Microsoft’s answers to IBM’s

“The Real Story about Windows 95 - 15 Questions to Ask Microsoft”

The purpose of this document is to answer the questions raised in IBM’s document entitled “The Real Story about Win 95 -or- 15 Questions to ask Microsoft”. This document has been circulating around the internet and other online services.

Here is some suggested text:

IBM’s document repeatedly presents a series of arcane technical arguments concerning some of the design decisions Microsoft made in producing Windows 95. These can be grouped into the following three areas:

Multitasking: Windows 95 and OS/2 take essentially the same approach to running 16-bit Windows applications - that is to run them in the way as Windows 3.1 would. The reason for this is compatibility. 16-bit Windows applications were designed to be executed in a cooperatively multitasked environment. While OS/2 offers a non-default option to run 16-bit Windows applications preemptively, it does so by loading a full copy of Windows 3.1 for each application, which requires a great deal of memory and reduces performance. This option also introduces compatibility problems because 16-bit Windows applications were not designed to be run this way. For example, applications that use OLE are not able to exchange information in this mode. So this option offers marginally better multitasking at the cost of reduced performance, higher memory requirements, and incompatibility. If the benefits of this OS/2 feature were worth its cost, why is it not turned on by default? Further, if preemptive multitasking of applications is important, why has IBM stated that OS/2 will not run 32-bit applications designed for Windows 95 and Windows NT, which have as their key features preemptive multitasking and multiple threads of execution?

Robustness: There is no evidence that OS/2 is any more robust than Windows 3.1 when running 16-bit Windows applications, and Windows 95 has a number of important robustness improvements that go beyond Windows 3.1 and OS/2 such as increased system resources, per-thread resource tracking, and better recovery from application failures. The only case that could be made for OS/2 in this regard is that its option to run each 16-bit Windows application in a separate session adds some protection, but at a great cost in resources and compatibility as explained above.

Ease of Use: The Windows 95 user interface is the result of thousands of hours of usability testing and has proven to be an easier and more productive user interface than OS/2. PC World and PC Computing magazines each conducted usability tests comparing Windows 95 to OS/2 and Windows 3.1 in their August 1995 issues. In both cases, Windows 95 and Windows 3.1 proved to be significantly easier to use than OS/2.

Rather than labor over these technical details, it is probably more relevant to evaluate how an operating system addresses customer requirements such as: Performance on mainstream hardware; the number of native applications developed for the operating system; compatibility with the applications, and hardware customers already own; ease of use (beyond the few technical details IBM discusses here), and the future prospects of the operating system. See “Key customer requirements for a PC Operating System” at the end of this document for a more thorough discussion of these issues.

The following section presents questions from IBM’s document in italics, followed by Microsoft’s answers.

Subject: The Real Story about Win 95 -or- 15 Questions to ask Microsoft

Can Windows 95 live up to the hype that Microsoft has generated for it? These questions, which are based upon published information about the final beta product in the "Windows 95 Resource Kit" and "Windows 95 Reviewer's Guide," might help you decide.

About Reliability

Q1: What happens to 32-bit applications when a Win16 application crashes under Windows 95?

IBM A1: They can stop executing. Because Microsoft built Windows 95 using the same System Virtual Machine (VM) model found in Windows 3.1, the operating system is at the mercy of legacy 16-bit applications. If a Win16 program hangs, it can tie up critical 16-bit code modules located in the System VM. All other processing is halted.

IBM Bottom Line: Windows 95 is not a reliable platform for mission critical, line-of-business applications.

Microsoft: Windows 95 provides a high level of robustness, improved over Windows 3.1, and is designed to recover from application crashes. If an application crashes on Windows 95, the user has the option of terminating that application, and continuing to run other currently loaded applications. It is possible, though unlikely, for a poorly written 16-bit Windows application to crash and temporarily hold up other applications in a Windows 95 system. The penalty for preventing this entirely would be incompatibility with a large number of existing Windows applications and/or unacceptably slow performance on mainstream hardware. Rather than unilaterally imposing this penalty on customers, the design of Windows 95 assumes most Windows applications are well-behaved and runs them as they were designed to be run. 32-bit applications running under Windows 95 add further robustness improvements such as asynchronous input queues and full memory protection. The result is that Windows 95 is substantially more robust than Windows 3.1 while as fast or faster on mainstream hardware. This level of compatibility and performance is demanded by customers, and is not fully provided by OS/2. Windows NT offers both full protection and better compatibility than OS/2 for users who require the highest level of robustness.

What happens to 32-bit OS/2 applications when one of them stops processing messages such as mouse and keyboard events? Because OS/2 processes messages synchronously, when one application hangs or for some other reason does not process its messages, no other 32-bit application gets any messages either, so all of them stop. The lack of separate, asynchronous message queues for 32-bit applications under OS/2 is a major architectural limitation - one that is not shared by Windows 95. Windows 95 provides separate, asynchronous message queues for each 32-bit application, so if one stops responding, the rest are unaffected.

Bottom line: Windows 95 is more robust than Windows 3.1 and OS/2 running 16-bit applications, and adds even more robustness when running 32-bit applications.

Q2: Does Windows 95 protect the contents of its system cache against intrusion by Win32 programs?

A2: No. As with the afore mentioned system structures, Windows 95 also fails to protect the contents of its system cache - disk cache, network cache, and CD-ROM cache. As a result, an errant Win32 application can write to memory in use by the cache. The potential results: inaccurate data, corrupted file system entries, etc.

Bottom Line: Data integrity is a question mark with Windows 95.

Microsoft: An application deliberately altering system data structures is an extremely rare case. Neither Windows 95 nor OS/2 completely protect system data areas because to do so would impose large performance penalties, require more system resources, and introduce incompatibilities with some applications. The same choice was made by IBM in the design for OS/2, for probably the same reason - performance. It should be noted that an application would have to be more than just buggy to over-write system components or data in Windows 95 - it would have to be malicious - deliberately and specifically accessing those areas. A similar malicious application would also harm OS/2.

Specifically, does OS/2 protect any of its ring 3 system data pages? No. OS/2’s system-wide data structures including the window manager, graphics engine, and non-kernel system components (the shell, desktop, object model) can be overwritten by an application, causing the system to crash. Only Microsoft Windows NT provides virtually complete protection from an application attempting to access memory outside its own.

Bottom line: Windows 95 provides a reliable and robust operating system that achieves excellent performance and compatibility on mainstream systems.

Q3: How is Microsoft dealing with the issue of Virtual Device Driver (VxD) instability?

A3: They aren't. In fact, Windows 95 itself makes heavy use of VxDs to supplement and, in many cases, replace DOS functionality. VxDs are extremely powerful programs that can literally go anywhere and do anything in the operating system. They have free reign to address system memory directly, manipulate hardware, and even replace portions of Windows 95 itself at runtime. This gives the creative VxD programmer unlimited flexibility when designing applications that need to modify Windows 95's operation. Microsoft has itself often promoted the VxD interface as a mechanism for gaining good performance with time-critical Windows applications. Unfortunately, the power of the VxD can also be a curse. As more developers begin to exploit this interface - an interface that has only limited controls and almost zero inter-process isolation - a programming free-for-all may result where multiple third party VxDs modify the system in similar ways with unpredictable results. The failure of a single VxD can undermine the stability of the entire Windows95 environment.

Bottom Line: VxDs are potential disasters waiting to happen in the corporate world.

Microsoft: IBM presents no evidence of stability problems with VxDs, because there is none. VxDs, which are merely device drivers, have been a fundamental part of the Windows operating system design since 1990 - tens of millions of people rely on them every day, though they probably don’t realize it since they perform less visible tasks such as network support. If there was some kind of wide-spread stability issue with VxDs, Windows could never have achieved the success that it has. It is true that in Windows 95, if a device driver fails, the consequences can be severe, but that is the case with every PC operating system in existence.

Is OS/2 immune to the problems that can arise if an OS/2 device driver fails? No - nor is any other operating system. Additionally, since OS/2 is not compatible with Windows VxDs, it cannot run any application or component (such as Norton Utilities, Visual C++, some communications applications, and the networking components of Windows for Workgroups) which requires them.

Bottom line: Windows 95 has comprehensive device support, providing high performance using a proven and stable device driver architecture.

Q4: Is it true that Windows 95 doesn't fully protect its own operating system code against Win32 application failures?

A4: Yes. Win32 applications can write to regions of the extreme lower and upper address spaces in the System VM that are critical to the environment's operation. As a result, an errant memory operation can undermine system stability and potentially crash the entire operating system.

Bottom Line: Windows 95 may be one errant memory operation away from total failure.

Microsoft: Windows 95 improves robustness, without sacrificing compatibility. It is true that Win32 applications have access to the 64K - 4MB range. The reason is compatibility with MS-DOS and 16-bit Windows applications and device drivers, something the designers of OS/2 decided to forgo. This level of compatibility means, for example, that users can continue to use their existing MS-DOS device drivers for devices like sound cards and those devices will work with 16 and 32-bit applications under Windows 95. An application would have to deliberately and maliciously write to a particular system memory area (out of the whole 4GB range) to cause problems. The technical details of IBM’s argument are also incorrect - the extreme lower and upper addresses (near 0 and 4GB) are not addressable to Win32 applications. This feature catches a common error in applications where they may attempt to use null or near null pointers. Also see the response to question #2.

OS/2 provides no protection from applications writing into critical system data memory areas. If an application chooses to write into these areas, OS/2 can and will crash.

Bottom line: Windows 95’s design successfully achieves high compatibility with existing applications and hardware, while improving robustness and reliability over Windows 3.1.

Q5: When running DOS applications, does Windows 95 fully virtualize the PC’s hardware to protect against buggy applications?

A5: No. Windows 95 fails to virtualize critical hardware components like the interrupt flag. This, in turn, can lead to a system crash if an errant DOS program becomes unresponsive while interrupts are disabled.

Bottom Line: Legacy applications are the Achilles heel of Windows 95 memory management.

Microsoft: Windows 95 has superior MS-DOS application and device driver support to OS/2. While it's unlikely that an MS-DOS application would turn off interrupts, certain real-mode device drivers will. If Windows 95 virtualized all of these services and did not allow an application or device driver to turn off interrupts, then those device drivers wouldn't work. This would prevent the use of device drivers that support products like Bernoulli drives. The choice was made to retain compatibility with these drivers because some users will require them to support their hardware.

If interrupts are disabled in an unresponsive application on certain bus architectures under OS/2, OS/2 will also hang. OS/2 does not provide the benefit of the use of these device drivers for compatibility reasons, yet still pays the cost in robustness for allowing this type of operation.

Bottom line: Windows 95 is the only 32-bit operating system that successfully retains compatibility with existing real-mode device drivers.

About Usability

Q6: Does Windows 95 track objects dynamically?

A6: No. Windows 95 uses a series of static DOS pathnames and .INI files to track the relationship between icons on the desktop and files on disk. For example, the shortcut mechanism of the Windows 95 interface relies on a stored copy of the original's path information when locating and invoking it. If the file is moved within the directory structure, Windows 95 must search the hard disk for it based on file size and date stamp. Although this technique works most of the time, it is limited to searching a single volume - if you move the file to another disk volume, the link is broken completely. And, because Windows 95 will search your entire network if attached, it may take forever if it is connected to, say, five gigabytes of storage.

Bottom Line: Help desk calls will be on the rise as users experiment with shortcuts and long filenames.

Microsoft: When it comes to usability, Windows 95 is certainly superior to OS/2. This is evidenced by the PC World and PC Computing tests reported in their August 1995 issues in which OS2 loses not only to Windows 95, but also to Windows 3.1. Shortcuts and long file names are two of the many usability improvements in Windows 95 that were driven by extensive usability testing with the goal of reducing user support burden.

To address this particular question, files that appear on the Windows 95 desktop are stored in a directory just like any other file regardless of whether they have long or short file names. Shortcuts are a special type of file that contain data on the location of the original object. If the original object is moved, Windows 95 will update the location data the next time the object is accessed. If the object that a shortcut points to is moved to another drive, the user must specify the new location. Windows 95 will only search a network drive if that was the original location of the object. Whether the object or shortcut uses long file names makes no difference.

OS/2’s implements a rough equivalent of Windows 95 shortcuts, called shadows, however they are less powerful and less easy to use in several ways. Windows 95 allows easy creation of shortcuts to any type of network resource. While OS/2 allows the user to create a shadow of a folder on a network server, the shadow disappears when the computer is rebooted. If a Windows 95 user creates a shortcut to a network resource, and later accesses the shortcut when not connected to the network, Windows 95 is smart enough to invoke its dial-up networking feature to connect to the network and access the resource. If OS/2 users attempt the same operation, they get an error message. Unlike Windows 95’s shortcuts , OS/2’s shadows cannot point to a particular part of a document, nor can they be embedded into a document or mailed to another user. While both shortcuts and shadows can point to content on the Internet, only Windows 95 is smart enough to launch a connection to the Internet automatically when a user opens the shortcut.

Bottom line: The design of Windows 95 was driven by extensive usability testing, which resulted in a user interface that surpasses Windows 3.1 and OS/2 in its ease of use, productivity and reduction of support burden.

Q7: Does Windows 95 make consistent use of drag & drop?

A7: No. Windows 95's drag & drop features are applicable to some objects, like files and folders, but not to others. You cannot, for example, drag a dial-up networking connection to the Windows 95 Recycler; nor can you drag objects to the My Computer folder - both are "special" objects in the Windows 95 interface and aren't subject to the normal Windows 95 drag & drop rules. This introduces a level of inconsistency to the interface and a possible stumbling block for new users trying to take advantage of drag & drop.

Bottom Line: The Windows 95 interface is inconsistent from function to function.

Microsoft: Again, Windows 95 is demonstrably superior to OS/2, especially in terms of usability. Windows 95 makes dragging and dropping objects both easy, and safe. My Computer is designed to show the objects that are on the user’s computer: the disk drives, network connections, and related settings. It would be confusing to allow users to add new items to this list since those items would not be disk drives, net connections, or settings. Dragging a dial-up network connection to another location automatically creates a shortcut to that connection, leaving the original in the dial-up networking folder where it belongs. It certainly would not make sense to create a shortcut in the recycle bin, where it would then be discarded.

OS/2 forces the user to remember inconsistent dragging techniques. The non-default (right) mouse button is used to drag objects, but the left mouse button is used to drag windows, and to drag objects in the Windows UI and in Windows applications running under OS/2. Objects cannot be dragged from windows in OS/2 to Windows-based applications.

Bottom line: Windows 95 provides the easiest, most productive user interface of any PC operating system. Don’t take Microsoft’s word for it, read the August issues of PC World and PC Computing.

Q8: Is the Windows 95 interface consistent and object-oriented?

A8: No. For example, while you can invoke the right mouse button pop-up menu on most objects, entries in the Start menu and its submenus are not included. This makes manipulating Start menu entries an awkward process involving the Taskbar properties dialog box and several layers of menus and windows. Since the right mouse button works in most other areas of the interface, the Start button's deviation from this norm exposes Windows 95's object-oriented support as incomplete.

Bottom Line: Windows 95 does not fully exploit O-O technology.

Microsoft: Clicking the right mouse button on the Windows 95 Start Button produces a complete set of options for manipulating items contained on the Start Menu including Open, Explore, and Find. These features make it very easy and efficient to add, change, and delete those items. How is object oriented technology (which is a software development approach) relevant to how users interact with the user interface of an operating system?

Bottom line: See question 7.

About Windows 95 and Multitasking

Q9: Can Windows 95 preemptively multitask Win16 applications?

A9: No. Because Win16 applications were written for a cooperative multitasking environment, they cannot handle the stress of being "preempted" during execution. Therefore Windows 95 must handle these applications in the same way that Windows 3.1 does: by giving them exclusive control of the CPU for as long as they are executing. When, and only when, the application makes a specific API call - one of the few such calls that constitute safe points at which Windows can wrest control away from the program - are other programs allowed to execute. This is "cooperative" multitasking, and has proven to be ineffectual when running more than a handful of programs simultaneously or when running CPU-intensive programs such as communications, print and/or fax programs.

Bottom Line: Windows 95 adds little value for the large base of legacy Win16 applications.

Microsoft: Both Windows 95 and OS/2 take the approach of running 16-bit Windows applications cooperatively. Windows 95 cooperatively multitasks existing Windows applications because that is the best way to achieve high compatibility with those applications. Windows 95 adds an improved user interface, better robustness, greatly increased system resource capacity, 32-bit printing, networking, disk I/O, multimedia, communications components, and more - all of which provide benefits when using 16-bit or 32-bit applications, without compromising compatibility or performance. All new 32-bit applications designed for Windows 95 offer fully preemptive multitasking and can use multiple threads of execution.

OS/2 provides a non-default option to run 16-bit Windows applications in separate, preemptively multitasked sessions. However this comes at great cost in terms of memory - since a copy of Windows 3.1 is loaded for each application - and compatibility because OLE-based applications cannot exchange information when run in separate sessions. If the separate session option really provides tangible benefits worth its costs, why is it not enabled by default in OS/2? OS/2 is not compatible with any of the 32-bit applications designed for Windows 95, and which run with preemptive multitasking.

Bottom line: Windows 95 adds significant value in running 16-bit Windows applications including an improved user interface, better robustness, greatly increased system resource capacity, 32-bit printing, networking, disk I/O, multimedia, communications components, and more.

Q10: Are there any caveats to multitasking Win32 applications under Windows 95?

A10. Yes. In its effort to maintain a high degree of backward compatibility while simultaneously minimizing the RAM requirements of the operating system, Microsoft has chosen to rely on its existing, Widows 3.1-era USER (window management) and GDI (Graphics Device Interface) modules rather than create new, 32-bit versions. In order to utilize this older, 16-bit code in potentially preemptive (with regard to Win32 applications), 32-bit multitasking environment of Windows 95, Microsoft was forced to serialize access to USER and GDI. As a result, only a single Win32 or Win16 program can access these critical modules at any given time. This hurts application performance on heavily loaded systems as programs are forced to "line-up" and wait for a chance to execute a USER or GDI routine. All USER calls (for both16 and 32-bit applications) are serialized and handled by the 16-bit code, while the majority of GDI calls are similarly handled (the other 50 percentage handled by newer 32-bit routines).

Bottom Line: Windows 95's multitasking is best described as "preemptively challenged."

Microsoft: Windows 95 provides excellent multitasking of 32-bit applications while maintaining compatibility with 16-bit applications designed for Windows 3.1. Windows 95 provides this high-level of compatibility by running 16-bit Windows applications the way they were designed to be run, using time-tested, proven code for compatibility and lower memory requirements. The result is good cooperative multitasking and fast performance with 16-bit applications plus great preemptive multitasking of 32-bit applications. For users that require a high level of compatibility with 16 and 32-bit Windows applications, plus the option to run 16-bit Windows applications preemptively, Microsoft offers Windows NT.

OS/2, which has a significant amount of 16-bit code itself, requires more memory to run 16-bit Windows applications, and runs them slower than Windows 95. OS/2 also adds compatibility problems if its preemptive option is used, and is totally incompatible with 32-bit Windows applications designed for Windows 95 and Windows NT.

Bottom line: Windows 95 and Win32 applications provide smooth preemptive multitasking.

Q11: What happens to Windows 95's multitasking when you run a mixture of application types?

A11: It reverts to a cooperative multitasking model. Windows 95's continued reliance on the single system VM model of Windows 3.1 places the operating system's multitasking capabilities at the mercy of the lowest common denominator: the 16-bit Windows application. Whenever a Win16 application is running, the operating system's multitasking capabilities are compromised by the need to allow such programs to execute "undisturbed" for as long as they require. As a result, when multitasking a mixture of applications - Win16 andWin32 - true preemptive operation is impossible since, at any given time, a16-bit application may require exclusive control of the CPU. Worse still, since the Win16 application is typically executing a portion of the 16-bitUSER or GDI code - access to which must be serialized among processes -all other processes, including Win32 applications, are blocked from executing. The net result is what would be best described as "semi-preemptive” multitasking.

Bottom Line: When Win16 applications enter the mix, Windows 95 takes on an alternate personality: Windows 3.1.

Microsoft: Windows 95 runs both 16 and 32-bit applications simultaneously and allows multitasking both types of applications. When a 16-bit application is executing on Windows 95, it’s control of the CPU lasts for only a very short time, after which time is allocated to other running applications on a preemptive or cooperative basis depending on the application. The user experience, in most cases is that all applications run essentially at the same time, regardless of whether they are 16 or 32-bit. Readers who are concerned about this can try a simple test: print a long document from Microsoft Word 6.0 (16-bit), while performing a copy of a large file using the Windows 95 Explorer (32-bit). Both operations will proceed smoothly and simultaneously to completion. As users migrate to 32-bit applications, multitasking becomes even smoother.

As stated above, OS/2 provides a non-default option for running 16-bit Windows applications preemptively, but this option requires significantly more memory (so applications run slowly), and introduces compatibility problems such as the inability to use OLE to exchange data between applications. OS/2 will not run 32-bit Windows applications at all so users cannot take advantage of their superior multitasking if they use OS/2.

Bottom line: Windows 95 runs existing 16-bit applications on top of new 32-bit system components, which provide smooth operation along with the preemptive multitasking of new 32-bit applications..

Q12: Does Windows 95's multitasking resolve any of Windows 3.1's multimedia-related deficiencies?

A12: Not really. Windows 95's inconsistent multitasking performance - a byproduct of the single System VM model - compromises its performance as a serious multimedia production platform. Complex .AVI clips break up noticeably when a significant I/O strain is placed on a Windows 95 system. Even simple operations, like opening an application program, can have a negative impact on multimedia playback.

Bottom Line: You still can't play multimedia and do heavy I/O simultaneously.

Microsoft: Windows 95’s new 32-bit multimedia subsystems give a tremendous boost to its playback performance, making even full screen full motion video playback possible on high end systems. Among the many improvements in this area are an improved, swappable and tunable CD-ROM cache, 32-bit video CODECs, game development tools, plus high-performance graphics and disk I/O. The May 1995 issue of NewMedia magazine was particularly enthusiastic about the multimedia improvements in Windows 95, stating “The potential benefits - especially to multimedia - of a 32-bit, multitasking, multithreading system are mind-blowing.”

Already, multimedia titles for Windows 3.1 far outnumber and outsell titles for OS/2 (go into any software reseller and try to locate even one OS/2 multimedia title). Windows 95 is receiving a high-level of attention and investment from multimedia ISVs who are eager to take advantage of Windows 95’s multimedia improvements, so there will soon be a large number of games and titles designed specifically for Windows 95 (these applications will not run on OS/2 at all).

Bottom line: Windows 95 offers significant improvements in all areas of multimedia performance.

About Windows 95's relationship to DOS

Q13: Does Windows 95 really do away with DOS?

A13: No. Windows 95, though touted as a "completely new, 32-bit" operating system, is in fact still based on DOS technology that dates back to the early1980s. Under Windows 95, even Win32 applications rely on at least a few data structures within the real mode DOS environment (most notably, they all maintain real mode PSPs). Despite Microsoft's claims to the contrary, Windows 95 is highly sensitive to the configuration of a PC's real mode DOS environment. If, for example, the available conventional memory in the System VM - the DOS virtual machine where all 16-bit Windows applications and some Windows 95 codes executes - dips below a certain level, Windows 95 will report “out of memory" messages when you try to open additional Win16 or Win32programs. This is unrelated to the well known System Resources phenomena, and the only real solutions are to either replace as many real mode device drivers as possible with VxDs or to invest in a third party memory manager to optimize the pre-Windows 95 DOS environment.

Bottom Line: Windows 95 can be viewed as DOS/Windows with a new interface and some new VxDs.

Microsoft: Windows 95 employs new 32-bit code in all areas in which it produces performance and/or robustness improvements, and uses time-tested, proven 16-bit code in some areas for compatibility and reduced memory requirements. To provide compatibility that allows 32-bit applications to exchange data with 16-bit applications and device drivers, Windows 95 continues to use data structures such as the MS-DOS PSP. It is highly unlikely that users would ever run out of real-mode memory under Windows 95 since each application only allocates one 256 byte PSP (out of 655,360 bytes of real mode memory), nor are any additional MS-DOS memory managers required. Virtually all of the things that take up conventional memory under Windows 3.1 (network, CD-ROM drivers, sound drivers, etc) are now implemented as 32-bit protect mode components in Windows 95. So there is even less of a chance that real mode memory will become an issue. For example, a typical system which has device drivers for a CD-ROM drive, SCSI card, network card and protocols, and sound card will still have over 600K free conventional memory since all of those device drivers are now 32-bit and loaded into protect mode memory.

OS/2 employs 16-bit code in performance-critical areas such as the file system and network components. OS/2 also exhibits lower compatibility with 16-bit Windows applications than Windows 95, even though it runs them using 16-bit Windows 3.1 code. OS/2 is also totally incompatible with 32-bit applications designed for Windows 95 and Windows NT. So, not only is OS/2 compromised by the use of 16-bit code in performance-critical areas, it has poor Windows application compatibility as well.

Bottom line: Windows 95 is the only operating system that provides 32-bit power while retaining a high level of compatibility with real-mode device drivers and existing applications.

Q14: What is Single MS-DOS Application mode and how does it affect other running applications?

A14: Microsoft touts Single MS-DOS Application (SMA) mode as its ultimate solution to any and all DOS compatibility complaints. SMA is essentially real mode DOS, except that instead of booting DOS and then loading Windows, the order has been reversed: you first boot Windows 95, then "unload" it as the machine is reset into the real mode of SMA. This indeed eliminates virtually all remaining DOS application incompatibilities since the PC is no longer running in V86 protected mode - it has been reset to real mode, loaded with a copy of DOS, and left at a command prompt. What Microsoft doesn't like to admit, however, is that to invoke an SMA-dependent application is to essentially shut-down Windows 95 - all running applications are closed, network connections are severed, and VxD support for peripherals like CD-ROM drives disappears. To maintain these functions you need to add real mode DOS device drivers to your system and then configure them via the SMA dialog box. And since Windows 95 is no longer running, any users who are connected to shared resources on the system are disconnected when it enters into SMA mode.

Bottom Line: SMA is really only a viable solution for home users and other non-networked environments.

Microsoft: Windows 95 provides the MS-DOS Mode compatibility feature for running MS-DOS applications (typically games) that require absolute control over the hardware of the PC. Microsoft tested approximately 1,300 of the most demanding MS-DOS applications under Windows 95, and found that only one in ten require the use of MS-DOS Mode. If a real-mode device driver is required to run the MS-DOS Mode application, it can be specified and automatically loaded via a CONFIG.SYS and/or AUTOEXEC.BAT file unique to that application. Windows 95 will suggest the use of MS-DOS Mode automatically for applications that are known to require it, or when applications perform certain operations - so users do not have to perform special operations to run their applications. Windows applications, which are the vast majority of applications sold and used, do not require MS-DOS Mode. OS/2 also provides a way to boot MS-DOS when an MS-DOS application does not work under OS/2, but it is far less convenient, requiring the user to issue BOOT /DOS, run their application, and then type BOOT /OS2 to return to OS/2.

Bottom line: Microsoft has done the extra work that allows Windows 95 to run even poorly behaved MS-DOS applications, significantly improving MS-DOS application compatibility over Windows 3.1.

Q15: How does Windows 95 handle real mode DOS device drivers?

A15: Windows 95's dependency on the real mode DOS environment undermines the product's ability to support DOS applications. Because Windows 95 relies on an "image" of the pre-Windows 95 boot-up environment when creating the System VM, and because subsequent DOS virtual machines are similarly based on this boot-up image, Windows 95 users are forced to load any required real mode device drivers as part of the original boot-up CONFIG.SYS file. The ramifications of this limitation are significant: each and every DOS session under Windows 95 contains a running copy of, and surrenders valuable conventional or upper memory to, real mode device drivers. This is true even if the drivers are not required or desired in a particular DOS session.

Bottom Line: There's no way to load a real mode driver into a specific DOS session -- it's an all or nothing proposition.

Microsoft: Windows 95 does not depend on real mode MS-DOS device drivers. Windows 95 is however, compatible with existing real-mode drivers if they are required for a particular device. Windows 95 is the only 32-bit operating system that retains compatibility with existing real mode device drivers. This means that users can continue to use devices with Windows 95 even if they do not have 32-bit device drivers. Device drivers loaded via CONFIG.SYS are available to all DOS sessions since that is what users expect, not wishing to maintain multiple CONFIG.SYS files. Most users will run few if any real-mode drivers since Windows 95 provides a large selection of new 32-bit drivers that support most popular devices. In fact most users won’t even need to maintain a CONFIG.SYS file.

OS/2 does not allow the use of real-mode MS-DOS device drivers for network cards, sound cards, graphics adapters, CD-ROM drives, or other devices that users need to run under OS/2. This means that users often cannot use a particular device under OS/2 since its device support is not as comprehensive as that of Windows 95. OS/2 also requires users to maintain a complex and large (often over 200 lines) CONFIG.SYS file when adding or removing device drivers. The ability to have multiple copies of CONFIG.SYS files under OS/2 adds even more complexity for minimal benefit - most users would never take advantage of this “feature”.

Bottom line: See question 14.

�
Key customer requirements for a PC Operating System

Windows 95 is the result of input from thousands of customers representing all types of uses from end user to corporate IS manager. The criteria that emerged from discussions with those groups is summarized below.

Performance: 	Customers want to run their applications with the best performance, using the fewest resources. Windows 95 provides better performance than OS/2, across the entire range of RAM and processor configurations.

Applications:	Customers buy an operating system to run their applications - pure and simple, and they want a wide choice of high-quality applications designed for the operating system. During the first quarter of 1995, 78% of all applications sold worldwide were Windows-based, while less than 1% were OS/2-based. ISV support for native OS/2 applications has always been very low, and few, if any OS/2 applications are likely to be offered by typical software resellers. Over 200 new 32-bit applications designed for Windows 95 are part of Windows 95 launch co-marketing programs. These applications represent a huge commitment to Windows 95 by every major ISV.

Compatibility: 	Customers want to know that the operating system they chose will run on the hardware they have, with the applications they have today, plus those they buy in the future. Windows 95 runs almost all existing 16-bit Windows and MS-DOS applications, and provides a platform for new 32-bit applications designed specifically for Windows 95 which are now under development at all major ISVs. OS/2 has significant compatibility problems with 16-bit Windows applications, and is totally incompatible with the new generation of 32-bit Windows applications.

Ease of Use:	Users of all types want their operating system to be easy and efficient to setup, learn, and use. Windows 95 has many features designed for enhanced usability such as Wizards, a great help system, the Start Button and task bar and many others. OS/2 is difficult to install, and has two totally different user interfaces: the OS/2 WorkPlace shell, and the Windows 3.1 UI. PC World and PC Computing each conducted usability tests comparing Windows 95 to OS/2 and Windows 3.1 in their August 1995 issues. In both tests, Windows 95 and Windows 3.1 proved to be significantly easier to use than OS/2.

Strategy/Future:	Customers make a large commitment when they choose an operating system and they want to know that the product will be supported and enhanced for many years. Windows 95 and Windows NT, which share many design features and the same programming interface, are Microsoft’s operating systems for today and the future. There is no question that these products are and will be well supported and enhanced by Microsoft and ISVs. OS/2 has never garnered the level of industry or customer support that is necessary to ensure its future viability.

For more information on Windows 95’s design and feature set please download the Windows 95 Reviewer’s Guide from our web site (www.microsoft.com/windows).

Microsoft’s answers to IBM’s “The Real Story about Windows 95 - 15 Questions to Ask Microsoft”

July 25, 1995		Page: � PAGE �10�

July 25, 1995		Page: � PAGE �1�

