	M8 Frequently Asked Questions

This file contains the frequently asked questions for the Windows 95 Software Development Kit (SDK) M8 release. The questions and answers are listed in different categories. At the beginning of each category there is a list of questions that are answered in that category. Each question has a unique search key, to facilitate searching for that question and its answer. The categories are:

Categories	Search Keys	

GDI	GDIXXXX

Kernel	KRNLXXXX

Miscellaneous	MISCXXXX

Serial Communication	SCOMXXXX

Shell	SHELXXXX

Tools	TOOLXXXX

TAPI	TAPIXXXX

User	USERXXXX

Category:	GDI

Search Key	Questions

GDI0001	Will OpenGL be supported on Windows 95 and if so, when?

GDI0002	Will WinG be supported on Windows 95 and if so, when?

GDI0003	What happens when I pass logical coordinates larger 32K to a Window 95 GDI function?

GDI0004	What types of GDI objects still reside in the 64K heap and which GDI objects have been moved out?

GDI0005	If a Windows 3.1 application exits, under what conditions will Windows 95 clean up any undeleted objects?

GDI0006	Name one advantage of Windows 95's new DIB engine.

GDI0007	What new color resolutions does Windows 95 support?

GDI0008	How do I specify a top-down DIB?

GDI0009	Describe the advantages of using a DIBSECTION (CreateDIBSection).

GDI0010 	Are the Windows 95 drawing functions pel-perfect to Windows NT?

GDI0011 	To what extent does Windows 95 support Win32 paths?

GDI0012 	Name some of the problems you might run into when playing an enhanced metafile from Windows NT on Windows 95.

GDI0013 	Name the UNICODE text-output functions supported on Windows 95.

GDI0001

Question:	Will OpenGL be supported on Windows 95 and if so, when?

Answer:	Yes, OpenGL will be ported to Windows 95 but it will not be in the retail Windows 95 package. It is slated to be released 90 days after Windows 95 ships.

GDI0002	

Question:	Will WinG be supported on Windows 95 and if so, when?

Answer:	Yes, WinG will be supported on Windows 95 however, it must be installed onto the system (just as it did under Windows 3.1 and Windows NT). If your application is 32-bit and it is not a requirement that it must run under Win32s, consider using DIBSECTIONS rather than using WinG. DIBSECTIONS provide most of the functionality that WinG provides yet support all of the pixel formats that Windows 95 and Windows NT can handle. Both Windows 95 and Windows NT 3.5x support DIBSECTIONS. See the documentation for CreateDIBSection for more information.

GDI0003

Question:	What happens when I pass logical coordinates larger 32K to a Window 95 GDI API function.

Answer:	Windows 95 truncates all coordinate values greater than 16-bits.

GDI0004

Question:	What types of GDI objects still reside in the 64K heap, and which GDI objects have been moved out?

Answer:	Logical objects (LOGFONT, LOGBRUSH, etc.) are still in the 64K heap. Physical objects (regions, physical fonts, etc.) have been moved out.

GDI0005

Question:	If a Windows 3.1 application exits, under what conditions will Windows 95 clean up any undeleted objects?

Answer:	Windows 95 will clean up undeleted objects for 16-bit applications (marked 3.1) only when the last 16-bit application exits.

GDI0006

Question:	Name one advantage of Windows 95's new DIB engine.

Answer:	Bitmap output no longer depends on the quality of your display driver.

GDI0007

Question:	What new color resolutions does Windows 95 support?

Answer:	In addition to the formats supported by Windows 3.1, Windows 95 has support for both 16- and 32-bits per pixel DIBs.

GDI0008

Question:	How do I specify a top-down DIB?

Answer:	Set the biHeight field in the BITMAPINFOHEADER to negative the height.

GDI0009

Question:	Describe the advantages of using a DIBSECTION (CreateDIBSection).

Answer:	Speed and device independence. Using DIBSECTION gives both you and GDI direct access to the bits in your image. In addition, you can select a DIBSECTION into a memory DC and use GDI drawing functions on it as though the DC supported the bits-per-pixel format defined in the DIBSECTION's BITMAPINFOHEADER.

GDI0010

Question:	Are the Windows 95 drawing functions pel-perfect to Windows NT?

Answer:	No. The drawing functions are not pel-perfect to Windows NT. This is because the two systems are implemented differently: GDI in Windows 95 is primarily implemented in 16-bit code which uses integer arithmetic internally, while Windows NT uses floating point arithmetic internally.

GDI0011

Question:	To what extent does Windows 95 support Win32 paths?

Answer:	All of the path creation/manipulation APIs are supported, but only a limited set of primitives can be used to actually generate a path.

GDI0012

Question:	Name some of the problems you might run into when playing an enhanced metafile from Windows NT on Windows 95.

Answer:	Metafile records which use coordinate values wider than 16-bits or records which use features that are not implemented in Windows 95 (e.g. transforms) may be skipped during playback.

GDI0013

Question:	Name the UNICODE text-output functions supported on Windows 95.

Answer:	ExtTextOutW and TextOutW

Category:	Kernel

Search Key	Questions

KRNL0001	How are applications scheduled in Windows 95?

KRNL0002	What is Win16Mutex?

KRNL0003	Are named pipes supported in Windows 95?

KRNL0004	Are Win32 console applications supported in Windows 95?

KRNL0005	Is Structured Exception Handling supported in Windows 95?

KRNL0006	What do "process", "task", "instance", and "module" mean?

KRNL0007	How can a Win32 process wait until another process exits?

KRNL0008	How can a handle be inherited in Windows 95?

KRNL0009	Does a thread's handle need to be closed when it terminates?

KNRL0010	What addresses can be used by Win32 processes in Windows 95?

KRNL0011	What is the default base address of a Win32 process in Windows 95?

KRNL0012	How can two Win32 processes share memory?

KRNL0013	How can a Win32 process get information about memory usage?

KRNL0014	Can file mappings be dynamically resized?

KRNL0015	Where do messages from OutputDebugString go?

KRNL0016	How are the GlobalAlloc/LocalAlloc functions implemented in Win32?

KRNL0017	How should I choose between the Heap APIs or the Virtual APIs?

KRNL0018	Is asynchronous (overlapped) I/O supported in Windows 95?

KRNL0019	What version of DPMI is supported by Windows 95?

KRNL0020	Is MakeProcInstance needed in Win32?

KRNL0001

Question:	How are applications scheduled in Windows 95?

Answer:	Win16 processes (application instances) are schedulednon-preemptively with other 16-bit Windows applications just as in Windows 3.x. This means that until the currently executing Win16 process yields, no other Win16 processes can execute.

	The 16-bit Windows message dispatching system and scheduler work together so that applications that have messages get execution time, but those that don't yield. Since Windows applications use message-retrieval loops to respond to events, they repeatedly call one of two Windows functions that will retrieve a pending message or yield if no messages are pending: GetMessage and PeekMessage.

	Win32 processes are preemptively scheduled based on the processes' priorities. They can preempt each other and also can preempt Win16 applications.

	See Question KRNL0002 on Win16Mutex for further information about how the Windows 95 scheduler works.

KRNL0002

Question:	What is Win16Mutex?

Answer:	Win16Mutex is a global semaphore that is used to protect the 16-bit Windows 95 components from being reentered. It is owned by threads, not processes. Every instance of every Win16 application is a process with exactly one thread in Windows 95. Furthermore, every Win32 process has at least one thread.

	Because Windows 3.x is a non-preemptive system, it did not need to be designed to prevent the system from being reentered. Only one process (application instance) at a time can call system services (API functions) because other processes cannot run until the active process voluntarily yields control of the CPU. Since only one process can execute at a time, it is not possible to have two different processes calling the same API function, and thus Windows does not need to protect itself from reentrancy.

	In Windows 95, things are different because Win32 processes are preemptively scheduled, and many Win32 API functions are thunked to the 16-bit Windows API functions. Because there is now a possibility for the 16-bit components to be reentered in Windows 95, they need to be protected against being reentered.

	The Win16Mutex provides this protection by allowing only one thread (not process) at a time to access the 16-bit APIs. Whenever Win16Mutex is owned by a thread, any other thread that tries to claim it will block until it is released. Now the question remains: "When does Win16Mutex get claimed and released?"

	Whenever a Win16 process is running, it owns Win16Mutex. That is, when a Win16 process first gets a message via GetMessage or PeekMessage, it claims Win16Mutex. It releases Win16Mutex whenever it yields, such as when it calls GetMessage or PeekMessage and doesn't return. The only way a Win16 process can keep Win16Mutex indefinitely is to never yield; since the message-processing mechanism provides the scheduler in 16-bit Windows, the only way to never yield is to stop processing messages (which makes the application unresponsive to user input).

	The only times a thread in a Win32 process claims Win16Mutex is when it makes a call to an API function which thunks to one of the 16-bit Windows components or when it thunks directly to a Win16 DLL. Immediately after the call the process releases Win16Mutex. Not all API functions thunk to 16-bit components; most 32-bit USER and GDI functions thunk to 16-bit USER and GDI, but none of the 32-bit KERNEL functions thunk to 16-bit KRNL386.

	Putting 16-bit and 32-bit behaviors together, we see that when an Win16 process is running, and a thread of a Win32 process preempts it and calls a function which thunks to a 16-bit component, the Win32 thread is put to sleep until the Win16 process yields, which releases Win16Mutex. Likewise, when one Win32 process's thread claims Win16Mutex, loses its timeslice, and another thread from either the same or a different process tries to claim Win16Mutex, the second thread blocks until Win16Mutex is released.

	One way to improve the responsiveness of Win32 applications is to create multiple threads where the primary thread (the initial thread of the process) controls the entire user interface for the process and each additional thread performs some useful background task, such as searching for a particular data item, transforming a bitmap, or reading/writing to a data file. This way, if the Win32 process's primary thread blocks waiting for a Win16 process to yield, its other threads are still performing useful work.

KRNL0003

Question:	Are named pipes supported in Windows 95?

Answer	Client-side named pipes are supported. A client may connect to a named pipe by calling CallNamedPipe or CreateFile. Server-side named pipes are not supported in Windows 95. See WIN32API.CSV for a list of which named pipe functions are supported in Windows 95.

KRNL0004

Question:	Are Win32 console applications supported in Windows 95?

Answer:	Yes, Windows 95 supports the full Win32 console API.

KRNL0005

Question:	Is Structured Exception Handling supported in Windows 95?

Answer:	Yes, Windows 95 supports Win32 structured exception handling.

KRNL0006

Question:	What do "process", "task", "instance", and "module" mean?

Answer:	"Process" is used to describe an executing copy of a Win16 or Win32 Windows application. Although conceptually the same, Win16 and Win32 processes differ in several respects.

	A Win32 process owns several different types of resources such as a private virtual address space, files, etc. A Win32 process always has at least one thread, but can have multiple threads. The threads of a Win32 process share the resources owned by the process. In addition, threads can also independently own some resources, such as memory allocated as thread-local storage, a stack, and a message queue. When all threads of a Win32 process have terminated, the process terminates.

	A Win16 process is an instance or executing copy of a Win16 application. In Windows 3.x, Win16 processes were called "tasks." In Windows 95, tasks are implemented as processes so their name has been changed to "Win16 process" to distinguish them from threads and Win32 processes.

	Each Win16 process owns resources such as a stack, files, data and code segments, and dynamically allocated memory. Unlike Win32 processes, all Win16 processes share a common address space called the "Win16 global heap," which is analogous to the Windows 3.x global heap. Win16 processes always have exactly one thread.

	"Instance" has both informal and technical meanings. The informal meaning is "copy," as used in, "Windows can execute multiple instances (copies) of an application at the same time." The technical definition of "instance" means "a unique process with its own complete copy of the data space of an application." This is basically a formalization of the term "copy" in that it emphasizes the fact that multiple instances of an application are separate processes that share the same code and resources (from the application's executable file), but do not share its data. Each process gets its own private set of data.

	"Module" is used to describe the shared part of an application. It consists of the code, resources, and information maintained by the loader of an application's executable file. Several processes share the same module if they are instances of the same application.

KRNL0007

Question:	How can a Win32 process wait for another process to exit?

Answer:	A Win32 process can wait for one or more processes to exit by calling WaitForSingleObject or WaitForMultipleObjects and passing the handle(s) to the processes being waited on.

KRNL0008

Question:	How can a handle be inherited in Windows 95?

Answer:	The Win32 API has many functions that take a pointer to a SECURITY_ATTRIBUTES structure and return a handle; these functions are used to create various resources used by processes: files, threads, processes, etc.

	A Win32 process may designate that a handle is inheritable by setting the bInheritHandle member of the SECURITY_ATTRIBUTES structure to TRUE.

	Even though Windows 95 does not implement the Win32 security API, it still relies on the bInheritHandle member of the SECURITY_ATTRIBUTES structure to determine if a handle may be inherited by child processes.

KRNL0009

Question:	Does a thread's handle need to be closed when it terminates?

Answer:	Yes. Even though a thread exits, the thread object associated with the thread is not destroyed until all open handles to the object are closed. The reason the object is not destroyed automatically when the thread exits is so that other threads may use the handle to the thread object test whether the thread has exited. If the thread has exited, the thread object will be signalled.

	The same holds true for process handles.

KNRL0010

Question:	What addresses can be used by Win32 processes in Windows 95?

Answer:	The virtual address space used by Win32 processes in Windows 95 looks like:

 +------------------+ 4 Gigabytes (GB)

 | System Reserved |

 +------------------+ 3 Gigabytes (GB)

 | Shared |

 +------------------+ 2 Gigabytes (GB)

 | Process Private |

 | |

 +------------------+ 0

	In Windows 95, every Win32 process is given a private virtual address space that spans from 0 to 2 gigabytes. The private virtual address space is directly accessible by the process. The first 4 megabytes of the private address space are reserved and not accessible by the process.

	The shared memory area is used for views of file mappings, and the 16-bit Windows application address space. No memory is allocated from this area (i.e. VirtualAlloc does not allocate memory from the shared memory area on behalf of a Win32 process).

	The area between 3 and 4 gigabytes is reserved for the system and cannot be accessed from a Win32 process. It is used for ring zero components such as virtual device drivers (VxDs), and the virtual machine manager.

KRNL0011

Question:	What is the default base address of a Win32 process in Windows 95?

Answer:	The default base linear address of a Win32 process in Windows 95 is 0x400000 (4 megabytes (MB)).

KRNL0012

Question:	How can two Win32 processes share memory?

Answer:	There are two ways Win32 processes can share memory. The first and best way is for both processes to create a shared file mapping object. If both process specify the same name when they call CreateFileMapping, one file mapping object will be created and shared by both processes and the views of the file mapping will be coherent. Most often, the two processes will specify that the system pagefile is to be used to back the shared memory rather than a file.

	The second way two processes can share memory is to create a Win32 DLL that has a shared data section. To do so, first use #pragma data_seg to put variable definitions into a named data section. For example:

	#pragma data_seg("MYDATA")

	 int nSharedValue = 0;

	#pragma data_seg()

	Then use the SECTIONS statement in the DLL's module-definition (.DEF) file as follows:

	SECTIONS

	 MYDATA READ WRITE SHARED

	or, use the LINK /SECTION command-line option as follows:

	LINK [other options and params] /SECTION:MYDATA,RWS

KRNL0013

Question:	How can a Win32 process get information about memory usage?

Answer:	The Win32 API provides a few useful APIs for getting information about system and process memory usage: GlobalMemoryStatus, VirtualQuery, and VirtualQueryEx.

KRNL0014

Question:	Can file mappings be dynamically resized?

Answer:	No. File mappings are not designed to be dynamically resized. To change the size of a file mapping, first unmap all views of the mapping, close the mapping, and then create a new mapping of the file. Note that to do this, you do not need to close the file itself.

KRNL0015

Question:	Where do messages from OutputDebugString go?

Answer:	If a Win16 application calls OutputDebugString, the string can be trapped and redirected by DBWin just as in Windows 3.1.

	If a Win32 process calls OutputDebugString, the string goes to a debugger port only, and cannot be trapped by DBWin. To view debugging strings, a debugger must be running and debugging the process that is calling OutputDebugString.

KRNL0016

Question:	How are the GlobalAlloc/LocalAlloc functions implemented in Win32?

Answer:	In Win32, the GlobalAlloc and LocalAlloc families of functions are implemented in terms of the Win32 Heap API. Each process has a default heap from which the allocations come. Note that in Win32, GlobalAlloc and LocalAlloc are really the same function; in fact, you can allocate memory via GlobalAlloc and free it via LocalFree (although for the sake of clarity, this isn't recommended).

KRNL0017

Question: How should I choose between the Heap APIs or the Virtual APIs?

Answer:	The Heap APIs are best for lots of small, similar-sized allocations, such as nodes of a list or tree because they are fast, and have only a small amount of overhead. Furthermore, it is possible to create multiple heaps, each for a particular data structure used by a process, which helps to make the application more maintainable and limits problems with one data structure to itself. (If multiple data structures are allocated from the same heap, a bug in one can easily affect the other data structures as well.)

	The Virtual APIs are best for large blocks of memory, such as large arrays of data, bitmap images, etc. The Virtual APIs divide allocation into two separate phases: reservation, and commitment. Reservation is merely setting aside a contiguous portion of the process's address space, without actually using any physical RAM or disk space. Commitment is taking part or all of a reserved address range and actually backing it with RAM and disk space (from the swapfile). Likewise, deallocation is a two-step process of decommitting and freeing memory. Decommitting merely frees RAM and disk space, but leaves the area reserved; freeing gives back the reserved space, making it available for subsequent reservations.

	By dividing allocation and deallocation into separate phases, the Virtual API allows processes to implement sparse memory. For example, a spreadsheet application could reserve a large address space for an entire worksheet, and then commit individual portions of it as the user entered data into individual cells.

KRNL0018

Question:	Is asynchronous (overlapped) I/O supported in Windows 95?

Answer:	Overlapped I/O is not supported for disks, but is supported for communications ports and can be supported by virtual device drivers (VxDs). VxDs must provide the support themselves as the system does not automatically provide overlapped I/O for them.

	Note that in the case of disk writes, the system uses a lazy-write algorithm where application-specified writes (i.e. WriteFile) write data to the system disk cache and return immediately; later, when the system decides, the cache is flushed to disk. This basically eliminates the need for overlapped I/O for writes.

	It is possible for Win32 processes to implement their own overlapped file I/O by using multiple threads. One implementation strategy is to have the application set up a reader/writer thread which takes events from a queue and writes them to disk. The rest of the application uses application-specified functions for reading/writing to disk which put the events on the queue.

KRNL0019

Question:	What version of DPMI is supported by Windows 95?

Answer:	Windows 95 supports the same version of DPMI as Windows 3.1: DPMI version 0.9 plus the math coprocessor functions from DPMI version 1.0.

	DPMI stands for "DOS Protected Mode Interface." DPMI is an industry standard specification which allows DOS programs to execute in protected mode in a way which maintains system protection. The DPMI specification is available free of charge from Intel Corporation. Contact Intel Literature at (800) 548-4725 to obtain a copy of it.

KRNL0020

Question:	Is MakeProcInstance needed in Win32?

Answer:	No, MakeProcInstance is not needed in Win32 applications, but is not harmful if present. It merely does nothing in Win32 processes.

	MakeProcInstance is needed in Win16 to switch to an application instance's data segment when one of its callback functions (such as a dialog procedure) is called. For a thorough discussion of how MakeProcInstance works, consult a book on Windows programming such as Charles Petzold's "Programming Windows 3.1."

	Win32 processes each execute in their own flat linear address space and so it is not necessary to switch between data segments of different applications or even applications and DLLs. The entire address space is directly addressable through the same value stored in the CPU's DS register.

Category:Serial Communications

Search Key	Questions

NONE

Category:Shell

Search Key	Questions

SHEL0001	How do I debug my shell extension DLL?

SHEL0002	Are there any shell extension samples availble?

SHEL0003	I need to implement a dialog that allows the user to select a directory. How do I do this?

SHEL0004	I'm trying to use the new IShellFolder interface. Is there any sample code that shows how this is done?

SHEL0001

Question:	How do I debug my shell extension DLL?

Answer:	Load your DLL project into MSVC and select Project/Settings... Click on the Debug tab, and in the "Executable for Debug Session" specify c:\win95\explorer.exe. When you hit F5, MSVC will run explorer.exe and load your DLL--however, since explorer.exe is already running (and only allows one instance), this doesn't work too well. Because the shell dynamically loads the extension DLL's, and therefore the DLL is loaded into the address space of the shell, you must find a way to "debug" the shell. You can shut down the shell by selecting Start/Shut Down... and then click the "No" button while holding down the CTRL-ALT-SHIFT keys. Next, you ALT-TAB back to MSVC and select Debug/Go... MSVC will complain that there is no debugging information for EXPLORER.EXE and ask you if you want to continue. Click OK. At this point, explorer.exe is loaded within the context of the debugger, and therefore any breakpoints that you set in your extension DLL will be hit.

SHEL0002

Question:	Are there any shell extension samples availble?

Answer:	Yes, in the SDK\SAMPLES\WIN32\WIN95\SHELLEXT directory there is a sample that implements the context menu, property sheet, icon and copy hook handlers.

SHEL0003

Question:	I need to implement a dialog that allows the user to select a directory. How do I do this?

Answer:	The new shell API SHBrowseForFolder() provides an easy way to do this.

SHEL0004

Question:	I'm trying to use the new IShellFolder interface. Is there any sample code that shows how this is done?

Answer:	In the WINDEV forum, LIB 1, there's a file called ENMDSK.ZIP that shows how to enumerate the file namespace. This sample uses the IShellFolder, as well as several other new interfaces, to achieve this.

Category:Tools

Search Key	Questions

TOOL0001	Why won't my machine boot after I switch to debug version?

TOOL0002	Why do I get an internal compiler error from Visual C++ 2.0 when I try to build the FRMWORK samples MINIHELP or ANALOG?

TOOL0003	Why does Windows 95 hang when I try to end a debugging session in Visual C++ using the "Stop Debugger" (Alt+F5) command?

TOOL0004	Why do the toolbar buttons in Visual C++ 2.0 not repaint correctly sometimes?

TOOL0001

Question:	Why won't my machine boot after I switch to debug version?

Answer:	This is due to the fact that some of the debug DLLs are missing and you end up with mismatched debug and retail DLLs. A fix has been posted in the "Microsoft Updates" library of WINDEVin the file SDKFIX.ZIP.

TOOL0002

Question: 	Why do I get an internal compiler error from Visual C++ 2.0 when I try to build the FRMWORK samples MINIHELP or ANALOG?

Answer:	This is due to a bug in Windows 95 and only occurs in the IDE when building on a SCSI drive. There is no known workaround. This problem will be fixed in the next release of Windows 95.

TOOL0003

Question:	Why does Windows 95 hang when I try to end a debugging session in Visual C++ 1.5x using the "Stop Debugger" (Alt+F5) command?

Answer:	This is a known problem and will be fixed in the next release of Windows 95. There is no known workaround.

TOOL0004

Question:	Why do the toolbar buttons in Visual C++ 2.0 not repaint correctly sometimes?

Answer:	This is caused by a problem with this release of Windows 95. The workaround is to undock and redock, or hide and then show the toolbar, so the buttons are restored.

Category:User

Search Key	Questions

USER0001	Will the Windows 95 Common Control DLL be available for Windows? Will it be supported in Win32s?

USER0002	How do I get the Windows 95 look and feel in a dialog?

USER0003	Is there a way to get the new 3D look in a non-dialog window?

USER0004	I tried to add a hook to one of the new common dialogs, but it didn't work. What's wrong?

USER0005	I'm trying to change the view mode of my listview control, but when I call SetWindowLong() the view is not updated.

USER0006	I'm trying to port my application to Win95 and all of a sudden my call to CFileDialog::DoModal() simply returns without bringing up the FileOpen common dialog. What's wrong?

USER0001

Question:	Will the Windows 95 Common Control DLL be available for Windows NT? Will it be supported in Win32s?

Answer:	The Windows NT version of COMCTL32.DLL has been integrated into the Windows NT 3.51 operating system. The Windows NT 3.5 version of this DLL that was made available in the M7 SDK under the SDK\NTCOMMON subdirectory is no longer supported.

	The Win32s version of the common controls is available with the 1.3 release of Win32s, which could be found in the M8 CD under the \WIN32SDK\MSTOOLS\WIN32S\1_30BETA subdirectory. As this is a beta release, it is not redistributable.

	There will be no 16-bit versions of these controls.

USER0002

Question:	How do I get the Windows 95 look and feel in a dialog?

Answer:	There are two methods you can use:

	1. Mark your EXE as version 4.0 by specifying /SUBSYSTEM: WINDOWS,4.0 in your link line. This makes Windows 95 add the 3D look automatically. Apps marked as 4.0 will run on Windows 95, and Windows NT 3.5 and later, but not on Windows NT 3.1.

	Similarly, 16-bit apps can be marked 4.0 to get the 3D look, by using RC.EXE from the	SDK\BIN subdirectory.

	Note that apps marked 4.0 running on Windows NT 3.51 will NOT get the 3D look for free. These apps still need to use CTL3D.DLL when running on Windows NT 3.51.

	2. Use the DS_3DLOOK style for your dialog box. This will make the dialog and it's controls look 3D.	However, this style is defined only in Windows 95 and not in Windows NT.

USER0003

Question:	Is there a way to get the new 3D look in a non-dialog window control?

Answer:	Yes, create the control with CreateWindowEx() and specify the WS_EX_CLIENTEDGE style. Note that you do not need to specify the WS_BORDER style when using the WS_EX_CLIENTEDGE style.

USER0004

Question:	I tried to add a hook to one of the new 32-bit common dialogs, but it didn't work. What's wrong?

Answer:	The procedure for modifying the new common dialog has changed somewhat from the 16-bit	common dialogs. There is a sample in the SDK's \SAMPLES\WIN32\WIN95\COMDLG32 directory which demonstrates how to modify the open file dialog.

	Check the documentation on the Win32 Online help (SDK\BIN\WIN32.HLP) for a section on "Displaying Explorer-Style Open and Save As Dialog Boxes". There is also a technical article in the MSDN CD called "Using the Common Dialogs Under Windows 95".

USER0005

Question:	I'm trying to change the view mode of my listview control, but when I call SetWindowLong() the view is not updated.

Answer:	Make sure you are linking with SUBSYSTEM:Windows,4.0 If your application is not marked as a 4.0 app, Win95 will not notify the control of the state change.

USER0006

Question: 	I'm trying to port my application to Win95 and all of a sudden my call to CFileDialog::DoModal() simply returns without bringing up the FileOpen common dialog. What's wrong?

Answer:	Reset the OFN_EXPLORER bit in the Flags member of the OPENFILENAME structure, before calling CFileDialog::DoModal, ie., cfdlg.m_ofn.Flags &= ~OFN_EXPLORER. The CFileDialog class automatically uses the new explorer-style dialogs on Windows 95.

	This can break code which customizes these dialogs (with custom resources) since the mechanisms for customization have changed in Windows 95. If your application depends on the old bahavior, you need to reset the OFN_EXPLORER bit.

