Chapter 4: Wiz-Bang Common Controls: Tabs, Property Sheets, and Wizards

Tabs, property sheets, and wizards are what I like to refer to as the "Wiz-Bang" common controls. (I said it's how I like to think of them; you can come up with your own description when you write your book.) These controls are extremely popular right now, and it seems as if every new application or new version of an already existing application is using property sheets and wizards liberally. This is very nice for the new user, because a feature like a wizard allows the user to be walked through a new task.

For those of us who have been programming for longer than we care to mention, property sheets replace those awful, cascading modal dialog boxes that we've all come to know and despise. The ones where you successfully navigate down to actually set some value, such as a network address, but you forget some key piece of information, so you end up canceling out of each and every dialog box only to have to navigate down again. This is when you pick up your foam baseball bat and whack your computer monitor. (A tip for the uninitiated: Don't use the wood or aluminum bats! Although the immediate rush is terrific, you'll have a devil of a time explaining it to your boss.) By using a property sheet instead of the modal dialog boxes, the user can now switch back and forth among the different properties that can be set, rather than having to backtrack.

This chapter covers these wiz-bang common controls and offers some details about how you can create and use them in your C application. At the time this book was written, the Windows 95–style property sheet and wizard were not supported in MFC.

Tabs

A tab control is similar to a notebook divider—it separates topics or sections of information and helps you access a particular topic or section easily. In Windows 95, the tab control is used within a property sheet to let the user switch between property sheet pages containing information that the user can view and/or set. The Windows 95 shell makes extensive use of tabs in Control Panel. The dialog box in Figure 1, from the Display applet in Control Panel, has tabs that switch between the background, screen saver, appearance, and settings for the display.

� EMBED Word.Picture.6 ���

Figure 1. Tab controls in the Display property sheet

An application typically defines a group of dialog boxes as property-sheet pages, and uses tab controls to provide access to a certain page of information. Tab controls can also be used to carry out a specific command instead of providing access to a page; this is similar to the way some menu names (usually followed by an exclamation point) provide immediate access to actions. Figure 2 is a screen shot from the TABCTRL sample in the Windows 95 SDK. This figure shows tabs used in their button-style format.

� EMBED Word.Picture.6 ���

Figure 2. The TABCTRL sample

Tab Styles

Tabs have styles. Actually, they can have more than one style. If you create a tab using the default style (TCS_TABS, as shown in Figure 1), you will get a tab that looks like a notebook divider that displays all of the tabs in a single line of left-justified text (TCS_SINGLELINE). If you want to have multiple lines of tabs, you can use the TCS_MULTILINE style. The button-style tab, as shown in Figure 2, is created by using the TCS_BUTTONS style.

Creating a Tab Control

You create a tab control by calling the CreateWindow or CreateWindowEx function and specifying the WC_TABCONTROL window class.

As with the other common controls, the WC_TABCONTROL window class is registered when the dynamic-link library for Win32 common controls (COMCTL32.DLL) is loaded; you also need to link with the COMCTL32.LIB library.

To include tabs in the window, the application must also fill out the TC_ITEM or TC_ITEMHEADER structure. These two structures specify the attributes of the tabs. TC_ITEM and TC_ITEMHEADER are nearly identical—except TC_ITEMHEADER allows you to specify extra application-specific data. To do this, the application should define its own structure consisting of the TC_ITEMHEADER structure followed by application-defined data, and then set the number of extra bytes per tab using the TCM_SETITEMEXTRA message. For example, if my application stored information about a baseball player for each tab, I would define a structure that looks something like this:

typedef struct _PLAYER_TAB {

 TC_ITEMHEADER tci; // tab item information

 LPSTR lpstrName; // player's name

 LPSTR lpstrTeam; // player's team

 LONG lERA; // player's ERA

 LONG lSalary; // player's salary

 BOOL bCap; // salary cap?

} PLAYER_TAB

After adding the tab, the application sends the TCM_SETITEMEXTRA message to set the amount of extra data to sizeof(PLAYER_TAB). If the application needs to store a pointer to the structure without including TC_ITEMHEADER in the structure, it can use the TC_ITEM structure instead and store the pointer to the structure in the lParam field.

Now that you've read the details and perused the structure, it's time to take a look at some simple code that fills out the TC_ITEM structure and creates a tab within a tab control by calling the TabCtrl_InsertItem macro. The following code snippet creates a tab control that contains text and has no image list associated with it.

TC_ITEM tie;

tie.mask = TCIF_TEXT | TCIF_STATE | TCIF_IMAGE;

tie.state = 0;

tie.iImage = -1;

tie.pszText = "Tab 1";

if (TabCtrl_InsertItem(hwndTab, i, &tie) == -1)

{

 // The insert failed - display an error box.

 MessageBox(NULL, "TabCtrl_InsertItem failed!", NULL, MB_OK);

 return NULL;

}

So I Have a Tab. Now What?

So far, I've shown you how to create the tab control and insert tab items, but the tab control still doesn't have much functionality. The application must now manage the window associated with the tabs. There are two ways to do this: the easy way and the not-so-easy way. The easy way is to use property sheets in conjunction with tabs, as described in the section on property sheets later in this chapter.

The not-so-easy way is to handle the TCN_SELCHANGE notification that is sent through a WM_COMMAND message. This notification is sent when the user clicks a tab and the application needs to switch between logical pages of information. The application processes this notification and makes the appropriate changes to the focus window. This allows the application to do something such as have one edit control that is used for all of the tabs. To do this, the application would assign the memory handle (send an EM_SETHANDLE message to the edit control) for the incoming page. Although this method certainly works, a better way to handle paging between tabs is to let the system do the grunt work for you and to use property sheets instead. I don't like doing grunt work, so let's move on to something more interesting.

Property Sheets

A property sheet is a window that lets the user view and edit the properties of an item or an object by switching among pages of information. Property sheets are also referred to as "tabbed dialogs" (because you use tabs to navigate among modeless dialog boxes), and each page within the property sheet is analogous to a dialog box. An example of a use for a property sheet is a spreadsheet application that uses a property sheet to allow the user to set the font and border properties of a cell. Property sheets are used extensively within the Windows 95 shell to display and change the properties of shell items and the desktop (like the Display properties as shown in Figure 1). Application developers who want to give their software a consistent look and feel with the new shell are encouraged to use property sheets.

Figure 3 is a screen shot from the PROPS sample. The PROPS sample was written in C and displays a property sheet that lets the user view and change the properties of a slider. It's not rocket science, but it does work as far as examples go. Each group of properties is marked by a tab. Each tab has a separate page the user can access to view and change the associated properties. The property sheet in Figure 3 has two tabs: Slider Range and Slider Page and Line Size. The user selects a tab to bring the associated page to the foreground of the property sheet and to view and/or change the values. For example, if the user wants to change the slider page size, he or she would click the tab labeled "Slider Page and Line Size" to bring that page to the forefront and then change the values as desired.

� EMBED Word.Picture.6 ���

Figure 3. An example of a property sheet

A property sheet is a system-defined modeless dialog box, and each page is an application-defined modeless dialog box. The property sheet is a container for the pages and is responsible for managing the pages. It includes a frame, a title bar, a system menu, and four buttons: OK, Cancel, Apply Now, and (optionally) Help. A property sheet must have at least one page, and can have as many as 24 pages.

Each page manages its own control windows (that is, edit controls and list box controls) much like a typical dialog box. The application provides a dialog box template and dialog procedure for each page. Each page in a property sheet has a label (the text that is displayed on the tab) and can also have an icon. When the property sheet creates the tab for the page, it displays the label and icon in the tab. If the property sheet has only one page, the tab for the page is not displayed.

Example: Creating a Property Sheet

I wrote a sample called PROPS to demonstrate how to create and manipulate property sheets. My design goals for the PROPS sample were simple: create a simple property sheet that supports the Back and Next buttons. I wrote this sample after writing a sample that demonstrates the new trackbar (the TRACKBAR sample is discussed in Chapter 2), so I put a trackbar on the client area of the screen and decided to use a property sheet to set the values for the trackbar.

Converting my dialog boxes into property sheets

The first thing I did when I decided to use property sheets was to take an existing sample and use its dialog boxes for the pages in my property sheet. I made two major changes to my dialog templates:

•	I removed the OK, Cancel, and Help buttons from the dialog templates. The property sheet automatically includes four buttons: OK, Cancel, Apply Now, and (optionally) Help.

•	I added the DS_3DLOOK dialog style to the dialog templates. This style gives the pages the same three-dimensional look as the rest of the built-in dialog boxes.

In Microsoft Visual C++ version 2.1, the DS_3DLOOK style is not supported with the other dialog box styles. To use this style, you will need to manually edit your dialog boxes. I also took this opportunity to review some of my dialog boxes and decided that I could use two pages in place of my original four dialog boxes. This added a little extra work to the conversion, but it improved the organization of my pages and gave my sample a more polished look. If you aren't converting dialog boxes to property sheet pages, you simply use the resource editor to create a new dialog box, follow the steps outlined in the bulleted list above, and add your controls.

Once my dialog boxes were converted, it was time to create the property sheet. To create a property sheet, define an array of PROPSHEETPAGE structures for each page, fill out a PROPSHEETHEADER structure, and then call the PropertySheet function. This function will create handles for the pages before adding the pages to the property sheet. The order of the array determines the order of the pages in the property sheet, so be sure to define the pages in the array in the order that you want them shown in the tabs.

Once a property sheet has been created, an application can add and remove pages dynamically by sending the PSM_ADDPAGE and PSM_REMOVEPAGE messages or their corresponding macros. By default, when a property sheet is destroyed, all of its pages are destroyed in first in, last out (FILO) order. That is, the last page that the application specified in the array of pages will be the first page destroyed.

I used the following code to create the property sheet and its pages. This function fills out a PROPSHEETPAGE structure for the two pages, fills out the PROPSHEETHEADER structure, and calls the PropertySheet function. I replaced the DialogBox function calls in my code with a call to my CreatePropertySheet function, which creates the property sheet.

int CreatePropertySheet(HWND hwndOwner)

{

 PROPSHEETPAGE psp[2];

 PROPSHEETHEADER psh;

 psp[0].dwSize = sizeof(PROPSHEETPAGE);

 psp[0].dwFlags = PSP_USETITLE;

 psp[0].hInstance = hInst;

 psp[0].pszTemplate = MAKEINTRESOURCE(IDD_RANGE);

 psp[0].pszIcon = NULL;

 psp[0].pfnDlgProc = Range;

 psp[0].pszTitle = "Slider Range";

 psp[0].lParam = 0;

 psp[1].dwSize = sizeof(PROPSHEETPAGE);

 psp[1].dwFlags = PSP_USETITLE;

 psp[1].hInstance = hInst;

 psp[1].pszTemplate = MAKEINTRESOURCE(IDD_PROPS);

 psp[1].pszIcon = NULL;

 psp[1].pfnDlgProc = PageSize;

 psp[1].pszTitle = "Slider Page and Line Size";

 psp[1].lParam = 0;

 psh.dwSize = sizeof(PROPSHEETHEADER);

 psh.dwFlags = PSH_PROPSHEETPAGE;

 psh.hwndParent = hwndOwner;

 psh.hInstance = hInst;

 psh.pszIcon = NULL;

 psh.pszCaption = (LPSTR) "Slider Properties";

 psh.nPages = sizeof(psp) / sizeof(PROPSHEETPAGE);

 psh.ppsp = (LPCPROPSHEETPAGE) &psp;

 return (PropertySheet(&psh));

}

Changing the dialog procedure

Next you need to convert your dialog procedure from managing a dialog box to managing a property sheet page. The major changes you need to make involve the handling of the OK and Cancel buttons. Typically, a WM_COMMAND message notifies a dialog box procedure that the OK or Cancel button has been clicked. When the dialog procedure gets this message, it generally verifies the information entered into the dialog box controls and calls the EndDialog function to destroy the dialog box. The following code demonstrates how a typical dialog box procedure manages the OK button.

case WM_COMMAND:

 if (LOWORD(wParam) == IDOK)

 {

 uMin = GetDlgItemInt(hDlg, IDE_MIN, &bErr, TRUE);

 uMax = GetDlgItemInt(hDlg, IDE_MAX, &bErr, TRUE);

 SendMessage(hWndCurrent, TBM_SETRANGE, TRUE,

 MAKELONG(uMax,uMin));

 EndDialog(hDlg, TRUE);

 return (TRUE);

 }

 break;

In a property sheet, the OK and Cancel notifications are no longer sent to the dialog procedure. Instead, the dialog procedure must handle a group of page notifications. My application needed to handle the following notifications:

•	PSN_APPLY—Sent when the user clicks the Apply Now button. This is also the time to validate any changes the user has made.

•	PSN_KILLACTIVE—Sent when the user clicks one of the tabs in the property sheet and switches pages.

•	PSN_RESET—Sent when the user clicks the Cancel button.

•	PSN_SETACTIVE—Sent when a page is coming into focus. The application should take this opportunity to initialize the controls for that page.

Initially, I found it difficult to differentiate between the OK and Apply Now buttons. They both require that the page validate and apply the changes the user has made. The only difference is that clicking OK causes the property sheet to be destroyed after the changes are applied—clicking Apply Now does not. As a result, if the user decides to apply some changes and later chooses to cancel out of the property sheet, the application should reset the properties to their initial values rather than saving the applied values. In other words, changes are permanent when the user chooses the OK button; the Apply Now button is more of a "try it out" type of action.

Another change you must make when you convert a dialog procedure from handling a dialog box to handling a property sheet page is to remove the EndDialog call. The EndDialog function is not called for a property sheet page because it destroys the entire property sheet instead of destroying only the page. The following code handles the page for managing the trackbar range.

BOOL APIENTRY Range(

 HWND hDlg,

 UINT message,

 UINT wParam,

 LONG lParam)

{

 static PROPSHEETPAGE * ps;

 BOOL bErr;

 static UINT uMin, uMax, uMinSave, uMaxSave;

 switch (message)

 {

 case WM_INITDIALOG:

 // Save the PROPSHEETPAGE information.

 ps = (PROPSHEETPAGE *)lParam;

 return (TRUE);

 case WM_NOTIFY:

 switch (((NMHDR FAR *) lParam)->code)

 {

 case PSN_SETACTIVE:

 // Initialize the controls.

 uMinSave = SendMessage(hWndSlider, TBM_GETRANGEMIN, 0L,

 0L);

 uMaxSave = SendMessage(hWndSlider, TBM_GETRANGEMAX, 0L,

 0L);

