation is from Dcache bank0. Otherwise, the read operation isfrom
Dcache bank1.

When DC_TEST_TAG iswritten, the value writtento DC_TEST_ TAG iswritten to
the Dcache index referenced by the value inthe DC_TEST_CTL register. Thetag,
tag parity, and valid bits are affected by this write operation. Data parity bits are not
affected by this write operation (use DC_MODE<02> and force hit modes). If
BANKO is set, the write operation isto Dcache bankO. If BANK1 is set, the write
operation isto Dcache bank1. If both are set, both banks are written.

Figure 5-46 and Table 5-23 describe the DC_TEST_TAG register format.

Figure 5-46 Dcache Test Tag (DC_TEST_TAG) Register

31 1312 11 10 03 02 0100
rrrrrr T T T T T T T T T T T T [
TAG<38:13> IGN IGN
I I A A A A I T I I | |
‘ L tac_PARITY
OWO_VALID
OW1_VALID
63 39 38 32
rrrrrrrrrrrrrr T T T T T Tl T T T
IGN TAG<38:13>
I S S s I I

LJ-03518.A14

Internal Processor Registers

Memory Address Translation Unit (MTU) IPRs

Table 5-23 Dcache Test Tag Register Fields

Name Extent Type Description

TAG _PARITY <02> WO Tag parity. This bit refers to the Dcache tag par-
ity bit that coverstag bits 38 through 13 (valid
bits not covered).

OWO_VALID <11> WO Octaword valid bit 0. This bit refers to the
Dcache valid bit for the low-order octaword
within a Dcache 32-byte block.

OW1 VALID <12> WO Octaword valid bit 1. This bit refersto the
Dcache valid bit for the high-order octaword
within a Dcache 32-byte block.

TAG<38:13> <38:13> WO TAG<38:13>. These hitsrefer to the tag field in

the Dcache array.

Note: Bit 39 is not stored in the array.

Internal Processor Registers 5-55

Memory Address Translation Unit (MTU) IPRs

5.2.23 Dcache Test Tag Temporary (DC_TEST _TAG_TEMP) Register

DC _TEST_TAG _TEMPisaread-only register used exclusively for testing and diag-
nostics.

Reading the Dcache tag array requires a two-step read process:

1. Thefirst read operation from DC_TEST_TAG readsthe tag array and data parity
bitsand loadsthem intothe DC_ TEST_TAG_TEMP register. An UNDEFINED
value is returned to the integer register file (IRF).

2. The second read operation of the DC_TEST_TAG_TEMP register returns the
Dcache test data to the integer register file (IRF).

Figure 5-47 and Table 5-24 describe the DC_TEST_TAG_TEMP register format.

Figure 5-47 Dcache Test Tag Temporary (DC_TEST_TAG_TEMP) Register

31 13 12 11 10 07 06 05 04 03 02 01 00
I L T r 1T 11T T 1T T 1" L L L L |
TAG<38:13> DATA_PAR<7:0> RAZ
L Ll I T T T | I T N | I T Y Y T L
\— TAG_PARITY
OWO_VALID
OW1_VALID
63 39 38 32
I rrrrrrrrrrrrrrrr T T T T T Tl LI L N L
RAZ TAG<38:13>
L NN N TN N N N TN T I T N T N T N T T I | I I I T |

5-56

LJ-05353.Al14

Internal Processor Registers

Memory Address Translation Unit (MTU) IPRs

Table 5-24 Dcache Test Tag Temporary Register Fields

Name

Extent

Type

Description

TAG_PARITY

DATA_PAR<7:0>

OWO_VALID

OW1 VALID

TAG<38:13>

<02>

<02>

<11>

<l12>

<38:13>

RO

RO

RO

RO

RO

Tag parity. This bit refers to the Dcache tag
parity bit that covers tag bits 38 through 13
(valid bits not covered).

Data parity. When any of these bits are are
set, it indicates a parity error occurred in a
read of DC_TEST_TAG, in the bank speci-
fiedin DC_TEST_CTL.

Octaword valid bit 0. This bit refers to the
Dcache valid bit for the low-order octaword
within a Dcache 32-byte block.

Octaword valid bit 1. This bit refersto the
Dcache valid bit for the high-order octaword
within a Dcache 32-byte block.

TAG<38:13>. These bitsrefer to the tag field
in the Dcache array.

Note: Bit 39 isnot stored in the array.

Internal Processor Registers 5-57

External Interface Control (CBU) IPRs

5.3 External Interface Control (CBU) IPRs

Table 5-25 lists specific IPRs for controlling Scache, Bcache, system configuration,
and logging error information. These IPRs cannot be read or written from the sys-
tem. They are placed in the 1MB region of 21164-specific I/O address space ranging
from FF FFFO 0000 to FF FFFF FFFF. Any read or write operation to an undefined
IPR in this address space produces UNDEFINED behavior. The operating system
should not map any address in this region as writable in any mode.

The CBU internal processor registers are described in Section 5.3.1 through
Section 5.3.9.

Table 5-25 CBU Internal Processor Register Descriptions

Register Address Type1 Description

SC CTL FFFFFOO0OA8 RW Controls Scache behavior.

SC_STAT FFFFFOOOE8 R Logs Scache-related errors.

SC ADDR FFFFFO0188 R Contains the address for Scache-related
errors.

BC_CONTROL FFFFFOO0128 W Controls Bcache/system interface and
Bcache testing.

BC_CONFIG FFFFFO01C8 W Contains Bcache configuration parameters.
BC TAG ADDR FFFFF00108 R Contains tag and control bitsfor FILLsfrom

Bcache.
El_STAT FFFFFO0168 R L ogs Bcache/system-related errors.
El_ADDR FFFFFO0148 R Contains the address for Bcache/system-
related errors.
FILL_SYN FFFFFO0068 R Containsfill syndrome or parity bits for

FILLs from Bcache or main memory.

1BC_CONTROL<01> must be 0 when reading any IPR in thistable.

5-58 Internal Processor Registers

External Interface Control (CBU) IPRs

5.3.1 Scache Control (SC_CTL) Register (FF FFFO 00A8)

SC_CTL is a read/write register that controls Scache activity. Figure 5-48 and
Table 5-26 describe the SC_CTL register format. The bits in this register are initial-
ized to the value indicated in Table 5-26 on reset, but not on timeout reset.

Figure 5-48 Scache Control (SC_CTL) Register

31 19 18 16 15 13 12 11 08 07 02 01 00

I I I I I I I I I I I I I I I I
I— SC_FHIT
SC_FLUSH

T
| RAIZ/I(IBN
SC_TAG_STAT<5:0>
SC_FB_DP<3:0>
SC_BLK_SIZE
SC_SET_EN<2:0>
Reserved

[[[
MBIZ SZISlISO L3IL2 LlILO

HLOO003

Internal Processor Registers 5-59

External Interface Control (CBU) IPRs

Table 5-26 Scache Control Register Fields (Sheet 1 of 2)
Name Extent Type Description
SC FHIT <00> RW,0 When set, this hit forces cacheable load and store

instructions to hit in the Scache, irrespective of the tag
status bits. Noncacheable references are not forced to
hit in the Scache and will be driven offchip. In this
mode, only one Scache set may be enabled. The
Scache tag and data parity checking are disabled.

For store instructions, the value of the tag status and
parity bits are specified by the SC_ TAG_STAT<5:0>
field. Thetag iswritten with the address provided to
the Scache with the store instruction.

SC FLUSH <01> RwW,0 All the Scachetag valid hits are cleared every timethis
bit field iswritten to 1.

SC TAG_ <07:02> RW,0 Thisfield isused only in the SC_FHIT mode to write

STAT<5:0> any combination of tag status and parity bitsin the
Scache. The parity bit can be used to write bad tag par-
ity. The correct value of tag parity is even.

The following bits must be zero for normal operation:

Scache Tag

Status <5:0> Description

SC TAG_ Tag parity, valid, shared, dirty;
STAT<5:2> bits 7, 6, 5, and 4 respectively
SC TAG_ Octaword modified bits
STAT<1:.0>

5-60 Internal Processor Registers

External Interface Control (CBU) IPRs

Table 5-26 Scache Control Register Fields (Sheet 2 of 2)
Name Extent Type Description

SC FB_ <11:08> RW,0 Force bad parity—This field is used to write bad data
DP<3:0> parity for the selected longwords within the octaword

when writing the Scache. If any one of these bits is set
to one, then the computed byte parityatffour bytes
within the longword is inverted when writing the
Scache.

For Scache write transactions, the CBU allocates two
consecutive cycles to write up to two octawords based
on the byte valid bits received from the MTU. There-
fore, the same longword parity control bits are used for
writing both octawords. For example, SC_FB_ DP<0>
corresponds to longword 0 and longword 4 and con-
trols the inversion of computed byte parity for all bytes
in longwords 0 and 4. This bit field is cleared on reset.

SC BLK_ <12> RwW,1 This bit selects the Scache and Bcache block size to be

SIZE either 64 bytes or 32 bytes. The Scache and Bcache
always have identical block sizes. All the Bcache and
main memory FILLs or write transactions are of the
selected block size. At power-up time, this bit is set
and the default block size is 64 bytes. When clear, the
block size is 32 bytes. This bit must be set to the
desired value to reflect the correct Scache/Bcache
block size before the 21164 does the first cacheable
read or write transaction from Bcache or system.

SC_SET_ <15:13> RW)7 This field is used to enable the Scache sets.obaly

EN<2:0> or all three sets may be enabled at a time. Enabling
any combination ofwo sets at a time results in
UNPREDICTABLE behavior. One of the Scache sets
must always be enabled irrespective of the Bcache.

Reserved <18:16> RW,0 Reserved to COMPAQ. Must be zero (MBZ).

Internal Processor Registers 5-61

External Interface Control (CBU) IPRs

5.3.2 Scache Status (SC_STAT) Register (FF FFFO O0ES8)

SC_STAT isaread-only register. Itisnot cleared or unlocked by reset. Any PALcode
read of this register unlocks SC_ ADDR and SC_STAT and clears SC_STAT.

If an Scache tag or data parity error is detected during an Scache lookup, the
SC_STAT register islocked against further updates from subsequent transactions.
Figure 5-49 and Table 5-27 describe the SC_STAT register format.

Figure 5-49 Scache Status (SC_STAT) Register

31 17 16 15 1110 0302 00

T T T T T T I
RAZ L7 L6 L5 L4 L3 L2 L1LO|S2 S1S0
| | | | | | |

|
L SC_TPERR<2:0>
SC_DPERR<7:0>
SC_CMD<4:0>
SC_SCND_ERR

LJ-03521.A14

5-62 Internal Processor Registers

External Interface Control (CBU) IPRs

Table 5-27 Scache Status Register Fields

Name

Extent

Type

Description

SC_TPERR<2:0>

SC_DPERR<7:0>

SC_CMD<4:0>

SC_SCND_ERR

<02:00>

<10:03>

<15:11>

<16>

RO

RO

RO

RO

When set, these bits indicate that an Scache tag
lookup resulted in atag parity error and identify
the set that had the tag parity error.

When set, these bits indicate that an Scache read
transaction resulted in a data parity error. Each
bit indicates that one or more bytes within a
longword had the data parity error. These bits
areloaded if any byte within two octawords read
from the Scache during lookup had a data parity
error. For example, SC_DPERR<0> corre-
sponds to al bytesin longword 0, as shown in
Figure 5-49.

If SC_FHIT (SC_CTL<00>) is set, the parity
bits for all 4 bytes in a longword read from the
Scache will be XORed to load into the corre-
sponding bit field.

This field indicates the Scache transaction that
resulted in a Scache tag or data parity error. This
field is written at the time the actual Scache error
bit is written. The Scache transaction may be
DREAD, IREAD, or WRITE command from the
MTU, Scache victim command, or the system
command being serviced. Refer to Table 5-28
for field encoding.

When set, this bit indicates that an Scache trans-

action resulted in a parity error while the
SC_TPERR or SC_DPERR bit was already set
from the earlier transaction. This bit is not set for
two errors in different octawords of the same
transaction.

Internal Processor Registers 5-63

External Interface Control (CBU) IPRs

5-64

Table 5-28 SC_CMD Field Descriptions

SC_CMD<4:3> SC_CMD<2:0>

Source Encoding Description

1x 110 Set shared from system
101 Read dirty from system
100 Invalidate from system
001 Scache victim

00 001 Scache IREAD

01 001 Scache DREAD
011 Scache DWRITE

Internal Processor Registers

External Interface Control (CBU) IPRs

5.3.3 Scache Address (SC_ADDR) Register (FF FFF0 0188)

SC ADDRisaread-only register. It isnot cleared or unlocked by reset. The address
isloaded into this register every timethe Scacheis accessed if one of the error bitsin
the SC_STAT register isnot set. If an Scache tag or data parity error is detected, then
thisregister islocked preventing further updates. Thisregister is unlocked whenever
SC_STAT isread.

For Scache read transactions, address bits <39:04> are valid to identify the address
being driven to the Scache. Address bit <04> identifies which octaword was
accessed first. For each Scache lookup, there is one tag access and two data access
cycles. If thereis ahit, two octawords are read out in consecutive CPU cycles. Tag
parity error is detected only while reading the first octaword. However, data parity
error can be detected on either of the two octawords. SC_ADDR<39> isaways zero.

If SC_CTL<00> isset (force hit mode), SC_ADDR isused for storing the Scache tag
and status bits. For each tag in the Scache, there are unique valid, shared, and dirty
bits for a 32-byte subblock, and modify bits for each octaword (16 bytes). Thereisa
single tag and a parity bit for two consecutive 32-byte subblocks. In force hit mode,
only reads and probes |oad tag and status into the SC_ADDR register. In this mode,
tag and data parity checking are disabled and the SC_ADDR and SC_STAT registers
are not locked on an error.

In force hit mode, to write the Scache and read back the same block and correspond-
ing tag status bits, aminimum of 5-cycle spacing is required between the Scache
write and read of the SC_ADDR or SC_STAT.

Figure 5-50 and Table 5-29 describe the SC_ADDR register format.

Internal Processor Registers 565

External Interface Control (CBU) IPRs

Figure 5-50 Scache Address (SC_ADDR) Register

Nornal Mode
31 04 03 00
rr 111 1.1t r1rrrrrrrI1r 1t 115 1° 11+ 10 1017 17 17 T 1
SC_ADDR<38:04> RAO
I N I N (N [N (NN U (N Y S N O A | L1
63 40 39 38 32
r 1111 1. 1T 1117111111171 T 17T 11 T 1T 1 1T 1 1
RAO 0 SC_ADDR<38:04>
I N [N N I [N N (N NS ([N A T T N Y T T |

I— RAZ

31 15 14 13 12 11 10 09 08 07 05 04 03 00
r 1 1 1 T 1 r 1 1 1 1 T 1T 11 T T T 1 T 1 T 1 1
TAG<38:15> M1 MO |D1 S1V1|DO0 SO VO|TP RAO
N I I I T T T Y T |]] L1 L1 L1
63 40 39 38 32
rrrrrrrrrr1rT Tt 1T 11T 17 T "1T"17 71T "1T"7T" 1T T 1
RAO 0 TAG<38:15>
N I [N I T TN I T Y O O Y N | I I I N
I— RAZ
HLO028

5-66 Internal Processor Registers

External Interface Control (CBU) IPRs

Table 5-29 Scache Address Register Fields

Name

Extent

Type Description

Normal Mode

SC ADDR<38:04> <38:04> RO Scache address.

Force Hit Mode

TP <04> RO Scache tag parity hit.

VO <05> RO SubblockO tag valid bit.

0 <06> RO SubblockO tag shared hit.

DO <07> RO SubblockO tag dirty bit.

Vi <08> RO Subblock1 tag valid bit.

S1 <09> RO Subblock1 tag shared hit.

D1 <10> RO Subblock1 tag dirty bit.

MO <12:11> RO Octawords modified for subblockO.
M1 <14:13> RO Octawords modified for subblockl.
TAG<38:15> <38:15> RO Scache tag.

Internal Processor Registers 5-67

External Interface Control (CBU) IPRs

5.3.4 Bcache Control (BC_CONTROL) Register (FF FFF0 0128)

BC _CONTROL isawrite-only register. It is used to enable and control the external
Bcache. Figure 5-51 and Table 5-30 describe the BC_CONTROL register format.
The bits in this register are initialized to the value indicated in Table 7-2 on reset, but
not on timeout reset.

Figure 5-51 Bcache Control (BC_CONTROL) Register
31 30 29 28 27 26 25 24 19 18 17 16 15 14 13 12 08 07 06 05 04 03 02 01 00

1 1 1 1 1 1 1
I— BC_ENABLED
ALLOC_CYC

EI_CMD_GRP2
EI_CMD_GRP3
CORR_FILL_DAT
VTM_FIRST
EI_ECC_OR_PARITY
BC_FHIT
BC_TAG_STAT<4:0>
BC_BAD_DAT
EI_DIS_ERR
PIPE_LATCH
BC_WAVE<1:0>
PM_MUX_SEL<5:0>
MBZ
FLUSH_SC_VTM
MBZ

DIS_SYS_PAR
KEEP_CLN_SHR
WR_RD_SPC
BC_WAVE<2>

i1 1 1
TP C TVTSTQH
Lo Ll

63 36 35 3433 32

L AuTo DACK

DIS_E_W._IO

DLY ST CLK
VTM_WRT BACK

LJ-05359.A14

5-68 Internal Processor Registers

External Interface Control (CBU) IPRs

Table 5-30 Bcache Control Register Fields (Sheet 1 of 5)

Name

Extent

Type

Description

BC_ENABLED!

ALLOC_CYC

El_CMD_GRP2

El_CMD_GRP3

CORR FILL_
DAT

<00>

<01>

<02>

<03>

<04>

WQO,0

WO,0

WQO,0

wWQO,0

WO,1

When set, the external Bcache is enabled. When clear, the
Bcacheis disabled. When the Becache is disabled, the BIU
does not perform external cache read or write transactions.

When set, the issue unit does not allocate a cycle for non-
cacheable fill data. When clear, the instruction issue unit allo-
cates acyclefor returning noncacheablefill datato be written
to the Dcache. In either case, acycleis always alocated for
cacheableinteger fill data. If thisbit isclear, the latency for all
noncacheabl e read operations increases by 1 CPU cycle.

Note: This bit must be clear before reading any CBU IPR. It
can be set when reading all other IPRs and noncacheable LDs.

When set, the optional commands, LOCK and SET DIRTY
are driven to the 21164 external interface command pinsto be
acknowledged by the system interface. When clear, the SET
DIRTY command is not driven to the command pins. It is
UNPREDICTABLE if the LOCK command is driven to the
pins. However, the system should never CACK the LOCK
command if thisbit is clear.

When set, the MB command is driven to the 21164 external
interface command pins to be acknowledged by the system
interface. When clear, the MB command is not driven to the
command pins.

Correct fill datafrom Bcache or main memory, in ECC mode.
When set, fill datafrom Bcache or main memory first goes
through error correction logic before being driven to the
Scache or Dcache. If the error is correctable, it is transparent
to the system.

When clear, fill data from Bcache or main memory is driven
directly to the Dcache before an ECC error is detected. If the
error iscorrectable, corrected datais returned again, Dcacheis
invalidated, and an error trap is taken.

This bit should be clear during normal operation.

Internal Processor Registers 5—-69

External Interface Control (CBU) IPRs

Table 5-30 Bcache Control Register Fields (Sheet 2 of 5)
Name Extent Type Description
VTM_FIRST <05> WO,1 Thishitisset for systems without avictim buffer. On a

Bcache miss, the 21164 first drives out the victimized block’s
address on the system address bus, followed by the read miss
address and command. This bit is cleared for systems with a
victim buffer. On a Bcache miss with victim, the 21164 first
drives out the read miss followed by the victim address and

command.
El_ ECC _OR_ <06> WO,1 When set, the 21164 generates or expects quadword ECC on
PARITY the data check pins. When clear, the 21164 generates or
expects even-byte parity on the data check pins.
BC_FHIT <07> WO,0 Bcache force hit. When set, and the Bcache is enabled, all ref-

erences in cached space are forced to hit in the Bcache. A
FILL to the Scache is forced to be private. Software should
turn off BC_CONTROL<02> to allow clean to private transi-
tions without going to the system.

For write transactions, the values of tag status and parity bits
are specified by the BC_TAG_STAT field. Bcache tag and
index are the address received by the BIU. The Bcache tag
RAMs are written with the address minus the Bcache index.
This bit must be zero during normal operation.

BC_TAG_ <12:08> WO This bit field is used only in BC_FHIT=1 mode to write any

STAT<4:0> combination of tag status and parity bits in the Bcache. The
parity bit can be used to write bad tag parity. These bits are
UNDEFINED on reset. This bit field must be zero during nor-
mal operation. The field encoding is as follows:

Bcache Tag Status Bit Description

BC_TAG_STAT<4> Parity for Bcache tag
BC_TAG_STAT<3> Parity for Bcache tag status bits
BC_TAG_STAT<2> Bcache tag valid bit
BC_TAG_STAT<1> Bcache tag shared bit
BC_TAG_STAT<0> Bcache tag dirty bit

5-70 Internal Processor Registers

External Interface Control (CBU) IPRs

Table 5-30 Bcache Control Register Fields (Sheet 3 of 5)

Name

Extent Type

Description

BC_BAD_DAT

El_DIS ERR

PIPE_LATCH

BC_WAVE<1:0>

<14:13> WO,0

<15> wQo,1

<16> WQO,0

<18:17> WO,0

When set, bitsin thisfield can be used to write bad datawith
correctable or uncorrectable errors in ECC mode. When bit
<13> is set, data bit <0> and <64> are inverted. When bit
<14> is set, data bit <1> and <65> are inverted. When the
same octaword is read from the Bcache, the 21164 detects a
correctable/uncorrectable ECC error on both the quadwords
based on the value of bits <14:13> used when writing. This bit
field must be zero during normal operation.

When set, this bit causes the 21164 to ignore any ECC (parity)
error on fill data received from the Bcache or main memory;
or Bcache tag or control parity error. It also ignores a system
command/address parity error. No machine check is taken
when this bit is set.

When set, this bit causes the 21164 to pipe the system control
pins (addr_bus req_h, cack_h, and dack_h) for one system
clock. Refer to Chapter 9 for timing details.

The bitsin this field combine with BC_CONTROL<31> to
form BC_WAVE<2:0>. This field determines the number of
cycles of wave pipelining that should be used during private
read transactions of the Bcache. Wave pipelining cannot be
used in 32-byte block systems.

To enable wave pipelining, BC_ CONFIG<07:04> should be
set to the latency of the Becache read.
BC_CONTROL<31,18:17> should be set to the number of
cycles to subtract from BC_CONFIG<07:04> to obtain the
Bcache repetition rate. For example, if
BC_CONFIG<07:04>=7 and BC_CONTROL<31,18:17>=2,
it takes seven cycles for valid data to arrive at the interface
pins, but anew read will start every five cycles.

Theread repetition rate must be greater than 3. For example, it
is not permitted to set BC_CONFIG<07:04>=5 and
BC CONTROL<31,18:17>=2.

The value of BC_CONTROL<31,18:17> should be added to
the normal value of BC_CONFIG<14:12> to increasethetime
between read and write transactions. This prevents awrite
transaction from starting before the last data of aread transac-
tionisreceived.

Internal Processor Registers 5-71

External Interface Control (CBU) IPRs

Table 5-30 Bcache Control Register Fields (Sheet 4 of 5)
Name Extent Type Description
PM_MUX_ <24:19> WO,0 Thebitsinthisfield are used for selecting the BIU parameters
SEL <5:0> to bedriven to the two performance monitoring countersin the

IDU. Thefield encoding is as follows:

PM_MUX_SEL<21:19> Counter 1

0x0 Scache accesses

Ox1 Scache read operations
0x2 Scache write operations
0x3 Scache victims

Ox4 Undefined

0x5 Bcache accesses

0x6 Bcache victims

Oox7 System command requests

PM_MUX_SEL<24:22> Counter 2

0x0 Scache misses

Ox1 Scache read misses

0x2 Scache write misses

0x3 Scache shared write operations

0x4 Scache write operations

0x5 Bcache misses

0x6 System invalidate operations

0ox7 System read requests
Reserved <25> WO,0 Reserved—MBZ.

5-72 Internal Processor Registers

External Interface Control (CBU) IPRs

Table 5-30 Bcache Control Register Fields (Sheet 5 of 5)

Name Extent

Type

Description

FLUSH_SC VTM <26>

Reserved <27>

DIS SYS PAR <28>

KEEP CLN_SHR <29>

WR_RD_SPC <30>

BC WAVE<2> <31>

AUTO DACK <32>

DIS B_W_IO <33>

DLY_ST CLK <34>

VTM_WRT_ <35>
BACK

WQO,0

WQO,0

wWQO,0

WQ,0

WO,0

WO,0

WO,0

WQO,0

WQO,0

WO,0

Flush Scache victim buffer. For systems without a Bcache,
when this bit is clear, the 21164 flushes the onchip victim
buffer if it hasto write back any entry from the victim buffer.
When thisbit is set, the 21164 writes only one entry back from
the victim buffer as needed. Thistends to cause read and write
operations to be batched rather than interleaved.

For systems with an asynchronous Bcache, this bit must
always be clear. For systems with a synchronous Bcache, this
bit must always be set. At power-up, this bit isinitialized to a
value of 0.

Reserved-MBZ.

When set, the 21164 does not check parity on the system com-
mand/address bus. However, correct parity will still be gener-
ated.

When set, this bit causes READ DIRTY commandsto change
the state of the cache block to CLEAN/SHARED.

When this bit is set, the 21164 inserts one CPU cycle of delay
when switching between a Bcache write and a Bcache read.

This bit isthe part of the field BC_WAVE<2:0>, alowing
values from 0-4.

When set, this bit enables Auto DACK. For details, see
Section 4.11.6.

When set, this bit disables the processing of byte/word
instructionsin I/0O space.

When set, this bit delays the assertion of st_clk1 h and
st_clk2 _h one CPU cyclein all cases.

When set, this bit enables victim write-back under miss. For
details, see Section 4.11.7.

IWhen clear, the read speed (BC_RD_SPD<3:0>) and the write speed (BC_WR_SPD<3:0>) must be equal to

the sysclk to CPU clock ratio.

Internal Processor Registers 5-73

External Interface Control (CBU) IPRs

5.3.5 Bcache Configuration (BC_CONFIG) Register (FF FFFO 01C8)

BC_CONFIG isawrite-only register used to configure the size and speed of the
external Bcache array. The bitsin this register are initialized to the values indicated
in Table 5-31 on reset, but not on timeout reset. Figure 5-52 and Table 5-31 describe

the BC_CONFIG register format.

Figure 5-52 Bcache Configuration (BC_CONFIG) Register

31 2928 201918 161514 1211

08 07 040302 00

T T T T T T [T [T
IGN BC_WE_CTL<‘8:0> N
I | 1 | 1

L 8c_size<2:0>
MBZ

BC_RD_SPD<3:0>

BC_WR_SPD<3:0>

BC_RD_WR_SPC<2:0>

MBZ

FILL_WE_OFFSET<2:0>
MBZ

Table 5-31 Bcache Configuration Register Fields

MI 012926 Al4

(Sheet 1 of 3)

Name

Extent Type Description

BC_SIZE<2:.0> <02:00> WO,1 Thebhitsinthisfield are used to indicate the size of the
Bcache. At power-up, thisfield isinitialized to avalue rep-
resenting a IMB Bcache. The field encoding is as follows:

5-74

BC_SIZE<2:0>

Size

000
001
010
011
100
101
110
11

No Bcache present
1MB

2MB

4MB

8MB

16MB

32MB

64MB

Internal Processor Registers

External Interface Control (CBU) IPRs

Table 5-31 Bcache Configuration Register Fields (Sheet 2 of 3)
Name Extent Type Description
Reserved <03> WO,0 Must bezero (MBZ).

BC RD_SPD<3:0> <07:04> WO/4

BC_WR_SPD<3:0> <11:08> WO/4

BC_RD_WR_
SPC<2:0>

Reserved

<14:12> WO,7

<15>

wWO,0

Thebitsin thisfield are used to indicate to the BIU the read
access time of the Bcache, measured in CPU cycles, from
the start of aread transaction until datais valid at the input
pins. The Bcache read speed must be within 4 to 10 CPU
cycles. At power-up, thisfield isinitialized to avalue of 4
CPU cycles.

The Bcache read and write speeds must be within 3 cycles
of each other
(absolute value = (BC_RD_SPD - BC_WR_SPD) < 4).

For systems without a Bcache, the read speed must be equal
to the sysclk to CPU clock ratio. In this configuration,
BC_RD_SPD can be set to avalue ranging from 3 to 15.

Thebitsinthisfield are used to indicate to the BIU the write
time of the Bcache, measured in CPU cycles. The Bcache
write speed must be within 4 to 10 CPU cycles. At power-
up, thisfield isinitialized to avaue of 4 CPU cycles.

For systems without a Bcache, the write speed must be
equal to sysclk to CPU clock ratio.

The bitsin thisfield are used to indicate to the BIU the
number of CPU cycles to wait when switching from a pri-
vate read to a private write Bcache transaction. For other
data movement commands, such as READ DIRTY or FILL
from main memory;, it is up to the system to direct system-
wide datamovement in away that is safe. A value of 1 must
be the minimum value for thisfield.

The BIU alwaysinserts 3 CPU cycles between private
Bcache read and private Bcache write transactions, in addi-
tion to the number of CPU cycles specified by thisfield.
The maximum value (BC_RD_WR_SPC+3) should not be
greater than the Bcache READ speed when Bcache is
enabled.

At power-up, thisfield isinitialized to aread/write spacing
of 7 CPU cycles.

Must be zero (MBZ).

Internal Processor Registers 5-75

External Interface Control (CBU) IPRs

Table 5-31 Bcache Configuration Register Fields (Sheet 3 of 3)

Name

Extent Type

Description

FILL_WE_ <18:16> WO,1
OFFSET<2:0>

Reserved <19> WQO,0
BC_WE_CTL<8:0> <28:20> WO,0

Reserved <63:29> WO

Bcache write-enabl e pul se offset, from the sys_clk_outn_x
edge, for FILL transactions from the system. Thisfield does
not affect private write transactions to Becache. It is used
during FILLs from the system when writing the Bcache to
determine the number of CPU cycles to wait before shifting
out the contents of the write pulse field.

Thisfield is programmed with avaluein the range of 1to 7
CPU cycles. It must never exceed the sysclk ratio. For
example, if the sysclk ratiois 3, thisfield must not be larger
than 3. At power-up, thisfield isinitialized to a write offset
value of 1 CPU cycle.

Must be zero (MBZ).

Bcache write-enable control. Thisfield isused to control the
timing of the write-enable during awrite or FILL transac-
tion. If the bit is set, the write pulseis asserted. If the bitis
clear, thewrite pulseis not asserted. Each bit correspondsto
a CPU cycle. The least-significant bit corresponds to the
CPU cyclein which the 21164 starts to drive the index for
the write operation.

For private Bcache write and shared-write transactions, this
field is used to assert the write pulse without any write-
enable pulse offset asindicated by the
FILL_WE_OFFSET<2:0> field.

For FILLsto the Bcache, the FILL_WE_OFFSET<2:0>
field determines the number of CPU cyclesto wait before
asserting the write pulse as programmed in thisfield.

At power-up, al bitsin thisfield are cleared.
Ignored.

5-76

Internal Processor Registers

External Interface Control (CBU) IPRs

5.3.6 Bcache Tag Address (BC_TAG_ADDR) Register (FF FFFO 0108)

BC TAG_ADDR isaread-only register. Unlesslocked, the BC_TAG_ADDR regis-
ter isloaded with the results of every Bcache tag read. When atag or tag control par-
ity error occurs, this register is locked against further updates. Software may read
this register by using the 21164-specific I/O space address instruction. Thisregister
is unlocked whenever the EI_STAT register isread, or the user entersBC_FHIT
mode. It is not unlocked by reset.

Note: The correct address is not loaded into BC_TAG_ADDR if atag parity

error is detected when servicing a system command from the Bcache.

Unused tag bitsin the TAG field of this register are always zero, based on the size of
the Bcache as determined by the BC_SIZE field of the BC_CONTROL register.
Figure 5-53 and Table 5-32 describe the BC_TAG_ADDR register format.

Figure 5-53 Bcache Tag Address (BC_TAG_ADDR) Register

31

2019181716 15141312 11 00

[
| |

1 B?_'I]AG<3?:2?>

T T T T | [
RAO
| 1 | | | 1 |

HIT
TAGCTL_P
TAGCTL_D
TAGCTL_S
TAGCTL_V
TAG_P
BC_TAG<38:20>

39 38 32

[T T T
BC_TAG<38:20>
I A |

BC_TAG<38:20>

LJO3526A.Al4

Internal Processor Registers 5-77

External Interface Control (CBU) IPRs

5-78

Table 5-32 Bcache Tag Address Register Fields

Name Extent Type Description

HIT <12> RO If set, Bcache access resulted in a hit in the Becache,
TAGCTL_P <13> RO Value of the parity bit for the Bcache tag status hits.
TAGCTL_D <14> RO Value of the Bcache TAG dirty bit.

TAGCTL_S <15> RO Value of the Bcache TAG shared hit.

TAGCTL_V <16> RO Value of the Bcache TAG valid hit.

TAG P <17> RO Value of the tag parity bit.

BC_TAG<38:20> <38:20> RO

Bcache tag bits as read from the Bcache. Unused
bits are read as zero.

Internal Processor Registers

External Interface Control (CBU) IPRs

5.3.7 External Interface Status (EI_STAT) Register (FF FFFO 0168)

El_STAT isaread-only register. Any PALcode read access of this register unlocks
and clearsit. A read access of EI_STAT also unlocksthe EI_ADDR, BC_TAG, and
FILL_ SYN registers subject to some restrictions. The EI_STAT register is not
unlocked or cleared by reset.

Fill datafrom Bcache or main memory could have correctable (c) or uncorrectable
(u) errorsin ECC mode. In parity mode, fill data parity errors are treated as uncor-
rectable hard errors. System address/'command parity errors are always treated as
uncorrectable hard errors irrespective of the mode. The sequence for reading,
unlocking, and clearing EI_ADDR, BC_TAG, FILL_SYN, and EI_STAT isasfol-
lows:

1. Read El_ADDR, BC TAG, and FILL_SYN in any order. Does not unlock or
clear any register.
2. Read EI_STAT register. Reading thisregister unlocks EI_ADDR, BC_TAG, and

FILL_SYN registers. EI_STAT isalso unlocked and cleared when read, subject
to conditions described in Table 5-33.

Loading and locking rules for external interface registers are defined in Table 5-33.

Note: If the first error is correctable, the registers are loaded but not locked. On
the second correctable error, registers are neither loaded nor locked.

Registers are locked on the first uncorrectable error except the second
hard error bit. The second hard error bit is set only for an uncorrectable
error followed by an uncorrectable error. If a correctable error follows an
uncorrectable error, it is not logged as a second error. Bcache tag parity
errors are uncorrectable in this context.

Internal Processor Registers 5-79

External Interface Control (CBU) IPRs

Table 5-33 Loading and Locking Rules for External Interface Registers

e e homor Pogser | ASUON W EILSTAT s Read
0 0 Not possible No No Clears and unlocks everything.
1 0 Not possible Yes No Clears and unlocks everything.
0 1 0 Yes Yes Clears and unlocks everything.
1 1 0 Yes Yes Clear (c) bit does not unlock.
Transition to (0,1,0) state.
0 1 1 No Already Clears and unlocks everything.
locked
1t 1 1 No Already Clear (c) bit does not unlock.

locked Transition to (0,1,1) state.

These are special cases. It is possible that when EI_ADDR isread, only the correctable error bit is set and the
registers are not locked. By the time El_STAT is read, an uncorrectable error is detected and the registers are
loaded again and locked. Thevalue of EI_ADDR read earlier isno longer valid. Therefore, for the (1,1,x) case,
when El_STAT isread correctable, the error bit is cleared and the registers are not unlocked or cleared. Soft-
ware must reexecute the IPR read sequence. On the second read operation, error bitsarein (0,1,x) state, al the
related IPRs are unlocked, and EI_STAT iscleared.

The EI_STAT register is aread-only register used to control external interface regis-
ters. Figure 5-54 and Table 5-34 describe the EI_STAT register format.

Figure 5-54 External Interface Status (EI_STAT) Register

31 30 29 28 27 24 23 00
L rrrrrrrrrrrrrrrr T T T 1T T T 1T 1T"

CHIP_ID<3:0>
BC_TPERR
BC_TC_PERR
EI_ES
COR_ECC_ERR

63 36 35 34 33 32

| 1 | 1 | | 1 | 1 | | 1 | 1 | 1 | | 1
I— UNC_ERR_ERR
EI_PAR_ERR

FIL_IRD
SEO_HRD_ERR

HLO029

5-80 Internal Processor Registers

External Interface Control (CBU) IPRs

Table 5-34 El_STAT Register Fields

Name Extent Type Description

CHIP_ID<3:0> <27:24> RO Read as “5.” Future update revisions to the chip may return new
unique values.

BC_TPERR <28> RO Indicates that a Bcache read transaction encountered bad parity
in the tag address RAM.

BC_TC_PERR <29> RO Indicates that a Bcache read transaction encountered bad parity
in the tag control RAM.

El_ES <30> RO When set, this bit indicates that the error source is fill data from

COR_ECC_ERR <31>

UNC_ECC_ERR <32>
El_PAR_ERR

<33>

FIL_IRD <34>

SEO_HRD_ERR <35>

RO

RO

RO

RO

RO

main memory or a system address/command parity error.

When clear, the error source is fill data from the Bcache. This bit
is only meaningful when COR_ECC_ERR, UNC_ECC_ ERR,
or EI_PAR_ERR is set.

This bit is not defined for a Bcache tag error (BC_TPERR) or a
Bcache tag control parity error (BC_TC_ERR).

Correctable ECC error. This bit indicates that a fill data received
from outside the CPU contained a correctable ECC error.

Uncorrectable ECC error. This bit indicates that fill data
received from outside the CPU contained an uncorrectable ECC
error. In the parity mode, it indicates data parity error.

External interface command/address parity error. This bit indi-
cates that an address and command received by the CPU has a
parity error.

This bit has meaning only when one of the ECC or parity error
bits is set. It is set to indicate that the error occurred during an
I-ref FILL and clear to indicate that the error occurred during a
D-ref FILL.

This bit is not defined for a Bcache tag error (BC_TPERR) or a
Bcache tag control parity error (BC_TC_ERR).

Second external interface hard error. This bit indicates that a
FILL from Bcache or main memory, or a system address/com-
mand received by the CPU, has a hard error while one of the
hard error bits in the EI_STAT register is already set.

Internal Processor Registers 5-81

External Interface Control (CBU) IPRs

5.3.8 External Interface Address (EI_ADDR) Register (FF FFFO0 0148)

El_ADDR isaread-only register that contains the physical address associated with
errorsreported by the EI_STAT register. Its content is meaningful only when one of
the error bitsisset. A read of EI_STAT unlocksthe EI_ ADDR register. Figure 5-55
shows the EI_ADDR register format.

