Chapter 3: List Common Controls: Image Lists, List Views, and Tree Views

Microsoft Windows 95 has a set of new common controls that were designed to provide a user interface for list management. The controls range from simple lists with extra data (list views) to lists with hierarchical structure (tree views) to lists of images such as icons and bitmaps (image lists). This chapter will show you how you can use these new list management common controls in your application. Because both list view and tree view controls use image lists, we'll take a look at image lists first.

Managing Icons and Bitmaps with Image Lists

Windows 95 has image lists to help you manage a collection of images of the same size, such as bitmaps or icons. They were designed for use with list views and tree views. Image lists manage lists of images but do not display them directly. The images within an image list can be created in a single, wide bitmap or as single bitmaps. If you have worked with toolbars and if you have already created a bitmap for a toolbar, you will be familiar with the type of bitmap I am referring to. One difference between toolbar bitmaps and image list bitmaps is that you can create an empty image list and add the bitmaps (or icons) to it later, rather than providing one long bitmap. In the samples I made to demonstrate list views and tree views, I created an empty image list and then added each bitmap or icon one at a time. Figure 1 shows an icon I used in one of my image lists. (That odd-looking thing poking up in the air is my approximation of the Seattle Space Needle.)

Figure 1. An icon for an image list

To reference a specific image in the bitmap, you use the index of the image within the image list. One characteristic of image lists that differentiates them from simple, wide bitmaps is the ability to include monochrome bitmaps in the image list to act as masks. Masks allow you to draw an icon transparently. You can also add overlay images to the images within your image list. You may be wondering what I mean by an overlay image. An overlay image is an image that is drawn transparently over another image. Each image can use one of four overlay images. Have you ever wondered what the system uses to display the image for a shared directory—you know, the image with the hand holding a folder? It uses an overlay image.

Figure 2. An overlay image

There are two types of image lists—nonmasked and masked:

•	A nonmasked image list includes a color bitmap that contains one or more images. This is just a wide bitmap containing small bitmaps, similar to the bitmap I used in the sample I wrote to demonstrate toolbars. When a nonmasked image is drawn, it is simply copied into the target device context (DC); no special processing occurs.

•	A masked image list contains two wide bitmaps of equal size. The first bitmap is a color bitmap that contains the images; the second bitmap is a monochrome bitmap that contains a series of masks (one for each image in the first bitmap). When a masked image is drawn, the mask that is specified for the image is combined with the image. This combination produces transparent areas in the bitmap where the background color of the target DC shows through.

Table 1 shows the different drawing styles you can use when drawing your image list. You use these styles to get different effects with your image lists. For instance, if you want your images in your image list to be drawn transparently, you can specify the ILD_TRANSPARENT drawing style in your call to ImageList_Draw or to the Draw member function of the CImageList class.

Table 1. Image List Drawing Styles

Style�Meaning��ILD_BLEND25�Draws the image, blending 25 percent with the system highlight color. This value has no effect if the image list does not contain a mask.��ILD_BLEND50�Draws the image, blending 50 percent with the system highlight color. This value has no effect if the image list does not contain a mask.��ILD_FOCUS�Draws the image striped with the highlight color to indicate that it has the focus. This flag has no effect if ILD_SELECTED is not also specified or if the image list does not contain a mask.��ILD_IMAGE�Draws the image.��ILD_MASK�Draws the mask.��ILD_NORMAL�Draws the image using the background color for the image list. If the background color is CLR_NONE, the image is drawn transparently using the mask.��ILD_OVERLAYMASK�Uses these as indexes to special image items.��ILD_SELECTED�Draws the image dithered with the highlight color to indicate that it is selected. This flag has no effect if the image list does not contain a mask.��ILD_TRANSPARENT�Draws the image transparently using the mask, regardless of the background color. This flag has no effect if the image list does not contain a mask. The function uses a two-step process to draw the masked image. First, it performs a logical AND operation between the bits of the image and the bits of the mask. Next, it performs a logical XOR operation between the results of the first operation and the background bits of the destination DC. This creates transparent areas in the resulting image (that is, each white bit in the mask causes the corresponding bit in the resulting image to be transparent).��Creating Image Lists

Creating an image list is easy: just call the ImageList_Create function or, if you are developing your application in MFC, use the Create member function on the CImageList object. For a nonmasked image list, ImageList_Create creates a single bitmap large enough to hold the specified number of images with the given dimensions. Next, it creates a screen-compatible DC and selects the bitmap into it. For a masked image list, ImageList_Create creates two bitmaps and two screen-compatible DCs. It selects the image bitmap into one DC and the mask bitmap into the other. When the image list is created, its initial size is set based on the size values that you specified in your call to ImageList_Create. Adding more images than you specified automatically increases the size of the image list to accommodate the additional images by the amount, in images, that you specified your image list can grow.

The following code, from the TREEVIEW sample, demonstrates how you can create an image list, add images to it, and ensure that all the images have been added.

 // First, create the image list we will need.

 hIml = ImageList_Create(BITMAP_WIDTH, // width

 BITMAP_HEIGHT, // height

 0, // creation flags

 NUM_BITMAPS, // number of images

 0); // amount that this image list

 // can grow

 // Load the bitmaps and add them to the image lists.

 hBmp = LoadBitmap(hInst, MAKEINTRESOURCE(FORSALE));

 idxForSale = ImageList_Add(hIml, // handle to the image list

 hBmp, // handle of the bitmap to add

 NULL); // handle of the bitmap mask

 hBmp = LoadBitmap(hInst, MAKEINTRESOURCE(REDMOND));

 idxRedmond = ImageList_Add(hIml, hBmp, NULL);

 hBmp = LoadBitmap(hInst, MAKEINTRESOURCE(BELLEVUE));

 idxBellevue = ImageList_Add(hIml, hBmp, NULL);

 hBmp = LoadBitmap(hInst, MAKEINTRESOURCE(SEATTLE));

 idxSeattle = ImageList_Add(hIml, hBmp, NULL);

 // Make sure that all of the bitmaps were added.

 if (ImageList_GetImageCount(hIml) < NUM_BITMAPS)

 return FALSE;

Image List Structures and Macros

Because image lists are part of the new dynamic-link library (DLL) for common controls (COMCTL32.DLL), you must include the common control header file in your source code files and link with the common control export library to use the image list functions, structures, and macros. If you are developing in MFC, you need to include the AFXCMN.H file in your STDAFX.H file to get the definition of the CImageList class. The CImageList class provides the functionality of the Windows common image list control and includes a data member, m_hImageList, that is a handle containing the image list attached to the object. The GetSafeHwnd member function will retrieve m_hImageList if you need to get a handle to it in your application.

Table 2 lists all the functions and member functions supported by Windows for image list controls. If you would like more detail about the functions, their parameters, or their return values, refer to the Windows 95 SDK or the MFC 3.1 Help file.

Table 2. Image List Functions and Member Functions

Function�Member function�Description��ImageList_Add�Add�Adds one or more images to an image list. You can add bitmapped images, icons, or cursors. The first bitmap contains one or more images to add to the image bitmap, and the second bitmap contains the masks to add to the mask bitmap. For nonmasked image lists, the second bitmap handle is ignored; you can set it to NULL.��ImageList_AddIcon�Add�Adds an icon to an image list. Since the system does not save the hIcon that is passed in, you can destroy the hIcon after the function returns.��ImageList_AddMasked�Add�Adds one or more images to an image list, generating a mask from the given bitmap.��ImageList_BeginDrag�BeginDrag�Begins dragging an image and creates a temporary image list that is used for dragging. The drag image combines the specified image and its mask with the current cursor. The drag image can be moved using the ImageList_DragMove function.��ImageList_Create�Create�Creates a new image list. For a nonmasked image list, it creates a single bitmap large enough to hold the number of images.��ImageList_Destroy�DeleteObject�Destroys an image list.��ImageList_DragEnter�DragEnter�Locks the specified area of the screen from other updates. This function is called during a drag operation.��ImageList_DragLeave�DragLeave�Removes any locks on the locked area of the screen through a call to ImageList_DragEnter.��ImageList_DragMove�DragMove�Moves the drag image. This function is typically called in response to a WM_MOUSEMOVE message during a dragging operation.��ImageList_Draw�Draw�Draws an image list item in the specified DC. The drawing styles listed in Table 1 have no effect on the appearance of a nonmasked image. A nonmasked image is copied to the destination DC using the SRCCOPY raster operation. The colors in the image appear the same regardless of the background color of the DC.��ImageList_DrawEx�Draw�Draws an image based on the flags and colors passed into the function.��ImageList_EndDrag�EndDrag�Ends a drag operation. Although this function returns the handle of the temporary image list that is used for dragging, the temporary image list is destroyed, so the handle returned by this function is invalid.��ImageList_ExtractIcon�ExtractIcon�Creates an icon based on an image and mask in an image list.��ImageList_GetBkColor�GetBkColor�Retrieves the current background color for an image list.��ImageList_GetIcon��Retrieves the specified icon in the image list.��ImageList_GetIconSize��Retrieves the dimensions of each image in an image list.��ImageList_GetImageCount�GetImageCount�Retrieves the number of images in an image list.��ImageList_GetImageInfo�GetImageInfo�Retrieves information about an image and fills an IMAGEINFO structure with information about a single image. You can use this information to manipulate the bitmaps for the image directly.��ImageList_LoadBitmap�Create�Creates an image list from the given bitmap resource.��ImageList_Merge�Attach�Merges two existing images, creating a new image list to store the image. The second image is drawn transparently over the first image, and the mask for the new image is the result of performing a logical OR operation between the masks for the two images. You can also detach two image lists by using the Detach member function.��ImageList_Read�Read�Reads an image list from a stream.��ImageList_Remove�Remove�Removes an image from an image list.��ImageList_Replace�Replace�Replaces an image in an image list.��ImageList_ReplaceIcon�Replace�Replaces an image in an image list, using an icon.��ImageList_SetBkColor�SetBkColor�Sets the background color for an image list.��ImageList_SetDragCursorImage�SetDragCursorImage�Sets the image of the dragged item.��ImageList_SetOverlayImage�SetOverlayImage�Adds the index of an image to the list of images to be used as overlay masks.��ImageList_Write�Write�Writes an image list to a stream.��List Views

Now that we've taken a look at image lists, we can take a look at list views. A list view displays a collection of objects, such as files or folders. These objects can be manipulated in a variety of ways. For example, the user can drag the objects or sort them by clicking column headings. If you've run the Windows 95 Explorer, you will recognize a list view as the large window on the right. You can change the way data contained in this window is displayed by clicking the icons.

Figure 3. The Windows 95 Explorer

A list view control can display its objects in four ways (called views): using the objects' large (or standard) icons, using their small icons, as a list, or in report (also known as details) view. In standard icon view, each item is represented by a full-sized icon and a text label. The user can drag items to any location in the list view control. Figure 4 shows a list view control in standard icon view. This screen shot is from the LISTVIEW sample (its MFC counterpart is called MFCLIST). The sample demonstrates a list view control being used as a real estate listing, with each item representing a house that is for sale.

Figure 4. A list view in standard icon view

In small icon view, each item is represented by a small icon and text to the right of the icon, thus saving screen real estate. As in standard icon view, the user can drag the items to any location in the window. Figure 5 shows a list view in small icon view.

Figure 5. A list view in small icon view

List views can also be displayed with the small icon and the text label to the right of the icon in columns. This is similar to small icon view, with the exception that the items are arranged in columns and the items cannot be dragged by the user.

Figure 6. A list view in list view

In report view, items are displayed with their small icons and labels, and additional information about each item is displayed in columns. Each item appears on its own line. The leftmost column contains the icon, followed by the text label. A header control shows the title of each column. In Figure 7, if the user clicks one of the column headings, the list is sorted based on the sort criterion specified for that column. For example, clicking the Price heading sorts the data by the price of the house.

Figure 7. A list view in report view

In my previous description of report view, I mention a window called a header window. A header window is a horizontal window that is usually positioned above columns of text or numbers, and it contains a title for each column. These controls can be used as stand-alone controls (although I cannot for the life of me think of a good reason to use one stand-alone) or as part of the list view. When used in a list view, they are "free," that is, you don't have to create the header control yourself. Header controls can be divided into parts, called header items, and the user can set the width of each item. Items can behave like push buttons and do something (for example, sort data) when the user clicks them. Header items appear as text on a gray background. It is important to note that header windows do not support a keyboard interface and, as a result, do not accept the input focus.

Each item in a header window can have a string, a bitmapped image, and an application-defined 32-bit value associated with it. The string and bitmap are displayed within the boundaries of the item. If an item contains both a string and an image, the image is displayed above the string. If the string and image overlap, the string overwrites the overlapping portion of the image.

Creating a List View

Creating a list view may appear to be a daunting task at first. Getting all of the information placed in the correct structures involves several steps:

1.	Create the window using CreateWindow or CreateWindowEx, specifying WC_LISTVIEW for the class name. Or use the MFC CListCtrl class and its Create member function.

2.	Create image lists for the large and small icon views. Load the bitmaps for the images and add them to the image list.

3.	Initialize the column headings you will use by loading the strings and calling ListView_InsertColumn.

4.	Insert each item into the list view and initialize any associated text.

The following code demonstrates these steps. In the LISTVIEW and MFCLIST samples, I created a real estate listing. A structure that I defined contains information about the houses listed, including address, city, price, number of bedrooms, and number of bathrooms. I created an icon for each city represented (three icons total).

// House structure used for listing.

typedef struct tagHOUSEINFO {

 char szAddress[MAX_ADDRESS];

 char szCity[MAX_CITY];

 int iPrice;

 int iBeds;

 int iBaths;

} HOUSEINFO;

HWND CreateListView (HWND hWndParent)

{

 HWND hWndList; // handle to the list view window

 RECT rcl; // rectangle for setting the size of the window

 HICON hIcon; // handle to an icon

 int index; // index used in for loops

 HIMAGELIST hSmall, hLarge; // handles to image lists for large and small icons

 LV_COLUMN lvC; // list view column structure

 char szText[MAX_PATH]; // place to store some text

 LV_ITEM lvI; // list view item structure

 int iSubItem; // index for inserting sub items

 // Ensure that the common control DLL is loaded.

 InitCommonControls();

 // Get the size and position of the parent window.

 GetClientRect(hWndParent, &rcl);

 // Create the list view window that starts out in report view

 // and supports label editing.

 hWndList = CreateWindowEx(0L,

 WC_LISTVIEW, // list view class

 "", // no default text

 WS_VISIBLE | WS_CHILD | WS_BORDER | LVS_REPORT |

 LVS_EDITLABELS | WS_EX_CLIENTEDGE, // styles

 0, 0,

 rcl.right - rcl.left, rcl.bottom - rcl.top,

 hWndParent,

 (HMENU) ID_LISTVIEW,

 hInst,

 NULL);

 if (hWndList == NULL)

 return NULL;

 // Initialize the list view window.

 // First, initialize the image lists we will need:

 // create an image list for the small and large icons.

 // FALSE specifies large icons - TRUE specifies small.

 hSmall = ImageList_Create(BITMAP_WIDTH, BITMAP_HEIGHT,

 FALSE, 3, 0);

 hLarge = ImageList_Create(LG_BITMAP_WIDTH, LG_BITMAP_HEIGHT,FALSE, 3, 0);

 // Load the icons and add them to the image lists.

 for (index = REDMOND; index <= SEATTLE ; index++)

 {

 hIcon = LoadIcon (hInst, MAKEINTRESOURCE(index));

 // There are 3 of each type of icon here, so add 3 at a time.

 for (iSubItem = 0; iSubItem < 3; iSubItem++)

 {

 if ((ImageList_AddIcon(hSmall, hIcon) == -1) ||

 (ImageList_AddIcon(hLarge, hIcon) == -1))

 return NULL;

 }

 }

 // Make sure that all of the small icons were added.

 if (ImageList_GetImageCount(hSmall) < 3)

 return FALSE;

 // Make sure that all of the large icons were added.

 if (ImageList_GetImageCount(hLarge) < 3)

 return FALSE;

 // Associate the image list with the list view.

 ListView_SetImageList(hWndList, hSmall, LVSIL_SMALL);

 ListView_SetImageList(hWndList, hLarge, LVSIL_NORMAL);

.

.

.

Now that the list view has been created and the image lists have been created and initialized, it is time to add the column information to the list view. This is done by filling out an LV_COLUMN structure for each column and inserting the column by using the ListView_InsertColumn macro.

 // Now initialize the columns we will need.

 // Initialize the LV_COLUMN structure.

 // The mask specifies that the .fmt, .ex, width, and .subitem members

 // of the structure are valid.

 lvC.mask = LVCF_FMT | LVCF_WIDTH | LVCF_TEXT | LVCF_SUBITEM;

 lvC.fmt = LVCFMT_LEFT; // left align the column

 lvC.cx = 75; // width of the column, in pixels

 lvC.pszText = szText;

 // Add the columns.

 for (index = 0; index <= NUM_COLUMNS; index++)

 {

 lvC.iSubItem = index;

 LoadString(hInst,

 IDS_ADDRESS + index,

 szText,

 sizeof(szText));

 if (ListView_InsertColumn(hWndList, index, &lvC) == -1)

 return NULL;

 }

.

.

.

When the columns have been added, add the items one by one. For each item, you must fill out an LV_ITEM structure. In my samples, I decided to provide a callback function to provide the text for the list view item. Whenever the list view needs the text for an item, my callback function will be called.

 // Finally, let's add the actual items to the control.

 // Fill in the LV_ITEM structure for each item to add to the list.

 // The mask specifies that the .pszText, .iImage, .lParam, and .state

 // members of the LV_ITEM structure are valid.

 lvI.mask = LVIF_TEXT | LVIF_IMAGE | LVIF_PARAM | LVIF_STATE;

 lvI.state = 0; //

 lvI.stateMask = 0; //

 for (index = 0; index < NUM_ITEMS; index++)

 {

 lvI.iItem = index;

 lvI.iSubItem = 0;

 // The parent window is responsible for storing the text. The list view

 // window will send an LVN_GETDISPINFO when it needs the text to display.

 lvI.pszText = LPSTR_TEXTCALLBACK;

 lvI.cchTextMax = MAX_ITEMLEN;

 lvI.iImage = index;

 lvI.lParam = (LPARAM)&rgHouseInfo[index];

 if (ListView_InsertItem(hWndList, &lvI) == -1)

 return NULL;

 for (iSubItem = 1; iSubItem < NUM_COLUMNS; iSubItem++)

 {

 ListView_SetItemText(hWndList,

 index,

 iSubItem,

 LPSTR_TEXTCALLBACK);

 }

 }

 return (hWndList);

}

Now that you've seen the code in C, you probably would like to know if there is anything different or special you have to do if you want to create and use a list view control in your MFC application. Under MFC, the list view control is supported through the CListCtrl class. In my MFCLIST sample, I created the list view in the view class. In the definition for the view class, I included a member variable for my CListCtrl object and my two CImageList objects.

class CMfclistView : public CView

{

protected: // create from serialization only

 CMfclistView();

 DECLARE_DYNCREATE(CMfclistView);

 CListCtrl m_ListCtl;

 CImageList m_ImageLarge;

 CImageList m_ImageSmall;

Then I created a message map entry for the WM_CREATE message and used the Create member function to create the list view. The code I used looks nearly identical to the C code, as you can see in the following.

int CMfclistView::OnCreate(LPCREATESTRUCT lpCreateStruct)

{

 int index;

 int iSubItem;

 HICON hIcon;

 LV_COLUMN lvC; // list view column structure

 static char szText[256]; // place to store some text

 LV_ITEM lvI; // list view item structure

 if (CView::OnCreate(lpCreateStruct) == -1)

 return -1;

 // Create the CListCtrl window.

 m_ListCtl.Create(

 WS_VISIBLE | WS_CHILD | WS_BORDER | LVS_REPORT | LVS_EDITLABELS, // styles

 CRect(0,0,0,0), // bounding rectangle

 this, //parent

 ID_LISTVIEW); //id

 // Create the large icon image list.

 m_ImageLarge.Create(LARGE_BITMAP_WIDTH,

 LARGE_BITMAP_HEIGHT,

 FALSE, // list does not include masks

 NUM_BITMAPS,

 0); // list won't grow

 // Create the small icon image list.

 m_ImageSmall.Create(SMALL_BITMAP_WIDTH,

 SMALL_BITMAP_HEIGHT,

 FALSE, // list does not include masks

 NUM_BITMAPS,

 0); // list won't grow

 // Load the icons and add them to the image lists.

 for (index = IDI_BELLEVUE; index <= IDI_SEATTLE ; index++)

 {

 hIcon = ::LoadIcon (AfxGetResourceHandle(), MAKEINTRESOURCE(index));

 // There are 3 of each type of icon here, so add 3 at a time.

 for (iSubItem = 0; iSubItem < 3; iSubItem++)

 {

 if ((m_ImageSmall.Add(hIcon) == -1) ||

 (m_ImageLarge.Add(hIcon) == -1))

 return NULL;

 }

 }

 // Make sure that all of the icons were added.

 if (m_ImageSmall.GetImageCount() < 3)

 return NULL;

 // Make sure that all of the icons were added.

 if (m_ImageLarge.GetImageCount() < 3)

 return NULL;

 // Associate the image lists with the list view.

 m_ListCtl.SetImageList(&m_ImageSmall, LVSIL_SMALL);

 m_ListCtl.SetImageList(&m_ImageLarge, LVSIL_NORMAL);

 // Now initialize the columns we will need.

 // Initialize the LV_COLUMN structure.

 // The mask specifies that the .fmt, .ex, .width, and .subitem members

 // of the structure are valid.

 lvC.mask = LVCF_FMT | LVCF_WIDTH | LVCF_TEXT | LVCF_SUBITEM;

 lvC.fmt = LVCFMT_LEFT; // left align the column

 lvC.cx = 75; // width of the column, in pixels

 // Add the columns.

 for (index = 0; index <= NUM_COLUMNS; index++)

 {

 lvC.iSubItem = index;

 lvC.pszText = szColumns[index];

 if (m_ListCtl.InsertColumn(index, &lvC) == -1)

 return NULL;

 }

 // Finally, let's add the actual items to the control.

 // Fill in the LV_ITEM structure for each of the items to add to the list.

 // The mask specifies the .pszText, .iImage, .lParam, and .state

 // members of the LV_ITEM structure are valid.

 lvI.mask = LVIF_TEXT | LVIF_IMAGE | LVIF_PARAM | LVIF_STATE;

 lvI.state = 0; //

 lvI.stateMask = 0; //

 for (index = 0; index < NUM_ITEMS; index++)

 {

 lvI.iItem = index;

 lvI.iSubItem = 0;

 // The parent window is responsible for storing the text. The list view

 // window will send an LVN_GETDISPINFO when it needs the text to display.

 lvI.pszText = LPSTR_TEXTCALLBACK;

 lvI.cchTextMax = MAX_ITEMLEN;

 lvI.iImage = index;

 lvI.lParam = (LPARAM)&rgHouseInfo[index];

 if (m_ListCtl.InsertItem(&lvI) == -1)

 return NULL;

 for (iSubItem = 1; iSubItem < NUM_COLUMNS; iSubItem++)

 {

 m_ListCtl.SetItemText(index,

 iSubItem,

 LPSTR_TEXTCALLBACK);

 }

 }

 return 0;

}

Changing Views

In the preceding code, you now have a list view that is created and is shown initially in report mode. However, you have no way of changing views yet. In the LISTVIEW sample, you can change views through the Options menu.

Figure 8. The Options menu in the LISTVIEW sample

Clicking one of these menu items will generate a WM_COMMAND message. In your MFC application, you can handle this by adding a message map entry for the command (IDM_LARGEICON for large icon view), and you can change the view by setting the window style. The LVS_TYPEMASK constant is supplied to check the current view of the list view. The current view can be LVS_ICON, LVS_SMALLICON, LVS_LIST, or LVS_REPORT.

void CMfclistView::OnLargeicon()

{

 DWORD dwStyle;

 dwStyle = GetWindowLong(m_ListCtl.m_hWnd, GWL_STYLE);

 if ((dwStyle & LVS_TYPEMASK) != LVS_ICON)

 SetWindowLong(m_ListCtl.m_hWnd, GWL_STYLE,

 (dwStyle & ~LVS_TYPEMASK) | LVS_ICON);

}

Handling Notifications

Okay, now you have your list view created, you've got your image lists, you're able to switch between views, but you still aren't ready to compile, link, and run. Before you do that, you have to handle the WM_NOTIFY messages that will be sent to the parent window. List views receive notifications whenever text is needed for display, when items are being dragged and dropped, when labels are being edited, and when columns are being sorted (just to name a few). The following code is an implementation of a handler that I set up for the WM_NOTIFY message. When the parent window receives the WM_NOTIFY notification, it calls this function to see whether:

•	It needs text for a list view item (LVN_GETDISPINFO).

•	It is necessary to sort the items (LVN_COLUMNCLICK).

•	It needs to handle label editing (LVN_BEGINLABELEDIT and LVN_ENDLABELEDIT).

When the WM_NOTIFY message is sent, the lParam is a pointer to an NM_LISTVIEW or LV_DISPINFO structure. Which structure it points to is based on the notification sent. For each item in my list view, there is an associated item containing information about the house it is describing. I saved the pointer to this information in the lParam member of the LV_ITEM structure when I added the item to my list view. The following code shows what the sample does in response to a request for text and a column click (I'll cover label editing later in this chapter).

LRESULT NotifyHandler(HWND hWnd, UINT uMsg, WPARAM wParam, LPARAM lParam)

{

 LV_DISPINFO *pLvdi = (LV_DISPINFO *)lParam;

 NM_LISTVIEW *pNm = (NM_LISTVIEW *)lParam;

 HOUSEINFO *pHouse = (HOUSEINFO *)(pLvdi->item.lParam);

 static TCHAR szText[10];

 if (wParam != ID_LISTVIEW)

 return 0L;

 switch(pLvdi->hdr.code)

 {

 case LVN_GETDISPINFO:

 switch (pLvdi->item.iSubItem)

 {

 case 0: // address

 pLvdi->item.pszText = pHouse->szAddress;

 break;

 case 1: // city

 pLvdi->item.pszText = pHouse->szCity;

 break;

 case 2: // price

 sprintf(szText, "$%u", pHouse->iPrice);

 pLvdi->item.pszText = szText;

 break;

 case 3: // number of bedrooms

 sprintf(szText, "%u", pHouse->iBeds);

 pLvdi->item.pszText = szText;

 break;

 case 4: // number of bathrooms

 sprintf(szText, "%u", pHouse->iBaths);

 pLvdi->item.pszText = szText;

 break;

 default:

 break;

 }

 break;

.

.

.

 case LVN_COLUMNCLICK:

 // The user clicked one of the column headings - sort by this column.

 ListView_SortItems(pNm->hdr.hwndFrom,

 ListViewCompareProc,

 (LPARAM)(pNm->iSubItem));

 break;

 default:

 break;

 }

 return 0L;

}

When I ported this sample to MFC, I had to find a way to get to the WM_NOTIFY message because ClassWizard does not give you this message as an option for a message map. I decided to overload the WindowProc function in the Cwnd class and call my notification handler from there.

LRESULT CMfclistView::WindowProc(UINT message, WPARAM wParam, LPARAM lParam)

{

 if (message == WM_NOTIFY)

 NotifyHandler(message, wParam, lParam);

 return CView::WindowProc(message, wParam, lParam);

}

Sorting Items in Response to a Column Heading Click

In the preceding C code, I handled the column click by calling the ListView_SortItems function and providing a pointer to a callback function. It is up to the application to provide the code to sort the list view items when the user clicks a column heading. The list view window does not sort the items for you. (Drats!) This makes some sense (albeit in a twisted kind of way)—how would the system know which criterion you wanted to sort on (for example, color or size)? Still, I would have liked to see Windows 95 provide some built-in sorting callbacks for "standard" sorting needs such as string comparisons and numeric sorts. Because the list view window doesn't have this capability, you have to provide a callback function to do the sorting. A saving grace is that this isn't hard to do.

The following code demonstrates one method of sorting. It uses the lstrcmpi function to compare strings and simple arithmetic to sort the numbers. The callback function is given pointers to the two items to compare; the callback function returns a negative value if the first item should precede the second, a positive value if the first item should follow the second, or zero if the two items are equivalent. The lParamSort parameter is an application-defined value. I did not make use of it in my function. It would be useful in the sort if there were some special information about the sort criterion that you wanted to make. For instance, if you wanted to offer the ability for the user to specify whether to sort forward or backward, you could pass the indication of this wish in the lParamSort parameter.

int CALLBACK ListViewCompareProc(LPARAM lParam1, LPARAM lParam2, LPARAM

 lParamSort)

{

 HOUSEINFO *pHouse1 = (HOUSEINFO *)lParam1;

 HOUSEINFO *pHouse2 = (HOUSEINFO *)lParam2;

 LPSTR lpStr1, lpStr2;

 int iResult;

 if (pHouse1 && pHouse2)

 {

 switch(lParamSort)

 {

 case 0: // sort by address

 lpStr1 = pHouse1->szAddress;

 lpStr2 = pHouse2->szAddress;

 iResult = lstrcmpi(lpStr1, lpStr2);

 break;

 case 1: // sort by city

 lpStr1 = pHouse1->szCity;

 lpStr2 = pHouse2->szCity;

 iResult = lstrcmpi(lpStr1, lpStr2);

 break;

 case 2: // sort by price

 iResult = pHouse1->iPrice - pHouse2->iPrice;

 break;

 case 3: // sort by the number of bedrooms

 iResult = pHouse1->iBeds - pHouse2->iBeds;

 break;

 case 4: // sort by the number of bathrooms

 iResult = pHouse1->iBaths - pHouse2->iBaths;

 break;

 default:

 iResult = 0;

 break;

 }

 }

 return(iResult);

}

Label Editing

The last bit of code that I want to show you is how to do label editing in your list view. You enable label editing by specifying the LVS_EDITLABELS style when you create your list view. This lets a user edit item labels in place. The user begins editing by clicking the label of an item that has the focus. The list view control notifies the parent window when editing begins through an LVN_BEGINLABELEDIT notification. If you do not want to allow label editing on certain items, you can return a nonzero value to disallow it. To limit the amount of text the user can enter, the application gets the handle to the edit window through the LVM_GETEDITCONTROL message (or the GetEditControl member function) and limits the amount of text by sending the EM_SETLIMITTEXT message to the edit control (the LimitText member function of the CEdit class) with the maximum number of characters that can be entered. Once editing is completed, the list view sends its parent window an LVN_ENDLABELEDIT notification. The lParam parameter is the address of an LV_DISPINFO structure identifying the item and specifying the edited text. The parent window is responsible for updating the item's label. If editing is canceled, the iItem member is –1. One thing to watch out for is the possibility of getting a valid index to an item, but getting a NULL pointer back for the text. This happens if the user chooses an item and immediately presses the enter key.

The following code, from the MFCLIST sample, shows how to support label editing in a list view.

case LVN_BEGINLABELEDIT:

 {

 CEdit *pEdit;

 // Get the handle to the edit box.

 pEdit = m_ListCtl.GetEditControl();

 // Limit the amount of text that can be entered.

 pEdit->LimitText(20);

 }

 break;

case LVN_ENDLABELEDIT:

 // If the label editing wasn't canceled and the

 // text buffer is non-NULL...

 if ((pLvdi->item.iItem != -1) && (pLvdi->item.pszText != NULL))

 // Save the new label information.

 lstrcpy(pHouse->szAddress, pLvdi->item.pszText);

 break;

And that's all there is to it. The LISTVIEW and MFCLIST samples should be enough to get you started if you are going to include list views in your application.

List View Messages and Member Functions

This section shows the messages and member functions supported by list views. The MFC class that supports list views is the CListCtrl class. To use list views in your application, you must link with the COMCTL32.LIB library. If you are writing your application in C, you must include the COMMCTL.H header file; if you are writing your application in MFC, you must include the AFXCMN.H file in your STDAFX.H file (if you are including STDAFX.H).

Table 3. List View Messages and Member Functions

Message�Member function�Description��LVM_ARRANGE�Arrange�Arranges the items in icon view based on the flags set.��LVM_CREATEDRAGIMAGE�CreateDragImage�Creates a drag image for the specified item.��LVM_DELETEALLITEMS�DeleteAllItems�Removes all items from a list view window.��LVM_DELETECOLUMN�DeleteColumn�Removes a column from a list view window.��LVM_DELETEITEM�DeleteItem�Removes an item from a list view window.��LVM_EDITLABEL�EditLabel�Begins in-place editing of an item's text. This message selects and sets the focus to the item. When the user completes or cancels editing, the edit window is destroyed and the handle becomes invalid. You can safely subclass the edit window, but do not destroy it. To cancel editing, you can send the list view a WM_CANCELMODE message.��LVM_ENSUREVISIBLE�EnsureVisible�Ensures that a list view item is entirely or partially visible by scrolling the list view window if necessary.��LVM_FINDITEM�FindItem�Searches for a list view item.��LVM_GETBKCOLOR�GetBkColor�Retrieves the background color of the list view window.��LVM_GETCALLBACKMASK�GetCallbackMask�Retrieves the callback mask for a list view window.��LVM_GETCOLUMN�GetColumn�Retrieves the attributes of a list view column. The mask member of the LV_COLUMN structure passed in specifies which attributes to get. If the LVCF_TEXT flag is specified, the pszText member must contain the address of the buffer that receives the item text, and the cchTextMax member must specify the size of the buffer.��LVM_GETCOLUMNWIDTH�GetColumnWidth�Retrieves the width of a column in list view or report view.��LVM_GETCOUNTPERPAGE�GetCountPerPage�Calculates the number of items that can fit vertically in the visible area of a view control in list view or report view.��LVM_GETEDITCONTROL�GetEditControl�Retrieves the handle of the edit window used to edit the item text in place. The edit window is destroyed and the handle becomes invalid when the user completes or cancels editing. You can safely subclass the edit window, but do not destroy it. To cancel editing, you can send the list view a WM_CANCELMODE message. The list view item being edited is the item that is currently in the focused state.��LVM_GETIMAGELIST�GetImageList�Retrieves the handle of an image list used for drawing list view items.��LVM_GETITEM�GetItem�Retrieves a list view item's attributes.��LVM_GETITEMCOUNT�GetItemCount�Retrieves the number of items in a list view window.��LVM_GETITEMPOSITION�GetItemPosition�Retrieves the position of a list view item in standard icon and small icon views.��LVM_GETITEMRECT�GetItemRect�Retrieves the bounding rectangle for an item in the current view.��LVM_GETITEMSTATE�GetItemState�Retrieves the state of a list view item.��LVM_GETITEMTEXT�GetItemText�Retrieves the item text of a list view item or subitem.��LVM_GETNEXTITEM�GetNextItem�Searches for the next list view item starting from a specified item.��LVM_GETORIGIN�GetOrigin�Retrieves the list view origin, which is needed for setting the item position.��LVM_GETSTRINGWIDTH�GetStringWidth�Retrieves the minimum column width necessary to display the given string. The returned width takes the current font and column margins of the list view into account, but does not take the width of a small icon into account.��LVM_GETTEXTBKCOLOR�GetTextBkColor�Retrieves the background text color in a list view window.��LVM_GETTEXTCOLOR�GetTextColor�Retrieves the color of the text in a list view window.��LVM_GETTOPINDEX�GetTopIndex�Retrieves the index of the first visible item in the list view.��LVM_GETVIEWRECT�GetViewRect�Retrieves the bounding rectangle of all items in a list view in icon view.��LVM_HITTEST�HitTest�Determines which list view item is at a specified position.��LVM_INSERTCOLUMN�InsertColumn�Inserts a new column in a list view window.��LVM_INSERTITEM�InsertItem�Inserts a new item in a list view window.��LVM_REDRAWITEMS�RedrawItems�Forces a redraw of a range of list view items. The specified items are not actually repainted until the list view window receives a WM_PAINT message. To repaint immediately, call the UpdateWindow function after using this message.��LVM_SCROLL�Scroll�Scrolls the contents of a list view window. If the current view is report view, the dx parameter must be zero and the dy parameter is the number of lines to scroll. ��LVM_SETBKCOLOR�SetBkColor�Sets the background color of the list view window.��LVM_SETCALLBACKMASK�SetCallbackMask�Sets the callback mask for a list view window.��LVM_SETCOLUMN�SetColumn�Sets the attributes of a list view column.��LVM_SETCOLUMNWIDTH�SetColumnWidth�Sets the width of a column in report view or list view.��LVM_SETIMAGELIST�SetImageList�Sets the image list used for drawing list view items.��LVM_SETITEM�SetItem�Sets a list view item's attributes. ��LVM_SETITEMCOUNT�SetItemCount�Sets the item count of a list view.��LVM_SETITEMPOSITION�SetItemPosition�Sets the position of a list view item in standard icon or small icon view relative to the list view rectangle.��LVM_SETITEMSTATE�SetItemState�Sets the state of a list view item.��LVM_SETITEMTEXT�SetItemText�Sets the text of a list view item or subitem.��LVM_SETTEXTBKCOLOR�SetTextBkColor�Sets the background text color of a list view window.��LVM_SETTEXTCOLOR�SetTextColor�Sets the text color in a list view window.��LVM_SORTITEMS�SortItems�Sorts list view items using an application-defined comparison function. The index of each item changes to reflect the new sequence. The comparison function must return a negative value if the first item should precede the second, a positive value if the first item should follow the second, or zero if the two items are equivalent. The lParam1 and lParam2 parameters correspond to the lParam member of the LV_ITEM structure for the two items being compared. The lParamSort parameter is identical to the value passed to the ListView_SortItems macro.��LVM_UPDATE�Update�Updates a list view item. If the list view has the LVS_AUTOARRANGE style, the list view will be arranged.��Tree Views

The tree view displays a hierarchical list of items. Each item has a label and can have a bitmap associated with it. (The bitmap is optional.) You've seen these types of hierarchies in File Manager (displaying directory information) and in Microsoft Mail (displaying mail folders). The top item in the hierarchy is called the root item. The root item has no parent. An item that is below the root item in the hierarchy is called a child item of the root. An item that has child items is called a parent item. Child items are displayed in indented form below their parent item. The items can be connected by lines if you specify the TVS_HASLINES style. Figure 9 shows a tree view window that lists houses for sale in various cities in the beautiful Pacific Northwest. (The addresses are fictional—the houses really aren't for sale.)

Figure 9. Anatomy of a tree view window

The very first time I saw a tree hierarchy like this, I wanted to implement one in my application. Like most of you, I figured out how to do it on my own, but it was complex and it was a pain. I really wished that one of these was built into the system. With Windows 95, tree views are finally built in.

Each item in a tree view can have a pair of bitmaps that appear to the left of its label. One bitmap is displayed when the item is selected, and the other is displayed when the item is not selected. For example, in the Windows 95 Explorer, when a folder is selected, its appearance changes from closed to open.

Figure 10. Selected and unselected tree view images

Creating a Tree View

To create a tree view in C, use the CreateWindow or CreateWindowEx function, and specify the WC_TREEVIEW style for the window class. If you are using MFC, create a CTreeCtrl object by using the Create member function. The following code creates a tree view control and uses the image list functions to create an image list associated with the tree view.

HWND CreateTreeView (HWND hWndParent)

{

 HWND hwndTree; // the handle to the tree view window

 RECT rcl; // a rectangle for setting the size of the window

 HBITMAP hBmp; // the handle to a bitmap

 HIMAGELIST hIml; // the handle to the image list

 // Ensure that the common-control DLL is loaded.

 InitCommonControls();

 // Get the size and position of the parent window.

 GetClientRect(hWndParent, &rcl);

 // Create the tree view window.

 hwndTree = CreateWindowEx(0L,

 WC_TREEVIEW,

 "",

 WS_VISIBLE | WS_CHILD | WS_BORDER | TVS_HASLINES | TVS_HASBUTTONS |

 TVS_LINESATROOT,

 0, 0,

 rcl.right - rcl.left, rcl.bottom - rcl.top,

 hWndParent,

 (HMENU) ID_TREEVIEW,

 hInst,

 NULL);

 if (hwndTree == NULL)

 return NULL;

 // Initialize the tree view window.

 // First, create the image list we will need.

 hIml = ImageList_Create(BITMAP_WIDTH, BITMAP_HEIGHT,

 FALSE, NUM_BITMAPS, 0);

 // Load the bitmaps and add them to the image lists.

 hBmp = LoadBitmap(hInst, MAKEINTRESOURCE(FORSALE));

 idxForSale = ImageList_Add(hIml, hBmp, NULL);

 hBmp = LoadBitmap(hInst, MAKEINTRESOURCE(REDMOND));

 idxRedmond = ImageList_Add(hIml, hBmp, NULL);

 hBmp = LoadBitmap(hInst, MAKEINTRESOURCE(BELLEVUE));

 idxBellevue = ImageList_Add(hIml, hBmp, NULL);

 hBmp = LoadBitmap(hInst, MAKEINTRESOURCE(SEATTLE));

 idxSeattle = ImageList_Add(hIml, hBmp, NULL);

 // Make sure that all of the bitmaps were added.

 if (ImageList_GetImageCount(hIml) < NUM_BITMAPS)

 return FALSE;

 // Associate the image list with the tree.

 TreeView_SetImageList(hwndTree, hIml, idxForSale);

 return (hwndTree);

}

Adding Tree View Items

Now that our tree view window has been created, it is time to add items to it. You can add items to a tree view by sending the TVM_INSERTITEM message or by calling the associated TreeView_InsertItem macro. In MFC, use the InsertItem member function. For each item you want to insert, fill out the TV_ITEM and TV_INSERTSTRUCT structures. When adding an item, you must specify the handle of the new item's parent item. If you specify NULL or TVI_ROOT instead of an item handle, the item is added as a root item.

The following example demonstrates how to add items to a tree view window. This sample handles a real estate listing for three cities, with three houses listed for each city. A global structure keeps track of the handle to the parent item and its image.

typedef struct tagHOUSEINFO {

 char szAddress[MAX_ADDRESS];

 int iImage;

 HTREEITEM hParent;

}

BOOL AddTreeViewItems(HWND hwndTree)

{

 static HTREEITEM hTRoot, hTRed, hTBel, hTSea, hPrev;

 char szText[MAX_LEN];

 int index;

 // First, add the root item "Houses for Sale".

 LoadString(hInst, IDS_FORSALE, szText, MAX_LEN);

 hTRoot = AddOneItem((HTREEITEM)NULL, szText, (HTREEITEM)TVI_ROOT, idxForSale,

 hwndTree);

 // Now add the cities.

 LoadString(hInst, IDS_REDMOND, szText, MAX_LEN);

 hTRed = AddOneItem(hTRoot, szText, (HTREEITEM)TVI_FIRST, idxRedmond,

 hwndTree);

 LoadString(hInst, IDS_BELLEVUE, szText, MAX_LEN);

 hTBel = AddOneItem(hTRoot, szText, hTRed, idxBellevue, hwndTree);

 LoadString(hInst, IDS_SEATTLE, szText, MAX_LEN);

 hTSea = AddOneItem(hTRoot, szText, hTBel, idxSeattle, hwndTree);

 // Fill in the structure for each house.

 FillInStruct(hTRed, idxRedmond, 0, 3);

 FillInStruct(hTBel, idxBellevue, 3, 6);

 FillInStruct(hTSea, idxSeattle, 6, 9);

 // Add the houses for each city.

 hPrev = hTSea;

 for (index = 0; index < NUM_HOUSES; index++)

 hPrev = AddOneItem(rgHouseInfo[index].hParent,

 rgHouseInfo[index].szAddress,

 hPrev,

 rgHouseInfo[index].iImage,

 hwndTree);

 return TRUE;

}

// This function saves the current image and handle to the

// parent of the tree view item.

VOID FillInStruct(HTREEITEM hParent, int iImage, int index, int iMax)

{

 for (;index < iMax; index++)

 {

 rgHouseInfo[index].iImage = iImage;

 rgHouseInfo[index].hParent = hParent;

 }

}

// This function fills in the TV_ITEM and TV_INSERTSTRUCT structures and

// adds the item to the tree view.

HTREEITEM AddOneItem(HTREEITEM hParent, LPSTR szText, HTREEITEM hInsAfter,

 int iImage, HWND hwndTree)

{

 HTREEITEM hItem;

 TV_ITEM tvI;

 TV_INSERTSTRUCT tvIns;

 // The .pszText, .iImage, and .iSelectedImage are filled in.

 tvI.mask = TVIF_TEXT | TVIF_IMAGE | TVIF_SELECTEDIMAGE | TVIF_PARAM;

 tvI.pszText = szText;

 tvI.cchTextMax = lstrlen(szText);

 tvI.iImage = iImage;

 tvI.iSelectedImage = iImage;

 tvIns.item = tvI;

 tvIns.hInsertAfter = hInsAfter;

 tvIns.hParent = hParent;

 // Insert the item into the tree.

 hItem = (HTREEITEM)SendMessage(hwndTree, TVM_INSERTITEM, 0,

 (LPARAM)(LPTV_INSERTSTRUCT)&tvIns);

 return (hItem);

}

In the MFC version of the TREEVIEW sample, MFCTREE, the creation of the tree view is done in the view class. The C code shown in the preceding sample is nearly identical to the MFC code. One thing to note for MFC is where I kept track of some of the data. In the header file for my view class, MFCTRVW.H, the view class is defined. Within this class, I saved off my CTreeCtrl object, my image list, indexes to the images associated with the tree view items, and information about the item being dragged.

class CMfctreeView : public CView

{

protected: // create from serialization only

 CMfctreeView();

 DECLARE_DYNCREATE(CMfctreeView);

 CTreeCtrl m_TreeCtl; // the tree control

 CImageList m_ImageList; // the image list associated with the tree

 BOOL m_fDragging; // whether we are dragging an item or not

 HTREEITEM m_hDragItem; // the current item being dragged

 int m_idxForSale; // index to the For Sale icon

 int m_idxRedmond; // index to the Redmond icon

 int m_idxBellevue; // index to the Bellevue icon

 int m_idxSeattle; // index to the Seattle icon

// Attributes.

public:

 CMfctreeDoc* GetDocument();

// Operations.

public:

 BOOL AddTreeViewItems();

 HTREEITEM AddOneItem(HTREEITEM, LPSTR, HTREEITEM, int);

 VOID FillInStruct(HTREEITEM, int, int, int);

 VOID BeginDrag(NM_TREEVIEW *);

 VOID DropItem(HTREEITEM);

// Overrides.

 // ClassWizard generated virtual function overrides.

 //{{AFX_VIRTUAL(CMfctreeView)

 public:

 virtual void OnDraw(CDC* pDC); // overridden to draw this view

 protected:

 virtual LRESULT WindowProc(UINT message, WPARAM wParam, LPARAM lParam);

 //}}AFX_VIRTUAL

// Implementation.

public:

 virtual ~CMfctreeView();

protected:

// Generated message map functions.

protected:

 //{{AFX_MSG(CMfctreeView)

 afx_msg int OnCreate(LPCREATESTRUCT lpCreateStruct);

 afx_msg void OnSize(UINT nType, int cx, int cy);

 afx_msg void OnDestroy();

 afx_msg void OnMouseMove(UINT nFlags, CPoint point);

 afx_msg void OnLButtonUp(UINT nFlags, CPoint point);

 //}}AFX_MSG

 DECLARE_MESSAGE_MAP()

};

Drag-and-Drop Operations for a Tree View Item

Now that you have a tree view that can be expanded and collapsed, you may be thinking how neat it would be if the user could just pick up one of the items and drag it to a new location. The tree view window has some built-in functions that facilitate dragging and dropping of tree view items. When processing the drag operation for a tree view item, an application typically does three things:

1.	Process the start of the drag.

2.	Process the dragging.

3.	Process the drop.

An application processes the start of the drag (picking up the item) through the TVN_BEGINDRAG (user is using the left mouse button for dragging) or TVN_BEGINRDRAG (user is using the right mouse button for dragging) notification in the parent window's window procedure. These notifications are sent through a WM_NOTIFY message. In the following sample code, a drag image is created, the mouse is captured, and a Boolean is set to signal that dragging is occurring.

case WM_NOTIFY:

 switch(((LPNMHDR)lParam)->code)

 {

 case TVN_BEGINDRAG:

 // The user wants to drag an item. Call the drag handler.

 BeginDrag(hWndTreeView, (NM_TREEVIEW *)lParam);

 // Save off the dragged item information.

 tvI = ((NM_TREEVIEW *)lParam)->iItemNew;

 break;

 default:

 break;

 }

 break;

.

.

.

VOID BeginDrag(HWND hwndTree, NM_TREEVIEW *lItem)

{

 HIMAGELIST hIml;

 RECT rcl;

 DWORD dwLevel;

 DWORD dwIndent;

 // Create an image to use for dragging.

 hIml = TreeView_CreateDragImage(hwndTree, lItem->itemNew.hItem);

 // Get the bounding rectangle of the item being dragged.

 TreeView_GetItemRect(hwndTree, lItem->itemNew.hItem, &rcl, TRUE);

 // Start dragging the image.

 ImageList_BeginDrag(hIml, 0, lItem->ptDrag.x, lItem->ptDrag.y);

 // Hide the cursor.

 ShowCursor(FALSE);

 // Capture the mouse.

 SetCapture(GetParent(hwndTree));

 // Set a global flag that tells whether dragging is happening.

 g_fDragging = TRUE;

}

In the MFCTREE sample, the drag-and-drop operation is handled through a virtual function mapped to the WindowProc function.

// Handle the WM_NOTIFY::TVN_BEGINDRAG notification.

LRESULT CMfctreeView::WindowProc(UINT message, WPARAM wParam, LPARAM lParam)

{

 TV_ITEM tvI;

 if (message == WM_NOTIFY)

 {

 if (((LPNMHDR)lParam)->code == TVN_BEGINDRAG)

 {

 BeginDrag((NM_TREEVIEW *)lParam);

 tvI = ((NM_TREEVIEW *)lParam)->itemNew;

 // Get a handle to the drag object.

 m_hDragItem = tvI.hItem;

 }

 }

 return CView::WindowProc(message, wParam, lParam);

}

VOID CMfctreeView::BeginDrag(NM_TREEVIEW *lItem)

{

 CImageList * CImage;

 // Create an image to use for dragging.

 CImage = m_TreeCtl.CreateDragImage(lItem->itemNew.hItem);

 // Start dragging the image.

 CImage->BeginDrag(0, lItem->ptDrag);

 // Hide the cursor.

 ShowCursor(FALSE);

 SetCapture();

 m_fDragging = TRUE;

}

The application processes the dragging operation by capturing the mouse and monitoring the WM_MOUSEMOVE messages. In a typical drag-and-drop scenario, the image appears to be dragged because the cursor is changed to the image of the item being dragged.

void CMfctreeView::OnMouseMove(UINT nFlags, CPoint point)

{

 HTREEITEM hTarget;

 UINT flags;

 if (m_fDragging)

 {

 // Drag the item to the current mouse position.

 m_ImageList.DragMove(point);

 flags = TVHT_ONITEM;

 // If the cursor is on an item, hilite it as the drop target.

 if ((hTarget = m_TreeCtl.HitTest(point, &flags)) != NULL)

 m_TreeCtl.SelectDropTarget(hTarget);

 }

 CView::OnMouseMove(nFlags, point);

}

When the user is finished dragging the item, an application can look for the WM_LBUTTONUP message. At this point, the currently selected item is recorded, the mouse is released, and the cursor is restored to the previous state. This is also the place where you would want to reset the parentage of the item and reset any internal structures you might have that are keeping track of your tree items. Remember to reset the drop highlight item. During the drag operation, the current item is selected as the drop highlight. When the item is dropped, you need to set the drop highlight back to NULL or you will end up with two items that appear selected, because selected items and drop highlight items are painted the same way. This is remedied by another call to TreeView_SelectItem, passing NULL for the hItem parameter.

 case WM_LBUTTONUP:

 // If dragging, stop it.

 if (g_fDragging)

 {

 // Process item drop.

 DropItem(hDragItem, hWndTreeView);

 // Inform image list that dragging has stopped.

 ImageList_EndDrag();

 // Release the mouse capture.

 ReleaseCapture();

 // Show the cursor.

 ShowCursor(TRUE);

 // Reset the global Boolean flag to a non-dragging state.

 g_fDragging = FALSE;

 }

 break;

// Function that processes the item drop.

VOID DropItem(HTREEITEM hDragItem, HWND hwnd)

{

 HTREEITEM hParent, hNewItem, hTarget;

 TV_ITEM tvTarget;

 int index;

 // Get the handle to the drop target.

 hTarget = TreeView_GetDropHilight(hwnd);

 // Get the parent of the drop target.

 hParent = TreeView_GetParent(hwnd, hTarget);

 // Get the image information.

 tvTarget.hItem = hTarget;

 tvTarget.mask = TVIF_IMAGE;

 TreeView_GetItem(hwnd, &tvTarget);

 // Get the index into the structure maintained containing

 // the text for the items.

 for (index = 0; index < NUM_HOUSES; index++)

 {

 if (rgHouseInfo[index].hItem == hDragItem)

 break;

 }

 if (index == NUM_HOUSES)

 index--;

 // Insert the new item back in.

 hNewItem = AddOneItem(hParent, rgHouseInfo[index].szAddress, hTarget,

 tvTarget.iImage, hwnd);

 // Delete the "dragged" item.

 TreeView_DeleteItem(hwnd, hDragItem);

 // Reset the drop target to NULL.

 TreeView_SelectDropTarget(hwnd, (HTREEITEM)NULL);

}

As you can see from the code I've provided, processing a drag-and-drop operation for a tree view control is not difficult at all. So you have no excuse not to support it in your tree view.

Tree View Macros and Member Functions

This last section of this chapter shows the messages and member functions supported by tree views. The MFC class that supports list views is the CTreeCtrl class. To use list views in your application, you must link with the COMCTL32.LIB library. If you are writing your application in C, you must include the COMMCTL.H header file; if you are writing your application in MFC, you must include the AFXCMN.H file in your STDAFX.H file (if you are including STDAFX.H). For each message supported by tree views, the system provides a macro that an application can call. I used the macros in my samples rather than using the messages because I find the macros more readable, and it makes moving between C and MFC easier. As you can see in Table 4, the member functions nearly always use the end of the macro name for the member function name (that is, the DeleteItem member function corresponds to the TreeView_DeleteItem macro).

Table 4. Tree View Macros and Member Functions

Macro�Member function�Description��TreeView_CreateDragImage�CreateDragImage�Creates a dragging bitmap for the given item in a tree view.��TreeView_DeleteAllItems�DeleteAllItems�Deletes all items in a tree view.��TreeView_DeleteItem�DeleteItem�Deletes a specified item from a tree view window. This message has two macros, TreeView_DeleteItem and TreeView_DeleteAllItems, which you can use to delete one item or all items from a tree view window. If the item label is being edited when this message is sent, the edit operation is canceled and the parent window receives a TVN_ENDLABELEDIT notification. After that notification, a TVN_DELEITEM notification is sent to the parent window. If hItem is TVI_ROOT, all items are deleted from the control.��TreeView_EditLabel�EditLabel�Begins in-place editing of the specified item's text. The item text is replaced by a single-line edit control containing the original text in a selected and focused state. A TVN_BEGINLABELEDIT notification is sent to the parent window of the tree view control. You can safely subclass the edit control, but you must not destroy it. When the user has finished editing the label or has canceled, the handle to the edit window becomes invalid.��TreeView_EnsureVisible�EnsureVisible�Ensures that the tree view item is visible, and expands the parent item or scrolls the tree view window if necessary. If the message expands the parent item, TVN_ITEMEXPANDING and TVN_ITEMEXPANDED notifications will be sent to the parent window of the tree view window.��TreeView_Expand�Expand�Expands or collapses the list of child items associated with the specified parent item. This message sends TVN_ITEMEXPANDING and TVN_ITEMEXPANDED notifications to the parent window.��TreeView_GetChild�GetChildItem�Retrieves the child of a specified tree view item.��TreeView_GetCount�GetCount�Returns the number of items in the tree view window.��TreeView_GetDropHilight�GetDropHilightItem�Retrieves the target of a drag-and-drop operation.��TreeView_GetEditControl�GetEditControl�Retrieves the handle of the edit control being used for in-place item text editing.��TreeView_GetFirstVisible�GetFirstVisibleItem�Retrieves the first visible item of the specified tree view item.��TreeView_GetImageList�GetImageList�Retrieves the handle of the image list associated with the tree view window.��TreeView_GetIndent�GetIndent�Retrieves the amount, in pixels, that child items are indented relative to their parent items.��TreeView_GetItem�GetItem�Retrieves information about the specified tree view item depending on the mask member in the TV_ITEM structure passed in.��TreeView_GetItemRect�GetItemRect�Retrieves the bounding rectangle and visibility state of the specified item.��TreeView_GetNextItem�GetNextItem�Retrieves the next tree view item that matches a specified relationship.��TreeView_GetNextSibling�GetNextSiblingItem�Retrieves the next sibling of the specified tree view item.��TreeView_GetNextVisible�GetNextVisibleItem�Retrieves the next visible item of the specified tree view item.��TreeView_GetParent�GetParentItem�Retrieves the parent of the specified tree view item.��TreeView_GetPrevSibling�GetPrevSiblingItem�Retrieves the previous sibling of the specified tree view item.��TreeView_GetPrevVisible�GetPrevVisibleItem�Retrieves the previous visible item of the specified tree view item.��TreeView_GetRoot�GetRootItem�Retrieves the root of the specified tree view item.��TreeView_GetSelection�GetSelectedItem�Retrieves the currently selected tree view item.��TreeView_GetVisibleCount�GetItemCount�Retrieves the count of items that will fit into the client window of the tree window.��TreeView_HitTest�HitTest�Retrieves the point relative to the client area of the tree view window of the specified point. This message is generally used for drag-and-drop operations.��TreeView_InsertItem�InsertItem�Inserts a new item in a tree view window. If the item is being edited, the edit operation is canceled and the parent window receives a TVN_ENDLABELEDIT notification.��TreeView_Select�Select�Selects, scrolls into view, or redraws a specified tree view item.��TreeView_SelectDropTarget�SelectDropTarget�Selects the tree view item as the drop target��TreeView_SelectItem�SelectItem�Selects the tree view item.��TreeView_SetImageList�SetImageList�Sets the image list for a tree view window and redraws it.��TreeView_SetIndent�SetIndent�Sets the amount of indentation for a child item.��TreeView_SetItem�SetItem�Sets the attributes of a tree view item.��TreeView_SortChildren�SortChildren�Sorts the child items of the given parent item.��TreeView_SortChildrenCB�SortChildrenCB�Sorts tree view items using an application-defined comparison function.��Now that I've shown you how to create and manipulate image lists, tree views, and list views, you can give your current applications a face-lift with these new controls. If you are creating a new application, you can differentiate it from all those old, boring applications that didn't have these fancy list management controls by including them in your brand-new, cool-looking, Windows 95 application.

Programming the Windows 95 User Interface,

Nancy Cluts	Chapter 3	�PAGE�50�

