Chapter One: An Overview of Internationalization

Developing globalized software is a continuous balancing act. It is common for developers and their managers to grossly underestimate the level of effort and attention to detail required to create high quality foreign language editions of a product. If you are a developer, make sure your management understands what is involved. Familiarity with what kinds of problems arise will help you make decisions at the beginning of your product cycle that will save you time and money, not to mention grief.

The process of creating globalized software has two facets — “internationalization,” which covers generic coding and design issues, and “localization,” which involves the translation and customization of a product for a specific market. Using the national language support supplied by the Win32 API is an internationalization step, whereas resizing dialogs and standardizing terminology are localization steps. Developers, because they write code, will focus primarily on internationalization issues, but since code and feature designs affect how a product is translated and customized, it’s important for developers to understand basic localization concepts.

Those who are new to software internationalization on Windows will get a helpful introduction from these first two chapters, which discuss general concepts and techniques for creating globalized applications. They define terms used throughout the rest of the book and provide a framework for later chapters, which cover specific technical details on how to use Windows-based tools and Win32 API functions.

�
Locales

Locale: The portion of the user’s environment that is dependent on language, country, and cultural conventions. The locale determines sort order, keyboard layout, date, time, number, and currency formatting conventions, etc. In Windows, locales often make a finer distinction than language.

Locale-sensitive: Exhibiting different behavior or returning different data depending on the locale. For example, the Win32 sorting functions return different results depending on the locale parameter sent to each function.

National standard: A linguistic rule, measurement, educational guideline, or technology-related convention as defined by a government or an industry standards organization. Examples are character sets, keyboard layouts and some cultural conventions. Microsoft Windows incorporates many ISO (International Standards Organization) naming conventions.

Script: A system of characters used to write one or several languages. Characters denote isolated sounds, syllables, or word elements, and are governed by a general set of rules for creating text, such as default writing direction.

Separators: Symbols used to separate items in a list, mark the thousands place in numbers, and to represent the decimal point. Different locales follow different conventions for separators.

Geographically speaking, a locale is a place. In software terms, a locale is a set of information associated with a place. Locale information on Windows includes the name and identifier of the spoken language, the script used to write the language, and cultural conventions like rules for sorting, case conversion, and punctuation, and formats for dates, times, numbers, and currency amounts (see Figure 1.1). Other standards that change from locale to locale (“locale-sensitive” standards) include keyboard layouts, default paper and envelope sizes, common printers or monitor resolutions, character sets or character encoding ranges, text directionality (left-to-right, right-to-left, horizonal or vertical) and input methods. Subsequent chapters discuss different aspects of locale information in detail.

Windows supports a large set of locales, which it tags with language and sublanguage pairs. The sublanguage corresponds to a country — one way to think of this is in terms of the phrase “X language as spoken in Y country.” While the way people speak or write a particular language may not change dramatically from one country to the next (German as spoken in Germany, Austria, and Switzerland, for example), cultural conventions and national standards often do change.

In all, Windows 95 supports some 75 locales while Windows NT 3.5 supports 50. Windows supports four Chinese-language locales (Taiwan, People’s Republic of China, Hong Kong, Singapore), six English locales (United States, Britain, Australia, Canada, New Zealand, Ireland) and five French locales (France or Standard, Belgium, Canada, Switzerland, Luxembourg). In addition, Windows 95 supports sixteen Arabic locales (Saudi Arabia, Iraq, Egypt, Libya, Algeria, Morocco, Tunisia, Oman, Yemen, Syria, Jordan, Lebanon, U.A.E., Bahrain, Qatar).

Locale:�
American English�
Standard French�
Japanese�
U.A.E. Arabic�
�
Country:�
United States�
France�
Japan�
United Arab Emirates�
�
Language:�
English�
French�
Japanese�
Arabic�
�
Written Script(s):�
Latin�
Latin�
Kana and Kanji�
Arabic�
�
Direction of text:�
Left-to-Right�
Left-to-Right�
Left-to-Right and Horizontal or Vertical and Right-to-Left�
Right-to-Left�
�
Windows-defined Code Page (see):�
1252�
1252�
932�
1256�
�
Currency symbol:�
$�
F�
¥�
��
�
Long date format:�
January 15, 1995�
15 January 1995�
��
15. January 1995�
�
Short date format:�
1/15/95�
01/15/1995�
95/01/15�
95/01/15�
�
Time format:�
1:00 PM�
13:00�
13:00�
1:00� EMBED Word.Picture.6 ����
�
Calendar:�
Gregorian�
Gregorian�
Gregorian or Imperial�
Gregorian�
�
Default paper size�
US Letter

(8 1/2” x 11”)�
A4

210 x 297mm�
A4

210 x 297mm�
A4

210 x 297mm�
�
Decimal separator�
.�
,�
.�
,�
�
List separator�
,�
;�
,�
;�
�
Thousands separator�
, �
space�
,�
,�
�
Figure 1.1: Selected default information for several locales�
Internationalization

Internationalization or Globalization: The process of developing a program core whose feature and code designs don’t make assumptions based on a single language or locale. Developing a source code base that simplifies the creation of different language editions of a program.

Accented character: A character that has a diacritical mark attached to it. Also see extended character.

Code page: An ordered set of characters that associates a numerical index (code point value) with each character. The term “code page” is generally used in the context of code pages defined by Windows 3.1 or MS-DOS and may also be called a “character set” or a “charset.”

“International,” “international-aware,” “internationalized,” “globalized,” or “worldwide,” are all buzzwords used to describe programs that are designed to work for more than one language. You will invariably have to re-work programs whose code and features focus on a single language in order to create well-functioning translated software. It is far more efficient to create an internationalized core from the outset that can serve as a foundation for all language editions of a product. This involves designing a user interface, a set of features, and a code base that are generic enough to work for most of the product’s intended language editions. Of course, some customization may be necessary, but the fewer the changes that need to be made for international editions, the faster they can be released to market.

The goal of internationalization is to present users with consistent look, feel, and functionality across different language editions of a product (consistency of terminology is important for suites of products). Users expect localized software to support the same basic set of features as the native language edition of the product, and they expect it to achieve the same level of quality. They also expect different language editions to interact smoothly with one another. A single document format that all editions can load and interpret correctly is therefore essential.� For example, employees at a Belgian bank may use the French edition of your program to load a document a colleague created in the Dutch edition of your program. If documents are unreadable from one language edition to the next or convert with numerous errors, your product will get a bad reputation. International users become understandably frustrated when software companies overlook what is for them key functionality.

The team that created Microsoft Windows strove to create a user interface that would be recognizable in any language. As you can see from the pictures of the Windows NT 3.x Program Manager in Figure 1.2, the menus and icons in the English and Japanese editions are consistent. Even if you don’t speak Japanese, you can probably find your way around the operating system if you are familiar with the English edition.

�

�

Figure 1.2: The Program Manager in U.S. and Japanese editions of Windows NT 3.5.

While visual consistency is one measure of how well a product has been internationalized, so is its support for international conventions. The most basic of these is support for entering and displaying international characters. In the past, English-language programs commonly limited legal characters to the ASCII set. This is no longer acceptable, especially with the advent of Unicode (see Chapter 3). At the very least, European users should be able to type accented characters into English-language software. With the support for multilingual data that is available in Windows 95 (see Chapter 6) and the Unicode support available in Windows NT, it is now possible to create software that can at least display documents created in almost any language edition of your program.

Other international conventions include rules for sorting and for formatting dates, times, numbers, and currencies. The Windows operating system carries a large amount of international information, which you can access through the Win32 NLSAPI (see Chapter 5). This set of functions will help you create internationalized core code that will allow a diverse set of users to enter culturally accurate data.

The part of internationalization that the user doesn’t see directly involves coding, testing, debugging, and the mechanics of translation. If you are unfamiliar with what it takes to produce translated software, you will be surprised at the number of details that need to be resolved. This book describes a number of scenarios you may encounter, but it can’t possibly predict every situation. The developer’s job is to make sure that whatever needs to change for different language editions of a program can be changed quickly and easily, and without breaking any features. This requires organizing the program’s sources intelligently, anticipating in code designs how a language edition may be customized, and avoiding coding practices that cause bugs in translated software. The next chapter describes in more detail techniques for creating internationalized code.

�
Categories of Internationalization for Windows

Single-Byte Character Set (SBCS): A character encoding where each character is represented by one byte. Single Byte Character Sets are mathematically limited to 256 characters.

Multi-Byte Character Set (MBCS): A mixed-width character set. Some characters (but not necessarily all) consist of more than one byte. Double-byte character sets (DBCS) are a specific form of multi-byte character sets, where some characters consist of two bytes.

Bidirectional: Text that is a mixture of left-to-right and right-to-left characters. Most Arabic and Hebrew characters, for example, are written right-to-left, but numbers and quoted Western terms are written from left-to-right.

Latin Script: The set of 26 characters (A-Z) inherited from the Roman Empire that, together with later additions, is used to write languages throughout Europe, Africa, the Americas, Oceana, and parts of Asia. The Windows 3.1 Latin 1 character set covers Western European languages and languages that use the sample alphabet, while the Latin 2 character setcovers Eastern European languages.

Simplified Chinese: The Chinese alphabet used in the People’s Republic of China. It consists of several thousand ideographic characters that were modified to make them less complex.

Traditional Chinese: The set of Chinese characters used in Taiwan, Hong Kong, Singapore, etc., which is consistent with the original form of Chinese ideographs that date back several thousand years.

Software Development Kit (SDK): A set of tools and libraries for creating software applications for Windows.

Device Driver Kit (DDK): A set of tools and libraries for creating Windows-based software to run hardware devices such as printers.

Engineering requirements for neighboring countries are often quite similar. In fact, three broad geographical groups cover almost all markets for Windows-based applications. They are Europe, Russia and the Americas; the Far East; and the Middle East. Before you begin planning for a new Windows-based product, or as you decide which international markets to target for an existing product, examine the development issues for each of the categories listed in Figure 1.3.

If you plan intelligently, once you have a solid core feature and code base for one or two languages in a particular category, you may determine that the cost of developing another language edition in that category is small compared to the potential return. A good example is the category of Far East� or double-byte languages. Applications written for the Chinese, Japanese, and Korean editions of Windows share common development issues. Once you have a Japanese language application, the development steps necessary to create an application for the booming Korean market are minimal.

The Windows 95 development team built localized editions of the operating system from separate code bases that correspond to the categories listed in Figure 1.3. There were no code differences between language editions of Windows 95 in each of these categories — only the language of the user interface changed. The Middle East, Far East, and Thai code bases are all supersets of the European code base (applications written for single-byte editions of Windows will run on bidirectional or double-byte editions of Windows, but the reverse is not necessarily true). In fact, to add Middle East functionality to a European edition of Windows, you only need to install several additional libraries. Windows 3.x had different code bases for Western European languages, Eastern European languages, Middle East languages, Far East Languages, Thai, Greek, and Turkish. The goal for future versions of Windows is to have a single code base for all languages.

European language editions: Single-byte character sets, Latin, Greek, and Cyrillic scripts, Left-to-right text, English Windows SDK and DDK

	Western European languages

	Eastern European languages

	Greek, Russian, and Turkish

	Indonesian

Middle-East language editions: Single-byte character sets, bidirectional text, Windows SDK and DDK supplement

	Arabic

	Hebrew

Far East language editions: Multi-byte character sets, horizontal and vertical text, input methods, separate Windows SDK and DDK

	Traditional Chinese

	Simplified Chinese

	Japanese

	Korean

Thai: Text layout issues, Windows SDK and DDK supplement

Figure 1.3: Categories of internationalization for Windows, based on development issues.

Some language editions of your product may only require changes in packaging and small software components, such as spellers or sample documents, to be marketable in more than one region. English products are a prime example. As long as a program’s design is not culturally biased and its features have been properly internationalized, it can be sold in Australia, Britain, Canada, Hong Kong, India, Ireland, New Zealand, South Africa, the United States, and in many other countries. Keeping this in mind during the planning stages will help you produce a single program executable that can be shipped worldwide.

Spanish is another language that is spoken widely. With few changes, a Spanish-language program can be shipped to Spain, the United States, and throughout Latin America. Though local dialects exist in many Spanish-speaking countries, computer users generally accept software that has been translated using a core vocabulary. Windows supports a number of languages that are used in multiple locales, including the following:

	Arabic

	Chinese

	Dutch

	English

	French

	German

	Italian

	Norwegian

	Portuguese

	Romanian

	Russian

	Spanish

Appendix X lists all international editions of Microsoft Windows.

�
Localization

Localization: The process of adapting a program for a specific international market, in particular translating the user interface, resizing dialog boxes, and customizing features if necessary.

Levels of localization: A method of balancing risk and return by scaling the amount of translation and customization done to create different language editions. The levels range from doing no translation at all to shipping a completely translated product with customized features.

Enabling: Altering program code to handle input, display, and editing of bidirectional or double-byte languages, such as Arabic or Japanese.

Layout: The process of ordering and spacing text for display.

Localization is the process of translating strings, resizing dialog boxes, and testing the result to make sure the program still works. Localization may also involve customizing features. In general, a “localized program” is one that is ready to sell into a particular market — it’s been translated, enabled, customized, and tested.

Internationalizing core code is a basic requirement for software that will ship outside your native country. You can vary the level of effort and expense devoted to localization, however, depending on the target market and the type of application (see Figure 1.4). Some markets, such as Eastern European countries or the People’s Republic of China, are comparatively small, so shipping a product there is considered an investment for the future. Other markets, such as France or Germany, are well established, and breaking into them requires a large investment and a commitment to high standards. Still other markets, such as Korea or Arabic-speaking countries, are small but growing briskly. It is possible to establish a presence in small markets by shipping a partially localized application quickly and following it up later with a more fully localized edition of the same application or of its next revision. For example, Microsoft traditionally ships an English edition of a new Windows operating system enabled for Eastern European character sets within days of the U.S. product. Localized editions generally follow within six months.

� EMBED Word.Picture.6 ���

Translate nothing

Translate documentation and packaging only

Enable code

Translate software menus and dialogs

Translate on-line help, tutorials, sample and readme files

Add support for locale-specific hardware

Customize features for locale

Figure 1.4: Levels of Localization

At Microsoft, subsidiary marketing managers decide the level of localization for each language edition of Windows. Developers and translators provide the marketing managers with an estimate of how much time and money each level will require. Then the subsidiaries and product teams decide whether the potential return is worth the cost. Take a look at Appendix X, which lists international editions of Windows and their ship dates, to see what decisions Microsoft has made so far.

The first two levels of localization listed in Figure 1.4, “nothing at all” and translating packaging and documentation only, involve little development cost — at most developers will be called upon to explain technical issues to translators. The next level, enabling the code, involves no translation cost. The term “enabling” applies most often to software that was originally designed for Western European languages. “Enabled” software allows users to create documents in their own language, even if the user interface isn’t localized. Code for Middle East or Far East language editions of such programs must be altered to handle input, layout, display, editing and printing of Middle East- or Far East-language text. (See Chapters 3 and 7 for a more detailed description of what is involved.) Screensavers, multimedia titles, and other programs that do not allow the user to enter or edit text do not require enabling.

If an English-language edition of your product exists, consider using it to test the waters in markets where users will buy a product with an English-language user interface (UI) until a fully localized edition is available. Figure 1.5 lists some guidelines for determining the markets in which an English UI is acceptable. For markets where only translated products are successful, do a partial translation if you want to ship quickly or don’t want to pay the cost of a full translation. As a general rule, the more involved the translation, the more questions developers must answer and the more bugs developers must fix.

English-language UI is acceptable in some markets:

	Small markets (Indonesia, Eastern Europe)

	Markets where your product has no competitors

	Markets where many people speak English (India, Korea, Israel, Netherlands)

	Markets where target audience speaks English (scientific, medical, technology community)

Figure 1.5. Guidlines for shipping English-language software to predominantly non-English speaking countries.

For more competitive markets you will need to customize features and, in some cases, add support for hardware that is sold locally.

�
The Localization Process

Usability Testing: A series of tests where users are observed trying to complete a set of given tasks. The purpose of usability testing is to determine how intuitive and easy to use test subjects find new program features.

Beta Testing: Distributing pre-release software to users and potential customers in order to get feedback and bug reports.

The process of creating localized software involves a great deal of communication between different players in a product team. The chart in Figure 1.6 outlines some basic lines of communication and, from top to bottom, indicates a rough timeline for international product development. During the core phases <in red -- let’s separate this out>, the development team provides files to the localization team, who translates text, resizes dialog boxes, and hands files back for compilation, if necessary. The localized executable then goes to the testing team, who reports functionality problems to development and user interface problems to localization. All three work together to resolve bugs, and the cycle continues.

The least painful localization process is one in which the product team considers international issues during the initial feature and coding design stages. Market forces, usability tests, and development constraints also affect the design of the product. Translating and testing the code in parallel with development uncovers code and feature design problems early in the process, when it is easier to make changes. Localizing a product is akin to launching a probe to Mars. It’s much less involved and much less expensive to adjust the course soon after lift-off. The trajectory may only be a few degrees off near Earth, but if you wait until late in the mission to make adjustments, you won’t have enough fuel to keep the probe from shooting past Mars by a million kilometers.

It is important to “freeze” as much of the user interface and feature design as possible well before the product goes into final testing. Freezing the design means that no more changes will be made before the product ships. Every time a piece of the user interface changes, it has to be re-translated. In addition, the teams in charge of documentation, on-line help, on-line tutorials, and marketing collateral may need to update their materials, which also have to be re-translated. Late changes, as you can imagine, cause significant, expensive delays in the release of localized products.

� EMBED Word.Picture.6 ���

Figure 1.6: The localization process

�
Shipping International Products Quickly

Simultaneous Ship or “Sim-ship”: Releasing localized editions of a product at the same time or soon after the domestic edition is released, usually within 30 days.

Release delta: The number of days after the domestic edition that a localized product is released.

You can take one of two approaches to shipping international products. The first is to begin working on international editions after the domestic edition has released, or when it is almost finished. The second is to plan for international products in advance, work on several language editions concurrently, and ship them all at roughly the same time.

Those who would advocate the first method fail to realize how much effort it takes to create localized software. If it were an easy task, this book would only be a few pages long. A common argument from development managers is, “Our domestic product is really important. We don’t want to delay the domestic product or defocus the team by worrying about the international editions now.” This short-term, restricted thinking only makes sense for companies who make 95% of their revenue domestically or have no international competitors. In other words, very few companies will benefit from this strategy.

Microsoft’s careful attention to its internationalization practices is why it earns the majority of its revenue outside the United States. Companies who make most of their revenue domestically either ship products with a domestic focus, such as financial software or some multimedia titles, or haven’t tapped the potential of the international market. Because a major part of making a profit involves controlling costs, the major argument against delaying work on international editions of a program is that to do so is expensive.

One effective approach, and the one used by Microsoft to develop Windows, is to develop a solid internationalized core code base and to begin translation work as soon as there is something to translate. Microsoft develops the English, German, and Japanese editions of its operating systems in-house and in parallel — English because it is the largest language market for Windows and because most of the developers on the Windows team are native English-speakers, German because it is the largest European-language market and serves as a good test for European-language functionality and ease of translation, and Japanese, because the Far East is an important market (Microsoft’s second largest) and Japanese serves as a basis for all Far East-language development issues. Other language editions, such as French and Swedish, are translated in parallel at Microsoft’s subsidiary in Ireland. Teams in both Redmond and Ireland worked furiously to ensure that localized editions of Windows NT and Windows 95 were ready for testing at each major development milestone.

This method of developing international software is easier to implement if all developers are held accountable for the international functionality and localizability of their own features. Naturally, having an internationally conscious team that constructs several language editions of a product in parallel with minimal problems is an ideal that may take more than one product cycle to fully achieve. The key is to begin early in each new product cycle. Early translation, for example, can uncover design blunders before complex features have been built around them. Coding problems can then be resolved while the code is still fresh in developers’ minds.

The best result of a “three-prong” development approach (English, German, Japanese) is simultaneous shipment of more than one language edition. The Windows NT 3.5 team, for example, released the US, German, French, and Spanish editions of their product within days of each other. A “four-prong” approach, summarized in Figure 1.7, would include a right-to-left language, such as Arabic, or a European language that does not use the Latin Script, such as Russian.

English�
German�
Japanese�
Arabic�
�
Used to develop product, test for general functionality�
Uncover international-related bugs and overcrowded UI designs�
Multi-byte enabling, vertical writing and printing�
Right-To-Left look and feel, bidirectional text enabling�
�
Largest market for Microsoft Windows-based products�
Largest European-language market�
Largest Far East-language market�
Largest Middle East market, issues are a superset of Hebrew issues�
�
Alternative: Native language of developers�
Alternative: French, Spanish, Finnish, Pig Latin�
Alternative: Traditional Chinese, Korean, Simplified Chinese�
Alternative: Hebrew, Farsi (Persian)�
�
Figure 1.7: A four-prong approach for developing international software.

The international press pays attention whenever a new product revision reaches the market. Having more than one language edition ready when the domestic edition is released allows more than one language edition to take advantage of the publicity surrounding the new revision. Not having key language editions ready soon after the domestic release means that international customers will wait for the localized releases rather than buy the old localized releases. The longer they have to wait, the more frustrated they become, and the more sales your company loses.

You will not significantly delay your domestic product if you work toward international functionality from the beginning of your product cycle; you will actually save your company time and money in the long run. Inventing a product-wide plan that satisfies all parameters (a timely domestic release, inexpensive localization, timely international releases, a compelling set of new features, staffing constraints) can be a balancing act, but it’s a requirement. Without a plan and your team’s commitment to it, producing international editions of your product will become an obstacle course of one headache after another.

If your product team has already produced localized editions but with long release deltas, the principles in this book can help you shorten the release deltas for your next product revision. In some cases, a new product plan may schedule localized releases of Product Two within months of localized editions of Product One. If this happens, suspend localization of Product One and concentrate on shipping international editions of Product Two quickly. Microsoft, for example, did not release a Japanese edition of Visual Basic 3.0, but went straight from localizing Visual Basic 2.0 to localizing Visual Basic 4.0 <can we even talk about VB 4.0?>

�
Summary

Spoken languages, written scripts, sorting orders, keyboard layouts, input methods, common paper sizes, and date, time, number, and currency formats are some of the defaults that change from locale to locale.

Internationalization involves creating a functional core code base and a generic feature design that can serve as the basis for all language editions of the product.

Different language editions of Windows can be grouped into categories with similar development issues. Once you have created a program for one language in a category, the development effort involved in creating editions of your program for other languages in the same category is minimal.

The level of localization required for a program to be successful depends on the target market. The more effort spent, the higher the risk and cost, but the greater the potential return.

The most effective process for creating localized products takes international considerations into account at the beginning of the product cycle and throughout, and makes shipping multiple language editions go as quickly as possible.

� Because of code page considerations, document portability is not always feasible for Windows 95-based applications. It is easy for an application running on Japanese Windows 95 to load English-language documents. Application running on English Windows 95 require a great deal of extra work to load and correctly display a Japanese-language document. See Chapter Three for mor