Figure 5-55 External Interface Address (EI_ADDR) Register

31 04 03 00
T 17 T 117 1T T T T T T T T T T 7

El_ADDR<39:4> ‘ RAO |
e I A

T T 17T
El_ADDR<39:4> |
i Y N

O
S -
o

5-82 Internal Processor Registers

External Interface Control (CBU) IPRs

5.3.9 Fill Syndrome (FILL_SYN) Register (FF FFFO 0068)

FILL_SYN isa16-hit read-only register. It is loaded but not locked on a correctable
ECC error, so that another correctable error does not reload it. It isloaded and locked
if an uncorrectable ECC error or parity error isrecognized during a FILL from
Bcache or main memory, as shown in Table 5-33. The FILL_SYN register is

unlocked when the EI_STAT register is read. This register is not unlocked by reset.

If the 21164 is in ECC mode and an ECC error is recognized during a cache fill
transaction, the syndrome bits associated with the bad quadword are loaded in the
FILL_SYN register. FILL_SYN<07:00> contains the syndrome associated with the
lower quadword of the octaword. FILL_SYN<15:08> contains the syndrome associ-
ated with the higher quadword of the octaword. A syndrome value of 0 means that no

errors were found in the associated quadword.

If the 21164 is in parity mode and a parity error is recognized during a cache fill
transaction, the FILL_SYN register indicates which of the bytes in the octaword has

bad parity. FILL_SYNDROME<07:00> is set appropriately to indicate the bytes

within the lower quadword that were corrupted. Likewise, FILL_SYN<15:08> is set
to indicate the corrupted bytes within the upper quadword. Figure 5-56 shows the

FILL_SYN register format.

Figure 5-56 Fill Syndrome (FILL_SYN) Register

Internal Processor Registers 5-83

External Interface Control (CBU) IPRs

Table 5-35 lists the syndromes associated with correctable single-bit errors.

Table 5-35 Syndromes for Single-Bit Errors (Sheet 1 of 2)
Data Bit Syndromeqg Check Bit Syndromeqg
00 CE 00 01
01 CB 01 02
02 D3 02 04
03 D5 03 08
04 D6 04 10
05 D9 05 20
06 DA 06 40
07 DC 07 80
08 23
09 25
10 26
1 29
12 2A
13 2C
14 31
15 34
16 OE
17 0B
18 13
19 15
20 16
21 19
22 1A
23 1C
24 E3
25 E5
26 E6
27 E9
28 EA
29 EC
30 F1
31 F4
32 4F

5-84 Internal Processor Registers

External Interface Control (CBU) IPRs

Table 5-35 Syndromes for Single-Bit Errors (Sheet 2 of 2)
Data Bit Syndromeqg Check Bit Syndromeqg
33 4A
34 52
35 54
36 57
37 58
38 5B
39 5D
40 A2
41 A4
42 A7
43 A8
44 AB
45 AD
46 BO
47 BS
48 8F
49 8A
50 92
51 94
52 97
53 98
54 9B
55 9D
56 62
57 64
58 67
59 68
60 6B
61 6D
62 70
63 75

Internal Processor Registers 5-85

PALcode Storage Registers

5.4 PALcode Storage Registers

The 21164 |EU register file has eight extra registers that are called the PAL shadow
registers. The PALshadow registers overlay R8 through R14 and R25 when the CPU
isin PALmode and | CSR<SDE> is set. Thus, PAL code can consider R8 through R14
and R25 aslocal scratch. PALshadow registers cannot be written in the last two
cycles of a PALcode flow. The normal state of the CPU is ICSR<SDE> = ON.

PAL code disables SDE for the unaligned trap and for error flows.

The IDU holds a bank of 24 PALtemp registers. The PALtemp registers are accessed
with the HW_MTPR and HW_MFPR instructions. The latency from a PALtemp
read operation to availability is one cycle.

5-86 Internal Processor Registers

5.5 Restrictions

Restrictions

The following sectionslist al known register access restrictions. A software tool
called the PALcode violation checker (PVC) isavailable. Thistool can be used to
verify adherence to many of the PAL code restrictions.

5.5.1 CBU IPR PALcode Restrictions

Table 5-36 describes the CBU IPR PALcode restrictions.

Table 5-36 CBU IPR PALcode Restrictions

Condition

Restriction

Storeto SC_CTL, BC_CONTROL, BC_CONFIG
except if no bit is changed other than

BC CONTROL<ALLOC CYC>,

BC _CONTROL<PM_MUX_SEL>, or

BC _CONTROL<DBG_MUX_SEL>.

Storeto BC_CONTROL that only changes bits
BC _CONTROL<ALLOC CYC>,
BC_CONTROL<PM_MUX_SEL>, or

BC _CONTROL<DBG MUX_SEL>.

Load from SC_STAT.
Load from EI_STAT.

Any CBU IPR address.

Any undefined CBU IPR address.
Scache or Bcache in force hit mode.
Clearing of SC FHIT in SC_CTL.

Clearing of BC_FHIT in BC_CONTROL.

Load from any CBU IPR.

Must be preceded by MB, must be followed by
MB, must have no concurrent cacheable | stream
references or concurrent system commands.

Must be preceded by MB and must be followed by
MB.

Unlocks SC_ADDR and SC_STAT.

Unlocks EI_ADDR, EI_STAT, FILL_ SYN, and
BC_TAG_ADDR.

No LDx_L or STx_C.
No store instructions.
No STx_C to cacheable space.

Must be followed by MB, read operation of
SC_STAT, then MB prior to subsequent store.

Must be followed by MB, read operation of
El_STAT, then MB prior to subsequent store.

BC_CONTROL<01> (ALLOC_CY CLE) must be
clear.

Internal Processor Registers 5-87

Restrictions

5.5.2 PALcode Restrictions—Instruction Definitions

MTU instructions are: LDx, LDQ U, LDx_L, HW_LD, STx, STQ U, STx C,
HW_ST, and FETCHX.

Virtual MTU instructions are: LDx, LDQ_U, LDx_L, HW_LD (virtual), STx,
STQ U, STx_C, HW_ST (virtual), and FETCHXx.

Load instructions are: LDx, LDQ_U, LDx_L, and HW_LD.
Store instructions are: STx, STQ_U, STx_C, and HW_ST.
Table 5-37 lists PALcode restrictions.

Table 5-37 PALcode Restrictions Table (Sheet 1 of 5)
Y if
checked
The following in cycle 0: Restrictions (Note: Numbers refer to cycle number): by pvct
CALL_PAL entry No HW_REI or HW_REI_STALL incycleO. Y
No HW_MFPR EXC_ADDR incycle0,1. Y
PAL shadow write instruc- No HW_REI or HW_REI_STALL in0, 1. Y
tion
HW_LD, lock bit set PAL must sot to EO.
No other MTU instruction in O.
HW_LD, VPTE bit set No other virtual referencein O.
Any load instruction No MTU HW_MTPR or HW_MFPR in 0. Y
No HW_MFPR MAF MODE in 1,2 (DREAD_PENDING Y
may not be updated).
No HW_MFPR DC_PERR_STAT in 1,2. Y
No HW_MFPR DC_TEST_TAG dotted in 0.
Any store instruction No HW_MFPR DC_PERR_STAT in1,2. Y
No HW_MFPR MAF _MODEin 1,2 (WB_PENDING may Y
not be updated).
Any virtual MTU instruction No HW_MTPR DTB_ISin 1. Y
Any MTU instruction or HW_MTPR any IDU IPR not aborted in 0,1 (except that Y
WMB, if it traps EXC_ADDR is updated with correct faulting PC).
HW_MTPR DTB_IS not aborted in 0,1. Y
Any IDU trap except HW_MTPR DTB_ISnot aborted in 0,1.
PC-mispredict, ITBMISS,
or OPCDEC dueto user
mode

5-88 Internal Processor Registers

Restrictions

Table 5-37 PALcode Restrictions Table

(Sheet 2 of 5)

The following in cycle 0:

Restrictions (Note: Numbers refer to cycle number):

Y if
checked
by PvCt

HW_REI_STALL

HW_MTPR any undefined
IPR number

ARITH trap entry
Machine check trap entry

HW_MTPR any IDU IPR
(including PALtemp regis-
ters)

HW_MTPR ASTRR,
ASTER

HW_MTPR SIRR
HW_MTPR EXC_ADDR

HW_MTPR
IC_FLUSH_CTL

HW_MTPR ICSR: HWE
HW_MTPR ICSR: FPE

HW_MTPR ICSR: SPE,
FMS

HW_MTPR ICSR: SPE
HW_MTPR ICSR: SDE

HW_MTPR ICSR: BSE

HW_MTPR ITB_ASN

HW_MTPRITB_PTE

Only one HW_REI_STALL inan aligned block of four
instructions.

Illegal in any cycle.

No HW_MFPR EXC_SUM or EXC_MASK in cycle0,1.

No register file read or write accessin 0,1,2,3,4,5,6,7.

No HW_MFPR EXC_SUM or EXC_MASK in cycle0,1.

No HW_MFPR same IPR in cycle 1,2.
No floating-point conditional branchin 0.
No FEN or OPCDEC instructionin O.

No HW_MFPR INTID in 0,1,2,3,4,5.
No HW_REI in0,1.

NoHW_MFPRINTID in0,1,2,3,4.
No HW_REI incycle 0,1.
Must be followed by 44 inline PAL code instructions.

No HW_REI in0,1,2,3.

No floating-point instructionsin 0, 1, 2, 3.
No HW_REI in0,1,2.

If HW_REI_STALL, then no HW_REI_STALL in 0,1.
If HW_REI then no HW_REI in 0,1,2,3,4.

Must flush Icache.

No PALshadow read/write accessin 0,1,2,3.
NoHW_REI in0,1,2.

No LDBU, LDWU, STB, STW, SEXTB, SEXTW in
0,1,2,3.

Must be followed by HW_REI_STALL.
NoHW_REI_STALL incycle0,1,2,3,4.
NoHW _MTPRITB_ISin0,1,2,3.

Must be followed by HW_REI_STALL.

< =<

< < <<

Internal Processor Registers 5-89

Restrictions

Table 5-37 PALcode Restrictions Table (Sheet 3 of 5)
Y if
checked
The following in cycle 0: Restrictions (Note: Numbers refer to cycle number): by PvCt
HW_MTPRITB_IAR, Must be followed by HW_REI_STALL.
ITB_IS, ITB_IA
HW_MTPRITB_IS HW_REI_STALL must be in the same Istream octaword.
HW_MTPR IVPTBR No HW_MFPR IFAULT_VA_FORM in0,1,2. Y
HW_MTPR PAL_BASE No CALL_PAL in0,1,2,3,4,5,6,7. Y
No HW_REI in 0,1,2,3,4,5,6. Y
HW_MTPR ICM No HW_REI in 0,1,2. Y
No private CALL_PAL in0,1,2,3.
HW_MTPRCC,CC_ CTL NoRPCCin0,1,2. Y
No HW_REl in 0,1. Y
HW_MTPR DC FLUSH No MTU instructionsin 1,2. Y
No outstanding fillsin O.
NoHW_REI in0,1. Y
HW_MTPR DC_MODE No MTU instructionsin 1,2,3,4. Y
NoHW_MFPR DC MODEin1,2. Y
No outstanding fillsin O.
No HW_REI in0,1,2,3. Y
NoHW_REI_STALL in0,1. Y
HW_MTPR No load or storeinstructionsin 1. Y
DC _PERR_STAT NoHW_MFPR DC_PERR _STAT in1,2. Y
HW_MTPR NoHW_MFPR DC TEST TAGin1,2,3. Y
DC TEST CTL NoHW_MFPR DC _TEST_CTL issued or slotted in 1,2.
HW_MTPR No outstanding DC fillsin 0.
DC TEST TAG NoHW_MFPR DC TEST TAGin1,23. Y
HW_MTPR DTB_ASN No virtual MTU instructionsin 1,2,3. Y
No HW_REI in 0,1,2. Y
HW_MTPR DTB_CM, No virtual MTU instructionsin 1,2. Y
ALT_MODE No HW_REI in 0,1. Y
HW_MTPR DTB_PTE No virtual MTU instructionsin 2. Y
NoHW_MTPR DTB_ASN, DTB_CM, ALT_MODE, Y

5-90

MCSR, MAF_MODE, DC_MODE, DC_PERR_STAT,
DC_TEST_CTL, DC_TEST_TAGin2.

Internal Processor Registers

Restrictions

Table 5-37 PALcode Restrictions Table (Sheet 4 of 5)
Y if
checked

The following in cycle 0: Restrictions (Note: Numbers refer to cycle number): by PvCt
HW_MTPR DTB_TAG Novirtual MTU instructionsin 1,2,3. Y
NoHW _MTPRDTB_TAGin1. Y
NoHW_MFPR DTB_PTEin 1,2 Y
NoHW_MTPRDTB_ISin1,2. Y
NoHW _REI in0,1,2. Y
HW_MTPR DTB_IAPR, No virtual MTU instructionsin 1,2,3. Y
DTB_IA NoHW _MTPRDTB_ISin0,1,2. Y
NoHW_REI in0,1,2. Y
HW_MTPR DTB_IA NoHW MFPRDTB_PTEin 1. Y
HW_MTPR MAF_ MODE NoMTU instructionsin1,2,3. Y
NoWMBin1,2,3. Y
No HW_MFPR MAF_MODE in 1,2. Y
NoHW_REI in0,1,2. Y
HW_MTPR MCSR No virtual MTU instructionsin 0,1,2,3,4. Y
NoHW_MFPRMCSRin 1,2. Y
NoHW_MFPR VA _FORM in1,2,3. Y
NoHW _REIin0,1,2,3. Y
NoHW _REI STALL in0,1. Y
HW_MTPR MVPTBR NoHW_MFPRVA_FORM in1,2. Y
HW_MFPRITB_PTE NoHW_MFPRITB_PTE TEMPin 1,2,3. Y

Internal Processor Registers 5-91

Restrictions

Table 5-37 PALcode Restrictions Table (Sheet 5 of 5)
Y if
checked

The following in cycle 0: Restrictions (Note: Numbers refer to cycle number): by PvCt

HW_MFPR
DC TEST_TAG

HW_MFPR DTB_PTE

HW_MFPR VA

No outstanding DC fillsin 0.

NoHW_MFPR DC _TEST _TAG_TEMP issued or dotted
inl.

No LDx instructions slotted in O.

NoHW _MTPR DC _TEST CTL between HW_MFPR
DC_TEST_TAG and HW_MFPR DC_TEST _
TAG_TEMP.

No MTU instructionsin 0,1.

NoHW _MTPRDC TEST CTL,DC TEST TAGinO,1.
NoHW_MFPR DTB_PTE _TEMP issued or slotted in
1,2,3.

NoHW _MFPRDTB_PTEin 1.

No virtual MTU instructionsin 0,1,2.

Must be donein ARITH, MACHINE CHECK,
DTBMISS SINGLE, UNALIGN, DFAULT traps and
ITBMISS flow after the VPTE load.

1PAL code violation checker.

5-92 Internal Processor Registers

6

Privileged Architecture Library Code

This chapter describes the 21164 privileged architecture library code (PALcode).
The chapter is organized as follows:

e PALcode description

¢ PALmode environment

e |Invoking PALcode

* PALcode entry points

* Required PAL code function codes

e 21164 implementation of the architecturally reserved opcodes

6.1 PALcode Description

Privileged architecture library code (PALcode) is macrocode that provides an archi-
tecturally defined operating-system-specific programming interface that is common
across all Alpha microprocessors. The actual implementation of PALcode differsfor
each operating system.

PAL code runs with privileges enabled, instruction stream mapping disabled, and
interrupts disabled. PAL code has privilege to use five special opcodes that allow
functions such as physical data stream references and internal processor register
(IPR) manipulation.

PAL code can be invoked by the following events:

* Reset

e System hardware exceptions (MCHK, ARITH)
* Memory-management exceptions

* Interrupts

e CALL_PAL instructions

Privileged Architecture Library Code 6-1

PALmMode Environment

PAL code has characteristics that make it appear to be a combination of microcode,
ROM BIOS, and system service routines, though the analogy to any of these other
itemsis not exact. PAL code exists for several mgjor reasons:

* There are some necessary support functions that are too complex to implement
directly in a processor chip’'s hardware, but that cannot be handled by a normal
operating system software routine. Routines to fill the translation buffer (TB),
acknowledge interrupts, and dispatch exceptions are some examples. In some
architectures, these functions are handled by microcode, but the Alpha architec-
ture is careful not to mandate the use of microcode so as to allow reasonable chip
implementations.

e There are functions that must run atomically, yet involve long sequences of
instructions that may need complete access to al the underlying computer hard-
ware. An example of thisis the sequence that returns from an exception or inter-
rupt.

* There are someinstructions that are necessary for backward compatibility or
ease of programming; however, these are not used often enough to dedicate them
to hardware, or are so complex that they would jeopardize the overall perfor-
mance of the computer. For example, an instruction that does a VAX style inter-
locked memory access might be familiar to someone used to programming on a
CISC machine, but is not included in the Alpha architecture. Another exampleis
the emulation of an instruction that has no direct hardware support in a particular
chip implementation.

In each of these cases, PAL code routines are used to provide the function. The rou-
tines are nothing more than programs invoked at specified times, and read in as
Istream code in the same way that all other Alpha code is read. Once invoked, how-
ever, PALcode runsin a special mode called PALmode.

6.2 PALmode Environment

PALcoderunsin aspecial environment called PALmode, defined as follows:

e |stream memory mapping is disabled. Because the PALcode is used to imple-
ment translation buffer fill routines, | stream mapping clearly cannot be enabled.
Dstream mapping is still enabled.

* The program has privileged access to all the computer hardware. Most of the
functions handled by PAL code are privileged and need control of the lowest lev-
els of the system.

Privileged Architecture Library Code

Invoking PALcode

* Interrupts are disabled. If along sequence of instructions need to be executed
atomically, interrupts cannot be allowed.

An important aspect of PALcodeisthat it uses normal Alphainstructionsfor most of
its operations; that is, the sameinstruction set that nonprivileged Alpha programmers
use. There are afew extrainstructions that are only available in PALmode, and will
cause adispatch to the OPCDEC PAL code entry point if attempted while not in
PALmode. The Alpha architecture allows some flexibility in what these specia
PALmode instructions do. In the 21164 the special PALmode-only instructions per-
form the following functions:

e Read or write internal processor registers (HW_MFPR, HW__MTPR).

e Perform memory load or store operations without invoking the norma memory-
management routines (HW_LD, HW_ST).

* Return from an exception or interrupt (HW_REI) .

When executing in PALmode, there are certain restrictions for using the privileged
instructions because PALmode gives the programmer compl ete access to many of
theinternal details of the 21164. Refer to Section 6.6 for information on these special
PALmode instructions.

Caution: Itispossibleto cause unintended side effects by writing what appearsto
be perfectly acceptable PALcode. As such, PALcode is not something
that many userswill want to change.

6.3 Invoking PALcode

PALcodeisinvoked at specific entry points, under certain well-defined conditions.
These entry points provide access to a series of callable routines, with each routine
indexed as an offset from a base address. The base address of the PALcodeis pro-
grammable (stored in the PAL_BASE IPR), and is normally set by the system reset
code. Refer to Section 6.4 for additional information on PAL code entry paints.

PC<00> is used as the PALmode flag both to the hardware and to PAL code itself.
When the CPU enters a PALflow, the IDU sets PC<00>. This bit remains set as
instructions are executed in the PAL Istream. The IDU hardware ignores this and
behaves asif the PC were still longword aligned for the purposes of Istream fetch
and execute. On HW_REI, the new state of PALmodeis copied from
EXC_ADDR<Q0>.

Privileged Architecture Library Code 6-3

Invoking PALcode

When an event occurs that needs to invoke PAL code, the 21164 first drains the pipe-
line. The current PC isloaded into the EXC_ADDR IPR, and the appropriate PAL-
code routine is dispatched. These operations occur under direct control of the chip
hardware, and the machine is now in PALmode. When the HW_REI instruction is
executed at the end of the PAL code routine, the hardware executes ajump to the
address contained inthe EXC_ ADDR IPR. The LSB isused to indicate PALmodeto
the hardware. Generally, the LSB is clear upon return from a PALcode routine, in
which case, the hardware loads the new PC, enablesinterrupts, enables memory
mapping, and dispatches back to the user.

The most basic use of PALcode is to handle complex hardware events, and it is
called automatically when the particular hardware event is sensed. This use of PAL-
code is similar to other architectures’ use of microcode.

There are several major categories of hardware-initiated invocations of PALcode:

* Whenthe 21164 is reset, it enters PALmode and executes the RESET PAL code.
The system will remain in PALmode until aHW_ REI instruction is executed
and EXC_ADDR<Q0> is cleared. It then continues execution in non-PALmode
(native mode), as just described. It isduring thisinitial RESET PALcode exe-
cution that the rest of the low-level system initialization is performed, including
any modification to the PAL code base register.

* When asystem hardware error is detected by the 21164, it invokes one of several
PAL code routines, depending upon the type of error. Errors such as machine
checks, arithmetic exceptions, reserved or privileged instruction decode, and
datafetch errors are handled in this manner.

* When the 21164 senses an interrupt, it dispatches the acknowledgment of the
interrupt to a PAL code routine that does the necessary information gathering,
then handles the situation appropriately for the given interrupt.

* When aDstream or Istream trand ation buffer miss occurs, one of several PAL-
coderoutinesis called to perform the TB fill.

The 21164 |EU register file has eight extra registers that are called the PAL shadow
registers. The PALshadow registers overlay R8, R9, R10, R11, R12, R13, R14, and
R25 when the CPU isin PALmode and ICSR<SDE> is asserted. For additional PAL
scratch, the IDU has aregister bank of 24 PALtemp registers, which are accessible
viaHW_MTPR and HW_MFPR instructions.

6—-4 Privileged Architecture Library Code

PALcode Entry Points

6.4 PALcode Entry Points

PAL code isinvoked at specific entry points. The 21164 has two types of PALcode
entry points: CALL_PAL and traps.

6.4.1 CALL_PAL Entry

CALL_PAL entry points are used whenever the IDU encountersa CALL_PAL
instruction in the instruction stream (Istream). CALL__ PAL instructions start at the
following offsets:

* Privileged CALL_PAL instructions start at offset 20004.
* Nonnprivileged CALL_PAL instructions start at offset 30004.

The CALL_PAL itself isissued into pipe E1 and the IDU stalls for the minimum
number of cycles necessary to perform animplicit TRAPB. The PC of theinstruction
immediately following the CALL_PAL isloaded into EXC_ADDR and is pushed
onto the return prediction stack.

The IDU contains special hardware to minimize the number of cyclesin the TRAPB
at the start of a CALL_PAL. Software can benefit from this by scheduling
CALL_PALssuch that they do not fall in the shadow of:

 |IMUL
* Any floating-point operate, especialy FDIV

Each CALL_PAL instruction includes a function field that will be used in the calcu-
lation of the next PC. The PAL OPCDEC flow will be started if the CALL_PAL
function field is:

* Intherange 40;¢ to 7F g inclusive.
* Greater than BF .
* Between 00,4 and 3F;¢ inclusive, and ICM<04:03> is not equal to kernel.

If no OPCDEC is detected on the CALL_PAL function, then the PC of the instruc-
tion to execute after the CALL_PAL is calculated as follows:

e PC<63.14> = PAL_BASE IPR<63:14>

e PC<13>=1

e PC<12>=CALL_PAL function field<7>

e PC<11:06> = CALL_PAL function field<5:0>

Privileged Architecture Library Code 6-5

PALcode Entry Points

e PC<05.01>=0
* PC<00> =1 (PALmMode)

The minimum number of cyclesfor aCALL_PAL executionis4.

Number of

Cycles Description

1 Minimum TRAPB for empty pipe. Typically thiswill be four cycles.

1 Issuethe CALL_PAL instruction.

2 The minimum length of a PAL flow. However, in most cases there will be

more than two cycles of work for the CALL_PAL.

6.4.2 PALcode Trap Entry Points

Chip-specific trap entry points start PALcode. (No PALcode assist isrequired for
replay and mispredict type traps.) EXC_ ADDR isloaded with the return PC and the
IDU performs a TRAPB in the shadow of the trap. The return prediction stack is
pushed with the PC of the trapping instruction for precise traps, and with some later
PC for imprecise traps.

Table 6—-1 shows the PALcode trap entry points and their offset from the PAL_BASE
IPR. Entry points are listed from highest to lowest priority. (Prioritization among the
Dstream traps works because DTBMISS is suppressed when there is a sign check
error. The priority of ITBMISS and interrupt is reversed if there is an Icache miss.)

Table 6-1 PALcode Trap Entry Points (Sheet 1 of 2)
Entry Name Offset;g Description
RESET 0000 Reset
IACCVIO 0080 I stream access violation or sign check error on PC
INTERRUPT 0100 Interrupt: hardware, software, and AST
ITBMISS 0180 Istream TBMISS

DTBMISS _SINGLE 0200 Dstream TBMISS
DTBMISS DOUBLE 0280 Dstream TBMISS during virtual page table entry

(PTE) fetch
UNALIGN 0300 Dstream unaligned reference
DFAULT 0380 Dstream fault or sign check error on virtual address

6-6 Privileged Architecture Library Code

Required PALcode Function Codes

Table 6-1 PALcode Trap Entry Points (Sheet 2 of 2)
Entry Name Offset;g Description

MCHK 0400 Uncorrected hardware error

OPCDEC 0480 Illegal opcode

ARITH 0500 Arithmetic exception

FEN 0580 Floating-point operation attempted with:

* Floating-point instructions (LD, ST, and
operates) disabled through FPE bit in the
ICSRIPR

* Floating-point | EEE operation with datatype
otherthan S, T, or Q

6.5 Required PALcode Function Codes

Table 6-2 lists opcodes required for all Alpha implementations. The notation used is
oo.ffff, where 00 is the hexadecimal 6-bit opcode and ffff is the hexadecimal 26-bit
function code.

Table 6—2 Required PALcode Function Codes

Mnemonic Type Function Code
DRAINA Privileged 00.0002
HALT Privileged 00.0000
IMB Unprivileged 00.0086

6.6 21164 Implementation of the Architecturally Reserved
Opcodes

PALcode uses the Alpha instruction set for most of its operations. Table 6-3 lists the
opcodes reserved by the Alpha architecture for implementation-specific use. These
opcodes are privileged and are only available in PALmode.

Privileged Architecture Library Code 6-7

21164 Implementation of the Architecturally Reserved Opcodes

Note: These architecturally reserved opcodes contain different optionsto the
21064 opcodes of the same names.

Table 6-3 Opcodes Reserved for PALcode

21164 Architecture

Mnemonic Opcode Mnemonic Function

HW_LD 1B PAL1B Performs Dstream load instructions.

HW_ST 1F PAL1F Performs Dstream store instructions.

HW_REI 1E PAL1E Returns instruction flow to the program counter
(PC) pointed to by EXC_ADDR IPR.

HW_MFPR 19 PAL19 Accessesthe IDU, MTU, and Dcache internal
processor registers (IPRS).

HW_MTPR 1D PAL1D Accessesthe IDU, MTU, and Dcache IPRs.

These instructions produce an OPCDEC exception if executed while not in the
PALmode environment. If ICSR<HWE> is set, these instructions can be executed in
kernel mode. Any software executing with ICSR<HWE> set must use extreme care
to obey al restrictions listed in this chapter and in Chapter 5.

Register checking and bypassing logic is provided for PALcode instructions asit is
for non-PAL code instructions, when using general-purpose registers (GPRs).

Note: Explicit software timing is required for accessing the hardware-specific
IPRs and the PAL_TEMP registers. These constraints are described in
Table 5-37.

6.6.1 HW_LD Instruction

6-8

PALcode uses the HW_LD instruction to access memory outside of the realm of nor-
mal Alpha memory management and to do special forms of Dstream loads.

Figure 6-1 and Table 6—4 describe the format and fields of the HW_LD instruction.
Data alignment traps are inhibited for HW_LD instructions.

Privileged Architecture Library Code

21164 Implementation of the Architecturally Reserved Opcodes

Figure 6-1 HW_LD Instruction Format

26 25

2120 16 1514 13 12 1110 09 00

| LOCK
VPTE
QUAD
WRTCK
ALT
PHYS

LJ-03469.A14

Table 6—-4 HW_LD Format Description

Field Value Description

OPCODE 1B4g The OPCODE field contains 1B 4.

RA Destination register number.

RB Base register for memory address.

PHYS 0 The effective address for the HW_LD isvirtual.

1 The effective address for the HW_L D is physical. Translation and
memory-management access checks are inhibited.

ALT 0 Memory-management checks use MTU IPR DTB_CM for access
checks.

1 Memory-management checks use MTU IPR ALT_MODE for
access checks.

WRTCK 0 Memory-management checks fault on read (FOR) and read access
violations.

1 Memory-management checks FOR, fault on write (FOW), read,
and write access violations.

QUAD 0 Length islongword.

1 Lengthis quadword.

VPTE 1 Flags avirtual PTE fetch. Used by trap logic to distinguish single
TBMISS from double TBMISS. Access checks are performed in
kernel mode.

LOCK 1 Load lock version of HW_LD. PAL must slot to EO pipe.

DISP Holds a 10-bit signed byte displacement.

Privileged Architecture Library Code 6-9

21164 Implementation of the Architecturally Reserved Opcodes

6.6.2 HW_ST Instruction

PAL code usesthe HW_ST instruction to access memory outside of the realm of nor-
mal Alpha memory management and to do special forms of Dstream store instruc-
tions. Figure 6—2 and Table 6-5 describe the format and fields of the HW_ST
instruction. Data alignment traps are inhibited for HW_ST instructions. The IDU
logic will always slot HW_ST to pipe EO.

Figure 6—-2 HW_ST Instruction Format

31 26 25 2120 16 1514 13 12 1110 09 00

T T T T T T
OPCODE RA RB DL qsa L
| COND
MBZ
QUAD
MBZ
ALT
PHYS

LJ-03470.A14

Table 6-5 HW_ST Format Description

Field Value Description
OPCODE 1Fy4 The OPCODE field contains 1F4g.
RA Write data register number.
RB Base register for memory address.
PHYS 0 The effective address for the HW_ST isvirtual.
1 The effective address for the HW_ST is physical. Translation and

memory-management access checks are inhibited.

ALT 0 Memory-management checks use MTU IPR DTB_CM for access
checks.
1 Memory-management checks use MTU IPR ALT_MODE for
access checks.
QUAD 0 Length islongword.
1 Length is quadword.
COND 1 Store_conditional version of HW_ST. In this case, RA iswritten
with the value of LOCK_ FLAG.
DISP Holds a 10-bit signed byte displacement.
MBZ HW_ST<13,11> must be zero.

6-10 Privileged Architecture Library Code

21164 Implementation of the Architecturally Reserved Opcodes

6.6.3 HW_REI Instruction

The HW_REI instruction is used to return instruction flow to the PC pointed to by
the EXC_ADDRIPR. Thevaluein EXC_ADDR<0> will be used asthe new value
of PALmode after the HW_REI instruction.

The IDU uses the return prediction stack to speed the execution of HW_REI. There
are two different types of HW_REI:

e Prefetch: Inthis case, the IDU begins fetching the new Istream as soon as possi-
ble. Thisisthe version of HW_REI that is normally used.

* Stall prefetch: Thisencoding of HW_REI inhibits | stream fetch until the
HW_REI itself isissued. Thus, thisisthe method used to synchronize IDU
changes (such as I TB write instructions) with the HW_REI. Thereisarule that
PAL code can have only one such HW_REI in an aligned block of four instruc-
tions.

Figure 6—3 and Table 6—6 describe the format and fields of the HW__ REI instruction.
The IDU logic will slot HW_REI to pipe E1.

Figure 6-3 HW_REI Instruction Format

31 26 25 2120 16 1514 13 00

T T T T T T T T T T T T T
|OPCODE RA RB

LJ-03471.A14

Table 6-6 HW_REI Format Description

Fields Value Description

OPCODE 1E The OPCODE field contains 1E;g.

RA/RB Register numbers, should be R31 to avoid unnecessary stalls.
TYP 10 Normal version.

1 Stall version.
MBZ 0 HW_REI<13:00> must be zero.

6.6.4 HW_MFPR and HW_MTPR Instructions

The HW_MFPR and HW_MTPR instructions are used to access internal state from
the IDU, MTU, and Dcache. The HW_MFPR from IDU |IPRs has a latency of one
cycle (HW_MFPR in cycle n resultsin data available to the using instruction in

Privileged Architecture Library Code 6-11

21164 Implementation of the Architecturally Reserved Opcodes

cycle n+l). HW_MFPR from MTU and Dcache IPRs has a latency of two cycles.
IDU hardware slots each type of MXPR to the correct |EU pipe (refer to
Table 5-1).

Figure 6—4 and Table 6—7 describe the format and fields of the HW_MFPR and
HW_MTPR instructions.

Figure 6-4 HW_MTPR and HW_MFPR Instruction Format

31 26 25 2120 16 15 00
L L L I L L P O D O O B
T T T Y O e O O O O N

1.1-03472 Al4

Table 6—7 HW_MTPR and HW_MFPR Format Description

Field Value Description

OPCODE 194 The OPCODE field contains 19, for HW_MFPR.
1Dqg The OPCODE field contains 1D, for HW_MTPR.

RA/RB Must be the same, source register for HW_MTPR and destination
register for HW_MFPR.

Index Specifies the IPR. Refer to Table 5-1 for field encoding. Refer to
Chapter 5 for more details about specific IPRs.

6-12 Privileged Architecture Library Code

v

Initialization and Configuration

This chapter provides information on 21164-specific microprocessor/system initial-
ization and configuration. It is organized as follows:

* |nput signalssys reset_| and dc_ok_h and booting
e Sysclk ratio and delay

e Built-in self-test (BiSt)

* Serial read-only memory (SROM) interface port

e Serial terminal port

e Cacheinitialization

e Externa interfaceinitialization

e Internal processor register (IPR) reset state

e Timeout reset

¢ |EEE 1149.1 test port reset

7.1 Input Signals sys_reset_| and dc_ok_h and Booting

The 21164 reset sequence uses two input signals: sys reset_| and dc_ok_h. When
transitioning from a powered-down state to a powered-up state, signal dc_ok_h must
be deasserted, and signal sys reset_| must be asserted until power has reached the
proper operating point and the input clock to the 21164 is stable. If theinput clock is
derived from a PLL it may take many milliseconds for the input oscillator to start
and the PLL output to stabilize.

After power has reached the proper operating point, signal dc_ok_h must be
asserted. Then, signal sys reset_| must be deasserted. At this point, the 21164 recog-
nizes a powered on state. If signal dc_ok_h is not asserted, signal sys reset_| is
forced asserted internally. After sys reset | is deasserted, the 21164 begins the fol-
lowing sequence of operations:

1. Icache built-in self-test (BiSt)

Initialization and Configuration 7-1

Input Signals sys_reset_| and dc_ok_h and Booting

7-2

2. An optional automatic I cacheinitialization, using an external serial ROM
(SROM) interface

3. Dispatch to the reset PALcode trap entry point (physical location 0)

a. If step 2 initialized the Icache by using the SROM interface, the cache
should contain code that appears to be at location 0, that is, the cache
should beinitialized such that it hits on the dispatch. Typically the code
in the Icache should configure the 21164’s IPRs as necessary before
causing any offchip read or write commands. This allows the 21164 to
be configured to match the external system implementation.

b. If step 2 did not initialize the Icache, the Icache has been flushed by
reset. The reset PALcode trap dispatch misses in the Icache and Scache
(also flushed by reset) and produces an offchip read command. The
external system implementation must be compatible with the 21164’s
default configuration after reset (refer to Section 7.8). The code that is
executed at this point should complete the 21164 configuration as neces-
sary.

4. After configuring the 21164, control can be transferred to code anywhere in
memory, including the noncacheable regions. If the SROM interface was used to
initialize the Icache, the Icache can be flushed by a write operation to
IC_FLUSH_CTL after control is transferred. This transfer of control should be
to addresses not loaded in the Icache by the SROM interface or the Icache may
provide unexpected instructions.

5. Typically, PALbase and any state required by PALcode are initialized and the
console is started (switching out of PALmode and into native mode). The con-
sole code initializes and configures the system and boots an operating system
from an 1/O device such as a disk or the network.

Signalsys reset_| forces the CPU into a known state. Sigsyal reset | must

remain asserted while sigridd_ok_h is deasserted, and for some period of time
afterdc_ok_h assertion. It should remain asserted for at least 400 internal CPU

cycles in length. Then, signais reset_| may be deasserted. Sigegs reset |

deassertion need not be synchronous with respect to sysclk. Section 7.8 lists the reset
state of each IPR.

Initialization and Configuration

Input Signals sys_reset_| and dc_ok_h and Booting

Table 7-1 provides the reset state of each external signal pin.

Table 7-1 21164 Signal Pin Reset State

(Sheet 1 of 3)

Signal Reset State
Clocks

clk_mode h<2:0> NA (input).
cpu_clk_out_h Clock output.
dc ok _h NA (input).
osc clk_in_h|l Must be clocking.
ref_clk_in_h NA (input).
sys clk_outl h,l Clock output.
sys clk_out2 h,l Clock output.
sys reset_| NA (input).
Bcache

big drv_en_h NA (input).
data_h<127.0> Tristated.
data _check h<15:0> Tristated.
data ram_oe h Deasserted.
data ram_we h Deasserted.
index_h<25:4> Unspecified.
oe_we_active low_h NA (input).
st_clkl h Deasserted.
st_clk2_h Deasserted.
tag_ctl_par_h Tristated.
tag_data h<38:20> Tristated.
tag_data par_h Tristated.
tag_dirty h Tristated.
tag_ram_oe h Deasserted.
tag_ram_we h Deasserted.

Initialization and Configuration

Input Signals sys_reset_| and dc_ok_h and Booting

7-4

Table 7-1 21164 Signal Pin Reset State

(Sheet 2 of 3)

Signal Reset State
tag_shared_h Tristated.
tag_valid_h Tristated.

System Interface

addr_h<39:4>

addr_bus req_h
addr_cmd_par_h

addr_res h<2:0>
cack_h

cfail_h
cmd_h<3:0>

dack_h
data bus reg_h
fill_h

Driven or tristated depending upon addr_bus req_h at most
recent sysclk edge. If driven, the value is unspecified.

NA (input).

Driven or tristated depending upon addr_bus req_h at most
recent sysclk edge. If driven, the command is NOP.

NOP.
Must be deasserted.
Must be deasserted.

Driven or tristated depending upon addr_bus req_h at most
recent sysclk edge. If driven, the command is NOP.

Must be deasserted.
NA (input).
Must be deasserted.

fill_error_h Must be deasserted.
fill_id_h Must be deasserted.
fill_nocheck_h Must be deasserted.
idle_bc_h Must be deasserted.
int4_valid_h<3:0> Unspecified.
scache _set_h<1:0> Unspecified.
shared_h NA (input).
system_lock_flag_h Must be deasserted.
victim_pending_h Unspecified.
Interrupts

irg_h<3:0> Sysclk divisor ratio input.

Initialization and Configuration

Input Signals sys_reset_| and dc_ok_h and Booting

Table 7-1 21164 Signal Pin Reset State (Sheet 3 of 3)
Signal Reset State

mch_hlt_irg_h Sysclk delay input.

pwr_fail_irg_h Sysclk delay input.

sys mch_chk_irg_h

Sysclk delay input.

Test Modes

port_mode h<1.0>
srom_clk_h
srom_data _h
srom_oe |
srom_present_|
tck_h

tdi_h

tdo_h

temp_sense
test_status h<1.0>
tms_h

trst_|

NA (input).
Deasserted.
NA (input).
Deasserted.
NA (input).
NA (input).
NA (input).
NA (input).
NA (input).
Deasserted.
NA (input).
Must be asserted (input).

Miscellaneous

perf_mon_h

spare io

NA (input).
NA.

Whilesignal dc_ok_h isdeasserted, the 21164 providesits owninternal clock source
from an onchip ring oscillator. When dc_ok _h is asserted, the 21164 clock sourceis
the differential clock input pinsosc_clk_in_h,I.

When the 21164 is free-running from the internal ring oscillator, the internal clock
frequency isin therange of 10 MHz to 100 MHz (varies from chip to chip). The

sysclk divisor and sys clk_out2 x delay are determined by input pins while signal
sys reset_| remains asserted. Refer to Section 4.2.2 and Section 4.2.3 for ratio and

delay values.

Initialization and Configuration ~ 7-5

Sysclk Ratio and Delay

7.1.1 Pin State with dc_ok_h Not Asserted

Whiledc_ok_h is deasserted, and sys reset | isasserted, every output and bidirec-
tional 21164 pinistristated and pulled weakly to ground by a small pull-down tran-
sistor.

7.2 Sysclk Ratio and Delay

Whilein reset, the 21164 reads sysclk configuration parameters from the interrupt
signal pins. These inputs should be driven with the correct configuration values
whenever sys reset | is asserted. Refer to Section 4.2.2 and Section 4.2.3 for rele-
vant input signals and ratio/delay values.

If the signal inputs reflecting configuration parameters change while sys reset_| is
asserted, allow 20 internal CPU cycles before the new sysclk behavior is correct.

7.3 Built-In Self-Test (BiSt)

Upon deassertion of signal sys reset_|I, the 21164 automatically executes the Icache
built-in self-test (BiSt). The Icache is automatically tested and the result is made
availableinthe ICSR IPR and on signal test_status _h<0>. Internally, the CPU reset
continues to be asserted throughout the Bi St process. For additional information,
refer to Section 9.4.5.1.

7.4 Serial Read-Only Memory Interface Port

7-6

The serial read-only memory (SROM) interface provides the initialization data load
path from a system SROM to the instruction cache (Icache). Following initialization,
this interface can function as a diagnostic port using privileged architecture library
code (PALcode).

The following sighals make up the SROM interface:

srom_present_|

srom_data _h

srom_oe |

srom_clk_h
During system reset, the 21164 samplesthe srom_present_| signal for the presence
of SROM. If srom_present_| is deasserted, the SROM load is disabled and the reset
seguence clears the Icache valid bits. This causes the first instruction fetch to miss
the Icache and read instructions from offchip memory.

Initialization and Configuration

Serial Read-Only Memory Interface Port

If srom_present_| isasserted during setup, then the system performs an SROM |load
asfollows:

1. Thesrom_oe | signal supplies the output enable to the SROM.

2. Thesrom_clk_h signa supplies the clock to the ROM that causesit to advance
to the next bit. The cycle time of this clock is 126+ times the CPU clock period.

3. Thesrom_data h signal inputs the SROM data.
Every data and tag bit in the Icache is loaded by this sequence.

7.4.1 Serial Instruction Cache Load Operation

All Icache bits, including each block’s tag, address space number (ASN), address
space match (ASM), valid, and branch history bits, can be loaded serially from off-
chip serial ROMs. Once the serial load has been invoked by the chip reset sequence,
the entire cache is loaded automatically from the lowest to the highest addresses.

The automatic serial Icache fill invoked by the chip reset sequence operates inter-
nally at a frequency of 126xCPU clock period. However, due to the synchronization
with the system clocks, consecutive access cycles to SROM may shrink or stretch by
a system cycle. For example, for a system with a system clock ratio of 15, the time
between the two consecutive SROM accesses may be anywhere in the range 111 to
141 CPU cycles. The SROM used in the system must be able to support access times
in this range. Refer to Section 9.4.5 for additional SROM timing information.

The serial bits are received in a 200-bit-long fill scan path, from which they are writ-
ten in parallel into the Icache address. The fill scan path is organized as shown in the
text following this paragraph. The farthest bit (<42>) is shifted in first and the near-
est bit (BHT<0>) is shifted in last. The data and predecode bits in the data array are
interleaved.

Initialization and Configuration — 7-7

Serial Terminal Port

sromdata h serial input ->

BHT Array 0-> 1-> ... -> T7->

Cat a 127 -> 95 -> 126 -> 94 -> ... -> 96 -> 64 ->
Pr edecodes 19 -> 14 -> 18 -> 13 -> -> 15 -> 10 ->
Data parity 1-> 0->

Pr edecodes 9-> 4 -> 8-> 3->. -> 5-> 0->
Dat a 63 -> 31 -> 62-> 30->. -> 32 -> 0->
Tag Parity b ->

Tag Valids 0-> 1->

TAG Phy. Addr ess b ->

TAG ASN 0-> 1-> -> 6 ->

TAG ASM b ->

TAGS 13 -> 14 -> > 42

b = Sngle bit signal

Refer to Appendix C for an example of C code that cal culates the predecode values
of aseria Icacheload.

7.5 Serial Terminal Port

After the SROM datais|oaded into the Icache, the three SROM interface signals can
be used as a software “UART” and the pins become parallel I/0O pins that can drive a
diagnostic terminal by using an interface such as RS-232 or RS-423.

7.6 Cache Initialization

7-8

Regardless of whether the Icache BiSt is executed, the Icache is flushed during the
reset sequence prior to the SROM load. If the SROM load is bypassed, the Icache
will be in the flushed state initially.

The second-level cache (Scache) is flushed and enabled by internal reset. This is
required if the SROM load is bypassed. The initial Istream reference after reset is
location 0. Because that is a cacheable-space reference, the Scache will be probed.

The data cache (Dcache) is disabled by reset. It is not initialized or flushed by reset.
It should be initialized by PALcode before being enabled.

The external board-level Bcache is disabled by reset. It should be initialized by PAL-
code before being enabled.

Initialization and Configuration

Cache Initialization

7.6.1 Icache Initialization

The Icache is not kept coherent with memory. When it is necessary to make it coher-
ent with memory, the following procedure is used. The CALL_PAL IMB function
performs this function by using this procedure.

1. Execute an MB instruction. Thisforces al write data in the write buffer into
memory.

— Stall until write buffer is drained.
— Carry load or issue a HW_MFPR from any MTU IPR.
Write to IC_FLUSH_CTL with an HW_MTPR to flush the Icache.

3. Execute a total of 44 NOP instructions (BIS r31,r31,r31) to clear the prefetch
buffers and IDU pipeline. The 44 NOP instructions must start on an INT16
boundary. Pad with additional NOP instructions if necessary.

7.6.2 Flushing Dirty Blocks

During a power failure recovery, dirty blocks must be flushed out of the Scache and
backup cache (Bcache), if present.

Systems Without a Bcache

To flush out dirty blocks from the Scache on power failure, the following sequence
must be used to guarantee that all the dirty blocks have been written back to main
memory. The BC_CONFIG<BC __ SIZE> field is used for this function in systems
without a Bcache. When powering up, this field is initialized to a value representing
a 1MB Bcache. During system configuration flow, this field must be changed to a
value of 0 for normal operation.

To flush out the dirty blocks from all three sets in the Scache, perform the following
tasks:

1. Set BC_CONFIG<BC_SIZE><2:0> xD; do loads at a stride of 64 bytes
through 128KB of continuous memory; guarantees all dirty blocks from setO are
flushed out.

2. Set BC_CONFIG<BC_SIZE><2:0> x®; do loads at a stride of 64 bytes
through 96KB of continuous memory; guarantees all dirty blocks from setl are
flushed out.

3. Set BC_CONFIG<BC_SIZE><2:0> x4; do loads at a stride of 64 bytes
through 64KB of continuous memory; guarantees all dirty blocks from set2 are
flushed out.

Initialization and Configuration ~ 7-9

External Interface Initialization

All other values of BC_CONFIG<BC_SIZE><2:0> are undefined in this mode.

Systems with a Bcache

To flush out dirty blocks from the Scache and Bcache on power failure, the following
sequence must be used to guarantee that all the dirty blocks have been written back
to main memory:

Performloads at a stride of Bcache bl ock size = 2 x size of the Bcache

7.7 External Interface Initialization

After reset, the cache control and bus interface unit (CBU) isin the default configu-
ration dictated by the reset state of the IPR bits that select the configuration options.
The CBU response to system commands and internally generated memory accesses
is determined by this default configuration. System environments that are not com-
patible with the default configuration must use the SROM Icache load feature to ini-
tially load and execute a PAL code program. This program configures the external
interface control (CBU) IPRs as needed.

7.8 Internal Processor Register Reset State

Many IPR bits are not initialized by reset. They are located in error-reporting regis-
ters and other IPR states. They must be initialized by initialization PALcode.

Table 7-2 lists the state of all internal processor registers (IPRs) immediately follow-
ing reset. The table also specifies which registers need to be initialized by power-up

PALcode.
Table 7-2 Internal Processor Register Reset State (Sheet 1 of 4)
IPR Reset State Comments

IDU Registers

ITB_TAG UNDEFINED
ITB_PTE UNDEFINED
ITB_ASN UNDEFINED PALcode must initialize.
ITB_PTE_TEMP UNDEFINED
ITB_IAP UNDEFINED
ITB_IA UNDEFINED PALcode must initialize.
ITB_IS UNDEFINED

7-10 Initialization and Configuration

Table 7-2 Internal Processor Register Reset State

Internal Processor Register Reset State

(Sheet 2 of 4)

IPR

Reset State

Comments

IFAULT_VA_FORM

IVPTBR
ICPERR_STAT

IC_FLUSH_CTL

EXC_ADDR
EXC_SUM

EXC_MASK
PAL_BASE
ICM

ICSR

IPLR
INTID
ASTRR
ASTER

SIRR
HWINT_CLR
ISR
SL_XMIT
SL_RCV
PMCTR

UNDEFINED
UNDEFINED
UNDEFINED
UNDEFINED
UNDEFINED
UNDEFINED

UNDEFINED
Cleared
UNDEFINED

See Comments

UNDEFINED
UNDEFINED
UNDEFINED
UNDEFINED
UNDEFINED
UNDEFINED
UNDEFINED
Cleared

UNDEFINED

See Comments

PAL code must initialize.
PALcode must initialize.

PAL code must clear exception summary and
exception register write mask by writing
EXC_SUM.

Cleared on reset.
PA L code must set current mode.

All bits are cleared on reset except ICSR<37>,
whichis set, and ICSR<38>, which is UNDE-
FINED.

PALcode must initialize.

PALcode must initialize.
PALcode must initialize.
PALcode must initialize.
PALcode must initialize.

Appears on external pin.

PMCTR<15:10> are cleared on reset. All other
bitsare UNDEFINED.

MTU Registers

DTB_ASN
DTB_CM

UNDEFINED
UNDEFINED

PALcode must initialize.
PALcode must initialize.

Initialization and Configuration 7-11

Internal Processor Register Reset State

7-12

DC_TEST_TAG_TEMP UNDEFINED

Initialization and Configuration

Table 7-2 Internal Processor Register Reset State (Sheet 3 of 4)
IPR Reset State Comments
DTB_TAG Cleared _/alid bits are cleared on chip reset but not on
timeout reset.
DTB_PTE UNDEFINED
DTB_PTE_TEMP UNDEFINED
MM_STAT UNDEFINED Must be unlocked by PAL code by reading VA
register.
VA UNDEFINED Must be unlocked by PAL code by reading VA
register.
VA_FORM UNDEFINED Must be unlocked by PALcode by reading VA
register.
MVPTBR UNDEFINED PALcode must initialize.
DC_PERR_STAT UNDEFINED PALcode must initialize.
DTB_IAP UNDEFINED
DTB_IA UNDEFINED
DTB_IS UNDEFINED
MCSR Cleared Cleared on chip reset but not on timeout reset.
DC_MODE Cleared Cleared on chip reset but not on timeout reset.
MAF _MODE Cleared Cleared on chip reset. MAF_MODE<05>
cleared on timeout reset.
DC _FLUSH UNDEFINED PALcode must write this register to clear
Dcache valid bits.
ALT_MODE UNDEFINED
cC UNDEFINED CC isdisabled on chip reset.
CC_CTL UNDEFINED
DC_TEST_CTL UNDEFINED
DC_TEST_TAG UNDEFINED

Timeout Reset

Table 7-2 Internal Processor Register Reset State (Sheet 4 of 4)

IPR Reset State Comments

CBU Registers

SC CTL See Comments SC_CTL<11:00> cleared on reset.
SC CTL<12> isset at power-up.
SC _STAT UNDEFINED PALcode must read to unlock.
SC_ADDR UNDEFINED
BC_CONTROL See Comments BC_CONTROL<01:00>, <07>, <14:13>,

<16>, and <27:19> cleared.
BC_CONTROL<06:04> and <15> set on reset
but not timeout reset. All other bits are UNDE-
FINED and must beinitialized by PALcode.

BC_CONFIG See Comments At power-up, BC_CONFIG isinitialized to a
value of 0000 0000 0001 74414.

BC TAG_ADDR UNDEFINED

El_STAT UNDEFINED PALcode must read twice to unlock.
El_ADDR UNDEFINED

FILL_SYN UNDEFINED

Note: The Bcache parameters BC_SIZE (size), BC_RD_SPD (read speed),

BC _WR_SPD (write speed), and BC_WE_CTL (write-enable contral)
are all configured to default values on reset and must beinitialized in the
BC_CONFIG register before enabling the Bcache.

7.9 Timeout Reset

The instruction fetch/decode unit and branch unit (IDU) contains atimer that times

out when avery long period of time passes with no instruction completing. When

this timeout occurs, an internal reset event occurs. This clears sufficient internal state

to allow the CPU to begin executing again. Registers, |PRs (except as noted in Table

7-2), and caches are not affected. Dispatch to the PALcode MCHK trap entry point
occurs immediately.

Initialization and Configuration 7-13

IEEE 1149.1 Test Port Reset

7.10 IEEE 1149.1 Test Port Reset

Signal trst_| must be asserted when sys reset_| isasserted or whendc ok _hiis
deasserted. Continuous trst_| assertion during normal operation is used to guarantee
that the IEEE 1149.1 test port does not affect 21164 operation.

7-14 Initialization and Configuration

38

Error Detection and Error Handling

This chapter provides an overview of the 21164's error handling strategy. Each inter-
nal cache (instruction cache [Icache], data cache [Dcache], and second-level cache
[Scache]) implements parity protection for tag and data. Error correction code (ECC)
protection is implemented for memory and backup cache (Bcache) data. (The imple-
mentation provides detection of all double-bit errors and correction of all single-bit
errors.) Correctable instruction stream (Istream) and data stream (Dstream) ECC
errors are corrected in hardware without privileged architecture library code (PAL-
code) intervention. Bcache tags are parity protected. The instruction fetch/decode
unit and branch unit (IDU) implements logic that detects when no progress has been
made for a very long time and forces a machine check trap.

PALcode handles all error traps (machine checks and correctable error interrupts).
Where possible, the address of affected data is latched in an IPR. Most of the Istream
errors can be retried by the operating system because the machine check occurs
before any part of the instruction causing the error is executed. In some other cases,
the system may be able to recover from an error by terminating all processes that had
access to the affected memory location.

8.1 Error Flows

The following flows describe the events that take place during an error, the recom-
mended responses necessary to determine the source of the error, and the suggested
actions to resolve them.

8.1.1 Icache Data or Tag Parity Error

e Machine check occurs before the instruction causing the parity error is executed.

e EXC_ADDR containseither the PC of theinstruction that caused the parity error
or that of an earlier trapping instruction.

e |CPERR_STAT<TPE> or <DPE> is set.
e Can beretried.

Error Detection and Error Handling 8-1

Error Flows

Note: The Icache is not flushed by hardware in this event. If an Icache parity

error occurs early in the PAL code routine at the machine check entry
point, an infinite loop may result.

Recommendation: Flush the Icache early in the MCHK routine.

8.1.2 Scache Data Parity Error—Istream

Machine check occurs before the instruction causing the parity error is executed.
Bad data may be written to the Icache or Icache refill buffer and validated.
Can beretried if there are no multiple errors.

Recommendation: Flush the Icache to remove bad data. The Icache refill buffer
may be flushed by executing enough instructionsto fill the refill buffer with new
data (32 instructions). Then flush the Icache again.

SC_STAT: SC_DPERR<7:0> is set; <SC_SCND_ERR> is set if there are multi-
pleerrors.

SC_STAT: CBOX_CMD isIRD.

SC _ADDR: Contains the address of the 32-byte block containing the error.
(Bit 4 indicates which octaword was accessed first, but the error may bein either
octaword.)

Note: If the Istream parity error occurs early in the PALcode routine at the

machine check entry point, an infinite loop may result.

Recommendation: On data parity errors, it may be feasible for the operating

system to “flush” the block of data out of the Scache by requesting a block of
data with the same Bcache index, but a different tag. This may not be feasible on
tag parity errors, because the tag address is suspect. If the requested block is
loaded with no problems, then the “bad data” has been replaced. If the “bad
data” is marked dirty, then when the new data tries to replace the old data,
another parity error may result during the write-back (this is a reason not to
attempt this in PALcode, because a MCHK from PALcode is always fatal).

8.1.3 Scache Tag Parity Error—Istream

Machine check occurs before the instruction causing the parity error is executed.
Bad data may be written to the Icache or Icache refill buffer and validated.

8-2 Error Detection and Error Handling

Error Flows

Cannot be retried. Probably will not be able to recover by deleting a single pro-
cess because the exact address is unknown.

Recommendation: Flush the Icache to remove bad data. The Icache refill buffer
may be flushed by executing enough instructions to fill the refill buffer with new
data (32 instructions). Then flush the Icache again.

SC STAT: SC_TPERR<2:0> isset; <SC_SCND_ERR> is set if there are multi-
pleerrors.

SC_STAT: CBOX_CMD isIRD.

SC _ADDR: Contains the address of the 32-byte block containing the error.
(Bit 4 indicates which octaword was accessed first, but the error may bein either
octaword.)

Note: If the Istream parity error occurs early in the PALcode routine at the

machine check entry point, an infinite loop may result.

8.1.4 Scache Data Parity Error—Dstream Read/Write, READ_DIRTY

Machine check occurs. Machine state may have changed.

Cannot be retried, but may only need to delete the process if datais confined to a
single process and no second error occurred.

SC _STAT: SC_DPERR<7:0> isset; SC SCND_ERR isset if there are multiple
errors.

SC_STAT: CBOX_CMD isDRD, DWRITE, or READ_DIRTY.

SC_ADDR: Contains the address of the 32-byte block containing the error.
(Bit 4 indicates which octaword was accessed first, but the error may bein either
octaword.)

8.1.5 Scache Tag Parity Error—Dstream or System Commands

Machine check occurs. Machine state may have changed.

Cannot beretried. Probably will not be able to recover by deleting a single pro-
cess because the exact address is unknown.

SC_STAT: SC_TPERR<7:0> isset; <SC_SCND_ERR> is set if there are multi-
pleerrors.

Error Detection and Error Handling 8-3

Error Flows

e SC_STAT: CBOX_CMD isDRD, DWRITE, READ_DIRTY, SET_SHARED,
or INVAL.

* SC_ADDR: records physical address bits <39:04> of |ocation with error.

8.1.6 Dcache Data Parity Error

e Machine check occurs. Machine state may have changed.

e Cannot beretried, but may only need to delete the process if datais confined to a
single process and no second error occurred.

e DCPERR_STAT: <DP0> or <DP1> is set. <LOCK> is set. <SEO> is set if there
are multiple errors.

Note: For multiple parity errorsin the same cycle, the <SEO> bit isnot set, but
more than one error bit will be set.

* VA: Containsthe virtual address of the quadword with the error.

e MM_STAT locked. Contents contain information about instruction causing par-
ity error.

Note: Fault information on another instruction in same cycle may be lost.

8.1.7 Dcache Tag Parity Error

e Machine check occurs. Machine state may have changed.

e DCPERR_STAT: <TPO> or <TP1> isset. <LOCK> is set. <SEO> is set if there
are multiple errors.

Note: For multiple parity errorsin the same cycle, the <SEO> bit isnot set, but
more than one error bit will be set.

¢ VA: Contains the virtua address of the Dcache block (hexword) with the error.

e MM_STAT locked. Contents contain information about instruction causing par-
ity error. <WR> hit is set if error occurred on a store instruction.

Note: Fault information on another instruction in the same cycle may be lost.

* Probably will not be ableto recover by deleting a single process, because exact
address is unknown, and aload may have falsely hit.

8-4 Error Detection and Error Handling

Error Flows

8.1.8 Istream Uncorrectable ECC or Data Parity Errors (Bcache or
Memory)

* Machine check occurs before the instruction causing the error is executed.
* Bad datamay be written to the Icache or Icache refill buffer and validated.
* Can beretried if there are no multiple errors.

e Must flush Icache to remove bad data. The Icache refill buffer may be flushed by
executing enough instructionsto fill the refill buffer with new data (32 instruc-
tions). Then flush the Icache again.

e EI_STAT: <UNC_ECC ERR>isseat; <SEO HRD_ERR>isset if there are mul-
tiple errors.

e El _STAT. <El_ES>issetif source of fill datais memory/system, clear if
Bcache.

 EI_STAT: <FIL_IRD> is set.

e EI_ADDR: Containsthe physical address bits <39:04> of the octaword associ-
ated with the error.

* FILL_SYN: Contains syndrome bits associated with the failing octaword. This
register contains byte parity error statusif in parity mode.

e BC _TAG_ADDR: Holds results of external cache tag probe if external cache
was enabled for this transaction.

Note: If the Istream ECC or parity error occurs early in the PAL code routine at
the machine check entry point, an infinite loop may result.

* Recommendation: On data ECC/parity errors, it may be feasible for the operat-
ing system to “flush” the block of data out of the Bcache by requesting a block of
data with the same Bcache index, but a different tag. If the requested block is
loaded with no problems, then the “bad data” has been replaced. If the “bad
data” is marked dirty, then when the new data tries to replace the old data,
another ECC/parity error may result during the write-back (this is a reason not to
attempt this in PALcode, because a MCHK from PALcode is always fatal).

8.1.9 Dstream Uncorrectable ECC or Data Parity Errors (Bcache or
Memory)

e Machine check occurs. Machine state may have changed.

Error Detection and Error Handling 8-5

Error Flows

Cannot be retried, but may only need to delete the process if datais confined to a
single process and no second error occurred.

El_STAT: <UNC_ECC ERR>isset; <SEO HRD_ERR>isset if there are mul-
tiple errors.

El_STAT: <El_ES>isset if source of fill datais memory/system, is clear if
Bcache.

El_STAT: <FIL_IRD> is clear.

El_ADDR: Contains the physical address bits <39:04> of the octaword associ-
ated with the error.

FILL_SYN: Contains syndrome hits associated with the failing octaword. This
register contains byte parity error statusif in parity mode.

BC_TAG_ADDR: Holds results of external cache tag probeif external cache
was enabled for this transaction.

8.1.10 Bcache Tag Parity Errors—Istream

Machine check occurs before the instruction causing the error is executed.
Bad data may be written to the Icache or Icache refill buffer and validated.
Can beretried if there are no multiple errors.

Must flush Icache to remove bad data. The Icache refill buffer may be flushed by
executing enough instructions to fill the refill buffer with new data (32 instruc-
tions). Then flush the Icache again.

El_STAT: <BC_TPERR> or <BC_TC_PERR>isset; <SEO HRD_ERR> isset
if there are multiple errors.

El_STAT: <El_ES> isclear.
El_STAT: <FIL_IRD> is set.

El_ADDR: Containsthe physical address bits <39:04> of the octaword associ-
ated with the error.

BC TAG_ADDR: Holds results of external cache tag probe.

Note: The Bcache hit is determined based on the tag alone, not the parity bit.

The victim is processed according to the status bits in the tag, ignoring
the control field parity. PAL code can distinguish fatal from nonfatal

8-6 Error Detection and Error Handling

Error Flows

occurrences by checking for the casein which apotentially dirty block is
replaced without the victim being properly written back and the case of
false hit when the tag parity isincorrect.

8.1.11 Bcache Tag Parity Errors—Dstream

Machine check occurs. Machine state may have changed.

Cannot be retried, but may only need to delete the process if datais confined to a
single process and no second error occurred. Bcache hit is determined based on
the tag alone, not the parity bit. The victim is processed according to the status
bits in the tag, ignoring the control field parity. PAL code can distinguish fatal
from nonfatal occurrences by checking for the case in which a potentially dirty
block is replaced without the victim being properly written back and the case of
false hit when the tag parity isincorrect.

El_STAT: <BC_TPERR> or <BC_TC_PERR> isset; <SEO_ HRD_ERR> is set
if there are multiple errors.

El_STAT: <El_ES> isclear.
El_STAT: <FIL_IRD> isclear.

El_ADDR: Containsthe physical address bits <39:04> of the octaword associ-
ated with the error.

BC TAG_ADDR: Holds results of external cache tag probe.

8.1.12 System Command/Address Parity Error

Machine check occurs. Machine state may have changed.

El_STAT:<El _PAR_ERR>isset; <SEO_HRD_ERR>issetif therearemultiple
errors.

El_STAT: <El_ES> isst.

El_ADDR: Contains the physical address bits <39:04> of the octaword associ-
ated with the error.

BC_TAG_ADDR: Holds results of external cache tag probe if external cache
was enabled for this transaction.

When the 21164 detects a command or address parity error, the command is
unconditionally NOACKed.

Error Detection and Error Handling 8-7

Error Flows

Note: For a sysclk-to-CPU clock ratio of 3, if the 21164 detects a system com-

mand/address parity error on a NOP, and immediately receives avalid
command from the system, then the 21164 may not acknowledge the
command. The 21164 does take the machine check.

8.1.13 System Read Operations of the Bcache

The 21164 does not check the ECC on outgoing Bcache data. If it is bad, the receiv-
ing processor will detect it.

8.1.14 Istream or Dstream Correctable ECC Error (Bcache or Memory)

8-8

The 21164 hardware corrects the data before filling the Scache and I cache. The
Dcacheis completely invalidated. The datain the Bcache contains the ECC
error, but is scrubbed by PAL code in the correctable error interrupt routine.
(Using LDXL or STxC, if the STxC fails, the location can be assumed to be
scrubbed.)

A separately maskable correctable error interrupt occurs at IPL 31 (same as
machine check). (Masked by clearing ICSR<CRDE>.)

ISR: <CRD> is set.

El_STAT: <COR_ECC_ERR> is set.

El_STAT: <FIL_IRD> isset if Istream; isclear if Dstream.

El_STAT: <El_ES> isclear if source of error is Bcache, is set otherwise.

El_ADDR: Contains the physical address bits <39:04> of the octaword associ-
ated with the error.

FILL_SY N: Contains syndrome bits associated with the octaword containing the
ECC error.

BC TAG_ADDR: Unpredictable (not loaded on correctable errors).

Note: There will be performance degradation in systems when extremely high

rates of correctable ECC errors are present due to the internal handling
of thiserror (the implementation utilizes a replay trap and automatic
Dcache flush to prevent use of the incorrect data).

Error Detection and Error Handling

Error Flows

8.1.15 Fill Timeout (FILL_ERROR_H)

For systems in which fill timeout can occur, the system environment should
detect fill timeout and cleanly terminate the reference to 21164. If the system
environment expects fill timeout to occur, it should detect them. If it does not
expect them (as might be true in small systems with fixed memory access tim-
ing), itislikely that theinternal 1DU timeout will eventually detect astall if afill
failsto occur. To properly terminate afill in an error case, thefill_error_h pinis
asserted for one cycle and the normal fill sequence involving thefill_h,
fill_id_h, and dack_h pinsis generated by the system environment.

A fill_error_h assertion forces a PAL code trap to the MCHK entry point, but
has no other effect.

Note: No internal statusis saved to show that this happened. If necessary, sys-

tems must save this status, and include read operations of the appropriate
status registersin the MCHK PALcode.

8.1.16 System Machine Check

The 21164 has a maskable machine check interrupt input pin. It is used by sys-
tem environments to signal fatal errors that are not directly connected to aread
access from the 21164. It ismasked at IPL 31 and anytime the 21164 isin
PALmode.

ISR: <MCK> is set.

8.1.17 IDU Timeout

When the IDU detects atimeout, it causes a PAL code trap to the MCHK entry
point.

Simultaneoudly, a partia internal reset occurs. most states (except the IPR state)
arereset. This should not be depended on by systems in which fill timeouts
occur in typical use (such as, operating system or console code probing locations
to determine if certain hardware is present). The purpose of this error detection
mechanism isto attempt to prevent system hang in order to write a machine
check stack frame.

ICPERR_STAT: <TMR> is et.

Error Detection and Error Handling 8-9

MCHK Flow

8.1.18 cfail_h and Not cack_h

e Assertion of cfail_h inasysclk cyclein which cack_h isnot asserted causes the
21164 to immediately execute a partia internal reset.

e PALcode trap to the MCHK entry point.

e Simultaneoudly, apartial internal reset occurs. most states (except the IPR state)
arereset.

* |CPERR_STAT: <TMR> is set.

e This can be used to restore 21164 and the externa environment to a consistent
state after the external environment detects a command or address parity error.

Note: Thereisnointernal status saved to differentiate the cfail_h/no cack_h
case from the IDU timeout reset case. If necessary, systems must save
this status, and include read operations of the appropriate status registers
in the MCHK PAL code.

8.2 MCHK Flow

Thefollowing flow is the recommended | PR access order to determine the source of
amachine check.

e Must flush Icache to remove bad data on Istream errors. The Icache refill buffer
may be flushed by executing enough instructionsto fill the refill buffer with new
data (32 instructions). Then flush the Icache again.

e Read EXC ADDR.
e |f EXC_ADDR=PAL, then halt.
* |ssue MB to clear out MTU/CBU before reading CBU registers or issuing

DC FLUSH.
¢ Flush Dcache to remove bad data on Dstream errors.
¢ Read ICSR.

 Read ICPERR_STAT.
+ Read DCPERR_STAT.
+ Read SC_ADDR.

* Useregister dependenciesor MB to ensure read operation of SC_ADDR finishes
before subsequent read operation of SC_STAT.

8-10 Error Detection and Error Handling

MCHK Flow

Read SC_STAT (unlocks SC_ADDR).
Read EI_ADDR, BC_TAG_ADDR, and FILL_SYN.

Use register dependencies or MB to ensure read operations of EI_ADDR,
BC TAG_ADDR, and FILL_SY N finish before subsequent read operation of
El_STAT.

Read EI_STAT and save (unlocks EI_ADDR, BC_TAG_ADDR, FILL_ SYN).
Read EI_STAT again to be sureit is unlocked, discard result.

Check for cases that cannot be retried. If any one of the following are true, then
skip retry:

El_STAT<TPERR>
El_STAT<TC_PERR>

El_STAT<E|_PAR_ERR>

El_STAT<SEO_HRD_ERR>

El_STAT<UNC_ECC_ERR> and not El_STAT<FIL_IRD>
DCPERR_STAT<LOCK>

SC_STAT<SC_SCND_ERR>

SC_STAT<SC_TPERR>

Not (SC_STAT<CMD> = IRD) and SC_STAT<SC_DPERR>
ICPERR_STAT<TMR>

ISR<MCK>

If none of the previous conditions are true, then there is either an IRD that can be
retried or the source of the MCHK isafill_error_h. Add code for query of sys-
tem status.

The case can beretried if any one or severa of the following are true (and none
of the previous conditions were true):

El_STAT<UNC_ECC_ERR> and ElI_STAT<FIL_IRD>
SC_STAT<SC DPERR> and (SC_STAT<CMD> = IRD)
ICPERR_STAT<TPE>

ICPERR_STAT<DPE>

Error Detection and Error Handling 8-11

Processor-Correctable Error Interrupt Flow (IPL 31)

e Unlock the following IPRs:

— ICPERR_STAT (write 0x1800)

— DCPERR_STAT (write 0x03)

— VA, SC_STAT, and EI_STAT are already unlocked.
e Check for arithmetic exceptions:

— Read EXC_SUM.

— Check for arithmetic errors and handle according to operating-system-spe-
cific requirements.

— Clear EXC_SUM (unlocks EXC_MASK).
e Report the processor-uncorrectable MCHK according to operating-system-spe-
cific requirements.

8.3 Processor-Correctable Error Interrupt Flow (IPL 31)

The following flow is the recommended way to report correctable errors:
* Arrived here through interrupt routine because |SR<CRD> bit set.
e Read EI_ADDRand FILL_SYN.

* Useregister dependencies or MB to ensure read operations of EI_ADDR and
FILL_SY N finish before subsequent read operation of EI_STAT.

 Read El_STAT. (Unlocks EI_STAT, EI_ADDR, and FILL_SYN.)

e Scrub the memory location by using LDQ_L/STQ_C to one of the quadwordsin
each octaword of the Bcache block whose addressis reported in EI_ADDR. No
need to scrub 1/0 space addresses as these are noncacheable.

¢ ACK the CRD Interrupt by writing a0 to HWINT_CLR<CRDC>.

* No need to unlock any registers because conditions that would cause alock
would also cause aMCHK. VA will not be locked because DTB_MISS and
FAULT PALcode routines will not ever be interrupted.

* Report the processor-correctable M CHK according to operating- system-specific
regquirements.

8-12 Error Detection and Error Handling

MCK_INTERRUPT Flow

Note: Only read EI_STAT once in the CRD flow, and then only if ISR<CRD>
is set. If an uncorrectable error were to occur just after a second read
operation from El_STAT was issued, then there could be arace between
the unlocking of the register and the loading of the new error status,
potentially resulting in the loss of the error status.

8.4 MCK_INTERRUPT Flow
e Arrived here through interrupt routine because |SR<MCK> bit set.

* Report the system-uncorrectable MCHK according to operating-system-specific
requirements.

8.5 System-Correctable Error Interrupt Flow (IPL 20)

The system-correctable error interrupt is system specific.

Error Detection and Error Handling 8-13

9

Electrical Data

This chapter describes the electrical characteristics of the 21164 component and its
interface pins. It isorganized as follows:

Electrical characteristics
dc characteristics
Clocking scheme
ac characteristics

Power supply considerations

9.1 Electrical Characteristics

Table 9-1 lists the maximum ratings for the 21164 and Table 9-2 lists the operating
voltages.

Table 9-1 21164 Absolute Maximum Ratings

Characteristics Ratings

Storage temperature -55°C t0125°C (-67°F to 257°F)
Junction temperature 15°C to 90°C (59°F to 194°F)

Supply voltage Vss= -05V,Vddi =25V,vdd =33V
Signal input or output applied -05Vtod46V

Typica Vdd worst case power @ Vdd =3.3V

Frequency = 366 MHz 3.0wW
For frequencies greater than 366 MHz, add 0.5 W for each 133 MHz

Typica Vddi worst case power @ Vddi =25V

Freguency = 366 MHz 215W
For frequencies greater than 366 MHz, add 5.0 W for each 66 MHz.

Electrical Data 9-1

DC Characteristics

Caution: Stress beyond the absol ute maximum rating can cause permanent dam-
age to the 21164. Exposure to absol ute maximum rating conditions for
extended periods of time can affect the 21164 reliability.

Table 9-2 Operating Voltages

Nominal Maximum Minimum
vdd vddi vdd vddi vdd vddi
3.3V 25V 346V 26V 3.13V 24V

9.2 DC Characteristics

The 21164 isdesigned to runin a 3.3-V CMOS/TTL environment. The 21164 is
tested and characterized in a CMOS environment.

9.2.1 Power Supply

The Vss pins are connected to 0.0 V, the Vddi pins are connected to 2.5V 0.1V,
and thevdd pins are connected to 3.3 V £5%.

9.2.2 Input Signal Pins

Nearly all input signals are ordinary CMOS inputs with standard TTL levels (see
Table 9-3). (See Section 9.3.1 for a description of an exceptisn-€tk_in_h,l.)

After power has been applied, input and bidirectional pins can be driven to a maxi-
mum dc voltage o¥ clamp at a maximum current ¢€lamp without harming the
21164. Refer to Table 9-3 fuiclamp andlclamp values. Inputs greater than

Vclamp will be clamped td/clamp provided that the current does not exceed
Iclamp. The 21164 may be damaged if the voltage exceéeldsnp or the current

exceeddclamp.

9.2.3 Output Signal Pins

Output pins are ordinary 3.3-V CMOS outputs. Although output signals are rail-to-
rail, timing is specified t&/dd/2.

Note: The 21164 microprocessor chips do not have an onchip resistor for an
output driver. Earlier versions of the 21164 have &3fypical) onchip
resistor for an output driver.

9-2 Electrical Data

Table 9-3 CMOS DC Input/Output Characteristics

Table 9-3 shows the CMOS dc input and output pins.

DC Characteristics

Bidirectional pins are either input or output pins, depending on control timing. When
functioning as output pins, they are ordinary 3.3-V CMOS outputs.

(Sheet 1 of 2)

Parameter Requirements

Symbol Description Min. Max. Units Test Conditions

Vih High-level input voltage 20 — \% —

Vil Low-level input voltage — 038 \% —

Voh High-level output voltage 24 — V loh=-6.0 mA

Vol Low-level output voltage — 04 V lol = 6.0 mA

lil_pd Input with pull-down leakage @~ — +50 HA Vin=0V
current

lih_pd Input with pull-down current — 200 HA Vin=24V

lil_pu Input with pull-up current — =800 HA Vin=0.4V

lih_pu Input with pull-up leakage cur- — +50 HA Vin =Vdd V
rent

lozl_pd Output with pull-down leak- — 100 HA Vin=0V
age current (tristate)

lozh_pd Output with pull-down current — 300t MA Vin=2.4V
(tristate)

lozl_pu Output with pull-up current — 800 MA Vin=0.4V
(tristate)

lozh_pu Output with pull-up leakage — 100 HA Vin =Vdd V
current (tristate)

Vclamp Maximum clamping voltage — Vdd+1.0 V Iclamp = 100 mA

Electrical Data 9-3

DC Characteristics

Table 9-3 CMOS DC Input/Output Characteristics (Sheet 2 of 2)
Parameter Requirements
Symbol Description Min. Max. Units Test Conditions
Idd Peak power supply current for — 1.3 A Vdd = 3.465V
Vdd power supply Frequency = 366 MHz

For frequencies greater than 366 MHz,
add 0.4 A for each 133 MHz.

Iddi Peak power supply current for — 13.8 A Vddi =2.6 V
Vddi power supply Frequency = 366 MHz

For frequencies greater than 366 MHz,
add 2.4 A for each 66 MHz

IFor chip speeds greater than 500 MHz, the maximum Iozh_pd is 500 HA.
2This assumes sysclk ratio of 3 and worst case loading of output pins.

Most pins have low current pull-down devicesto Vss. However, two pins have a
pull-up device to Vdd. The pull-downs (or pull-ups) are always enabled. This means
that some current will flow from the 21164 (if the pin has a pull-up device) or into
the 21164 (if the pin has a pull-down device) even when the pin isin the high-imped-
ance state. All pins have pull-down devices, except for the pinsin the following

table:

Signal Name Notes

tms _h Has a pull-up device

tdi_h Has a pull-up device

osc clk_in_h 50 Q toVterm (= Vdd/2) (See Figure 9-1)
osc_clk_in_| 50Q toVterm (= Vdd/2) (See Figure 9-1)
temp_sense 150Q toVss

9-4 Electrical Data

Clocking Scheme

9.3 Clocking Scheme

Note: The preferred clock mode of the 21164 is 1x. Thisis a change from the
earlier versions of the 21164, which had a preferred clock mode of 2x.
Refer to Section 9.4.6 for more details.

The differential input clock signalsosc_clk_in_h,l run at the internal frequency of
the time base for the 21164. The output signal cpu_clk_out_h toggles with an
unspecified propagation delay relative to the transitions on osc_clk_in_h,|.

System designers have a choice of two system clocking schemes to run the 21164
synchronous to the system:

1. The 21164 generates and drives out asystem clock, sys clk_outl h,l. It runs
synchronous to the internal clock at a selected ratio of theinternal clock fre-
guency. Thereisasmall clock skew between theinternal clock and
sys clk_outl h,l.

2. The 21164 synchronizesto a system clock, ref_clk_in_h, supplied by the sys-
tem. Theref_clk_in_h clock runs at a selected ratio of the 21164 internal clock
frequency. Theinternal clock is synchronized to the reference clock by an onchip
digital phase-locked loop (DPLL).

Refer to Section 4.2 for more information on clock functions.
9.3.1 Input Clocks

The differential input clocks osc_clk_in_h,| provide the time base for the chip when
dc_ok_h isasserted. These pins are self-biasing, and must be capacitively coupled to
the clock source on the module.

Note: It isnot desirable to drive the osc_clk_in_h,l pinsdirectly. Thisisa
change from earlier versions of the 21164.

The terminations on these signal s are designed to be compatible with system oscilla-
tors of arbitrary dc bias. The oscillator must have aduty cycle of 60%/40% or tighter.

Figure 9—1 shows the input network and the schematic equivalest aftk_in_h,|

terminations.

Electrical Data 9-5

Clocking Scheme

Figure 9-1 osc_clk_in_h,l Input Network and Terminations

R -

Module Circuitry | Onchip Circuitry
i
I osc_clk_in_h i 3.5nH 3.5nH +
1l Lo Lo
—— 4.0pF —= 6.0pF — 6.0pF § S0
To

4D
A 74
4D

L

—— 4.0pF —— 6.0 pF == 6.0 pF § 500
I*l osc_clk_in_| (‘Y'VY] rY'VY]
1 3.5nH 3.5 nH -

I
1
i
i
i
i
i
i
: VREE Differential
i Amplifier
L) s0Q i
Oscillator i
1
i
i
i
i
i
i
I
I
]
I

Note:
* Coupling capacitors 47 pF to 220 pF
LJ-05357.Al4

Ring Oscillator

When signal dc_ok_h is deasserted, the clock outputs follow the internal ring oscil-
lator. The 21164 runs off the ring oscillator, just asit would when an external clock is
applied. The frequency of the ring oscillator varies from chip to chip within arange
of 10 MHz to 100 MHz. This corresponds to an internal CPU clock frequency range
of 5MHz to 50 MHz. The system clock divisor is forced to 8, and the sys clk_out2
delay isforced to 3.

Clock Sniffer

A special onchip circuit monitorsthe osc_clk_in pins and detects when input clocks
are not present. When activated, this circuit switchesthe 21164 clock generator from
the osc_clk_in pinsto the internal ring oscillator. This happens independently of the
state of thedc_ok_h pin. Thedc_ok_h pin functions normally if clocks are present
ontheosc_clk_in pins.

9-6 Electrical Data

Clocking Scheme

9.3.2 Clock Termination and Impedance Levels

In Figure 9-1, the clock is designed to approximate 8 %€mination for the pur-

pose of impedance matching for those systems that drive input clocks across long
traces. The clock input pins appear as @&5€eries termination resistor connected to

a high impedance voltage source. The voltage source produces a nominal voltage
value ofVdd/2. The source has an impedance of betweerQ180d 60QQ. This

voltage is called the self-bias voltage and sources current when the applied voltage at
the clock input pins is less than the self-bias voltage. It sinks current when the
applied voltage exceeds the self-bias voltage. This high impedance bias driver allows
a clock source of arbitrary dc bias to be ac coupled to the 21164. The peak-to-peak
amplitude of the clock source must be between 0.6 V and 3.0 V. Either a square-
wave or a sinusoidal source may be used. Full-rail clocks may be driven by testers.
In any case, the oscillator should be ac coupled toghelk_in_h,l inputs by 47 pF
through 220 pF capacitors.

Figure 9-2 shows a plot of the simulated impedance versus the clock input fre-
quency. Figure 9-1 is a simplified circuit of the complex model used to create
Figure 9-2.

Electrical Data 9-7

Clocking Scheme

Figure 9-2 Impedance vs Clock Input Frequency
140

120

100

o]
o

Impedance in Ohms
D
o

40

20

10 100 1000
Frequency in Mhz

Differential Impedance ocs_clk_in_h to osc_clk_in_ |

LJ-04724.A14

9.3.3 AC Coupling

Using series coupling (blocking) capacitors renders the 21164 clock input pinsinsen-
sitive to the oscillator’s dc level. When connected this way, oscillators with any dc
offset relative td/ss can be used provided they can drive a signal into the
osc_clk_in_h,l pins with a peak-to-peak level of at least 600 mV, but no greater than
3.0 V peak-to-peak.

The value of the coupling capacitor is not overly critical. However, it should be suf-
ficiently low impedance at the clock frequency so that the oscillator’s output signal
(when measured at tlosc_clk_in_h,| pins) is not attenuated below the 600-mV,
peak-to-peak lower limit. For sine waves or oscillators producing nearly sinusoidal
(pseudo square wave) outputs, 220 pF is recommended at 433 MHz. A high-quality
dielectric such as NPO is required to avoid dielectric losses.

9-8 Electrical Data

AC Characteristics

Table 9-4 shows the input clock specification.

Table 9—-4 Input Clock Specification

Signal Parameter Nominal Bin® Unit
osc_clk_in_h,| symmetry 50+ 10 %

osc_clk_in_h,| minimum voltage 0.6 V (peak-to-peak)
osc _clk_in_h,l Z input 50 Q

L Minimum clock frequency = 300 MHz for devices < 433 MHz
Minimum clock frequency = 440 MHz for devices = 466 MHz
Maximum clock frequency = 600 MHz = 1/Tcycle

9.4 AC Characteristics
This section describes the ac timing specifications for the 21164.
9.4.1 Test Configuration

All input timing is specified relative to the crossing of standard TTL input levels of
0.8 V and 2.0 V. Output timing is to the nominal CMOS switch poiMdif/2 (see
Figure 9-3).

Electrical Data 9-9

AC Characteristics

Figure 9-3 Input/Output Pin Timing

|= Tcycle

Internal) 50%
CPU Clock
Tdsu Tdh
vdd
— 20V —
Input
Signals 08Y
- Vss
Input Timing
Internal
CPU Clock f— 5%
Tdd
Vvdd
Output vdd
Signals 2
Vss
Output Timing
MK-1455-19

Because the speed and complexity of microprocessors has increased substantially
over the years, it is necessary to change the way they are tested. Traditional assump-
tions that all loads can be lumped into some accumulation of capacitance cannot be
employed any more. Rather, the model of atransmission line with discrete loadsisa
much more realistic approach for current test technology.

Typically, printed circuit board (PCB) etch has a characteristic impedance of approx-
imately 75 Q. This may vary from 60 Q to 90 Q with tolerances. If thelineisdriven
in the e ectrical center, the load could be as low as 30 Q. Therefore, a characteristic
impedance range of 30 Q to 90 Q could be experienced.

9-10 Electrical Data

AC Characteristics

The 21164 output drivers are designed with typical printed circuit board applications
in mind rather than trying to accommodate a 40-pF test |oad specification. Assuch, it
“launches” a voltage step into a characteristic impedance, ranging fr@md0
20Q.

There is no source termination resistor in the 21164 fabricated in 0.35-um CMOS
process technology. The source impedance of the driver is approximately 132

The circuit is designed to deliver a TTL signal under worst case conditions. Under
light load, high drive voltages, and fast process conditions there may be considerable
overdrive. It may be necessary to install termination or clamping elements to the sig-
nal etches or loads.

9.4.2 Pin Timing

The following sections describe Bcache loop timing, sys_clk-based system timing,
and reference clock-based system timing.

9.4.2.1 Backup Cache Loop Timing

The 21164 can be configured to support an optional offchip backup cache (Bcache).
Private Bcache read or write (Scache victims) transactions initiated by the 21164 are
independent of the system clocking scheme. Bcache loop timing must be an integer
multiple of the 21164 cycle time.

Electrical Data 9-11

AC Characteristics

Table 9-5 lists the Bcache loop timing.

Table 9-5 Bcache Loop Timing

Value

Signal Specification 366 MHz — 500 MHz Faster than 500 MHz ~ Name
data_h<127:0> Input setup 1.2ns 11ns Tdsu
data_h<127:0> Input hold 0.0ns -0.1ns Tdh
data_h<127:0> Output delay Tdd + Teycle+ 0.4 ns! Tdd + Teycle+0.2ns®> Tdod
data_h<127:0> Output hold Tmdd + Tcycle Tmdd + Tcycle Tdoh
index_h<25:4>, Output delay Thbedd + 0.4 ns, Thbedd + 0.2 ns, Tiod
st_clk1 h, st_clk2_h® or Thddd +0.4ns™* or Thddd + 0.2 ns®*
index_h<25:4>, Output hold time Tmdd Tmdd Tioh

st _clkl h, st_clk2_h®

1The value 0.4 ns accounts for onchip driver and clock skew.
2The value 0.2 ns accounts for onchip driver and clock skew.

3See 21164 change document for the positioning of st_clk1_h and st_clk2_h with respect to the Bcache index

pins.
4For big drive enabled or big drive disabled, respectively. See Table 9-7.

Outgoing Bcache index and data signals are driven off the internal clock edge and
the incoming Bcache tag and data signals are latched on the same internal clock
edge. Table 9-6 and Table 9-7 show the output driver characteristics for the normal

driver and big driver respectively.

Additional drive for the following pins can be enabled by connedtiggdrv_en_h

to Vvdd:

* index_h<25:4>

e tag ram_oe h,tag ram_we h

e data ram_oe h,data ram_we h
e s ckl h,st_clk2 h

9-12 Electrical Data

AC Characteristics

If any of the previous pins are connected to lightly loaded lines (less than 40 pF)
additional drive should not be enabled or the lines should be properly terminated to
avoid transmission line ringing.

Table 9-6 Normal Output Driver Characteristics

Specification 40-pF Load 10-pF Load Name
Maximum driver delay 2.7ns 1.6ns Tdd
Minimum driver delay 10ns 1.0ns (0.6 ns') Tmdd

ror chi p speeds greater than 500 MHz, the minimum delay is 0.6 ns.

Table 9—7 Big Output Driver Characteristics

Specification 60-pF Load 40-pF Load 10-pF Load Name

Extra Drive Disabled

Maximum driver delay NAT 2.8ns 1.7ns Thddd
Minimum driver delay NAT 1.0ns 1.0ns (0.6 nsz) Tmdd
Extra Drive Enabled

Maximum driver delay 2.7ns 2.2ns 1.7ns Thedd
Minimum driver delay 10ns 1.0ns 1.0ns (0.6 nsz) Tmdd

INA = Not applicable.
2For chip speeds greater than 500 MHz, the minimum delay is 0.6 ns.

Output pin timing is specified for lumped 40-pF and 10- pF loads for the normal
driver and lumped 60-pF, 40-pF, and 10-pF loads for the big driver. In some cases,
the circuit may have loads higher than 40 pF (60 pF for big driver). The 21164 can
safely drive higher loads provided the average charging or discharging current from
each pinis 11 mA or lessfor normal output drivers or 25 mA or less for big output
drivers. The following eguation can be used to determine the maximum capacitance
that can be safely driven by each pin:

e For normal output drivers: C, 5y (in pF) = 5t, where t is the waveform period
(measured from rising to rising or falling to falling edge), in nanoseconds.

* For big output drivers: Cx (in pF) = 7t, where t is the waveform period (mea-
sured from rising to rising or falling to falling edge), in nanoseconds.

For example, if the waveform appearing on a given normal 1/0 pin has a 15.0-ns
period, it can safely drive up to and including 75 pF.

Electrical Data 9-13

AC Characteristics

Figure 9—4 shows the Bcache read and write timing.

Figure 9-4 Bcache Timing

Bcache Loop (Read)

BC_RD_SPD
cPuClock [~ _ [_/ _/ _/ [_/ _/ _J
Tiod . [Tioh
Index Out) X
TdSul—|
Data in
Tdh
Bcache Loop (Write)
BC_WR_SPD
cPUCIock [__ [T _/ _/ _/ _f _/ _/ _J
Tiod .| Tioh
Index Out X X
Tdod Tdoh
Data Out X X

LJ-03409.Al14
9.4.2.2 sys_clk-Based Systems
All timing is specified relative to the rising edge of the internal CPU clock.

Table 9-8 shows 21164 system clagk clk_outl h,l output timing. Setup and
hold times are specified independent of the relative capacitive loading of
sys clk_outl h,l, addr_h<39:4>, data h<127:0>, andcmd_h<3:0> signals. The
ref_clk_in_h signal must be tied tddd for proper operation.

9-14 Electrical Data

AC Characteristics

Table 9-8 21164 System Clock Output Timing (sysclk=T) (Sheet 1 of 2)
Value
Signal Specification 366 MHz — 500 MHz Faster than 500 MHz Name
sys clk_outl h,l Output delay Tdd Tdd Tsyd
sys clk_outl h,l Minimum output Tmdd Tmdd?! Tsysdm
delay

data bus req_h, Input setup 12ns 11lns Tdsu
data h<127:0>,

addr_h<39:4>

data bus req_h, Input hold Ons -0.1ns Tdh
data h<127:0>,

addr_h<39:4>

addr_h<39:4> Output delay Tdd + 0.4 ns? Tdd + 0.2 ns® Taod
addr_h<39:4> Output holdtime Tmdd Tmdd? Taoh
data_h<127:0> Output delay Tdd + Teycle Tdd + Tcycle Tdod*

+0.4ns +0.2ns®
data_h<127:0> Output holdtime ~ Tmdd + Tcycle Tmdd?! + Teycle Tdoh*
Non-Pipe_Latch Mode

addr_bus req_h Input setup 34ns 34ns Tabrsu
addr_bus req_h Input hold -1.0ns -1.0ns Tabrh
dack_h Input setup 3.2ns 3.2ns Tntacksu
cack_h Input setup 34ns 34ns Tntcacksu
cack, dack Input hold -1.0ns -1.0ns Tntackh

Electrical Data 9-15

AC Characteristics

Table 9-8 21164 System Clock Output Timing (sysclk=T) (Sheet 2 of 2)
Value
Signal Specification 366 MHz — 500 MHz Faster than 500 MHz Name
Pipe_Latch Mode®
addr_bus reqg_h, Input setup 12ns 11ns Ttacksu
cack_h, dack_h
addr_bus req_h, Input hold Ons -0.1ns Ttackh

cack_h, dack_h

LFor chip speeds greater than 500 MHz, Tmdd is 0.6 ns.

2The value 0.4 ns accounts for onchip driver and clock skew.

3The value 0.2 ns accounts for onchip driver and clock skew.

“4For all write transactions initiated by the 21164, data is driven one CPU cycle after the sys_clk_out1 or
index_h<25:4> pins.

SIn pipe_latch mode, control signals are piped onchip for one sys_clk_out1 h,|l before usage.

Figure 9-5 shows sys_clk system timing.

9-16 Electrical Data

AC Characteristics

Figure 9-5 sys_clk System Timing
Relationship of CPU Clock and sys_clk_outl

cPU Clock [\

Tsysd
sys_clk_outl \ [\ /
Memory Read (Pipe_Latch Mode)
sys_clk_outl \ \
Tsysd Tsysd Tsysd
cPUClock [\ _/ O\
Taod Taoh l—|

Address/Command Out

Ttacksu =—
dack

Tdsu f«~—|
Data In
Memory Read (Non-Pipe_Latch Mode)
sys_clk_outl \ \
Tsysd Tsysd Tsysd
cPuClock [\ [\ _ [_/ _/ _J [_J
Taod Tntacksu __|taoh

Address/Command Out

T kh
dack _{. ntac

Tntcacksu
cack \

Tdsuje—:

Data In

LJ-03410.Al4
9.4.2.3 Reference Clock-Based Systems

Systems that generate their own system clock expect the 21164 to synchronize its
sys clk_outl h,l outputsto their system clock. The 21164 uses a digital phase-
locked loop (DPLL) to synchronize itssys clk_out1 signalsto the system clock that
isapplied totheref_clk_in_h signal. For additional information on reference clock
timing, refer to Section 4.2.4.

Electrical Data 9-17

AC Characteristics

Table 9-9 shows all timing relative to the rising edgeebfclk_in_h.

Table 9-9 21164 Reference Clock Input Timing

Value
Signal Specification 366 MHz — 500 MHz Faster than 500 MHz Name
data_bus req_h, Input setup 1.2ns 11lns Tdsu
data h<127:0>,
addr_h<39:4>
data_bus req_h, Input hold 0.5 xTcycle 0.5 xTcycle Troh
data h<127:0>,
addr_h<39:4>
addr_h<39:4> Output delay Tdd + 0.5 xTcycle Tdd + 0.5 xTcycle+ Traod
+0.9nd 0.7 ng
addr_h<39:4> Output hold time Tmdd Tmdd?® Traoh
data_h<127:0> Output delay Tdd + 1.5 +Tcycle Tdd + 1.5 +Tcycle + Trdod*
+0.9n$ 0.7 ng
data_h<127:0> Output hold time Tmdd + Tcycle Tmdd 3+ Teycle Trdoh*
Non-Pipe_Latch Mode
addr_bus req_h Input setup 3.4ns 3.4ns Tntrabrsu
addr_bus req_h Input hold 0.5 xTcycle 0.5 xTcycle Tntrabrh
dack_h Input setup 3.2ns 3.2ns Tntracksu
cack _h Input setup 3.4ns 3.4ns Tntrcacksu
cack_h, dack_h Input hold 0.5 xTcycle 0.5 xTcycle Tntrackh
Pipe_Latch Mode®
addr_bus req_h, Input setup 1.2ns 1l1lns Ttracksu
cack_h, dack_h
addr_bus req_h, Input hold 0.5 xTcycle 0.5 xTcycle Ttrackh

cack_h, dack_h

1The value 0.9 ns accounts for onchip skews that include 0.4 nsfor driver and clock skew, phase detector skews
dueto circuit delay (0.2 ns), and delay in ref_clk_in_h due to the package (0.3 ns).

2The value 0.7 ns accounts for onchi p skewsthat include 0.2 ns for driver and clock skew, phase detector skews
dueto circuit delay (0.2 ns), and delay in ref_clk_in_h due to the package (0.3 ns).

SFor chip speeds greater than 500 MHz, Tmdd is 0.6 ns.

4For all write transactions initiated by the 21164, datais driven one CPU cyclelater.

5In pipe_latch mode, control signals are piped onchip for one sys_clk_out1_h,| before usage.

9-18 Electrical Data

AC Characteristics

9.4.3 Digital Phase-Locked Loop

Figure 9—6 and Table 9-10 describe the digital phase-locked loop (DPLL) stages of
operation.

Figure 9-6 ref _clk System Timing

Relationship of CPU Clock and ref_clk_in

CPU Clock
ref_clk_in

Relationship of CPU Clock, ref_clk_in and sys_clk_outl

CPU Clock '_\\'gf / \ [\ 1\ / \

ref_clk_in \ [

sys_clk_outl)) \

> > o

Tsysd Tsysd Tsysd

LJ-03411.A14

Table 9-10 describes the callouts shown in Figure 9-6.

Table 9-10 ref_clk System Timing Stages

Stage Description

1 Theinternal CPU clock rising edge coincides with therising edge of ref_clk_in_h.

2 The DPLL causestheinternal CPU clock to stretch for one phase (1 cycle of
osc_clk_in_h,l).

The stretch causes ref_clk_in_h to lead the internal CPU clock by one phase.

4 The CPU clock is aways slightly faster than the external ref_clk_in_h and gains
onref_clk_in_h over time. Eventually the gain equals one phase and a new stretch
phase follows.

Electrical Data 9-19

AC Characteristics

Although systemsthat supply aref_clk_in_h do not use sys clk_outl h,l, arela
tionship between the two signals exists, just asinthe sys _clk-based systems, because
the 21164 uses sys clk_outl h,l internally to determine timing during system trans-
actions.

9.4.4 Timing—Additional Signals
This section liststiming for al other signals.

Asynchronous Input Signals

Thefollowing isalist of the asynchronous input signals:

clk_mode_h<2:0> dc ok _h ref clk_in_h sys reset | 2
oe we active low_h perf_mon_ht big_drv_en_h irgq_h<3:0>1
mch_hlt_irq_h? pwr_fail irq_h! sys mch_chk_irq_ht

These signals can also be used synchronously.
&S gnal sys reset_| may be deasserted synchronously.

9-20 Electrical Data

AC Characteristics

Miscellaneous Signals

Table 9-11 and Table 9-12 list the timing for miscellaneous input-only and output-
only signals. All timing is expressed in nanoseconds.

Table 9-11 Input Timing for sys_clk_out- or ref_clk_in-Based Systems

Value Name
Signal Specification sys_clk_out ref_clk_in sys_clk_out ref_clk_in
cfail_h, fill_h, fill_error_h,fill_id_h, Inputsetup 1.2ns 12ns Tdsu Tdsu
fill_nocheck_h, idle bc_h, (1.1ns) (L1nsh
shared_h, system_lock_flag_h
irg_h<3:0>, mch_hlt_irg_h,
pwr_fail_irg_h, sys mch_chk_irg_h
Testability pins:
port_mode h, srom_data h,
srom_present_|
cfail_h, fill_h, fill_error_h, fill_id_h, Inputhold Ons 0.5 x Tdh Troh
fill_nocheck h, idle bc h, (-0.1 nsl) Tcycle

shared_h, system_lock_flag_h

irg_h<3:0>, mch_hlt_irg_h,
pwr_fail _irg_h, sys mch_chk_irg_h

sys reset |
Testahility pins:

port_mode h, srom_data h,
srom_present_|

IFor chip speeds greater than 500 MHz.

Electrical Data 9-21

AC Characteristics

Table 9-12 Output Timing for sys_clk_out- or ref_clk_in-Based Systems

(Sheet 1 of 2)

Clocking System Value

Clocking System Name

Signal Specification sys_clk_out ref_clk_in sys_clk_out ref_clk_in
Unidirectional Signals
addr_res h, Output delay Tdd + 0.4 ns Tdd + Taod Traod
int4_valid_h,! (Tdd + 0.2 ns?) 0.5 xTcycle+ 0.9
scache set_h, ns
srom_clk_h, (Tdd +
srom_oe |, 0.5 XTcycle+ 0.7
victim_pending_h nsz)
addr_res h, Output hold Tmdd Tmdd?® Taoh Traoh
int4_valid_h,!
scache set_h,
srom_clk_h,
srom_oe |,
victim_pending_h
int4_valid_h* Output delay Tdd + Tcycle+ 0.4 ns Tdd + Tdod Trdod
(Tdd + Teycle 1.5 xTcycle+0.9
+0.2 nd) ns
(Tdd +
1.5 XTcycle+ 0.7
ns)
int4_valid_h* Output hold Tmdd + Tcycle Tmdd3+ Tcycle Tdoh Trdoh
Bidirectional Signals
Input mode:
addr_cmd_par_h, Input setup 1.2 ns 1.2ns Tdsu Tdsu
(1.1nd (1.1nd
cmd_h,
data_check_h,t
tag_ctl_par_h,°
tag_dirty h>°
tag_shared_h°®
addr_cmd_par_h, Inputhold 0Ons 0.5 xTcycle Tdh Tsdadh
(-0.1 nd)

cmd_h,
data_check_h,t
tag_ctl_par_h,°
tag_dirty_h>°
tag_shared_h°®

9-22 Electrical Data

Table 9-12 Output Timing for sys_clk_out- or ref_clk_in-Based Systems

AC Characteristics

(Sheet 2 of 2)

Clocking System Value

Clocking System Name

Signal Specification sys_clk_out ref_clk_in sys_clk_out ref_clk_in
Output mode:
addr_cmd_par_h, Output delay Tdd + 0.4 ns Tdd + Taod Traod
(Tdd + 0.2 ns?) 0.5 xTcycle+ 0.9
cmd_h, ns
tag_ CtIJoar h,5 (Tdd +
tag_dirty | h,® 0.5 XTcycle+ 0.7
tag_shared h nsz)
tag_valid h
data_check_h* Output delay Tdd + Tcycle+ 0.4 ns Tdd + Tdod Trdod
(Tdd + Teycle 1.5 xTcycle+0.9
+0.2 nd) ns
(Tdd +
1.5 xTeycle+ 0.7
ns)
addr_cmd_par_h, Output hold Tmdd Tmdd? Taoh Traoh
cmd_h,
tag_ctl _par_h, 6
tag_dirty | h®
tag_shared h
tag_valid h
data_check_h* Output hold Tmdd + Tcycle Tmdd3+ Tcycle Tdoh Trdoh

1Read transaction.
2For chip speeds greater than 500 MHz.
SFor chip speeds greater than 500 MHz, Tmdd is 0.6 ns.
“Write transaction.
5F|IIsfrom memory.
OnIy for write broadcasts and system transactions.

Electrical Data 9-23

AC Characteristics

Signalsin Table 9-13 are used to control Bcache data transfers. These signals are
driven off the CPU clock. The choicesyfs clk_out orref_clk_in has no impact on
the timing of these signals.

Table 9-13 Bcache Control Signal Timing

Value
Signal Specification 366 MHz-500 MHz Faster than 500 MHz Name
Input mode:
tag_data h, tag data par_h, Input setup 12ns 1.1ns Tdsu
tag_valid_h
tag_data h, tag data par_h, Input hold Ons -0.1ns Tdh
tag_valid_h
Output mode:
data ram_oe h, Output delay Thbedd +0.4ns or Thedd +0.2ns_or Taod
data_ram_we h,! Tbddd + 0.4ns>® Thddd + 0.2 ns>*
tag_ram_oe_h, tag_ram_we h?!
tag_data_h, tag data_par_h, Outputdelay Tdd +0.4ns? Tdd +0.2ns* Taod
tag_valid_h
data ram_oe h, Output hold Tmdd Tmdd® Taoh
data_ram_we h,!
tag_ram_oe | h, tag ram_we_h?!
tag_data h, tag data par_h, Output hold Tmdd Tmdd® Taoh

tag_valid_h

1F’ulseW|dth for thissignal is controlled through the BC_CONFIG IPR.
The value 0.4 ns accounts for onchip driver and clock skew.

SFor big drive enabled or big drive disabled, respectively. See Table 9-7.
4The value 0.2 ns accounts for onchip driver and clock skew.

SFor chip speeds greater than 500 MAmdd is 0.6 ns.

9.4.5 Timing of Test Features

Timing of 21164 testability features depends on the system clock rate and the test
port’s operating mode. This section provides timing information that may be needed
for most common operations.

9-24 Electrical Data

AC Characteristics

9.4.5.1 Icache BiSt Operation Timing

The Icache BiSt isinvoked by deasserting the external reset signal sys reset_|.
Figure 9—7 shows the timing between various events relevant to BiSt operations.

Figure 9—7 BiSt Timing Event—Time Line

) Deassert*)
Deassert BiSt Start Internal Reset BiSt Done
sys_reset_| (test_status_h<1:0>=01) (T%Z_RESET_B_L) (test_status_h<1:0>=00)
<« ty
- t, ' ty >

MK-1455-09

The timing for deassertion of internal reset (timet,, see asterisk) isvalid only if an

SROM is not present (indicated by keeping signal srom_present_| deasserted). If an
SROM s present, the SROM load is performed once the BiSt completes. The inter-

nal reset signal T%Z RESET B _L isextended until the end of the SROM load (Sec-

tion 9.4.5.2). In this case, the end of the time line shown in Figure 9—7 connects to
the beginning of the time line shown in Figure 9-8.

Table 9—14 and Table 9-15 list timing shown in Figure 9—7 for some of the system
clock ratios. Timetis measured starting from the rising edge of sysclk following the
deassertion of thgys reset | signal.

Table 9-14 BiSt Timing for Some System Clock Ratios, Port Mode=Normal
(System Cycles)

Sysclk System Cycles

Ratio t b 3

3 8 22644 + 2% 22645
4 7 19721 + 2% 19722
15 7 13291 + 14%> 13292

Electrical Data 9-25

AC Characteristics

Table 9-15 BiSt Timing for Some System Clock Ratios, Port Mode=Normal
(CPU Cycles)

Sysclk CPU Cycles

Ratio t b t3

3 24 67934Y> 67935

4 28 78886Y2 78888
15 105 199379% 199380

9.4.5.2 Automatic SROM Load Timing

The SROM load istriggered by the conclusion of BiSt if srom_present_| isasserted.
The SROM load occurs at the internal cycle time of approximately 126 CPU cycles
for srom_clk_h, but the behavior at the pins may shift dightly. Refer to Chapter 7
for more information on input signals, booting, and the SROM interface port.

Timing events are shown in Figure 9-8 and are listed in Table 9-16 and Table 9-17.

Figure 9-8 SROM Load Timing Event—Time Line

BiSt Done Deassert
(test_status_h Assert First Rise Last Rise Internal Reset Deassert
<1:0>=00) srom_oe_ | srom_clk_h srom_clk_h (T%Z_RESET_B_L) srom_oe_|

ty —

L

AAA+

MK-1455-10

Table 9-16 SROM Load Timing for Some System Clock Ratios (System Cycles)

Sysclk System Cycles?!

Ratio h b B t &

3 4 22 4408090 4408216 + %2 4408217
4 3 48 3306099 3306193 + 2% 3306194
15 3 13 881627 881651 + 9% 881652

IMeasured in sysclk cycles, wherefi+refers to an additionai CPU cycles.

9-26 Electrical Data

AC Characteristics

Table 9-17 SROM Load Timing for Some System Clock Ratios (CPU Cycles)

Sysclk CPU Cycles

Ratio b ty ty ts

3 12 66 13224270 13224648Y> 13224651

4 12 192 13224396 13224774 13224776
15 45 195 13224405 13224774% 13224780

Figure 9-9 is a timing diagram of an SROM load sequence.

Figure 9-9 Serial ROM Load Timing

sys_reset | / /

/

srom_oe_| / \ /

srom_clk_h / / \H\tho_/—_/] //_/__
e a —

tsu = 4 x sysclk period + 1.1 ns 102,400 Bits Total
tho =0 ns MK-1455-07

The minimum srom_clk_h cycle = (126 — sysclk ratio) x (CPU cycle time).
The maximunsrom_clk_h tosrom_data _h delay allowable (in order to meet the
required setup time) = [126(5 x sysclk ratio)] x (CPU cycle time).

9.4.6 Clock Test Modes

This section describes the 21164 clock test modes.
9.4.6.1 Normal (1x Clock) Mode

When clk_mode _h<2:0> =101, the osc_clk_in_h,I frequency is not divided and a
clock equalizing circuit (called a symmetrator) is enabled. The symmetrator equal-
izes the duty-cycle of the input clock for use onchip. Theosc_clk_in_h,l signals
must have a duty cycle of at least 60/40 for the symmetrator to work properly. Thisis
the preferred clocking mode of the 21164.

Electrical Data 9-27

AC Characteristics

9.4.6.2 2x Clock Mode

When clk_mode_h<2:0> = 000, theosc_clk_in_h,| frequency is divided by 2. The
osc_clk_in_h,l signals must have a duty cycle of at least 60/40.

9.4.6.3 Chip Test Mode

To lower the maximum frequency that the chip manufacturing tester is required to
supply, adivide-by-1 mode has been designed into the clock generator circuitry.
When clk_ mode_h<2:0> = 001, the clock frequency that is applied to the input
clock signalsosc_clk_in_h,| bypasses the clock divider and is sent to the chip clock
driver. Thisallowsthe chip internal circuitry to betested at full speed with a one-half
frequency osc_clk_in_h,I.

Note: The clock symmetrator is not enabled in this mode.

9.4.6.4 Module Test Mode

When clk_mode_h<2:0> = 010, the clock frequency that is applied to the input
clock signalsosc_clk_in_h,l isdivided by 4 and is sent to the chip clock driver. The
digital phase-locked loop (DPLL) continues to keep the onchip sys clk_outl h,l
locked to ref _clk_in_h within the normal limitsif aref_clk_in_h signal is applied
(Onstolosc clk_in_h,l cycleafter ref_clk_in_h).

9.4.6.5 Clock Test Reset Mode

When clk_mode_h<2:0> = 011, the sys _clk_out generator circuit is forced to reset
to aknown state. This allowsthe chip manufacturing tester to synchronize the chip to
the tester cycle. Table 9-18 lists the clock test modes.

Table 9-18 Clock Test Modes (Sheet 1 of 2)
clk_mode_h

Mode <2> <1> <0>

Normal (1x) clock mode 1 0 1

2x clock mode 0 0 0

Chip test 0 0 1

Module test 0 1 0

9-28 Electrical Data

Power Supply Considerations

Table 9-18 Clock Test Modes (Sheet 2 of 2)

clk_mode_h

Mode <2> <1> <0>
Clock reset 0 1 1
Not valid 1 0 0
Not valid 1 1 X

9.4.7 IEEE 1149.1 (JTAG) Performance

Table 9-19 lists the standard mandated performance specifications for the IEEE
1149.1 circuits.

Table 9-19 IEEE 1149.1 Circuit Performance Specifications

Item Specification
trst_I is asynchronous. Minimum pulse width. 4ns

trst_| setup time for deassertion before atransition ontck_h. 4ns
Maximum acceptable tck_h clock frequency. 16.6 MHz
tdi_h/tms_h setup time (referenced to tck_h rising edge). 4ns
tdi_h/tms_h hold time (referenced to tck_h rising edge). 4ns
Maximum propagation delay at pin tdo_h (referenced to tck_h falling 14 ns

edge).

Maximum propagation delay at system output pins (referencedtotck_h 20ns

falling edge).

9.5 Power Supply Considerations

For correct operation of the 21164, all of ¥ss pins must be connected to ground,

all of theVdd pins must be connected to a 3.3-V £5% power source, and all of the
Vddi pins must be connected to a 2.5-V +0.1 V power source. This source voltage
should be guaranteed (even under transient conditions) at the 21164 pins, and not just
at the PCB edge.

Plus 5 V is not used in the 21164. The voltage difference betwedithpins and

Vss pins must never be greater than 3.46 V, and the voltage difference between the
Vddi pins andVss pins must never be greater than 2.6 V. If the differentials exceed
these limits, the 21164 chip will be damaged.

Electrical Data 9-29

Power Supply Considerations

9.5.1 Decoupling

The effectiveness of decoupling capacitors depends on the amount of inductance

placed in series with them. The inductance depends both on the capacitor style (con-
struction) and on the module design. In general, the use of small, high-frequency

capacitors placed close to the chip package’s power and ground pins with very short
module etch will give best results. Depending on the user’s power supply and power
supply distribution system, bulk decoupling may also be required on the module.

The 21164 requires two sets of decoupling capacitors: oh&dfiband one fo ddi.
9.5.1.1 vdd Decoupling

The amount of decoupling capacitance connected betv@émndV ss should be

roughly equal to 10 times the amount of capacitive load that 21164 is required to
drive at any one time. This should guarantee a voltage drop of no more than 10% on
Vdd during heavy drive conditions.

Use capacitors that are as physically small as possible. Connect the capacitors
directly to the 21164/dd andVss pins by short surface etch (0.64 cm [0.25 in] or
less). The small capacitors generally have better electrical characteristics than the
larger units and will more readily fit close to the IPGA pin field.

When designing the placement of decoupling capackald,decoupling capacitors
should be favored ov&fddi decoupling capacitors (that Mdd capacitors should
be placed closer to the 21164 than\uali capacitors).

9.5.1.2 Vvddi Decoupling

Each individual case must be separately analyzed, but generally designers should
plan to use at least 4 yuF of capacitance connected betidelmndV ss. Typically,

30 to 40 small, high-frequency 0.1-uF capacitors are placed near thevadpand

Vss pins. Actually placing the capacitors in the pin field is the best approach. Several
tens of pF of bulk decoupling (comprised of tantalum and ceramic capacitors) should
be positioned near the 21164 chip.

Use capacitors that are as physically small as possible. Connect the capacitors
directly to the 21164/ddi andVss pins by short surface etch (0.64 cm [0.25 in] or
less). The small capacitors generally have better electrical characteristics than the
larger units, and will more readily fit close to the IPGA pin field.

9-30 Electrical Data

Power Supply Considerations

9.5.2 Power Supply Sequencing

When applying or removing power to the 21164, Vdd (the 3.3-V supply voltage)
must be no less than Vddi (the 2.2-V supply voltage).

The following rules must be followed when either applying or removing the supply
voltages:

1. Vdd must always be at the same or a higher voltage than VVddi during normal
operation

2. Thesignal voltage must not exceed Vclamp
3. Thesignal voltage must not be more than 2.4 V higher than Vddi

Rule 1 means that either Vdd and Vddi can be brought up and down in unison or
Vddi can be applied after and removed before Vdd.

Rule 2 means that the signal voltage must not be allowed to exceed Vclamp during
the application or removal of power. Refer to Table 9-3 for the valielamp.

Note that it is acceptable for the signal voltage either to be held at zero or to follow

Vdd during the application or removal of power.

Rule 3 means that, if the signal voltage followidd, the signal voltage must never

be greater than 2.4 V above the valu&/dtli. This applies equally during the appli-

cation or the removal of power.

Note that if the signal voltage is held at 0 V during power-up reset (that is, the ASICs

and SRAMs are set to drive 0 V during res€tyd andVddi can be brought up

together. In a similar manner, the power-down situation can be managed if the signal

voltages are forced to 0 V when the los¥/dfli is detected.

During power-upVddi can momentarily exceed the maximum steady-state value

under the following conditions:
e Thetransient voltageis 200 mV or less.

* The transient period lasts for 200 us or less.

The transient voltage is defined as the voltage that rises above the maximum-allowed
steady-state value. The transient period is defined as the time beginning when the
transient voltage exceeds the steady-state value and ending when it falls back to it.

There is no derating for shorter transient periods or lower transient voltages (for

example, a 400-mV transient voltage lasting for 100 us is not acceptable).

Electrical Data 9-31

Power Supply Considerations

All input and bidirectional signals are diode-clamped to Vdd and V'ss. A current
greater than Iclamp on an individua pin could damage the 21164. Designers must
take care that currents greater than I clamp will not be achieved during power-supply
sequencing. While currents less than I clamp will not damage the 21164, other
source drivers connected to the 21164 could be damaged by the clamp. Designers
must verify that the source drivers will not be damaged by currents up to I clamp.

9-32 Electrical Data

10

Thermal Management

This chapter describes the 21164 thermal management and thermal design consider-
ations.

10.1 Operating Temperature

The 21164 is specified to operate when the temperature at the center of the heat sink

(To) is 72.6°C for 366 MHz, 70.6°C for 433 MHz, or 68.6°C for 500 MHz. Tempera-
ture (T, should be measured at the center of the heat sink (between the two package
studs). The GRAFOIL pad is the interface material between the package and the heat
sink.

Table 10-1 lists the values for the center of heat-sink-to-amitea) for the 499-
pin grid array. Table 10-2 shows the allowabjéwWithout exceeding J at various
airflows.

Note: COMPAQ recommends using the heat sink because it greatly improves
the ambient temperature requirement.

Table 10-1 ©_.a at Various Airflows

Airflow (linear ft/min)

100 200 400 600 800 1000

Frequency: 366 MHz, 433 MHz, and 500 MHz
©.a with heat sink 1 (°C/W) 2.30 1.30 0.70 0.53 0.45 0.41
©.a with heat sink 2 (°C/W) 1.25 0.75 0.48 0.40 0.35 0.32

Thermal Management 10-1

Operating Temperature

Table 10-2 Maximum T , at Various Airflows

Airflow (linear ft/min)

100 200 400 600 800 1000

Frequency: 366 MHz, Power: 31 W @Vdd = 3.3V and @Vvddi =25V
T, with heat sink 1 (°C) — 32.3 50.9 56.2 58.7 59.9
T, with heat sink 2 (°C) 33.9 49.4 57.7 60.2 61.8 62.7

Frequency: 433 MHz, Power: 36 W @Vdd = 3.3V and @Vvddi =25V
T, with heat sink 1 (°C) — 23.8 45.4 515 54.4 55.8
T, with heat sink 2 (°C) 25.6 43.6 53.3 56.2 58.0 59.1

Frequency: 500 MHz, Power: 41 W @Vdd = 3.3V and @Vvddi =25V
T, with heat sink 1 (°C) — — 39.9 46.9 50.2 51.2
T, with heat sink 2 (°C) — 37.9 48.9 52.2 54.3 55.5

10-2 Thermal Management

Heat Sink Specifications

10.2 Heat Sink Specifications

Two heat sinks are specified. Heat sink type 1 mounting holes are in line with the

cooling fins. Heat sink type 2 mounting holes are rotated 90° from the cooling fins.
The heat sink composition is aluminum alloy 6063. Type 1 heat sink is shown in
Figure 10-1, and type 2 heat sink is shown in Figure 10-2, along with their approxi-
mate dimensions.

Figure 10-1 Type 1 Heat Sink

< 6.57 cm
(2.585 in)

1 Jﬂ q .
U A

6.57 cm 2.54 cm

(2.585 in) (1.$in)
Y/ N

3.25cm
”HH (1.280 in)

—

< (15in) —>|
sq.

LJ-04032.A14

Thermal Management 10-3

Thermal Design Considerations

Figure 10-2 Type 2 Heat Sink

7.59 cm
}‘7 (2.990 in 4>|

7 7D\)
\ \\UJ |
7 /DY
\ U |

3.80 cm
(1.495 in)

>

2.54 cm
(2.0in)

+

4.45 cm
(2.75in)

| 3.81cm

(1.5in)

LJ-04033.Al14

10.3 Thermal Design Considerations

Follow these guidelines for printed circuit board (PCB) component placement:

e Orient the 21164 on the PCB with the heat-sink fins aligned with the airflow
direction.

* Avoid preheating ambient air. Place the 21164 on the PCB so that inlet air is not
preheated by any other PCB components.

* Do not place other high-power devicesin the vicinity of the 21164.

e Donot restrict the airflow acrossthe 21164 heat sink. Placement of other devices
must allow for maximum system airflow in order to maximize the performance
of the heat sink.

10-4 Thermal Management

11

Mechanical Data and Packaging
Information

This chapter describes the 21164 mechanical packaging including chip package
physical specifications and asignal/pin list. For heat sink dimensions, refer to
Chapter 10.

11.1 Mechanical Specifications

Figure 11-1 shows the package physical dimensions without a heat sink.

Mechanical Data and Packaging Information 11-1

Mechanical Specifications

Figure 11-1 Package Dimensions

-

2.54 mm (.100 in) Typ

—Standoff (4x)

499x 1.40 mm (.055 in) Typ

: E1.27 mm (.050 in) Typ

—

—> <=1.27 mm (.050 in) Typ
<= 4.32 mm (.170 in) Typ
t<—1.27 mm (.050 in) Typ
=
=1
=l
=/
Lid ——=5 -
= Ve 1/4-20 Stud (2x)
—= 1
46 mm = 7.62 mm (.300 in) Typ
(.018 in) Typ =]
=/
.13 mm E
(.005in) R ||
—>» |<— 2.69 mm (.106 in) Typ

w
u
R T:
Nl 26.67 mm
= (1.050 in)
G r:
E
c D:
A B
3050709 11131517 19 21|23 25 27 29 3133 3537 39 4143
26.67 mm
(1.050 in)
<= 57.40 mm (2.260 in) Typ =
28.70 mm
~T(1.130in) Typ ™
o
1 1
(; 3
28.70 mm ()
(1.130in) Typ [0 1
[l 1
1
[l 1
\ y,
1
s -\ .
I:I N— Capacitors (12x)
/
25.40 mm
(1.000 in) Typ
38.10 mm
(1.500 in) Typ

11-2 Mechanical Data and Packaging Information

LJ-03457.A14

Signal Descriptions and Pin Assignment

11.2 Signal Descriptions and Pin Assignment

This section provides detailed information about the 21164 pinout. The 21164 has
499 pins aligned in an interstitial pin grid array (IPGA) design.

11.2.1 Signal Pin Lists

Table 11-1 lists the 21164 signal pins and their corresponding pin grid array (PGA)
locations in alphabetic order. There are 296 functional signal pins, 3 spare (unused)
signal pins, 39 external powerdd) pins, 65 internal powelddi) pins, and 96

ground ¥ ss) pins, for a total of 499 pins in the array.

Table 11-1 Alphabetic Signal Pin List

(Sheet 1 of 5)

PGA PGA PGA
Signal Location Signal Location Signal Location
addr_bus req_h E23 addr_cmd_par_h B20 addr_h<4> BB14
addr_h<5> BC13 addr_h<6> BA13 addr_h<7> AV14
addr_h<8> AW13 addr_h<9> BC11 addr_h<10> BA11
addr_h<11> AV12 addr_h<12> AW11 addr_h<13> BCO09
addr_h<14> BA0O9 addr_h<15> AV10 addr_h<16> AWO09
addr_h<17> BCO7 addr_h<18> BAO7 addr_h<19> AV08
addr_h<20> AWOQ7 addr_h<21> BCO5 addr_h<22> BC39
addr_h<23> AW37 addr_h<24> AV 36 addr_h<25> BA37
addr_h<26> BC37 addr_h<27> AW35 addr_h<28> AV34
addr_h<29> BA35 addr_h<30> BC35 addr_h<31> AW33
addr_h<32> AV 32 addr_h<33> BA33 addr_h<34> BC33
addr_h<35> AW31 addr_h<36> AV30 addr_h<37> BA31
addr_h<38> BC31 addr_h<39> BB30 addr_res h<0> c27
addr_res h<1> F26 addr_res h<2> E27 big_drv_en_h D40
cack_h G21 cfail_h C25 clk_mode_h<0> AU21
clk_mode_h<1> BA23 clk_mode_h<2> BB26 cmd_h<0> F20
cmd_h<1> A19 cmd_h<2> C19 cmd_h<3> E19
cpu_clk_out_h BA25 dack_h B24 data bus req_h E25

Mechanical Data and Packaging Information 11-3

Signal Descriptions and Pin Assignment

Table 11-1 Alphabetic Signal Pin List (Sheet 2 of 5)
PGA PGA PGA
Signal Location Signal Location Signal Location
data check_h<0> M1 data _check_h<1> K38 data check_h<2> J39
data check_ h<3> G43 data check_h<4> G41 data_check h<5> H38
data check_h<6> G39 data _check h<7> E43 data check_h<8> J03
data_check h<9> K06 data _check_h<10> J05 data check_h<11> GO01
data check_h<12> GO03 data_check h<13> HO06 data_check_h<14> GO05
data check_h<i15> EO1 data_h<0> A3 data_h<1> L39
data_h<2> M38 data_h<3> L41 data_h<4> L43
data_h<5> N39 data_h<6> P38 data_h<7> N41
data_h<8> N43 data_h<9> P42 data_h<10> R39
data_h<11> T38 data_h<12> R41 data_h<13> R43
data _h<14> U39 data_h<15> V38 data h<16> u41
data h<17> u43 data h<18> W39 data h<19> w41l
data_h<20> w43 data_h<21> Y38 data_h<22> Y42
data_h<23> AA39 data_h<24> AA41 data_h<25> AA43
data_h<26> AB38 data_h<27> AC43 data h<28> AC41
data_h<29> AC39 data_h<30> AD42 data_h<31> AD38
data_h<32> AE43 data_h<33> AE4l data_h<34> AE39
data_h<35> AG43 data_h<36> AG41 data_h<37> AF38
data_h<38> AG39 data_h<39> AM3 data_h<40> AMl
data_h<41> AH38 data_h<42> AJ39 data_h<43> AK42
data_h<44> AL43 data_h<45> AL41 data_h<46> AK38
data_h<47> AL39 data_h<48> AN43 data_h<49> ANA41
data_h<50> AM38 data_h<51> AN39 data_h<52> AR43
data_h<53> AR41 data_h<54> AP38 data_h<55> AR39
data_h<56> AU43 data_h<57> AU41 data_h<58> AT38
data_h<59> AU39 data_h<60> AW43 data _h<61> AwA4l

11-4 Mechanical Data and Packaging Information

Signal Descriptions and Pin Assignment

Table 11-1 Alphabetic Signal Pin List (Sheet 3 of 5)
PGA PGA PGA
Signal Location Signal Location Signal Location
data_h<62> AV 38 data_h<63> AW39 data_h<64> Jo1
data_h<65> LO5 data_h<66> MO6 data_h<67> LO3
data_h<68> LO1 data_h<69> NO5 data_h<70> P06
data_h<71> NO3 data_h<72> NO1 data_h<73> P02
data _h<74> R0O5 data_h<75> TO6 data_h<76> R0O3
data_h<77> RO1 data h<78> uo5 data_h<79> V06
data_h<80> uo3 data_h<81> uol data_h<82> W05
data h<83> w03 data_h<84> wo1l data_h<85> Y06
data_h<86> Y02 data_h<87> AAQ5 data h<88> AAO03
data_h<89> AAO0L data_h<90> ABO6 data h<91> ACO1
data_h<92> ACO03 data h<93> ACO05 data_h<94> ADO02
data_h<95> ADO06 data_h<96> AEOL data_h<97> AEQ3
data_h<98> AEQ5 data_h<99> AGO01 data_h<100> AGO03
data h<101> AF06 data h<102> AGO05 data h<103> AJ01
data_h<104> AJ03 data h<105> AHO06 data_h<106> AJ0O5
data_h<107> AKO02 data_h<108> ALOL data_h<109> ALO3
data_h<110> AKO06 data_h<111> ALO5 data_h<112> ANO1
data_h<113> ANO3 data_h<114> AMO6 data _h<115> ANO5
data_h<116> ARO1 data_h<117> ARO3 data_h<118> APO6
data h<119> ARO05 data_h<120> AUO01 data_h<121> AUO03
data_h<122> ATO06 data h<123> AUO05 data_h<124> AWO01
data_h<125> AWO03 data_h<126> AV 06 data_h<127> AWO05
data ram_oe h F22 data ram_we h A23 dc ok_h AU23
fill_error_h A25 fill_h G23 fill_id_h F24
fill_nocheck_h G25 idle_ bc_h A27 index_h<4> A29
index_h<5> C29 index_h<6> F28 index_h<7> E29

Mechanical Data and Packaging Information 11-5

Signal Descriptions and Pin Assignment

Table 11-1 Alphabetic Signal Pin List (Sheet 4 of 5)
PGA PGA PGA
Signal Location Signal Location Signal Location
index_h<8> B30 index_h<9> A3l index_h<10> C31
index_h<11> F30 index_h<12> E31 index_h<13> A33
index_h<14> C33 index_h<15> F32 index_h<16> E33
index_h<17> A35 index_h<18> C35 index_h<19> F34
index_h<20> E35 index_h<21> A37 index_h<22> C37
index_h<23> F36 index_h<24> E37 index_h<25> A39
int4_valid_h<0> F38 int4 valid_h<1> E41 int4_valid_h<2> FO6
int4_valid_h<3> EO3 irg_h<0> BA29 irg_h<1> AU27
irq_h<2> BC29 irq_h<3> AW27 mch_hlt_irg_h AU25
oe_we active low_h AY40 osc_clk_in_h BC21 osc_clk_in_| BB22
perf_mon_h AW29 port_mode_h<0> AY 20 port_mode_h<1> BB20
pwr_fail_irg_h AV 26 ref_clk_in_h AW?25 scache set_h<0> C17
scache set_h<1> A17 shared_h c23 srom_clk_h BA19
srom_data _h BC19 srom_oe | AW19 srom_present_| AV20
st_clkl_h EO05 st_clk2_h E39 system_lock_flag h G27
sys clk_outl h AW23 sys clk_outl | BB24 sys clk_out2_h AV24
sys clk_out2_| BC25 sys mch_chk_irg_h BAZ27 sys reset_| BC27
tag_ctl_par_h F18 tag_data h<20> A05 tag_data _h<21> EO7
tag_data h<22> FO8 tag_data h<23> co7 tag_data_h<24> A07
tag_data h<25> E09 tag_data h<26> F10 tag_data _h<27> C09
tag_data h<28> A09 tag_data h<29> E11 tag_data _h<30> F12
tag_data h<31> c11 tag_data h<32> All tag_data h<33> E13
tag_data h<34> F14 tag_data h<35> C13 tag_data_h<36> A13
tag_data h<37> B14 tag_data h<38> E15 tag_data par_h C15
tag_dirty_h E17 tag_ram_oe h c21 tag ram_we h A21
tag_shared_h A15 tag_valid_h F16 tck_h AW17

11-6 Mechanical Data and Packaging Information

Signal Descriptions and Pin Assignment

Table 11-1 Alphabetic Signal Pin List (Sheet 5 of 5)
PGA PGA PGA

Signal Location Signal Location Signal Location

tdi_h BC17 tdo h BA17 temp_sense AW15

test_status h<0> BA15 test_status h<1> AV 16 tms h AV18

trst_| BC15 victim_pending_ h E21 spare D04

spare AY 04 spare i0<250> AV 28
PGA

Signal Location

Vss A03, A4l1, AAO7, AA37, ACO7, AC37, AD04, AD40, AF02, AF42, AGO7,

Meta plane 6 AG37, AHO4, AH40, ALO7, AL37, AM04, AM40, AP02, AP42, ARO7,
AR37, AT04, AT40, AU09, AU13, AU17, AU31, AU35, AV02, AV22,
AV42, AW?21, AY 08, AY 12, AY 16, AY 22, AY 24, AY 28, AY 32, AY 36, B02,
B06, B10, B18, B26, B34, B38, B42, BA01, BA21, BA43, BB02, BB06,
BB10, BB18, BB34, BB38, BB42, BC03, BC41, C01, C43, D08, D12, D16,
D20, D24, D28, D32, D36, FO2, F42, G09, G13, G17, G31, G35, H04, H40,
J07, J37, K02, K42, M04, M40, NO7, N37, T04, T40, U07, U37, V02, V42,
Y04, Y40

Vdd ABO04, AB40, AF04, AF40, AK04, AK40, AP04, AP40, AV04, AV40, AY 06,

Metal plane 4 AY 10, AY 14, AY 18, AY 26, AY 30, AY 34, AY 38, BAO3, BA41, C03, C41,
D06, D10, D14, D18, D22, D26, D30, D34, D38, F04, F40, K04, K40, P04,
P40, V04, V40

Vddi ABO02, AB42, AEQ7, AE37, AHO02, AH42, AJ07, AJ37, AM02, AM42, ANO7,

Meta plane 2 AN37, AT02, AT42, AUO7, AU11, AU15, AU19, AU29, AU33, AU37,

AY02, AY42, B04, B08, B12, B16, B22, B28, B32, B36, B40, BA05, BA39,
BB04, BB08, BB12, BB16, BB28, BB32, BB36, BB40, BC23, C05, C39,
D02, D42, G11, G15, G19, G29, G33, G37, HO2, H42, L07, L37, M02, M42,
RO7, R37, TO2, T42, W07, W37

Mechanical Data and Packaging Information 11-7

Signal Descriptions and Pin Assignment

11.2.2 Pin Assignment

Figure 11-2 shows the 21164 pinout from the top view with pins facing down.

Figure 11-2 21164 Top View (Pin Down)

e e R OR SR OO RGN SRR O OO KSR RO OR OGNSR ER S
BA S HONONOHOHONONONONOHONOUOHONONONONONONONONS)
=000 0000000000000 00000
v RO OO G X X DX DX O GH G K OX OX OX OXOHOKEX OX Ox OX GRS
A —— O 0100000000000 000000000
e O ~ QX000
AN AM—_Q@OOOOO ! | OOOOOOO
AL 000 | 0000
AJ <= 000! I OZ0°070
AH——)" OO~ ! 1 OO0
AC— O 000, | 0000
AC 5 OO0 21164 | 07000
AB——5) O~ 1 Top View L 000
AA 000! (Pin Down) | OZ0° 00
Yy =007 ! | “O0°00
w = 000! 1 OZ0° 00
v —~T5 000! | O-0C0-0
T =0 001 | 1 0700
R— O 000 oxoxexe
N e | | 000
L — 000! oxexexe
R 0 X O O I) gooo
s — 9000 00000-0-00009-0-00, 00
R RONOX XX DX OHORGX X OX OX ORGSR PR SRR OX OHOROX®)
¢ — 00 0 00 0 0" 0 0 O- 00 OO 0" 00" 0" 00
A

42140|38)|36|34(32|30|28(26(24|22 14112110)|08| 06|04 |02
43 41 39 37 35 33 31 29 27 25 23 21 19 17 15 13 11 09 07 05 03 01

@?@?<P?@?@?@T@T@T@T@T@T@T@T@?@T@T@T@T@T@T

N

LJ03453A.Al4

11-8 Mechanical Data and Packaging Information

Signal Descriptions and Pin Assignment

Figure 11-3 shows the 21164 pinout from the bottom view with pins facing up.

Figure 11-3 21164 Bottom View (Pin Up)

BC
T B R OROR RO OO O ORCROR O ORORCRORORORE
BA BN ERONONONONONONONONONONONONONONONONONONCKO,
VA A SN ONONONORONONONONONONONONONONONONONONONO)
T B O o O O O RO O O O OO RN
AU S RONONONONONONONONONONONONONONONONONONONOKO)
AT 0 © O (N ONONO!
AR ERONONONY 2 JORONOXO)
AP —5-© @ ONONO)
AN B ONONONC ONONONO)
AM——5) 0 © ONONO)
AL BENONONO ONONONO)
AK——0-©© ONONO)
A EERONONC ONONONO)
AH— =90 © ONONO)
AG EORONONO ONONONO)
AF——6"©© ONONO)
AE B ORONONO ONONONO)
AD ——9") © ONONO)
AC BORONONO 21164 ONONONO)
AB——©-© © : ONONO)
AA o) (o) (o) (0 Bottom View ONONONO)
Y —— 0 © (Pin Up) © © ©
w B ORONONO ONONONO)
V900 ONONO)
u BONONONG ONONONO)
R SNONO) ONONO)
R BSRONONC ONONONO)
P —0 00 ONONO)
N EORONONC ONONONO)
M——9 © © ONONO)
L EONONONO ONONONO)
K——0)-©-© ONONO)
1 @ﬁﬁ@x JQQQ@
G
. B R RN O OROROROH O ORORORORORORC RO
R RONONCNON O ONON NN ON RN ONORONC K ONOKONONONO
c B«%%§§??§§?§§ﬁf@@@@@@%
A RPPPPPPPY@ ®

04/06/08|10/12|14/16|18|20|22 24|26 |2 32|34|36|38|40|42
01 03 05 07 09 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43

LJ03413B.Al4

lkAtGIkdaaL

o
N

Mechanical Data and Packaging Information 11-9

12

Testability and Diagnostics

This chapter describes the 21164 user-oriented testability features. The 21164 also
has severa internal testability features that are implemented for factory use only.
These features are beyond the scope of this document.

12.1 Test Port Pins

Table 12—-1 summarizes the test port pins and their function.

Table 12—-1 21164 Test Port Pins

Pin Name

Type Function

port_mode h<1>
port_mode h<0>
srom_present_|
srom_data_h/Rx
srom_clk_h/Tx
srom_oe |

tdi_h

tdo_h

tms h

tck_h

trst_|

test_status h<0>
test_status h<1>

o O

Must be false.
Must be false.
Tied low if serial ROMs (SROMs) are present in system.
Receives SROM or serial terminal data.
Supplies clock to SROMSs or transmits serial terminal data.
SROM enable.
|EEE 1149.1 TDI port.
|EEE 1149.1 TDO port.
|EEE 1149.1 TMS port.
IEEE 1149.1 TCK port.
|EEE 1149.1 optional TRST port.
Indicates | cache BiSt status.

Outputs an | PR-written value and timeout reset.

Testability and Diagnostics

12-1

Test Interface

12.2 Test Interface

The 21164 test interface supports aseria ROM interface, aserial diagnostic terminal
interface, and an |EEE 1149.1 test access port. These ports are available and set to
normal test interface mode when port_mode_h<1:0>=00. Driving these pinsto a
value of anything other than 00 redefines all other test interface pins and invokes
special factory test modes not covered in this document.

The SROM port is described in Section 7.4 and the serial terminal port is described
in Section 7.5.

12.2.1 IEEE 1149.1 Test Access Port

Pinstdi_h, tdo_h, tck_h, tms_h, and trst_| constitute the IEEE 1149.1 test access

port. This port accesses the 21164 chip’s boundary-scan register and chip tristate
functions for board level manufacturing test. The port also allows access to factory
manufacturing features not described in this document. The port is compliant with
most requirements of IEEE 1149.1 test access port.

Compliance Enable Inputs

Table 12—-2 shows the compliance enable inputs and the pattern that must be driven
to those inputs in order to activate the 21164 IEEE 1149.1 circuits.

Table 12-2 Compliance Enable Inputs

Input Compliance Enable Pattern
port_mode h<1.0> 00
dc ok _h 1

Exceptions to Compliance

The 21164 is compliant with IEEE Standard 1149.1—1993, with two exceptions.
Both exceptions provide enhanced value to the user.

1. trst | pin

The optionatrst_| pin has an internal pull-down, instead of a pull-up as required
by IEEE 1149.1 (non-complied spec 3.6.1(b) in IEEE 1149.1-1993)r$hé
pull-down allows the chip to automatically force reset to the IEEE 1149.1 cir-
cuits in a system in which the IEEE 1149.1 port is unconnected. This may be
considered a feature for most system designs that use IEEE 1149.1 circuits solely
during module manufacturing.

12-2 Testability and Diagnostics

Test Interface

Note: COMPAQ recommendsthat thetrst_| pin be driven low (asserted) when
the JTAG (IEEE 1149.1) logic is hot in use.

2. Coverage of oscillator differential input pins

The two differential clock input pins, osc_clk_in_h and osc_clk_in_I, do not

have any boundary-scan cells associated with them (non-complied spec

10.4.1(b) in IEEE 1149.1-1993). Instead, there is an extra input BSR cell in the
boundary-scan register in bit position 255 (atq@nok_h). This cell captures

the output of a “clock sniffer” circuit. It captures a 1 when the oscillator is con-
nected, and captures a 0 if the chip’s oscillator connections are broken.

This exception to the standard is made to permit a meaningful test of the oscilla-

tor input pins.

Refer to IEEE Standard 1149.1-19®3est Access Port and Boundary Scan Archi-
tecture for a full description of the specification.

Figure 12—1 shows the user-visible features from this port.

Figure 12-1 IEEE1149.1 Test Access Port

TRSTL >

TAP Controller

TMS_H D State Machine & CONTROL

Control Dispatch
Logic

TCK H [>—>

T00_H {_}

TDI_H D—»' Instruction Register (IR)

—>| Bypass Register (BPR)

|—

—>{ Die-ID Register (IDR)

|—

—>| Boundry Scan Register (BSR) |—

LJ-03463.Al4

Testability and Diagnostics 12-3

Test Interface

TAP Controller

The TAP controller contains a state machine. It interprets |EEE 1149.1 protocols
received on signal tms_h and generates appropriate clocks and control signalsfor the
testability features under itsjurisdiction. The state machine is shown in Figure 12-2.

Figure 12—2 TAP Controller State Machine

Test Logic
Reset

‘(Run-Test/Idle 1 >

4

|

Select-DR-Scan !

Select-IR-Scan

{

Values
shown
are for
TMS.

Scan Sequence Scan Sequence

MK145508.A14

Instruction Register

The 5-bit-wide instruction register (IR) supports IEEE 1149.1 mandated public
instructions (EXTEST, SAMPLE, BYPASS, HIGHZ) and a number of optional
instructions for public and private factory use. Table 12—3 summarizes the public
instructions and their functions.

12-4 Testability and Diagnostics

Test Interface

During the capture operation, the shift register stage of IR isloaded with the value
00001. This automatic load feature is useful for testing the integrity of the IEEE
1149.1 scan chain on the module.

Table 12-3 Instruction Register

Selected

IR<4:0> Name Scan Register Operation
00000 EXTEST BSR BSR drives pins. Interconnect test mode.
00010 SAMPLE/PRELOAD BSR Preloads BSR.
00010 Private BSR Private.
00011 Private BSR Private.
00100 CLAMP BPR BSR drives pins.
00101 HIGHZ BPR Tristate all output and I/O pins.
00110 Private IDR Private.
00111 Private IDR Private.

01000 Private BPR Private.
through

11110

11111 BYPASS BPR Defauilt.

Bypass Register

The bypassregister is a 1-hit shift register. It provides a short single-bit scan path
through the port (chip).

Boundary-Scan Register
The 289-bit boundary-scan register is accessed during SAMPLE, EXTEST, and
CLAMP instructions. Refer to Section 12.3 for the organization of this register.

12.2.2 Test Status Pins

Two test status signal test_status h<1:0> pins are used for extracting test status
information from the chip. System reset drives both test status pins low. The default
operation for test_status_h<0> isto output the BiSt results. The default operation
for test_status _h<1> isto output the IPR-written value.

e During Icache BiSt Operation

Testability and Diagnostics 12-5

Boundary-Scan Register

test_status _h<0> isforced high at the start of the Icache BiSt. If the Icache BiSt
passes, the pin is deasserted at the end of the BiSt operation, otherwiseit remains
high.

* |IPR read and write operations to test status pins

PAL code can write to thetest_status _h<1> signal pin and can read the
test_status _h<0> signal pin through hardware IPR access. Refer to Chapter 6.

* Timeout Reset
The 21164 generates atimeout reset signal under two conditions:
a. If aninstruction is not retired within 1 billion cycles.
b. If the system asserts cfail_h when cack_h is deasserted.

In either of these conditions, the CPU signals the timeout reset event by outputting a
256 CPU cycle wide pulse on thetest_status _h<1> pin. The pulse on

test_status _h<1> pinisclocked by sysclk and therefore appears as an approxi-
mately 256 CPU cycle pulse that rises and falls on system clock rising edges.

12.3 Boundary-Scan Register

The 21164 boundary-scan register (BSR) is 289 bits long. Table 12—4 provides the
boundary-scan register organization. The BSR is connected betwedn thand

tdo_h pins whenever an instruction selects it (Table 12—-3). The scan register runs
clockwise beginning at the upper-left corner of the chip.

There are seven groups of bidirectional pins, each group controlled from a group
control cell. Loading a value of 1 in the control cell tristates the output drivers, and
all bidirectional pins in the group are configured as input pins. The bidirectional pin
groups are identified as groups gr_1 through gr_7 in the Control Group column in
Table 12-4.

Information on Boundary Scan Description Language (BSDL) as it applies to the
21164 boundary-scan register is available through your local sales office (see Appen-
dix E).

Notes: The following notes apply to Table 12—4:

e Thedirection of shift isfrom top to bottom, and from left to right.

¢ The bottom most signals appear first at the tdo_h pin when shifting.

e Givenan arrayed signal of theform signal<a:b>, signal appears at
thetdo_h pin prior to signal<a>.

12-6 Testability and Diagnostics

Table 12—-4 Boundary-Scan Register Organization

Boundary-Scan Register

(Sheet 1 of 3)

Pin BSR BSR Control
Signal Name Type Count Cell Type Group Remarks
TR_ADL Control 288 io bcell gr 1 Upper-left corner.
addr_h<21:4> B 287:270 io_bcell gr 1 —
temp_sense (0] — None — Analog pin.
test_status h<1:0> (0] 269:268 io_bcell — —
trst_| I — None — —
tck_h I — None — —
tms h I — None — —
tdo h (0] — None — —
tdi_h I — None — —
srom_oe | (0] 267 io_bcell — —
srom_clk_h (0] 266 io_bcell — —
srom_data _h I 265 in_bcell — —
srom_present_| I 264 in_bcell — —
port_ mode h<0:1> | — None — Compliance enable pins.
clk_mode _h<0> I 263 in_bcell — —
osc clk_in_h,l I — None — Analog pins.
clk_mode _h<1> I 262 in_bcell — —
sys clk_outl h,l (0] 261:260 io_bcell — —
sys clk_out2 _h,l (0] 259:258 io_bcell — —
cpu_clk_out_h (0] — None — For chip test.
ref_clk_in_h I 257 in_bcell — —
sys reset | I 256 in_bcell — —
dc_ok_h I — None — Compliance enable pin.
OSC_SNIFFER_H Internal 255 in_bcell — Captures 1 if osc is connected,

otherwise captures 0.

Testability and Diagnostics 12-7

Boundary-Scan Register

Table 12—-4 Boundary-Scan Register Organization (Sheet 2 of 3)
Pin BSR BSR Control

Signal Name Type Count Cell Type Group Remarks

sys mch_chk irq_h | 254 in bcell — —

pwr_fail_irg_h I 253 in_bcell — —

mch_hlt_irg_h I 252 in_bcell — —

irg_h<3:0> I 251:248 in_bcell — —

SPARE_10<250> B 247 io_bcell — Tied off as input.

perf_mon_h I 246 in_bcell — —

TR_ADR Control 245 io_bcell gr 2 —

addr_h<39:22> B 244:227 io_bcell gr_2 Upper-right corner.

TR_DDR Control 226 io_bcell gr 3 —

data_h<63:0> B 225:162 io_bcell gr_3 —

data check h<7:0> B 161:154 io_bcell gr_3 —

int4_valid_h<1:0> (0] 153:152 io_bcell — —

SPARE_10<438> — — None — Lower-right corner, unpopulated.

index_h<25:4> (0] 151:130 io_bcell — —

addr_res h<2:0> (0] 129:127 io_bcell — —

idle_bc_h I 126 in_bcell — —

system_lock flag_ h | 125 in_bcell — —

data bus req_h I 124 in_bcell — —

cfail_h I 123 in_bcell — —

fill_nocheck_h I 122 in_bcell — —

fill_error_h I 121 in_bcell — —

fill_id_h I 120 in_bcell — —

fill_h I 119 in_bcell — —

dack_h I 118 in_bcell — —

addr_bus req_h I 117 in_bcell — —

cack_h I 116 in_bcell — —

12-8 Testability and Diagnostics

Boundary-Scan Register

Table 12—-4 Boundary-Scan Register Organization (Sheet 3 of 3)
Pin BSR BSR Control
Signal Name Type Count Cell Type Group Remarks
shared_h I 115 in bcell — —
data ram_we h (0] 114 io_bcell — —
data ram_oe h (0] 113 io_bcell — —
tag_ram_we h (0] 112 io_bcell — —
tag_ram_oe h (0] 111 io_bcell — —
victim_pending_h (0] 110 io_bcell — —
TMIS1 Control 109 io_bcell gr 4 —
addr_cmd_par_h B 108 io_bcell gr 4 —
cmd_h<0:3> B 107:104 io_bcell gr 4 —
scache set_h<1:0> (0] 103:102 io_bcell — —
TTAG1 Control 101 io_bcell gr 5 —
tag_ctl_par_h B 100 io_bcell gr 5 —
tag_dirty h B 99 io_bcell gr 5 —
tag_shared_h B 98 io_bcell gr 5 —
TTAG2 Control 97 io_bcell gr 6 —
tag_data par_h B 96 io_bcell gr 6 —
tag_valid_h B 95 io_bcell gr 6 —
tag_data h<38:20> B 94:76 io_bcell gr 6 —
st _clk_h (6] 75 io_bcell — Lower-left corner.
int4_valid_h<2:3> 0] 74:73 io_bcell — —
TR_DDL Control 72 io_bcell gr 7 —
data check h<15:8> B 71:64 io_bcell gr 7 —
data_h<64:127> B 63:00 io_bcell gr 7 —

Testability and Diagnostics

12-9

A

Alpha Instruction Set

A.1 Alpha Instruction Summary

This appendix contains asummary of all Alphaarchitecture instructions. All values
are in hexadecimal radix. Table A—1 describes the contents of the Format and
Opcode columns that are in Table A-2.

Table A-1 Instruction Format and Opcode Notation

Instruction Format Opcode

Format Symbol Notation Meaning

Branch Bra 00 00 isthe 6-hit opcode field.
Floating- F-P oo.fff 00 isthe 6-hit opcode field.

point fff is the 11-bit function code field.
Memory Mem o0 00 isthe 6-bit opcode field.
Memory/ Mfc oo.ffff ooisthe 6-bit opcode field.

function code ffff isthe 16-bit function code in the

displacement field.
Memory/ Mbr 0o.h 00 isthe 6-hit opcode field.

branch h is the high-order 2 bits of the displacement
field.

Operate Opr 0o.ff 00 isthe 6-hit opcode field.
ff isthe 7-bit function code field.

PALcode Pcd 00 00 isthe 6-bit opcode field; the particular

PAL code instruction is specified in the 26-bit
function code field.

Alpha Instruction Set A-1

Alpha Instruction Summary

Quialifiers for operate instructions are shown in Table A—2. Qualifiers for IEEE and
VAX floating-point instructions are shown in Tables A-5 and A—6, respectively.

Table A—2 Architecture Instructions (Sheet 1 of 7)
Mnemonic Format Opcode Description

ADDF F-P 15.080 Add F_floating
ADDG F-P 15.0A0 Add G_floating
ADDL Opr 10.00 Add longword
ADDL/V Opr 10.40 Add longword

ADDQ Opr 10.20 Add quadword
ADDQ/NV Opr 10.60 Add quadword

ADDS F-P 16.080 Add S floating
ADDT F-P 16.0A0 Add T _floating
AMASK Opr 11.61 {:_)etermi ne byte/word instruction implementa-

ion

AND Opr 11.00 Logical product

BEQ Bra 39 Branch if = zero

BGE Bra 3E Branch if = zero

BGT Bra 3F Branch if > zero

BIC Opr 11.0 Bit clear

BIS Opr 11.20 Logical sum

BLBC Bra 38 Branch if low bit clear
BLBS Bra 3C Branch if low bit set
BLE Bra 3B Branch if < zero

BLT Bra 3A Branch if < zero

BNE Bra 3D Branch if # zero

BR Bra 30 Unconditional branch
BSR Mbr 34 Branch to subroutine
CALL_PAL Pcd 00 Trap to PALcode
CMOVEQ Opr 11.24 CMOVE if = zero

A-2 Alpha Instruction Set

Alpha Instruction Summary

Table A—2 Architecture Instructions (Sheet 2 of 7)
Mnemonic Format Opcode Description
CMOVGE Opr 11.46 CMOVE if = zero
CMOVGT Opr 11.66 CMOVE if > zero
CMOVLBC Opr 11.16 CMOVE if low bit clear
CMOVLBS Opr 11.14 CMOVE if low bit set
CMOVLE Opr 11.64 CMOVEIf £ zero
CMOVLT Opr 11.44 CMOVE if < zero
CMOVNE Opr 11.26 CMOVEIf # zero
CMPBGE Opr 10.0F Compare byte
CMPEQ Opr 10.2D Compare signed quadword equal
CMPGEQ F-P 15.0A5 Compare G_floating equal
CMPGLE F-P 15.0A7 Compare G_floating less than or equal
CMPGLT F-P 15.0A6 Compare G_floating less than
CMPLE Opr 10.6D Compare signed quadword less than or equal
CMPLT Opr 10.4D Compare signed quadword less than
CMPTEQ F-P 16.0A5 Compare T_floating equal
CMPTLE F-P 16.0A7 Compare T_floating less than or equal
CMPTLT F-P 16.0A6 Compare T_floating less than
CMPTUN F-P 16.0A4 Compare T_floating unordered
CMPULE Opr 10.3D Compare unsigned quadword less than or equal
CMPULT Opr 10.1D Compare unsigned quadword less than
CPYS F-P 17.020 Copy sign
CPYSE F-P 17.022 Copy sign and exponent
CPYSN F-P 17.021 Copy sign negate
CVTDG F-P 15.09E Convert D_floating to G_floating
CVTGD F-P 15.0AD Convert G_floating to D_floating
CVTGF F-P 15.0AC Convert G_floating to F_floating

Alpha Instruction Set A-3

Alpha Instruction Summary

Table A—2 Architecture Instructions (Sheet 3 of 7)
Mnemonic Format Opcode Description

CVTGQ F-P 15.0AF Convert G_floating to quadword
CVTLQ F-P 17.010 Convert longword to quadword
CVTQF F-P 15.0BC Convert quadword to F_floating
CVTQG F-P 15.0BE Convert quadword to G_floating
CVTQL F-P 17.030 Convert quadword to longword
CVTQL/SV F-P 17.530 Convert quadword to longword
CVTQL/NV F-P 17.130 Convert quadword to longword
CVTQS F-P 16.0BC Convert quadword to S floating
CVTQT F-P 16.0BE Convert quadword to T_floating
CVTST F-P 16.2AC Convert S floating to T_floating
CVTTQ F-P 16.0AF Convert T_floating to quadword
CVTTS F-P 16.0AC Convert T_floating to S_floating
DIVF F-P 15.083 Divide F_floating

DIVG F-P 15.0A3 Divide G_floating

DIVS F-P 16.083 Divide S_floating

DIVT F-P 16.0A3 Divide T_floating

EQV Opr 11.48 Logical equivalence

EXCB Mfc 18.0400 Exception barrier

EXTBL Opr 12.06 Extract byte low

EXTLH Opr 12.6A Extract longword high

EXTLL Opr 12.26 Extract longword low

EXTQH Opr 12.7A Extract quadword high

EXTQL Opr 12.36 Extract quadword low

EXTWH Opr 12.5A Extract word high

EXTWL Opr 12.16 Extract word low

FBEQ Bra 31 Floating branch if = zero

A-4 Alpha Instruction Set

Alpha Instruction Summary

Table A—2 Architecture Instructions (Sheet 4 of 7)
Mnemonic Format Opcode Description
FBGE Bra 36 Floating branch if > zero
FBGT Bra 37 Floating branch if > zero
FBLE Bra 33 Floating branch if < zero
FBLT Bra 32 Floating branch if < zero
FBNE Bra 35 Floating branch if # zero
FCMOVEQ F-P 17.02A FCMOVE if = zero
FCMOVGE F-P 17.02D FCMOVE if = zero
FCMOVGT F-P 17.02F FCMOVE if > zero
FCMOVLE F-P 17.02E FCMOVE if < zero
FCMOVLT F-P 17.02C FCMOVE if < zero
FCMOVNE F-P 17.02B FCMOVE if # zero
FETCH Mfc 18.80 Prefetch data
FETCH_M Mfc 18.A0 Prefetch data, modify intent
IMPLVER Opr 11.6C Determine CPU type
INSBL Opr 12.0B Insert byte low
INSLH Opr 12.67 Insert longword high
INSLL Opr 12.2B Insert longword low
INSQH Opr 12.77 Insert quadword high
INSQL Opr 12.3B Insert quadword low
INSWH Opr 12.57 Insert word high
INSWL Opr 12.1B Insert word low
IMP Mbr 1A.0 Jump
JSR Mbr 1A.1 Jump to subroutine
JSR_COROUTINE Mbr 1A.3 Jump to subroutine return
LDA Mem 08 Load address
LDAH Mem 09 Load address high

Alpha Instruction Set A-5

Alpha Instruction Summary

Table A—2 Architecture Instructions (Sheet 5 of 7)
Mnemonic Format Opcode Description
LDBU Mem OA Load zero-extended byte
LDF Mem 20 Load F_floating
LDG Mem 21 Load G floating
LDL Mem 28 L oad sign-extended longword
LDL L Mem 2A L oad sign-extended longword locked
LDQ Mem 29 L oad quadword
LDQ L Mem 2B L oad quadword locked
LDQ U Mem 0B L oad unaligned quadword
LDS Mem 22 Load S floating
LDT Mem 23 Load T_floating
LDWU Mem 0OC Load zero-extended word
MB Mfc 18.4000 Memory barrier
MF_FPCR F-P 17.025 Move from floating-point control register
MSKBL Opr 12.02 Mask byte low
MSKLH Opr 12.62 Mask longword high
MSKLL Opr 12.22 Mask longword low
MSKQH Opr 12.72 Mask quadword high
MSKQL Opr 12.32 Mask quadword low
MSKWH Opr 12.52 Mask word high
MSKWL Opr 12.12 Mask word low
MT_FPCR F-P 17.024 Move to floating-point control register
MULF F-P 15.082 Multiply F_floating
MULG F-P 15.0A2 Multiply G_floating
MULL Opr 13.00 Multiply longword
MULL/NV Opr 13.40 Multiply longword
MULQ Opr 13.20 Multiply quadword

A-6 Alpha Instruction Set

Alpha Instruction Summary

Table A—2 Architecture Instructions (Sheet 6 of 7)
Mnemonic Format Opcode Description

MULQ/V Opr 13.60 Multiply quadword

MULS F-P 16.082 Multiply S_floating

MULT F-P 16.0A2 Multiply T_floating

ORNOT Opr 11.28 Logical sum with complement
RC Mfc 18.E0 Read and clear

RET Mbr 1A.2 Return from subroutine

RPCC Mfc 18.CO Read process cycle counter
RS Mfc 18.FO00 Read and set

SAADDL Opr 10.02 Scaled add longword by 4
SAADDQ Opr 10.22 Scaled add quadword by 4
HASUBL Opr 10.0B Scaled subtract longword by 4
HASUBQ Opr 10.2B Scaled subtract quadword by 4
SBADDL Opr 10.12 Scaled add longword by 8
SBADDQ Opr 10.32 Scaled add quadword by 8
S8SUBL Opr 10.1B Scaled subtract longword by 8
S8SUBQ Opr 10.3B Scaled subtract quadword by 8
SEXTB Opr 1C.00 Store byte

SEXTW Opr 1C.01 Store word

SLL Opr 12.39 Shift left logical

SRA Opr 12.3C Shift right arithmetic

SRL Opr 12.34 Shift right logical

STB Mem OE Store byte

STF Mem 24 Store F_floating

STG Mem 25 Store G_floating

STS Mem 26 Store S floating

STL Mem 2C Store longword

Alpha Instruction Set A-7

Alpha Instruction Summary

Table A—2 Architecture Instructions (Sheet 7 of 7)
Mnemonic Format Opcode Description
STL C Mem 2E Store longword conditional
STQ Mem 2D Store quadword
STQ C Mem 2F Store quadword conditional
STQ U Mem OF Store unaligned quadword
STT Mem 27 Store T_floating
STW Mem 0D Storeword
SUBF F-P 15.081 Subtract F_floating
SUBG F-P 15.0A1 Subtract G_floating
SUBL Opr 10.09 Subtract longword
SUBL/V 10.49
SUBQ Opr 10.29 Subtract quadword
SUBQ/V 10.69
SUBS F-P 16.081 Subtract S_floating
SUBT F-P 16.0A1 Subtract T_floating
TRAPB Mfc 18.00 Trap barrier
UMULH Opr 13.30 Unsigned multiply quadword high
WMB Mfc 18.44 Write memory barrier
XOR Opr 11.40 Logical difference
ZAP Opr 12.30 Zero bytes
ZAPNOT Opr 12.31 Zero bytes not

A-8 Alpha Instruction Set

Alpha Instruction Summary

A.1.1 Opcodes Reserved for COMPAQ

Table A-3 lists opcodes reserved for COMPAQ.

Table A—3 Opcodes Reserved for COMPAQ

Mnemonic Opcode

Mnemonic Opcode

Mnemonic Opcode

OPCO01 01
OPCO02 02
OPCO03 03
OPC04 04

OPCO5 05 OPCOB
OPCO6 06 OPCOC
OPCO7 07 OPCOD
OPCOA 0A! OPCOE

0B

oct
oD?!
OE!

IReserved when byte/word instructions are not enabled.

A.1.2 Opcodes Reserved for PALcode

Table A—4 lists the 21164-specific instructions. For more information, refer to

Section 6.6.

Table A—4 Opcodes Reserved for PALcode

21164 Architecture

Mnemonic Opcode Mnemonic Function

HW_LD 1B PAL1B Performs Dstream load instructions.

HW_ST 1F PAL1F Performs Dstream store instructions.

HW_REI 1E PAL1E Returns instruction flow to the program counter
(PC) pointed to by EXC_ADDR internal processor
register (IPR).

HW_MFPR 19 PAL19 Accessesthe IDU, MTU, and Dcache IPRs.

HW_MTPR 1D PAL1D Accessesthe IDU, MTU, and Dcache IPRs.

Alpha Instruction Set A-9

IEEE Floating-Point Instructions

A.2 |IEEE Floating-Point Instructions

Table A-5 lists the hexadecimal value of the 11-bit function code field for the IEEE
floating-point instructions, with and without qualifiers. The opcode for these instruc-

tions is 1Gg.

Table A-5 |IEEE Floating-Point Instruction Function Codes (Sheet 1 of 2)
Mnemonic None /C ™M /D U /uc /UM /Ub
ADDS 080 000 040 0CO 180 100 140 1Co
ADDT 0A0 020 060 OEO 1A0 120 160 1EO
CMPTEQ 0A5
CMPTLT OA6
CMPTLE 0A7
CMPTUN 0A4
CVTQS 0OBC 03C 0/C OFC
CVTQT OBE 03E O7E OFE
CVTTS 0OAC 02C 06C OEC 1AC 12C 16C 1EC
DIVS 083 003 043 0C3 183 103 143 1C3
DIVT 0A3 023 063 OE3 1A3 123 163 1E3
MULS 082 002 042 0c2 182 102 142 1C2
MULT 0A2 022 062 OE2 1A2 122 162 1E2
SUBS 081 001 041 0C1 181 101 141 1C1
SUBT OAl 021 061 OE1 1A1 121 161 1E1
Mnemonic /SU /SsUC /SUM /SUD /sUI /SUIC /SUIM /SUID
ADDS 580 500 540 5C0 780 700 740 7CO
ADDT 5A0 520 560 5EO0 7A0 720 760 7EQ
CMPTEQ 5A5
CMPTLT BA6
CMPTLE 5A7
CMPTUN 5A4

A-10 Alpha Instruction Set

IEEE Floating-Point Instructions

Table A-5 |IEEE Floating-Point Instruction Function Codes (Sheet 2 of 2)
Mnemonic ISU /SUC /SUM /SUD /SUl /SUIC /SUIM /SUID
CVTQS 7BC 73C 77C 7FC
CVTQT 7BE 73E T7E 7F3
CVTTS 5AC 52C 56C 5EC 7AC T72C 76C 7EC
DIVS 583 503 543 5C3 783 703 743 7C3
DIVT B5A3 523 563 5E3 7A3 723 763 7E3
MULS 582 502 542 5C2 782 702 742 7C2
MULT BA2 522 562 BE2 TA2 722 762 TE2
SUBS 581 501 541 5C1 781 701 741 7C1
SUBT 5A1 521 561 5E1 7A1 721 761 7E1
Mnemonic None /S
CVTST 2AC 6AC
Mnemonic None /C v Ve ISV /SsvC /sVI /SVIC
CVTTQ OAF 02F 1AF 12F 5AF 52F TAF 72F
Mnemonic D VD /ISVD /SVID /M VM ISVM /SVIM
CVTTQ OEF 1EF 5EF TEF O6F 16F 56F 76F

Note: Because underflow cannot occur for CMPTxx, thereis no differencein

function or performance between CMPTxx/S and CMPTxx/SU. It is
intended that software generate CMPTxx/SU in place of CMPTxX/S.

In the same manner, CVTQS and CVTQT can take an inexact result
trap, but not an underflow. Because thereis no encoding for aCVTQxX/SI
instruction, it isintended that software generate CVTQx/SUI in place of

CVTQX/SI.

Alpha Instruction Set A-11

VAX Floating-Point Instructions

A.3 VAX Floating-Point Instructions

Table A-6 lists the hexadecimal value of the 11-bit function code field for the VAX
floating-point instructions. The opcode for these instructions;ig 15

Table A—6 VAX Floating-Point Instruction Function Codes

Mnemonic None /C V] /uc IS ISC /SU /SuC
ADDF 080 000 180 100 480 400 580 500

CVTDG 09E 01E 19E 11E 49E 41E 59E 51E

ADDG 0A0 020 1A0 120 4A0 420 5A0 520

CMPGEQ 0A5 4A5

CMPGLT 0A6 4A6

CMPGLE 0A7 4A7

CVTGF 0OAC 02C 1AC 12C 4AC 42C 5AC 52C

CVTGD OAD 02D 1AD 12D 4AD 42D 5AD 52D

CVTQF 0BC 03C

CVTQG OBE O3E

DIVF 083 003 183 103 483 403 583 503

DIVG 0A3 023 1A3 123 4A3 423 5A3 523

MULF 082 002 182 102 482 402 582 502

MULG 0A2 022 1A2 122 4A2 422 bA2 522

SUBF 081 001 181 101 481 401 581 501

SUBG 0A1 021 1A1 121 A1 421 5A1 521

Mnemonic None /C v VC /s /sC ISV /SvC
CVTGQ OAF O2F 1AF 12F 4AF 42F 5AF 52F

A.4 Opcode Summary

Table A-7 lists all Alpha opcodes from 00 (CALL_PAL) through 3F (BGT). In the
table, the column headings that appear over the instructions have a granulggty of 8
The rows beneath the Offset column supply the individual hexadecimal number to
resolve that granularity.

A-12 Alpha Instruction Set

Opcode Summary

If an instruction column has a0 in the right (low) hexadecimal digit, replace that O
with the number to the left of the backslash in the Offset column on the instruction’s
row. If an instruction column has an 8 in the right (low) hexadecimal digit, replace
that 8 with the number to the right of the backslash in the Offset column.

For example, the third row (2/A) under the 10,4 column contains the symbol INTS*,
representing the all-integer shift instructions. The opcode for those instructions
would then be 12,4 because the 0 in 10 is replaced by the 2 in the Offset column.
Likewise, the third row under the 18,4 column contains the symbol JSR*, represent-
ing all jump instructions. The opcode for thoseinstructionsis 1A becausethe 8inthe
heading is replaced by the number to the right of the backdash in the Offset column.

The instruction format is listed under the instruction symbol.

Table A—7 Opcode Summary (Sheet 1 of 2)
Offset 00 08 10 18 20 28 30 38
0/8 PAL* LDA INTA* MISC* LDF LDL BR BLBC
(pal) (mem) (op) (mem) (mem) (mem) (br) (br)
1/9 Res LDAH INTL* \PAL\ LDG LDQ FBEQ BEQ
(mem) (op) (mem) (mem) (br) (br)
2/A Res LDBU INTS* JSR* LDS LDL_L FBLT BLT
(mem) (op) (mem) (mem) (mem) (br) (br)
3/B Res LDQ U INTM* \PAL\ LDT LDQ L FBLE BLE
(mem) (op) (mem) (mem) (br) (br)
4/C Res LDWU Res SEXT* STF STL BSR BLBS
(mem) (op) (mem) (mem) (br) (br)
5D Res STW FLTV* \PAL\ STG STQ FBNE BNE
(mem) (op) (mem) (mem) (br) (br)

Alpha Instruction Set A-13

Required PALcode Function Codes

Table A—7 Opcode Summary (Sheet 2 of 2)
Offset 00 08 10 18 20 28 30 38
6/E Res STB FLTI* \PAL\ STS STL_.C FBGE BGE

(mem) (op) (mem) (mem) (br) (br)
7IF Res STQ U FLTL* \PAL\ STT STQ C FBGT BGT
(mem) (op) (mem) (mem) (br) (br)
Symbol Meaning
FLTI* | EEE floating-point instruction opcodes
FLTL* Floating-point operate instruction opcodes
FLTV* VAX floating-point instruction opcodes
INTA* Integer arithmetic instruction opcodes
INTL* Integer logical instruction opcodes
INTM* Integer multiply instruction opcodes
INTS Integer shift instruction opcodes

JSR* Jump instruction opcodes
MISC* Miscellaneous instruction opcodes
PAL* PALcode instruction (CALL_PAL) opcodes
\PAL\ Reserved for PAL code
Res Reserved for COMPAQ
SEXT* Sign extend opcodes

A.5 Required PALcode Function Codes

The opcodes listed in Table A-8 are required for all Alpha implementations. The
notation used is oo.ffff, where oo is the hexadecimal 6-bit opcode and ffff is the
hexadecimal 26-bit function code.

Table A-8 Required PALcode Function Codes

Mnemonic

Type Function Code

DRAINA
HALT
IMB

Privileged 00.0002
Privileged 00.0000
Unprivileged 00.0086

A.6 21164 Microprocessor IEEE Floating-Point Conformance

The 21164 supports the IEEE floating-point operations as defined by the Alpha
architecture. Support for a complete implementation of the IG&elard for

Binary Floating-Point Arithmetic (ANSI/IEEE Standard 754 1985) is provided by a
combination of hardware and software as described iAlfie Architecture Refer-

ence Manual.

A-14 Alpha Instruction Set

21164 Microprocessor IEEE Floating-Point Conformance

Additional information about writing code to support precise exception handling
(necessary for complete conformance to the standard) is in the Alpha Architecture
Reference Manual.

The following information is specific to the 21164:

Invalid operation (INV)

Theinvalid operation trap is aways enabled. If the trap occurs, then the destina-
tion register is UNPREDICTABLE. This exceptionissignaled if any VAX archi-
tecture operand is nonfinite (reserved operand or dirty zero) and the operation
can take an exception (that is, certain instructions, such as CPY S, never take an
exception). This exception issignaled if any |EEE operand is nonfinite (NAN,
INF, denorm) and the operation can take an exception. Thistrap is aso signaled
for an IEEE format divide of £0 divided by 0. If the exception occurs, then
FPCR<INV> is set and the trap is signaled to the IDU.

Divide-by-zero (DZE)

The divide-by-zero trap is always enabled. If the trap occurs, then the destination
register is UNPREDICTABLE. For VAX architecture format, this exception is
signaled whenever the numerator is valid and the denominator is zero. For IEEE
format, this exception is signaled whenever the numerator is valid and nonzero,

with a denominator of 0. If the exception occurs, then FPCR<DZE> is set and
the trap is signaled to the IDU.

For IEEE format divides, 0/0 signals INV, not DZE.
Floating overflow (OVF)

The floating overflow trap is dways enabled. If the trap occurs, then the destina-
tion register is UNPREDICTABLE. The exception is signaled if the rounded
result exceeds in magnitude the largest finite number, which can be represented
by the destination format. This applies only to operations whose destination isa
floating-point datatype. If the exception occurs, then FPCR<OVF> is set and the
trap issignaed to the IDU.

Underflow (UNF)

The underflow trap can be disabled. If underflow occurs, then the destination
register isforced to atrue zero, consisting of afull 64 bits of zero. Thisis done
even if the proper |EEE result would have been -0. The exception is signaled if
the rounded result is smaller in magnitude than the smallest finite number that
can be represented by the destination format. If the exception occurs, then
FPCR<UNF> is set. If the trap is enabled, then the trap is signaled to the IDU.
The 21164 never produces a denormal number; underflow occurs instead.

Alpha Instruction Set A-15

21164 Microprocessor IEEE Floating-Point Conformance

* Inexact (INE)

The inexact trap can be disabled. The destination register always contains the
properly rounded result, whether the trap is enabled. The exception issignaled if
the rounded result is different from what would have been produced if infinite
precision (infinitely wide data) were available. For floating-point results, this
requires both an infinite precision exponent and fraction. For integer results, this
requires an infinite precision integer and an integral result. If the exception
occurs, then FPCR<INE> is set. If thetrap is enabled, then thetrap issignaled to
the IDU.

The |IEEE-754 specification allows INE to occur concurrently with either OVF
or UNF. Whenever OVF issignaled (if the inexact trap is enabled), INE isalso
signaled. Whenever UNF is signaled (if the inexact trap is enabled), INE isalso
signaled. The inexact trap also occurs concurrently with integer overflow. All
valid opcodes that enable INE also enable both overflow and underflow.

If aCVTQL resultsin an integer overflow (I0V), then FPCR<INE> is automati-
cally set. (The INE trap is hever signaled to the IDU because thereisno CVTQL
opcode that enables the inexact trap.)

* Integer overflow (I0V)

The integer overflow trap can be disabled. The destination register always con-
tains the low-order bits (<64> or <32>) of the true result (not the truncated bits).
Integer overflow can occur with CVTTQ, CVTGQ, or CVTQL. In conversions
from floating to quadword integer or longword integer, an integer overflow
occursif the rounded result is outside the range =23 ..28%1, |n conversions from
guadword integer to longword integer, an integer overflow occursif the result is
outside the range —231 ..23171, |f the exception occurs, then the appropriate bit in
the FPCR is set. If the trap is enabled, then the trap is signaled to the IDU.

e Software completion (SWC)

The software completion signal is not recorded in the FPCR. The state of this
signal isaways sent to the IDU. If the IDU detects the assertion of any of the
listed exceptions concurrent with the assertion of the SWC signal, then it sets
EXC _SUM<SWC>.

Input exceptions alwaystake priority over output exceptions. If both exception types
occur, then only the input exception is recorded in the FPCR and only the input
exception is signaled to the IDU.

A-16 Alpha Instruction Set

B

21164 Microprocessor Specifications

Table B-1 lists specifications for the 21164.

Table B-1 21164 Microprocessor Specifications (Sheet 1 of 2)
Feature Description

Cycletime range 2.73 ns (366 MHz) to 2.0 ns (500 MHz)

Process technology 0.35-um CMOS

Transistor count 9.67 million

Die size 664 x 732 mils

Package 499-pin IPGA (interstitial pin grid array)

Number of signal pins

296

Typical worst case power27.5 W (int.) and 3.0 W (ext.) @ 2.73 ns cycle time (366 MHz)

@vdd =33V
@vddi=25V

Power supply
Clocking input

Virtual address size
Physical address size
Page size

Issue rate

Integer instruction
pipeline

Floating instruction
pipeline

Onchip L1 Dcache

Onchip L1 Icache

32.5W (int.) and 3.0 W (ext.) @ 2.31 ns cycle time (433 MHz)
37.5W (int.) and 3.5 W (ext.) @ 2.0 ns cycle time (500 MHz)

3.3Vdc, 25Vdc
One times the internal clock speed
43 bits
40 bits
8KB
2 integer instructions and 2 floating-point instructions per cycle

7 stage
9 stage
8KB, physical, direct-mapped, write-through, 32-byte block,

32-byte fill

8KB, virtual, direct-mapped, 32-byte block, 32-byte fill,
128 address space numbers (ASNs) (MAX_ASN=127)

21164 Microprocessor Specifications B-1

B-2

Table B—1 21164 Microprocessor Specifications (Sheet 2 of 2)

Feature

Description

Onchip L2 Scache

Onchip data
translation buffer

Onchip instruction
trangdation buffer

Floating-point unit
Bus

Serial ROM interface

96K B, physical, 3-way set-associative, write-back, 32-byte or
64-byte block, 32-byte or 64-byte fill

64-entry, fully associative, not-last-used replacement, 8K pages,
128 ASNs (MAX_ASN=127), full granularity hint support

48-entry, fully associative, not-last-used replacement,
128 ASNs (MAX_ASN=127), full granularity hint support

Onchip FPU supports both IEEE and COMPAQ floating point
Separate data and address bus, 128-bit/64-bit data bus

Allows microprocessor to access aserial ROM

21164 Microprocessor Specifications

C

Serial Icache Load Predecode Values

The following C code calculates the predecode values of a serial Icache load. A soft-
waretool called the SROM Packer converts a binary image into aformat suitable for

Icache serial loading. Thistool is available from COMPAQ.

#i ncl ude <stdio. h>

/* fillmap [0 - 127] naps data 127:0, etc. */

/* fillmap[n] is bit position in output vector. */

/* bit 0 of this vector is first-in; bit 199 is last */

const int dfillmap [128] = {

42, 44, 46, 48, 50, 52, 54, 56,

58, 60, 62, 64, 66, 68, 70, 72,

74,76, 78, 80, 82, 84, 86, 88,

90, 92, 94, 96, 98, 100, 102, 104,

43, 45, 47, 49, 51, 53, 55, 57,

59, 61, 63, 65, 67, 69, 71, 73,
75,77,79, 81, 83, 85, 87, 89,

91, 93, 95, 97, 99, 101, 103, 105,

128, 130, 132, 134, 136, 138, 140, 142,
144, 146, 148, 150, 152, 154, 156, 158,
160, 162, 164, 166, 168, 170, 172, 174,
176, 178, 180, 182, 184, 186, 188, 190,
129, 131, 133, 135, 137, 139, 141, 143,
145, 147, 149, 151, 153, 155, 157, 159,
161, 163, 165, 167, 169, 171, 173, 175,
177, 179, 181, 183, 185, 187, 189, 191

¥

const int BHIfillmap[8] = {
199, 198, 197, 196, 195, 194, 193, 192
b

[* data 0:127 -- fillmap[O0: 127]*/
[* 0:7 */

[* 8:15 */

/* 16:
[* 24:
/* 32:
/* 40:
/* 48:
/* 56:
/* 64:
/1* 72:
/* 80:
/* 88:
/* 96:

23
31
39
47
55
63
71
79
87
95

103 */

/* 104:111 */
/* 112:119 */
/* 120:127 */

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

[* BHT vector 0:7 -- BHIfillmap[0:7] */
[* 0:7 */

const int predfillmap[20] ={ /* predecodes 0:19 -- predfillmap[0:19] */

106, 108, 110, 112, 114,
107, 109, 111, 113, 115,
118, 120, 122, 124, 126,
119, 121, 123, 125, 127

b

[* 0:4 */
/* 5:9 */

/* 10:14 */
/* 15:19 */

Serial Icache Load Predecode Values

C-1

const int octawpfillnap = /* octaword parity */

117,
const int predpfillmp = /* predecode parity */
116;
const int tagfillmp[30] = { [* tag bits 13:42 -- tagfillmp[0:29] */
29, 28, 27, 26, 25, 24, 23, 22, 21, 20, [* 13:22 */
19, 18, 17, 16, 15, 14, 13, 12, 11, 10, /* 23:32 */
09, 08, 07, 06, 05, 04, 03, 02, 01, 00 /* 33:42 *| };
const int asnfillmp[7] = { [* asn 0:6 -- asnfillnap[0:6] */
37,36, 35, 34, 33, 32,31 /* 0:6 */
h
const int asnfillmap = [* asm-- asnfillnap */
30;
const int tagphysfillmap = /* tagphysi cal address -- tagphysfillmap */
38;
const int tagval fillmap[2] = { /* tag valid bits 0:1 -- tagvalfillmap */
40, 39 [* 0:1*/
b
const int tagparfillnap = /* tag parity -- tagparfillnmap */
41;
mai n(argc, argv)
int argc;
char *argv[];
{
int i,j,kt;

int status,instatus, instr_count;

char fil enane[256], of i | enane[256] , hfi | ename[256] ;

char *charptr;

int instr[4], outvector[7];

FILE* infile, outfile, hexfile;

int base, asm asn, tag, predecodes,owparity, pdparity,tparity,
tvalids, t physical , bhtvector, offset, chksum

strepy (flename "loadfile.exe”;
strepy(ofilename, "loadfile.srom”);
base =0;

tag=0;

asn=0;

asm=1;

tphysical=1;

bhtvector = 0;

offset=0;

C-2 Serial Icache Load Predecode Values

if (argc > 1)
strepy(fil ename, argv[1]);

if (argc > 2)
strcpy(ofil enane, argv[2]);

if (argc > 3)
{
base = strtol (argv[3], NLL, 16) & (Oxffffffff << 13);
tag = base >> 13;
}
if (argc > 4)
asn = strtol (argv[4], NlLL, 16) & Ox7f;

if (argc > 5)
asm= strtol (argv[5], NLL, 16) & 1;

if (argc > 6)
tphysical = strtol (argv[6], NALL, 16) & 1;

if (argc >7)
bhtvector = strtol (argv[7], NDLL, 16) & Oxff;

if (NULL == (infile = fopen(flename, "))
{
printf(‘input file open error: %s\n”, flename);
exit(Q);
}
if (NULL == (outfile = fopen(ofilename, “wh")))
{
printf(“binary output file open error: %s\n”, ofilename);
exit(Q);
}

strepy(hfilename, ofilename);
charptr = strpbrk(hfilename,”.;”);
if (Charptr '= NULL) *charptr = 0;
strcat(hfilename,”.hex”);

if (NULL == (hexfile = fopen(hfilename, “w”)))
{
printf(“hex output file open error: %s\n”, hilename);
exit(Q);
}

forintf(hexdile, :020000020000FC\n’);

tparity = eparity(tag) " eparity(tphysical) eparity(asn);
tvalids = 3;

instatus =0;

instr_count=0;

Serial Icache Load Predecode Values

for (i=0; i<512; i+4)
{
for (j=0;j<4;j++) instr[j] =0;
for (j=0;j<7;j++ outvector[j]=0;

if (instatus == 0)

if (16 > (status = fread(& nstr[0],1,16,infile)))
instatus = 1;
instr_count += status/4;

pr edecodes=0;
owparity = 0;
for (j=0;j<4;j++)

predecodes | = (4 ™ instrpredecode(instr[j])) << (j*5);
/[* invert bit 2 to nmatch fill scan chain attribute */
owparity ~= eparity(instr[j]);

pdparity = eparity(predecodes);
/* bhtvector */
for (j=0;j<8;j++)
t = BHTfillmap[j];
outvector[t>>5] |= ((bhtvector >>j) & 1) << (t&0x1f);

/* instructions */
for (k=0; k<4; k++)

for (j=0;j<32;j++)

t = dfillmp[j+k*32];
outvector[t>>5] | = ((instr[k] >>j) & 1) << (t&x1f);

}
}
/* predecodes */
for (j=0;j<20;j++)
{

t = predfillmap[j];
outvector[t>>5] |= ((predecodes >>j) & 1) << (t&0x1f);

/* owparity */
outvector[octawpfill map>>5] |= owparity << (octawpfil | map&x1f);

C-4 Serial Icache Load Predecode Values

/* pdparity */
outvector[predpfill map>>5] |= pdparity << (predpfil| map&Ox1f);
[* tparity */
outvector[tagparfill map>>5] |=tparity << (tagparfil | nap&x1if);
/* tvalids */
for (j=0;j<2;j++)
{
t =tagval fillmap[j];
outvector[t>>5] |= ((tvalids >>j) & 1) << (t&x1f);

}
/* tphysical */
outvector[tagphysfill map>>5] | = tphysical << (tagphysfill map&xif);
/* asn */
for (j=0;j<7;j++)
{

t = asnfillmap[j];
outvector[t>>5] |= ((ash >>j) & 1) << (t&x1f);

}
[* asm*/
outvector[asnfill map>>5] |= asm<< (asnfill map&0x1f);
/* tag */
for (j=0;j<30;j++)
{

t =tagfillmp[j];
outvector[t>>5] |= ((tag >>j) & 1) << (t&xI1f);

fwite(&utvector[Q], 1,25, outfile);
fprintf(hexfile,”:19%04X00" offset);
chksum = (offset & Oxff) + (offset >> 8) + 0x19;
for (=0; j<25; j++)
{
charptr = ((char*) &outvector[0]) +j;
fprintf(hexfile,"%602X", (Oxff& *charptr));
chksum +=*charptr;
}
offset += 25; fprintf(hexdfile,"%602X\n", (-chksum) & Oxff);
}
fprintf(hexfile,”:00000001FFN");
if (instatus = 0)
if (fread(&instr{0],1,16,infile))
{
printf(“There are more instructions in the input file than can”;
printf(“be fit in the output file: \n");

Serial Icache Load Predecode Values

printf(* truncated the input file after 8K of instructions!!\n”);
}

printf(\n”);

printf(“Total intructions processed = %d\n”, instr_count);

fclose(infile);

fclose(outfile);

fclose(hexdile);

exit(0);

}
int eparity(int x)
{

X=X (x>>16);
X=X"N(x>>8);
X=X (x>>4),;
X=XN(X>>2);
X=XN(X>>1);

return (X&1);

}
#define EXT(data, bith
((data) & ((unsigned) 1 << (bit))) I=0)
#define EXTV(data, hbit, Ibith
((data) >> (Ibit)) &\
(((Abity - (Ibit) + 1) == 32) ? ((unsigned)OXxfff) : \
(~((unsigned)0xfffif << ((hbit) - (bit) + 1)))))
#define INS(name, bit, data)\
(name) = (((name) & ~((unsigned) 1 << (bit))) |\
((unsigned) (data) << (bit)) & ((unsigned) 1 << (bit))))

int instrpredecode(int inst)
{

int resul;
int opcode;
intfunc;
intjsr_type;
intra;

int outO;
intoutl;

int out2;

int out3;

int out4;
inte0_only;
int e1_only;
int ee;

int Inoop;

C—-6 Serial Icache Load Predecode Values

int fadd;
int fml;
int fe;

int br_type;
int |1d;

int store;
int br;

int call_pal;
int bsr;

int ret_rei;
int jnp;

int jsr_cor;
int jsr;

int cond_br;

opcode = EXT\(inst, 31, 26);
func = BEXTinst, 12, 5);
jsr_type = EXT(inst, 15,14);
ra = EXT\(inst, 25, 21);

/* MSCnemformat: FETCH_M RS, RC RPCC TRAPB,
I /* EXT, MK, I NS, SRX, SLX, ZAP*/

e0 only = (opcode == 0x24) ||
(opcode == 0x25) || /*
(opcode == 0x26) || /*
(opcode = 0x27) || /*
(opcode == OxOF) || /*
(opcode == 0x2A) || /*
(opcode == 0x2B) || /*
(opcode == 0x2Q || /*
(opcode == 0x2D || /*
(opcode == 0x2E) || /*
(opcode == O0x2F) || /*
(opcode == Ox1F) || /*
(opcode == 0x18) ||
(opcode == 0x12)
(opcode == 0x13) || /*
((opcode == 0x1D) & (EXT(inst,8) ==
((opcode == 0x19) & (EXT(inst,8) ==

(opcode =0x01) ||
(opcode == 0x02) ||

(opcode == 0x03) ||
(opcode == 0x04) ||
(opcode == 0x05) ||
(opcode == 0x06) ||
(opcode =0x07) ||

(opcode =0x0a) ||

P RESDEC's*/
P RESDEC's*/
RESDEC's
RESDEC's
RESDEC's
P RESDEC's*/
P RESDEC's*/
RESDEC's/

/* STF */
STG */
STS */
STT */
STQU */
LDL L */
LDQ L */
STL */
STQ */
STL_C */
STQ C */
HW ST*/

MULX */

Serial Icache Load Predecode Values

0)) || /* MBOX HWMIPR */
0)) || /* MBOX HWMPR */

(opcode ==0x0c) || *RESDEC's */
(opcode==0x0d)|| /~RESDEC's*
(opcode==0x0e)|| /*RESDEC's*
(opcode==0x14)|| /*RESDECs*
(opcode ==0x1c); /*RESDEC's*

el only= (opcode =0x30)|| #BR*
(opcode =0x34) || F#BSR*
(opcode==0x38)|| /#BLBC*
(opcode==0x39)|| F#BEQ*
(opcode==0x3A)|| FBLT*
(opcode =0x3B) || #BLE*
(opcode =0x3C)|| BLBS*
(opcode =0x3D)|| BNE?*
(opcode==0x3E)|| FBGE*
(opcode==0x3F)|| H#BGT*
(opcode =0x1A)|| #IMP,JISRRET,JSR_COROT ¥
(opcode =Ox1E)|| AHW_REI*
(opcode =0x00) || ~CALL PAL*
((opcode == 0x1D) && (EXT(inst,8) == 1)) || # IBOX HW_MTPR */
((opcode == 0x19) && (EXT(inst,8) == 1)); /*IBOXHW_MTPR*/
ee= (opcode==0x10)|| /*ADD,SUB,CMP*
(opcode==0x11)|| /*AND, BIC etc. logicals */
(opcode ==0x28) || /~LDL*
(opcode =0x29)|| /#LDQ*
(opcode == OxOB)&(ra = Ox1F) || #LDQ_U*
(opcode==0x08)|| /*LDA*
(opcode==0x09)|| /LDAH*
(opcode = 0x20) || /*LDF*
(opcode =0x21)|| /LDG*
(opcode =0x22)|| /LDS*
(opcode =0x23)|| /LDT¥
(opcode = 0x1B); AHW_LD*

Inoop=(opcode == 0x0B)&(ra = Ox1F); /LDQ_U R31, x(y) - NOOP*/

fadd= ((opcode = 0x17) && (func = 0x20)) ||
* Fit, datatype indep excl CPYS ¥/
((opcode == 0x15) && ((func & 0xf) 1= 0x2)) ||
FVAX excl MUL's ¥
((opcode == 0x16) && ((func & Oxf) I=0x2)) ||
FIEEE excl MUL's ¥/
(opcode =0x31)|| A~FBEQ?*
(opcode =0x32) || ~FBLT*
(opcode==0x33)|| FHFBLE*

C-8 Serial Icache Load Predecode Values

(opcode == 0x35) || /* FBNE */
(opcode == 0x36) || /* FBCGE */
(opcode == 0x37); [* FBGT */

fmul= ((opcode == 0x15) && ((func & Oxf) == 0x2)) || *VAXMUL's*/
((opcode == 0x16) && ((func & Oxf) == 0x2)); *IEEE MUL's ¥

fe= ((opcode==0x17) && (func ==0x20)); / CPYS*

br_type = ((opcode & 0x30) == 0x30) || /* all branches */
(opcode =0x1A) || #IMP's*/
(opcode ==0x00) || /*CALLPAL*
(opcode =0x1E); F~HW_REI*

ld= (opcode==0x28)| LDL*
(opcode ==0x29)|| /LDQ*

f* (opcode==0x2A)|| LDL_L¥

/¥ (opcode==0x2B)|| LDQ L*
(opcode==0x0B) || /#LDQ_U*
(opcode==0x20)|| /*LDF*
(opcode==0x21)|| /LDG*
(opcode =0x22)|| /LDS*
(opcode =0x23)|| /LDT*
(opcode =0x1B); FHW_LD¥

store= (opcode =0x24)| /*STF*
(opcode =0x25)|| FSTG*
(opcode =0x26)|| /*STS*
(opcode =0x27)|| FSTT¥
(opcode =O0x0F) || ~STQ_U*
(opcode =0x2C) || F#STL¥
(opcode==0x2D) || FSTQ?*
(opcode=0x2E)|| #STL_C*¥
(opcode=0x2F) || #STQ_C*
(opcode == 0x18) ||
P Misc: TRAPB, MB, RS, RC, RPCC efc. */
(opcode ==Ox1F)|| AHW_ST*
(opcode=0x2A) || ~LDL_L*
(opcode =0x2B); FLDQ L*

br=(opcode =0x30); /*allbranches?*
call_pal = (opcode == 0x00); /*call PAL*/
bsr=(opcode == 0x34);

ret rei= ((opcode == 0x1A) && (jsr_type == 0x2)) ||
((opcode == OX1E) && (jsr_type = 0x3));

Serial Icache Load Predecode Values C-9

jmp = ((opcode == Ox1A) && (jsr_type == 0x0));

jsr_cor = ((opcode == Ox1A) && (jsr_type == 0x3));
jsr = ((opcode == 0x1A) && (jsr_type == 0x1));
cond_br = (opcode == 0x31) ||

(opcode == 0x32) ||
(opcode == 0x33) ||
(opcode == 0x35) ||
(opcode == 0x36) ||
(opcode == 0x37) ||
(opcode == 0x38) ||
(opcode == 0x39) ||
(opcode == 0x3A) ||
(opcode == 0x3B) ||
(opcode == 0x3Q ||
(opcode == 0x3D ||
(opcode == 0x3E) ||
(opcode == 0x3F);

outO = br || bsr || jop || jsr || (ee & !'ld) || (eO_only & !store);
outl =ret_rei ||(el only & !'br_type)|| jnp ||jsr_cor|| jsr || Inoop ||
(fadd & !br_type) || fe;;

out2 =call_pal || bsr || jsr_cor || e only [|jsr ||[fml || fe;
out3 = (el only & cond_br) || (el only & 'br_type) || fadd || frul || fe;
out4d =ee || Inoop || e only || fadd || frmul || fe;

result = 0;

INS(result, 0, outO);

INS(result, 1, outl);

INS(result, 2, out2);

INS(result, 3, out3);

INS(result, 4, outd);

return (result);

}

C-10 Serial Icache Load Predecode Values

D

Errata Sheet

Table D-1 lists the revision history for this document.

Table D-1 Document Revision History

Date Revision
March 4, 1996 First release, EC-QP99A-TE
February 7, 1997 Revision, EC-QP99B-TE

December 11, 1998 Revision, EC-QP99C-TE

Errata Sheet D-1

E

Support, Products, and Documentation

E.1 Customer Support

Alpha OEM provides the following web page resources for customer support.

URL Description

http:/iwww.digital.com/alphaoem Contains the following links:

Developers’ Area: Development tools, code examples,
driver developers’ information, and technical white
papers

Motherboard Products: Motherboard details and
performance information

Microprocessor Products: Microprocessor details and
performance information

News: Pressreleases

Technical Information: Motherboard firmware and
drivers, hardware compatibility lists, and product
documentation library

Customer Support: Feedback form

Support, Products, and Documentation E-1

Alpha Products

E.2 Alpha Products

To order the Alpha 21164 microprocessor, contact your local sales office. The fol-
lowing table lists some of the Alpha products available.

Note: The following products and order numbers might have been revised. For
the latest versions, contact your local sales office.

Chips Order Number
Alpha 21164 366-MHz microprocessor for NT only 21164-P5
Alpha 21164 433-MHz microprocessor for NT only 21164-P6
Alpha 21164 500-MHz microprocessor for NT only 21164-P7
Alpha 21164 600-MHz microprocessor for NT only 21164-P8
Alpha 21164 366-MHz microprocessor 21164-EB
Alpha 21164 400-MHz microprocessor 21164-FB
Alpha 21164 433-MHz microprocessor 21164-HB
Alpha 21164 466-MHz microprocessor 21164-1B
Alpha 21164 500-MHz microprocessor 21164-JB
Alpha 21164 600-MHz microprocessor 21164-KB

E.3 Alpha Documentation

The following table lists some of the available Alpha documentation. You can down-
load Alpha documentation from the Alpha OEM World Wide Web Internet site:

http://www.digital.com/alphaoem

Click on Technical Information, then click on Documentation Library.

Title Order Number

Alpha Architecture Reference Manbal EY-W938E-DP
Alpha 21164 Microprocessor Data Sheet EC-QP98B-TE
Alpha 21164 Microprocessor Product Brief EC-QP97C-TE
21172 Core Logic Chipset Product Brief EC-QUQHA-TE
21172 Core Logic Chipset Technical Reference Manual EC-QUQJA-TE

Support, Products, and Documentation

Third—Party Documentation

Title Order Number
Answers to Common Questions about PAL code for Alpha Systems EC-N0647-72
PALcode for Alpha Microprocessors System Design Guide EC-QFGLC-TE
Alpha Microprocessors Evaluation Board Windows NT 3.51 EC-QLUAH-TE

Installation Guide

SPICE Models for Alpha Microprocessors and Peripheral Chips: AEC-QA4XG-TE
Application Note

Alpha Microprocessors SROM Mini-Debugger User’s Guide EC-QHUXC-TE
Alpha Microprocessors Evaluation Board Debug Monitor User’'s Guide EC-QHUVF-TE

Alpha Microprocessors Evaluation Board Software Design Tools EC-QHUWD-TE
User’s Guide

1 To purchase the Alpha Architecture Reference Manual, contact your local sales office or call
Butterworth-Heinemann (Digital Press) at 1-800-366-2665.

If you have feedback about the Alpha technical documentation, please send your
commentsto alpha.techdoc@compag.com.

E.4 Third—Party Documentation

You can order the following third-party documentation directly from the vendor.

Title Vendor
PCI Local Bus Specification, Revision 2.1 PCI Special Interest Group
PCI System Design Guide uU.S. 1-800-433-5177
International 1-503-797-4207
FAX 1-503-234-6762
IEEE Standard 754, Standard for Binary Floating-PoinfThe Institute of Electrical and
Arithmetic Electronics Engineers, Inc.
IEEE Standard 1149.1, A Test Access Port and Boundar$. 1-800-701-4333
Scan Architecture International 1-908-981-0060
FAX 1-908-981-9667

Support, Products, and Documentation E-3

Glossary

The glossary provides definitions for specific terms and acronyms associated with
the Alpha 21164 microprocessor and chipsin general.

abort

The unit stops the operation it is performing, without saving status, to perform some
other operation.

ABT
Advanced bipolar/CM OS technol ogy.
address space number (ASN)

An optionally implemented register used to reduce the need for invalidation of
cached address trand ations for process-specific addresses when a context switch
occurs. ASNs are processor specific; the hardware makes no attempt to maintain
coherency across multiple processors.

address translation
The process of mapping addresses from one address space to another.
ALIGNED

A datum of size 2N is stored in memory at abyte addressthat isamultiple of 2V (that
is, one that has N low-order zeros).

ALU
Arithmetic logic unit.
ANSI

American National Standards Institute. An organization that devel ops and publishes
standards for the computer industry.

ASIC
Application-specific integrated circuit.

Glossary-1

ASN

See address space number.

assert

To cause asignal to changeto itslogical true state.
AST

See asynchronous system trap.

asynchronous system trap (AST)

A software-simulated interrupt to a user-defined routine. ASTSs enable a user process
to be notified asynchronousdly, with respect to that process, of the occurrence of a
specific event. If auser process has defined an AST routine for an event, the system
interrupts the process and executes the AST routine when that event occurs. When
the AST routine exits, the system resumes execution of the process at the point
where it wasinterrupted.

backmap
A memory unit that is used to note addresses of valid entries within a cache.
bandwidth

Bandwidth is often used to express “high rate of data transfer” in a bus or an I/O
channel. This usage assumes that a wide bandwidth may contain a high frequency,
which can accommodate a high rate of data transfer.

Bcache
See external cache.
barrier transaction

A transaction on the external interface as a result of an MB (memory barrier) instruc-
tion.

BCT
Bipolar/CMOS technology.
BiCMOS

Bipolar/CMOS. The combination of bipolar and MOSFET transistors in a common
integrated circuit.

Glossary-2

bidirectiona

Flowing in two directions. The buses are bidirectional; they carry both input and out-
put signals.

BIPS

Billions of instructions per second.
BiSr

Built-in self-repair.

BiSt

Built-in self-test.

bit

Binary digit. The smallest unit of datain a binary notation system, designated as 0 or
1

BIU

Businterface unit. See CBU.
block exchange

Memory feature that improves bus bandwidth by paralleling a cache victim write-
back with a cache missfill.

board-level cache

See external cache.

boot

Short for bootstrap. Loading an operating system into memory is called booting.
BSR

Boundary-scan register.

buffer

Aninternal memory area used for temporary storage of data records during input or
output operations.

Glossary-3

bugcheck

A software condition, usually the response to software’s detection of an “internal
inconsistency,” which results in the execution of the system bugcheck code.

bus

A group of signals that consists of many transmission lines or wires. It interconnects
computer system components to provide communications paths for addresses, data,
and control information.

byte

Eight contiguous bits starting on an addressable byte boundary. The bits are num-
bered right to left, O through 7.

byte granularity

Memory systems are said to have byte granularity if adjacent bytes can be written
concurrently and independently by different processes or processors.

cache
See cache memory.
cache block

The smallest unit of storage that can be allocated or manipulated in a cache. Also
known as a cache line.

cache coherence

Maintaining cache coherence requires that when a processor accesses data cached in
another processor, it must not receive incorrect data and when cached data is modi-
fied, all other processors that access that data receive modified data. Schemes for
maintaining consistency can be implemented in hardware or software. Also called
cache consistency.

cache fill

An operation that loads an entire cache block by using multiple read cycles from
main memory.

cache flush

An operation that marks all cache blocks as invalid.

Glossary—4

cache hit

The status returned when alogic unit probes a cache memory and findsavalid cache
entry at the probed address.

cache interference

Theresult of an operation that adversely affects the mechanisms and procedures used
to keep frequently used itemsin a cache. Such interference may cause frequently
used items to be removed from a cache or incur significant overhead operations to
ensure correct results. Either action hampers performance.

cache line
See cache block.

cache line buffer

A buffer used to store a block of cache memory.

cache memory

A small, high-speed memory placed between slower main memory and the proces-
sor. A cache increases effective memory transfer rates and processor speed. It con-
tains copies of data recently used by the processor and fetches severa bytes of data
from memory in anticipation that the processor will access the next sequential series
of bytes. The Alpha 21164 microprocessor contains three onchip internal caches. See
also write-through cache and write-back cache.

cache miss

The status returned when cache memory is probed with no valid cache entry at the
probed address.

CALL_PAL Instructions
Special instructions used to invoke PAL code.
CcBU

The externa interface control logic unit. Provides the 21164 microprocessor with an
interface to the external data bus, board-level Bcache, and the onchip Scache.

central processing unit (CPU)

The unit of the computer that is responsible for interpreting and executing instruc-
tions.

Glossary-5

CIsC

Complex instruction set computing. An instruction set consisting of alarge number
of complex instructions that are managed by microcode. Contrast with RISC.

clean

In the cache of a system bus node, refersto acachelinethat isvalid but has not been
written.

clock
A signal used to synchronize the circuits in a computer
CMOS

Complementary metal-oxide semiconductor. A silicon device formed by a process
that combines PMOS and NM OS semiconductor material.

conditional branch instructions

Instructions that test aregister for positive/negative or for zero/nonzero. They can
aso test integer registers for even/odd.

control and status register (CSR)

A device or controller register that resides in the processor’s I/0O space. The CSR ini-
tiates device activity and records its status.

CPLD

Complex programmable logic device.
CPU

See central processing unit.

CSR

See control and status register.

cycle

One clock interval.

data bus

The bus used to carry data between the 21164 and external devices. Also called the
pin bus.

Glossary—-6

Dcache

Data cache. A cache reserved for storage of data. The Dcache does not contain
instructions.

DIP
Dual inline package.
direct-mapping cache

A cache organization in which only one address comparison is heeded to locate any
datain the cache, because any block of main memory data can be placed in only one
possible position in the cache.

direct memory access (DMA)
Access to memory by an I/O device that does not require processor intervention.
dirty

One status item for a cache block. The cache block is valid and has been written so
that it may differ from the copy in system main memory.

dirty victim

Used in reference to a cache block in the cache of asystem bus node. The cache
block isvalid but is about to be replaced due to a cache block resource conflict. The
data must therefore be written to memory.

DRAM

Dynamic random-access memory. Read/write memory that must be refreshed (read
from or written to) periodically to maintain the storage of information.

DTL
Diode-transistor logic.

dual issue

Two instructions are issued, in parallel, during the same microprocessor cycle. The
instructions use different resources and so do not conflict.

EB164

An evaluation board. A hardware/software applications devel opment platform for
the Alpha program and a debug platform for the Alpha 21164 microprocessor.

Glossary—7

IEU
The IEU contains the 64-bit integer execution data path.
ECC

Error correction code. Code and algorithms used by logic to facilitate error detection
and correction. See also ECC error.

ECC error

An error detected by ECC logic, to indicate that data (or the protected “entity” has
been corrupted. The error may be correctable (soft error) or uncorrectable (hard
error).

ECL
Emitter-coupled logic.
EEPROM

Electrically erasable programmable read-only memory. A memory device that can be
byte-erased, written to, and read fradbontrast with FEPROM.

EPLD
Erasable programmable logic device.

external cache

A cache memory provided outside of the microprocessor chip, usually located on the
same module. Also called board-level or module-level cache.

FEPROM

Flash-erasable programmable read-only memory. FEPROMSs can be bank- or bulk-
erasedContrast with EEPROM.

FET

Field-effect transistor.

firmware

Machine instructions stored in hardware.
floating point

A number system in which the position of the radix point is indicated by the expo-
nent part and another part represents the significant digits or fractional part.

Glossary-8

flush
See cache flush.

FPGA
Field-programmable gate array.

FPLA

Field-programmable logic array.

FPU

The unit within the 21164 microprocessor that performs floating-point calculations.

granularity

A characteristic of storage systems that defines the amount of data that can be read
and/or written with asingle instruction, or read and/or written independently. VAX
systems have byte or multibyte granularities, whereas disk systems typicaly have
512-byte or greater granularities. For agiven storage device, a higher granularity
generadly yields a greater throughput.

hardware interrupt request (HIR)

Aninterrupt generated by a peripheral device.

high-impedance state

An electrical state of high resistance to current flow, which makes the device appear
not physically connected to the circuit.

hit
See cache hit.
IDU

A logic unit within the 21164 microprocessor that fetches, decodes, and issues
instructions. It also controls the microprocessor pipeline.

Icache

Instruction cache. A cache reserved for storage of instructions. One of the three areas
of primary cache (located on the 21164) used to store instructions. The Icache con-
tains 8KB of memory space. It isadirect-mapped cache. |cache blocks, or lines, con-
tain 32 bytes of instruction stream data with associated tag as well as a 6-bit ASM

Glossary—9

field and an 8-bit branch history field per block. Icache does not contain hardware
for maintaining cache coherency with memory and is unaffected by the invalidate
bus.

IEEE Standard 754

A set of formats and operations that apply to floating-point numbers. The formats
cover 32-, 64-, and 80-bit operand sizes.

IEEE Standard 1149.1

A standard for the Test Access Port and Boundary Scan Architecture used in board-
level manufacturing test procedures. Commonly referred to as the Joint Test Action
Group (JTAG) standard.

INTnn

Theterm INTnn, wherennisoneof 2, 4, 8, 16, 32, or 64, refersto adatafield size of
nn contiguous NATURALLY ALIGNED bytes. For example, INT4 refersto a NAT-
URALLY ALIGNED longword.

internal processor register (IPR)

One of many registers internal to the Alpha 21164 microprocessor.
IPGA

Intergtitial pin grid array.

JFET

Junction field-effect transistor.

latency

The amount of time it takes the system to respond to an event.
LCC

Leadless chip carrier.

LFSR

Linear feedback shift register.

Glossary-10

load/store architecture

A characteristic of a machine architecture where dataitems are first loaded into a
processor register, operated on, and then stored back to memory. No operations on
memory other than load and store are provided by the instruction set.

longword

Four contiguous bytes starting on an arbitrary byte boundary. The bits are numbered
from right to left, O through 31.

LSB
Least significant bit.
machine check

An operating system action triggered by certain system hardware-detected errorsthat
can be fatal to system operation. Once triggered, machine check handler software
analyzes the error.

MAF
Miss addressfile.
main memory

The large memory, external to the microprocessor, used for holding most instruction
code and data. Usually built from cost-effective DRAM memory chips. May be used

in connection with the microprocessor’s internal caches and an optional external
cache.

masked write

A write cycle that only updates a subset of a nominal data block.
MBO

See must be one.

MTU

This section of the processor unit performs address translation, interfaces to the
Dcache, and performs several other functions.

MBZ

See must be zero.

Glossary-11

MESI protocol

A cache consistency protocol with full support for multiprocessing. The MESI proto-
col consists of four states that define whether ablock is modified (M), exclusive (E),
shared (S), or invalid (I).

MIPS

Millions of instructions per second.
miss

See cache miss.

module

A board on which logic devices (such astransistors, resistors, and memory chips) are
mounted and connected to perform a specific system function.

module-level cache

See external cache.

MOS

M etal-oxide semiconductor.

MOSFET

M etal-oxide semiconductor field-effect transistor.
MSI

Medium-scal e integration.

multiprocessing

A processing method that replicates the sequential computer and interconnects the
collection so that each processor can execute the same or a different program at the
same time.

Must be one (MBO)
A field that must be supplied as one.
Must be zero (MBZ)

A field that is reserved and must be supplied as zero. If examined, it must be
assumed to be UNDEFINED.

Glossary-12

NATURALLY ALIGNED
See ALIGNED.
NATURALLY ALIGNED data

Data stored in memory such that the address of the datais evenly divisible by the
size of the datain bytes. For example, an ALIGNED longword is stored such that the
address of the longword is evenly divisible by 4.

NMOS

N-type metal-oxide semiconductor.
NVRAM

Nonvolatile random-access memory.

OBL

Observability linear feedback shift register.
octaword

Sixteen contiguous bytes starting on an arbitrary byte boundary. The bits are num-
bered from right to left, 0 through 127.

OpenVMS Alpha operating system

COMPAQ's open version of the VMS operating system, which runs on Alpha plat-
forms.

operand
The data or register upon which an operation is performed.

PAL

Privileged architecture librargee also PALcode.See also Programmable array
logic (hardware). A device that can be programmed by a process that blows individ-
ual fuses to create a circuit.

PALcode

Alpha privileged architecture library code, written to support Alpha microproces-
sors. PALcode implements architecturally defined behavior.

PALmode

A special environment for running PALcode routines.

Glossary—-13

parameter
A variable that is given a specific value that is passed to a program before execution.

parity

A method for checking the accuracy of data by calculating the sum of the number of
onesin apiece of binary data. Even parity requires the correct sum to be an even
number. Odd parity requires the correct sum to be an odd number.

PGA
Pin grid array.
pipeline

A CPU design technique whereby multiple instructions are simultaneously over-
lapped in execution.

PLA

Programmable logic array.

PLCC

Plastic leadless chip carrier or plastic-leaded chip carrier.
PLD

Programmable logic device.

PLL

Phase-locked loop.

PMOS

P-type metal-oxide semiconductor.
PQFP

Plastic quad flat pack.

primary cache

The cache that is the fastest and closest to the processor. The first-level caches,
located on the CPU chip, composed of the Dcache, Icache, and Scache.

Glossary-14

program counter

That portion of the CPU that contains the virtual address of the next instruction to be
executed. Most current CPUs implement the program counter (PC) as aregister. This
register may be visible to the programmer through the instruction set.

PROM

Programmabl e read-only memory.

pull-down resistor

A resistor placed between asignal line and a negative voltage.

pull-up resistor

A resistor placed between asignal line to a positive voltage.

quad issue

Four instructions are issued, in parallel, during the same microprocessor cycle. The
instructions use different resources and so do not conflict.

quadword

Eight contiguous bytes starting on an arbitrary byte boundary. The bits are numbered
from right to left, O through 63.

RAM

Random-access memory.

READ_BLOCK

A transaction where the 21164 requests that an external logic unit fetch read data.

read data wrapping

System feature that reduces apparent memory latency by allowing read datacyclesto
differ the usual low-to- high sequence. Requires cooperation between the 21164 and
external hardware.

read stream buffers

Arrangement whereby each memory module independently prefetches DRAM data
prior to an actual read request for that data. Reduces average memory latency while
improving total memory bandwidth.

Glossary-15

register
A temporary storage or control location in hardware logic.
reliability

The probability a device or system will not fail to perform itsintended functions dur-
ing a specified time interval when operated under stated conditions.

reset

An action that causes alogic unit to interrupt the task it is performing and go to its
initialized state.

RISC

Reduced instruction set computing. A computer with an instruction set that is paired
down and reduced in complexity so that most instructions can be performed in asin-
gle processor cycle. High-level compilers synthesize the more complex, least fre-
quently used instructions by breaking them down into simpler instructions. This
approach allows the RISC architecture to implement a small, hardware-assisted
instruction set, thus eliminating the need for microcode.

ROM

Read-only memory.
RTL

Register-transfer logic.
SAM

Serial access memory.
SBO

Should be one.

SBz

Should be zero.
Scache

Secondary cache. A 3-way set-associative, second-level cache located on the Alpha
21164 microprocessor.

Glossary-16

scheduling
The process of ordering instruction execution to obtain optimum performance.
set-associative

A form of cache organization in which the location of a data block in main memory
constrains, but does not completely determine, itslocation in the cache. Set-associa

tive organization is a compromise between direct-mapped organization, in which

datafrom agiven addressin main memory has only one possible cache location, and

fully associative organization, in which datafrom anywhere in main memory can be

put anywhere in the cache. An-ivay set-associative” cache allows data from a

given address in main memory to be cached in amjatations. The Scache in the
21164 microprocessor (366 MHz or faster) has a 3-way set-associative organization.

SIMM

Single inline memory module.
SIP

Single inline package.

SIPP

Single inline pin package.
SMD

Surface mount device.

SRAM

Static random-access memory.
SROM

Serial read-only memory.

SSI

Small-scale integration.
SSRAM

Synchronous static random-access memory.

Glossary-17

stack

An area of memory set aside for temporary data storage or for procedure and inter-
rupt service linkages. A stack uses the last-in/first-out concept. Asitems are added to
(pushed on) the stack, the stack pointer decrements. Asitems are retrieved from
(popped off) the stack, the stack pointer increments.

STRAM
Self-timed random-access memory.
superpipelined

Describes a pipelined machine that has alarger number of pipe stages and more com-
plex scheduling and control. See also pipeline.

superscalar

Describes a machine architecture that allows multiple independent instructions to be
issued in parallel during agiven clock cycle.

tag

The part of a cache block that holds the address information used to determineif a
memory operation is a hit or amiss on that cache block.

B

Tranglation buffer.

tristate

Refersto abused line that has three states: high, low, and high-impedance.
TTL

Transistor-transistor logic.

UART

Universal asynchronous receiver-transmitter.

UNALIGNED

A datum of size 2\ stored at a byte address that is not amultiple of 2.
unconditional branch instructions

Instructions that write a return address into a register.

Glossary-18

UNDEFINED

An operation that may halt the processor or cause it to lose information. Only privi-
leged software (that is, software running in kernel mode) can trigger an UNDE-
FINED operation.

UNPREDICTABLE

Results or occurrences that do not disrupt the basic operation of the processor; the
processor continues to execute instructions in its normal manner. Privileged or
unprivileged software can trigger UNPREDICTABLE results or occurrences.

UVPROM
Ultraviolet (erasable) programmable read-only memory.

valid

Allocated. Valid cache blocks have been loaded with data and may return cache hits
when accessed.

VHSIC

Very-high-speed integrated circuit.

victim

Used in reference to a cache block in the cache of a system bus node. The cache
block isvalid but is about to be replaced due to a cache block resource conflict.

virtual cache

A cache that is addressed with virtual addresses. The tag of the cacheisavirtual
address. This process allows direct addressing of the cache without having to go
through the trand ation buffer making cache hit times faster.

VLSI

Very-large-scale integration.
VRAM

Video random-access memory.
word

Two contiguous bytes (16 bits) starting on an arbitrary byte boundary. The bits are
numbered from right to left, O through 15.

Glossary-19

write data wrapping

System feature that reduces apparent memory latency by allowing write data cycles
to differ the usual low-to-high sequence. Requires cooperation between the 21164
and externa hardware.

write-back

A cache management technique in which write operation datais written into cache
but is not written into main memory in the same operation. This may result in tempo-
rary differences between cache data and main memory data. Some logic unit must
maintain coherency between cache and main memory.

write-back cache

Copies are kept of any datain the region; read and write operations may use the cop-
ies, and write operations use additional state to determine whether there are other
copiesto invalidate or update.

write-through

A cache management technique in which awrite operation to cache also causes the
same data to be written in main memory during the same operation.

write-through cache

Copies are kept of any data in the region; read operations may use the copies, but
write operations update the actual data location and either update or invalidate all
copies.

WRITE_BLOCK

A transaction where the 21164 requests that an external logic unit process write data.

Glossary—20

A

Abbreviations, xxiii
register access, xxiii
Aborts, 2-18
Absolute maximum rating, 9-1
ac coupling, 9-8
addr_bus req_h
description, 3-4
operation, 4-42, 4-48, 4-63, 5-71, 9-15,
9-16
addr_cmd_par_h
description, 3-4
operation, 3-4, 4-62, 4-63, 4-87, 9-22,
9-23
addr_h<39:4>
description, 3-4
operation, 3-4, 4-12, 4-13, 4-14, 4-15,
4-37, 4-48, 4-62, 4-63, 4-67, 4-87,
7-4, 9-14, 9-15, 9-18
addr_res h<1:0>
description, 3-4
addr_res h<2:0>
operation, 4-53, 4-54, 4-58, 4-59, 7-4,
9-22
Address conventions, xxiv
Addressregions
physical, 4-11
Addresstrandation, 2-11
Addressing, 1-2

Index

Aligned convention, xxiv
Alphadocumentation, E-2
Alphaproducts, E-2
ALT_MODE register, 5-50
Architecture, 1-1to1-3
Associated documentation, E-2
AST, 29

ASTER register, 5-21
ASTRR register, 5-21

B

BC_CONFIG register, 5-74
BC_CONTROL register, 5-68
BC TAG_ADDRrregister, 5-77

Bcache, 2-14
block size, 4-14
errors, 4-84
hit under READ MISS example, 4-84
interface, 4-4
introduction, 4-2to 4-4
selecting options, 4-34
structure, 4-14
systemswithout, 4-17, 4-75
timing, 4-28
victim buffers, 4-17
Bcache read transaction
private read operation, 4-28

BCACHE VICTIM command, 4-37

Index—1

Bcache write transaction
private write operation, 4-30

big drv_en_h
operation, 9-20

BIU, 4-2, 4-13, 4-26, 4-27, 4-49, 4-78
buffer, 4-4

Block diagram, 21164, 2-2

Boundaries

datawrap order, 4-12
Boundary-scan register, 12-6
Branch prediction, 2-4, 2-20
Bubble cycle, 2-32
Bubble squashing, 2-20

Bus contention

command/address bus, 4-62 to 4-75
databus, 4-62to 4-75

C

Cache coherency, 4-18to 4-26
basics, 4-18
flush protocol, 4-19
state machines, 4-25
systems, 4-23
transaction conflicts, 4-25
write invalidate protocol, 4-19
state machines, 4-22
states, 4-21
systems, 4-20
Cache organization, 2-13

Cache support
synchronous, 4-31
cack_h
description, 3-5
operation, 3-5, 4-27, 4-35 4-36, 4-38,
4-39, 4-42, 4-
4-48, 4-75, 4-
3, 5-
9-

4-84, 4-88,
9-15, 9-16,
CBU, 2-3, 2-13
IPR PALcode restrictions, 5-87
IPRs, 5-581t05-85
read requests, 2-31
write buffer data store, 2-35

Index—2

CCregister, 5-51
CC_CTL register, 5-52
cfail_h
description, 3-5
operation, 4-27, 4-37, 4-77, 4-88, 5-12,
5-18, 8-10, 9-21, 12-6
clk_mode_h<2:0>
description, 3-6
operation, 4-4, 7-3, 9-20, 9-27, 9-28
Clocks, 4-4to4-11
CPU, 4-4
reference, 4-8, 4-9
system, 4-6
cmd_h<3:0>
description, 3-7
operation, 3-4, 4-36, 4-39, 4-45, 4-48,
4-51, 4-58, 4-63, 4-67, 4-78, 4-87,
7-4, 9-14, 9-22, 9-23
Coherency, caches, 4-18

Command/address
driving bus, 4-63
errors, 4-84

Commands
21164 initiated, 4-36
BCACHE VICTIM, 4-37
FETCH, 4-36
FETCH_M, 4-36
FLUSH, 4-58
INVALIDATE, 4-51
LOCK, 4-36
MEMORY BARRIER, 4-36
NOP, 4-36, 4-51, 4-58
READ, 4-58
READ DIRTY, 4-52
READ DIRTY/INVALIDATE, 4-52
READ MISS MODO, 4-37
READ MISSMOD1, 4-37
READ MISS STCO, 4-38
READ MISS STC1, 4-38
READ MISS0, 4-37
READ MISS1, 4-37
SET DIRTY, 4-36
SET SHARED, 4-52
WRITE BLOCK, 4-36
WRITE BLOCK LOCK, 4-37

Commands, sending to 21164, 4-49

Conventions, xXii, xXii to Xxvii
abbreviations, xxiii
address, xxiv
aligned, xxiv
data units, xxv
numbering, xxv
signal names, Xxxvi
unaligned, xxiv

CPU
clocks, 4-4
microarchitecture, 2-1

cpu_clk_out_h
description, 3-8
operation, 4-4, 9-5

D
dack_h
description, 3-8
operation, 3-9, 4-28, 4-35, 4-36, 4-37,
4-39, 4-41, 4-42, 4-44, 4-45, 4-54,
4-60, 4-67, 4-68, 4-69, 4-71, 4-75,
4-77, 4-79, 4-80, 4-84, 4-88, 5-71,
8-9, 9-15, 9-16, 9-18

Dataintegrity, 4-84
address and command parity, 4-87
Bcache tag control parity, 4-87
Bcache tag data parity, 4-87
ECC and parity, 4-85
force correction, 4-87
Datatypes, 1-1
floating-point, 1-3, 2-10
integer, 1-2
Data units convention, Xxv
Datawrap order, 4-12

data bus reg_h

description, 3-8

operation, 4-41, 4-64, 4-66, 4-71, 9-15,

9-18

data _check h<15:0>

description, 3-9

operation, 4-62, 4-85, 7-3, 9-22, 9-23
data h<127.0>

description, 3-8
operation, 4- 41, 4-43, 4-52, 4-58, 4-62,
4-63, 4-67, 4-85, 4-86, 7-3, 9-12,

9-14, 9-15, 9-18
data ram_oe h
description, 3-9
operation, 4-29, 4-41, 4-67, 4-68, 4-69,
4-70, 4-71, 9-24

data ram_we h

description, 3-9
operation, 4-31, 9-24

DC_FLUSH register, 5-50
DC _MODE register, 5-46
dc ok_h

description, 3-9

operation, 4-5, 9-5, 9-6, 9-20, 12-2, 12-3
DC_PERR_STAT register, 5-41
DC TEST _CTL register, 5-53
DC_TEST _TAG register, 5-54
DC_TEST_TAG_TEMP register, 5-56
Dcache, 2-13

control instructions, 2-12
Decoupling, 9-30
Delayed system clock, 4-7
Design examples, 2-41
Documentation, E-2, E-3
DTB, 2-11
DTB_ASN register, 5-33
DTB_CM register, 5-33
DTB_IA register, 5-42
DTB_lIAPregister, 5-42
DTB_ISregister, 5-43
DTB_PTE register, 5-34
DTB_PTE_TEMP register, 5-36
DTB_TAG register, 5-34
Duplicate tag store, 4-14

algorithm, 4-15

full, 4-15
partial Scache, 4-16

Index—3

E

ECC, 4-85t04-86
El_ADDR register, 5-82
El_STAT register, 5-79
Entry-pointer queues, 2-36
EXC_ADDR register, 5-13
EXC_MASK register, 5-15
EXC_SUM register, 5-14
Exceptions, 2-18

External interface

rulesfor use, 4-78
External interface introduction, 4-2to 4-4

F

Features, 1-3to 1-4

FETCH command, 4-36, 4-48
FETCH_M command, 4-36, 4-48
Fill, 2-32

FILL after other transactions, 4-75
FILL error, 4-87

FILL transaction, 4-41

fill_error_h
description, 3-9
operation, 4-41, 4-87, 4-88, 8-9, 8-11,
9-21
fill_h

description, 3-9
operation, 3-9, 4-35, 4-41, 4-64, 4-65,
4-70, 4-75, 4-78, 4-88, 8-9, 9-21

fill_id_h

description, 3-9

operation, 3-9, 4-39, 4-41, 4-88, 8-9, 9-21
fill_nocheck_h

description, 3-9

operation, 9-21
FILL_SYN register, 5-83

Floating datatypes, 2-10

Index—4

FLUSH command, 4-58

Flush protocol, 4-19, 4-23, 4-24
commands, 4-58
state machines, 4-25

FLUSH timing diagram, 4-61
FLUSH transaction, 4-60
FPU, 2-3, 2-10

Free-entry queue, 2-36

H

Hardware, 2-8
Heat sink, 10-3
Hint bits, 2-11
HWINT_CLR register, 5-23

IC_FLUSH_CTL register, 5-12
Icache, 2-13
ICM register, 5-16
ICPERR_STAT register, 5-12
ICSR register, 5-17
idle bc h
description, 3-9
operation, 3-8, 4-17, 4-41, 4-42, 4-64,
4-65, 4-66, 4-67, 4-71, 4-78, 4-79,
4-80, 4-82, 9-21
IDU, 2-3
branch prediction, 2-4
instruction
decode, 2-4
issue, 2-4
instruction translation buffer, 2-7
interrupts, 2-8
IPRs, 5-5t05-32
encoding, 5-1
dotting, 2-22

| EEE floating-point conformance, A-14
IEU, 2-3,2-9
registers, 2-10

IEU registers, 5-86 INVALIDATE timing diagrams, 4-56
IFAULT_VA_FORM register, 5-10 INVALIDATE transaction, 4-55

index_h<25:4> IPLR register, 5-19
description, 3-10
operation, 4-4,4-14,4-64, 4-65, 4-83, 7-3,
9-12
Initialization
role of interrupt signals, 4-89
Input clock
ac coupling, 9-8
impedance levels, 9-7
termination, 9-7
Input clocks, 9-5

Instruction

decode, 2-4

issue, 2-4
Instruction issue, 1-3, 2-18
Instruction trandation buffer, 2-7

Instructions
classes, 2-20
issuerules, 2-28
latencies, 2-24
MB, 2-13
dotting, 2-20, 2-22
WMB, 2-12, 2-35
int4_valid_h<3:0>
description, 3-10
operation, 4-13, 4-39, 4-45, 7-4, 9-22
Interfacerestrictions, 4-75

Interface transactions
21164 initiated, 4-35 to 4-48
system initiated, 4-48to 4-62
Interrupt signals, 4-88

Interrupts, 4-88 to 4-90
ASTs, 2-9
disabling, 2-9
hardware, 2-8
initialization, 4-89
normal operation, 4-89
priority level, 4-89
software, 2-9

INTID register, 5-20

INVALIDATE command, 4-51

Index-5

IPRs PAL_BASE, 5-16

accessibility, 5-1 PMCTR, 5-28
ALT_MODE, 5-50 SC_ADDR, 5-65
ASTER, 5-21 SC _CTL, 559
ASTRR, 5-21 SC_STAT, 5-62
BC_CONFIG, 574 SIRR, 5-22

BC _CONTROL, 5-68 SL_RCV, 527

BC TAG_ADDR, 5-77 SL_XMIT, 5-26
CC, 551 VA, 5-38

CC CTL, 552 VA_FORM, 5-39
DC_FLUSH, 5-50 IRF, 2-10

DC_MODE, 5-46 o h<3:0s
DC_PERR_STAT, 5-41 irq_h<3:0>

DC_TEST CTL, 553 description, 3-12
DC_TEST_TAG, 5-54 operation, 2-9, 4-6, 4-9, 4-90, 5-24, 7-4,
DC_TEST _TAG_TEMP, 5-56 9-20, 9-21
DTB_ASN, 5-33 ISR register, 5-24
DTB_CM, 5-33

DTB_IA, 542 Issuerules, 2-28
DTB_IAP, 5-42 Issuing rules, 2-20 to 2-29
DTB_IS, 543 TB. 2.7

DTB_PTE, 5-34 y &
DTB_PTE_TEMP, 5-36 ITB_ASN register, 5-7
DTB _TAG, 534 - .

El_ADDR, 5-82 ITB_IA register, 5-8
El_STAT, 5-79 ITB_IAP register, 5-8
EXC_ADDR, 2-19, 5-13 .

EXC_MASK, 5-15 ITB_ISregister, 5-9
EXC_SUM, 514 ITB_PTE register, 5-5
E'VIK,%N?YE‘LS '83_23 ITB_PTE_TEMP register, 5-8
IC_FLUSH_CTL, 5-12 ITB_TAG register, 5-5
ICM, 5-16 — .
ICPERR_STAT, 5-12 IVPTBR register, 5-11
ICSR, 2-9, 5-17

IFAULT_VA_FORM, 5-10 L

INTID, 5-20

IPLR, 29,519 Latencies, 2-24

ISR, 5-24 _

ITB_ASN, 57 Livelock

ITB_IA, 5-8 cache conflict, 4-26
ITB_IAP, 58 ; ;

ITB]S, 59 Load instructions
ITBPTE, 55 nor?cacheablespace, 2-31
ITB_PTE_TEMP, 58 Load miss, 2-30
ITB_TAG, 55 _ g)
I\VPTBR, 511 L oad-after-store trap, 2-29
MAF MODE, 5-48 LOCK command, 4-36
MCSR, 5-44 . i
MM STAT, 5-37 Lock mgch.amsr_ns, 4-26
MVPTBR, 5-40 LOCK timing diagram, 4-47

Index—6

LOCK transaction, 4-46
Logic symbol, 3-2

M

MAF, 2-11, 2-30to 2-33, 4-13
entries, 2-31
entry, 2-33
rules, 2-30
MAF_MODE register, 5-48
MB instruction, 2-13, 4-48
mch_hlt_irg_h
operation, 2-9, 4-7, 4-90, 9-20, 9-21
MCSR register, 5-44
MEMORY BARRIER command, 4-36
when to use, 4-48
Memory regions
physical, 4-12
Merge
write buffer, 4-13
Merging
loads to noncacheable space, 2-31
rules, 2-30
Microarchitecture, 2-1to 2-14

MM_STAT register, 5-37

MTU, 2-3,2-10

address trandation, 2-11

data translation buffer, 2-11

IPRs, 5-33t05-57
encoding, 5-3

load instruction, 2-11

miss addressfile, 2-11

store execution, 2-33to 2-34

storeinstruction, 2-12

write buffer, 2-12

write buffer addressfile, 2-35

Multiple instruction issue, 2-4
MVPTBR register, 5-40

N

Noncached write operations, 4-13
Nonissue conditions, 2-20

NOP command, 4-36, 4-51, 4-58
Numbering convention, Xxxv

O

oe we_active low_h
operation, 9-20

Operating temperature, 10-1

Ordering information, E-2

osc_clk_in_h
operation, 3-6
osc clk_in_h,l
operation, 4-4, 4-5, 4-11, 9-2, 9-4, 9-5,
9-6, 9-7, 9-8, 9-9, 9-19, 9-27,
9-28, 12-3
P

Noncached read operations, 4-13

PAL restrictions, 5-88
PAL_BASE register, 5-16
PALcode, 1-1
PALshadow registers, 5-86
PALtemp IPRs, 5-86

encoding, 5-2
Parity, 4-85
Pending-request queue, 2-36
perf_mon_h

operation, 2-38, 5-31, 9-20
Performance counters, 2-38
Physical address considerations, 4-11
Physical addressregions, 4-11
Physical memory regions, 4-12
Pipeline organization, 2-14to 2-20
Pipeline, wave, 4-29

Index—7

Pipelines, 2-9
bubbles, 2-20
examples, 2-16
floating add, 2-16
integer add, 2-16
load (Dcache hit), 2-17
load (Dcache miss), 2-17
store (Dcache hit), 2-18
instruction issue, 2-18
stages, 2-15, 2-18
stall, 2-18, 2-20
PMCTR register, 5-28

port_mode_h
operation, 9-21
port_mode h<1:0>
operation, 7-5, 12-1, 12-2
Power supply
considerations, 9-29
decoupling, 9-30
sequencing, 9-31
Private Bcache transactions
21164 to Bcache, 4-28to 4-34

Producer-consumer dependencies

Producer-producer dependencies, 2-24

Producer-producer latency, 2-27

Products
Alpha, E-2

PTE, 2-8, 2-11

pwr_fail_irq_h

operation, 2-9, 4-7, 4-90, 9-20, 9-21

Q

Queues
entry-pointer, 2-36

R

Race conditions

21164 and system, 4-78
Race examples

idle bc h and cack_h, 4-80
READ command, 4-58

Index—8

READ DIRTY command, 4-52

READ DIRTY timing diagram, 4-55

READ DIRTY transaction, 4-54

READ DIRTY/INVALIDATE command, 4-52

READ DIRTY/INVALIDATE transaction,
4-54

READ MISSMODO command, 4-37

READ MISS MOD1 command, 4-37

READ MISS no Bcache timing diagram, 4-38

READ MISS STCO command, 4-38

READ MISS STC1 command, 4-38

READ MISStiming diagram, 4-40

READ MISS transaction, 4-39

READ MISS transaction (no Bcache), 4-38

READ MISSwithidle_bc_h asserted example,
4-82

READ MISS with victim abort example, 4-83

READ MISS with victim example, 4-79

READ MISSwithvictimtiming diagram, 4-43,
4-44

READ MISS with victim transaction, 4-42
READ MISS0 command, 4-37
READ MISS1 command, 4-37
READ timing diagram, 4-62
READ transaction, 4-61
Read/write spacing
data bus contention, 4-63
ref clk_in_h

operation, 4-8, 4-9, 4-10, 4-11, 9-5, 9-14,
9-17, 9-19, 9-20, 9-28

ref_clk_in_h|l

operation, 4-4
Reference clock, 4-8, 4-9

examplel, 4-9

example 2, 4-10

examples, 4-9to4-11

Register access abbreviations, xxiii

Registers
accessibility, 5-1
integer, 2-10
PALshadow, 2-10, 5-86
PALtemp, 5-86

Related documentation, E-2
Replay traps, 2-29 to 2-30

as aborts, 2-19

load instruction, 2-12, 2-33

|load-miss-and-use, 2-19
Reset

forcing, 4-88
Resource conflict, 2-20
Restrictions

interface, 4-75

S

SC_ADDR register, 5-65
SC CTL register, 5-59
SC_STAT register, 5-62
Scache, 2-14

block size, 4-14
scache set_h<1:0>

operation, 4-15, 4-16, 7-4, 9-22
Scheduling rules, 2-20to 2-29
SET DIRTY command, 4-36
SET DIRTY timing diagram, 4-47
SET DIRTY transactions, 4-46
SET SHARED command, 4-52
SET SHARED timing diagram, 4-57
SET SHARED transaction, 4-56
shared_h

operation, 9-21
Signal descriptions, 3-3to 3-18
Signal name convention, Xxxvi
SIRR register, 5-22
SL_RCV register, 5-27
SL_XMIT register, 5-26

Slotting, 2-22
Specifications

mechanical, 11-1
SROM, 2-14
srom_clk_h

operation, 5-26, 9-22, 9-26, 9-27, 12-1
srom_data h

operation, 5-27, 9-21, 12-1
srom_oe |

operation, 9-22, 12-1
srom_present_h

operation, 9-21
srom_present_|

operation, 9-25, 9-26, 12-1
Store instruction, 2-12

execution, 2-33

Superpages, 2-8
Synchronous cache support, 4-31
sys clk_outl h,l
operation, 3-12, 4-2, 4-4, 4-6, 4-7, 4-8,
4-9, 4-10, 4-11, 4-54, 4-60, 5-76,
9-5, 9-14, 9-15, 9-17, 9-20, 9-28
sys clk_out2 h,l

operation, 4-4, 5-76, 9-6
sys mch_chk_irq_h
operation, 2-9, 4-7, 4-90, 9-20, 9-21
sys reset_|
operation, 4-89, 9-20, 9-25
System clock, 4-6
delayed, 4-7
System clock delay, 4-8
System interface, 4-2

addresses, 4-3
commands, 4-3

System interface introduction, 4-2to 4-4

system_lock_flag_h
operation, 4-27, 9-21

T
Tag store, duplicate, 4-14

Index—9

tag_ctl_par_h
operation, 4-70, 4-87, 9-22, 9-23
tag_data _h<127:0>
operation, 9-24
tag_data h<38:20>
operation, 4-14, 4-17, 4-67, 4-87, 7-3,
9-24
tag_data par_h
operation, 4-17, 4-41, 4-87, 9-24
tag_dirty h
operation, 4-17, 4-39, 4-41, 4-70, 4-87,
9-22, 9-23
tag_ram_oe _h
operation, 4-29, 4-70, 9-24
tag_ram_we_h
operation, 4-31, 9-24
tag_shared_h
operation, 4-17, 4-41, 4-53, 4-59, 4-70,
4-87, 9-22, 9-23
tag_valid_h
operation, 4-17, 4-41, 4-87, 9-23, 9-24
tck_h
operation, 9-29, 12-1, 12-2
tdi_h
operation, 9-4, 9-29, 12-1, 12-2, 12-6
tdo _h
operation, 9-29, 12-1, 12-2, 12-6
temp_sense
operation, 9-4
Temperature, 10-1
Terminology, xXii to xxvii

test_status h<1:0>
operation, 5-19, 7-5, 7-6, 9-25, 12-1, 12-5,
12-6
Thermal design considerations, 10-4
Thermal heat sink, 10-3
Therma management, 10-1
Thermal operating temperature, 10-1

Third-party documentation, E-3

Index—-10

Timing diagrams
Bcache hit under READ MISS, 4-84
Bcacheread, 4-29
Bcache write, 4-30
bus contention, 4-63
FILL, 4-70, 4-71
FILL to private read or write, 4-72
FLUSH, 4-61
idle bc h and cack_h, 4-81
INVALIDATE, 4-56
LOCK, 4-47
READ, 4-62
READ DIRTY, 4-55
READ MISS, 4-40
READ MISS - no Bcache, 4-38
READ MISS completed first-victim buffer,
4-68
READ MISS second - no victim buffer,
4-69
READ MISSwithidle bc _h asserted, 4-82
READ MISSwith victim, 4-43, 4-44, 4-80
READ MISS with victim abort, 4-83
SET DIRTY, 4-47
SET SHARED, 4-57
synchronousread, 4-33
synchronous write, 4-33
using data_bus req_h, 4-66
usingidle bc_h and fill_h, 4-65
wave pipeline, 4-30
WRITE BLOCK, 4-46
tms h
operation, 9-4, 9-29, 12-1, 12-2, 12-4
Transactions
FILL, 4-41
FLUSH, 4-60
INVALIDATE, 4-55
LOCK, 4-46
READ, 4-61
READ DIRTY, 4-54
READ DIRTY/INVALIDATE, 4-54
READ MISS, 4-39
READ MISS (no Bcache), 4-38
READ MISS with victim, 4-42
SET DIRTY, 4-46
SET SHARED, 4-56
systeminitiated, 4-48
WRITE BLOCK, 4-45
WRITE BLOCK LOCK, 4-45

Traps Write invalidate protocol, 4-19, 4-20, 4-21

|oad-after-store, 2-29 commands, 4-51

|load-miss-and-use, 2-27 states, 4-21

replay, 2-19, 2-29, 2-33 systems, 4-20
Tristate Write ordering, 2-37

BCACHE VICTIM tofill, 4-67

FILL to private Bcache read or write, 4-71
overlap, 4-63, 4-67

READ or WRITE to fill, 4-67

system Bcache command to fill, 4-69

trst_|
operation, 9-29, 12-1, 12-2, 12-3

U

Unaligned convention, xxiv

\Y

VA register, 5-38
VA_FORM register, 5-39
Victim buffers, 4-17, 4-42

victim_pending_h
operation, 4-15, 4-16, 4-17, 4-37, 4-42,
9-22

w

Wave pipeline, 4-29

WMB instruction, 2-12, 2-35

WRITE BLOCK command, 4-36

WRITE BLOCK command acknowledge, 4-75
WRITE BLOCK LOCK command, 4-37
WRITE BLOCK LOCK restriction, 4-77
WRITE BLOCK LOCK transaction, 4-45
WRITE BLOCK timing diagram, 4-46
WRITE BLOCK transaction, 4-45

Write buffer, 2-12, 2-35to 2-37
entry processing, 2-36

Index—-11

	Contents
	Figures
	Tables
	Preface
	Introduction
	1.1� The Architecture
	1.1.1� Addressing
	1.1.2� Integer Data Types
	1.1.3� Floating-Point Data Types

	1.2� 21164 Microprocessor Features

	Internal Architecture
	2.1� 21164 Microarchitecture
	Figure 2–1� 21164 Microprocessor Block/Pipe Flow D...
	2.1.1� Instruction Fetch/Decode Unit and Branch Un...
	2.1.1.1� Instruction Decode and Issue
	2.1.1.2� Instruction Prefetch
	2.1.1.3� Branch Execution
	Table 2–1� Effect of Branching Instructions on the...

	2.1.1.4� Instruction Translation Buffer
	2.1.1.5� Interrupts

	2.1.2� Integer Execution Unit
	2.1.3� Floating-Point Execution Unit
	2.1.4� Memory Address Translation Unit
	2.1.4.1� Data Translation Buffer
	2.1.4.2� Load Instruction and the Miss Address Fil...
	2.1.4.3� Dcache Control and Store Instructions
	2.1.4.4� Write Buffer

	2.1.5� Cache Control and Bus Interface Unit
	2.1.6� Cache Organization
	2.1.6.1� Data Cache
	2.1.6.2� Instruction Cache
	2.1.6.3� Second-Level Cache
	2.1.6.4� External Cache

	2.1.7� Serial Read-Only Memory Interface

	2.2� Pipeline Organization
	Figure 2–2� Instruction Pipeline Stages
	Table 2–2� Pipeline Examples—All Cases
	Table 2–3� Pipeline Examples—Integer Add
	Table 2–4� Pipeline Examples—Floating Add
	Table 2–5� Pipeline Examples—Load (Dcache Hit)
	Table 2–6� Pipeline Examples—Load (Dcache Miss)
	Table 2–7� Pipeline Examples—Store (Dcache Hit)
	2.2.1� Pipeline Stages and Instruction Issue
	2.2.2� Aborts and Exceptions
	2.2.3� Nonissue Conditions

	2.3� Scheduling and Issuing Rules
	2.3.1� Instruction Class Definition and Instructio...
	Table 2–8� Instruction Classes and Slotting (Sheet...

	2.3.2� Coding Guidelines
	2.3.3� Instruction Latencies
	Table 2–9� Instruction Latencies (Sheet 2 of 2)
	2.3.3.1� Producer—Producer Latency

	2.3.4� Issue Rules

	2.4� Replay Traps
	2.5� Miss Address File and Load-Merging Rules
	2.5.1� Merging Rules
	2.5.2� Read Requests to the CBU
	2.5.3� Load Instructions to Noncacheable Space
	2.5.4� MAF Entries and MAF Full Conditions
	2.5.5� Fill Operation

	2.6� MTU Store Instruction Execution
	2.7� Write Buffer and the WMB Instruction
	2.7.1� Write Buffer
	2.7.2� Write Memory Barrier (WMB) Instruction
	2.7.3� Entry-Pointer Queues
	2.7.4� Write Buffer Entry Processing
	2.7.5� Ordering of Noncacheable Space Write Instru...

	2.8� Performance Measurement Support—Performance C...
	2.9� Floating-Point Control Register
	Figure 2–3� Floating-Point Control Register (FPCR)...
	Table 2–10� Floating-Point Control Register Bit De...

	2.10� Design Examples
	Figure 2–4� Typical Uniprocessor Configuration
	Figure 2–5� Typical Multiprocessor Configuration
	Figure 2–6� Cacheless Multiprocessor Configuration...

	Hardware Interface
	3.1� 21164 Microprocessor Logic Symbol
	Figure 3–1� 21164 Microprocessor Logic Symbol

	3.2� 21164 Signal Names and Functions
	Table 3–1� 21164 Signal Descriptions (Sheet 12 of ...
	Table 3–2� 21164 Signal Descriptions by Function (...

	Clocks, Cache, and External Interface
	4.1� Introduction to the External Interface
	4.1.1� System Interface
	Figure 4–1� 21164 System/Bcache Interface
	4.1.1.1� Commands and Addresses

	4.1.2� Bcache Interface

	4.2� Clocks
	4.2.1� CPU Clock
	Table 4–1� CPU Clock Generation Control
	Figure 4–2� Clock Signals and Functions

	4.2.2� System Clock
	Table 4–2� System Clock Divisor (Sheet 2 of 2)
	Figure 4–3� 21164 Uniprocessor Clock

	4.2.3� Delayed System Clock
	Table 4–3� System Clock Delay

	4.2.4� Reference Clock
	Figure 4–4� 21164 Reference Clock for Multiprocess...
	4.2.4.1� Reference Clock Examples
	Figure 4–5� ref_clk_in_h Initially Sampled Low
	Figure 4–6� ref_clk_in_h Initially Sampled High

	4.3� Physical Address Considerations
	4.3.1� Physical Address Regions
	Table 4–4� Physical Memory Regions

	4.3.2� Data Wrapping
	4.3.3� Noncached Read Operations
	4.3.4� Noncached Write Operations

	4.4� Bcache Structure
	4.4.1� Duplicate Tag Store
	4.4.1.1� Full Duplicate Tag Store
	Figure 4–7� Full Scache Duplicate Tag Store
	Figure 4–8� Duplicate Tag Store Algorithm

	4.4.1.2� Partial Scache Duplicate Tag Store
	Figure 4–9� Partial Scache Duplicate Tag Store

	4.4.2� Bcache Victim Buffers

	4.5� Systems Without a Bcache
	4.6� Cache Coherency
	4.6.1� Cache Coherency Basics
	Figure 4–10� Cache Subset Hierarchy

	4.6.2� Write Invalidate Cache Coherency Protocol S...
	Table 4–5� Components for 21164 Write Invalidate S...

	4.6.3� Write Invalidate Cache Coherency States
	Table 4–6� Bcache States for Cache Coherency Proto...
	4.6.3.1� Write Invalidate Protocol State Machines
	Figure 4–11� Write Invalidate Protocol: 21164 Stat...
	Figure 4–12� Write Invalidate Protocol: System/Bus...

	4.6.4� Flush Cache Coherency Protocol Systems
	Table 4–7� Components for 21164 Flush Cache Protoc...

	4.6.5� Flush-Based Protocol State Machines
	Figure 4–13� Flush-Based Protocol 21164 States
	Figure 4–14� Flush-Based Protocol System/Bus State...

	4.6.6� Cache Coherency Transaction Conflicts
	4.6.6.1� Case 1
	4.6.6.2� Case 2

	4.7� Lock Mechanisms
	4.8� 21164-to-Bcache Transactions
	4.8.1� Bcache Timing
	4.8.2� Bcache Read Transaction (Private Read Opera...
	Figure 4–15� Bcache Read Transaction

	4.8.3� Wave Pipeline
	Figure 4–16� Wave Pipeline Timing Diagram

	4.8.4� Bcache Write Transaction (Private Write Ope...
	Figure 4–17� Bcache Write Transaction

	4.8.5� Synchronous Cache Support
	Figure 4–18� Synchronous Read Timing Diagram
	Figure 4–19� Synchronous Write Timing Diagram

	4.8.6� Selecting Bcache Options
	Table 4–8� Bcache Options

	4.9� 21164-Initiated System Transactions
	Table 4–9� 21164-Initiated Interface Commands (She...
	4.9.1� READ MISS—No Bcache
	Figure 4–20� READ MISS—No Bcache Timing Diagram

	4.9.2� READ MISS—Bcache
	Figure 4–21� READ MISS MOD—Bcache Timing Diagram

	4.9.3� FILL
	4.9.4� READ MISS with Victim
	4.9.4.1� READ MISS with Victim (Victim Buffer)
	Figure 4–22� READ MISS with Victim (Victim Buffer)...

	4.9.4.2� READ MISS with Victim (Without Victim Buf...
	Figure 4–23� READ MISS with Victim (Without Victim...

	4.9.5� WRITE BLOCK and WRITE BLOCK LOCK
	Figure 4–24� WRITE BLOCK Timing Diagram

	4.9.6� SET DIRTY and LOCK
	Figure 4–25� SET DIRTY and LOCK Timing Diagram

	4.9.7� MEMORY BARRIER (MB)
	4.9.7.1� When to Use a MEMORY BARRIER Command

	4.9.8� FETCH
	4.9.9� FETCH_M

	4.10� System-Initiated Transactions
	4.10.1� Sending Commands to the 21164
	Figure 4–26� Algorithm for System Sending Commands...

	4.10.2� Write Invalidate Protocol Commands
	Table 4–10� System-Initiated Interface Commands (W...
	4.10.2.1� 21164 Responses to Write Invalidate Prot...
	Table 4–11� 21164 Responses on addr_res_h<1:0> to ...
	Table 4–12� 21164 Responses on addr_res_h<2> to 21...
	Table 4–13� 21164 Minimum Response Time to Write I...

	4.10.2.2� READ DIRTY and READ DIRTY/INVALIDATE
	Figure 4–27� READ DIRTY Timing Diagram (Scache Hit...

	4.10.2.3� INVALIDATE
	Figure 4–28� INVALIDATE Timing Diagram (Bcache Hit...

	4.10.2.4� SET SHARED
	Figure 4–29� SET SHARED Timing Diagram

	4.10.3� Flush-Based Cache Coherency Protocol Comma...
	Table 4–14� System-Initiated Interface Commands (F...
	4.10.3.1� 21164 Responses to Flush-Based Protocol ...
	Table 4–15� 21164 Responses to Flush-Based Protoco...
	Table 4–16� 21164 Responses on addr_res_h<2> to 21...
	Table 4–17� Minimum 21164 Response Time to Flush P...

	4.10.3.2� FLUSH
	Figure 4–30� FLUSH Timing Diagram (Scache Hit)

	4.10.3.3� READ
	Figure 4–31� Read Timing Diagram (Scache Hit)

	4.11� Data Bus and Command/Address Bus Contention
	4.11.1� Command/Address Bus
	Figure 4–32� Driving the Command/Address Bus

	4.11.2� Read/Write Spacing—Data Bus Contention
	4.11.3� Using idle_bc_h and fill_h
	Figure 4–33� Example of Using idle_bc_h and fill_h...

	4.11.4� Using data_bus_req_h
	Figure 4–34� Using data_bus_req_h

	4.11.5� Tristate Overlap
	4.11.5.1� READ or WRITE to FILL
	4.11.5.2� BCACHE VICTIM to FILL
	Figure 4–35� READ MISS Completed First—Victim Buff...
	Figure 4–36� READ MISS Second—No Victim Buffer

	4.11.5.3� System Bcache Command to FILL
	Figure 4–37� System Command to FILL Example 1
	Figure 4–38� System Command to FILL Example 2

	4.11.5.4� FILL to Private Read or Write Operation
	Figure 4–39� FILL to Private Read or Write Operati...

	4.11.6� Auto DACK
	Figure 4–40� Two Commands, Auto DACK Disabled
	Figure 4–41� Two Commands, Auto DACK Enabled

	4.11.7� Victim Write Back Under Miss
	Figure 4–42� sysclk Ratio ³ 4
	Figure 4–43� sysclk Ratio = 3

	4.12� 21164 Interface Restrictions
	4.12.1� FILL Operations After Other Transactions
	4.12.2� Command Acknowledge for WRITE BLOCK Comman...
	4.12.3� Systems Without a Bcache
	4.12.4� Fast Probes with No Bcache
	4.12.5� WRITE BLOCK LOCK

	4.13� 21164/System Race Conditions
	4.13.1� Rules for 21164 and System Use of External...
	4.13.2� READ MISS with Victim Example
	Figure 4–44� READ MISS with Victim Example

	4.13.3� idle_bc_h and cack_h Race Example
	Figure 4–45� idle_bc_h and cack_h Race Examples

	4.13.4� READ MISS with idle_bc_h Asserted Example
	Figure 4–46� READ MISS with idle_bc_h Asserted Exa...

	4.13.5� READ MISS with Victim Abort Example
	Figure 4–47� READ MISS with Victim Abort Example

	4.13.6� Bcache Hit Under READ MISS Example
	Figure 4–48� Bcache Hit Under READ MISS Example

	4.14� Data Integrity, Bcache Errors, and Command/A...
	4.14.1� Data ECC and Parity
	Figure 4–49� ECC Code
	Table 4–18� Data Check Bit Correspondence to CBn

	4.14.2� Force Correction
	4.14.3� Bcache Tag Data Parity
	4.14.4� Bcache Tag Control Parity
	4.14.5� Address and Command Parity
	4.14.6� Fill Error
	4.14.7� Forcing 21164 Reset

	4.15� Interrupts
	Figure 4–50� 21164 Interrupt Signals
	4.15.1� Interrupt Signals During Initialization
	4.15.2� Interrupt Signals During Normal Operation
	4.15.3� Interrupt Priority Level
	Table 4–19� Interrupt Priority Level Effect (Sheet...

	Internal Processor Registers
	Table 5–1� IDU, MTU, Dcache, and PALtemp IPR Encod...
	5.1� Instruction Fetch/Decode Unit and Branch Unit...
	5.1.1� Istream Translation Buffer Tag Register (IT...
	Figure 5–1� Istream Translation Buffer Tag Registe...

	5.1.2� Instruction Translation Buffer Page Table E...
	Figure 5–2� Instruction Translation Buffer Page Ta...
	Figure 5–3� Instruction Translation Buffer Page Ta...

	5.1.3� Instruction Translation Buffer Address Spac...
	Figure 5–4� Instruction Translation Buffer Address...

	5.1.4� Instruction Translation Buffer Page Table E...
	Table 5–2� Granularity Hint Bits in ITB_PTE_TEMP R...

	5.1.5� Instruction Translation Buffer Invalidate A...
	5.1.6� Instruction Translation Buffer Invalidate A...
	5.1.7� Instruction Translation Buffer IS (ITB_IS) ...
	Figure 5–5� Instruction Translation Buffer IS (ITB...

	5.1.8� Formatted Faulting Virtual Address (IFAULT_...
	Figure 5–6� Formatted Faulting Virtual Address (IF...
	Figure 5–7� Formatted Faulting Virtual Address (IF...

	5.1.9� Virtual Page Table Base Register (IVPTBR)
	Figure 5–8� Virtual Page Table Base Register (IVPT...
	Figure 5–9� Virtual Page Table Base Register (IVPT...

	5.1.10� Icache Parity Error Status (ICPERR_STAT) R...
	Figure 5–10� Icache Parity Error Status (ICPERR_ST...
	Table 5–3� Icache Parity Error Status Register Fie...

	5.1.11� Icache Flush Control (IC_FLUSH_CTL) Regist...
	5.1.12� Exception Address (EXC_ADDR) Register
	Figure 5–11� Exception Address (EXC_ADDR) Register...

	5.1.13� Exception Summary (EXC_SUM) Register
	Figure 5–12� Exception Summary (EXC_SUM) Register
	Table 5–4� Exception Summary Register Fields (Shee...

	5.1.14� Exception Mask (EXC_MASK) Register
	Figure 5–13� Exception Mask (EXC_MASK) Register

	5.1.15� PAL Base Address (PAL_BASE) Register
	Figure 5–14� PAL Base Address (PAL_BASE) Register

	5.1.16� IDU Current Mode (ICM) Register
	Figure 5–15� IDU Current Mode (ICM) Register

	5.1.17� IDU Control and Status Register (ICSR)
	Figure 5–16� IDU Control and Status Register (ICSR...
	Table 5–5� IDU Control and Status Register Fields ...

	5.1.18� Interrupt Priority Level Register (IPLR)
	Figure 5–17� Interrupt Priority Level Register (IP...

	5.1.19� Interrupt ID (INTID) Register
	Figure 5–18� Interrupt ID (INTID) Register

	5.1.20� Asynchronous System Trap Request Register ...
	Figure 5–19� Asynchronous System Trap Request Regi...

	5.1.21� Asynchronous System Trap Enable Register (...
	Figure 5–20� Asynchronous System Trap Enable Regis...

	5.1.22� Software Interrupt Request Register (SIRR)...
	Figure 5–21� Software Interrupt Request Register (...
	Table 5–6� Software Interrupt Request Register Fie...

	5.1.23� Hardware Interrupt Clear (HWINT_CLR) Regis...
	Figure 5–22� Hardware Interrupt Clear (HWINT_CLR) ...
	Table 5–7� Hardware Interrupt Clear Register Field...

	5.1.24� Interrupt Summary Register (ISR)
	Figure 5–23� Interrupt Summary Register (ISR)
	Table 5–8� Interrupt Summary Register Fields (Shee...

	5.1.25� Serial Line Transmit (SL_XMIT) Register
	Figure 5–24� Serial Line Transmit (SL_XMIT) Regist...
	Table 5–9� Serial Line Transmit Register Fields

	5.1.26� Serial Line Receive (SL_RCV) Register
	Figure 5–25� Serial Line Receive (SL_RCV) Register...
	Table 5–10� Serial Line Receive Register Fields

	5.1.27� Performance Counter (PMCTR) Register
	Figure 5–26� Performance Counter (PMCTR) Register
	Table 5–11� Performance Counter Register Fields
	Table 5–12� PMCTR Counter Select Options (Sheet 2 ...
	Table 5–13� Measurement Mode Control

	5.2� Memory Address Translation Unit (MTU) IPRs
	5.2.1� Dstream Translation Buffer Address Space Nu...
	Figure 5–27� Dstream Translation Buffer Address Sp...

	5.2.2� Dstream Translation Buffer Current Mode (DT...
	Figure 5–28� Dstream Translation Buffer Current Mo...

	5.2.3� Dstream Translation Buffer Tag (DTB_TAG) Re...
	Figure 5–29� Dstream Translation Buffer Tag (DTB_T...

	5.2.4� Dstream Translation Buffer Page Table Entry...
	Figure 5–30� Dstream Translation Buffer Page Table...

	5.2.5� Dstream Translation Buffer Page Table Entry...
	Figure 5–31� Dstream Translation Buffer Page Table...

	5.2.6� Dstream Memory Management Fault Status (MM_...
	Figure 5–32� Dstream Memory Management Fault Statu...
	Table 5–14� Dstream Memory Management Fault Status...

	5.2.7� Faulting Virtual Address (VA) Register
	Figure 5–33� Faulting Virtual Address (VA) Registe...

	5.2.8� Formatted Virtual Address (VA_FORM) Registe...
	Figure 5–34� Formatted Virtual Address (VA_FORM) R...
	Figure 5–35� Formatted Virtual Address (VA_FORM) R...
	Table 5–15� Formatted Virtual Address Register Fie...

	5.2.9� MTU Virtual Page Table Base Register (MVPTB...
	Figure 5–36� MTU Virtual Page Table Base Register ...

	5.2.10� Dcache Parity Error Status (DC_PERR_STAT) ...
	Figure 5–37� Dcache Parity Error Status (DC_PERR_S...
	Table 5–16� Dcache Parity Error Status Register Fi...

	5.2.11� Dstream Translation Buffer Invalidate All ...
	5.2.12� Dstream Translation Buffer Invalidate All ...
	5.2.13� Dstream Translation Buffer Invalidate Sing...
	Figure 5–38� Dstream Translation Buffer Invalidate...

	5.2.14� MTU Control Register (MCSR)
	Figure 5–39� MTU Control Register (MCSR)
	Table 5–17� MTU Control Register Fields

	5.2.15� Dcache Mode (DC_MODE) Register
	Figure 5–40� Dcache Mode (DC_MODE) Register
	Table 5–18� Dcache Mode Register Fields

	5.2.16� Miss Address File Mode (MAF_MODE) Register...
	Figure 5–41� Miss Address File Mode (MAF_MODE) Reg...
	Table 5–19� Miss Address File Mode Register Fields...

	5.2.17� Dcache Flush (DC_FLUSH) Register
	5.2.18� Alternate Mode (ALT_MODE) Register
	Figure 5–42� Alternate Mode (ALT_MODE) Register
	Table 5–20� Alternate Mode Register Settings

	5.2.19� Cycle Counter (CC) Register
	Figure 5–43� Cycle Counter (CC) Register

	5.2.20� Cycle Counter Control (CC_CTL) Register
	Figure 5–44� Cycle Counter Control (CC_CTL) Regist...
	Table 5–21� Cycle Counter Control Register Fields

	5.2.21� Dcache Test Tag Control (DC_TEST_CTL) Regi...
	Figure 5–45� Dcache Test Tag Control (DC_TEST_CTL)...
	Table 5–22� Dcache Test Tag Control Register Field...

	5.2.22� Dcache Test Tag (DC_TEST_TAG) Register
	Figure 5–46� Dcache Test Tag (DC_TEST_TAG) Registe...
	Table 5–23� Dcache Test Tag Register Fields

	5.2.23� Dcache Test Tag Temporary (DC_TEST_TAG_TEM...
	Figure 5–47� Dcache Test Tag Temporary (DC_TEST_TA...
	Table 5–24� Dcache Test Tag Temporary Register Fie...

	5.3� External Interface Control (CBU) IPRs
	Table 5–25� CBU Internal Processor Register Descri...
	5.3.1� Scache Control (SC_CTL) Register (FF FFF0 0...
	Figure 5–48� Scache Control (SC_CTL) Register
	Table 5–26� Scache Control Register Fields (Sheet ...

	5.3.2� Scache Status (SC_STAT) Register (FF FFF0 0...
	Figure 5–49� Scache Status (SC_STAT) Register
	Table 5–27� Scache Status Register Fields
	Table 5–28� SC_CMD Field Descriptions

	5.3.3� Scache Address (SC_ADDR) Register (FF FFF0 ...
	Figure 5–50� Scache Address (SC_ADDR) Register
	Table 5–29� Scache Address Register Fields

	5.3.4� Bcache Control (BC_CONTROL) Register (FF FF...
	Figure 5–51� Bcache Control (BC_CONTROL) Register
	Table 5–30� Bcache Control Register Fields (Sheet ...

	5.3.5� Bcache Configuration (BC_CONFIG) Register (...
	Figure 5–52� Bcache Configuration (BC_CONFIG) Regi...
	Table 5–31� Bcache Configuration Register Fields (...

	5.3.6� Bcache Tag Address (BC_TAG_ADDR) Register (...
	Figure 5–53� Bcache Tag Address (BC_TAG_ADDR) Regi...
	Table 5–32� Bcache Tag Address Register Fields

	5.3.7� External Interface Status (EI_STAT) Registe...
	Table 5–33� Loading and Locking Rules for External...
	Figure 5–54� External Interface Status (EI_STAT) R...
	Table 5–34� EI_STAT Register Fields

	5.3.8� External Interface Address (EI_ADDR) Regist...
	Figure 5–55� External Interface Address (EI_ADDR) ...

	5.3.9� Fill Syndrome (FILL_SYN) Register (FF FFF0 ...
	Figure 5–56� Fill Syndrome (FILL_SYN) Register
	Table 5–35� Syndromes for Single-Bit Errors (Sheet...

	5.4� PALcode Storage Registers
	5.5� Restrictions
	5.5.1� CBU IPR PALcode Restrictions
	Table 5–36� CBU IPR PALcode Restrictions

	5.5.2� PALcode Restrictions—Instruction Definition...
	Table 5–37� PALcode Restrictions Table (Sheet 5 of...

	Privileged Architecture Library Code
	6.1� PALcode Description
	6.2� PALmode Environment
	6.3� Invoking PALcode
	6.4� PALcode Entry Points
	6.4.1� CALL_PAL Entry
	6.4.2� PALcode Trap Entry Points
	Table 6–1� PALcode Trap Entry Points (Sheet 2 of 2...

	6.5� Required PALcode Function Codes
	Table 6–2� Required PALcode Function Codes

	6.6� 21164 Implementation of the Architecturally R...
	Table 6–3� Opcodes Reserved for PALcode
	6.6.1� HW_LD Instruction
	Figure 6–1� HW_LD Instruction Format
	Table 6–4� HW_LD Format Description

	6.6.2� HW_ST Instruction
	Figure 6–2� HW_ST Instruction Format
	Table 6–5� HW_ST Format Description

	6.6.3� HW_REI Instruction
	Figure 6–3� HW_REI Instruction Format
	Table 6–6� HW_REI Format Description

	6.6.4� HW_MFPR and HW_MTPR Instructions
	Figure 6–4� HW_MTPR and HW_MFPR Instruction Format...
	Table 6–7� HW_MTPR and HW_MFPR Format Description

	Initialization and Configuration
	7.1� Input Signals sys_reset_l and dc_ok_h and Boo...
	Table 7–1� 21164 Signal Pin Reset State (Sheet 3 o...
	7.1.1� Pin State with dc_ok_h Not Asserted

	7.2� Sysclk Ratio and Delay
	7.3� Built-In Self-Test (BiSt)
	7.4� Serial Read-Only Memory Interface Port
	7.4.1� Serial Instruction Cache Load Operation

	7.5� Serial Terminal Port
	7.6� Cache Initialization
	7.6.1� Icache Initialization
	7.6.2� Flushing Dirty Blocks

	7.7� External Interface Initialization
	7.8� Internal Processor Register Reset State
	Table 7–2� Internal Processor Register Reset State...

	7.9� Timeout Reset
	7.10� IEEE 1149.1 Test Port Reset

	Error Detection and Error Handling
	8.1� Error Flows
	8.1.1� Icache Data or Tag Parity Error
	8.1.2� Scache Data Parity Error—Istream
	8.1.3� Scache Tag Parity Error—Istream
	8.1.4� Scache Data Parity Error—Dstream Read/Write...
	8.1.5� Scache Tag Parity Error—Dstream or System C...
	8.1.6� Dcache Data Parity Error
	8.1.7� Dcache Tag Parity Error
	8.1.8� Istream Uncorrectable ECC or Data Parity Er...
	8.1.9� Dstream Uncorrectable ECC or Data Parity Er...
	8.1.10� Bcache Tag Parity Errors—Istream
	8.1.11� Bcache Tag Parity Errors—Dstream
	8.1.12� System Command/Address Parity Error
	8.1.13� System Read Operations of the Bcache
	8.1.14� Istream or Dstream Correctable ECC Error (...
	8.1.15� Fill Timeout (FILL_ERROR_H)
	8.1.16� System Machine Check
	8.1.17� IDU Timeout
	8.1.18� cfail_h and Not cack_h

	8.2� MCHK Flow
	8.3� Processor-Correctable Error Interrupt Flow (I...
	8.4� MCK_INTERRUPT Flow
	8.5� System-Correctable Error Interrupt Flow (IPL ...

	Electrical Data
	9.1� Electrical Characteristics
	Table 9–1� 21164 Absolute Maximum Ratings
	Table 9–2� Operating Voltages

	9.2� DC Characteristics
	9.2.1� Power Supply
	9.2.2� Input Signal Pins
	9.2.3� Output Signal Pins
	Table 9–3� CMOS DC Input/Output Characteristics (S...

	9.3� Clocking Scheme
	9.3.1� Input Clocks
	Figure 9–1� osc_clk_in_h,l Input Network and Termi...

	9.3.2� Clock Termination and Impedance Levels
	Figure 9–2� Impedance vs Clock Input Frequency

	9.3.3� AC Coupling
	Table 9–4� Input Clock Specification

	9.4� AC Characteristics
	9.4.1� Test Configuration
	Figure 9–3� Input/Output Pin Timing

	9.4.2� Pin Timing
	9.4.2.1� Backup Cache Loop Timing
	Table 9–5� Bcache Loop Timing
	Table 9–6� Normal Output Driver Characteristics
	Table 9–7� Big Output Driver Characteristics
	Figure 9–4� Bcache Timing

	9.4.2.2� sys_clk-Based Systems
	Table 9–8� 21164 System Clock Output Timing (syscl...
	Figure 9–5� sys_clk System Timing

	9.4.2.3� Reference Clock-Based Systems
	Table 9–9� 21164 Reference Clock Input Timing

	9.4.3� Digital Phase-Locked Loop
	Figure 9–6� ref_clk System Timing
	Table 9–10� ref_clk System Timing Stages

	9.4.4� Timing—Additional Signals
	Table 9–11� Input Timing for sys_clk_out- or ref_c...
	Table 9–12� Output Timing for sys_clk_out- or ref_...
	Table 9–13� Bcache Control Signal Timing

	9.4.5� Timing of Test Features
	9.4.5.1� Icache BiSt Operation Timing
	Figure 9–7� BiSt Timing Event—Time Line
	Table 9–14� BiSt Timing for Some System Clock Rati...
	Table 9–15� BiSt Timing for Some System Clock Rati...

	9.4.5.2� Automatic SROM Load Timing
	Figure 9–8� SROM Load Timing Event—Time Line
	Table 9–16� SROM Load Timing for Some System Clock...
	Table 9–17� SROM Load Timing for Some System Clock...
	Figure 9–9� Serial ROM Load Timing

	9.4.6� Clock Test Modes
	9.4.6.1� Normal (1° Clock) Mode
	9.4.6.2� 2° Clock Mode
	9.4.6.3� Chip Test Mode
	9.4.6.4� Module Test Mode
	9.4.6.5� Clock Test Reset Mode
	Table 9–18� Clock Test Modes (Sheet 2 of 2)

	9.4.7� IEEE 1149.1 (JTAG) Performance
	Table 9–19� IEEE 1149.1 Circuit Performance Specif...

	9.5� Power Supply Considerations
	9.5.1� Decoupling
	9.5.1.1� Vdd Decoupling
	9.5.1.2� Vddi Decoupling

	9.5.2� Power Supply Sequencing

	Thermal Management
	10.1� Operating Temperature
	Table 10–1� Qca at Various Airflows
	Table 10–2� Maximum Ta at Various Airflows

	10.2� Heat Sink Specifications
	Figure 10–1� Type 1 Heat Sink
	Figure 10–2� Type 2 Heat Sink

	10.3� Thermal Design Considerations

	Mechanical Data and Packaging Information
	11.1� Mechanical Specifications
	Figure 11–1� Package Dimensions

	11.2� Signal Descriptions and Pin Assignment
	11.2.1� Signal Pin Lists
	Table 11–1� Alphabetic Signal Pin List (Sheet 5 of...

	11.2.2� Pin Assignment
	Figure 11–2� 21164 Top View (Pin Down)
	Figure 11–3� 21164 Bottom View (Pin Up)

	Testability and Diagnostics
	12.1� Test Port Pins
	Table 12–1� 21164 Test Port Pins

	12.2� Test Interface
	12.2.1� IEEE 1149.1 Test Access Port
	Table 12–2� Compliance Enable Inputs
	Figure 12–1� IEEE1149.1 Test Access Port
	Figure 12–2� TAP Controller State Machine
	Table 12–3� Instruction Register

	12.2.2� Test Status Pins

	12.3� Boundary-Scan Register
	Table 12–4� Boundary-Scan Register Organization (S...

	Alpha Instruction Set
	A.1� Alpha Instruction Summary
	Table A–1� Instruction Format and Opcode Notation
	Table A–2� Architecture Instructions (Sheet 7 of 7...
	A.1.1� Opcodes Reserved for COMPAQ
	Table A–3� Opcodes Reserved for COMPAQ

	A.1.2� Opcodes Reserved for PALcode
	Table A–4� Opcodes Reserved for PALcode

	A.2� IEEE Floating-Point Instructions
	Table A–5� IEEE Floating-Point Instruction Functio...

	A.3� VAX Floating-Point Instructions
	Table A–6� VAX Floating-Point Instruction Function...

	A.4� Opcode Summary
	Table A–7� Opcode Summary (Sheet 2 of 2)

	A.5� Required PALcode Function Codes
	Table A–8� Required PALcode Function Codes

	A.6� 21164 Microprocessor IEEE Floating-Point Conf...

	21164 Microprocessor Specifications
	Table B–1� 21164 Microprocessor Specifications (Sh...

	Serial Icache Load Predecode Values
	Errata Sheet
	Table D–1� Document Revision History

	Support, Products, and Documentation
	E.1� Customer Support
	E.2� Alpha Products
	E.3� Alpha Documentation
	E.4� Third–Party Documentation

	Glossary
	Index

