Win32s Debugger Issues

This paper addressed to developers of debugging tools for the Win32s environment. It covers specific Win32s topics that should be to taken into considerations while writing debugging tools for the Win32s environment.

In general, the code of a debugger for the Win32s environment is identical to the code of a debugger for the Win32/NT environment. There are some special points that must to be considered before and while writing debugging tools for the Win32s environment.

WaitForDebugEvent()

Following is the function description in Win32:

BOOL WaitForDebugEvent(lpde, dwTimeout)

LPDEBUG_EVENT lpde;	/* address of structure for event information	*/

DWORD dwTimeout;		/* number of milliseconds to wait for event	*/

Parameter description:

lpde�
Points to a DEBUG_EVENT structure that is filled with information about the debugging event. �
�
dwTimeout�
Specifies the number of milliseconds to wait for a debugging event. If dwTimeout is zero, the function tests for a debugging event and returns immediately. If dwTimeout is INFINITE, the function does not return until a debugging event has occurred.�
�

Returns:

If the function succeeds, the return value is TRUE; otherwise, it is FALSE. To get extended error information, use the GetLastError function.

Because of the non-preemptive nature of Windows 3.1, it is not possible to guarantee the timeout functionality. For this reason the function was implemented differently in Win32s, regarding dwTimeout parameter. In Win32s, if dwTimeout is zero, the function behaves the same as described above. Otherwise, the function waits infinitely, until a debug event occurs or any other message was received for that process.

It was necessary that the function will return if a message received, in order to let the calling process respond to messages. If WaitForDebugEvent returns because a debug event has occurred, the return value is TRUE, else it is FALSE. This way the calling process can detect whether a debug event occurred or a message was received.

In Win32, FALSE return value means failure. The calling process can set last error value to zero before calling WaitForDebugEvent. If the return value is FALSE and last error value is still zero, it means that a message arrived. The calling process then should process the received massage.

Following is a code fragment that demonstrates the use of WaitForDebugEvent within the

message loop:

�

while (GetMessage(&msg, NULL, NULL, NULL)) {

	TranslateMessage(&msg);	/* Translates virtual key codes */

	DispatchMessage(&msg);		/* Dispatches message to window */

	SetLastError(0);				/* Set last error code to zero */

	if (WaitForDebugEvent(&DebugEvent, INFINITE)) {

				/* Process the debug event */

		ProcessDebugEvents(&DebugEvent);

	} else {

		if (GetLastError() != 0) {

			/* Handle error condition. */

		}

	}

}

Debugging shared code

In Win32s all processes run in one address space and share DLLs code. For that reason, if a debugger sets a breakpoint in shared code, all processes will encounter this breakpoint, even processes that are not being debugged.

For such processes the debugger should restore the code, let the process execute the restored instruction and then reset the breakpoint. The problem is that in order to do these operations, the debugger should have a handle to the thread of the process. Since it is not a process that was created by the debugger, it has no handle for this thread.

For this purpose, Win32s supports a new function called OpenThread. This function Does not belong to the Win32 API.

Following is the description of the function:

HANDLE OpenThread(dwThreadId);

DWORD dwThreadId;	/* The thread ID */

Parameter description:

dwThreadId	Specifies the thread identifier of the thread to open.

Returns:

If the function succeeds, the return value is an open handle of the specified thread; otherwise, it is NULL. To get extended error information, use the GetLastError function.

Comments

The handle returned by the OpenThread function can be used in any function that requires a handle to a thread.

Following is a description of what a debugger should do in case a non-debugged process encounters a breakpoint. In the DEBUG_INFO structure received from WaitForDebugEvent there is the thread ID. If this ID is not one of the debugged processes, the debugger calls OpenThread with the given thread ID as the parameter and receives a handle to the thread. Using this handle the debugger can call GetThreadContext, identify the breakpoint, restore the code, set the single step bit of EFlags and resume the process by calling ContinueDebugEvent. The process will execute the real instruction and control will return to the debugger. The debugger will restore the breakpoint and resume the process.

The debugger must close the handle received from OpenThread, right after finishing dealing with that non-debugged process. The handle should be closed by calling the CloseHandle function.

OpenThread is exported by KERNEL32.DLL. It is possible to create an import library W32SOPTH.LIB that contains OpenThread. W32SOPTH.LIB is not supplied on the Win32s SDK.

Following are the steps required to create the library on a Windows NT development machine:

Create file W32SOPTH.C with the following contents:

#include <windows.h>

HANDLE WINAPI OpenThread(DWORD dwThreadId)

{

 return (HANDLE)NULL;

}

int DLLInit(HANDLE h, INT reason)

{

 return(1);

}

Create file W32SOPTH.DEF with the following contents:

LIBRARY kernel32

DESCRIPTION 'Win32s OpenThread library'

EXPORTS

 OpenThread

Create file MAKEFILE with the following contents:

w32sopth.lib: w32sopth.obj

	lib32 -out:w32sopth.lib -machine:i386 -def:w32sopth.def \

		w32sopth.obj

w32sopth.obj: w32sopth.c

	cl386 /c w32sopth.c

Run the NMAKE utility from the directory that contains all of the above files. When the NMAKE utility finish, you will have the library in file w32sopth.lib.

Following is a code fragment that demonstrates how a debugger can handle breakpoints in the context of a non-debugged process:

LPDEBUG_EVENT lpEvent;	/* Pointer to the debug event structure */

HANDLE hProc;			/* Handle to process */

HANDLE hThread;			/* Handle to thread */

CONTEXT Context			/* Context structure */;

BYTE bOrgByte;			/* Original byte in the place of BP */

DWORD cWritten;			/* Number of bytes written to memory */

static DWORD dwBPLoc;	/* Breakpoint location */

		/*

		 * Other debugger functions:

		 *

		 * LookupThreadHandle -

		 * 		Receives a thread ID and returns a handle to the thread, if

		 * 		the thread created by the debugger, else returns NULL.

		 */

		HANDLE LookupThreadHandle(DWORD);

�
		/*

		 * LookupOriginalBPByte -

		 * 		Receives an address of a breakpoint and returns the original

		 *		contents of the memory in the place of the breakpoint.

		 * 		The memory contents is returned in the byte buffer passed as

		 *		a parameter.

		 *		Return value - If the breakpoint was set by the debugger the

		 *		return value is TRUE, else FALSE.

		 */

		BOOL LookupOriginalBPByte(LPVOID, LPBYTE);

/* Handle debug events according to event types */

switch (lpEvent->dwDebugEventCode) {

/* */

case EXCEPTION_DEBUG_EVENT:

	/* Handle exception debug events according to exception type */

	switch (lpEvent->u.Exception.ExceptionRecord.ExceptionCode) {

	/* */

	case EXCEPTION_BREAKPOINT:

		/* Breakpoint exception */

				/* Look for the thread handle in the debugger tables */

		hThread = LookupThreadHandle(lpEvent->dwThreadId);

 if (hThread == NULL) {

 	/* Not a debuggee */

			/* Get process and thread handles */

 	hProc = OpenProcess(0, FALSE, lpEvent->dwProcessId);

 	hThread = OpenThread(lpEvent->dwThreadId);

			/* Get the full context of the processor */

 	Context.ContextFlags = CONTEXT_FULL;

			GetThreadContext(hThread, &Context);

			/* We get the exception after executing the INT 3 							instruction */

 dwBPLoc = --Context.Eip;

			/* Restore the original byte in memory in the 								place of the breakpoint */

			if (!LookupOriginalBPByte((LPVOID)dwBPLoc, &bOrgByte)) {

						/* Handle unfamiliar breakpoint */

					} else {

 	WriteProcessMemory(hProc, (LPVOID)dwBPLoc, &bOrgByte, 						1, &cWritten);	/* Restore memory contents */

						/* Set the Single Step bit in EFlags */

				Context.EFlags |= 0x0100;

 	SetThreadContext(hThread, &Context);

					}

					/* Free Handles */

					CloseHandle(hProc);

					CloseHandle(hThread);

			/* Resume the interrupted process */

 ContinueDebugEvent(lpEvent->dwProcessId,

				lpEvent->dwThreadId, DBG_CONTINUE);

		} else {

 		/* Handle debuggee breakpoint. */

		}

 break;

	case STATUS_SINGLE_STEP:

 hThread = LookupThreadHandle(lpEvent->dwThreadId);

 if (hThread == NULL) {

 			/* Not a debuggee, just executed the original instruction

 		and returned to the debugger. */

			/* Get process handle */

			hProc = OpenProcess(0, FALSE, lpEvent->dwThreadId);

			/* Restore the INT 3 instruction in the place of the BP */

			bOrgByte = 0xCC;

 		WriteProcessMemory(hProc, (LPVOID)dwBPLoc, &bOrgByte, 1, 					&cWritten);

					/* Free Handle */

					CloseHandle(hProc);

			/* Resume the process */

 		ContinueDebugEvent(lpEvent->dwProcessId,

				lpEvent->dwThreadId, DBG_CONTINUE);

		} else {

 		/* Handle debuggee single-step. */

 		}

 	break;

 	/* */

	}

	/* */

}

The above code does not contain error checking and handling of return values from APIs. It is assumed that the cause for a non-debugged process to generate a single step exception is only when executing the instruction in the place of the breakpoint. The code for handling the single step exception does not handle debug registers.

Getting and setting thread context

Because of architectural differences between Windows NT and Win32s, it is not possible to set and get the context of a thread at any point of execution. Because of that, there is a difference in the way GetThreadContext and SetThreadContext function in Win32s. These functions return successfully only after returning from WaitForDebugEvent with the EXCEPTION_DEBUG_EVENT value in the dwDebugEventCode field of the DEBUG_INFO structure and before calling ContinueDebugEvent. At any other point in time these functions fail and GetLastError return ERROR_CAN_NOT_COMPLETE.

Tracing through mixed 16 and 32 bit code

Occasionally Win32s applications switch to 16 bit mode and then get back to 32 bit mode. For instance, part of the Windows API is implemented in Win32s by thunking it to Windows 3.1. That means that in order to accomplish the API, Win32s switch to 16 bit mode, call the corresponding API on 16 bit Windows 3.1 side and gets back to 32 bit mode.

Most debuggers do not allow tracing through 16 bit code. So when identifying that the code is about to switch to 16 bit the debugger should trace over this code. In order to do so, Win32s supplies the DbgBackTo32 label. All calls to 16 bit code return through this address. DbgBackTo32 label is exported by W32SKRNL.DLL of Win32s. At this label there is a RET instruction. After executing this RET instruction and immediately another following RET instruction, the execution is resumed at the application code, at the instruction following the call to the thunked function.

So while tracing through application code, if the debugger determines that the next call is into a thunk function, it can set a breakpoint at DbgBackTo32 and trace over this call.

Asynchronous stops

The asynchronous stop key combination was set to Ctrl-Alt-F11 in Win32s. This is done in order to allow for 16 bit debugger to run at the same time together with a 32 bit debugger and to be able to synchronously stop each one, independently.

If the user hit Ctrl-Alt-F11 when the executed code is 16 bit code, the execution will not be interrupted until it gets back to 32 bit code. This way the debugger does not have to handle 16 bit code. If the user hits the Ctrl-Alt-F11 when the executed code is 32 bit code, the execution is interrupted immediately.

The method used to interrupt the execution is done by generating a single step exception. In case the Ctrl-Alt-F11 was pressed while 16 bit code was executed, the address of the exception is at a special Win32s label named W32S_BackTo32. This label is exported by W32SKRNL.DLL of Win32s.

This label is located a few instructions before DbgBackTo32 (see previous section). The code at W32S_BackTo32 is system code and usually debuggers should not allow tracing through system code. But in between W32S_BackTo32 and DbgBackTo32 the debugger may allow tracing through this specific code and also through the two following RET instructions. This will bring the user to the point in the application at which Ctrl-Alt-F11 was pressed.

Identifying system DLLs

When tracing through application code, it is not desired to trace into system DLLs code. The main reason for this is that in many cases the code goes to 16 bit.

In order for the debugger to be able to distinguish between system and user DLLs, all of the system DLLs of Win32s contains an extra exported symbol called WIN32SYSDLL. The address of this symbol is meaningless. The existence of such a symbol indicates that this is a system DLL.

Linear and virtual addresses

Win32s is using flat memory address space like Windows NT. But unlike Windows NT the base of Code and Data segments in Win32s is not at zero.

This fact must be considered whenever dealing with linear addresses. This is the case, for instance, with H/W debug registers. When setting a H/W breakpoint, the contents of the debug register should be the linear address of the breakpoint. So when setting a H/W breakpoint, one should add the base of the selector to the virtual address of the breakpoint and set the debug register with this value. Not doing so, will lead to code running on Windows NT but not on Win32s.

The debugger should inquire the base address of the selectors using the GetThreadSelectorEntry function. This way it can have the same code running on Windows NT and Win32s.

The debugger may choose to inquire the base address of the selectors only once. Then it can use the same value ever after, since it never changes.

Similarly, when the H/W breakpoint is encountered, in order to read the process memory at the breakpoint location, it is required to subtract the selector base address from the contents of the debug register in order to get the virtual address from which the debugger should read.

Reading and writing process memory

When reading from or writing to a process memory, all hardware breakpoints must be disabled. Not doing so will trigger the hardware breakpoints when accessing the memory locations pointed by the debug registers.

Following is a code example of how a debugger can read a process memory at the location of a read memory hardware breakpoint:

	CONTEXT Context;

LDT_ENTRY SelEntry;

DWORD dwDsBase;

	DWORD DR7;

	BYTE	Buffer[4];

	/* Get Context */

Context.ContextFlags = CONTEXT_FULL | CONTEXT_DEBUG_REGISTERS;

GetThreadContext(hThread, &Context);

	/* Calculate the base address of DS */

GetThreadSelectorEntry(hThread, Context.SegDs, &SelEntry);

dwDsBase = (SelEntry.HighWord.Bits.BaseHi << 24) |

				(SelEntry.HighWord.Bits.BaseMid << 16) |

				SelEntry.BaseLow;

	/*

	 * Disable all H/W breakpoints before reading the process

	 * memory. Not doing so will lead to nested breapoints.

	 */

	DR7 = Context.Dr7;

	Context.Dr7 &= ~0x3FF;

	SetThreadContext(hThread, &Context);

	/* Read DWORD at the location of DR0 */

ReadProcessMemory(hProcess,

						(LPVOID)((DWORD)Context.Dr0-dwDsBase),

 Buffer, sizeof(Buffer), NULL);

	/* Restore H/W breakpoints */

	Context.Dr7 = DR7;

	SetThreadContext(hThread, &Context);

Accessing the Thread Local Storage (TLS)

The lpThreadLocalBase field of the CREATE_PROCESS_DEBUG_INFO structure in Windows NT specifies the base address of a per-thread data block (TEB). At offset 0x2C within this block there exists a pointer to an array of LPVOIDs. There is one LPVOID for each DLL/EXE loaded at process initialization, and that LPVOID points to Thread Local Storage (TLS). This gives a debugger access to per-thread data in its debuggee's threads using the same algorithms that a compiler would use.

In Win32s, on the other hand, lpThreadLocalBase contains a pointer directly to the array of LPVOIDs, and not the pointer to the TEB.

Creating 16 bit processes.

 When calling CreateProcess to start a non 32 bit process (e.g., batch file, Win16 application, etc.), if all parameters are correct, the call will succeed, but all the fields of the PROCESS_INFORMATION structure are set to zero. That means that the calling process can not inquire the exit code of the new process using GetExitCodeProcess.

	� PAGE �7�	Win32s Debugger Issues	� DATE \l �� DATE \@ "MMMM d, yyyy" * MERGEFORMAT �December 26, 1993��	