 SetDlgItemInt(hDlg, IDE_MIN, uMinSave, TRUE);

 SetDlgItemInt(hDlg, IDE_MAX, uMaxSave, TRUE);

 break;

 case PSN_APPLY:

 uMin = GetDlgItemInt(hDlg, IDE_MIN, &bErr, TRUE);

 uMax = GetDlgItemInt(hDlg, IDE_MAX, &bErr, TRUE);

 SendMessage(hWndSlider, TBM_SETRANGE, TRUE,

 MAKELONG(uMin, uMax));

 SetWindowLong(hDlg, DWL_MSGRESULT, TRUE);

 break;

 case PSN_KILLACTIVE:

 SetWindowLong(hDlg, DWL_MSGRESULT, FALSE);

 return 1;

 break;

 case PSN_RESET:

 // Reset to the original values.

 SendMessage(hWndSlider, TBM_SETRANGE, TRUE,

 MAKELONG(uMinSave, uMaxSave));

 SetWindowLong(hDlg, DWL_MSGRESULT, FALSE);

 break;

 }

 }

 return (FALSE);

}

When a page is created, the dialog procedure for the page receives a WM_INITDIALOG message (as it does when a dialog box is created); however, the lParam parameter points to the PROPSHEETPAGE structure used to create the page. The dialog procedure may save the pointer to this structure and use it later to modify the page.

A Word About Property Sheet Notifications

A property sheet sends notification messages to the dialog procedure for a page when the page gains or loses the activation, and when the user selects the OK, Cancel, Apply Now, or Help button. The notifications are sent as WM_NOTIFY messages. The lParam member is a pointer to an NMHDR structure describing the notification. The hwndFrom member contains the window handle of the property sheet, and the hwndTo member contains the window handle of the page.

Some notifications require the dialog procedure to return either TRUE or FALSE in response to the WM_NOTIFY message. For example, if you could not handle the Apply button, your code that handles the PSN_APPLY notification should respond with a value of TRUE. The return value from the dialog procedure must be set using the SetWindowLong function rather than simply returning TRUE or FALSE. You do not return the value by just using the return function. Rather, the value to be returned is set in the DWL_MSGRESULT window attribute as follows:

SetWindowLong(hDlg, DWL_MSGRESULT, value);

This is a very important point. You would not believe the number of people who, after reading one of my articles, will send me some e-mail asking where they are going wrong in their property sheet code, only to find that they are not setting the return value correctly.

Can I Use One Piece of Code for Both a Dialog Box and a Property Sheet Page?

Let's say that you already have a dialog box and the dialog procedure already written, and that you have some odd attachment to it such that you refuse to throw the code away. Now, let's say you want to use this same code for a property sheet page in some cases and as a dialog box in other cases. You may want to know if this can be done. You can write a single piece of code that works in both a property sheet and in a dialog box, but this is not as easy as having dedicated code for each. If you are using shared code, follow these guidelines:

•	Make sure that the dialog procedure does not call the EndDialog function when it is handling a property sheet.

•	Write handlers for the OK, Cancel, and Help notifications and use them for the PSN_APPLY, PSN_RESET, and PSN_HELP notifications.

•	If you decide to use a single template for both a property sheet page and a dialog box, place the OK and Cancel buttons outside the dimensions of the dialog box and disable these buttons when handling a property sheet. When the dialog procedure is handling a dialog box, resize the dialog box to include these buttons upon receiving the WM_INITDIALOG message.

Hey, My Screen Is Flashing!

You don't have to use a different template for each page of your property sheet. If you like, you can use a single template for all of the pages, and enable/disable or show/hide controls specific to each page on the fly. If you happen to use a single template for all of the pages in your property sheet, the user may encounter annoying screen flashes when switching between pages. Your application can minimize or eliminate these flashes by responding to the WM_SHOWWINDOW message. The following code snippet demonstrates one method of eliminating the screen flash.

 case WM_SHOWWINDOW:

 // Check if the window is being shown via a ShowWindow.

 if (wParam && !LOWORD(lParam))

 // It is, so post a message to myself.

 PostMessage(hDlg, WM_APP, 0, 0L);

 break;

 case WM_APP:

 // Remove the rectangle for the page from the invalid list.

 ValidateRect(hDlg, NULL);

 // Invalidate any and all controls within the page.

 InvalidateRect(GetDlgItem(hDlg, ID_CONTROL1), NULL, FALSE);

 InvalidateRect(GetDlgItem(hDlg, ID_CONTROL2), NULL, FALSE);

 .

 .

 .

 InvalidateRect(GetDlgItem(hDlg, ID_CONTROLn), NULL, FALSE);

 break;

An application that uses this method repaints only the controls that need repainting inside the page, instead of repainting the whole window when the WM_SHOWWINDOW message is sent. A page will also need to call InvalidateRect with the fErase parameter set to TRUE for controls that do not completely paint their client area during a WM_PAINT message (for example, for a list box that is not full).

Property Sheet Messages

The following table lists the messages that support property sheets in Win32. For more detailed information about the parameters and return values for these functions, you can refer to the Windows 95 SDK documentation.

Table 1. Property Sheet Messages

Message�Description��PSM_ADDPAGE�Adds a page to the end of an existing property sheet. Note that the property sheet will not resize dynamically added pages. If you must add a page, make sure that its size is no larger than the maximum size already in use. Since the size of the property sheet cannot change after it has been created, the new page must be no larger than the largest page currently in the property sheet. ��PSM_APPLY�Sent to the property sheet to simulate clicking the Apply Now button. This message returns TRUE if and only if every page successfully saved its information.��PSM_CANCELTOCLOSE�Sent when a change has been made that cannot be canceled in the property sheet (for example, a change to the registry). The Cancel button will be disabled, and the OK button label will be changed to Close.��PSM_CHANGED�Sent to the property sheet when information in the page has changed. The property sheet may change the name of the page in the list of pages to italic text. The Apply Now button will also be enabled. (This button is initially disabled when a page becomes active, indicating that there are no property changes to apply yet.) When the page receives user input through one of its controls, indicating that the user has edited a property, the page should send the PSM_CHANGED message to the property sheet. If the user subsequently clicks the Apply Now or Cancel button, the page should reinitialize its controls and then send the PSM_UNCHANGED message to re-disable the Apply Now button. Sometimes the Apply Now button causes a page to change a property sheet, and the change cannot be undone. When this happens, the page should send the PSM_CANCELTOCLOSE message to the property sheet. The message causes the property sheet to change the label of the Cancel button to Close, indicating to the user that the applied changes cannot be canceled.��PSM_GETTABCONTROL�Retrieves the handle to the tab control. ��PSM_GETPAGE�If the user has visited (tabbed to) a page, this message retrieves the window handle of the dialog box for the page at the specified index, and returns NULL otherwise.��PSM_PRESSBUTTON�Causes the specified button to be "pressed." wParam is the ID of the button. It can be one of the following values:

PSBTN_BACK—Press the Back button.

PSBTN_NEXT—Press the Next button.

PSBTN_FINISH—Press the Finish button.

PSBTN_OK—Press the OK button.

PSBTN_APPLYNOW—Press the Apply Now button.

PSBTN_CANCEL—Press the Cancel button.

PSBTN_HELP—Press the Help button.��PSM_QUERYSIBLINGS�Forwarded to each property sheet page until a property page returns a nonzero value, which becomes the return value of this message. This is a convenient message for passing information between property pages when the property pages don't know about one another. For example, the printer property page extensions use this message to communicate with the property sheet pages provided by the system.��PSM_REBOOTSYSTEM�Sent when MS-DOS needs to be restarted for the changes specified in the property sheet to take effect. The page should send this notification only in response to a PSN_APPLY or PSN_KILLACTIVE notification. Note that this notification supersedes all PSN_RESTARTWINDOWS notifications that precede or follow. This message will cause the property sheet return value to be ID_REBOOTSYSTEM if the user selects OK to close the property sheet.��PSM_REMOVEPAGE�Removes a page from an existing property sheet. If hPage is NULL or does not exist, the property sheet will remove the page at the location specified by the index parameter. When a page is defined, an application may specify the address of a ReleasePropSheetPageProc callback function that the property sheet calls when it is removing the page. Using a ReleasePropSheetPageProc function gives an application the opportunity to perform clean-up operations for individual pages. ��PSM_RESTARTWINDOWS�Sent when Windows needs to be restarted for changes specified by the property sheet to take effect. The page should send this notification only in response to a PSN_APPLY or PSN_KILLACTIVE notification. This will cause the property sheet to return ID_PSRESTARTWINDOWS if the user selects OK to close the property sheet.��PSM_SETCURSEL�Sent to the property sheet to change focus to a different page. If hPage is NULL or cannot be found, the property sheet will set the active page at the index location.��PSM_SETCURSELID�Sets the active page by the ID of the tab or the hPage as specified in lParam.��PSM_SETFINISHTEXT�Enables the Finish button, hides the Back button, and sets the text on the Finish button to the text specified in lParam. ��PSM_SETWIZBUTTONS�Specifies which buttons should be enabled within the wizard. It is only supported in wizard-style property sheets. lParam specifies which buttons are enabled. This parameter can be a combination of the following values:

PSWIZB_BACK—Enable the Back button.

PSWIZB_NEXT—Enable the Next button.

PSWIZB_FINISH—Enable the Finish button.��PSM_UNCHANGED�Sent to the property sheet when the information in the page has reverted to its previously saved state. The property sheet cancels any changes caused by PSM_CHANGED. The Apply Now button may be disabled if no pages with registered changes remain.��We're Off to See a Wizard

What is a wizard?

It's a person who wears a funny, pointed hat with stars on it and makes magic happen. At least that's one way to define it. The term wizard, when used in the context of an application, refers to a piece of code that walks the user through a series of steps (in the form of dialog boxes) in order to accomplish a complex task. Many applications today take advantage of wizards during application or device setup operations. For example, Figure 4 is the hardware installation wizard used by the Windows 95 operating system.

� EMBED Word.Picture.6 ���

Figure 4. The hardware installation wizard

A wizard is basically a property sheet with extra buttons and no tabs. In a standard property sheet, the user can navigate among its pages by clicking tabs. There is no special navigation order to conform to, and the user doesn't even have to look at every page. In contrast, when running a wizard, the user is taken through a series of dialog boxes synchronously. The user can always go backward or forward, but the application determines the order in which the steps must be taken or the information must be filled out. If the application requires input for a particular page, it can disallow paging forward by disabling the Next button.

Another difference between property sheets and wizards is the buttons that are presented to the user. A property sheet has an OK, Cancel, Apply, and an optional Help button. These buttons are used for all the different pages within the property sheet. The buttons that reside at the bottom of a page in a wizard, typically the Back, Next, and Cancel buttons, apply only to the currently active page.

The WIZARD Sample

I created the WIZARD sample in C to demonstrate how to manipulate wizard controls. The design goals for this sample were simple:

•	Create a wizard that you can step back and forth through.

•	Make it fun.

The second goal was the hardest. I mean, how can you make something like a wizard fun? Then it finally came to me: We have this very painful exercise around here called the Performance Review. Every six months, we are asked to fill out forms explaining how important we are to the success of the company and why we deserve a raise and stock options. Every six months we complain about having to do the paper work. Every time I wonder why someone hasn't created a cool tool that I can use to generate a performance review given some basic data. Well, I decided to write a wizard to help accomplish this loathsome task. In reality, it really didn't end up being used for anything more than chuckles around here, but at least it made the sample a bit more fun.

The first step in creating a wizard is to create a dialog box for each page of information you want to collect. You can do this with the same resource editor you use for standard dialog boxes. One difference between a wizard page and a typical dialog box is that, for the wizard page, you should remove the OK and Cancel buttons that are included in the default template.

After you've created the dialog boxes, the application must fill out a PROPSHEETPAGE structure for each page (dialog box) that will be displayed. Then the application must fill out a PROPSHEETHEADER structure for the overall property sheet. The .dwFlags field of this structure must include the PSH_WIZARD flag to specify that the property sheet is a wizard. Finally, the application must call the PropertySheet function. The following code demonstrates how to fill out these structures to create a wizard.

// FUNCTION: FillInPropertyPage(PROPSHEETPAGE *, int, LPSTR, LPFN)

//

// PURPOSE: Fills in the given PROPSHEETPAGE structure.

//

// COMMENTS:

//

// This function fills in a PROPSHEETPAGE structure with the

// information the system needs to create the page.

//

void FillInPropertyPage(PROPSHEETPAGE* psp, int idDlg, LPSTR pszProc, DLGPROC

 pfnDlgProc)

{

 // Set the size of this structure.

 psp->dwSize = sizeof(PROPSHEETPAGE);

 // No special flags.

 psp->dwFlags = 0;

 // The instance associated with this application.

 psp->hInstance = rvInfo.hInst;

 // The dialog box template to use.

 psp->pszTemplate = MAKEINTRESOURCE(idDlg);

 // Don't use a special icon in the caption bar.

 psp->pszIcon = NULL;

 // The dialog procedure that handles this page.

 psp->pfnDlgProc = pfnDlgProc;

 // The title for this page.

 psp->pszTitle = pszProc;

 // No special application-specific data.

 psp->lParam = 0;

}

// FUNCTION: CreateWizard(HWND)

//

// PURPOSE: Create the Wizard control.

//

// COMMENTS:

//

// This function creates the wizard property sheet.

//

int CreateWizard(HWND hwndOwner, HINSTANCE hInst)

{

 PROPSHEETPAGE psp[NUM_PAGES];

 PROPSHEETHEADER psh;

 // For each of the pages that I need, fill in a PROPSHEETPAGE structure.

 FillInPropertyPage(&psp[0], IDD_INFO, "Your Information", YourInfo);

 FillInPropertyPage(&psp[1], IDD_WORKHABITS, "Work Habits", WorkHabits);

 FillInPropertyPage(&psp[2], IDD_TEAMWORK, "Team Work", TeamWork);

 FillInPropertyPage(&psp[3], IDD_RELIABILITY, "Reliability", Reliability);

 FillInPropertyPage(&psp[4], IDD_GOALS, "Attainment of Goals", Goals);

 FillInPropertyPage(&psp[5], IDD_ADAPTATION, "Adaptability to Change",

 Adaptation);

 // Fill in the size of the PROPSHEETHEADER structure.

 psh.dwSize = sizeof(PROPSHEETHEADER);

 // Specify that this is a wizard property sheet with no Apply Now button.

 psh.dwFlags = PSH_PROPSHEETPAGE | PSH_WIZARD | PSH_NOAPPLYNOW;

 // Specify the parent window.

 psh.hwndParent = hwndOwner;

 // The caption for the wizard.

 psh.pszCaption = (LPSTR) "Review Wizard";

 // The number of pages in this wizard.

 psh.nPages = sizeof(psp) / sizeof(PROPSHEETPAGE);

 // Point to the array of property sheet pages.

 psh.ppsp = (LPCPROPSHEETPAGE) &psp;

 // Create and run the wizard.

 return (PropertySheet(&psh));

}

Although the Wizard control simplifies the task of creating a wizard, it doesn't perform magic: You still have to do a lot of work yourself. The preceding code simply filled out the structures and called the function to create and run the wizard. If you want those dialog boxes to gather the data and use the information entered in them, you still need to do some work in your dialog box functions.

Each dialog box function, as specified by the .pfnDlgProc member of the PROPSHEETPAGE structure, must process the messages and notifications it receives. Property sheets rely heavily on notifications, packaged as WM_NOTIFY messages. The code used to trap the notifications is very similar to the code used for standard property sheets. There are, however, three special notifications associated with wizards:

•	PSN_WIZBACK is sent to the property sheet page when the Back button is clicked.

•	PSN_WIZNEXT is sent to the property sheet page when the Next button is clicked.

•	PSN_WIZFINISH is sent to the property sheet page when the Finish button is clicked.

When these notifications are sent, the default action is to advance to the next page or to move back to the previous page. The application's notification handler can disallow moving back or forward by setting the notification result to –1. But that's not all.

Let's say that you want to create a wizard that branches to a specific page dependent upon some feedback from the user. For example, let's say that your wizard installs a piece of software, and your application must prompt for extra information depending upon whether the user prefers a standard setup or a custom setup. The default behavior is for the next page in the array of property sheet pages to be displayed. You can override that behavior and branch to a specific page by setting the notification result to the ID of the dialog box that should be shown. Think of it as a visual GOTO. In our sample, your application would branch past the custom dialog boxes for a standard setup but could, by default, display the custom dialog boxes in order.

Example: Processing Wizard Notifications

The information gathered by the WIZARD sample is kept in a global structure called REVIEWINFO, which resides in the WIZARD.H file. This information is used to generate the review. The MAX_PATH constant in the following code is defined to be 256 characters.

typedef struct tagREVIEWINFO

{

 HINSTANCE hInst; // current instance

 int iWorkHabits;

 int iTeamWork;

 int iReliability;

 int iGoals;

 int iAdaptation;

 char pszName[MAX_PATH];

 char pszTitle[MAX_PATH];

 char pszProject[MAX_PATH];

 char pszDepartment[MAX_PATH];

} REVIEWINFO;

The following code, from the WIZARD sample, demonstrates how an application can trap the different notifications that are sent to a wizard. In this code, the dialog procedure initializes the text buffers with NULL strings upon the first entrance into the wizard and whenever the dialog box receives a PSN_RESET notification. When this dialog box receives the PSN_WIZNEXT notification, it saves the information that has been entered into the text fields. If this dialog box is called again and receives a PSN_SETACTIVE notification, the text buffers are reinitialized with the information that has been previously entered into the text fields. This dialog box also sets the Next button as the only enabled function when it receives the PSN_SETACTIVE notification. Because this is the first dialog box that is entered in the wizard, the Back button should not be enabled.

// FUNCTION: YourInfo(HWND, UINT, UINT, LONG)

//

// PURPOSE: Processes messages for "Your Information" page.

//

// MESSAGES:

//

// WM_INITDIALOG - intializes the page.

// WM_NOTIFY - processes the notifications sent to the page.

//

BOOL APIENTRY YourInfo(HWND hDlg, UINT message, UINT wParam,

 LONG lParam)

{

 switch (message)

 {

 case WM_INITDIALOG:

 // Initialize the text buffers with NULL.

 strcpy(rvInfo.pszName, "");

 strcpy(rvInfo.pszTitle, "");

 strcpy(rvInfo.pszProject, "");

 strcpy(rvInfo.pszDepartment, "");

 break;

 case WM_NOTIFY:

 switch (((NMHDR FAR *) lParam)->code)

 {

 case PSN_HASHELP:

 // Indicate that the Help button is not supported.

 SetWindowLong(hDlg, DWL_MSGRESULT, FALSE);

 break;

 case PSN_KILLACTIVE:

 SetWindowLong(hDlg, DWL_MSGRESULT, FALSE);

 return 1;

 break;

 case PSN_RESET:

 // Reset to the original values.

 strcpy(rvInfo.pszName, "");;

 strcpy(rvInfo.pszTitle, "");

 strcpy(rvInfo.pszProject, "");

 strcpy(rvInfo.pszDepartment, "");

 SetWindowLong(hDlg, DWL_MSGRESULT, FALSE);

 break;

 case PSN_SETACTIVE:

 PropSheet_SetWizButtons(GetParent(hDlg), PSWIZB_NEXT);

 SendMessage(GetDlgItem(hDlg, IDE_NAME), WM_SETTEXT, 0,

 (LPARAM)rvInfo.pszName);

 SendMessage(GetDlgItem(hDlg, IDE_TITLE), WM_SETTEXT, 0,

 (LPARAM)rvInfo.pszTitle);

 SendMessage(GetDlgItem(hDlg, IDE_PROJECT), WM_SETTEXT, 0,

 (LPARAM)rvInfo.pszProject);

 SendMessage(GetDlgItem(hDlg, IDE_DEPARTMENT), WM_SETTEXT, 0,

 (LPARAM)rvInfo.pszDepartment);

 break;

 case PSN_WIZNEXT:

 // The Next button was pressed - get the text info entered.

 SendDlgItemMessage(hDlg, IDE_NAME, WM_GETTEXT,

 (WPARAM)MAX_PATH, (LPARAM) rvInfo.pszName);

 SendDlgItemMessage(hDlg, IDE_TITLE, WM_GETTEXT,

 (WPARAM)MAX_PATH, (LPARAM)rvInfo.pszTitle);

 SendDlgItemMessage(hDlg, IDE_PROJECT, WM_GETTEXT,

 (WPARAM)MAX_PATH, (LPARAM)rvInfo.pszProject);

 SendDlgItemMessage(hDlg, IDE_DEPARTMENT, WM_GETTEXT,

 (WPARAM)MAX_PATH, (LPARAM)rvInfo.pszDepartment);

 break;

 default:

 return FALSE;

 }

 break;

 default:

 return FALSE;

 }

 return TRUE;

}

This code creates the first page for the wizard. When compiled and run, the first page looks like Figure 5.

�

Figure 5. First page of performance review wizard

Now that you've gotten the information from the wizard, it's time to do something with it. In the WIZARD sample, the information is gathered to generate text for a performance review. While the wizard is running, the results entered by the user are kept in the REVIEWINFO structure as shown previously, and these results are used to generate the review. This review is generated through indexes into a string table, and the resulting buffer is displayed in a multiline edit box in the client area of the main window. The following code is what the WIZARD sample used to generate the final text buffer.

// FUNCTION: GenerateReview(void)

//

// PURPOSE: Generate the review.

//

// COMMENTS:

//

// This function generates the review based upon the answers

// given to the Wizard. The function translates lame reality into

// impressive-sounding manager-speak via a string table.

//

void GenerateReview(HWND hDlg)

{

 char lpBuf1[MAX_LINE]; // buffers for the lines in the review

 char lpBuf2[MAX_LINE];

 char lpBuf3[MAX_LINE];

 char lpBuf4[MAX_LINE];

 char lpBuf5[MAX_LINE];

 wsprintf(lpReview, "Name: %s%C%C%C%CTitle: %s%C%C%C%CDepartment:

 %s%C%C%C%CMain Project: %s%C%C%C%C",

 rvInfo.pszName, 0x0d, 0x0a, 0x0d, 0x0a,

 rvInfo.pszTitle, 0x0d, 0x0a, 0x0d, 0x0a,

 rvInfo.pszDepartment, 0x0d, 0x0a, 0x0d, 0x0a,

 rvInfo.pszProject,0x0d, 0x0a, 0x0d, 0x0a);

 // Add a line describing work habits.

 if (LoadString(rvInfo.hInst, rvInfo.iWorkHabits, lpBuf1, sizeof(lpBuf1)))

 lstrcat(lpReview, lpBuf1);

 // Add a line describing teamwork.

 if (LoadString(rvInfo.hInst, rvInfo.iTeamWork, lpBuf2, sizeof(lpBuf2)))

 lstrcat(lpReview, lpBuf2);

 // Add a line describing reliability.

 if (LoadString(rvInfo.hInst, rvInfo.iReliability, lpBuf3, sizeof(lpBuf3)))

 lstrcat(lpReview, lpBuf3);

 // Add a line describing goals.

 if (LoadString(rvInfo.hInst, rvInfo.iGoals, lpBuf4, sizeof(lpBuf4)))

 lstrcat(lpReview, lpBuf4);

 // Add a line describing adaptability.

 if (LoadString(rvInfo.hInst, rvInfo.iAdaptation, lpBuf5, sizeof(lpBuf5)))

 lstrcat(lpReview, lpBuf5);

}

If you build and run the sample now, you can fill in the appropriate information, check the boxes that most accurately reflect your skills and work habits, and have a review generated for you. Just for grins, I filled one out and picked the last option in the list for each question asked. Here is the result.

�

Figure 6. The generated review

Summary

Now you have the information you need to decide whether to add property sheets, tabs, and wizards to your application. The samples provided can be easily altered to be used for practical purposes. You can even alter the WIZARD sample to streamline your work on your performance review. The next chapter covers the last of the new common controls, the rich edit box.

�filename�SHELL04.DOC�	�DATE�4/13/95�	�PAGE�1�

