Chapter 2: General-purpose Common Controls: Trackbars, Progress Indicators, Up-Down Controls, and Animation Controls

03/16/95 started online edit (judyn)�03/22/95 made Nancy's edit changes (judyn)

Several new common controls were designed for general use, such as measuring intensity levels or scrolling through a list of items. Let's say that you want to control the intensity of the light from a computer-controlled light bulb (come see my house if you think this is far-fetched). You could use a trackbar (more commonly referred to as a slider). Or let's say that your application needs to go off and process a number of database files, and you want to let the user know how far it's gotten. You could use the new progress indicator to show this. In fact, the shell pops up a window containing two of these general-purpose controls—the progress indicator and the animation control—when it copies files from one volume to another. This is shown in Figure 1.

� EMBED Word.Picture.6 ���

Figure 1. A combination of general-purpose controls in a window

Trackbars

The first of the general-purpose controls that I will cover is the trackbar. A trackbar is a horizontal window that is used as a scrolling control. It contains a slider and tick marks. When the user drags the slider to the left or to the right, the control sends WM_HSCROLL (for horizontal trackbars) and WM_VSCROLL (for vertical trackbars) messages to indicate the change in the position of the slider. The tick marks indicate how many points you can move left or right. Figure 2 shows a simple trackbar with a range of 1 to 10.

� EMBED Word.Picture.6 ���

Figure 2. The anatomy of a trackbar

Trackbars are based on scroll bar controls, and many of the styles and notifications for trackbars are similar to those of scroll bars. By default, the tick marks are on the right for vertical trackbars and on the bottom for horizontal trackbars. When a user drags the slider or clicks to the right or left of it, the slider moves in the appropriate direction, tick by tick. In other words, scrolling is not continuous—you scroll in increments indicated by the tick marks. For example, a trackbar with 10 ticks and a range of 1–100 allows the user to scroll only in increments of 10. You can change the granularity or frequency of ticks programmatically.

You can set a portion of the trackbar to be selected. When you select a range, a blue line is drawn in the channel of the trackbar, and two arrows are drawn where the tick marks are placed to indicate the beginning and end of the selection range. Figure 3 is an example of this control with the selection set. The blue line in the trackbar shows the range of the current settings. To change the selection, the application sends a message, TB_SETSEL, or uses the SetSel member function.

�

Figure 3. Trackbar with selection range

There are several styles to choose from when creating a trackbar; you can combine these for different looks depending upon the effect you want:

•	TBS_AUTOTICKS—Adds tick marks when you set the range on the trackbar through the TBM_SETRANGE message (or the SetRange method).

•	TBS_VERT—Specifies a vertical trackbar.

•	TBS_HORZ—Specifies a horizontal trackbar. This is the default value.

•	TBS_TOP—Places ticks on the top of a horizontal trackbar.

•	TBS_BOTTOM—Places ticks on the bottom of a horizontal trackbar.

•	TBS_LEFT—Places ticks on the left of a vertical trackbar.

•	TBS_RIGHT—Places ticks on the right of a vertical trackbar.

•	TBS_BOTH—Places ticks on both sides of the trackbar.

•	TBS_NOTICKS—Specifies that no ticks will be placed on the trackbar.

•	TBS_ENABLESELRANGE—Allows you to set the range on the trackbar.

I created a small sample called SLIDERmsdn_sample_slider to demonstrate the different trackbar styles and how they work. The design goals for SLIDER were to show:

•	A trackbar with default styles.

•	A horizontal trackbar with tick marks on the top and a selection set.

•	A vertical trackbar with ticks on the left.

•	How to set the range for a trackbar.

•	How to set the line size for a trackbar (how many ticks the slider moves in response to the line up and line down keys).

•	How to set the page size for a trackbar (how many ticks the slider moves in response to the page up and page down keys).

•	What notifications are sent when a trackbar is manipulated.

In the SLIDER sample, the status bar at the bottom of the screen indicates the current notification being sent to the trackbar that has the keyboard focus. As with the other samples you have seen so far, there is an MFC-equivalent sample called MFCTRACKmsdn_sample_mfctrack that demonstrates how to create and manipulate trackbars using the MFC CSliderCtrl class.

� EMBED Word.Picture.6 ���

Figure 4. The SLIDER sample

Creating a Trackbar Window

You can create a trackbar by using the CreateWindow or CreateWindowEx function and specifying the TRACKBAR_CLASS class name or by using the Create member function on your CSliderCtrl object. When you have created a trackbar, you can set the minimum and maximum positions for the slider, draw tick marks, and set the selection by using trackbar messages or member functions. As with most of the common controls, you need to include the COMMCTRL.H header file to use trackbars in your application, and you need to include the COMCTL32.LIB file in your list of libraries to link to. The following C code creates and initializes a trackbar with a range and step value.

 case WM_CREATE:

 hWndStatus = CreateWindow(

 STATUSCLASSNAME,

 "",

 WS_CHILD | WS_BORDER | WS_VISIBLE,

 -100,-100,10,10,

 hWnd,

 (HMENU)100,

 hInst,

 NULL);

 hWndSlider1 = CreateWindow(

 TRACKBAR_CLASS,

 "",

 WS_CHILD | WS_VISIBLE | TBS_AUTOTICKS,

 10,50,200,20,

 hWnd,

 (HMENU)10,

 hInst,

 NULL);

 if (hWndSlider1 == NULL)

 MessageBox (NULL, "Slider1 not created!", NULL, MB_OK);

 hWndSlider2 = CreateWindow(

 TRACKBAR_CLASS,

 "",

 WS_CHILD | WS_VISIBLE | TBS_AUTOTICKS | TBS_TOP |

 TBS_ENABLESELRANGE,

 10,100,200,20,

 hWnd,

 (HMENU)11,

 hInst,

 NULL);

 if (hWndSlider2 == NULL)

 MessageBox (NULL, "Slider2 not created!", NULL, MB_OK);

 hWndSlider3 = CreateWindow(

 TRACKBAR_CLASS,

 "",

 WS_CHILD | WS_VISIBLE | TBS_VERT | TBS_LEFT | TBS_AUTOTICKS,

 10,150,20,100,

 hWnd,

 (HMENU)12,

 hInst,

 NULL);

 if (hWndSlider3 == NULL)

 MessageBox (NULL, "Slider3 not created!", NULL, MB_OK);

 // Set the default range.

 SendMessage(hWndSlider1, TBM_SETRANGE, TRUE, MAKELONG(1,10));

 SendMessage(hWndSlider2, TBM_SETRANGE, TRUE, MAKELONG(1,10));

 SendMessage(hWndSlider3, TBM_SETRANGE, TRUE, MAKELONG(1,10));

 // Set the selection.

 SendMessage(hWndSlider2, TBM_SETSEL, TRUE, MAKELONG(3,5));

 break;

In the MFC version, MFCTRACK, I created the trackbar in the view class. I also needed to include the AFXCMN.H file in my STDAFX.H file.

// MFCTRVW.H

class CMfctrackView : public CView

{

protected: // create from serialization only

 CMfctrackView();

 DECLARE_DYNCREATE(CMfctrackView);

 CSliderCtrl m_Slider1;

 CSliderCtrl m_Slider2;

 CSliderCtrl m_Slider3;

// Attributes

public:

 CMfctrackDoc* GetDocument();

// Operations

public:

 CSliderCtrl * GetSlider(int iSlider);

// Overrides

 // ClassWizard generated virtual function overrides.

 //{{AFX_VIRTUAL(CMfctrackView)

 public:

 virtual void OnDraw(CDC* pDC); // overridden to draw this view

 //}}AFX_VIRTUAL

// Implementation

public:

 virtual ~CMfctrackView();

#ifdef _DEBUG

 virtual void AssertValid() const;

 virtual void Dump(CDumpContext& dc) const;

#endif

protected:

 VOID TrackScrolling(UINT nSBCode);

// Generated message map functions

protected:

 //{{AFX_MSG(CMfctrackView)

 afx_msg int OnCreate(LPCREATESTRUCT lpCreateStruct);

 afx_msg void OnDestroy();

 afx_msg void OnHScroll(UINT nSBCode, UINT nPos, CScrollBar* pScrollBar);

 afx_msg void OnRange();

 afx_msg void OnFrequency();

 afx_msg void OnLinesize();

 afx_msg void OnPagesize();

 afx_msg void OnVScroll(UINT nSBCode, UINT nPos, CScrollBar* pScrollBar);

 //}}AFX_MSG

 DECLARE_MESSAGE_MAP()

};

// MFCTRVW.C

int CMfctrackView::OnCreate(LPCREATESTRUCT lpCreateStruct)

{

 if (CView::OnCreate(lpCreateStruct) == -1)

 return -1;

 // Create the sliders.

 m_Slider1.Create(WS_CHILD | WS_VISIBLE | TBS_AUTOTICKS,

 CRect(10,50,200,70),

 this,

 ID_SLIDER1);

 m_Slider2.Create(WS_CHILD | WS_VISIBLE | TBS_AUTOTICKS | TBS_TOP |

 TBS_ENABLESELRANGE,

 CRect(10,100,200,130),

 this,

 ID_SLIDER2);

 m_Slider3.Create(WS_CHILD | WS_VISIBLE | TBS_VERT | TBS_LEFT | TBS_AUTOTICKS,

 CRect(10,150,30,350),

 this,

 ID_SLIDER3);

 // Set the default range.

 m_Slider1.SetRange(1,10, TRUE);

 m_Slider2.SetRange(1,25, TRUE);

 m_Slider3.SetRange(1,30, TRUE);

 // Set the selection.

 m_Slider2.SetSelection(10, 20);

 return 0;

}

When the trackbars have been created, the user can change or view the selection, range, page size, line size, and tick frequency through dialog boxes activated from the Options menu. These dialog boxes are created in the view class. For each of the dialog boxes I created, I created a class derived from CDialog and created member variables for each of the values I needed from the controls. For example, the Set Slider Range dialog box prompts the user for the minimum and maximum values and the trackbar for which to set the range by using edit controls. ClassWizard allowed me to set up a member variable for the slider such that it is an integer between zero and two. (It sure is nice of MFC to provide this range checking for me!) I did not set up restrictions on the actual minimum and maximum range values because you can set the minimum value for the range to be greater than the maximum value (that is, minimum = 10 and maximum = –1). If you set the minimum value greater than the maximum value, your trackbar will track backward (that is, if you have a vertical trackbar, the slider will start at the bottom and move upward). When I run the Set Slider Range dialog box, I simply set the range on the specified slider by using the SetRange member function as shown in the following code.

CRange::CRange(CWnd* pParent /*=NULL*/)

 : CDialog(CRange::IDD, pParent)

{

 //{{AFX_DATA_INIT(CRange)

 m_Min = 0;

 m_Max = 0;

 m_Slider = 1;

 //}}AFX_DATA_INIT

}

void CRange::DoDataExchange(CDataExchange* pDX)

{

 CDialog::DoDataExchange(pDX);

 //{{AFX_DATA_MAP(CRange)

 DDX_Text(pDX, IDE_MIN, m_Min);

 DDX_Text(pDX, IDE_MAX, m_Max);

 DDX_Text(pDX, IDE_SLIDER, m_Slider);

 DDV_MinMaxInt(pDX, m_Slider, 1, 2);

 //}}AFX_DATA_MAP

}

BEGIN_MESSAGE_MAP(CRange, CDialog)

 //{{AFX_MSG_MAP(CRange)

 //}}AFX_MSG_MAP

END_MESSAGE_MAP()

void CMfctrackView::OnRange()

{

 CRange rangeDlg;

 if (rangeDlg.DoModal() == IDOK)

 {

 switch (rangeDlg.m_Slider)

 {

 case 1:

 m_Slider1.SetRange(rangeDlg.m_Min, rangeDlg.m_Max, TRUE);

 break;

 case 2:

 m_Slider2.SetRange(rangeDlg.m_Min, rangeDlg.m_Max, TRUE);

 break;

 case 3:

 m_Slider3.SetRange(rangeDlg.m_Min, rangeDlg.m_Max, TRUE);

 break;

 default:

 break;

 }

 }

}

�

Figure 5. The Set Slider Range dialog box

The only remaining thing that I would like to show you is how I updated my status bar to show which trackbar notification was being sent to each trackbar. In C, all of this code is in SLIDER.C, and the handles to the trackbars and status bars are all within the scope of my window procedure. When using MFC, I needed to find a different method because the pointer to my status bar object is not in scope when I need to set its text. I created a message map entry for the WM_HSCROLL and WM_VSCROLL messages, and copied the notification to a character buffer. Then, I got a pointer to my status bar and set the text accordingly.

void CMfctrackView::OnHScroll(UINT nSBCode, UINT nPos, CScrollBar* pScrollBar)

{

 TrackScrolling(nSBCode);

 CView::OnHScroll(nSBCode, nPos, pScrollBar);

}

void CMfctrackView::OnVScroll(UINT nSBCode, UINT nPos, CScrollBar* pScrollBar)

{

 TrackScrolling(nSBCode);

 CView::OnVScroll(nSBCode, nPos, pScrollBar);

}

VOID CMfctrackView::TrackScrolling(UINT nSBCode)

{

 BOOL bMsg = TRUE;

 char *pMsg = NULL;

 switch(nSBCode)

 {

 case TB_BOTTOM:

 pMsg = "TB_BOTTOM";

 break;

 case TB_ENDTRACK:

 pMsg = "TB_ENDTRACK";

 break;

 case TB_LINEDOWN:

 pMsg = "TB_LINEDOWN";

 break;

 case TB_LINEUP:

 pMsg = "TB_LINEUP";

 break;

 case TB_PAGEDOWN:

 pMsg = "TB_PAGEDOWN";

 break;

 case TB_PAGEUP:

 pMsg = "TB_PAGEUP";

 break;

 case TB_THUMBPOSITION:

 pMsg = "TB_THUMBPOSITION";

 break;

 case TB_THUMBTRACK:

 pMsg = "TB_THUMBTRACK";

 break;

 default:

 bMsg = FALSE;

 break;

 }

 if (bMsg == TRUE)

 {

 CStatusBar *pStatus = (CStatusBar *)GetParentFrame()->

 GetDescendantWindow(ID_VIEW_STATUS_BAR);

 char szBuf[256];

 sprintf(szBuf,"Trackbar message: %s",pMsg);

 pStatus->SetPaneText(0, szBuf);

 pStatus->UpdateWindow();

 }

}

Trackbar Messages and Member Functions

Now that I've shown you some of the things you can do with trackbars, I'd like to give you an idea of the things that I haven't discussed. Table 1 lists the different messages that can be sent to trackbars and the corresponding member functions supported by the MFC-supplied class, CSliderCtrl. I did not include return values or parameter information in this list. Detailed information about the parameters and return values can be found in the documentation provided by the Windows 95 Software Development Kit and the MFC 3.1 documentation.

Table 1. Trackbar Messages and Methods

Message�Member function�Description��TBM_CLEARSEL�ClearSel�Clears the current selection in a trackbar.��TBM_CLEARTICS�ClearTics�Removes the tick marks from a trackbar.��TBM_GETCHANNELRECT�GetChannelRect�Retrieves the rectangle bounding the channel that the slider slides in.��TBM_GETLINESIZE�GetLineSize�Retrieves the amount to move the slider when the user presses the line up or line down key. The default increment is one tick.��TBM_GETNUMTICS�GetNumTics�Retrieves the number of tick marks in a trackbar.��TBM_GETPAGESIZE�GetPageSize�Retrieves the amount to move the slider when the user presses the page up or page down key. The default is calculated to be the difference between the maximum range and the minimum range divided by five. ��TBM_GETPOS�GetPos�Retrieves the current position of the slider in a trackbar.��TBM_GETPTICS�GetTicArray�Retrieves the address of the array containing the positions of tick marks for a trackbar.��TBM_GETRANGEMAX�GetRangeMax�Retrieves the maximum position for the slider in a trackbar.��TBM_GETRANGEMIN�GetRangeMin�Retrieves the minimum position for the slider in a trackbar.��TBM_GETSELEND�GetSelEnd�Retrieves the ending position of the current selection in a trackbar.��TBM_GETSELSTART�GetSelStart�Retrieves the starting position of the current selection in a trackbar.��TBM_GETTHUMBRECT�GetThumbRect�Retrieves the rectangle bounding the slider (thumb).��TBM_GETTIC�GetTic�Retrieves the position of a tick mark in a trackbar. ��TBM_GETTICPOS�GetTicPos�Retrieves the current physical position of a tick mark in a trackbar.��TBM_SETLINESIZE�SetLineSize�Sets the amount to move the slider when the user presses the line up or line down key. The default increment is one tick.��TBM_SETPAGESIZE�SetPageSize�Sets the amount to move the slider when the user presses the page up or page down key. The default is calculated to be the difference between the maximum range and the minimum range divided by five.��TBM_SETPOS�SetPos�Sets the current position of the slider in a trackbar.��TBM_SETRANGE�SetRange�Sets the minimum and maximum positions for the slider in a trackbar.��TBM_SETRANGEMAX�SetRangeMax�Sets the maximum position for the slider in a trackbar.��TBM_SETRANGEMIN�SetRangeMin�Sets the minimum position for the slider in a trackbar.��TBM_SETSEL�SetSel�Sets the starting and ending positions of the selection in a trackbar.��TBM_SETSELEND�SetSelEnd�Sets the position of the end of the selection in a trackbar.��TBM_SETSELSTART�SetSelStart�Sets the starting position of the current selection in a trackbar.��TBM_SETTIC�SetTic�Sets the position of a tick mark in a trackbar.��TBM_SETTICFREQ�SetTicFreq�Sets the frequency of ticks in the trackbar.��From the preceding table, you can see many messages that support trackbar ranges and positions. Although trackbars are based on scroll bars, it is important to note that trackbars update their positions automatically. With a scroll bar, it is up to the application to update the scroll bar position upon receipt of the WM_HSCROLL or WM_VSCROLL message.

Progress Bars

A progress bar is a window that an application can use to indicate the progress of a lengthy operation. Progress bars are often used in setup or installation programs that copy a large number of files. The application sets the range and current position of the progress bar (similar to a scroll bar) and has the ability to advance the current position. The progress bar can include text that indicates progress either as a percentage of the entire range or as the value of the current position.

A progress bar has a range and a current position. The range represents the entire duration of the operation, and the current position represents the progress that the application has made toward completing the operation. The window procedure uses the range and current position to determine the percentage of the progress bar to fill with the highlight color, or to determine the text to display within the progress bar. By default, the minimum range of a progress bar is 0, and the maximum range is 100. The increment value is set to 10.

The sample that I wrote to demonstrate how to create and manipulate progress bars, called PROGRESS,msdn_sample_progress simply creates a progress bar, sets its range, and allows the user to start and stop the progress bar from filling. I used a timer to simulate the lengthy operation. Figure 6 shows a screen shot of the PROGRESS sample.

�

Figure 6. The PROGRESS sample

Creating a Progress Bar Window

You can create a progress bar by using the CreateWindow or CreateWindowEx function and specifying the PROGRESS_CLASS window class, or by creating a CProgressCtrl object and using the Create member function. As with most of the common controls, you need to include the COMMCTRL.H header file to use this control in your application, and you need to include the COMCTL32.LIB file in your list of libraries to link to. The following C code creates a simple progress bar window in the parent's window procedure. A timer is created to send messages to advance the progress bar.

// Function that creates a progress bar.

// Parameters:

// HWND hWndParent - Parent window of the progress bar.

// RECT rclPos - Size and position of the progress bar.

// WORD wID - ID of the progress bar.

// HINSTANCE hInst - Current instance.

// LONG lRange - Sets the range.

// LONG lStep - Sets the stepping.

//

HWND MyCreateProgressBar(HWND hWndParent, RECT rclPos, WORD wID,

 HINSTANCE hInst, LONG lRange, LONG lStep)

(

 HWND hWndProgress;

 hWndProgress = CreateWindowEx(

 OL,

 PROGRESS_CLASS,

 "",

 WS_CHILD | WS_VISIBLE,

 rclPos.x, rclPos.y, rclPos.cx, rclPos,cy,

 hWndParent,

 (HMENU)wID,

 hInst,

 NULL);

 if (hWndProgress == NULL)

 // Set the range for the progress bar.

 SendMessage(hWndProgress, PBM_SETRANGE, 0L, lRange);

 // Set the step.

 SendMessage(hWndProgress, PBM_SETSTEP, lStep, 0L);

 return (hWndProgress);

}

.

.

.

RECT rcl; // Holds size of the progress bar.

switch(message)

{

 case WM_CREATE:

 rcl.x = 10; rcl.y = 100; rcl.cx = 500; rcl.cy = 20;

 hWndProgress = CreateProgressBar(hWnd, rcl, ID_PROGRESS,

 hInst, MAKELONG(0,20),1);

 break;

 case WM_TIMER:

 if (uCurrent < uMax)

 {

 // Increment (step) the progress bar.

 SendMessage(hWndProgress, PBM_STEPIT,0L,0L);

 uCurrent++;

 }

 else

 {

 // We are at the end of the range - kill the timer.

 KillTimer(hWnd, ID_TIMER);

 uCurrent = 0;

 }

 break;

 case WM_COMMAND:

 switch(LOWORD(wParam))

 {

 case IDM_STOP:

 // Stop the progress indicator.

 SendMessage(hWndProgress, PBM_SETPOS,0L,0L);

 KillTimer(hWnd, ID_TIMER);

 break;

 case IDM_START:

 uCurrent = uMin;

 SetTimer(hWnd, ID_TIMER, 500, NULL);

 break;

 .

 .

 .

 }

Pretty simple stuff, eh? Think how simple it must have been to port to MFC! Well, take a look in the following code at the same work done in the MFCPROGmsdn_sample_mfcprog sample. Don't forget to include AFXCMN.H in your STDAFX.H file before you try this. I added a member variable, m_Current, to keep track of the current position of the progress indicator and added this variable to my view class. As you can see, it's pretty easy here, too.

///

// CMfcprogView message handlers

void CMfcprogView::OnTimer(UINT nIDEvent)

{

 if (m_Current < m_Max)

 {

 m_Progress.StepIt();

 m_Current++;

 }

 else

 {

 KillTimer(1000);

 m_Current = 0;

 }

 CView::OnTimer(nIDEvent);

}

void CMfcprogView::OnStart()

{

 m_Current = m_Min;

 SetTimer(ID_TIMER, 500, NULL);

}

void CMfcprogView::OnStop()

{

 m_Progress.SetPos(0);

 KillTimer(ID_TIMER);

}

int CMfcprogView::OnCreate(LPCREATESTRUCT lpCreateStruct)

{

 if (CView::OnCreate(lpCreateStruct) == -1)

 return -1;

 m_Progress.Create(WS_CHILD | WS_VISIBLE | PBS_SHOWPOS,

 CRect(10,100,500,120),

 this,

 ID_PROGRESS);

 m_Min=0;

 m_Max=20;

 m_Progress.SetRange(m_Min, m_Max);

 m_Progress.SetStep(1);

 return 0;

}

Now that I've shown you some code and some ways to use progress bars, I feel compelled to give you another list.

Progress Bar Messages and Member Functions

Just like the other controls, I am now going to list the messages and member functions supported by the progress bar control. This should give you a feel for the different things you can do with progress bars. Detailed information about the parameters and return values can be found in the documentation provided by the Windows 95 Software Development Kit and the MFC 3.1 documentation.

Table 2. Progress Bar Messages and Member Functions

Message�Member function�Description��PBM_DELTAPOS�OffsetPos�Advances the position for a progress bar by the specified increment and redraws the bar. ��PBM_SETPOS�SetPos�Sets the position for a progress bar and redraws it to reflect the new position. ��PBM_SETRANGE�SetRange�Sets the range (minimum and maximum values) for a progress bar and redraws the bar. ��PBM_SETSTEP�SetStep�Specifies the step increment for a progress bar. The step increment is the amount by which the progress bar increases its position whenever it receives a PBM_STEPIT message (StepIt function). By default, the step increment is set to 10.��PBM_STEPIT�StepIt�Advances the position for a progress bar by the step increment and redraws it. An application sets the step increment by sending the PBM_SETSTEP message. When the position exceeds the maximum range value, this message resets the position so that the progress indicator starts over again from the beginning.��Up-Down Controls

An up-down control is a small window that contains up and down arrows that the user can click to increment or decrement a value. An up-down control is similar to a scroll bar, but it consists only of arrows. (It also has a much sillier name.) You can use an up-down control alone as a simplified scroll bar, or with another control (called a buddy control—yet another silly name). In Figure 7, the up-down control is paired with an edit control to create a spin box; however, you can use any other type of control as the designated buddy control. When the user clicks an arrow or uses the arrow keys on the keyboard, the up-down control increments or decrements the value in the edit control.

� EMBED Word.Picture.6 ���

Figure 7. A dialog box that uses an up-down control

The range of an up-down control specifies the upper and lower bound for the position. The position of an up-down control is the integer the user adjusts by using the up and down arrows. Unlike a scroll bar's position, the position of an up-down control is updated automatically. This means that the positional value is updated and, if the up-down control has the UDS_AUTOBUDDY style set, the buddy control will be automatically updated when the up-down control's position is updated. The upper bound may be less than the lower bound, in which case the up arrow decrements the position and the down arrow increments it.

You can specify different window styles to control the characteristics of an up-down control or the buddy control. For example, you can change the way the up-down control positions itself relative to its buddy control (UDS_ALIGNLEFT), determine whether it sets the text of its buddy control (UDS_SETBUDDYINT), and determine whether it processes the up arrow and down arrow keys on the keyboard (UDS_ARROWKEYS).

By default, the position of the up-down control does not change if the user attempts to increment or decrement it beyond the upper or lower limit. You can change this behavior by using the UDS_WRAP style, which "wraps" the position to the opposite extreme (for example, if your range is 1–10, incrementing the position past 10 wraps it back to 1).

The range of an up-down control may not exceed 32,767 positions. The range may be inverted; that is, the lower limit of the range may be greater than the upper limit. However, note that the up arrow always moves the current position toward the upper limit, and the down arrow always moves the current position toward the lower limit. If the range is zero (that is, the lower limit is equal to the upper limit) or the control is disabled, the control draws dimmed arrows for both buttons.

The buddy control must have the same parent as the up-down control. If the buddy control resizes, and if the UDS_ALIGNLEFT or UDS_ALIGNRIGHT style is used, you must send the UDM_SETBUDDY message (SetBuddy member function) to re-anchor the up-down control on the appropriate border of the buddy control. The UDS_AUTOBUDDY style calls the GetWindow function with GW_HWNDPREV to choose the buddy control. In the case of a dialog resource, the UDS_AUTOBUDDY style chooses the previous control listed in the resource script. If the z-order of the windows changes, sending a UDM_SETBUDDY message with a NULL handle will cause a new buddy to be selected; otherwise, the original autobuddy choice is maintained.

The sample I created to demonstrate up-down controls, UPDOWN,msdn_sample_updown allows the user to change the number of times the word "Welcome!" is written to the client area of the screen. Figure 8 shows the UPDOWN sample.

�

Figure 8. The UPDOWN sample

Creating an Up-Down Window

The following code demonstrates how easy it is to create a spin box (an up-down control with an edit box as its buddy) as part of a dialog box on the fly. You may want to do this if you are using one dialog box for several different applications (that is, one use shows the current value as static information, and another time you want to allow this data to be changed). As with most of the common controls, you need to include the COMMCTRL.H header file to use this control in your application, and you need to include the COMCTL32.LIB file in your list of libraries to link to. When the user chooses OK from the dialog box, the current selection in the spin box is retrieved and saved, and the dialog box is dismissed.

BOOL APIENTRY Spin(

 HWND hDlg,

 UINT message,

 UINT wParam,

 LONG lParam)

{

 static HWND hWndUpDown, hWndBuddy;

 BOOL bErr;

 switch (message)

 {

 case WM_INITDIALOG:

 // Get a handle to the edit "buddy" control.

 hWndBuddy = GetDlgItem(hDlg, IDE_BUDDY);

 // Create the up-down control.

 hWndUpDown = CreateWindowEx(

 0L,

 UPDOWN_CLASS,

 "",

 WS_CHILD | WS_BORDER | WS_VISIBLE | UDS_WRAP | UDS_ARROWKEYS |

 UDS_ALIGNRIGHT | UDS_SETBUDDYINT,

 0, 0, 8, 8,

 hDlg,

 (HMENU)ID_UPDOWN,

 hInst,

 NULL);

 // Set the buddy window.

 SendMessage(hWndUpDown, UDM_SETBUDDY, (LONG)hWndBuddy, 0L);

 // Set the range.

 SendMessage(hWndUpDown, UDM_SETRANGE, 0L, MAKELONG (MAX_SPIN, MIN_SPIN));

 // Set the deafult value in the edit box.

 SetDlgItemInt(hDlg, IDE_BUDDY, 1, FALSE);

 return (TRUE);

 case WM_COMMAND:

 switch (LOWORD(wParam))

 {

 case IDOK:

 iNumLines = (int)GetDlgItemInt(hDlg, IDE_BUDDY,

 &bErr, FALSE);

 InvalidateRect(hWndMain, NULL, TRUE);

 case IDCANCEL:

 EndDialog(hDlg, TRUE);

 break;

 }

 break;

 }

 return (FALSE);

}

If you don't need to create your spin box dynamically, and if you are using Visual C++ version 2.1 or later, you can take advantage of the resource editor. The resource editor supports the up-down control in its tools, and you can drop one into your dialog box as you would with any other control. When I ported the UPDOWN sample to MFC (MFCSPIN),msdn_sample_mfcspin I used the resource editor. I created a class, CSpin, derived from CDialog and set up a member variable, m_Lines, to hold the number of lines. The following shows the terribly complex code that I had to use in order to use the spin box.

///

// CSpin message handlers.

BOOL CSpin::OnInitDialog()

{

 CDialog::OnInitDialog();

 // Set the buddy control.

 m_Spin.SetBuddy(GetDlgItem(IDC_LINES));

 // Set the range.

 m_Spin.SetRange(1,20);

 return TRUE; // Return TRUE unless you set the focus to a control.

 // EXCEPTION: OCX Property Pages should return FALSE.

}

void CFcspinView::OnSpin()

{

 CSpin spinDlg;

 if (spinDlg.DoModal() == IDOK)

 {

 m_NumLines = spinDlg.m_Lines;

 CFcspinDoc* pDoc = GetDocument();

 ASSERT_VALID(pDoc);

 pDoc->UpdateAllViews(NULL);

 }

}

My, wasn't that difficult? Of course it wasn't! The code shows you how easy it is use the new controls and how much easier it is to have the resource editor help you out.

Up-Down Messages and Member Functions

There aren't a whole lot of messages and member functions for up-down controls. Table 3 lists the different messages that can be sent to up-down controls and the member functions supported by the MFC-supplied class, CUpDownCtrl. I did not include return values or parameter information in this list. Detailed information about the parameters and return values can be found in the documentation provided by the Windows 95 Software Development Kit and the MFC 3.1 documentation.

Table 3. Up-Down Messages and Methods

Message�Member function�Description��UDM_GETACCEL�GetAccel�Retrieves information about the accelerators for an up-down control. You can set up accelerator keys for your up-down control.��UDM_GETBASE�GetBase�Retrieves the current base value for an up-down control. This can be either 10 for decimal or 16 for hexadecimal.��UDM_GETBUDDY�GetBuddy�Retrieves the window handle of the current buddy control.��UDM_GETPOS�GetPos�Gets the current position of an up-down control.��UDM_GETRANGE�GetRange�Retrieves the upper and lower limits for an up-down control.��UDM_SETACCEL�SetAccel�Sets the accelerators for an up-down control.��UDM_SETBASE�SetBase�Sets the base value for an up-down control. The base value determines whether the buddy control displays numbers in decimal or hexadecimal digits. Hexadecimal numbers are always unsigned; decimal numbers are signed. If the buddy control is a list box, the up-down control sets its current selection instead of its text. Specify 10 for decimal and 16 for hexadecimal.��UDM_SETBUDDY�SetBuddy�Sets the buddy control for an up-down control.��UDM_SETPOS�SetPos�Sets the current position for an up-down control.��UDM_SETRANGE�SetRange�Sets the upper and lower limits for an up-down control.��Animation Controls

I know that when some of you saw the words "animation control" you got all excited and wondered what this control could be. An animation control is a rectangular window that displays an AVI (audio-video interleaved) clip. AVI is the standard Windows audio/video format. An AVI clip is a series of bitmap frames, like a movie. Although AVI clips can have sound, animation controls ignore any sound information when they play AVI clips.

Because the thread continues to execute while the AVI clip is displayed, one common use for an animation control is to indicate system activity during a lengthy operation. For example, the Copy dialog box of the Windows Explorer (Figure 9) shows papers flying from one folder to another folder.

�

Figure 9. A dialog box containing an animation control

An animation control can display an AVI clip originating from either an uncompressed .AVI file or from an .AVI file that was compressed using run-length encoding (RLE). You can add the AVI clip to your application as an AVI resource, or the clip can accompany your application as a separate .AVI file. You can create the AVI file using one of the many tools on the market, such as those available with the Video for Windows SDK or Adobe® Premier.

Because you are limited by the type of compression (RLE or none), you won't be able to play some of the really neat animations, like a Bugs Bunny animation or that Ultimate Skiing animation, in the control. If you need a control to provide multimedia playback and recording capabilities for your application, you should use the MCIWnd control instead.

Creating an Animation Control

An animation control belongs to the ANIMATE_CLASS window class. You create an animation control by using the CreateWindow or CreateWindowEx function, using the Animate_Create macro, or, if you are using MFC, using the Create member function on your CAnimateCtrl object. The Animate_Create macro positions the animation control in the upper left corner of the parent window and, if the ACS_CENTER style is not specified, sets the width and height of the control based on the dimensions of a frame in the AVI clip.

It is more likely, though, that you will be creating your animation control to run within a dialog box. You can use the dialog box editor to drop an animation control right into your dialog box and set the styles of the control through the control properties. If you create an animation control within a dialog box or from a dialog box resource, the control is automatically destroyed when the user closes the dialog box. If you create an animation control within a window, you must explicitly destroy the control. Otherwise, you will be guilty of being a resource hog.

The following window styles can be used with animation controls:

•	ACS_AUTOPLAY—Starts playing the animation when the animation clip is opened.

•	ACS_CENTER—Centers the animation in the animation control's window.

•	ACS_TRANSPARENT—Draws the animation using a transparent background rather than the background color specified in the animation clip.

When I wrote my sample to demonstrate the animation control, I first wrote it in MFC and then ported it back to C. As a result, I'm going to show the MFC code first and then later show you some of the code in C. The design goals of my sample were to:

•	Create an animation control in a dialog box.

•	Allow the user to start and stop the animation by using pushbuttons.

•	Allow the user to single-step through the animation frames.

Figure 10 is a screen shot of my animation sample.

� EMBED Word.Picture.6 ���

Figure 10. The Animation sample

This was all very easy. In fact, the most difficult part of this work was finding an animation that would work. Here is the code that I used in my MFC sample, MFCANIM,msdn_sample_mfcanim to play the animation, stop the playback, and single-step through the frames. I chose to allow the user to single-step from the beginning through the last frame. You will notice that because I put my animation control in a dialog box, I did not have to call the Create member function. As with the other controls, don't forget that you need to include AFXCMN.H in your STDAFX.H file for this class to be defined.

///

// CMfcanimView message handlers

void CMfcanimView::OnDemo()

{

 CDemo demoDlg;

 // Run the Animation Demo dialog.

 demoDlg.DoModal();

}

///

// CDemo dialog

CDemo::CDemo(CWnd* pParent /*=NULL*/)

 : CDialog(CDemo::IDD, pParent)

{

 //{{AFX_DATA_INIT(CDemo)

 // NOTE: ClassWizard will add member initialization here.

 //}}AFX_DATA_INIT

 m_bStart = FALSE; // BOOL - whether the animation has started or not.

 m_iSeek = 1; // Used for single-stepping through the frames.

}

void CDemo::OnSeek()

{

 // If the animation is running...

 if (m_bStart)

 {

 // Seek to the specified frame.

 m_AnimateCtrl.Seek(m_iSeek);

 if (m_iSeek < NUM_FRAMES)

 m_iSeek++;

 }

}

void CDemo::OnStart()

{

 // If the animation hasn't started yet...

 if (!m_bStart)

 {

 m_bStart = TRUE;

 // Open the animation file.

 m_AnimateCtrl.Open(IDR_AVICLIP);

 // Play it from the beginning to end with inifinite replay.

 m_AnimateCtrl.Play(0, (UINT)-1, (UINT)-1);

 }

}

void CDemo::OnStop()

{

 // If the animation has started...

 if (m_bStart)

 {

 m_bStart = FALSE;

 // Stop it.

 m_AnimateCtrl.Stop();

 }

}

In the preceding code, you will notice that I passed an identifier to my AVI resource rather than passing in the name of the AVI file. This means that the clip will be built into the sample. When I first wrote the sample, I just passed in the name of the clip. But this wasn't the best option, because I had to pass in the full path (if you don't pass in the full path, the call to open the AVI file will fail and the clip will not run). To add the clip to my resource, I added the following line to my MFCANIM.RC2 file:

///

// Add manually edited resources here...

IDR_AVICLIP AVI res\win95.avi

///

After adding this line, I added the symbol for the AVI file to the resource by choosing Symbols from the Resource menu. Click the New button, and you will be prompted by the following dialog box to add the new symbol.

�

Figure 11. Adding a symbol to your resource

Then rebuild. Don't forget to scan all of your dependencies before doing this. I didn't at first; the project did not build all that it should have, and the sample didn't run.

The code in the C sample, ANIMATE,msdn_sample_animate is quite similar. I handle all the manipulation of the animation control in the dialog procedure. As with most of the common controls, you need to include the COMMCTRL.H header file to use this control in your application, and you need to include the COMCTL32.LIB file in your list of libraries to link to.

BOOL APIENTRY Demo(

 HWND hDlg,

 UINT message,

 UINT wParam,

 LONG lParam)

{

 static BOOL bStart;

 static int iSeek;

 switch (message)

 {

 case WM_INITDIALOG:

 bStart = FALSE;

 iSeek = 1;

 return TRUE;

 case WM_COMMAND:

 if (LOWORD(wParam) == IDOK)

 {

 EndDialog(hDlg, TRUE);

 return TRUE;

 }

 else if (HIWORD(wParam) == BN_CLICKED)

 {

 switch (LOWORD(wParam))

 {

 case IDC_PLAY:

 if (!bStart)

 {

 bStart = TRUE;

 Animate_Open(GetDlgItem(hDlg, IDC_ANIMATE),

 IDR_AVICLIP);

 Animate_Play(GetDlgItem(hDlg, IDC_ANIMATE),0, -1, -1);

 }

 break;

 case IDC_STOP:

 if (bStart)

 {

 bStart = FALSE;

 Animate_Stop(GetDlgItem(hDlg, IDC_ANIMATE));

 }

 break;

 case IDC_SEEK:

 if (bStart)

 {

 Animate_Seek(GetDlgItem(hDlg, IDC_ANIMATE), iSeek);

 if (iSeek < NUM_FRAMES)

 iSeek++;

 }

 break;

 }

 }

 break;

 default:

 return FALSE;

 }

}

And that's about all there is to it. If you build and run the sample, you will see a really cool animation (thanks to Jonathan Cluts). As you can see from Table 4, there isn't much more functionality to the animation control. One thing that I did differently in this table is to show you the macro that the system supplies to manipulate animation controls rather than showing you the messages. I did this because some of the messages have more than one function, depending upon the parameters you send to them. For me, it is far easier to understand the code if I use the macros, because they tell me exactly what I am trying to do.

Table 4. Animation Control Macros and Member Functions

Message/Function�Member function�Description��Animate_Create�Create�Creates an animation control and attaches it to a CAnimateCtrl object.��Animate_Open�Open�Opens an AVI clip from a file or resource and displays the first frame. ��Animate_Play�Play�Plays the AVI clip without sound.��Animate_Seek�Seek�Displays a selected single frame of the AVI clip.��Animate_Stop�Stop�Stops playing the AVI clip.��Animate_Close�Close�Closes the AVI clip that was previously opened.��Now that we've covered the general-purpose controls, we can move on to the list controls: list views, tree views, and image lists.

CHAP03.DOC	�DATE�4/13/95�	�PAGE�1�

