

WOSA

(Windows�symbol 228 \f "Symbol" \s 10 \h�� Open Services Architecture)

Extensions for Financial Services

A Client-Server Architecture

for Financial Enterprise Computing

under Microsoft® Windows

Revision 1.1

April 14, 1994

	

Developed by the members of the Banking Systems Vendor Council:

Andersen Consulting

AT&T Global Information Solutions

Digital Equipment Corporation

EDS Corporation

International Computers Limited

Microsoft Corporation

Ing. C. Olivetti & C. S.p.A.

Siemens Nixdorf Informationssysteme AG

Tandem Computers

Unisys Corporation

�Revision History:

0.71	December 17, 1992	Preliminary release of API specification

	1.0		May 24, 1993		Initial release of API and SPI specification

	1.01		June 11, 1993		Minor updates to BSVC member contact list

	1.1		April 14, 1994		Major updates and additions

The information in this document was contributed by members of the Banking Systems Vendor Council and represents its current views on the issues discussed as of the date of publication. It is furnished for informational purposes only and is subject to change without notice. The Banking Systems Vendor Council makes no warranty, express or implied, with respect to this document.

Microsoft is a registered trademark, and Windows and Windows NT are trademarks of Microsoft Corporation.

Apple and Macintosh are registered trademarks of Apple Computer, Inc.

IBM and NetView are registered trademarks of International Business Machines Corporation.

UNIX is a registered trademark of UNIX Systems Laboratories.

Microsoft part number: 098-54431

�Table of Contents

� TOC \o �1. Introduction	� GOTOBUTTON _Toc291057918 � PAGEREF _Toc291057918 �1��

1.1 Background	� GOTOBUTTON _Toc291057919 � PAGEREF _Toc291057919 �1��

1.2 Objectives	� GOTOBUTTON _Toc291057920 � PAGEREF _Toc291057920 �1��

1.3 Strategies	� GOTOBUTTON _Toc291057921 � PAGEREF _Toc291057921 �2��

1.4 Benefits	� GOTOBUTTON _Toc291057922 � PAGEREF _Toc291057922 �3��

2. WOSA Extensions for Financial Services Overview	� GOTOBUTTON _Toc291057923 � PAGEREF _Toc291057923 �4��

2.1 Architecture	� GOTOBUTTON _Toc291057924 � PAGEREF _Toc291057924 �5��

2.2 API and SPI Summary	� GOTOBUTTON _Toc291057925 � PAGEREF _Toc291057925 �8��

2.3 Device Classes	� GOTOBUTTON _Toc291057926 � PAGEREF _Toc291057926 �9��

3. Other WOSA Components	� GOTOBUTTON _Toc291057927 � PAGEREF _Toc291057927 �10��

3.1 Enterprise Communications	� GOTOBUTTON _Toc291057928 � PAGEREF _Toc291057928 �10��

3.1.1 Windows SNA APIs	� GOTOBUTTON _Toc291057929 � PAGEREF _Toc291057929 �10��

3.1.2 Windows RPC (Remote Procedure Call)	� GOTOBUTTON _Toc291057930 � PAGEREF _Toc291057930 �11��

3.1.3 Windows Sockets	� GOTOBUTTON _Toc291057931 � PAGEREF _Toc291057931 �11��

3.2 MAPI (Messaging API)	� GOTOBUTTON _Toc291057932 � PAGEREF _Toc291057932 �11��

3.3 ODBC (Open Database Connectivity)	� GOTOBUTTON _Toc291057933 � PAGEREF _Toc291057933 �11��

3.4 License Service API	� GOTOBUTTON _Toc291057934 � PAGEREF _Toc291057934 �12��

3.5 Windows Telephony API	� GOTOBUTTON _Toc291057935 � PAGEREF _Toc291057935 �12��

3.6 WOSA Extensions for Real-Time Market Data	� GOTOBUTTON _Toc291057936 � PAGEREF _Toc291057936 �12��

4. The Future of WOSA and the Extensions for Financial Services	� GOTOBUTTON _Toc291057937 � PAGEREF _Toc291057937 �13��

4.1 Financial Transaction Messaging and Management	� GOTOBUTTON _Toc291057938 � PAGEREF _Toc291057938 �13��

4.2 Network and System Management	� GOTOBUTTON _Toc291057939 � PAGEREF _Toc291057939 �13��

4.3 Security	� GOTOBUTTON _Toc291057940 � PAGEREF _Toc291057940 �13��

4.4 Emerging technologies	� GOTOBUTTON _Toc291057941 � PAGEREF _Toc291057941 �13��

5. Architectural and Implementation Issues	� GOTOBUTTON _Toc291057942 � PAGEREF _Toc291057942 �14��

5.1 The XFS Manager	� GOTOBUTTON _Toc291057943 � PAGEREF _Toc291057943 �14��

5.2 Service Providers	� GOTOBUTTON _Toc291057944 � PAGEREF _Toc291057944 �15��

5.2.1 Service Provider Functionality	� GOTOBUTTON _Toc291057945 � PAGEREF _Toc291057945 �15��

5.2.2 Service Provider “Packaging”	� GOTOBUTTON _Toc291057946 � PAGEREF _Toc291057946 �16��

5.3 Asynchronous, Synchronous and Immediate Functions	� GOTOBUTTON _Toc291057947 � PAGEREF _Toc291057947 �16��

5.3.1 Asynchronous Functions	� GOTOBUTTON _Toc291057948 � PAGEREF _Toc291057948 �16��

5.3.2 Synchronous Functions	� GOTOBUTTON _Toc291057949 � PAGEREF _Toc291057949 �16��

5.3.3 Immediate Functions	� GOTOBUTTON _Toc291057950 � PAGEREF _Toc291057950 �17��

5.4 Processing API Functions	� GOTOBUTTON _Toc291057951 � PAGEREF _Toc291057951 �17��

5.5 Opening a session	� GOTOBUTTON _Toc291057952 � PAGEREF _Toc291057952 �18��

5.6 Closing a Session	� GOTOBUTTON _Toc291057953 � PAGEREF _Toc291057953 �19��

5.7 Configuration Information	� GOTOBUTTON _Toc291057954 � PAGEREF _Toc291057954 �20��

5.8 Exclusive Service and Device Access	� GOTOBUTTON _Toc291057955 � PAGEREF _Toc291057955 �23��

5.8.1 Lock Policy for Independent Devices	� GOTOBUTTON _Toc291057956 � PAGEREF _Toc291057956 �23��

5.8.2 Compound Devices	� GOTOBUTTON _Toc291057957 � PAGEREF _Toc291057957 �24��

5.9 Timeout	� GOTOBUTTON _Toc291057958 � PAGEREF _Toc291057958 �26��

5.10 Function Status Return	� GOTOBUTTON _Toc291057959 � PAGEREF _Toc291057959 �26��

5.11 Notification Mechanisms — Registering for Events	� GOTOBUTTON _Toc291057960 � PAGEREF _Toc291057960 �27��

5.12 Application Processes, Threads and Blocking Functions	� GOTOBUTTON _Toc291057961 � PAGEREF _Toc291057961 �29��

5.13 Memory Management	� GOTOBUTTON _Toc291057962 � PAGEREF _Toc291057962 �31��

�6. Application Programming Interface (API) Functions	� GOTOBUTTON _Toc291057963 � PAGEREF _Toc291057963 �33��

6.1 WFSCancelAsyncRequest	� GOTOBUTTON _Toc291057964 � PAGEREF _Toc291057964 �35��

6.2 WFSCancelBlockingCall	� GOTOBUTTON _Toc291057965 � PAGEREF _Toc291057965 �36��

6.3 WFSCleanUp	� GOTOBUTTON _Toc291057966 � PAGEREF _Toc291057966 �37��

6.4 WFSClose	� GOTOBUTTON _Toc291057967 � PAGEREF _Toc291057967 �38��

6.5 WFSAsyncClose	� GOTOBUTTON _Toc291057968 � PAGEREF _Toc291057968 �39��

6.6 WFSCreateAppHandle	� GOTOBUTTON _Toc291057969 � PAGEREF _Toc291057969 �40��

6.7 WFSDeregister	� GOTOBUTTON _Toc291057970 � PAGEREF _Toc291057970 �41��

6.8 WFSAsyncDeregister	� GOTOBUTTON _Toc291057971 � PAGEREF _Toc291057971 �42��

6.9 WFSDestroyAppHandle	� GOTOBUTTON _Toc291057972 � PAGEREF _Toc291057972 �44��

6.10 WFSExecute	� GOTOBUTTON _Toc291057973 � PAGEREF _Toc291057973 �45��

6.11 WFSAsyncExecute	� GOTOBUTTON _Toc291057974 � PAGEREF _Toc291057974 �47��

6.12 WFSFreeResult	� GOTOBUTTON _Toc291057975 � PAGEREF _Toc291057975 �49��

6.13 WFSGetInfo	� GOTOBUTTON _Toc291057976 � PAGEREF _Toc291057976 �50��

6.14 WFSAsyncGetInfo	� GOTOBUTTON _Toc291057977 � PAGEREF _Toc291057977 �52��

6.15 WFSGetSCode	� GOTOBUTTON _Toc291057978 � PAGEREF _Toc291057978 �54��

6.16 WFSIsBlocking	� GOTOBUTTON _Toc291057979 � PAGEREF _Toc291057979 �55��

6.17 WFSLock	� GOTOBUTTON _Toc291057980 � PAGEREF _Toc291057980 �56��

6.18 WFSAsyncLock	� GOTOBUTTON _Toc291057981 � PAGEREF _Toc291057981 �58��

6.19 WFSOpen	� GOTOBUTTON _Toc291057982 � PAGEREF _Toc291057982 �60��

6.20 WFSAsyncOpen	� GOTOBUTTON _Toc291057983 � PAGEREF _Toc291057983 �63��

6.21 WFSRegister	� GOTOBUTTON _Toc291057984 � PAGEREF _Toc291057984 �66��

6.22 WFSAsyncRegister	� GOTOBUTTON _Toc291057985 � PAGEREF _Toc291057985 �68��

6.23 WFSSetBlockingHook	� GOTOBUTTON _Toc291057986 � PAGEREF _Toc291057986 �70��

6.24 WFSStartUp	� GOTOBUTTON _Toc291057987 � PAGEREF _Toc291057987 �71��

6.25 WFSUnhookBlockingHook	� GOTOBUTTON _Toc291057988 � PAGEREF _Toc291057988 �73��

6.26 WFSUnlock	� GOTOBUTTON _Toc291057989 � PAGEREF _Toc291057989 �74��

6.27 WFSAsyncUnlock	� GOTOBUTTON _Toc291057990 � PAGEREF _Toc291057990 �75��

�7. Service Class Definitions	� GOTOBUTTON _Toc291057991 � PAGEREF _Toc291057991 �76��

7.1 Printers	� GOTOBUTTON _Toc291057992 � PAGEREF _Toc291057992 �77��

7.1.1 Banking Printer Types	� GOTOBUTTON _Toc291057993 � PAGEREF _Toc291057993 �78��

7.1.2 Forms Model	� GOTOBUTTON _Toc291057994 � PAGEREF _Toc291057994 �78��

7.1.3 Command Overview	� GOTOBUTTON _Toc291057995 � PAGEREF _Toc291057995 �80��

7.1.4 Info Commands	� GOTOBUTTON _Toc291057996 � PAGEREF _Toc291057996 �81��

7.1.4.1 WFS_INF_PTR_STATUS	� GOTOBUTTON _Toc291057997 � PAGEREF _Toc291057997 �81��

7.1.4.2 WFS_INF_PTR_CAPABILITIES	� GOTOBUTTON _Toc291057998 � PAGEREF _Toc291057998 �83��

7.1.4.3 WFS_INF_PTR_FORM_LIST	� GOTOBUTTON _Toc291057999 � PAGEREF _Toc291057999 �84��

7.1.4.4 WFS_INF_PTR_MEDIA_LIST	� GOTOBUTTON _Toc291058000 � PAGEREF _Toc291058000 �84��

7.1.4.5 WFS_INF_PTR_QUERY_FORM	� GOTOBUTTON _Toc291058001 � PAGEREF _Toc291058001 �85��

7.1.4.6 WFS_INF_PTR_QUERY_MEDIA	� GOTOBUTTON _Toc291058002 � PAGEREF _Toc291058002 �87��

7.1.4.7 WFS_INF_PTR_QUERY_FIELD	� GOTOBUTTON _Toc291058003 � PAGEREF _Toc291058003 �88��

7.1.5 Execute Commands	� GOTOBUTTON _Toc291058004 � PAGEREF _Toc291058004 �90��

7.1.5.1 WFS_CMD_PTR_CONTROL_MEDIA	� GOTOBUTTON _Toc291058005 � PAGEREF _Toc291058005 �90��

7.1.5.2 WFS_CMD_PTR_PRINT_FORM	� GOTOBUTTON _Toc291058006 � PAGEREF _Toc291058006 �91��

7.1.5.3 WFS_CMD_PTR_READ_FORM	� GOTOBUTTON _Toc291058007 � PAGEREF _Toc291058007 �93��

7.1.5.4 WFS_CMD_PTR_RAW_DATA	� GOTOBUTTON _Toc291058008 � PAGEREF _Toc291058008 �94��

7.1.5.5 WFS_CMD_PTR_MEDIA_EXTENTS	� GOTOBUTTON _Toc291058009 � PAGEREF _Toc291058009 �95��

7.1.6 Execute Events	� GOTOBUTTON _Toc291058010 � PAGEREF _Toc291058010 �96��

7.1.6.1 WFS_EXEE_PTR_NOMEDIA	� GOTOBUTTON _Toc291058011 � PAGEREF _Toc291058011 �96��

7.1.6.2 WFS_EXEE_PTR_MEDIAINSERTED	� GOTOBUTTON _Toc291058012 � PAGEREF _Toc291058012 �96��

7.1.6.3 WFS_EXEE_PTR_FIELDERROR	� GOTOBUTTON _Toc291058013 � PAGEREF _Toc291058013 �96��

7.1.6.4 WFS_EXEE_PTR_FIELDWARNING	� GOTOBUTTON _Toc291058014 � PAGEREF _Toc291058014 �97��

7.1.7 Form and Media Definition	� GOTOBUTTON _Toc291058015 � PAGEREF _Toc291058015 �98��

7.1.7.1 Form Definition	� GOTOBUTTON _Toc291058016 � PAGEREF _Toc291058016 �98��

7.1.7.2 Field Definition	� GOTOBUTTON _Toc291058017 � PAGEREF _Toc291058017 �99��

7.1.7.3 Media Definition	� GOTOBUTTON _Toc291058018 � PAGEREF _Toc291058018 �102��

7.2 Magnetic Stripe Readers and Writers	� GOTOBUTTON _Toc291058019 � PAGEREF _Toc291058019 �103��

7.2.1 Info Commands	� GOTOBUTTON _Toc291058020 � PAGEREF _Toc291058020 �104��

7.2.1.1 WFS_INF_IDC_STATUS	� GOTOBUTTON _Toc291058021 � PAGEREF _Toc291058021 �104��

7.2.1.2 WFS_INF_IDC_CAPABILITIES	� GOTOBUTTON _Toc291058022 � PAGEREF _Toc291058022 �106��

7.2.2 Execute Commands	� GOTOBUTTON _Toc291058023 � PAGEREF _Toc291058023 �108��

7.2.2.1 WFS_CMD_IDC_READ_TRACK	� GOTOBUTTON _Toc291058024 � PAGEREF _Toc291058024 �108��

7.2.2.2 WFS_CMD_IDC_WRITE_TRACK	� GOTOBUTTON _Toc291058025 � PAGEREF _Toc291058025 �109��

7.2.2.3 WFS_CMD_IDC_EJECT_CARD	� GOTOBUTTON _Toc291058026 � PAGEREF _Toc291058026 �110��

7.2.2.4 WFS_CMD_IDC_RETAIN_CARD	� GOTOBUTTON _Toc291058027 � PAGEREF _Toc291058027 �110��

7.2.2.5 WFS_CMD_IDC_RESET_COUNT	� GOTOBUTTON _Toc291058028 � PAGEREF _Toc291058028 �111��

7.2.2.6 WFS_CMD_IDC_RESET	� GOTOBUTTON _Toc291058029 � PAGEREF _Toc291058029 �111��

7.2.3 Messages	� GOTOBUTTON _Toc291058030 � PAGEREF _Toc291058030 �112��

7.2.3.1 WFS_EXEE_IDC_INVALIDTRACKDATA	� GOTOBUTTON _Toc291058031 � PAGEREF _Toc291058031 �112��

7.2.3.2 WFS_EXEE_IDC_NOMEDIA	� GOTOBUTTON _Toc291058032 � PAGEREF _Toc291058032 �112��

7.2.3.3 WFS_EXEE_IDC_MEDIAINSERTED	� GOTOBUTTON _Toc291058033 � PAGEREF _Toc291058033 �112��

7.2.3.4 WFS_EXEE_IDC_MEDIAREMOVED	� GOTOBUTTON _Toc291058034 � PAGEREF _Toc291058034 �112��

7.2.3.5 WFS_SRVE_IDC_CARDACTION	� GOTOBUTTON _Toc291058035 � PAGEREF _Toc291058035 �113��

7.2.3.6 WFS_USRE_IDC_RETAINBINFULL	� GOTOBUTTON _Toc291058036 � PAGEREF _Toc291058036 �113��

7.2.4 Form Description	� GOTOBUTTON _Toc291058037 � PAGEREF _Toc291058037 �114��

7.3 Cash Dispensers	� GOTOBUTTON _Toc291058038 � PAGEREF _Toc291058038 �116��

7.3.1 Info Commands	� GOTOBUTTON _Toc291058039 � PAGEREF _Toc291058039 �117��

7.3.1.1 WFS_INF_CDM_STATUS	� GOTOBUTTON _Toc291058040 � PAGEREF _Toc291058040 �117��

7.3.1.2 WFS_INF_CDM_CAPABILITIES	� GOTOBUTTON _Toc291058041 � PAGEREF _Toc291058041 �118��

7.3.1.3 WFS_INF_CDM_CASH_UNIT_INFO	� GOTOBUTTON _Toc291058042 � PAGEREF _Toc291058042 �120��

7.3.1.4 WFS_INF_CDM_TELLER_INFO	� GOTOBUTTON _Toc291058043 � PAGEREF _Toc291058043 �122��

7.3.1.5 WFS_INF_CDM_TELLER_POSITIONS	� GOTOBUTTON _Toc291058044 � PAGEREF _Toc291058044 �123��

7.3.1.6 WFS_INF_CDM_CURRENCY_EXP	� GOTOBUTTON _Toc291058045 � PAGEREF _Toc291058045 �123��

7.3.1.7 WFS_INF_CDM_MIX_TYPES	� GOTOBUTTON _Toc291058046 � PAGEREF _Toc291058046 �124��

7.3.1.8 WFS_INF_CDM_MIX_TABLE	� GOTOBUTTON _Toc291058047 � PAGEREF _Toc291058047 �125��

�7.3.2 Execute Commands	� GOTOBUTTON _Toc291058048 � PAGEREF _Toc291058048 �126��

7.3.2.1 WFS_CMD_CDM_DENOMINATE	� GOTOBUTTON _Toc291058049 � PAGEREF _Toc291058049 �126��

7.3.2.2 WFS_CMD_CDM_DISPENSE	� GOTOBUTTON _Toc291058050 � PAGEREF _Toc291058050 �129��

7.3.2.3 WFS_CMD_CDM_PRESENT	� GOTOBUTTON _Toc291058051 � PAGEREF _Toc291058051 �131��

7.3.2.4 WFS_CMD_CDM_REJECT	� GOTOBUTTON _Toc291058052 � PAGEREF _Toc291058052 �131��

7.3.2.5 WFS_CMD_CDM_RETRACT	� GOTOBUTTON _Toc291058053 � PAGEREF _Toc291058053 �131��

7.3.2.6 WFS_CMD_CDM_CASH_IN	� GOTOBUTTON _Toc291058054 � PAGEREF _Toc291058054 �132��

7.3.2.7 WFS_CMD_CDM_OPEN_SHUTTER	� GOTOBUTTON _Toc291058055 � PAGEREF _Toc291058055 �133��

7.3.2.8 WFS_CMD_CDM_CLOSE_SHUTTER	� GOTOBUTTON _Toc291058056 � PAGEREF _Toc291058056 �133��

7.3.2.9 WFS_CMD_CDM_SET_TELLER_INFO	� GOTOBUTTON _Toc291058057 � PAGEREF _Toc291058057 �133��

7.3.2.10 WFS_CMD_CDM_SET_CASH_UNIT_INFO	� GOTOBUTTON _Toc291058058 � PAGEREF _Toc291058058 �134��

7.3.2.11 WFS_CMD_CDM_START_EXCHANGE	� GOTOBUTTON _Toc291058059 � PAGEREF _Toc291058059 �134��

7.3.2.12 WFS_CMD_CDM_END_EXCHANGE	� GOTOBUTTON _Toc291058060 � PAGEREF _Toc291058060 �135��

7.3.2.13 WFS_CMD_CDM_OPEN_SAFE_DOOR	� GOTOBUTTON _Toc291058061 � PAGEREF _Toc291058061 �135��

7.3.2.14 WFS_CMD_CDM_CHECK_VANDALISM	� GOTOBUTTON _Toc291058062 � PAGEREF _Toc291058062 �135��

7.3.3 Messages	� GOTOBUTTON _Toc291058063 � PAGEREF _Toc291058063 �136��

7.3.3.1 WFS_SRVE_CDM_SAFEDOOROPEN	� GOTOBUTTON _Toc291058064 � PAGEREF _Toc291058064 �136��

7.3.3.2 WFS_SRVE_CDM_SAFEDOORCLOSED	� GOTOBUTTON _Toc291058065 � PAGEREF _Toc291058065 �136��

7.3.3.3 WFS_USRE_CDM_CASHUNITTHRESHOLD	� GOTOBUTTON _Toc291058066 � PAGEREF _Toc291058066 �136��

7.3.3.4 WFS_SRVE_CDM_CASHUNITINFOCHANGED	� GOTOBUTTON _Toc291058067 � PAGEREF _Toc291058067 �136��

7.3.3.5 WFS_SRVE_CDM_TELLERINFOCHANGED	� GOTOBUTTON _Toc291058068 � PAGEREF _Toc291058068 �136��

7.3.3.6 WFS_EXEE_CDM_DELAYEDDISPENSE	� GOTOBUTTON _Toc291058069 � PAGEREF _Toc291058069 �137��

7.3.3.7 WFS_EXEE_CDM_STARTDISPENSE	� GOTOBUTTON _Toc291058070 � PAGEREF _Toc291058070 �137��

7.3.3.8 WFS_EXEE_CDM_CASHUNITERROR	� GOTOBUTTON _Toc291058071 � PAGEREF _Toc291058071 �137��

7.4 Personal Identification Number (PIN) Keypads	� GOTOBUTTON _Toc291058072 � PAGEREF _Toc291058072 �138��

7.4.1 Info Commands	� GOTOBUTTON _Toc291058073 � PAGEREF _Toc291058073 �139��

7.4.1.1 WFS_INF_PIN_STATUS	� GOTOBUTTON _Toc291058074 � PAGEREF _Toc291058074 �139��

7.4.1.2 WFS_INF_PIN_CAPABILITIES	� GOTOBUTTON _Toc291058075 � PAGEREF _Toc291058075 �140��

7.4.1.3 WFS_INF_PIN_KEY_LIST	� GOTOBUTTON _Toc291058076 � PAGEREF _Toc291058076 �142��

7.4.1.4 WFS_INF_PIN_KEY_DETAIL	� GOTOBUTTON _Toc291058077 � PAGEREF _Toc291058077 �142��

7.4.2 Execute Commands	� GOTOBUTTON _Toc291058078 � PAGEREF _Toc291058078 �143��

7.4.2.1 WFS_CMD_PIN_CRYPT	� GOTOBUTTON _Toc291058079 � PAGEREF _Toc291058079 �143��

7.4.2.2 WFS_CMD_PIN_GENERATE_KEY	� GOTOBUTTON _Toc291058080 � PAGEREF _Toc291058080 �145��

7.4.2.3 WFS_CMD_PIN_IMPORT_KEY	� GOTOBUTTON _Toc291058081 � PAGEREF _Toc291058081 �146��

7.4.2.4 WFS_CMD_PIN_TRANSLATE	� GOTOBUTTON _Toc291058082 � PAGEREF _Toc291058082 �147��

7.4.2.5 WFS_CMD_PIN_GET_PIN	� GOTOBUTTON _Toc291058083 � PAGEREF _Toc291058083 �148��

7.4.2.6 WFS_CMD_PIN_VALIDATE	� GOTOBUTTON _Toc291058084 � PAGEREF _Toc291058084 �150��

7.4.2.7 WFS_CMD_PIN_GET_PIN BLOCK	� GOTOBUTTON _Toc291058085 � PAGEREF _Toc291058085 �152��

7.4.2.8 WFS_CMD_PIN_GET_DATA	� GOTOBUTTON _Toc291058086 � PAGEREF _Toc291058086 �153��

7.4.2.9 WFS_CMD_PIN_ADMINISTRATION	� GOTOBUTTON _Toc291058087 � PAGEREF _Toc291058087 �154��

7.4.2.10 WFS_CMD_PIN_DISPLAY	� GOTOBUTTON _Toc291058088 � PAGEREF _Toc291058088 �155��

7.4.3 Messages	� GOTOBUTTON _Toc291058089 � PAGEREF _Toc291058089 �156��

7.4.3.1 WFS_EXEE_PIN_DIGIT	� GOTOBUTTON _Toc291058090 � PAGEREF _Toc291058090 �156��

7.5 Check Readers and Scanners	� GOTOBUTTON _Toc291058091 � PAGEREF _Toc291058091 �157��

7.5.1 Info Commands	� GOTOBUTTON _Toc291058092 � PAGEREF _Toc291058092 �158��

7.5.1.1 WFS_INF_CHK_STATUS	� GOTOBUTTON _Toc291058093 � PAGEREF _Toc291058093 �158��

7.5.1.2 WFS_INF_CHK_CAPABILITIES	� GOTOBUTTON _Toc291058094 � PAGEREF _Toc291058094 �159��

7.5.1.3 WFS_INF_CHK_FORM_LIST	� GOTOBUTTON _Toc291058095 � PAGEREF _Toc291058095 �160��

7.5.1.4 WFS_INF_CHK_QUERY_FORM	� GOTOBUTTON _Toc291058096 � PAGEREF _Toc291058096 �160��

7.5.1.5 WFS_INF_CHK_QUERY_FIELD	� GOTOBUTTON _Toc291058097 � PAGEREF _Toc291058097 �161��

7.5.2 Execute Commands	� GOTOBUTTON _Toc291058098 � PAGEREF _Toc291058098 �162��

7.5.2.1 WFS_CMD_CHK_READ_FORM	� GOTOBUTTON _Toc291058099 � PAGEREF _Toc291058099 �162��

7.5.2.2 WFS_CMD_CHK_MULTICOMMAND	� GOTOBUTTON _Toc291058100 � PAGEREF _Toc291058100 �164��

7.5.2.3 WFS_CMD_CHK_READ_IMAGE	� GOTOBUTTON _Toc291058101 � PAGEREF _Toc291058101 �166��

7.5.2.4 WFS_CMD_CHK_MODE_SWITCH	� GOTOBUTTON _Toc291058102 � PAGEREF _Toc291058102 �167��

7.5.3 Pragmatics of using the commands	� GOTOBUTTON _Toc291058103 � PAGEREF _Toc291058103 �168��

7.5.4 Execute Events, Results, Codes	� GOTOBUTTON _Toc291058104 � PAGEREF _Toc291058104 �168��

7.5.4.1 WFS_EXEE_CHK_NOMEDIA	� GOTOBUTTON _Toc291058105 � PAGEREF _Toc291058105 �168��

7.5.4.2 WFS_EXEE_CHK_MEDIAINSERTED	� GOTOBUTTON _Toc291058106 � PAGEREF _Toc291058106 �168��

7.5.5 Forms Language Usage	� GOTOBUTTON _Toc291058107 � PAGEREF _Toc291058107 �169��

�8. Service Provider Interface (SPI) Functions	� GOTOBUTTON _Toc291058108 � PAGEREF _Toc291058108 �170��

8.1 WFPCancelAsyncRequest	� GOTOBUTTON _Toc291058109 � PAGEREF _Toc291058109 �171��

8.2 WFPClose	� GOTOBUTTON _Toc291058110 � PAGEREF _Toc291058110 �172��

8.3 WFPDeregister	� GOTOBUTTON _Toc291058111 � PAGEREF _Toc291058111 �173��

8.4 WFPExecute	� GOTOBUTTON _Toc291058112 � PAGEREF _Toc291058112 �175��

8.5 WFPGetInfo	� GOTOBUTTON _Toc291058113 � PAGEREF _Toc291058113 �177��

8.6 WFPLock	� GOTOBUTTON _Toc291058114 � PAGEREF _Toc291058114 �179��

8.7 WFPOpen	� GOTOBUTTON _Toc291058115 � PAGEREF _Toc291058115 �180��

8.8 WFPRegister	� GOTOBUTTON _Toc291058116 � PAGEREF _Toc291058116 �183��

8.9 WFPSetTraceLevel	� GOTOBUTTON _Toc291058117 � PAGEREF _Toc291058117 �184��

8.10 WFPUnloadService	� GOTOBUTTON _Toc291058118 � PAGEREF _Toc291058118 �186��

8.11 WFPUnlock	� GOTOBUTTON _Toc291058119 � PAGEREF _Toc291058119 �187��

9. Support Functions	� GOTOBUTTON _Toc291058120 � PAGEREF _Toc291058120 �188��

9.1 WFMAllocateBuffer	� GOTOBUTTON _Toc291058121 � PAGEREF _Toc291058121 �188��

9.2 WFMAllocateMore	� GOTOBUTTON _Toc291058122 � PAGEREF _Toc291058122 �189��

9.3 WFMFreeBuffer	� GOTOBUTTON _Toc291058123 � PAGEREF _Toc291058123 �189��

9.4 WFMGetTraceLevel	� GOTOBUTTON _Toc291058124 � PAGEREF _Toc291058124 �190��

9.5 WFMKillTimer	� GOTOBUTTON _Toc291058125 � PAGEREF _Toc291058125 �190��

9.6 WFMMakeResult	� GOTOBUTTON _Toc291058126 � PAGEREF _Toc291058126 �191��

9.7 WFMOutputTraceData	� GOTOBUTTON _Toc291058127 � PAGEREF _Toc291058127 �191��

9.8 WFMReleaseDLL	� GOTOBUTTON _Toc291058128 � PAGEREF _Toc291058128 �192��

9.9 WFMSetTimer	� GOTOBUTTON _Toc291058129 � PAGEREF _Toc291058129 �193��

9.10 WFMSetTraceLevel	� GOTOBUTTON _Toc291058130 � PAGEREF _Toc291058130 �194��

10. Configuration Functions	� GOTOBUTTON _Toc291058131 � PAGEREF _Toc291058131 �196��

10.1 WFMCloseKey	� GOTOBUTTON _Toc291058132 � PAGEREF _Toc291058132 �197��

10.2 WFMCreateKey	� GOTOBUTTON _Toc291058133 � PAGEREF _Toc291058133 �197��

10.3 WFMDeleteKey	� GOTOBUTTON _Toc291058134 � PAGEREF _Toc291058134 �198��

10.4 WFMDeleteValue	� GOTOBUTTON _Toc291058135 � PAGEREF _Toc291058135 �198��

10.5 WFMEnumKey	� GOTOBUTTON _Toc291058136 � PAGEREF _Toc291058136 �199��

10.6 WFMEnumValue	� GOTOBUTTON _Toc291058137 � PAGEREF _Toc291058137 �200��

10.7 WFMOpenKey	� GOTOBUTTON _Toc291058138 � PAGEREF _Toc291058138 �201��

10.8 WFMQueryValue	� GOTOBUTTON _Toc291058139 � PAGEREF _Toc291058139 �202��

10.9 WFMSetValue	� GOTOBUTTON _Toc291058140 � PAGEREF _Toc291058140 �203��

�Appendix A - Data Structures	� GOTOBUTTON _Toc291058141 � PAGEREF _Toc291058141 �1��

A.1 WFSRESULT	� GOTOBUTTON _Toc291058142 � PAGEREF _Toc291058142 �1��

A.2 WFSVERSION	� GOTOBUTTON _Toc291058143 � PAGEREF _Toc291058143 �2��

Appendix B - Messages	� GOTOBUTTON _Toc291058144 � PAGEREF _Toc291058144 �3��

B.1 Command Completions and Events	� GOTOBUTTON _Toc291058145 � PAGEREF _Toc291058145 �3��

B.1.1 Command Completion Messages	� GOTOBUTTON _Toc291058146 � PAGEREF _Toc291058146 �3��

B.1.2 Event Messages	� GOTOBUTTON _Toc291058147 � PAGEREF _Toc291058147 �3��

B.2 Timer Events	� GOTOBUTTON _Toc291058148 � PAGEREF _Toc291058148 �3��

B.3 Device Status Changes	� GOTOBUTTON _Toc291058149 � PAGEREF _Toc291058149 �4��

B.4 Undeliverable Messages	� GOTOBUTTON _Toc291058150 � PAGEREF _Toc291058150 �5��

B.5 Hardware Errors	� GOTOBUTTON _Toc291058151 � PAGEREF _Toc291058151 �6��

B.6 Version Negotiation Failures	� GOTOBUTTON _Toc291058152 � PAGEREF _Toc291058152 �7��

Appendix C - Error Codes	� GOTOBUTTON _Toc291058153 � PAGEREF _Toc291058153 �8��

Appendix D - Planned Enhancements and Extensions	� GOTOBUTTON _Toc291058154 � PAGEREF _Toc291058154 �11��

D.1 Event and System Management	� GOTOBUTTON _Toc291058155 � PAGEREF _Toc291058155 �11��

D.1.1 WFMReportEvent	� GOTOBUTTON _Toc291058156 � PAGEREF _Toc291058156 �11��

D.2 Administration Function Definitions	� GOTOBUTTON _Toc291058157 � PAGEREF _Toc291058157 �12��

D.2.1 WFSLoad	� GOTOBUTTON _Toc291058158 � PAGEREF _Toc291058158 �12��

D.2.2 WFSReset	� GOTOBUTTON _Toc291058159 � PAGEREF _Toc291058159 �12��

D.2.3 WFSResume	� GOTOBUTTON _Toc291058160 � PAGEREF _Toc291058160 �12��

D.2.4 WFSSuspend	� GOTOBUTTON _Toc291058161 � PAGEREF _Toc291058161 �13��

D.2.5 WFSUnload	� GOTOBUTTON _Toc291058162 � PAGEREF _Toc291058162 �13��

Appendix E - Banking System Vendor Council Contacts	� GOTOBUTTON _Toc291058163 � PAGEREF _Toc291058163 �14��

Appendix F - Other WOSA Specifications and Information	� GOTOBUTTON _Toc291058164 � PAGEREF _Toc291058164 �17��

��Introduction

This is Revision 1.1 of the specification for the Windows Open Services Architecture, Extensions for Financial Services (WOSA/XFS). The Software Development Kit (SDK), which will supply the components and tools to allow the implementation of compliant applications and services, is now in beta testing. This specification is being distributed to the financial services community for continuing review and comment, which will provide additional input to the testing and enhancement of the SDK. An updated version of this specification will be included in the production version of the SDK.

The members of the Banking Systems Vendor Council encourage banks and other financial services companies world-wide, as well as their technology suppliers, to get updated information on the status of the project, and to submit comments, questions, and requests for the SDK and updated specification (when available). This may be done on CompuServe, in the Microsoft developer services area in the Windows Extensions forum (“GO WINEXT”), in the WOSA/XFS message section and library, or via one of the member contacts listed in Appendix E.

The Banking Systems Vendor Council is accepting applications for affiliate membership; interested parties should also contact one of the Council members.

Background

The Banking Systems Vendor Council, an organization of leading vendors of information technology to the financial services industry, was formally announced at the American Bankers Association National Operations and Automation Conference (NOAC) in Denver on May 18, 1992. Revision 1.0 of this specification was released at NOAC in New Orleans on May 24, 1993.

The charter members of the Banking Systems Vendor Council are:

�SYMBOL 183 \f "Symbol" \s 10 \h�	Andersen Consulting��SYMBOL 183 \f "Symbol" \s 10 \h�	Microsoft Corporation ���SYMBOL 183 \f "Symbol" \s 10 \h�	AT&T Global Information Solutions��SYMBOL 183 \f "Symbol" \s 10 \h�	Ing. C. Olivetti & C. S.p.A. ���SYMBOL 183 \f "Symbol" \s 10 \h�	Digital Equipment Corporation��SYMBOL 183 \f "Symbol" \s 10 \h�	Siemens Nixdorf Informationssysteme AG ���SYMBOL 183 \f "Symbol" \s 10 \h�	EDS Corporation��SYMBOL 183 \f "Symbol" \s 10 \h�	Tandem Computers ���SYMBOL 183 \f "Symbol" \s 10 \h�	International Computers Limited��SYMBOL 183 \f "Symbol" \s 10 \h�	Unisys Corporation ��

The Banking Systems Vendor Council has held many multi-vendor development meetings, in addition to numerous additional hours invested in defining this specification for the WOSA Extensions for Financial Services.

Objectives

The charter of the Banking Systems Vendor Council is to develop an approach to financial enterprise computing that will allow financial institutions to develop complete, consistent sets of solutions that meet these objectives:

�SYMBOL 183 \f "Symbol" \s 10 \h�	Reduce the costs of software development and maintenance by:

�SYMBOL 183 \f "Symbol" \s 8 \h�	improving the efficiency and productivity of development organizations,

�SYMBOL 183 \f "Symbol" \s 8 \h�	reducing the costs of developer training, and

�SYMBOL 183 \f "Symbol" \s 8 \h�	allowing the use of a much larger set of existing applications.

�SYMBOL 183 \f "Symbol" \s 10 \h�	Improve the "time to market" of new applications via easier development and rapid deployment.

�SYMBOL 183 \f "Symbol" \s 10 \h�	Allow institutions the flexibility to build systems modularly, using the largest possible range of hardware and software products from multiple vendors, and to upgrade these systems incrementally while maximizing the value of the original investment.

�SYMBOL 183 \f "Symbol" \s 10 \h�	Define an architecture that allows scalability of solutions across a broad range of hardware platforms.

�SYMBOL 183 \f "Symbol" \s 10 \h�	Encourage the development of more and better applications by promoting widespread adoption of standard interfaces and platforms.

�SYMBOL 183 \f "Symbol" \s 10 \h�	Reduce the costs of training users.

�Strategies

The following key strategies have been adopted by the Banking Systems Vendor Council to implement the objectives defined above:

�SYMBOL 183 \f "Symbol" \s 10 \h�	Use the Microsoft® Windows™ operating systems family as the strategic platform for client-server computing.

�SYMBOL 183 \f "Symbol" \s 10 \h�	Adopt the Windows Open Service Architecture (WOSA) family of open interfaces and associated services for the integration of Windows and Windows-based applications into enterprise computing solutions.

�SYMBOL 183 \f "Symbol" \s 10 \h�	Utilize existing WOSA elements wherever possible, defining new elements, or extensions to existing elements, only when no suitable candidate(s) exist in the evolving WOSA family that meet the needs of financial services computing. In all cases, existing formal or de facto standards will be utilized to the maximum degree possible.

�SYMBOL 183 \f "Symbol" \s 10 \h�	Enhance WOSA with the Extensions for Financial Services to meet the special requirements of financial applications for access to services and devices.

�SYMBOL 183 \f "Symbol" \s 10 \h�	Maintain the highest possible level of compatibility of both the API and SPI specifications as the Extensions for Financial Services evolve to include new and enhanced capabilities.

WOSA comprises a family of stable, open-ended interfaces for enterprise computing environments that hides system complexities from users and application developers. WOSA allows the integration of Windows and Windows-based applications seamlessly with all the services and enterprise capabilities that application developers and users need. It includes such interfaces as:

�SYMBOL 183 \f "Symbol" \s 10 \h�	Open Database Connectivity (ODBC) for standard access to databases,

�SYMBOL 183 \f "Symbol" \s 10 \h�	Messaging Application Programming Interface (MAPI) for standard access to messaging services, and

�SYMBOL 183 \f "Symbol" \s 10 \h�	communications support, including Windows SNA, RPC, and Sockets.

Each of the elements of WOSA includes a set of Application Program Interfaces (APIs) and Service Provider Interfaces (SPIs), with associated supporting software. The architecture of WOSA is shown below:

� EMBED PowerPoint.Slide.4 ���

For additional information on WOSA, see the WOSA Backgrounder (Microsoft part number 098-34801).

The Extensions for Financial Services extend WOSA by defining a Windows-based client-server architecture for financial applications. The extensions (as with the other elements of WOSA) include a set of APIs and SPIs common to multiple financial applications.

The WOSA Extensions for Financial Services are planned to include specifications for access to financial peripherals (such as passbook/journal/receipt printers, magnetic card readers/writers, PIN pads, etc.), financial transaction messaging and management, as well as related services for financial networks such as network and systems management and security. All these capabilities are specified for access from the familiar, consistent Microsoft Windows user interface and programming environments. Whenever possible, the capabilities will be incorporated into the family of standard WOSA elements, and will utilize existing formal and de facto standards.

�Benefits

Adoption of the Windows platforms, the WOSA architecture and the Extensions for Financial Services will deliver a wide range of benefits to banks and other financial services institutions, satisfying the objectives stated above by allowing them to:

Access financial services and devices using standard Windows user and programming interfaces, with the resultant savings in user and developer training.

Utilize the large, growing range of Windows-based applications and development tools.

Exploit the variety of products that will be developed by the multiple vendors that will support this initiative.

Develop applications which will be able to run with few or no changes on the full range of Windows operating systems (and associated range of hardware platforms). The Windows family consists of the Windows version 3.1, Windows™ for Workgroups and Windows NT™ operating systems. Future versions of the Windows operating systems family will also be supported.

Deploy modular and adaptable line of business solutions (financial services delivery systems, relationship banking, etc.) to address the changing conditions experienced in today's markets.

Note that since the interfaces specified in WOSA are open and utilize many industry standards, vendors and users have many options to develop solutions that involve interoperatibility with other operating system platforms.

WOSA Extensions for Financial Services Overview

A key element of the Extensions for Financial Services is the definition of a set of APIs, a corresponding set of SPIs, and supporting services, providing access to financial services for Windows-based applications. The definition of the functionality of the services, of the architecture, and of the API and SPI sets, is outlined in this section, and described in detail in Sections 5 through 10.

The specification defines a standard set of interfaces such that, for example, an application that uses the API set to communicate with a particular service provider can work with a service provider of another conformant vendor, without any changes.

The specification is intended to be usable within all implementations and versions of the Windows operating systems, from Windows version 3.1, Windows for Workgroups version 3.1 and the initial versions of Windows NT, and onwards. It thus provides for both 16 and 32 bit operating environments (operating under the Win32s subsystem in 16 bit environments).

Although the WOSA Extensions for Financial Services define a general architecture for access to service providers from Windows-based applications, the initial focus of the Banking Systems Vendor Council has been on providing access to peripheral devices that are unique to financial institutions. Since these devices are often complex, difficult to manage and proprietary, the development of a standardized interface to them from Windows-based applications and Windows operating systems can offer financial institutions and their solution providers immediate enhancements to productivity and flexibility.

Other issues critical to financial enterprise computing will also be addressed in the future by the Banking Systems Vendor Council, and similar definitions for these areas will be added to the Extensions for Financial Services (or as basic WOSA elements). These are expected to include:

�SYMBOL 183 \f "Symbol" \s 10 \h�	Financial transaction messaging and management

�SYMBOL 183 \f "Symbol" \s 10 \h�	Network and system management

�SYMBOL 183 \f "Symbol" \s 10 \h�	Security

�SYMBOL 183 \f "Symbol" \s 10 \h�	Emerging technologies such as object-oriented development, multimedia capabilities and pen computing

See Section 4 for more detail.

�Architecture

The architecture of the WOSA Extensions for Financial Services (WOSA/XFS) system is shown below.

� EMBED PowerPoint.Slide.4 ���

Figure 2.1 — WOSA Extensions for Financial Services Architecture

The applications communicate with service providers, via the WOSA Extensions for Financial Services Manager, using the API set. Most of these APIs can be invoked either "synchronously" (the Manager causes the application to wait until the API's function is completed) or "asynchronously" (the application regains control immediately, while the function is performed in parallel).

The common deliverable in all implementations of this WOSA Extensions for Financial Services specification is the WOSA Extensions for Financial Services Manager, which maps the specified API to the corresponding SPI, then routes this request to the appropriate service provider. The Manager uses the configuration information to route the API call (made to a "logical service" or a "logical device") to the proper service provider entry point (which is always local, even though the device or service that is the final target may be remote). Note that even though the API calls may be either synchronous or asynchronous, the SPI calls are always asynchronous.

The developers of financial services to be used via XFS and the manufacturers of financial peripherals will be responsible for the development and distribution of service providers for their services and devices. A setup routine for each device or service will also be necessary to define the appropriate configuration information. This information will allow an application to request capability and status information about the devices and services available at any point in time.

�The primary functions of the service providers are to:

�SYMBOL 183 \f "Symbol" \s 10 \h�	Translate generic (e.g., forms-based) service requests to service-specific commands.

�SYMBOL 183 \f "Symbol" \s 10 \h�	Route the requests to either a local service or device, or to one on a remote system, effectively defining a peer-to-peer interface among service providers.

�SYMBOL 183 \f "Symbol" \s 10 \h�	Arbitrate access by multiple applications to a single service or device, providing exclusive access when requested.

�SYMBOL 183 \f "Symbol" \s 10 \h�	Manage the hardware interfaces to services or devices.

�SYMBOL 183 \f "Symbol" \s 10 \h�	Manage the asynchronous nature of the services and devices in an appropriate manner, always presenting this capability to the XFS Manager and the applications via Windows messages.

The system design supports solution of complex problems, often not addressed by current systems, by providing for maximum flexibility in all its capabilities:

�SYMBOL 183 \f "Symbol" \s 10 \h�	Multiple service providers, developed by multiple vendors, can coexist in a single system and in a network.

�SYMBOL 183 \f "Symbol" \s 10 \h�	The service class definition is based on the logical functionalities of the service, with no assumption being made as to the physical configuration. A physical device that includes multiple distinct physical capabilities (referred to as a "compound device" in this specification) is treated as several logical services; the service provider resolves any conflicts. Note also that a logical service may include multiple physical devices (for example, a cash dispenser consisting of a note dispenser and coin dispenser).

�SYMBOL 183 \f "Symbol" \s 10 \h�	Similarly, a physical device may be shared between two or more users (e.g., tellers), and the physical device synchronization is managed at the service provider level.

�SYMBOL 183 \f "Symbol" \s 10 \h�	The API definition and associated services provide time-out functionality to allow applications to avoid deadlock of the type that can occur if two applications try to get exclusive access to multiple services at the same time.

�SYMBOL 183 \f "Symbol" \s 10 \h�	The architecture is designed to provide a framework for future development of network and system monitoring, measurement, and management.

Note that Figure 2.1 is a high level view of the architecture and, in particular, it makes no distinction between service providers and the services they manage. This specification focuses on service providers rather than on services, because the way a service provider communicates with a service is a vendor-specific internal design issue that applications and the XFS Manager are unaware of. In fact, there are many different ways that service providers can make services available to applications. Hence, this specification refers primarily to the service providers, since these are the modules with which the XFS Manager communicates. There are occasional references to 'service' where this is appropriate.

�Example

Figure 2.2 below shows a WOSA/XFS system supporting a set of financial peripherals. Note that in this framework the XFS Manager interfaces directly with a set of service providers that interface directly with the physical devices. Thus, the service providers are shown as implementing the service provider, service, and device driver functions, although these are more likely to be two or more separate layers. Many other configurations are possible.

� EMBED PowerPoint.Slide.4 ���

Figure 2.2 — A WOSA/XFS architecture example for a branch office banking system

It should also be noted that one vendor's service providers are not necessarily compatible with another vendor's, as shown in Figure 2.2. If one application has to access the same service class as implemented by different vendors, a service provider is installed for each vendor.

�API and SPI Summary

Sections 5 through 7 of this document present the interfaces that allow a financial application to communicate in a standard fashion with financial services and devices. The functions are at a sufficiently high level to allow for seamless redirection to other parts of the underlying operating system. A printer, for example, might rely on a set of services provided by the operating system, but in order to handle the unique characteristics of a financial printer and application, the service provider would preprocess the command, then redirect the derived commands to the operating system's printing services. In other implementations, the printer might be supported entirely by WOSA/XFS service mechanisms, and not use the operating system printing services in any way.

The API is structured as sets of:

�SYMBOL 183 \f "Symbol" \s 10 \h�	Basic functions, such as StartUp/CleanUp, Open/Close, Lock/Unlock, and Execute, that are common to all the WOSA Extensions for Financial Services device/service classes,

�SYMBOL 183 \f "Symbol" \s 10 \h�	Administration functions, such as device initialization, reset, suspend or resume, used for managing devices and services, and

�SYMBOL 183 \f "Symbol" \s 10 \h�	Specific commands, used to request device/service-specific functions, and sent to devices and services as a parameter of the Execute basic function.

To the maximum extent possible, the syntax of specific commands that are used with multiple device/service classes is kept consistent across all devices. A primary objective is to standardize function codes and structures for the widest possible variety of devices.

The SPI is kept as similar as possible to the API. Some commands are processed exclusively by the XFS Manager, and so are not in the SPI, and there are minor differences in the specific parameters passed at the two interface levels.

A typical scenario showing the usage of the APIs is shown below. This example illustrates the functions used to print a form.

�SYMBOL 183 \f "Symbol" \s 10 \h�	StartUp (connects the application to the XFS Manager, including version negotiation)

�SYMBOL 183 \f "Symbol" \s 10 \h�	Open (establishes a session between the application and the service provider)

�SYMBOL 183 \f "Symbol" \s 10 \h�	Register (specifies the messages that the application should receive from the service provider)

�SYMBOL 183 \f "Symbol" \s 10 \h�	Lock (obtains exclusive access to the service by the application)

�symbol 183 \f "Symbol" \s 10 \h��	multiple Execute functions, passing one or more specific commands:

�symbol 250 \f "Wingdings" \s 10 \h��	Print_Form

�symbol 250 \f "Wingdings" \s 10 \h��	etc.

�SYMBOL 183 \f "Symbol" \s 10 \h�	Unlock (releases exclusive access to the service by the application)

�SYMBOL 183 \f "Symbol" \s 10 \h�	Deregister (specifies that the application should no longer receive messages from the service provider)

�SYMBOL 183 \f "Symbol" \s 10 \h�	Close (ends the session between the application and the service provider)

�SYMBOL 183 \f "Symbol" \s 10 \h�	CleanUp (disconnects the application from the XFS Manager)

Note that within a session (defined by Open and Close), an application may at any time change the classes of messages it wishes to receive from the service provider (using Register), and may either Lock the service only for specified periods (typically for each transaction), or for the entire session. Also, note that several of the commands are optional, depending on how the device is being managed and shared (i.e., Lock/Unlock, Register/Deregister).

�Device Classes

The following classes of devices are being implemented for the first version of the WOSA Extensions for Financial Services:

�SYMBOL 183 \f "Symbol" \s 10 \h�	Printers�	Receipt�	Journal�	Passbook�	Document

�SYMBOL 183 \f "Symbol" \s 10 \h�	Magnetic stripe readers / writers�	Swipe�	Dip�	Motorized�	Writeable

�SYMBOL 183 \f "Symbol" \s 10 \h�	Cash dispensers (note, coin and check)�	ATMs�	Teller cash dispensers

�SYMBOL 183 \f "Symbol" \s 10 \h�	PIN pads�	with and without display�	with and without encryption

�SYMBOL 183 \f "Symbol" \s 10 \h�	Check readers�	MICR�	OCR�	image scan

The following classes of devices or services, and others that customers and vendors request, will be evaluated for inclusion in future versions of this specification:

�SYMBOL 183 \f "Symbol" \s 10 \h�	Smart cards

�SYMBOL 183 \f "Symbol" \s 10 \h�	Depositories

�SYMBOL 183 \f "Symbol" \s 10 \h�	Signature capture devices

�SYMBOL 183 \f "Symbol" \s 10 \h�	Bar code readers

�SYMBOL 183 \f "Symbol" \s 10 \h�	Card embossers

�SYMBOL 183 \f "Symbol" \s 10 \h�	Hologram readers

Other WOSA Components

This section briefly describes the current components of the Window Open Services Architecture. For more information on any of the components, refer to the individual specifications (see Appendix F for details on how to get more information on WOSA and its components). WOSA is an extensible and growing environment; additional components will be added in areas such as directory services, distributed security, and systems management, as well as vertical market extensions such as the Extension for Financial Services.

Enterprise Communications

WOSA includes a set of components that address the key issue of connectivity, based on formal or de facto standards for enterprise communications that can be valuable in financial enterprise computing: the Windows SNA APIs, Windows RPC and Windows Sockets.

Windows SNA APIs

The set of Windows SNA APIs were defined and endorsed by a working group consisting of Microsoft, IBM® and other leading industry vendors. Since SNA communications are critical to many financial services environments, these are key tools for integrating systems based on the WOSA Extensions for Financial Services into the existing infrastructure in financial institutions. The companies involved in the definition of the SNA API specifications include: Andrew Corporation, Attachmate, Computer Logics, Data Connection, Digital Communications Associates, Easel, Eicon Technology, FutureSoft, IBM, ICOT, International Computers Limited, Microsoft, MultiSoft, AT&T Global Information Solutions, Network Software Associates, Novell, Olivetti, Siemens Nixdorf, Systems Strategies and Wall Data.

This jointly developed set of specifications defines standard interfaces between Windows-based applications and IBM SNA protocols, and is a key connectivity component of the Windows Open Services Architecture (WOSA). An application written to these interfaces will be able to run unchanged over many vendors' SNA connectivity products under Windows. Also, since the APIs are not tied to a particular version of the Windows operating system, programmers can incorporate a common set of SNA code into their applications that will run on Windows, Windows for Workgroups and Windows NT, as well as future versions of Windows.

The Windows SNA API sets are listed below. Please refer to the individual specifications for each of these components for additional details.

�SYMBOL 183 \f "Symbol" \s 10 \h�	Windows LUA (enables IBM 4700-compatible communications) — The Logical Unit Application (LUA; commonly referred to as LU0) API is used to gain access to the lower-level SNA data streams that are common, especially in financial services environments. The specification includes both the basic Request Unit Interface (RUI) API and the higher level Session Level Interface (SLI) API.

�SYMBOL 183 \f "Symbol" \s 10 \h�	Windows APPC — The Advanced Program-to-Program Communication (APPC) API is used to write cooperative applications for the LU6.2 protocol.

�SYMBOL 183 \f "Symbol" \s 10 \h�	Windows CPI-C — The Common Programming Interface for Communications (CPI-C) API also uses the LU6.2 protocol to write cooperative applications for the LU6.2 protocol.

�SYMBOL 183 \f "Symbol" \s 10 \h�	Windows HLLAPI (enables 3270/5250 emulation) — The High Level Language API (HLLAPI) allows application programs to interact with a host using existing 3270 and 5250 emulation products.

�SYMBOL 183 \f "Symbol" \s 10 \h�	Windows CSV (enables communication with IBM NetView®) — The Common Service Verbs (CSV) API provides interfaces for communication with the IBM NetView management system and for character set translations.

�Windows RPC (Remote Procedure Call)

The Windows RPC interface provides a standard Windows API for access to the Remote Procedure Call capability for network-independent interprocess communication in heterogenous distributed environments. RPC makes the development of client-server applications easier, and supports interoperability with other OSF/DCE RPC-compliant systems. The Windows RPC interface is supported by the Windows NT operating system, and defined in the Windows NT Software Development Kit (SDK).

Windows Sockets

The Windows Sockets specification defines a Windows API that is useful in many environments, especially for communication between Windows-based clients and UNIX® hosts/servers. This specification defines a network programming interface for Windows, based on the "socket" paradigm popularized in the Berkeley Software Distribution from the University of California at Berkeley. The Berkeley Sockets programming model is a de facto standard for TCP/IP networking. The Windows Sockets API is consistent with release 4.3 of the Berkeley Software Distribution (4.3BSD).

The Windows Sockets API includes both the familiar Berkeley socket style routines and a set of Windows-specific extensions designed to allow the programmer to take advantage of the message-driven nature of Windows. It is intended to provide a single API to which application developers can program and multiple network software vendors can conform, and to simplify the task of porting existing sockets-based source code. It has a high degree of familiarity for programmers familiar with programming with sockets in UNIX and other environments.

MAPI (Messaging API)

The MAPI specification, developed in consultation with independent software developers and industry consultants, defines an application interface and a service provider interface that help ensure complete system independence for messaging applications and services. This allows mixing and matching of mail front ends (and other message-enabled applications) with service providers, giving organizations the freedom to choose messaging systems and applications according to what best fits their needs, rather than being limited to the few that happen to be compatible.

These capabilities have enormous impact on enterprise messaging systems: adding messaging features to any Windows-based application is easy for developers, making basic workgroup activities, such as sharing documents, reports and charts, easy for end users. MAPI also encourages the development of advanced workgroup applications that give workers better ways to work cooperatively, sharing and exchanging information in a corporate setting.

ODBC (Open Database Connectivity)

ODBC is an open, vendor-neutral interface for database connectivity that provides access to a variety of PC, minicomputer and mainframe systems – including Windows-based systems and the Apple® Macintosh® – in an easy, consistent manner. It has wide support from the leading database vendors, allowing access to virtually all databases, as well as many other vendors pledging ODBC support of their tools. An emerging industry standard for client-server database access, ODBC is an implementation of the Call Level Interface specification developed by the SQL Access Group, a group of more than 40 vendors committed to database interoperability. ODBC has also been endorsed by the SQL Access Group.

ODBC provides a universal method for accessing both SQL and non-SQL data. Implementing ODBC speeds the development of applications that support multiple database management systems, reduces application complexity and minimizes support requirements for both solutions providers and DBMS vendors.

�License Service API

The License Service API is a specification that will provide one consistent way for application developers to incorporate software licensing into their applications. This, in turn, will help companies ensure compliance with licensing agreements when using developers' software. The License Service API was jointly developed and announced by more than twenty industry leaders, including independent software vendors, the Software Publishers Association and the Microcomputer Managers Association.

The API enables software publishers to develop applications that cooperate with the different licensing systems that will support the standard. The application program is isolated from the details of license management. A License Service API-compliant application simply requests permission to run. The underlying licensing system, in turn, grants or denies permission based on the availability of a license for the requesting application.

The specification, which embodies five functions, standardizes one aspect of software licensing: the API used by applications software to access licensing services. There are further areas that can be defined, including standardization of license policies and the license format. License Service API is designed to facilitate the most common policies such as concurrent use, personal use and others.

Windows Telephony API

The Windows Telephony API defines a standard, open set of interfaces to give Windows-based applications access to circuit-switched telephone networks, providing call establishment and control, including advanced functions such as hold, transfer, conference call and call park. The API provides maximum flexibility for transparently connecting PCs to all types of telephone systems, while isolating applications from the complexity of the wide variety of these systems (analog, key system, PBX, ISDN, cellular, etc.). These capabilities allow computing devices running Windows to be full participants in the global telephone network.

WOSA Extensions for Real-Time Market Data

The WOSA Extensions for Real-Time Market Data have been defined by a multi-vendor group, the Open Market Data Council for Windows. The goal is to provide a standard mechanism for applications to exchange live market data and news, based on the Object Linking and Embedding 2.0 (OLE 2.0) technology. The WOSA Extensions for Real-Time Market Data define a standardized use of OLE 2.0, which allow applications to receive and exchange the market data and news that are the lifeblood of the banking and securities industries, in a common, open format, no matter what the source.

The Future of WOSA and the Extensions for Financial Services

The members of the Banking Systems Vendor Council recognize that a variety of other issues are important to the success of financial services computing systems. Although the current version of the WOSA Extensions for Financial Services does not address these issues, it is the intention of the Banking Systems Vendor Council to address them in later versions of the Extensions. This will involve standardized APIs, through the adoption of existing formal or de facto standards, through the extension of existing standards as appropriate, or through the creation of new interfaces where necessary. Many of these APIs may be included as standard elements of WOSA, with general applicability to enterprise computing. The following areas will be addressed:

Financial Transaction Messaging and Management

The initial version of the WOSA Extensions for Financial Services does not define standard interfaces for financial transaction messaging. It is the intention of the Banking Systems Vendor Council to ensure access to this functionality in later versions of the Extensions. Existing examples that are candidates for adoption include the X/Open DTP specifications.

Network and System Management

The members of the Banking Systems Vendor Council recognize that powerful, flexible centralized control of a network of branch offices is critical to the success of financial services institutions. Although the current version of the WOSA Extensions for Financial Services does not consider or support the management of networks in financial enterprises, it is the intention of the Banking Systems Vendor Council to address these needs in later versions of the Extensions. The areas to be addressed include:

�SYMBOL 183 \f "Symbol" \s 10 \h�	Remote system control

�SYMBOL 183 \f "Symbol" \s 10 \h�	Alarm generation

�SYMBOL 183 \f "Symbol" \s 10 \h�	Fault and problem management

�SYMBOL 183 \f "Symbol" \s 10 \h�	Performance measurement, analysis and management

�SYMBOL 183 \f "Symbol" \s 10 \h�	Resource utilization tracking (“accounting” issues)

�SYMBOL 183 \f "Symbol" \s 10 \h�	Configuration management (hardware and software)

�SYMBOL 183 \f "Symbol" \s 10 \h�	License management

�SYMBOL 183 \f "Symbol" \s 10 \h�	Software distribution, including automatic notification, optional rollback, etc.

Security

The wide range of issues related to system security is also critical to the success of financial services computing systems. Although the current version of the WOSA Extensions for Financial Services does not define access to security mechanisms, it is the intention of the Banking Systems Vendor Council to address these needs in later versions of the Extensions. The areas to be addressed include:

�SYMBOL 183 \f "Symbol" \s 10 \h�	Access control

�SYMBOL 183 \f "Symbol" \s 10 \h�	User authentication

�SYMBOL 183 \f "Symbol" \s 10 \h�	Encryption/decryption

�SYMBOL 183 \f "Symbol" \s 10 \h�	Key management

As in other areas, interfaces to existing standards (such as DES, Kerberos, etc.) will be evaluated and adopted wherever possible.

Emerging technologies

The members of the Banking Systems Vendor Council will evaluate a variety of other technologies as they evolve, to understand their impact on the financial services computing environment. These will include object-oriented development and system paradigms, multimedia hardware and software capabilities, and pen-based systems.

Architectural and Implementation Issues

The remainder of this document provides the technical specifications for the Windows Open Services Architecture (WOSA) Extensions for Financial Services (referred to hereafter as “WOSA/XFS” for brevity).

In this specification, the functions of the WOSA/XFS Application Programming Interface (API) and Service Provider Interface (SPI) are always described in terms of providing a standardized, portable interface for applications to gain access to service providers. This architecture allows service providers to deliver an open-ended set of capabilities to financial applications based on the Microsoft Windows operating systems, including access to peripheral devices unique to financial institutions. Since the first priority of the BSVC members for WOSA/XFS implementations will be to provide this peripheral device access capability, the examples used relate primarily to device control and physical input/output.

The key elements of the Extensions for Financial Services are the API definition and the corresponding SPI definition, used by the XFS Manager to communicate with the service providers, together with the set of supporting services provided by the XFS Manager. These elements are combined in a WOSA/XFS implementation, providing access to financial devices and services for Windows-based applications.

The specification defines a standard set of interfaces in order to provide multi-vendor interoperability: if an application uses the API to communicate successfully with a service provider, it should work with another conformant service provider of the same type, developed by another vendor, without any changes. Similarly, any service provider that conforms to the SPI definition can work with a range of conformant applications.

The specification is intended to be usable within all implementations and versions of the Windows operating systems, beginning with versions 3.1 of Windows, Windows for Workgroups, and Windows NT, and all future versions of these operating systems. In the 16 bit operating systems (Windows 3.x, Windows for Workgroups 3.x) the elements of an XFS subsystem (applications, XFS Manager, and service providers) will be 32 bit modules, implemented using the Win32s API. The specification thus provides for both 16 and 32 bit operating systems, and the WOSA/XFS software development kit will include versions of the XFS Manager and associated programming aids that will allow development of applications and service providers for both environments.

For clarity, three prefixes are used in naming the function interfaces in WOSA/XFS:

Function type: Prefix�Functions called by�Functions provided by���symbol 183 \f "Symbol" \s 10 \h��	API functions: WFS...�(WOSA Financial Services)��symbol 183 \f "Symbol" \s 10 \h��	Applications��symbol 183 \f "Symbol" \s 10 \h��	XFS Manager (and typically passed through to WFP functions)���symbol 183 \f "Symbol" \s 10 \h��	SPI functions: WFP...�(WOSA Financial Services Providers)��symbol 183 \f "Symbol" \s 10 \h��	XFS Manager��symbol 183 \f "Symbol" \s 10 \h��	Service providers���symbol 183 \f "Symbol" \s 10 \h��	Support/Configuration functions: WFM...�(WOSA Financial Services Manager)��symbol 183 \f "Symbol" \s 10 \h��	Service providers��symbol 183 \f "Symbol" \s 10 \h��	Applications��symbol 183 \f "Symbol" \s 10 \h��	XFS Manager��

The XFS Manager

The XFS Manager provides overall management of the WOSA/XFS subsystem. The XFS Manager is responsible for mapping the API (WFS...) functions to SPI (WFP...) functions, and calling the appropriate vendor-specific service providers. Note that the calls are always to a local service provider.

The XFS Manager determines which service provider to call using the logical name parameter of the WFSOpen or WFSAsyncOpen function. The logical name is the key providing access to the configuration information that defines the Service Class (e.g., printer, cash dispenser, etc.), the Service Type (e.g., receipt printer, journal printer, etc.) and the Service Provider (DLL file name), as well as additional information. The logical name must be unique at least within each workstation. See Sections 5.7 and 10 for discussions of configuration information access and management.

The XFS Manager also provides the Support Functions (WFM...) defined in Section 9 and the Configuration Functions (also WFM...) defined in Section 10.

Before an application is allowed to utilize any of the services managed by the WOSA/XFS subsystem, it must first identify itself to the subsystem. This is accomplished using the WFSStartUp function. An application is only required to perform this function once, regardless of the number of WOSA/XFS services it utilizes, so this function would typically be called during application initialization. Similarly, the complementary function, WFSCleanUp, is typically called during application shutdown. If an application exits or is shut down without issuing the WFSCleanUp function, the XFS Manager does the cleanup automatically, including the closing of any sessions with service providers the application has left open.

Service Providers

Each WOSA/XFS service, for each vendor, is accessed via a service-specific module called a service provider. For example, vendor A's journal printer is accessed via vendor A's journal printer service provider, and vendor B's receipt printer is accessed via vendor B's receipt printer service provider.

The following sections describe the functionality and packaging of service providers.

Service Provider Functionality

The primary functions of WOSA/XFS service providers, working in conjunction with their respective services and/or device drivers, are as follows. Note that how these functions are implemented is left to the service provider developer.

�symbol 183 \f "Symbol" \s 10 \h��	Route the requests to the device or service, which may be on a remote workstation. �Service providers may communicate with remote services in a variety of ways, such as NetBIOS, named pipes, RPC (Remote Procedure Calls), Windows Sockets, proprietary network programming interfaces, etc.

�symbol 183 \f "Symbol" \s 10 \h��	Translate the generic requests to resource specific commands. �Note that this involves translation not just to service-specific commands, but to the commands native to the resource being used. For example, the commands would not be translated to "Receipt Printer Service" commands, but to "Brand X, Model Y Receipt Printer" commands. For example, a driver may implement device-specific translation tables or processes itself, or utilize standard operating system device interfaces (such as the Windows GDI), if they exist for the particular peripheral.

�symbol 183 \f "Symbol" \s 10 \h��	Arbitrate access to the resource by multiple applications. �Note that when a physical device includes multiple peripherals (for example, a receipt and journal printer in a single unit), this may also include arbitration of the sub-devices.

�symbol 183 \f "Symbol" \s 10 \h��	Manage the interface to the resource.�When physical devices are being controlled, this includes managing the hardware interface to the device. For example, the service providers may use standard operating system device drivers, vendor-written proprietary device drivers, etc.

�symbol 183 \f "Symbol" \s 10 \h��	Manage the asynchronous nature of the services in a consistent manner with respect to the applications.�The asynchronous nature of the SPI must always be presented back to the XFS Manager and the applications in the form of Windows messages, as in other WOSA components such as the Windows Sockets or Windows SNA APIs.

�symbol 183 \f "Symbol" \s 10 \h��	Error recovery.�In some kinds of software failures, such as an application crash, the service provider loses connection with the application. In this situation, the service provider is responsible for an “orderly” shutdown of the session with that application. In particular, the service provider generates a system event (see Section 5.11) indicating that the connection was lost, and if any requests from the application were outstanding, it generates a system event for each completion that would normally have generated a completion message to the application.

Service Provider “Packaging”

WOSA/XFS service providers can be “packaged” into DLLs in a variety of ways:

�symbol 183 \f "Symbol" \s 10 \h��	One service provider per DLL; for example, a vendor might produce a journal printer DLL, a receipt printer DLL, a cash dispenser DLL, etc.

�symbol 183 \f "Symbol" \s 10 \h��	Multiple service providers per DLL; for example a vendor might produce a DLL which contains the service providers for all XFS-compliant printers.

�symbol 183 \f "Symbol" \s 10 \h��	All service providers for a specific vendor in a single DLL.

Asynchronous, Synchronous and Immediate Functions

Windows and WOSA/XFS are built on an event-driven, asynchronous model. However, the WOSA/XFS design allows an application using its interfaces to behave in either an asynchronous or synchronous manner. Thus the API supports two versions of each of the appropriate functions (e.g., an application can request to lock a service using either the asynchronous WFSAsyncLock function or the synchronous WFSLock function).

Each WOSA/XFS API function operates in one of three synchronization modes: asynchronous, synchronous or immediate. These are described in the following sections.

Note that the SPI is purely an asynchronous interface, so all SPI functions are either asynchronous or immediate; there are no synchronous SPI functions.

See Sections 6 and 8 for a summary of the API and SPI functions and their synchronization modes.

Asynchronous Functions

Asynchronous mode is used for operations which may take an indeterminate amount of time to complete. Performing an operation in an asynchronous, as opposed to a synchronous, mode allows the application to operate in Windows' native event-driven, message-based manner. The processing of an asynchronous request (e.g., WFSAsyncExecute) is as follows:

�symbol 183 \f "Symbol" \s 10 \h��	The application calls the XFS Manager.

�symbol 183 \f "Symbol" \s 10 \h��	The XFS Manager generates a sequence number, the RequestID, assigns it to the request, and calls the service provider.

�symbol 183 \f "Symbol" \s 10 \h��	The service provider schedules the request for deferred processing and immediately returns to the XFS Manager.

�symbol 183 \f "Symbol" \s 10 \h��	The XFS Manager returns the RequestID to the application, with a status indicating that the request has been initiated and is being processed.

�symbol 183 \f "Symbol" \s 10 \h��	At some point, the service provider processes the deferred request.

�symbol 183 \f "Symbol" \s 10 \h��	On completion, the service provider posts a completion message to the window handle specified by the application in its original call. (For flexibility, an application using asynchronous functions can specify a different window for each request.) The message contains a pointer to a WFSRESULT data structure defining the results of the request, including the RequestID, the status code and the other relevant data.

Synchronous Functions

Synchronous mode is also used when an operation can take an indeterminate amount of time to complete, but the application wishes to handle the function in a sequential manner. The XFS Manager does not return control to the application until the operation has completed, thus synchronous functions are referred to as blocking. Each synchronous call made by an application is translated by the XFS Manager into its asynchronous SPI counterpart before being passed to the service provider.

If a blocking operation is not completed immediately in a Windows 3.x system, the XFS Manager executes a Windows message loop on behalf of the calling thread, thereby keeping the Windows system running. See Section 5.12 for a more detailed discussion of process, threads and message loops. In Windows NT, the calling application thread is blocked on request completion. A thread may have only one blocking WOSA/XFS call outstanding at any one time. See Section 5.12 for additional discussion of the management of synchronous functions, including replacement of the default message loop.

The processing of a synchronous request (e.g., WFSExecute) is as follows:

�symbol 183 \f "Symbol" \s 10 \h��	The application calls the XFS Manager.

�symbol 183 \f "Symbol" \s 10 \h��	The XFS Manager translates the request into an asynchronous SPI, generates a RequestID to track the request, provides its own window handle to receive the completion message, and calls the service provider DLL.

�symbol 183 \f "Symbol" \s 10 \h��	The service provider schedules the request for deferred processing and immediately returns to the XFS Manager.

�symbol 183 \f "Symbol" \s 10 \h��	The XFS Manager simulates synchronous processing as described above and in Section 5.12.

�symbol 183 \f "Symbol" \s 10 \h��	At some point, the service provider processes the deferred request.

�symbol 183 \f "Symbol" \s 10 \h��	On completion, the service provider posts a completion message to the window handle specified by the XFS Manager. The message contains a pointer to a WFSRESULT data structure defining the results of the request, including the RequestID, the status code and the other relevant data.

�symbol 183 \f "Symbol" \s 10 \h��	The XFS Manager unpacks the information from the completion message into the appropriate parameters, and returns them to the application, unblocking the original application request.

Immediate Functions

These are API functions that are not either asynchronous or synchronous. Typically, immediate APIs are those which do not communicate with a service or a physical device (or use the network in any other way) and are thus guaranteed to complete immediately, whether successfully or not. They are handled in two ways:

�symbol 183 \f "Symbol" \s 10 \h��	Processed entirely by the XFS Manager, which returns immediately to the application. Examples include WFSStartUp, and WFSSetBlockingHook.

�symbol 183 \f "Symbol" \s 10 \h��	Passed by the XFS Manager to the service provider as an immediate SPI. The service provider processes the request and immediately returns to the XFS Manager, which returns immediately to the application. Examples include WFSCancelAsyncRequest and WFMSetTraceLevel.

Processing API Functions

When an application calls a WOSA/XFS API function one of the following processing scenarios takes place. Note that this classification is distinct from the API synchronization modes discussed above. See Section 8 for the mapping of API functions to SPI functions.

�symbol 183 \f "Symbol" \s 10 \h��	The function is converted by the XFS Manager directly into the corresponding SPI function (e.g., WFSAsyncRegister).

�symbol 183 \f "Symbol" \s 10 \h��	The XFS Manager performs some preprocessing and then converts the function into the corresponding SPI function (e.g., WFSAsyncExecute).

�symbol 183 \f "Symbol" \s 10 \h��	The XFS Manager performs some preprocessing and then translates the API function to a different SPI function, which it passes to the service provider. Most of the synchronous API functions (e.g., WFSLock) are of this type, since they are translated to their asynchronous SPI equivalents.

�symbol 183 \f "Symbol" \s 10 \h��	The XFS Manager performs some preprocessing and then translates the API function to multiple SPI functions, which it passes to the service provider (e.g., WFSOpen).

�symbol 183 \f "Symbol" \s 10 \h��	The function is completely processed inside the XFS Manager (e.g., WFSIsBlocking, WFSSetBlockingHook).

Service providers (and sometimes applications) call the XFS Manager for the support functions defined in Section 9 and for the configuration functions defined in Section 10.

Opening a session

Once a connection between an application and the XFS Manager has successfully been negotiated (via WFSStartUp), the application establishes a virtual session with a service provider by issuing a WFSOpen (or WFSAsyncOpen) request. Opens are directed towards “logical services” as defined in the WOSA/XFS configuration. A service handle (hService) is assigned to the session, and is used in all the calls to the service in the lifetime of the session.

Note that applications may optionally choose to explicitly manage the concept of “application identity” when they need to use interdependent compound devices (see Section 5.8.2). This is achieved by using the WFSCreateAppHandle function to get an application handle (hApp), which is unique within the system. This function can be called multiple times to obtain multiple unique handles. An application handle parameter is then used in the WFSOpen function, directing the service provider to bind the specified application handle to the session being initiated. This allows a single application process (potentially multi-threaded) to act as multiple applications to the WOSA/XFS subsystem, to allow effective use of interdependent compound devices. An example of a case in which this could be useful is an application using the Multiple Document Interface (MDI); the application could associate an application handle with each MDI child window. See Section 5.8.2 for additional discussion of the use of application handles with compound devices. Note that neither service nor application handles may be shared among two or more applications.

The actions performed by the XFS Manager on an open are as follows:

�symbol 183 \f "Symbol" \s 10 \h��	Retrieves the configuration information defining the specified logical service, in order to determine the DLL name of the service provider. The logical service name is the key to the configuration information.

�symbol 183 \f "Symbol" \s 10 \h��	Loads the DLL containing the requested service provider, if it is not already loaded.

�symbol 183 \f "Symbol" \s 10 \h��	Performs pre-processing and translation as necessary, depending on whether the synchronous or asynchronous open API has been issued.

�symbol 183 \f "Symbol" \s 10 \h��	Generates a unique service handle (hService) that identifies the session with the service provider that is being established, to be passed back to the application as a parameter.

�symbol 183 \f "Symbol" \s 10 \h��	Calls the service provider's WFPOpen function, passing the parameters needed.

The service provider does the following:

Performs version negotiation, using the parameters specifying the SPI version requested by the XFS Manager, and the service-specific interface version requested by the application.

�symbol 183 \f "Symbol" \s 10 \h��	Retrieves the configuration information.

�symbol 183 \f "Symbol" \s 10 \h��	Asynchronously establishes a session with the service specified in the configuration on the specified workstation, if necessary, relying on the transport facilities provided.

�symbol 183 \f "Symbol" \s 10 \h��	Upon completion of the request, posts a completion message (WFS_OPEN_COMPLETE), which goes to the application for a WFSAsyncOpen call, and to the XFS Manager for a WFSOpen call.

	

Note that even if the service is locked by another application, the open function succeeds, as defined in Section 5.8, “Exclusive Service and Device Access.”

An application programmer has at least two obvious choices as to when to perform the WFSOpen (and the complementary WFSClose) of the services it utilizes:

�symbol 183 \f "Symbol" \s 10 \h��	Open the services during application initialization, keep them open, and close them during application shutdown.

�symbol 183 \f "Symbol" \s 10 \h��	Perform the open each time the service is required, utilize it, and immediately close it.

Each technique has its own advantages. For example, while the first example might provide better performance, the second might be easier to program. In any case, upon a successful completion of an open, the WOSA/XFS subsystem returns a service handle which must be used for all subsequent communication with the service.

Note that an application must perform an open for each logical service that it wishes to utilize, even if the services are of the same type. For example, if an application wishes to utilize two separate receipt printers, it must open two separate logical services.

Furthermore, an application may need to open multiple logical services, even when a set of devices are housed in a single device. For example, consider a compound printer which includes both a receipt and a journal printer. If the application requires access to both the receipt and journal printer functions, it must open both a receipt logical service and a journal logical service.

Closing a Session

When an application no longer requires the use of a particular service, it issues a WFSClose or WFSAsyncClose request. The WOSA/XFS subsystem then closes that session as follows:

�symbol 183 \f "Symbol" \s 10 \h��	The XFS Manager calls the service provider's WFPClose function.

�symbol 183 \f "Symbol" \s 10 \h��	The service provider schedules the request for deferred processing, and returns immediately to the XFS Manager. Note that at this point the service handle, hService, is no longer valid.

�symbol 183 \f "Symbol" \s 10 \h��	At some point, the service provider processes the deferred close request, communicating with the service as necessary to accomplish the request.

�symbol 183 \f "Symbol" \s 10 \h��	Requests that were issued by the application before the close are executed.

�symbol 183 \f "Symbol" \s 10 \h��	If the calling application has the service locked under the same hService, the service provider unlocks it automatically (following the standard lock policy as defined in Section 5.8).

�symbol 183 \f "Symbol" \s 10 \h��	The service cleans up its administrative information (removes WFSRegister entries etc.).

If the WOSA/XFS subsystem loses connection to an application, it closes the session as described above, and:

�symbol 183 \f "Symbol" \s 10 \h��	An event of class SYSTEM_EVENT is generated.

�symbol 183 \f "Symbol" \s 10 \h��	Since messages can no longer be posted to the application, any command completion and event notification messages from this service for the application are converted to events of class SYSTEM_EVENT.

�Configuration Information

The XFS Manager uses its configuration information to define the relationships among the applications and the service providers. In particular, this information defines the mapping between the logical service interface presented at the API (via logical service name) and the appropriate service provider entry points.

The configuration information also includes specific information about logical services and service providers, some of which is common to all solution providers; it may also include information about physical services, if any are present on the system, and vendor-specific information. The location of the information is transparent to both applications and service providers; they always store and retrieve it using the configuration functions provided by the XFS Manager, as described in Section 10, for portability across Windows platforms.

It is the responsibility of solution providers, and the developers of each service provider, to implement the appropriate setup and management utilities, to create and manage the configuration information about the XFS subsystem configuration and its service providers, using the configuration functions.

These functions are used by service providers and applications to write and retrieve the configuration information for a WOSA/XFS subsystem, which is stored in a hierarchical structure called the XFS configuration registry. The structure and the functions are based on the Win32 Registry architecture and API functions, and are implemented in Windows NT and future versions of Windows using the Registry and the associated functions. For Win32s-based implementations on Windows 3.1 and Windows for Workgroups, a subset of the functionality described here will be available; the SDK will define this subset.

Each node in the configuration registry is called a key, each having a name and (optionally) values. All values consist of a name and data pair, both null-terminated character strings. The structure is as follows:

(1)	The top level is the root node for the WOSA/XFS subsystem. Its key name is WFS_CFG_HKEY_XFS_ROOT (it is a subkey of HKEY_CLASSES_ROOT in the Win32 Registry).

(2)	The second level contains at least three keys: XFS_MANAGER, LOGICAL_SERVICES, and SERVICE_PROVIDERS. Other keys (e.g., PHYSICAL_SERVICES) may be defined and used as required.

(3)	Below the XFS_MANAGER key there are values and/or keys for information that the XFS Manager creates and uses.

(4)	Below the LOGICAL_SERVICES key there is a key for each logical service defined for the system on which the registry resides; the key names are the logical service names (the lpszLogicalName parameter of the WFSOpen, WFSAsyncOpen and WFPOpen functions). Since there is only one registry per workstation, this enforces the requirement that logical service names are unique within at least the workstation.� EMBED Word.Picture.6 ��

(5)	Below the SERVICE_PROVIDERS key there is a key for each service provider defined for the system.

The configuration functions provide the capabilities to create, enumerate, open and delete keys, and to set, query and delete values within each key. Vendor-provided configuration utility programs set up the registry structure and its contents, using these functions. The third level contains the values and keys that define how the XFS subsystem, services and providers are configured. These are used by the XFS Manager, applications and service providers. Note that vendor-specific information may be added to any key in this structure, using optional values.

�The figure below illustrates the structure of the configuration registry:

�EMBED MSDraw * mergeformat���

Every logical service key has three mandatory values:

class	the service class of the logical service; (see Section 10 for the standard values)

type	the service type of the logical service; the standard values for service type �	are defined in the WOSA/XFS software development kit SDK

provider	the name of the service provider that provides the logical service �		(the key name of the corresponding service provider key)

A service provider key also has three mandatory values:

dll_name	the name of the file containing the service provider DLL

vendor_name	the name of the supplier of this service provider

version	the version number of this service provider

�An example of the content of the configuration information for an actual system is shown below. See Section 10 for the definitions of the configuration functions.

WOSA/XFS Registry Root

	Second Level Keys

		Third Level Keys (or values)

			Values

WFS_CFG_HKEY_XFS_ROOT

	XFS_MANAGER

		< values and/or keys as required >

	LOGICAL_SERVICES

		Passbook1

			class=PTR

			type=PASSBOOK

			provider=Passbook_Receipt

			operator_station=1

			input_paper_source=upper

			< other optional values >

		Receipt1

			class=PTR

			type=RECEIPT

			provider=Passbook_Receipt

			< optional values >

		Journal1

			class=PTR

			type=JOURNAL

			provider=Journal

			< optional values >

		ATSafe1

			class=CDM

			type=ATSAFE

			provider=Cash_Dispenser

			< optional values >

		< other srvcs >

	SERVICE_PROVIDERS

		Cash_Dispenser

			dll_name=CASHDISP.DLL

			vendor_name=Big Bank Software, Inc.

			version=3.5

			< optional values >

		Passbook_Receipt

			dll_name=RPPRNTR.DLL

			vendor_name=Code “R Us, Ltd.

			version=1.3

			< optional values >

		Journal

			dll_name=JOURNAL.DLL

			vendor_name=Nobugs Systems

			version=2.01

			< optional values >

		< other prvdrs >

	< other keys >

Exclusive Service and Device Access

This section describes how application access to services and devices is handled by WOSA/XFS subsystems, using the lock facility. It discusses the meaning of timers within the context of a lock request and issues that arise when multiple applications have issued lock requests. It also describes how requests that were submitted to the service provider prior to a lock request are managed. Furthermore, it describes how compound devices (physical devices that include two or more logical devices, such as a passbook printer that also includes a magnetic stripe reader) are handled.

Typically, an application requires exclusive access to a particular service when it is about to utilize it, particularly in combination with other services. For example, an application may need to use a PIN pad, magnetic stripe reader, receipt printer and journal printer to complete a transaction. The application must be guaranteed that it has access to all the devices before starting on the transaction, and that no other application will be able to use them until the transaction is complete and it has explicitly released them. This is accomplished by using the WFSLock (or WFSAsyncLock) function and the complementary WFSUnlock function.

An application should act in a cooperative manner when locking a service, by keeping it locked for the minimum time period that it requires exclusive access to the service. Typically, this means locking a set of services, performing a series of requests to the services to complete a transaction, and immediately unlocking the services.

Applications must use appropriate techniques to avoid deadlock when locking multiple services, typically by making use of the timeout parameter in the lock functions.

Also, note that there are cases in which exclusive access is not a requirement, so that it is not always required that an application lock a service before issuing execute operations to it.

The lock policy describes the rules that services use in managing lock requests. In the description of this policy, XFS requests are categorized into three types:

Non-deferred: Requests that can be processed completely by a service as soon as they arrive (e.g., WFPOpen, WFPRegister and most WFPGetInfo calls.

Deferred: Requests which may not be able to be processed completely as soon as they arrive, typically because they require hardware and/or operator interaction (e.g., WFPExecute and some WFPGetInfo calls).

Lock: WFPLock calls.

The lock policy is described first for independent devices, i.e., logical services that correspond to devices whose operation is not interdependent with any other (even though they may be housed in the same physical enclosure). The following section describes the special requirements involved in managing compound interdependent devices.

Lock Policy for Independent Devices

The following describes how the categories of requests are handled, in each of the lock states of a service. Note that although the description refers to queues and other implied implementation characteristics, this is only for convenience; no particular implementation techniques are required.

Service state: UNLOCKED

Non-deferred requests are processed on arrival.

Deferred requests are placed in the deferred queue and processed FIFO.

When a WFPLock request arrives:

The lock request is placed in the lock queue.

The service state changes to LOCK_PENDING.

Service state: LOCK_PENDING

All requests in the deferred queue that arrived before the pending lock request are processed FIFO; after all are processed, the the lock queue is processed. Note that depending on the nature of the service/device, lock requests may be granted FIFO or in some other order, e.g., when an operator takes an action such as pressing a station button.

When a lock request has been granted:

The service state changes to LOCKED.

Any other pending lock requests from the same “owner” are also granted. (The owner is the same if it comes from the same workstation and has the same application and service handles.)

Service state: LOCKED

Arriving requests (except lock requests) are handled as follows:

Non-deferred requests are processed on arrival.

Deferred requests that are not WFPExecute requests are placed in the deferred queue.

WFPExecute requests from the owner of the lock are placed in the deferred queue.

WFPExecute requests that are not from the owner of the lock are rejected (with error code WFS_ERR_LOCKED).

WFPUnlock and WFPClose requests from the owner of the lock are placed in the deferred queue. (Note that a close request to a locked service is treated as an unlock followed by a close.)

WFPUnlock and WFPClose requests that are not from the owner of the lock are treated as non-deferred requests, i.e., processed on arrival.

The deferred queue is processed FIFO.

When a WFPLock request arrives:

If it is from the owner of the lock, it is granted.

If it is not from the owner of the lock, it is placed in the lock queue.

When a WFPUnlock or WFPClose request is processed from the deferred queue, or the connection between the service and the owner of the lock is lost:

If the lock queue is not empty, the service state changes to LOCK_PENDING.

If the lock queue is empty, the service state changes to UNLOCKED.

Note that most requests include a timeout parameter which must be managed appropriately, i.e., when the specified time expires, the request is rejected with the error code WFS_ERR_TIMEOUT. The timeout parameter is particularly important with the WFSLock request, since it allows applications to set a maximum time to wait for a lock to be granted, to allow prevention of deadlock situations when requesting locks of multiple devices.

Compound Devices

Compound devices are very common in the financial services industry. For the purposes of this discussion, there are three types of compound devices:

�symbol 183 \f "Symbol" \s 10 \h��	Two or more separate logical devices that share a physical housing (or perhaps some other attribute), but function completely independently of one another

�symbol 183 \f "Symbol" \s 10 \h��	Two or more distinct logical devices that are functionally interdependent in some way, such as a journal printer and passbook printer that use the same print head mechanism

�symbol 183 \f "Symbol" \s 10 \h��	Two or more logical devices that are simply different logical views of a single physical device, such as a single printer that is managed as two separate logical devices, a document printer and a passbook printer

The first of these types has no special significance from the XFS point of view. Each of the devices is managed as a separate logical and physical device, and the system configuration issues (e.g., making sure that devices that are packaged together are assigned to the same workstation) are left to application utilities outside the scope of this specification.

The latter two types are treated identically in an XFS system. When any one of a set of interdependent logical devices that forms a compound device is locked, all the other logical devices in that compound device are also implicitly locked on behalf of the requesting application. (The specific policy is described below.) If the same application (see the discussion of “application identity” below and in Section 5.5) explicitly requests a lock of another of these logical devices, the lock is granted. In order to allow the application to “know” that the devices are part of a compound device, and therefore interdependent, the WFSLock function returns an array of service handles, defining the set of other devices within the compound device that are now explicitly locked by the application. This allows the application to manage its use of these devices accordingly. Normally, it must use them in a strictly sequential manner to avoid any possible conflicts, but if it has some special knowledge of how the devices are related, it may be able to multiplex requests in some ways.

Note that an application can also determine whether a device is compound by using the device capabilities query function of WFSGetInfo.

There are many different ways in which programmers can make use of multiple threads and/or processes in financial applications. Each WOSA/XFS service can be controlled from its own thread; all services can be controlled from a single thread, with other threads/processes used for other application functions; several identical threads can handle all open services as needed; etc. In some of these models, the “user” of a service could be considered to be the process as a whole; in other models, the “user” is a single thread. The WOSA/XFS design allows for both models by providing the programmer the capability to explicitly control the “identity” of an application. The programmer can make all the threads in a process appear to a service provider as one “application,” identify each thread as a different “application,” or create some hybrid of these approaches, allowing interdependent compound devices to be managed correctly no matter what application architecture is used.

In order to allow this flexibility in application architecture, the “identity” of an application can optionally be managed explicitly using the concept of application handles. An application handle (hApp) is created using the WFSCreateAppHandle function, and is guaranteed unique within the system. The WFSOpen function takes an optional application handle parameter which is bound to the service handle (hService) returned by the open function. This approach allows applications that use interdependent compound devices to be implemented with any combination of single or multiple processes and/or threads, by explicitly managing an appropriate set of application handles. If this facility is not used (indicated by the application using the value WFS_DEFAULT_HAPP for the hApp parameter in WFSOpen), the XFS subsystem automatically treats each process as having a single, unique application handle. See Section 5.5 for additional discussion of this topic.

The lock policy for interdependent compound devices uses the same rules as for independent devices, with some additional constraints. In order to synchronize access via multiple logical services to a single physical device, or to interdependent devices, the service manages a single lock queue and a single deferred queue for the set of related logical services. The additional constraints are:

Service state: LOCK_PENDING

When a lock request has been granted to one of a set of related logical services:

All the other related services in the set change to a “reserved” state in which they are treated as being in the LOCKED state for requests not from the owner.

Any lock request from the owner for one of the reserved services is granted on arrival.

Lock requests that are not from the owner of the reserved devices are placed in the lock queue.

Service state: LOCKED

Any lock request from the owner for one of the reserved services is granted on arrival.

Lock requests that are not from the owner of the reserved devices are placed in the lock queue.

Note that if a WFPUnlock or WFPClose request is processed for the service, and any other logical service that is related to this service is in the LOCKED state, then the service state is set to “reserved,” not UNLOCKED.

Note also, that if a WFPUnlock or WFPClose request is processed for the service, and the other logical services that are related to this service are in the “reserved” state, then all these services change to the UNLOCKED state.

Timeout

There are two fundamentally different time domains in a system, each having a different implication on the concept of timeout:

�symbol 183 \f "Symbol" \s 10 \h��	“user time” = real time; timeout here says simply “this job is taking too long” as defined by the application and/or the user (indicated by a WFS_ERROR_TIMEOUT error code)

�symbol 183 \f "Symbol" \s 10 \h��	“service time” = the time taken by the service request within the service; typically, the physical device operation (indicated by WFS_ERR_DEV_NOT_READY or WFS_ERR_HARDWARE_ERROR error code)

In WOSA/XFS systems, the service manages the latter, without needing any input from the application, since it “knows” the charactistics of the device, and can generate a timeout event if the device takes too long, even if the application timeout value (if any) has not been exceeded. Therefore, the timeout value provided in the API is treated by the service provider as user/real time. If the time is exceeded, the service provider cancels the request and returns a timeout event to the application. An application can also specify that a request should wait until completion, no matter how long the request takes, by specifying the special value WFS_INDEFINITE_WAIT.

Function Status Return

When a WOSA/XFS API or SPI function call completes, it returns a value that either defines the completion status, or in the case of asynchronous functions, the status of the initial processing of the request. When an asynchronous function completes, the completion message includes the final status of the request. In order to ease portability to the function return conventions of the type to be used in OLE 2.0 and future versions of the Windows operating systems, this value is defined as follows.

The return value of most functions is a “result handle,” hResult, of type HRESULT. hResult values are defined to be WFS_SUCCESS for success; the WFMMakeResult support function is provided to create error values. If the hResult value is not WFS_SUCCESS, the application calls WFSGetSCode to map the hResult into a known code indicating error or informational status. The general form of this convention and its usage is:

typedef	LONG	HRESULT;

typedef	LONG 	SCODE;

HRESULT	WFSSomeFunc(arg1, ... ,argn);

SCODE		WFSGetSCode(HRESULT hResult);

HRESULT hr;

SCODE scode;

hr = WFSSomeFunc(. . .);

if (hr != WFS_SUCCESS)

	{

	scode = WFSGetSCode(hr);

	// handle individual errors as appropriate

	}

Note:	The initial version of the WOSA/XFS implementation returns the SCode directly as the hResult handle, and WFSGetSCode simply returns the same value. The use of this function is required in WOSA/XFS-compliant applications for upward compatibility.

�The XFS Manager and the service providers return status from a function call, in the form of an hResult result handle, in two manners:

�symbol 183 \f "Symbol" \s 10 \h��	By returning an hResult value as the function return.

�symbol 183 \f "Symbol" \s 10 \h��	By posting a completion message to the window specified in the request. The message contains a pointer to a structure that includes the hResult.

The mechanism depends on the category of function being processed, as follows:

�symbol 183 \f "Symbol" \s 10 \h��	Immediate API

The XFS Manager processes the request, and immediately returns a result handle. In some cases, the XFS Manager calls the service provider to process the request, then returns the result handle from the service provider to the application.

�symbol 183 \f "Symbol" \s 10 \h��	Asynchronous API

Since the processing is performed in a number of steps, as described earlier, return status is generated at a number of levels:

�symbol 183 \f "Symbol" \s 10 \h��	The service provider performs any validations which can be processed immediately.

�symbol 183 \f "Symbol" \s 10 \h��	If an error is detected, the service provider returns the hResult to the XFS Manager, which immediately returns it to the application.

�symbol 183 \f "Symbol" \s 10 \h��	Otherwise, the request is scheduled and an hResult of WFS_SUCCESS is immediately returned to the XFS Manager, which immediately returns it to the application. This informs the application that the request has been accepted and is being processed.

�symbol 183 \f "Symbol" \s 10 \h��	Upon completion of the deferred request, a completion message is posted to the application's window. This message points to the structure that includes the hResult indicating the completion status of the request.

�symbol 183 \f "Symbol" \s 10 \h��	Synchronous API

�symbol 183 \f "Symbol" \s 10 \h��	Since a synchronous API call is translated by the XFS Manager to an asynchronous SPI, the service provider behaves the same as in asynchronous API processing. Specifically, the service provider performs any validations which can be processed immediately.

�symbol 183 \f "Symbol" \s 10 \h��	If an error is detected, the service provider returns the hResult to the XFS Manager, which immediately returns it to the application.

�symbol 183 \f "Symbol" \s 10 \h��	Otherwise, the request is scheduled and an hResult of WFS_SUCCESS is immediately returned to the XFS Manager, indicating that the request has been accepted and is being processed.

�symbol 183 \f "Symbol" \s 10 \h��	Upon completion of the deferred request, a completion message is posted to the XFS Manager window. The XFS Manager retrieves the hResult from the structure pointed to by the message and returns it to the application.

Notification Mechanisms — Registering for Events

The WFSRegister and WFSDeregister functions (and their asynchronous counterparts) are used to register and deregister the window procedures which are to receive Windows messages when particular unsolicited, asynchronous events occur, either during request processing or at other times. In other words, they are used to enable or disable the reception of event notifications. By providing notifications of this type to applications, the requirement to poll for status is removed, and a simple method for implementing "monitoring" applications is provided. Each WFSRegister call specifies a service handle (hService), one or more event classes, and an application window handle (hWnd) which is to receive all the messages of the specified class(es). The corresponding SPI functions, WFPRegister and WFPDeregister, implement the API functions.

There are four classes of events:

�symbol 183 \f "Symbol" \s 10 \h��	SERVICE_EVENTS

�symbol 183 \f "Symbol" \s 10 \h��	USER_EVENTS

�symbol 183 \f "Symbol" \s 10 \h��	SYSTEM_EVENTS

�symbol 183 \f "Symbol" \s 10 \h��	EXECUTE_EVENTS

For the first three of these event classes, if a class is being monitored and an event occurs in that class, a message is broadcast to every hWnd registered for that class, specifying the service identified by the hService handle. The events are generated when:

�symbol 183 \f "Symbol" \s 10 \h��	the service status changes (SERVICE_EVENTS), e.g., a printer is suspended or is no longer available.

�symbol 183 \f "Symbol" \s 10 \h��	the service needs an operation from the user to take place (USER_EVENTS), e.g., a device needs “abnormal” attention, such as adding paper or toner to a printer.

�symbol 183 \f "Symbol" \s 10 \h��	a system event occurs (SYSTEM_EVENTS), e.g., a hardware error occurs, a version negotiation fails, the network is no longer available or there is no more disk space.

The EXECUTE_EVENTS class is different from the other three. These are events which occur as a normal part of processing an WFSExecute command. Examples include the need to interact with the user or operator to request an action such as inserting a passbook into a printer, “swiping” a mag stripe card, etc. A message generated by one of these events is sent only to the application that issued the WFSExecute that caused the event, even though other applications are registered for EXECUTE_EVENTS. Note that an application must explicitly register for these events; if it has not, and such an event occurs, the event is not deliverable and the WFSExecute completes normally.

The logic of WFSRegister is cumulative: for a given service the number of notification messages sent may be increased by specifying additional event classes. Since the XFS Manager does not keep track of what events the application is registered for and the logic of the register/deregister mechanism is cumulative, the service providers are responsible for implementing the logic of this process.

An application requests registration for more than one event class in a single call by using a logical ‘OR’:

hr = WFSRegister(hService,USER_EVENTS|SERVICE_EVENTS,hWnd);

Note that services always monitor their resources, regardless of whether any application has registered for event monitoring or not. Issuing WFSRegister simply causes a service to send notifications to the service provider, which, in turn, sends notifications to one or more applications.

To communicate to the XFS Manager that it no longer wishes to receive messages in one or more event classes, an application can cancel any previous registration using the WFSDeregister function. The logic of WFSRegister and WFSDeregister is symmetric: the application can deregister one or more classes of events monitored for each window, by properly specifying them in the parameter list. To deregister completely (e.g., every event class for every window), an application uses NULL event class and window handle values in the parameter list.

Although the WFSDeregister takes effect immediately, it is possible that messages may be waiting in the application's message queue. A robust application must therefore be prepared to receive event messages even after deregistration.

Note that an event notification message always passes the information describing the event to an application by pointing to a WFSRESULT data structure. After the application has used the data in the structure, it must free the memory that the service provider allocated for the WFSRESULT data structure, using the WFSFreeResult function.

�Application Processes, Threads and Blocking Functions

An application process contains one or more threads of execution. The WOSA/XFS interface is designed to work in both the single-threaded versions of the Windows operating systems (Windows 3.1 and Windows for Workgroups) and in the multi-threaded versions of Windows (Windows NT and future versions of Windows). All references to threads in this document refer to actual threads in multi-threaded Windows environments. In single-threaded environments, “thread” is synonymous with “process.”

Within the XFS Manager, a blocking (synchronous) function is handled as follows: The XFS Manager initiates the operation, and then enters a loop in which it dispatches any Windows messages (thus yielding the processor to other applications as necessary) and checks for the completion of the operation. When the operation completes, or WFSCancelBlockingCall is invoked, the blocking operation completes with an appropriate result.

When a Windows message is received for a thread for which a blocking operation is in progress, the thread is not permitted to issue any WOSA/XFS calls during the processing of the message, other than the two specific functions provided to assist the programmer in this situation:

�symbol 183 \f "Symbol" \s 10 \h��	WFSIsBlocking determines whether or not a blocking call is in progress.

�symbol 183 \f "Symbol" \s 10 \h��	WFSCancelBlockingCall cancels a blocking call in progress.

Any other WOSA/XFS function called when a blocking call is in progress fails with the error WFS_ERR_OP_IN_PROGRESS. This restriction applies to requests for both blocking and non-blocking operations.

Although this mechanism is sufficient for simple applications, it cannot support those applications which require more complex message processing while blocked for a synchronous call, such as processing messages relating to MDI (multiple document interface) events, accelerator key translations, and modeless dialogs. For such applications, the WOSA/XFS API includes the function WFSSetBlockingHook, which allows the programmer to define a special routine which will be called instead of the default message dispatch routine described above. This function gives an application the ability to execute its own routine at blocking time in place of the default routine. It is not intended as a mechanism for performing general application functions while blocked; it is still true that the only WOSA/XFS functions that may be called from a blocking routine are WFSIsBlocking and WFSCancelBlockingCall. The asynchronous versions of the WOSA/XFS functions must be used to allow an application to continue processing while an operation is in progress.

This mechanism is provided to allow a Windows 3.x or Windows for Workgroups application to make blocking calls without blocking the rest of the system. Under Windows NT and future multi-threaded, preemptive versions of Windows, the default blocking action is to suspend the calling application's thread until the request completes. This is because the system is not blocked by a single application waiting for an operation to complete, and hence not calling PeekMessage or GetMessage, which are required in the non-preemptive systems in order to cause the application to yield control.

Therefore, if a single-threaded application is targeted at both single- and multi-threaded environments, and relies on this functionality, it should install a specific blocking hook by calling WFSSetBlockingHook, even if the default hook would suffice. This maximizes the portability of applications that depend on the blocking hook behavior. Programmers who are constrained to use blocking mode—for example, as part of an existing application which is being ported—should be aware of the semantics of blocking operations.

In the WOSA/XFS implementation in a single-threaded environment, the blocking function operates as follows. When an application requests a blocking WOSA/XFS API function, the XFS Manager initiates the requested function and then enters a loop which is equivalent to the following pseudocode:

for(;;) {

	/* flush messages for good user response */

	while(DefaultBlockingHook())

		;

	/* check for WFSCancelBlockingCall() */

	if(operation_cancelled())

		break;			

	/* check to see if operation completed */

	if(operation_complete())

		break;			/* normal completion */

}

The DefaultBlockingHook routine is equivalent to:

BOOL DefaultBlockingHook(void) {

	MSG msg;

	BOOL ret;

	/* get the next message if any */	

	ret = (BOOL) PeekMessage(&msg, NULL, 0, 0, PM_REMOVE);

	if(ret) {

		TranslateMessage(&msg);

		DispatchMessage(&msg);

	}

	/* TRUE if we got a message */

	return(ret);

}

In a multi-threaded environment, the developer of a multi-threaded application must be aware that it is the responsibility of the application, not the XFS Manager, to synchronize access to a service by multiple threads. Failure to synchronize calls to a service leads to unpredictable results; for example, if two threads "simultaneously" issue WFSExecute requests to send data to the same service, there is no guarantee as to the order in which the data is sent. This is true in general; the application is responsible for coordinating access by multiple threads to any object (e.g., other forms of I/O, such as file I/O), using appropriate synchronization mechanisms. The XFS Manager can not, and will not, address these issues. The possible consequences of failing to observe these rules are beyond the scope of this specification.

In order to allow maximum flexibility in the design and implementation of applications, especially in multi-threaded environments, the concept of "application identity" can optionally be managed explicitly by the application developer using the concept of application handles. See Sections 5.5 and 5.8.2 for additional discussion of this concept.

�Memory Management

WOSA/XFS specifies a protocol for dynamic allocation and release of memory. The general strategy is that the service providers allocate memory as they need it, and the applications specify when it can be released. This is implemented using a standard structure (WFSRESULT, defined in Appendix A) that is always used to pass information to the applications from the services.

Most service provider function calls are asynchronous, and return their results via a completion message, which contains a pointer to a WFSRESULT structure, containing the function return status (hResult) and optional data. The service provider allocates the memory for this structure, using the memory management framework described below. The deallocation of the structure is done as follows:

�symbol 183 \f "Symbol" \s 10 \h��	Asynchronous API functions�The application receives the structure from the service provider via a completion message, and is responsible for deallocation.

�symbol 183 \f "Symbol" \s 10 \h��	Synchronous WFSExecute and WFSGetInfo API functions�The XFS Manager passes through the WFSRESULT structure to the application as a returned parameter, and the application is then responsible for deallocation, just as for asynchronous calls.

�symbol 183 \f "Symbol" \s 10 \h��	All other synchronous API functions�The XFS Manager unpacks the required information from the WFSRESULT structure into returned parameters to the application, deallocates the structure, and returns to the application.

Four functions are provided by the XFS Manager to implement this protocol: WFMAllocateBuffer, WFMAllocateMore, WFMFreeBuffer, and WFSFreeResult. Using these functions, two widely applicable allocation policies are supported:

�symbol 183 \f "Symbol" \s 8 \h��	a linear allocation policy

�symbol 183 \f "Symbol" \s 8 \h��	a linked allocation policy

Linear allocation can be used for any flat or contiguously allocated data structure. Such structures are returned in a single block of allocated memory by the WFMAllocateBuffer function.

Linked allocation can be used as an efficient way of managing complex data structures, permitting the service provider some flexibility while allowing the application to release the entire structure with a single call. In cases in which the service provider does not know a priori the size of the result data set, it makes an initial estimate, and uses WFMAllocateBuffer. If the service provider later determines that more space is required by the data, new memory is requested using the function WFMAllocateMore, and is automatically linked to the originally allocated block. The new memory block returned by WFMAllocateMore is, in general, not contiguous with the root block, and the user of this function should behave in all circumstances as if it is not.

The service provider is free to choose whatever allocation granularity is most convenient. This is completely transparent to the application or XFS Manager, which frees the entire structure with a single WFSFreeResult call (note that the XFS Manager can also use this call as an indication that it can clean up any other objects associated with the request). A service provider may use also this facility for its "private" memory management requirements; it then uses the WFMFreeBuffer support function to free the allocated memory.

NOTE:

Applications and service providers must use the facilities provided by the XFS Manager for XFS-related memory allocation and deallocation, in order to avoid memory management conflicts among the applications, the XFS Manager and the service providers.

The following example illustrates how a service provider dynamically allocates a WFSRESULT buffer structure and an additional data buffer. Note that WFMAllocateMore automatically links these, allowing the application to free both structures with a single call.

WFSRESULT	*	lpResultBuffer;

// service provider allocates a WFSResult buffer structure

result = WFMAllocateBuffer(sizeof(WFSRESULT), ulMemFlags, &lpResultBuffer);

�symbol 183 \f "Symbol" \s 6 \h��	

�symbol 183 \f "Symbol" \s 6 \h��	

�symbol 183 \f "Symbol" \s 6 \h��	

// service provider allocates additional memory

hr = WFMAllocateMore(evenMoreMemory, lpResultBuffer, &lpResultBuffer->lpBuffer);

�symbol 183 \f "Symbol" \s 6 \h��	

�symbol 183 \f "Symbol" \s 6 \h��	

�symbol 183 \f "Symbol" \s 6 \h��	

Once the application has retrieved all the information it needs from the WFSRESULT buffer and any associated structures, it must free the memory, which requires only a single call:

�symbol 183 \f "Symbol" \s 6 \h��	

�symbol 183 \f "Symbol" \s 6 \h��	

�symbol 183 \f "Symbol" \s 6 \h��	

// application deallocates the structure when it is finished with it

hr = WFSFreeResult(lpResultBuffer);	// frees both the result buffer and 													// any additional buffers

NOTE:

When an application invokes an asynchronous or immediate (i.e., non-blocking) function which takes a pointer to a memory object as an argument, it is the responsibility of the service provider to ensure that it no longer needs access to the object before returning control to the application. This allows the application to release (deallocate) the memory object immediately upon the return from the call.

Application Programming Interface (API) Functions

The functions defined by the WXFS API are divided into:

�symbol 183 \f "Symbol" \s 10 \h��	Basic functions that are common to all classes of financial services.

�symbol 183 \f "Symbol" \s 10 \h��	Administration functions, used for the special purpose of administering services.

�symbol 183 \f "Symbol" \s 10 \h��	Service-specific commands that are peculiar to a single service class or a group of them and that are sent to services using basic functions (WFSExecute, WFSAsyncExecute, WFSGetInfo, WFSAsyncGetInfo).

The benefit of grouping functions that are common to all services is evident: programmers can immediately focus on those operations that are common through all services and thus can easily build a high level model of interaction with the service providers.

The basic functions are defined in this section, in alphabetical order, except that the asynchronous version of each command is described immediately following the synchronous version. For example, WFSAsyncExecute is placed immediately following WFSExecute. The table on the next page lists all the basic functions. This set of basic functions may be expanded in future releases of this specification, if new functions are determined to be useful for all service providers.

The administration functions have not yet been fully defined; they are outlined in Appendix D - Planned Enhancements and Extensions.

The service-specific commands are defined in Section 7.

�The table below summarizes the WOSA/XFS API functions, and the sections in which they are defined.

Section�Function�Mode�Description��6.1	�WFSCancelAsyncRequest�Immediate�Cancel an outstanding asynchronous request ��6.2	�WFSCancelBlockingCall�Immediate�Cancel an outstanding blocking operation��6.3�WFSCleanUp�Synchronous�Terminate a connection between an application �and the XFS Manager��6.4	�WFSClose�Synchronous�Close a session between an application and a service provider��6.5	�WFSAsyncClose�Asynchronous�The asynchronous version of WFSClose��6.6	�WFSCreateAppHandle�Immediate�Create a new application handle to be used in a subsequent WFSOpen call��6.7	�WFSDeregister�Synchronous�Disable monitoring of a class of events by an application��6.8	�WFSAsyncDeregister�Asynchronous�The asynchronous version of WFSDeregister��6.9	�WFSDestroyAppHandle�Immediate�Destroy the specified application handle��6.10	�WFSExecute�Synchronous�Send service-specific commands to a service provider��6.11	�WFSAsyncExecute�Asynchronous�The asynchronous version of WFSExecute��6.12	�WFSFreeResult�Immediate�Request the XFS Manager to free a result buffer��6.13	�WFSGetInfo�Synchronous�Retrieve service-specific information from a service provider��6.14	�WFSAsyncGetInfo�Asynchronous�The asynchronous version of WFSGetInfo��6.15	�WFSGetSCode�Immediate�Retrieve the status code for the specified request��6.16	�WFSIsBlocking�Immediate�Determine if a blocking call is in progress��6.17	�WFSLock�Synchronous�Establish exclusive control by an application of a service��6.18	�WFSAsyncLock�Asynchronous�The asynchronous version of WFSLock��6.19	�WFSOpen�Synchronous�Open a session between an application and a service provider��6.20	�WFSAsyncOpen�Asynchronous�The asynchronous version of WFSOpen��6.21	�WFSRegister�Synchronous�Enable monitoring of a class of events by an application��6.22	�WFSAsyncRegister�Asynchronous�The asynchronous version of WFSRegister��6.23	�WFSSetBlockingHook�Immediate�Install an application-specific blocking routine��6.24	�WFSStartUp�Immediate�Initiate a connection between an application and the XFS Manager��6.25	�WFSUnhookBlockingHook�Immediate�Restore the default blocking routine��6.26	�WFSUnlock�Synchronous�Release exclusive control by an application of a service��6.27	�WFSAsyncUnlock�Asynchronous�The asynchronous version of WFSUnlock��

WFSCancelAsyncRequest

HRESULT	WFSCancelAsyncRequest(hService, RequestID)

Cancels the specified (or every) asynchronous request being performed on the specified service, before its (their) completion.

Parameters	HSERVICE hService

Handle to the service as returned by WFSOpen or WFSAsyncOpen.

	REQUESTID RequestID

The request identifier for the request to be canceled, as returned by the original function call (NULL to cancel all).

Mode	Immediate

Comments	If the RequestID parameter is set to NULL, the command will cancel all asynchronous requests that are in progress using the specified hService.

	A previously initiated asynchronous request is canceled prior to completion by issuing the WFSCancelAsyncRequest function, specifying the request identifier returned by the asynchronous function. This function is immediate with respect to its calling application, but the cancellation process is inherently asynchronous. On completion, the specified request (or all requests) will have finished, with a completion message indicating a status of WFS_ERR_CANCELED, unless the cancel request was received by the service after the request had completed. Thus, WFSCancelAsyncRequest is not guaranteed to stop all asynchronous commands: normal completion messages may still be posted after the cancel. A robust application that uses asynchronous commands should be designed to accept these messages even after a cancel is issued.

	The cancellation applies not only to the XFS Manager level, but also to the service provider level. The request is passed through the SPI, and the service provider normally then also cancels any physical I/O or other device operation in progress, in the appropriate manner for the device or service.	

Error Codes	If the function return is not WFS_SUCCESS, WFSGetSCode(hResult) returns one of the following error conditions:

WFS_ERR_INTERNAL_ERROR

An internal inconsistency or other unexpected error occurred in the WOSA/XFS subsystem.

WFS_ERR_INVALID_HSERVICE

The hService parameter is not a valid service handle.

WFS_ERR_INVALID_REQ_ID

The RequestID parameter does not correspond to an outstanding request on the service.

WFS_ERR_NOT_STARTED

The application has not previously performed a successful WFSStartUp.

WFS_ERR_OP_IN_PROGRESS

A blocking operation is in progress on the thread; only WFSCancelBlockingCall and WFSIsBlocking are permitted at this time.

See also	WFSAsyncExecute

�WFSCancelBlockingCall

HRESULT	WFSCancelBlockingCall(dwThreadID)

Cancels a blocking operation for the specified thread, if one is in progress.

Parameters	DWORD dwThreadID

Identifies the thread for which the blocking operation is to be canceled; a NULL value indicates the calling thread.

Mode	Immediate

Comments	This function is used to cancel a blocking call (synchronous request) that is in progress. Since a thread may have only one blocking call in progress at any time, WFSIsBlocking and WFSCancelBlockingCall are the only WOSA/XFS functions allowed with respect to a thread when it has a blocking call in progress.

	The application that issued the blocking call receives a WFS_ERR_CANCELED return code if the operation is successfully canceled.

	The cancellation applies not only to the XFS Manager level, but also to the service provider level. The request is passed through the SPI, and the service provider normally then also cancels any physical I/O or other device operation in progress, in the appropriate manner for the device or service.

	Note: the cancel request is accepted and is honored as soon as all Windows messages have been removed from the message queue (i.e. GetMessage returns no more messages). Refer to WFSSetBlockingHook for more information.

Error Codes	If the function return is not WFS_SUCCESS, WFSGetSCode(hResult) returns the following error condition:

WFS_ERR_INTERNAL_ERROR

An internal inconsistency or other unexpected error occurred in the WOSA/XFS subsystem.

WFS_ERR_NO_BLOCKING_CALL

There is no outstanding blocking call for the specified thread.

WFS_ERR_NO_SUCH_THREAD

The specified thread does not exist.

WFS_ERR_NOT_STARTED

The application has not previously performed a successful WFSStartUp.

See also	WFSSetBlockingHook, WFSIsBlocking, WFSCancelAsyncRequest

�WFSCleanUp

HRESULT	WFSCleanUp()

Disconnects an application from the XFS Manager.

Parameters	None

Mode	Synchronous

Comments 	The WFSCleanUp call indicates disconnection of a WOSA/XFS application from the XFS Manager. This function, for example, frees resources allocated to the specific application. WFSCleanUp applies to all threads of a multi-threaded application. 	If WFSClose has not been issued for one or more service providers, then the XFS Manager will automatically issue the close(s). Once the WFSCleanUp has been performed, subsequent attempts to issue any WOSA/XFS function other than WFSStartUp will fail.

Error Codes	If the function return is not WFS_SUCCESS, WFSGetSCode(hResult) returns one of the following error conditions:

WFS_ERR_INTERNAL_ERROR

An internal inconsistency or other unexpected error occurred in the WOSA/XFS subsystem.

WFS_ERR_NOT_STARTED

The application has not previously performed a successful WFSStartUp.

WFS_ERR_OP_IN_PROGRESS

A blocking operation is in progress on the thread; only WFSCancelBlockingCall and WFSIsBlocking are permitted at this time.

See also	WFSStartUp

�WFSClose

HRESULT	WFSClose(hService)

Terminates a session (a series of service requests initiated with the WFSOpen or WFSAsyncOpen function) between the application and the specified service. The synchronous version of WFSAsyncClose.

Parameters	HSERVICE hService

The service handle returned by WFSOpen or WFSAsyncOpen. Matches the close request to the open request, allowing an application to have multiple sessions open simultaneously with a single service provider.

Mode	Synchronous

Comments	WFSClose directs the service to free all resources associated with the series of requests made using the hService parameter since the WFSOpen that returned it. If there is a blocking call in progress the close fails. If the service is locked, the close automatically unlocks it. If no WFSDeregister has been issued, it is automatically performed.

Error Codes	If the function return is not WFS_SUCCESS, WFSGetSCode(hResult) returns one of the following error conditions. Any service-specific errors that can be returned are defined in the specifications for each service class.

WFS_ERR_CANCELED

The request was canceled by WFSCancelBlockingCall.

WFS_ERR_INTERNAL_ERROR

An internal inconsistency or other unexpected error occurred in the WOSA/XFS subsystem.

WFS_ERR_INVALID_HSERVICE

The hService parameter is not a valid service handle.

WFS_ERR_NOT_STARTED

The application has not previously performed a successful WFSStartUp.

WFS_ERR_OP_IN_PROGRESS

A blocking operation is in progress on the thread; only WFSCancelBlockingCall and WFSIsBlocking are permitted at this time.

See also	WFSAsyncClose, WFSOpen, WFSDeregister

�WFSAsyncClose

HRESULT	WFSAsyncClose(hService, hWnd, lpRequestID)

Terminates a session (a series of service requests initiated with the WFSOpen or WFSAsyncOpen function) between the application and the specified service. The asynchronous version of WFSClose.

Parameters	HSERVICE hService

The service handle returned by WFSOpen or WFSAsyncOpen. Matches the close request to the open request, allowing an application to maintain several "open sessions" simultaneously.

	HWND hWnd

The window handle which is to receive the completion message for this request.

	LPREQUESTID lpRequestID

Pointer to the request identifier for this request (returned parameter).

Mode	Asynchronous

Comments	See WFSClose.

	The application must call WFSFreeResult to deallocate the WFSRESULT data structure which is pointed to by the completion message.

Messages	WFS_CLOSE_COMPLETE

Error Codes	If the function return is not WFS_SUCCESS, WFSGetSCode(hResult) will return one of the following error conditions, indicating that the asynchronous operation was not initiated:

WFS_ERR_INTERNAL_ERROR

An internal inconsistency or other unexpected error occurred in the WOSA/XFS subsystem.

WFS_ERR_INVALID_HSERVICE

The hService parameter is not a valid service handle.

WFS_ERR_INVALID_HWND

The hWnd parameter is not a valid window handle.

WFS_ERR_INVALID_POINTER

A pointer parameter does not point to accessible memory.

WFS_ERR_NOT_STARTED

The application has not previously performed a successful WFSStartUp.

WFS_ERR_OP_IN_PROGRESS

A blocking operation is in progress on the thread; only WFSCancelBlockingCall and WFSIsBlocking are permitted at this time.

The following error condition can be returned via the asynchronous command completion message, by calling WFSGetSCode with the hResult from the WFSRESULT structure.

WFS_ERR_CANCELED

The request was canceled by WFSCancelAsyncRequest.

WFS_ERR_INTERNAL_ERROR

An internal inconsistency or other unexpected error occurred in the WOSA/XFS subsystem.

See also	WFSOpen, WFSDeregister

�WFSCreateAppHandle

HRESULT	WFSCreateAppHandle(lphApp)

Requests a new, unique application handle value.

Parameters	LPHAPP lphApp

A pointer to the application handle to be created (returned parameter).

Mode	Immediate

Comments	This function is used by an application to request a unique (within a single system) application handle from the XFS Manager (to be used in subsequent WFSOpen/WFSAsyncOpen calls). Note that an application may call this function multiple times in order to create multiple “application identities” for itself with respect to the WOSA/XFS subsystem. See Sections 5.5 and 5.8.2 for additional discussion.

Error Codes	If the function return is not WFS_SUCCESS, WFSGetSCode(hResult) returns the following error condition.

WFS_ERR_INTERNAL_ERROR

An internal inconsistency or other unexpected error occurred in the WOSA/XFS subsystem.

WFS_ERR_INVALID_POINTER

A pointer parameter does not point to accessible memory.

WFS_ERR_NOT_STARTED

The application has not previously performed a successful WFSStartUp.

See also	WFSDestroyAppHandle, WFSOpen, WFSAsyncOpen

�WFSDeregister

HRESULT	WFSDeregister(hService, dwEventClass, hWndReg)

Discontinues monitoring of the specified message class(es) (or all classes) from the specified hService, by the specified hWndReg (or all the calling application's hWnd's). The synchronous version of WFSAsyncDeregister.

Parameters	HSERVICE hService

Service handle returned by WFSOpen or WFSAsyncOpen. If this value is NULL, and dwEventClass is SYSTEM_EVENTS, the XFS manager deregisters the application for those system events generated by the Manager itself.

	DWORD dwEventClass

The class(es) of messages from which the application is deregistering. Specified as a bit mask that can be a logical OR of the values for multiple classes. A NULL value requests that all message classes be deregistered from the specified window for this hService.

	HWND hWndReg

The window which has been previously registered to receive notification messages, and is now to be deregistered. A NULL value requests that all the application's windows be deregistered from the specified message class(es) for this hService.

Mode	Synchronous

Comments	The functions of a WFSDeregister request are performed automatically if a WFSClose is issued without a previous WFSDeregister.

	See section 5.11 for a description of the classes of events that may be monitored.

Error Codes	If the function return is not WFS_SUCCESS, WFSGetSCode(hResult) returns one of the following error conditions:

WFS_ERR_CANCELED

The request was canceled by WFSCancelBlockingCall.

WFS_ERR_INTERNAL_ERROR

An internal inconsistency or other unexpected error occurred in the WOSA/XFS subsystem.

WFS_ERR_INVALID_EVENT_CLASS

The dwEventClass parameter specifies one or more event classes not supported by the service.

WFS_ERR_INVALID_HSERVICE

The hService parameter is not a valid service handle.

WFS_ERR_INVALID_HWNDREG

The hWndReg parameter is not a valid window handle.

WFS_ERR_NOT_REGISTERED

The specified hWndReg window was not registered to receive messages for any event classes.

WFS_ERR_NOT_STARTED

The application has not previously performed a successful WFSStartUp.

WFS_ERR_OP_IN_PROGRESS

A blocking operation is in progress on the thread; only WFSCancelBlockingCall and WFSIsBlocking are permitted at this time.

See also	WFSRegister, WFSClose

�WFSAsyncDeregister

HRESULT	WFSAsyncDeregister(hService, dwEventClass, hWndReg, hWnd, lpRequestID)

Discontinues monitoring of the specified message class(es) (or all classes) from the specified hService, by the specified hWndReg (or all the calling application's hWnd's). The asynchronous version of WFSDeregister.

Parameters	HSERVICE hService

Service handle returned by WFSOpen or WFSAsyncOpen. If this value is NULL, and dwEventClass is SYSTEM_EVENTS, the XFS manager deregisters the application for those system events generated by the Manager itself.

	DWORD dwEventClass

The class(es) of events from which the application is deregistering. Specified as a bit mask that can be a logical OR of the values for multiple classes. A NULL value requests that all event classes be deregistered from the specified window for this hService.

	HWND hWndReg

The window which has been previously registered to receive notification messages, and is now to be deregistered. A NULL value requests that all the application's windows be deregistered from the specified message class(es) for this hService.

	HWND hWnd

The window handle which is to receive the completion message for this request.

	LPREQUESTID lpRequestID

Pointer to the request identifier for this request (returned parameter).

Mode	Asynchronous

Comments	See WFSDeregister.

	The application must call WFSFreeResult to deallocate the WFSRESULT data structure which is pointed to by the completion message.

Messages	WFS_DEREGISTER_COMPLETE

Error Codes	If the function return is not WFS_SUCCESS, WFSGetSCode(hResult) returns one of the following error conditions, indicating that the asynchronous operation was not initiated:

WFS_ERR_INTERNAL_ERROR

An internal inconsistency or other unexpected error occurred in the WOSA/XFS subsystem.

WFS_ERR_INVALID_EVENT_CLASS

The dwEventClass parameter specifies one or more event classes not supported by the service.

WFS_ERR_INVALID_HSERVICE

The hService parameter is not a valid service handle.

WFS_ERR_INVALID_HWND

The hWnd parameter is not a valid window handle.

WFS_ERR_INVALID_HWNDREG

The hWndReg parameter is not a valid window handle.

WFS_ERR_INVALID_POINTER

A pointer parameter does not point to accessible memory.

WFS_ERR_NOT_REGISTERED

The specified hWndReg window was not registered to receive messages for any event classes.

WFS_ERR_NOT_STARTED

The application has not previously performed a successful WFSStartUp.

WFS_ERR_OP_IN_PROGRESS

A blocking operation is in progress on the thread; only WFSCancelBlockingCall and WFSIsBlocking are permitted at this time.

The following error conditions are returned via the asynchronous command completion message, by calling WFSGetSCode with the hResult from the WFSRESULT structure. Any service-specific errors that can be returned are defined in the specifications for each service class.

WFS_ERR_CANCELED

The request was canceled by WFSCancelAsyncRequest.

WFS_ERR_INTERNAL_ERROR

An internal inconsistency or other unexpected error occurred in the WOSA/XFS subsystem.

See also	WFSRegister, WFSClose

�WFSDestroyAppHandle

HRESULT	WFSDestroyAppHandle(hApp)

Makes the specified application handle invalid.

Parameters	HAPP hApp

The application handle to be made invalid.

Mode	Immediate

Comments	This function is used by an application to indicate to the XFS Manager that it will no longer use the specified application handle (from a previous WFSCreateAppHandle call). See WFSCreateAppHandle and Sections 5.5 and 5.8.2 for additional discussion.

Error Codes	If the function return is not WFS_SUCCESS, WFSGetSCode(hResult) returns one of the following error conditions.

WFS_ERR_INTERNAL_ERROR

An internal inconsistency or other unexpected error occurred in the WOSA/XFS subsystem.

WFS_ERR_NOT_STARTED

The application has not previously performed a successful WFSStartUp.

WFS_ERR_INVALID_APP_HANDLE

The specified application handle is not valid, i.e., was not created by a preceding create call.

See also	WFSCreateAppHandle

�WFSExecute

HRESULT 	WFSExecute (hService, dwCommand, lpCmdData, dwTimeOut, lppResult)

Sends a service-specific command to a service provider. The synchronous version of WFSAsyncExecute.

Parameters	HSERVICE hService

Handle to the service as returned by WFSOpen or WFSAsyncOpen.

	DWORD dwCommand

Command to be executed by the service provider.

	LPVOID lpCmdData	

Pointer to a command data structure to be passed to the service provider.

	DWORD dwTimeOut

Number of milliseconds to wait for completion.

	LPWFSRESULT * lppResult

Pointer to the pointer to the result data structure used to return the results of the execution. The service provider allocates the memory for this structure.

Mode	Synchronous

Comments	This function is used to execute service-specific commands. Each class of service includes a unique set of commands for the given type of device or service; they are defined in the service-specific command specifications. Each service provider developer is responsible for recognizing the complete set of commands for a given class, even if the service provider doesn't support them all. Each command, for each service class, defines a command data structure and/or a result data structure. See Section 7 for more discussion of these issues, and the definitions of the service-specific commands and associated data structures.

	The application must call WFSFreeResult to deallocate the WFSRESULT data structure which is returned by this function..

Error Codes	If the function return is not WFS_SUCCESS, WFSGetSCode(hResult) returns one of the following error conditions. Any service-specific errors that can be returned are defined in the specifications for each service class.

WFS_ERR_CANCELED

The request was canceled by WFSCancelBlockingCall.

WFS_ERR_DEV_NOT_READY

The function required device access, and the device was not ready or timed out.

WFS_ERR_HARDWARE_ERROR

The function required device access, and an error occured on the device.

WFS_ERR_INTERNAL_ERROR

An internal inconsistency or other unexpected error occurred in the WOSA/XFS subsystem.

WFS_ERR_INVALID_COMMAND

The dwCommand issued is not supported by this service class.

WFS_ERR_INVALID_POINTER

A pointer parameter does not point to accessible memory.

WFS_ERR_INVALID_HSERVICE

The hService parameter is not a valid service handle.

WFS_ERR_LOCKED

The service is locked under a different hService.

WFS_ERR_NOT_STARTED

The application has not previously performed a successful WFSStartUp.

WFS_ERR_OP_IN_PROGRESS

A blocking operation is in progress on the thread; only WFSCancelBlockingCall and WFSIsBlocking are permitted at this time.

WFS_ERR_TIMEOUT

The timeout interval expired.

WFS_ERR_UNSUPP_COMMAND

The dwCommand issued, although valid for this service class, is not supported by this service provider.

See Also	WFSAsyncExecute

�WFSAsyncExecute

HRESULT	WFSAsyncExecute(hService, dwCommand, lpCmdData, dwTimeOut, hWnd, lpRequestID)

Sends a service-specific command to a service provider. The asynchronous version of WFSExecute.

Parameters	HSERVICE hService

Handle to the service provider as returned by WFSOpen or WFSAsyncOpen.

	DWORD dwCommand

Command to be executed by the service provider.

	LPVOID lpCmdData	

Pointer to the data structure to be passed to the service provider.

	DWORD dwTimeOut

Number of milliseconds to wait for completion.

	HWND hWnd

The window handle which is to receive the completion message for this request.

	LPREQUESTID lpRequestID

Pointer to the request identifier for this request (returned parameter).

Mode	Asynchronous

Comments	See WFSExecute.

	The application must call WFSFreeResult to deallocate the WFSRESULT data structure which is pointed to by the completion message.

Messages	WFS_EXECUTE_COMPLETE�WFS_EXECUTE_EVENT

Error Codes	If the function return is not WFS_SUCCESS, WFSGetSCode(hResult) returns one of the following error conditions, indicating that the asynchronous operation was not initiated:

WFS_ERR_INTERNAL_ERROR

An internal inconsistency or other unexpected error occurred in the WOSA/XFS subsystem.

WFS_ERR_INVALID_COMMAND

The dwCommand issued is not supported by this service class.

WFS_ERR_INVALID_HSERVICE

The hService parameter is not a valid service handle.

WFS_ERR_INVALID_HWND

The hWnd parameter is not a valid window handle.

WFS_ERR_INVALID_POINTER

A pointer parameter does not point to accessible memory.

WFS_ERR_NOT_STARTED

The application has not previously performed a successful WFSStartUp.

WFS_ERR_OP_IN_PROGRESS

A blocking operation is in progress on the thread; only WFSCancelBlockingCall and WFSIsBlocking are permitted at this time.

WFS_ERR_UNSUPP_COMMAND

The dwCommand issued, although valid for this service class, is not supported by this service provider.

The following error conditions are returned via the asynchronous command completion message, by calling WFSGetSCode with the hResult from the WFSRESULT structure. Any service-specific errors that can be returned are defined in the specifications for each service class.

WFS_ERR_CANCELED

The request was canceled by WFSCancelAsyncRequest.

WFS_ERR_DEV_NOT_READY

The function required device access, and the device was not ready or timed out.

WFS_ERR_HARDWARE_ERROR

The function required device access, and an error occured on the device.

WFS_ERR_INTERNAL_ERROR

An internal inconsistency or other unexpected error occurred in the WOSA/XFS subsystem.

WFS_ERR_LOCKED

The service is locked under a different hService.

WFS_ERR_TIMEOUT

The timeout interval expired.

See Also	WFSCancelAsyncRequest, WFSExecute

�WFSFreeResult

HRESULT	WFSFreeResult (lpResult)

Notifies the XFS Manager that a memory buffer (or linked list of buffers) that was dynamically allocated by a service provider is to be freed.

Parameters	LPWFSRESULT lpResult

Pointer to a WFSRESULT data structure.

Mode	Immediate

Comments	The WOSA/XFS service providers may allocate memory to send data to an application. This function is used by the application to deallocate the memory, and the application must call it when it no longer needs access to the memory. When the applications calls WFSFreeResult, all memory allocated by the service provider for this result is deallocated. See Section 5.13.

Error Codes	If the function return is not WFS_SUCCESS, WFSGetSCode(hResult) returns one of the following error conditions:

WFS_ERR_INTERNAL_ERROR

An internal inconsistency or other unexpected error occurred in the WOSA/XFS subsystem.

WFS_ERR_INVALID_RESULT

The lpResult parameter is not a pointer to an allocated WFSRESULT structure.

WFS_ERR_NOT_STARTED

The application has not previously performed a successful WFSStartUp.

See Also	WFSExecute, WFSAsyncExecute, WFSGetInfo, WFSAsyncGetInfo

�WFSGetInfo

HRESULT	WFSGetInfo(hService, dwCategory, lpQueryDetails, dwTimeOut, lppResult)

Retrieves information from the specified service provider. The synchronous version of WFSAsyncGetInfo.

Parameters	HSERVICE hService

Handle to the service provider as returned by WFSOpen or WFSAsyncOpen.

	DWORD dwCategory

Specifies the category of the query (e.g., for a printer, WFS_INF_PTR_STATUS to request status or WFS_INF_PTR_CAPABILITIES to request capabilities). The available categories depend on the service class, the service provider and the service. The information requested can be either static or dynamic, e.g., basic service capabilities (static) or current service status (dynamic).

	LPVOID lpQueryDetails

Pointer to the data structure to be passed to the service provider, containing further details to make the query more precise, e.g., a form name. (Many queries have no input parameters, in which case this pointer is NULL.)

	DWORD dwTimeOut

Number of milliseconds to wait for completion.

	LPWFSRESULT * lppResult

Pointer to the pointer to the data structure to be filled with the result of the execution. The service provider allocates the memory for the structure.

Mode	Synchronous

Comments	The XFS Manager passes the request to the service provider, and since the information may be stored remotely, the function cannot be immediate. Note that many requests can be satisfied by the service provider and will therefore complete immediately.

	The definitions of the dwCategory and lpQueryDetails parameters are provided in the service-specific command sections of this specification. Note that these information retrieval functions are separate from the other service-specific commands, since those commands can be executed only via WFSExecute or WFSAsyncExecute, which require that the service be either locked by the application issuing the command, or unlocked. The GetInfo functions, however, can be used even when a service is locked by another application.

	The application must call WFSFreeResult to deallocate the WFSRESULT data structure which is returned by this function..

Error Codes	If the function return is not WFS_SUCCESS, WFSGetSCode(hResult) returns one of the following error conditions. Any service-specific errors that can be returned are defined in the specifications for each service class.

WFS_ERR_CANCELED

The request was canceled by WFSCancelBlockingCall.

WFS_ERR_DEV_NOT_READY

The function required device access, and the device was not ready or timed out.

WFS_ERR_HARDWARE_ERROR

The function required device access, and an error occured on the device.

WFS_ERR_INTERNAL_ERROR

An internal inconsistency or other unexpected error occurred in the WOSA/XFS subsystem.

WFS_ERR_INVALID_CATEGORY

The dwCategory issued is not supported by this service class.

WFS_ERR_INVALID_HSERVICE

The hService parameter is not a valid service handle.

WFS_ERR_INVALID_POINTER

A pointer parameter does not point to accessible memory.

WFS_ERR_NOT_STARTED

The application has not previously performed a successful WFSStartUp.

WFS_ERR_OP_IN_PROGRESS

A blocking operation is in progress on the thread; only WFSCancelBlockingCall and WFSIsBlocking are permitted at this time.

WFS_ERR_TIMEOUT

The timeout interval expired.

WFS_ERR_UNSUPP_CATEGORY

The dwCategory issued, although valid for this service class, is not supported by this service provider.

See Also	WFSAsyncGetInfo

�WFSAsyncGetInfo

HRESULT	WFSAsyncGetInfo(hService, dwCategory, lpQueryDetails, dwTimeOut, hWnd, lpRequestID)

Retrieves information from the specified service provider. The asynchronous version of WFSGetInfo.

Parameters	HSERVICE hService

Handle to the service provider as returned by WFSOpen or WFSAsyncOpen.

	DWORD dwCategory

See WFSGetInfo.

	LPVOID lpQueryDetails

See WFSGetInfo.

	DWORD dwTimeOut

Number of milliseconds to wait for completion.

	HWND hWnd

The window handle which is to receive the completion message for this request.

	LPREQUESTID lpRequestID

The request identifier for this request (returned parameter).

Mode	Asynchronous

Comments	See WFSGetInfo. The only difference in the asynchronous version of the function is that the results (query details) returned to the application (in the WFSRESULT data structure) are pointed to by the WFS_GETINFO_COMPLETE message sent to the specified hWnd.

	The application must call WFSFreeResult to deallocate the WFSRESULT data structure which is pointed to by the completion message.

Messages	WFS_GETINFO_COMPLETE

Error Codes	If the function return is not WFS_SUCCESS, WFSGetSCode(hResult) returns one of the following error conditions, indicating that the asynchronous operation was not initiated:

WFS_ERR_INTERNAL_ERROR

An internal inconsistency or other unexpected error occurred in the WOSA/XFS subsystem.

WFS_ERR_INVALID_CATEGORY

The dwCategory issued is not supported by this service class.

WFS_ERR_INVALID_HSERVICE

The hService parameter is not a valid service handle.

WFS_ERR_INVALID_HWND

The hWnd parameter is not a valid window handle.

WFS_ERR_INVALID_POINTER

A pointer parameter does not point to accessible memory.

WFS_ERR_NOT_STARTED

The application has not previously performed a successful WFSStartUp.

WFS_ERR_OP_IN_PROGRESS

A blocking operation is in progress on the thread; only WFSCancelBlockingCall and WFSIsBlocking are permitted at this time.

WFS_ERR_UNSUPP_CATEGORY

The dwCategory issued, although valid for this service class, is not supported by this service provider.

The following error conditions are returned via the asynchronous command completion message, by calling WFSGetSCode with the hResult from the WFSRESULT structure. Any service-specific errors that can be returned are defined in the specifications for each service class.

WFS_ERR_CANCELED

The request was canceled by WFSCancelAsyncRequest.

WFS_ERR_DEV_NOT_READY

The function required device access, and the device was not ready or timed out.

WFS_ERR_HARDWARE_ERROR

The function required device access, and an error occured on the device.

WFS_ERR_INTERNAL_ERROR

An internal inconsistency or other unexpected error occurred in the WOSA/XFS subsystem.

WFS_ERR_TIMEOUT

The timeout interval expired.

See also	WFSGetInfo, WFSCancelAsyncRequest

�WFSGetSCode

SCODE	WFSGetSCode(hResult)

Retrieves the status code (SCode) using the result handle (hResult).

As described in Section 5.10, the SCode value is identical to the hResult value in the initial implementations of WOSA/XFS; this function simply returns the hResult value as the SCode. In later implementations, a function will be implemented that is compatible with OLE 2.0 and future versions of the Windows operating system.

Parameter	HRESULT hResult

Handle to the result code returned by the immediately preceding WOSA/XFS function call.

Return Value	SCODE SCode

The return value is the SCode corresponding to the hResult parameter. If the value is NULL, there was no valid value (i.e., there was no WOSA/XFS function call since the last call to this function).

Mode	Immediate

Comments	On an error or warning, all WOSA/XFS functions return a result handle (hResult) that is not equal to WFS_SUCCESS. The application retrieves the actual status code (SCode) using this function. See Section 5.10 for a detailed discussion.

�WFSIsBlocking

BOOL	WFSIsBlocking()

Determines whether a thread has a blocking operation in progress.

Parameters	None

Return Value	The return value is TRUE if a blocking operation is in progress and FALSE otherwise.

Mode	Immediate

Comments	Although a call issued on a synchronous (blocking) function appears to an application as though it blocks, the XFS Manager in fact relinquishes control of the processor to allow other Windows processes to run. Thus it is possible for an application that issues a blocking call to be re-entered, depending on the messages it receives. Since the XFS Manager prohibits more than one outstanding blocking call per thread, an application's message processing routines need a way to determine whether they have been re-entered while the application is waiting for an outstanding blocking call to complete. The WFSIsBlocking function provides this function, allowing an application to detect whether a blocking operation is already in progress, before it issues another WOSA/XFS request.

	Note that if another WOSA/XFS call is issued in this situation, the XFS Manager returns with a WFS_ERR_OP_IN_PROGRESS error code. See Section 5.12 for additional discussion.

See also	WFSCancelBlockingCall

�WFSLock

HRESULT 	WFSLock(hService, dwTimeOut , lppResult)

Establishes exclusive control by the calling application over the specified service. The synchronous version of WFSAsyncLock.

Parameters	HSERVICE hService

Service provider handle as returned by WFSOpen or WFSAsyncOpen.

	DWORD dwTimeOut

Number of milliseconds to wait for completion.

	LPWFSRESULT * lppResult

Pointer to the pointer to a WFSRESULT data structure (see Comments). The service provider allocates the memory for this structure.

Mode	Synchronous

Comments	A service provider can support a "shared" session, in which multiple applications' data are mixed in the service's I/O stream. More typically, a session is exclusive at any point in time; all I/O is for a single application. To define an exclusive use of the service provider, a lock function (synchronous or asynchronous) must be used. See Section 5.8 for more discussion of the lock concepts and policy.

	The time to complete will depend on whether there is another application that has acquired exclusive access to the service. Note that trying to lock several services at the same time can lead to a deadlock. The timeout capability is provided in the API to allow applications to prevent this.

	lppResult is a pointer to a pointer to a WFSRESULT data structure containing a null-terminated array of service handles (hService values), specifying any other services that are already locked by the application (i.e., under the same hApp) , only if those services are part of a compound device that includes the service being locked, and are interdependent with it. The returned pointer is NULL if there are no such "associated" services locked. See Section 5.8.2 for more discussion of this subject.

	The application must call WFSFreeResult to deallocate the WFSRESULT data structure, if there is one.

Error Codes	If the function return is not WFS_SUCCESS, WFSGetSCode(hResult) returns one of the following error conditions.

WFS_ERR_CANCELED

The request was canceled by WFSCancelBlockingCall.

WFS_ERR_INTERNAL_ERROR

An internal inconsistency or other unexpected error occurred in the WOSA/XFS subsystem.

WFS_ERR_INVALID_HSERVICE

The hService parameter is not a valid service handle.

WFS_ERR_INVALID_POINTER

A pointer parameter does not point to accessible memory.

WFS_ERR_NOT_STARTED

The application has not previously performed a successful WFSStartUp.

WFS_ERR_OP_IN_PROGRESS

A blocking operation is in progress on the thread; only WFSCancelBlockingCall and WFSIsBlocking are permitted at this time.

WFS_ERR_TIMEOUT

The timeout interval expired.

See also 	WFSAsyncLock, WFSUnlock, WFSCancelBlockingCall

�WFSAsyncLock

HRESULT	WFSAsyncLock(hService, dwTimeOut, hWnd, lpRequestID)

Establishes exclusive control by the calling application over the specified service. The asynchronous version of WFSLock.

Parameters	HSERVICE hService

Handle to the service provider as returned by WFSOpen or WFSAsyncOpen.

	DWORD dwTimeOut

Number of milliseconds to wait for completion.

	HWND hWnd

The window handle which is to receive the completion message for this request.

	LPREQUESTID lpRequestID

Pointer to the request identifier for this request (returned parameter).

Mode	Asynchronous

Comments	See WFSLock and Section 5.8.2. In particular, note that if other services are locked as a result of this call (i.e., because the service specified is part of a compound device), the handles of these services are returned in the WFSRESULT data structure pointed to by the completion message.

	The application must call WFSFreeResult to deallocate the WFSRESULT data structure.

Messages	WFS_LOCK_COMPLETE

Error Codes	If the function return is not WFS_SUCCESS, WFSGetSCode(hResult) returns one of the following error conditions, indicating that the asynchronous operation was not initiated:

WFS_ERR_INTERNAL_ERROR

An internal inconsistency or other unexpected error occurred in the WOSA/XFS subsystem.

WFS_ERR_INVALID_HSERVICE

The hService parameter is not a valid service handle.

WFS_ERR_INVALID_HWND

The hWnd parameter is not a valid window handle.

WFS_ERR_INVALID_POINTER

A pointer parameter does not point to accessible memory.

WFS_ERR_NOT_STARTED

The application has not previously performed a successful WFSStartUp.

WFS_ERR_OP_IN_PROGRESS

A blocking operation is in progress on the thread; only WFSCancelBlockingCall and WFSIsBlocking are permitted at this time.

The following error conditions are returned via the asynchronous command completion message, by calling WFSGetSCode with the hResult from the WFSRESULT structure.

WFS_ERR_CANCELED

The request was canceled by WFSCancelAsyncRequest.

WFS_ERR_INTERNAL_ERROR

An internal inconsistency or other unexpected error occurred in the WOSA/XFS subsystem.

WFS_ERR_TIMEOUT

The timeout interval expired.

See also 	WFSLock, WFSUnlock, WFSCancelAsyncRequest

�WFSOpen

HRESULT	WFSOpen(lpszLogicalName, hApp, lpszAppID, dwTraceLevel, dwTimeOut, dwSrvcVersionsRequired, lpSrvcVersion, lpSPIVersion, lphService)

Initiates a session (a series of service requests terminated with the WFSClose function) between the application and the specified service. The synchronous version of WFSAsyncOpen.

Parameters	LPSTR lpszLogicalName

Points to a null-terminated string containing the pre-defined logical name of a service. It is a high level name such as "SYSJOURNAL1," "PASSBOOKPTR3" or "CASHDISP02," that is used by the XFS Manager and the service provider solely as a key to obtain the specific configuration information they need.

	HAPP hApp

The application handle to be associated with the session being opened. If this parameter is equal to WFS_DEFAULT_HAPP, the session is associated with the calling process as a whole (i.e., the calling process, not some subset of its threads, is the owner of the session and its hService). See WFSCreateAppHandle and Sections 5.5 and 5.8.2 for details.

	LPSTR lpszAppID

Points to a null-terminated string containing the application ID; the pointer may be NULL if the ID is not used. This ID may be used by services in a variety of ways; e.g., it is included in the SYSTEM_EVENT message for undeliverable events, to aid in finding system problems

	DWORD dwTraceLevel

See WFMSetTraceLevel. NULL turns off all tracing.

	DWORD dwTimeOut

Number of milliseconds to wait for completion.

	DWORD dwSrvcVersionsRequired

Specifies the range of versions of the service-specific interface that the application can support. (See Comments.) The low-order word indicates the highest version of the interface the application can support; the high-order word indicates the lowest version of the interface the application can support. In each word, the low-order byte specifies the major version number and the high-order byte specifies the minor version number (i.e., the numbers before and after the decimal).

	LPWFSVERSION lpSrvcVersion

Pointer to the data structure that is to receive version support information and other details about the service-specific interface implementation (returned parameter).

	LPWFSVERSION lpSPIVersion

Pointer to the data structure that is to receive version support information and (optionally) other details about the SPI implementation of the service provider being opened (returned parameter). This pointer may be NULL if the application is not interested in receiving this information. See WFPOpen.

	LPHSERVICE lphService

Pointer to the service handle that the XFS Manager assigns to the service on a successful open; the application uses this handle for communication with the service provider for the remainder of the session (returned parameter). If a process opens the same service twice, the XFS Manager generates and returns different hService values.

Mode	Synchronous

Comments	This function is used by an application to initiate a session with a service; the session is terminated by WFSClose. After WFSStartUp, an application must use this function (or the asynchronous version) to access a service. The request is made in terms of a logical service name (lpLogicalName) which is mapped by the XFS Manager to a service provider. The XFS Manager loads the service provider, if necessary, and returns a logical service handle to the application which is used during the session to refer to the service.

	In order to support future WOSA/XFS implementations with maximum flexibility, two version negotiations take place in WFSOpen processing. An application specifies in the dwSrvcVersionsRequired parameter the range of versions of the service-specific interface (i.e., as specified in Section 7 of this document) that it can support. If the range of versions specified by the application overlaps the range of versions that the service provider’s implementation can support, the call succeeds. Otherwise the call fails. (The other negotiation that takes place is between the XFS Manager and the service provider regarding the SPI level. See WFPOpen for details.)

	Information describing the actual service provider implementation is returned in the WFSVERSION data structure (defined in Appendix A). In particular, it returns the version the service provider expects the application to use (the highest common version), as well as the lowest and highest versions it is capable of. If the call fails, WFSVERSION is still returned, to help with analysis of the failure.

	The version numbers refer to the complete interface specification: the service-specific WFSExecute and WFSGetInfo commands, parameters, data structures, error codes, and messages. If there are any changes to these, the version number should be changed.

	This version negotiation allows a WOSA/XFS application and a service provider to operate successfully if there is any overlap in their versions. The following chart gives examples of how WFSOpen works in conjunction with different application and service provider versions:

Application versions�Service Provider versions�Return status from WFSOpen�Result ��1.0�1.0�WFS_SUCCESS�use 1.0 ��1.0 - 2.0�1.0�WFS_SUCCESS�use 1.0 ��1.0�1.0 - 2.0�WFS_SUCCESS�use 1.0��1.0 - 3.0�1.0 - 3.0�WFS_SUCCESS�use 3.0 ��1.0�2.0 - 3.0�WFS_ERR_SRVC_VERS_TOO_LOW�fails ��2.0 - 3.0�1.0�WFS_ERR_SRVC_VERS_TOO_HIGH�fails ��	Note that a version negotiation error also generates a system event (see Section 12.4).

Error Codes	If the function return is not WFS_SUCCESS, WFSGetSCode(hResult) returns one of the following error conditions.

WFS_ERR_CANCELED

The request was canceled by WFSCancelBlockingCall.

WFS_ERR_DEV_NOT_READY

The function required device access, and the device was not ready or timed out.

WFS_ERR_HARDWARE_ERROR

The function required device access, and an error occured on the device.

WFS_ERR_INTERNAL_ERROR

An internal inconsistency or other unexpected error occurred in the WOSA/XFS subsystem.

WFS_ERR_INVALID_APP_HANDLE

The specified application handle is not valid, i.e., was not created by a preceding create call.

WFS_ERR_INVALID_POINTER

A pointer parameter does not point to accessible memory.

WFS_ERR_INVALID_SERVPROV

The file containing the service provider is invalid or corrupted.

WFS_ERR_INVALID_TRACELEVEL

The dwTraceLevel parameter does not correspond to a valid trace level or set of levels.

WFS_ERR_NO_SERVPROV

The file containing the service provider does not exist.

WFS_ERR_NOT_STARTED

The application has not previously performed a successful WFSStartUp.

WFS_ERR_OP_IN_PROGRESS

A blocking operation is in progress on the thread; only WFSCancelBlockingCall and WFSIsBlocking are permitted at this time.

WFS_ERR_SERVICE_NOT_FOUND

The logical name is not a valid service provider name.

WFS_ERR_SPI_VER_TOO_HIGH

The range of versions of WOSA/XFS SPI support requested by the XFS Manager is higher than any supported by the service provider for the logical service being opened.

WFS_ERR_SPI_VER_TOO_LOW

The range of versions of WOSA/XFS SPI support requested by the a XFS Manager is lower than any supported by the service provider for the logical service being opened.

WFS_ERR_SRVC_VER_TOO_HIGH

The range of versions of the service-specific interface support requested by the application (in the dwSrvcVersionsRequired parameter of this call) is higher than any supported by the service provider for the logical service being opened.

WFS_ERR_SRVC_VER_TOO_LOW

The range of versions of the service-specific interface support requested by the application (in the dwSrvcVersionsRequired parameter of this call) is lower than any supported by the service provider for the logical service being opened.

WFS_ERR_TIMEOUT

The timeout interval expired.

WFS_ERR_VERSION_ERROR_IN_SRVC

Within the service, a version mismatch of two modules occurred.

See also	WFSAsyncOpen, WFSClose, WFSCreateAppHandle

�WFSAsyncOpen

HRESULT	WFSAsyncOpen(lpszLogicalName, hApp, lpszAppID, dwTraceLevel, dwTimeOut, lphService, hWnd, dwSrvcVersionsRequired, lpSrvcVersion, lpSPIVersion, lpRequestID)

Initiates a session (a series of service requests terminated with the WFSClose or WFSAsyncClose function) between the application and the specified service. The asynchronous version of WFSOpen.

Parameters	LPSTR lpszLogicalName

See WFSOpen.		

	HAPP hApp

The application handle to be associated with the session being opened. �See WFSOpen, WFSCreateAppHandle and Sections 5.5 and 5.8.2 for details.

	LPSTR lpszAppID

Points to a null-terminated string containing the application ID. See WFSOpen.

	DWORD dwTraceLevel

See WFMSetTraceLevel. NULL turns off all tracing.

	DWORD dwTimeOut

Number of milliseconds to wait for completion.

	LPHSERVICE lphService

Pointer to the service handle (returned parameter).

	HWND hWnd

The window handle which is to receive the completion message for this request.

	DWORD dwSrvcVersionsRequired

See WFSOpen.

	LPWFSVERSION lpSrvcVersion

See WFSOpen (returned parameter).

	LPWFSVERSION lpSPIVersion

See WFSOpen (returned parameter).

	LPREQUESTID lpRequestID

Pointer to the request identifier for this request (returned parameter).

Mode	Asynchronous

Comments	See WFSOpen.

	The application must call WFSFreeResult to deallocate the WFSRESULT data structure which is pointed to by the completion message.

Messages	WFS_OPEN_COMPLETE

Error Codes	If the function return is not WFS_SUCCESS, WFSGetSCode(hResult) returns one of the following error conditions, indicating that the asynchronous operation was not initiated:

WFS_ERR_INTERNAL_ERROR

An internal inconsistency or other unexpected error occurred in the WOSA/XFS subsystem.

WFS_ERR_INVALID_APP_HANDLE

The specified application handle is not valid, i.e., was not created by a preceding create call.

WFS_ERR_INVALID_HWND

The hWnd parameter is not a valid window handle.

WFS_ERR_INVALID_POINTER

A pointer parameter does not point to accessible memory.

WFS_ERR_INVALID_SERVPROV

The file containing the service provider is invalid or corrupted.

WFS_ERR_INVALID_TRACELEVEL

The dwTraceLevel parameter does not correspond to a valid trace level or set of levels.

WFS_ERR_NO_SERVPROV

The file containing the service provider does not exist.

WFS_ERR_NOT_STARTED

The application has not previously performed a successful WFSStartUp.

WFS_ERR_OP_IN_PROGRESS

A blocking operation is in progress on the thread; only WFSCancelBlockingCall and WFSIsBlocking are permitted at this time.

WFS_ERR_SERVICE_NOT_FOUND

The logical name is not a valid service provider name.

WFS_ERR_SPI_VER_TOO_HIGH

The range of versions of WOSA/XFS SPI support requested by the XFS Manager is higher than any supported by the service provider for the logical service being opened.

WFS_ERR_SPI_VER_TOO_LOW

The range of versions of WOSA/XFS SPI support requested by the a XFS Manager is lower than any supported by the service provider for the logical service being opened.

WFS_ERR_SRVC_VER_TOO_HIGH

The range of versions of the service-specific interface support requested by the application (in the dwSrvcVersionsRequired parameter of this call) is higher than any supported by the service provider for the logical service being opened.

WFS_ERR_SRVC_VER_TOO_LOW

The range of versions of the service-specific interface support requested by the application (in the dwSrvcVersionsRequired parameter of this call) is lower than any supported by the service provider for the logical service being opened.

WFS_ERR_VERSION_ERROR_IN_SRVC

Within the service, a version mismatch of two modules occurred.

The following error conditions are returned via the asynchronous command completion message, by calling WFSGetSCode with the hResult from the WFSRESULT structure. Any service-specific errors that can be returned are defined in the specifications for each service class.

WFS_ERR_CANCELED

The request was canceled by WFSCancelAsyncRequest.

WFS_ERR_DEV_NOT_READY

The function required device access, and the device was not ready timed out.

WFS_ERR_INTERNAL_ERROR

An internal inconsistency or other unexpected error occurred in the WOSA/XFS subsystem.

WFS_ERR_HARDWARE_ERROR

The function required device access, and an error occured on the device.

WFS_ERR_TIMEOUT

The timeout interval expired.

WFS_ERR_VERSION_ERROR_IN_SRVC

Within the service, a version mismatch of two modules occurred.

See also	WFSOpen, WFSClose, WFSCreateAppHandle, WFSCancelAsyncRequest, WFMSetTraceLevel

�WFSRegister

HRESULT	WFSRegister(hService, dwEventClass, hWndReg)

Enables event monitoring for the specified service by the specified window; all messages of the specified class(es) are sent to the window specified in the hWndReg parameter. The synchronous version of WFSAsyncRegister.

Parameters	HSERVICE hService

Handle to the service provider as returned by WFSOpen or WFSAsyncOpen. If this value is NULL, and dwEventClass is SYSTEM_EVENTS, the XFS manager registers the application for those system events generated by the Manager itself.

	DWORD dwEventClass

The class(es) of events for which the application is registering. Specified as a set of bit masks that are logically ORed together into this parameter.

	HWND hWndReg

The window handle which is to be registered to receive the specified messages.

Mode	Synchronous

Comments	Issuing a WFSRegister for a service enables event monitoring on that service. WFSRegister calls can be cumulative for the same window. For example, to receive notification for both system and user events, the application can call WFSRegister with both SYSTEM_EVENTS and USER_EVENTS, as follows:

	hr = WFSRegister(hPassbook1, SYSTEM_EVENTS | USER_EVENTS, hWndReg1);

	or call them in two phases:

	hr = WFSRegister(hPassbook1, SYSTEM_EVENTS, hWndReg1);

	hr = WFSRegister(hPassbook1, USER_EVENTS, hWndReg1);

	To cancel notifications use WFSDeregister.

	Note that the service provider always monitors the service, regardless of whether an application has registered for event monitoring. Issuing WFSRegister simply causes the service provider to post messages to the application in addition to handling the messages itself. See the discussion in Section 5.11.

Error Codes	If the function return is not WFS_SUCCESS, WFSGetSCode(hResult) returns one of the following error conditions.

WFS_ERR_CANCELED

The request was canceled by WFSCancelBlockingCall.

WFS_ERR_INTERNAL_ERROR

An internal inconsistency or other unexpected error occurred in the WOSA/XFS subsystem.

WFS_ERR_INVALID_EVENT_CLASS

The dwEventClass parameter specifies one or more event classes not supported by the service.

WFS_ERR_INVALID_HSERVICE

The hService parameter is not a valid service handle.

WFS_ERR_INVALID_HWNDREG

The hWndReg parameter is not a valid window handle.

WFS_ERR_NOT_STARTED

The application has not previously performed a successful WFSStartUp.

WFS_ERR_OP_IN_PROGRESS

A blocking operation is in progress on the thread; only WFSCancelBlockingCall and WFSIsBlocking are permitted at this time.

See also	WFSAsyncRegister, WFSDeregister, WFSAsyncDeregister

�WFSAsyncRegister

HRESULT	WFSAsyncRegister(hService, dwEventClass, hWndReg, hWnd, lpRequestID)

Enables event monitoring for the specified service by the specified window; all messages of the specified class(es) are sent to the window specified in the hWndReg parameter. The asynchronous version of WFSRegister.

Parameters	HSERVICE hService

Handle to the service provider as returned by WFSOpen or WFSAsyncOpen. If this value is NULL, and dwEventClass is SYSTEM_EVENTS, the XFS manager registers the application for those system events generated by the Manager itself.

	DWORD dwEventClass

See WFSRegister.

	HWND hWndReg

The window handle which is to be registered to receive the specified messages.

	HWND hWnd

The window handle which is to receive the completion message for this request.

	LPREQUESTID lpRequestID

Pointer to the request identifier for this request (returned parameter).

Mode	Asynchronous

Comments	See WFSRegister.

	The application must call WFSFreeResult to deallocate the WFSRESULT data structure pointed to by the completion message.

Messages	WFS_REGISTER_COMPLETE

Error Codes	If the function return is not WFS_SUCCESS, WFSGetSCode(hResult) returns one of the following error conditions, indicating that the asynchronous operation was not initiated:

WFS_ERR_INTERNAL_ERROR

An internal inconsistency or other unexpected error occurred in the WOSA/XFS subsystem.

WFS_ERR_INVALID_EVENT_CLASS

The dwEventClass parameter specifies one or more event classes not supported by the service.

WFS_ERR_INVALID_HSERVICE

The hService parameter is not a valid service handle.

WFS_ERR_INVALID_HWND

The hWnd parameter is not a valid window handle.

WFS_ERR_INVALID_HWNDREG

The hWndReg parameter is not a valid window handle.

WFS_ERR_NOT_STARTED

The application has not previously performed a successful WFSStartUp.

WFS_ERR_OP_IN_PROGRESS

A blocking operation is in progress on the thread; only WFSCancelBlockingCall and WFSIsBlocking are permitted at this time.

�The following error conditions can be returned via the asynchronous command completion message, by calling WFSGetSCode with the hResult from the WFSRESULT structure.

WFS_ERR_CANCELED

The request was canceled by WFSCancelAsyncRequest.

WFS_ERR_INTERNAL_ERROR

An internal inconsistency or other unexpected error occurred in the WOSA/XFS subsystem.

See also	WFSRegister, WFSDeregister, WFSAsyncDeregister

�WFSSetBlockingHook

HRESULT	WFSSetBlockingHook(lpBlockFunc, lppPrevFunc)

Establishes an application-specific blocking routine.

Parameters	XFSBLOCKINGHOOK	lpBlockFunc

Pointer to the procedure instance address of the blocking routine to be installed.

	LPXFSBLOCKINGHOOK	lppPrevFunc

Returned pointer to a pointer to the procedure instance of the previously installed blocking routine.

Mode	Immediate

Comments	When this function is successfully issued by an application, it returns a pointer to the previously installed blocking routine. The application may save this pointer so that it can be restored if desired. If such “nesting” is not required, the application can discard this value and simply use the WFSUnhookBlockingHook function to restore the default routine at any time.

	See Section 5.12 for a complete discussion.

Error Codes	If the function return is not WFS_SUCCESS, WFSGetSCode(hResult) returns one of the following error conditions:

WFS_ERR_INTERNAL_ERROR

An internal inconsistency or other unexpected error occurred in the WOSA/XFS subsystem.

WFS_ERR_NOT_STARTED

The application has not previously performed a successful WFSStartUp.

WFS_ERR_OP_IN_PROGRESS

A blocking operation is in progress on the thread; only WFSCancelBlockingCall and WFSIsBlocking are permitted at this time.

WFS_ERR_INVALID_POINTER

A pointer parameter does not point to accessible memory.

See also	WFSUnhookBlockingHook, WFSCancelBlockingCall, WFSIsBlocking

�WFSStartUp

HRESULT	WFSStartUp(dwVersionsRequired, lpWFSVersion)

Establishes a connection between an application and the XFS Manager.

Parameters	DWORD dwVersionsRequired	

Specifies the range of versions of XFS Manager that the application can support. The low-order word indicates the highest version of the XFS Manager the application can support; the high-order word indicates the lowest version of the XFS Manager the application can support. In each word, the low-order byte specifies the major version number and the high-order byte specifies the minor version number (i.e., the numbers before and after the decimal).

	LPWFSVERSION lpWFSVersion

Pointer to the data structure that is to receive version support information and other details about the current WOSA/XFS implementation (returned parameter).

Mode	Immediate

Comments	This function is used by an application to register itself with the XFS Manager and specify the version(s) of the WOSA/XFS API specification it can use, and returns information on the specific WOSA/XFS implementation. It must be the first WOSA/XFS API function called by an application. An application may only issue further WOSA/XFS functions after a successful WFSStartUp has completed.

	In order to support future WOSA/XFS implementations with maximum flexibility, a version negotiation process takes place in WFSStartUp. An application specifies in the dwVersionsRequired parameter the range of versions of the WOSA/XFS API specification which it can support. If the range of versions specified by the application overlaps the range of versions that the current implementation of XFS Manager can support, the call succeeds. Otherwise the call fails.

	Information describing the actual WOSA/XFS implementation is returned by the XFS Manager in the WFSVERSION data structure (defined in Appendix A). In particular, it returns the version it expects the application to use (the highest common version), as well as the lowest and highest versions it is capable of. If the call fails, WFSVERSION is still returned, to help with analysis of the failure.

	The version numbers refer to the API specification, specifically functions, parameters, data structures, error codes, and messages. If there are any changes to these, the version number should be changed.

	This version negotiation allows a WOSA/XFS application and the XFS Manager to operate successfully if there is any overlap in their versions. The following chart gives examples of how WFSStartUp works in conjunction with different application and XFS Manager versions:

Application versions�XFS Manager versions�Return status from WFSStartUp�Result ��1.0�1.0�WFS_SUCCESS�use 1.0 ��1.0 - 2.0�1.0�WFS_SUCCESS�use 1.0 ��1.0�1.0 - 2.0�WFS_SUCCESS�use 1.0��1.0 - 3.0�1.0 - 3.0�WFS_SUCCESS�use 3.0 ��1.0�2.0 - 3.0�WFS_ERR_API_VERS_TOO_LOW�fails ��2.0 - 3.0�1.0�WFS_ERR_API_VERS_TOO_HIGH�fails ��	Note that a version negotiation error also generates a system event (see Section 12.4).

	After making its last WOSA/XFS call, an application must call WFSCleanUp to allow the XFS Manager to release any resources allocated for the application.

�Error Codes	The return value indicates whether the application was registered successfully (i.e., the XFS Manager can support requests from the application). If the function was successful, the returned value is WFS_SUCCESS; if not, WFSGetSCode(hResult) returns one of the following error conditions:

WFS_ERR_ALREADY_STARTED

A WFSStartUp has already been issued by the application, without an intervening WFSCleanUp.

WFS_ERR_API_VER_TOO_HIGH

The range of versions of WOSA/XFS API support requested by the application is higher than any supported by this particular WOSA/XFS implementation.

WFS_ERR_API_VER_TOO_LOW

The range of versions of WOSA/XFS API support requested by the application is lower than any supported by this particular WOSA/XFS implementation.

WFS_ERR_INTERNAL_ERROR

An internal inconsistency or other unexpected error occurred in the WOSA/XFS subsystem.

WFS_ERR_INVALID_POINTER

A pointer parameter does not point to accessible memory.

See also	WFSCleanUp

�WFSUnhookBlockingHook

HRESULT	WFSUnhookBlockingHook()

Removes any previous blocking hook that had been installed and reinstalls the default blocking mechanism.

Parameters	None.

Mode	Immediate

Comments	The function will always install the default routine, not the previous routine. If an application wishes to nest blocking hook routines—i.e., to establish a temporary blocking call and then revert to the previous mechanism—it must save and restore the value returned by the WFSSetBlockingHook function. See Section 5.12.

Error Codes	If the function return is not WFS_SUCCESS, WFSGetSCode(hResult) returns one of the following error conditions:

WFS_ERR_INTERNAL_ERROR

An internal inconsistency or other unexpected error occurred in the WOSA/XFS subsystem.

WFS_ERR_NOT_STARTED

The application has not previously performed a successful WFSStartUp.

WFS_ERR_OP_IN_PROGRESS

A blocking operation is in progress on the thread; only WFSCancelBlockingCall and WFSIsBlocking are permitted at this time.

See also	WFSSetBlockingHook

�WFSUnlock

HRESULT	WFSUnlock(hService)

Releases a service that has been locked by a previous WFSLock or WFSAsyncLock function. The synchronous version of WFSAsyncUnlock.

Parameters	HSERVICE hService

Handle to the service provider as returned by WFSOpen or WFSAsyncOpen.

Mode	Synchronous

Comments	See Section 5.8.

Error Codes	If the function return is not WFS_SUCCESS, WFSGetSCode(hResult) returns one of the following error conditions:

WFS_ERR_CANCELED

The request was canceled by WFSCancelBlockingCall.

WFS_ERR_INTERNAL_ERROR

An internal inconsistency or other unexpected error occurred in the WOSA/XFS subsystem.

WFS_ERR_INVALID_HSERVICE

The hService parameter is not a valid service handle.

WFS_ERR_NOT_LOCKED

The application requesting a service be unlocked had not previously performed a successful WFSLock or WFSAsyncLock.

WFS_ERR_NOT_STARTED

The application has not previously performed a successful WFSStartUp.

WFS_ERR_OP_IN_PROGRESS

A blocking operation is in progress on the thread; only WFSCancelBlockingCall and WFSIsBlocking are permitted at this time.

See also	WFSAsyncUnlock, WFSLock, WFSAsyncLock

�WFSAsyncUnlock

HRESULT	WFSAsyncUnlock(hService, hWnd, lpRequestID)

Releases a service that has been locked by a previous WFSLock or WFSAsyncLock function. The asynchronous version of WFSUnlock.

Parameters	HSERVICE hService

Handle to the service provider as returned by WFSOpen or WFSAsyncOpen.

	HWND hWnd

The window handle which is to receive the completion message for this request.

	LPREQUESTID lpRequestID

Pointer to the request identifier for this request (returned parameter).

Mode	Aynchronous

Comments	See WFSUnlock and Section 5.8.

	The application must call WFSFreeResult to deallocate the WFSRESULT data structure which is pointed to by the completion message.

Messages	WFS_UNLOCK_COMPLETE

Error Codes	If the function return is not WFS_SUCCESS, WFSGetSCode(hResult) returns one of the following error conditions, indicating that the asynchronous operation was not initiated:

WFS_ERR_INTERNAL_ERROR

An internal inconsistency or other unexpected error occurred in the WOSA/XFS subsystem.

WFS_ERR_INVALID_HSERVICE

The hService parameter is not a valid service handle.

WFS_ERR_INVALID_HWND

The hWnd parameter is not a valid window handle.

WFS_ERR_INVALID_POINTER

A pointer parameter does not point to accessible memory.

WFS_ERR_NOT_STARTED

The application has not previously performed a successful WFSStartUp.

WFS_ERR_OP_IN_PROGRESS

A blocking operation is in progress on the thread; only WFSCancelBlockingCall and WFSIsBlocking are permitted at this time.

The following error conditions are returned via the asynchronous command completion message, by calling WFSGetSCode with the hResult from the WFSRESULT structure:

WFS_ERR_CANCELED

The request was canceled by WFSCancelAsyncRequest.

WFS_ERR_INTERNAL_ERROR

An internal inconsistency or other unexpected error occurred in the WOSA/XFS subsystem.

WFS_ERR_NOT_LOCKED

The application requesting a service be unlocked had not previously performed a successful WFSLock or WFSAsyncLock.

See also	WFSUnlock, WFSLock, WFSAsyncLock

Service Class Definitions

The service classes are defined by their service-specific commands and the associated data structure, error codes, messages, etc. These commands are used to request functions that are specific to one or more classes of service providers, but not all of them, and therefore are not in included in the common basic or administration functions.

When a service-specific command is common among two or more classes of service providers, the syntax of the command is as similar as possible across all services, since a major objective of the WOSA Extensions for Financial Services is to standardize function codes and structures for the broadest variety of services. For example, using the WFSExecute function, a WFS_READ service-specific command will use syntax and data structures for requesting a read from a magnetic stripe reader service provider that are as similar as possible to those used by the variety of other service providers that support reading.

In general, the specific command set for a service class is defined as the "greatest common denominator" of the specific capabilities likely to be provided by the developers of the services of that class.

A service provider may receive a particular specific command that it does not support in three cases:

�symbol 183 \f "Symbol" \s 10 \h��	The requested capability is defined for the class of service providers by the WOSA/XFS specification, the particular vendor implementation of that service does not support it, and the unsupported capability is considered not to be fundamental to the service. In this case, the service provider returns a successful completion, but does no operation. An example would be a request from an application to turn on a control indicator on a passbook printer; the service provider recognizes the command, but since the passbook printer it is managing does not include that indicator, the service provider does no operation and returns a successful completion to the application.

�symbol 183 \f "Symbol" \s 10 \h��	The requested capability is defined for the class of service providers by the WOSA/XFS specification, the particular vendor implementation of that service does not support it, and the unsupported capability is considered to be fundamental to the service. In this case, an error is returned to the calling application and the WFSGetSCode function returns WFS_UNSUPP_COMMAND. An example would be a request from an application to a cash dispenser to dispense coins; the service provider recognizes the command but, since the cash dispenser it is managing dispenses only notes, returns an error.

�symbol 183 \f "Symbol" \s 10 \h��	The requested capability is not defined for the class of service providers by the WOSA/XFS specification. In this case, an error is returned to the calling application and the WFSGetSCode function returns WFS_ERR_INVALID_COMMAND.

This design allows implementation of applications that can be used with a range of services that provide differing subsets of the "greatest common denominator" of the functionalities that are defined for their service class. Applications may use the WFSGetInfo/WFSAsyncGetInfo commands to inquire about the capabilities of the service they are about to use, and modify their behavior accordingly, or they may use functions and then deal with WFS_ERR_UNSUPP_COMMAND error returns to make decisions as to how to use the service.

The following sections describe the typical functionality of the service classes that are addressed by the first phase of the WOSA/XFS project. These descriptions include definitions of the service-specific commands that can be issued, using the WFSAsyncExecute, WFSExecute, WFSGetInfo and WFSAsyncGetInfo functions, for each class of services.

�Printers

This section describes the functionality of banking printers under WOSA/XFS. Banking printers are supported under the general WOSA/XFS APIs for financial peripherals. This section describes the issues related specifically to printing, focusing on three areas:

�SYMBOL 183 \f "Symbol" \s 10 \h�	application programming for printing

�SYMBOL 183 \f "Symbol" \s 10 \h�	print document definition

�SYMBOL 183 \f "Symbol" \s 10 \h�	integration with the Windows architecture

The requirements for printing in the banking market are significantly different from those of the conventional PC environment, and the WOSA/XFS support delivers the foundation for financial application printing, including:

�SYMBOL 183 \f "Symbol" \s 10 \h�	Controlled access to shared printers

The banking printers can be shared between workstations, and the WOSA/XFS layer provides the ability for the application to manage ownership of a print device. This allows an application to identify the operator granted control of the printer, and to insure that a teller printing multiple documents is not interrupted by work for other applications.

�SYMBOL 183 \f "Symbol" \s 10 \h�	Application controlled printing

In the banking environment, it is necessary for the application to receive positive feedback on the availability of print devices, and the success or failure of individual print operations. The WOSA/XFS printer support provides a standard mechanism for application retrieval of this status information.

�SYMBOL 183 \f "Symbol" \s 10 \h�	Management of printing peripherals

Distributed banking networks require the ability to track the availability and failure of printing peripherals on a branch and system-wide basis. Through the WOSA/XFS WFSRegister function, monitoring programs can collect error alerts from the banking printers.

�SYMBOL 183 \f "Symbol" \s 10 \h�	Vendor independent API and document definition

All of the WOSA/XFS peripheral implementations are designed around a standardized family of APIs to allow application code portability across vendor hardware platforms. With printers, it is also recognized that banks invest a significant amount of resource in the authoring of print documents. The WOSA/XFS printer service class is implemented around a forms model which also standardizes the basic document definition. This extends the investment protection provided by WOSA/XFS compliant systems to include this additional part of the application development.

�SYMBOL 183 \f "Symbol" \s 10 \h�	Windows printing integration

It is possible for a banking printer to offer printing capabilities that can be accessed by non-banking specific applications, such as general office productivity packages. This would not, for example, be true for a receipt printer, but it could be the case for a device with document printing capabilities. A vendor may choose an XFS implementation that allows both types of applications (WOSA/XFS and Windows applications using the Windows printing subsystem) to share the printing devices. The vendor should specify any impact this approach has on XFS subsystem operation, such as error reporting.

Full implementation of the above features depends on the individual vendor-supplied service providers. This document outlines the functionality and requirements for applications using the WOSA/XFS printer services, and for the development of those services.

�Banking Printer Types

The WOSA/XFS printer service defines and supports four types of banking printers through a common interface:

�SYMBOL 183 \f "Symbol" \s 10 \h�	Receipt Printer

The receipt printer is used to print cut sheet documents. It may or may not require insert or eject operations, and often includes an operator identification device, e.g., Teller A and Teller B lights, for shared operation.

�SYMBOL 183 \f "Symbol" \s 10 \h�	Journal Printer

The journal is a continuous form device used to record a hardcopy audit trail of transactions, and for certain report printing requirements.

�SYMBOL 183 \f "Symbol" \s 10 \h�	Passbook Printer

The passbook device is physically and functionally the most complex printer. The WOSA/XFS definition supports automatic positioning of the book, as well as read/write capability for an optional integrated magnetic stripe. The implementation also manages the book geometry - i.e. the margins and centerfolds - presenting the simplest possible application interface while delivering the full range of functionality.

�SYMBOL 183 \f "Symbol" \s 10 \h�	Document Printer

Document printing is similar to receipt printing -- a set of fields are positioned on an inserted sheet of paper -- but the focus is on full-size forms. It should be noted that the WOSA/XFS environment only implements the printing of text fields from the application. The electronic printing of the form image itself is not supported; but can be delivered as an added-value extension by the vendor.

Forms Model

The WOSA/XFS printing class functionality is based on a “forms” model for printing. Banking documents are represented as a series of text fields output from the application, and positioned on the document by the WOSA/XFS printing system.

The form is an object which includes the positioning and presentation information for each of the fields in the document. The application selects a form, and supplies only the field data and the control parameters to fully define the print document.

The form objects are owned and managed by the WOSA/XFS printing service. To optimize maintainability of the system, the application can query the service for the list of fields required to print a given form. Through this mechanism, it is not necessary to duplicate the field contents of forms in application authoring data. The figure below outlines the printing process from the application's view.

�EMBED MSDraw * mergeformat���

As indicated, the WOSA/XFS definition of forms is restricted to text fields and assumes that any form image is pre-printed. Electronic form generation can, however, be provided as a vendor specific value-added enhancement to the WOSA/XFS services. The form name passed to the service can identify the name of a form image object to be merged with the WOSA/XFS defined fields.

The WOSA/XFS implementation recognizes that the form object must be supported by job-specific data to fully address printing requirements. As an example, a form defining a passbook print line will need to have its origin defined externally in order to be reused for different passbook lines. These job specific parameters are supplied on the call to the WFSExecute:WFS_CMD_PTR__PRINT_FORM command.

In some cases, the application wants to print a block of data without considering it as a series of separate fields. One example is a line of journal data, fully formatted by the application. This can be handled by defining a one field form, or by use of the WFSExecute:WFS_CMD_PTR_RAW_DATA command.

The document definition under WOSA/XFS printing is standardized to provide portability across vendor implementations. The standard has been defined at the source language level for the document definition, allowing vendor differences at the runtime level to manage implementation specific dependencies, providing several areas where vendors can provide value-added extensions. As an example, a vendor providing a graphical form definition tool can produce the field definition object format directly. The WOSA/XFS requirements for portability are:

�SYMBOL 183 \f "Symbol" \s 10 \h�	A vendor must be able to export print format in the standardized field definition source format for portability to other systems.

�SYMBOL 183 \f "Symbol" \s 10 \h�	A vendor must be able to import document formats produced on other systems in the standardized field definition source format.

�SYMBOL 183 \f "Symbol" \s 10 \h�	A vendor can extend the field definition source language, but any verbs included in the standard must be implemented strictly as defined by the standard. Import and export facilities must be tolerant of source language extensions, reporting but ignoring the exceptions.

The document definition also recognizes that unique hardware restrictions may require tuning of field positioning from one vendor's platform to another. To enhance portability, the WOSA/XFS document format has specifically been defined to allow a single reference adjustment for all fields to avoid forcing the customer to reposition each field.

�Command Overview

The basic operation of the print devices is managed using the WFSGetInfo/WFSAsyncGetInfo and WFSExecute/WFSAsyncExecute functions, with two primary commands:

WFS_INF_PTR_QUERY_FORM	�This command retrieves the form header information, and the list of fields. It is performed using WFSGetInfo, which means that it can be performed even when the service is locked by another user.

WFS_CMD_PTR_PRINT_FORM	�This command is performed using WFSExecute, and includes as parameter data the name of the form to select and the required field data values.

This approach combines in the most efficient manner the four logical steps required to print a form:

�SYMBOL 183 \f "Symbol" \s 10 \h�	Selecting a document form object

�SYMBOL 183 \f "Symbol" \s 10 \h�	Querying the service for the list of fields

�SYMBOL 183 \f "Symbol" \s 10 \h�	Supplying the data for each field

�SYMBOL 183 \f "Symbol" \s 10 \h�	Issuing the print command

By using a WFSGetInfo command for retrieval of the list of field names, rather than WFSExecute (which is blocked when the service is locked by another application), it is possible for an application to assemble the required set of fields for a form before locking the service. This minimizes the time that each application request ties up the service. Using WFSGetInfo, it is also possible to query the attributes of a particular field. This function is generally not required for most applications.

The combination of form selection, field value presentation, and the print action into an atomic function -- the WFSExecute:WFS_CMD_PTR_PRINT_FORM command -- makes it possible to express a complete print operation with one API call. This implementation allows an application to perform a print operation without locking and subsequently unlocking the service (although locking may still be desirable for other reasons). To do multiple print operations without allowing other applications to intersperse their print requests, it is still necessary to use the lock functions. Where these multiple print functions represent a series of passbook lines (using the INDEX capability in the field definition), the WFSExecute:WFS_CMD_PTR_PRINT_FORM command provides support for management of the print line number.

Finally, for printers with the capability to read from a passbook (OCR, MICR and/or magnetic stripe), the data is read with the WFSExecute:WFS_CMD_PTR_READ_FORM command. The data is written using the WFSExecute:WFS_CMD_PTR_PRINT_FORM command. Since these devices are usable only for passbook operations, they are not defined as separate logical devices.

�Info Commands

WFS_INF_PTR_STATUS

Description	This function is used to request status information for the device.

Input Param	None.

Output Param	LPWFSPTRSTATUS

typedef struct _wfs_ptr_status�	{�	WORD		fwDevice;�	WORD		fwMedia;�	WORD		fwPaper;�	WORD		fwToner;�	LPSTR		lpszExtra;	�	} WFSPTRSTATUS, * LPWFSPTRSTATUS;

	fwDevice�Specifies the state of the print device as one of the following flags:

Value	Meaning

WFS_PTR_DEVONLINE	The device is online.

WFS_PTR_DEVOFFLINE	The device is offline.

WFS_PTR_DEVPOWEROFF	The device is powered off.

WFS_PTR_DEVBUSY	The device is busy processing a request.

WFS_PTR_DEVNODEVICE	There is no device connected.

WFS_PTR_DEVHWERROR	The device is inoperable due to a hardware error.

	fwMedia�Specifies the state of the print media as one of the following flags:

Value	Meaning

WFS_PTR_MEDIAPRESENT	Media is inserted in the device.

WFS_PTR_MEDIANOTPRESENT	Media is not inserted in the device.

WFS_PTR_MEDIAJAMMED	Media is jammed in the device.

WFS_PTR_MEDIANOTSUPP	Capability not supported by device.

WFS_PTR_MEDIAUNKNOWN	Capability cannot be determined with device in its current state.

	fwPaper�Specifies the state of the paper supply as one of the following flags:

Value	Meaning

WFS_PTR_PAPERFULL	The paper supply is full.

WFS_PTR_PAPERLOW	The paper supply is low.

WFS_PTR_PAPEROUT	The paper supply is empty.

WFS_PTR_PAPERNOTSUPP	Capability not supported by device.

WFS_PTR_PAPERUNKNOWN	Capability cannot be determined with device in its current state.

	fwToner�Specifies the state of the print device as one of the following flags:

Value	Meaning

WFS_PTR_TONERFULL	The toner supply is full.

WFS_PTR_TONERLOW	The toner supply is low.

WFS_PTR_TONEROUT	The toner supply is empty.

WFS_PTR_TONERNOTSUPP	Capability not supported by device.

WFS_PTR_TONERUNKNOWN	Capability cannot be determined with device in its current state.

	lpszExtra�Points to a list of vendor-specific, or any other extended, information. The information is returned as a series of “key=value” strings so that it is easily extensible by service providers. Each string is null-terminated, with the final string terminating with two null characters.

Error Codes	None.

Comments	Applications which require or expect specific information to be present in the lpszExtra parameter may not be device or vendor-independent.

�WFS_INF_PTR_CAPABILITIES

Description	This function is used to request device capability information.

Input Param	None.

Output Param	LPWFSPTRCAPS

typedef struct _wfs_ptr_caps�	{�	WORD		wClass;�	WORD		fwType;�	BOOL		bCompound;�	WORD		wResolution;�	WORD		fwReadForm;�	WORD		fwExtents;�	WORD		fwEject;�	LPSTR		lpszExtra;	�	} WFSPTRCAPS, * LPWFSPTRCAPS;

	wClass�Specifies the logical service class, value is:�WFS_SERVICE_CLASS_PTR

	fwType�Specifies the type of the physical device driven by the logical service, as a combination of the following flags:

Value	Meaning

WFS_PTR_TYPERECEIPT	Device is a receipt printer.

WFS_PTR_TYPEPASSBOOK	Device is a passbook printer.

WFS_PTR_TYPEJOURNAL	Device is a journal printer.

WFS_PTR_TYPEDOCUMENT	Device is a document printer.

	bCompound�Specifies whether the logical device is part of a compound physical device and is either TRUE or FALSE.

	wResolution�Specifies at which resolution(s) the physical device can print, as a combination of the following flags:

Value	Meaning

WFS_PTR_RESLOW	Print form with low resolution.

WFS_PTR_RESMED	Print form with medium resolution.

WFS_PTR_RESHIGH	Print form with high resolution.

WFS_PTR_RESVERYHIGH	Print form with very high resolution.

	fwReadForm�Specifies whether the device can read data from media, as a combination of the following flags:

Value	Meaning

WFS_PTR_READOCR	Device has OCR capability.

WFS_PTR_READMICR	Device has MICR capability.

WFS_PTR_READMSF	Device has MSF capability.

	fwExtents�Specifies whether the device is able to measure the inserted media, as a combination of the following flags:

Value	Meaning

WFS_PTR_EXTHORIZONTAL	Device has horizontal size detection capability.

WFS_PTR_EXTVERTICAL	Device has vertical size detection capability.

	fwEject�Specifies the manner in which media can be ejected, as a combination of the following bit flags:

Value	Meaning

WFS_PTR_CTRLEJECT	Device can eject media.

WFS_PTR_CTRLPERFORATE	Device can perforate media.

WFS_PTR_CTRLCUT	Device can cut media.

WFS_PTR_CTRLSKIP	Device can skip to mark.

WFS_PTR_CTRLFLUSH	Device can be sent data that is buffered internally, and flushed to the printer on request.

	lpszExtra�Points to a list of vendor-specific, or any other extended, information. The information is returned as a series of “key=value” strings so that it is easily extensible by service providers. Each string is null-terminated, with the final string terminating with two null characters.

Error Codes	None.

Comments	Applications which require or expect specific information to be present in the lpszExtra parameter may not be device or vendor-independent.

WFS_INF_PTR_FORM_LIST

Description	This function is used to retrieve the list of forms available on the device.

Input Param	None.

Output Param	LPSTR		lpszFormList;

	lpszFormList�Points to a list of null-terminated form names, with the final name terminating with two null characters.

Error Codes	None.

WFS_INF_PTR_MEDIA_LIST

Description	This function is used to retrieve the list of media definitions available on the device.

Input Param	None.

Output Param	LPSTR		lpszMediaList;

	lpszMediaList�Points to a list of null-terminated media names, with the final name terminating with two null characters.

Error Codes	None.

�WFS_INF_PTR_QUERY_FORM

Description	This function is used to retrieve details of the definition of a specified form.

Input Param	LPSTR		lpszFormName;

	lpszFormName�Points to the null-terminated form name on which to retrieve details.

Output Param	LPWFSFRMHEADER

typedef struct _wfs_frm_header�	{�	LPSTR	lpszFormName;�	WORD	wBase;�	WORD	wUnitX;�	WORD	wUnitY;�	WORD	wWidth;�	WORD	wHeight;�	WORD	wAlignment;�	WORD	wOffsetX;�	WORD	wOffsetY;�	WORD	wVersionMajor;�	WORD	wVersionMinor;�	LPSTR	lpszUserPrompt;�	LPSTR	lpszFields;�	} WFSFRMHEADER, * LPWFSFRMHEADER;

	lpszFormName�Specifies the null-terminated name of the form.

	wBase�Specifies the base unit of measurement of the form and can be one of the following:

Value	Meaning

WFS_FRM_INCH	The base unit is inches.

WFS_FRM_MM	The base unit is millimeters.

WFS_FRM_ROWCOLUMN	The base unit is rows and columns.

	wUnitX�Specifies the horizontal resolution of the base units as a fraction of the wBase value. For example, a value of 16 applied to the global unit WFS_FRM_INCH means that the base horizontal resolution is 1/16".

	wUnitY�Specifies the vertical resolution of the base units as a fraction of the wBase value. For example, a value of 10 applied to the global unit WFS_FRM_MM means that the base vertical resolution is .1 mm.

	wWidth�Specifies the width of the form in terms of the base horizontal resolution.

	wHeight�Specifies the height of the form in terms of the base vertical resolution.

	�wAlignment�Specifies the relative alignment of the form on the media and can be one of the following:

Value	Meaning

WFS_FRM_TOPLEFT	The form is aligned relative to the top and left edges of the media.

WFS_FRM_TOPRIGHT	The form is aligned relative to the top and right edges of the media.

WFS_FRM_BOTTOMLEFT	The form is aligned relative to the bottom and left edges of the media.

WFS_FRM_BOTTOMRIGHT	The form is aligned relative to the bottom and right edges of the media.

	wOffsetX�Specifies the horizontal offset of the position of the top-left corner of the form, relative to the left or right edge specified by wAlignment. This value is specified in terms of the base horizontal resolution and is always positive.

	wOffsetY�Specifies the vertical offset of the position of the top-left corner of the form, relative to the top or bottom edge specified by wAlignment. This value is specified in terms of the base vertical resolution and is always positive.

	wVersionMajor�Specifies the major version of the form.

	wVersionMinor�Specifies the minor version of the form.

	lpszUserPrompt�Points to a null-terminated user prompt string.

	lpszFields�Points to a list of null-terminated field names, with the final name terminating with two null characters.

Error Codes	The following errors can be returned:

Value	Meaning

WFS_ERR_PTR_FORMNOTFOUND	The specified form cannot be found.

WFS_ERR_PTR_MEDIADEFNOTFOUND	The specified media definition cannot be found.

�WFS_INF_PTR_QUERY_MEDIA

Description	This function is used to retrieve details of the definition of a specified media.

Input Param	LPSTR		lpszMediaName;

	lpszMediaName�Points to the null-terminated media name about which to retrieve details.

Output Param	LPWFSFRMMEDIA	lpMedia;

typedef struct _wfs_frm_media�	{�	WORD		fwMediaType;�	WORD		wBase;�	WORD		wUnitX;�	WORD		wUnitY;�	WORD		wWidth;�	WORD		wHeight;�	WORD		wPageCount;�	WORD		wLineCount;�	} WFSFRMMEDIA, * LPWFSFRMMEDIA;

	fwMediaType�Specifies the type of media as one of the following flags:

Value	Meaning

WFS_FRM_MEDIAUNDEFINED	Media not defined.

WFS_FRM_MEDIAPASSBOOK	Passbook media.

	wBase�Specifies the base unit of measurement of the form and can be one of the following:

Value	Meaning

WFS_FRM_INCH	The base unit is inches.

WFS_FRM_MM	The base unit is millimeters.

WFS_FRM_ROWCOLUMN	The base unit is rows and columns.

	wUnitX�Specifies the horizontal resolution of the base units as a fraction of the wBase value. For example, a value of 16 applied to the global unit WFS_FRM_INCH means that the base horizontal resolution is 1/16".

	wUnitY�Specifies the vertical resolution of the base units as a fraction of the wBase value. For example, a value of 10 applied to the global unit WFS_FRM_MM means that the base vertical resolution is .1 mm.

	wWidth�Specifies the width of the media in terms of the base horizontal resolution.

	wHeight�Specifies the height of the media in terms of the base vertical resolution.

	wPageCount�Specifies the number of pages in a media of type WFS_FRM_MEDIAPASSBOOK.

	wLineCount�Specifies the number of lines on a page for a media of type WFS_FRM_MEDIAPASSBOOK.

Error Codes	The following errors can be returned:

Value	Meaning

WFS_ERR_PTR_MEDIADEFNOTFOUND	The specified media definition cannot be found.

WFS_INF_PTR_QUERY_FIELD

Description	This function is used to retrieve details of the definition of a single or all fields on a specified form.

Input Param	LPWFSPTRQUERYFIELD, as defined below.

typedef struct _wfs_ptr_query_field�	{�	LPSTR				lpszFormName;�	LPSTR				lpszFieldName;�	} WFSPTRQUERYFIELD, * LPWFSPTRQUERYFIELD;

	lpszFormName�Points to the null-terminated form name.

	lpszFieldName�Points to the null-terminated name of the field about which to retrieve details. If this value is NULL, then retrieve details for all fields on the form.

Output Param	LPWFSFRMFIELD *	lpFields;

	lpFields�Points to null-terminated array of LPWFSFRMFIELDs, as defined below. Each entry in the array points to a WFSFRMFIELD.

typedef struct _wfs_frm_field�	{�	LPSTR		lpszFieldName;�	WORD		wIndexCount;�	WORD		fwType;�	WORD		fwClass;�	WORD		fwAccess;�	WORD		fwOverflow;�	LPSTR		lpszFormat;�	} WFSFRMFIELD, * LPWFSFRMFIELD;

	lpszFieldName�Points to the null-terminated field name.

	wIndexCount�Specifies the number of entries for an index field. A value of zero indicates that this field is not an index field. Index fields are typically used to present information in a tabular fashion.

	fwType�Specifies the type of field and can be one of the following:

Value	Meaning

WFS_FRM_FIELDTEXT	A text field.

WFS_FRM_FIELDMICR	A Magnetic Ink Character Recognition field.

WFS_FRM_FIELDOCR	An Optical Character Recognition field.

WFS_FRM_FIELDMSF	A Magnetic Stripe Facility field.

WFS_FRM_FIELDBARCODE	A Barcode field.

	fwClass�Specifies the class of the field and can be one of the following:

Value	Meaning

WFS_FRM_CLASSSTATIC	The field data cannot be set by the application.

WFS_FRM_CLASSOPTIONAL	The field data can be set by the application.

WFS_FRM_CLASSREQUIRED	The field data must be set by the application.

	�fwAccess�Specifies whether the field is to be used for input, output, or both and can be a combination of the following bit-flags:

Value	Meaning

WFS_FRM_ACCESSREAD	The field is used for input.

WFS_FRM_ACCESSWRITE	The field is used for ouput.

	fwOverflow�Specifies how an overflow of field data should be handled and can be one of the following:

Value	Meaning

WFS_FRM_OVFTERMINATE	Return an error and terminate printing of the form.

WFS_FRM_OVFTRUNCATE	Truncate the field data to fit in the field.

WFS_FRM_OVFBESTFIT	Fit the text in the field.

WFS_FRM_OVFOVERWRITE	Print the field data beyond the extents of the field boundary.

WFS_FRM_OVFWORDWRAP	If the field can hold more than one line the text is wrapped around.

Error Codes	The following errors can be returned:

Value	Meaning

WFS_ERR_PTR_FORMNOTFOUND	The specified form cannot be found.

WFS_ERR_PTR_FIELDNOTFOUND	The specified field cannot be found.

Comments	None.

Execute Commands

WFS_CMD_PTR_CONTROL_MEDIA

Description	This function is used to control a form drawn in by the device (e.g. after reading or in case of termination of an application request).

Input Param	DWORD		dwMediaControl;

	dwMediaControl�Specifies the manner in which the media should be handled, as a combination of the following bit-flags:

Value	Meaning

WFS_PTR_CTRLEJECT	Eject the media.

WFS_PTR_CTRLPERFORATE	Perforate the media.

WFS_PTR_CTRLCUT	Cut the media.

WFS_PTR_CTRLSKIP	Skip the media to mark.

WFS_PTR_CTRLFLUSH	Flush any data to the printer that has not yet been printed from previous WFS_CMD_PTR_PRINT_FORM commands.

Output Param	None.

Error Codes	The following errors can be returned:

Value	Meaning

WFS_ERR_PTR_NOMEDIAPRESENT	No form is present in the device.

Comments	None.

Execute Events	None.

�WFS_CMD_PTR_PRINT_FORM

Description	This function is used to print a form by merging the supplied variable field data with the defined form and field data specified in the form.

Input Param	LPWFSPTRPRINTFORM

typedef struct _wfs_ptr_print_form�	{�	LPSTR		lpszFormName;�	LPSTR		lpszMediaName;�	WORD		wAlignment�	WORD		wOffsetX;�	WORD		wOffsetY;�	WORD		wResolution;�	DWORD		dwMediaControl;�	LPSTR		lpszFields;�	} WFSPTRPRINTFORM, * LPWFSPTRPRINTFORM;

	lpszFormName�Points to the null-terminated form name.

	lpszMediaName�Points to the null-terminated media name.

	wAlignment�Specifies the alignment of the form on the physical medium. Possible values are:

Value	Meaning

WFS_PTR_ALNUSEFORMDEFN	Use the alignment specified in the form definition.

WFS_PTR_ALNTOPLEFT	Align form to top left of physical medium.

WFS_PTR_ALNTOPRIGHT	Align form to top right of physical medium.

WFS_PTR_ALNBOTTOMLEFT	Align form to bottom left of physical medium.

WFS_PTR_ALNBOTTOM RIGHT	Align form to bottom right of physical medium.

	wOffsetX�Specifies the horizontal offset of the form, relative to the horizontal alignment specified in wAlignment, in horizontal resolution units (from form definition); always a positive number (i.e., if aligned to the right side of the medium, means offset the form to the left). A value of WFS_PTR_OFFSETUSEFORMDEFN indicates that the xoffset value from the form definition should be used.

	wOffsetY�Specifies the vertical offset of the form, relative to the vertical alignment specified in wAlignment, in vertical resolution units (from form definition); always a positive number �(i.e., if aligned to the bottom of the medium, means offset the form upward). A value of WFS_PTR_OFFSETUSEFORMDEFN indicates that the yoffset value from the form definition should be used.

	wResolution�Specifies the resolution in which to print the form. Possible values are:

Value	Meaning

WFS_PTR_RESLOW	Print form with low resolution.

WFS_PTR_RESMED	Print form with medium resolution.

WFS_PTR_RESHIGH	Print form with high resolution.

WFS_PTR_RESVERYHIGH	Print form with very high resolution.

	dwMediaControl�Specifies the manner in which the media should be handled, as a combination of the bit-flags described under WFS_CMD_PTR_CONTROL_MEDIA.

	lpszFields�Points to a series of "<FieldName>=<FieldValue>" strings, where each string is null-terminated with the final string terminating with two null characters. If the field is an index field, then the syntax of the string is instead "<FieldName>[<index>]=<FieldValue>", where <index> specifies the zero-based element of the index field.

Output Param	None.

Error Codes	The following errors can be returned:

Value	Meaning

WFS_ERR_PTR_FORMNOTFOUND	The specified form cannot be found.

WFS_ERR_PTR_FLUSHFAIL	The form was not successfully sent to the device.

WFS_ERR_PTR_MEDIAOVERFLOW	The form has overflowed the media.

WFS_ERR_PTR_FIELDSPECFAILURE	The syntax of the lpszFields member is invalid.

WFS_ERR_PTR_FIELDERROR	An error has occurred while processing a field, causing termination of the print request. A WFS_EXECUTE_EVENT with an ID of WFS_EXEE_PTR_FIELDERROR is posted with the details.

Comments	An invalid field name is treated as a WFS_EXEE_PTR_FIELDWARNING event when printing.

Execute Events	WFS_EXEE_PTR_FIELDERROR�WFS_EXEE_PTR_FIELDWARNING�WFS_EXEE_PTR_NOMEDIA�WFS_EXEE_PTR_MEDIAINSERTED

�WFS_CMD_PTR_READ_FORM

Description	This function is used to read data from input fields on the specified form.

Input Param	LPWFSPTRREADFORM

typedef struct _wfs_ptr_read_form�	{�	LPSTR		lpszFormName;�	LPSTR		lpszFieldNames;�	LPSTR		lpszMediaName;�	DWORD		dwMediaControl;�	} WFSPTRREADFORM, * LPWFSPTRREADFORM;

	lpszFormName�Points to the null-terminated name of the form.

	lpszFieldNames�Points to a list of null-terminated field names from which to read input data, with the final name terminating with two null characters. If this value is NULL, then read data from all input fields on the form.

	lpszMediaName�Points to the null-terminated media name.

	dwMediaControl�Specifies the manner in which the media should be handled and can be a combination of the bit flags described under WFS_CMD_PTR_CONTROL_MEDIA.

Output Param	LPSTR 	lpszFields;

	lpszFields�Points to a series of "<FieldName>=<FieldValue>" strings, where each string is null-terminated with the final string terminating with two null characters. If the field is an index field, then the syntax of the string is instead "<FieldName>[<index>]=<FieldValue>", where <index> specifies the zero-based element of the index field.

Error Codes	The following errors can be returned:

Value	Meaning

WFS_ERR_PTR_READNOTSUPPORTED	The device has no read capability.

WFS_ERR_PTR_FORMNOTFOUND	The specified form cannot be found.

WFS_ERR_PTR_FIELDSPECFAILURE	The syntax of the lpszFieldNames member is invalid.

Comments	All field errors are treated as a WFS_EXEE_PTR_FIELDWARNING when reading.

Execute Events	WFS_EXEE_PTR_FIELDERROR�WFS_EXEE_PTR_FIELDWARNING�WFS_EXEE_PTR_NOMEDIA�WFS_EXEE_PTR_MEDIAINSERTED

�WFS_CMD_PTR_RAW_DATA

Description	This function is used to send raw data to the physical device.

Input Param	LPWFSPTRRAWDATA

typedef struct _wfs_ptr_raw_data�	{�	ULONG		ulSize;�	LPBYTE		lpbData;�	} WFSPTRRAWDATA, * LPWFSPTRRAWDATA;

	ulSize�Specifies the size of the byte string passed to the device.

	lpbData�Points to a byte string holding the device dependent data.

Output Param	None.

Error Codes	The following errors can be returned:

Value	Meaning

WFS_ERR_PTR_NOMEDIAPRESENT	No media is present in the device.

Comments	Applications which send raw data to a device may not be device or vendor independent.

�WFS_CMD_PTR_MEDIA_EXTENTS

Description	This function is used to get the extents of the media inserted in the physical device. The input parameter specifies the base unit and fractions in which the media extent values will be returned.

Input Param	LPWFSPTRMEDIAUNIT

typedef struct _wfs_ptr_media_unit�	{�	WORD			wBase;�	WORD			wUnitX;�	WORD			wUnitY;�	} WFSPTRMEDIAUNIT, * LPWFSPTRMEDIAUNIT;

	wBase�Specifies the base unit of measurement of the media and can be one of the following:

Value	Meaning

WFS_FRM_INCH	The base unit is inches.

WFS_FRM_MM	The base unit is millimeters.

WFS_FRM_ROWCOLUMN	The base unit is rows and columns.

	wUnitX�Specifies the horizontal resolution of the base units as a fraction of the fwUnitGlobal value. For example, a value of 16 applied to the global unit WFS_FRM_INCH means that the base horizontal resolution is 1/16".

	wUnitY�Specifies the vertical resolution of the base units as a fraction of the fwUnitGlobal value. For example, a value of 10 applied to the global unit WFS_FRM_MM means that the base vertical resolution is 0.1 mm.

Output Param	LPWFSPTRMEDIAEXT

typedef struct _wfs_ptr_media_ext�	{�	ULONG		ulSizeX;�	ULONG		ulSizeY;�	} WFSPTRMEDIAEXT, * LPWFSPTRMEDIAEXT;

	ulSizeX�Specifies the width of the media in terms of the base horizontal resolution.

	ulSizeY�Specifies the height of the media in terms of the base vertical resolution.

Error Codes	The following errors can be returned:

Value	Meaning

WFS_ERR_PTR_EXTENTNOTSUPPORTED	The device cannot report extent(s).

Execute Events	WFS_EXEE_PTR_NOMEDIA�WFS_EXEE_PTR_MEDIAINSERTED

Execute Events

WFS_EXEE_PTR_NOMEDIA

Description	This event specifies that the physical media must be inserted into the device in order for the execute command to proceed.

Event Param	LPSTR		lpszUserPrompt;

	lpszUserPrompt�Points to a null-terminated user prompt string from the form definition.

Comments	The application may use the lpszUserPrompt in any manner it sees fit, for example it might display the string to the operator, along with a message that the media should be inserted.

WFS_EXEE_PTR_MEDIAINSERTED

Description	This event specifies that the physical media has been inserted into the device.

Event Param	None.

Comments	The application may use this event to, for example, remove a message box from the screen telling the user to insert a form.

WFS_EXEE_PTR_FIELDERROR

Description	This event specifies that a fatal error has occurred while processing a field.

Event Param	LPWFSPTRFIELDFAIL

typedef struct _wfs_ptr_field_failure�	{�	LPSTR			lpszFormName;�	LPSTR			lpszFieldName;�	WORD			wFailure;�	} WFSPTRFIELDFAIL, * LPWFSPTRFIELDFAIL;

	lpszFormName�Points to the null-terminated form name.

	lpszFieldName�Points to the null-terminated field name.

	wFailure�Specifies the type of failure and can be one of the following:

Value	Meaning

WFS_PTR_FIELDREQUIRED	The specified field must be supplied by the application.

WFS_PTR_FIELDSTATICOVWR	The specified field cannot be supplied by the application.

WFS_PTR_FIELDOVERFLOW	The value supplied for the specified fields is too long.

WFS_PTR_FIELDNOTFOUND	The specified field does not exist.

WFS_PTR_FIELDNOTREAD	The specified field is not an input field.

WFS_PTR_FIELDNOTWRITE	An attempt was made to write to an input field.

WFS_PTR_FIELDHWERROR	The specified field uses special hardware (e.g., OCR) and an error occurred.

�WFS_EXEE_PTR_FIELDWARNING

Description	This event ID is used to specify that a non-fatal error has occurred while processing a field.

Event Param	LPWFSPTRFIELDFAIL, as defined in the section describing WFS_EXEE_PTR_FIELDERROR.

Comments	None.

�Form and Media Definition

This section outlines the format of the definitions of forms, the fields within them, and the media on which they are printed. The full, formal definition of the grammar for these definitions is included in the WOSA/XFS Software Development Kit (SDK).

Form Definition

XFSFORM��formname���BEGIN�����(required)�UNIT�base, �Base resolution unit for form definition�	MM�	INCH�	ROWCOLUMN����x, �Horizontal base unit fraction����y�Vertical base unit fraction��(required)�SIZE�width, �Width of form in base resolution units����height�Height of form in base resolution units���ALIGNMENT�alignment,�Alignment of the form on the physical medium:�	TOPLEFT (default)�	TOPRIGHT�	BOTTOMLEFT�	BOTTOMRIGHT�This option allows the positioning a form onto a physical page relative to any combination of the edges of the physical medium, to support the variations in how devices sense the edge of page for positioning purposes����xoffset,�Horizontal offset relative to the horizontal alignment specified in alignment. Always specified as a positive value (i.e., if aligned to the right side of the medium, means offset the form to the left). (default = 0)����yoffset�Vertical offset relative to the vertical alignment specified in alignment. Always specified as a positive value (i.e., if aligned to the bottom of the medium, means offset the form upward). (default = 0)���SKEW�skewfactor�Maximum skew factor in degrees (default = 0)���VERSION�major, �Major version number����minor, �Minor version number����date, �Creation/modification date����author�Author of form��(required)�LANGUAGE�languageID�Language used in this form ���COPYRIGHT�copyright�Copyright entry���TITLE�title�Title of form���COMMENT�comment�Comment section���USERPROMPT�prompt�Prompt string for user interaction���[XFSFIELD�name �One field definition (as defined in the next section) for each field in the form���	BEGIN�	 . . . �	END]����END������Field Definition

XFSFIELD��fieldname���BEGIN�����(required)�POSITION�x, �Horizontal position (relative to left side of form)����y�Vertical position (relative to top of form)���FOLLOWS�fieldname�Print this field directly following the field with the name <fieldname>; positioning information is ignored. See the description of WFS_CMD_PTR_PRINT_FORM.���SIDE�side�Side of form where field is positioned:�	FRONT (default)�	BACK��(required)�SIZE�width, �Field width����height�Field height���INDEX�repeatcount,�Count how often this field is repeated in the form (default is no index field)����xoffset,�Horizontal offset for next field����yoffset�Vertical offset for next field���TYPE�fieldtype�Type of field:�	TEXT (default)�	MICR�	OCR�	MSF�	BARCODE���CLASS�class�Field class�	OPTIONAL (default)�	STATIC�	REQUIRED���ACCESS�access�Access rights of field�	WRITE (default)�	READ�	READWRITE���OVERFLOW�overflow�Action on field overflow:�	TERMINATE (default) �	TRUNCATE�	BESTFIT�	OVERWRITE�	WORDWRAP���STYLE�style�Display attributes as a combination of the following, ORed together using the "|" operator:�	NORMAL (default)�	BOLD�	ITALIC�	UNDER�	DOUBLE�	STRIKETHROUGH���CASE�case�Convert field contents to�	NOCHANGE (default)�	UPPER�	LOWER���HORIZONTAL�justify�Horizontal alignment of field contents�	LEFT (default)�	RIGHT�	CENTER�	JUSTIFY���VERTICAL�justify�Vertical alignment of field contents�	BOTTOM (default)�	CENTER�	TOP���COLOR�color�Color name�	BLACK (default)�	WHITE�	GRAY�	RED�	BLUE�	GREEN�	YELLOW��font�FONT�fontname�Font name; in some cases this predefines the following parameters:�� definition�POINTSIZE�pointsize�Point size�� information�CPI�cpi�Characters per inch���LPI�lpi�Lines per inch���FORMAT�formatstring�Application defined�����INITIALVALUE�value�Initial value��END�����

�The following diagrams illustrate the positioning and sizing of text fields on a form, and, in particular, the vertical alignment of text within a field using VERTICAL=TOP and VERTICAL=BOTTOM values in the field definition.

�\EMBED MSDraw * mergeformat���

VERTICAL=TOP 	the upper boundary of the character drawing box (shown below) is positioned vertically to the upper field boundary.

VERTICAL=BOTTOM 	the baseline of the character drawing box (shown below) �is positioned vertically to the lower field boundary.

Definition of the character drawing box:

�\EMBED MSDraw * mergeformat���

When more than one line of text is to be printed in a field, and the definition includes VERTICAL=BOTTOM, the vertical position of the first line is calculated using the specified (or implied) LPI value.

�Media Definition

The media definition determines those characteristics that result from the combination of a particular media type together with a particular vendor's printer. The aim is to make it easy to move forms between different vendors' printers which might have different constraints on how they handle a specific media type. It is the service provider's responsibility to ensure that the form definition does not specify the printing of any fields that conflict with the media definition. An example of such a conflict might be that the form definition asks for a field to be printed in an area that the media definition defines as an unprintable area.

The media definition is also intended to provide the capabilty of defining media types that are specific to the financial industry. An example is a passbook as shown below.

�EMBED MSDraw * mergeformat���

XFSMEDIA��medianame���BEGIN������TYPE�type�Predefined media types are:�UNDEFINED (default)�PASSBOOK��(required)�UNIT�base,�Base unit for media description�MM�INCH�ROWCOLUMN����x,�Horizontal base unit����y�Vertical base unit��(required)�SIZE�x,�Width of physical media����y�Height of physical media���PRINTAREA�x,�Printable area relative����y,� to top left corner����width,� of physical media����height� (default = physical size of media))���RESTRICTED�x,�Restricted area relative to����y,� to top left corner����width,� of physical media����height� (default = no restricted area)���FOLD�fold�Type of passbook�	HORIZONTAL�	VERTICAL���STAGGERING�staggering�Staggering of passbook from top (default = 0)���PAGE�count�Number of pages in passbook (default = 0)���LINES�count�Number of printable lines (default = 0)��END������Magnetic Stripe Readers and Writers

This section describes the functions provided by a generic magnetic stripe card reader/writer (also referred to as an ID card unit) service. This service allows for the operation of the following categories of units:

motor driven card reader/writer

pull through card reader (writing facilities only partially included)

dip reader

hybrid reader (first step only ID card operations)

The magnetic stripe card service is capable of dealing with ID cards and can be expanded for smart card operation. Magnetic stripes on one side of the card, the number of which varies according to national standards, allow for modifiable data to be recorded.

The following tracks and the corresponding international standards are taken into account in this document :

Track 1		ISO 7811

Track 2		ISO 7811

Track 3		ISO 7811/ ISO 4909.

National standards like Transac for France or Watermark for Sweden are not considered, but can be easily included via the forms mechanism (see Section 7.2.4, Form Description).

In addition to the pure reading of the tracks mentioned above, security boxes can be used via this service to check the data of writable tracks for manipulation. These boxes (such as CIM or MM) are sensor-equipped devices that are able to check some other information on the card and compare it with the track data.

�Info Commands

WFS_INF_IDC_STATUS

Description	This command reports the full range of information available, including the information that is provided either by the device handler or, if present, by any of the security modules. In addition to that, the number of cards retained is transmitted for motor driven card reader/writer (for devices of the other categories this number is always set to zero).

Input Param	None.

Output Param	LPWFSIDCSTATUS	lpStatus; as defined below.

typedef struct _wfs_idc_status �	{�	WORD			fwDevice;�	WORD			fwMedia;�	WORD			fwRetainBin;�	WORD			fwSecurity;�	USHORT			usCards;�	WORD			fwResetAct;�	WORD			fwPowerOnAct;�	WORD			fwPowerOffAct;�	LPSTR			lpszExtra;	�	} WFSIDCSTATUS, * LPWFSIDCSTATUS;

	fwDevice�Specifies the state of the print device as one of the following flags:

Value	Meaning

WFS_IDC_DEVONLINE	The device is online.

WFS_IDC_DEVOFFLINE	The device is offline.

WFS_IDC_DEVPOWEROFF	The device is powered off.

WFS_IDC_DEVBUSY	The device is busy processing a request.

WFS_IDC_DEVNODEVICE	There is no device connected.

WFS_IDC_DEVHWERROR	The device is inoperable due to a hardware error.

	fwMedia�Specifies the state of the ID card as one of the following flags:

Value	Meaning

WFS_IDC_MEDIAPRESENT	Media is inserted in the device.

WFS_IDC_MEDIANOTPRESENT	Media is not inserted in the device.

WFS_IDC_MEDIAJAMMED	Media is jammed in the device.

WFS_IDC_MEDIANOTSUPP	Capability not supported by device.

WFS_IDC_MEDIAUNKNOWN	Capability cannot be determined with device in its current state.

WFS_IDC_MEDIAENTERING	Media is in the entering position (shutter).

	fwRetainBin�Specifies the state of the card retain bin as one of the following flags:

Value	Meaning

WFS_IDC_RETAINBINOK	The retain bin of the ID card unit is OK.

WFS_IDC_RETAINNOTSUPP	The ID card unit does not support retain capability.

WFS_IDC_RETAINBINFULL	The retain bin of the ID card unit is full.

	�fwSecurity�Specifies the state of the security unit as one of the following flags:

Value	Meaning

WFS_IDC_SECNOTSUPP	No security module is available.

WFS_IDC_SECNOTREADY	The security module is not ready for processing cards.

WFS_IDC_SECOPEN	Security module open and ready for processing cards.

	usCards�Number of cards kept back (motor driven card readers/writers only).

	fwResetAct�Relevant only for motor driven card readers, defines what to do with an inserted card at reset. Possible values are:

Value	Meaning

WFS_IDC_RESETEJECTCARD	Default action with card is eject.

WFS_IDC_RESETRETAINCARD	Default action with card is retain.

	fwPowerOnAct�Relevant only for motor driven card readers, defines what to do with an inserted card at power on (or opening of service). For possible values see fwResetAct.

	fwPowerOffAct�Relevant only for motor driven card readers, defines what to do with an inserted card at power off (or closing of service). For possible values see fwResetAct.

	lpszExtra�Points to a list of vendor-specific, or any other extended, information. The information is returned as a series of "key=value" strings so that it is easily extensible by service providers. Each string is null-terminated, with the final string terminating with two null characters.

Error Codes	None.

Comments	Applications which require or expect specific information to be present in the lpszExtra parameter may not be device or vendor-independent.

�WFS_INF_IDC_CAPABILITIES

Description	This command is used to retrieve the capabilities of the ID card unit.

Input Param	None.

Output Param	LPWFSIDCCAPS	lpCaps; as defined below.

typedef struct _wfs_idc_caps�	{�	WORD			wClass;�	WORD			fwType;�	BOOL			bCompound;�	WORD			fwReadTracks;�	WORD			fwWriteTracks;�	USHORT			usCards;�	WORD			fwSecType;�	LPSTR			lpszExtra;	�	} WFSIDCCAPS, * LPWFSIDCCAPS;

	wClass�Specifies the logical service class, value is:�WFS_SERVICE_CLASS_IDC

	fwType�Specifies the type of the ID card unit as one of the following flags:

Value	Meaning

WFS_IDC_TYPEMOTOR	motor driven card reader/writer

WFS_IDC_TYPEPULLTRU	pull through card reader/writer

WFS_IDC_TYPEDIP	dip reader

WFS_IDC_TYPEHYBRID	hybrid card reader

	bCompound�Specifies whether the logical device is part of a compound physical device and is either TRUE or FALSE.

	fwReadTracks�Specifies the tracks that can be read by the ID card unit as a combination of the following flags:

Value	Meaning

WFS_IDC_TRACK1	Device can access track 1.

WFS_IDC_TRACK2	Device can access track 2.

WFS_IDC_TRACK3	Device can access track 3.

	fwWriteTracks�Specifies the tracks that can be written by the ID card unit (as a combination of the flags specified in the description of fwReadTracks).

	usCards�Specifies the maximum numbers of cards that the retain bin can hold (0 if not available).

	�fwSecType�Specifies the type of security module used as one of the following flags:

Value	Meaning

WFS_IDC_SECNOTSUPP	Device has no security module.

WFS_IDC_SECMMBOX	Security module of device is MMBox.

WFS_IDC_SECCIM86	Security module of device is CIM86

	lpszExtra�Points to a list of vendor-specific, or any other extended information. The information is returned as a series of "key=value" strings so that it is easily extensible by service providers. Each string is null-terminated, with the final string terminating with two null characters.

Error Codes	None.

Comments	Applications which require or expect specific information to be present in the lpszExtra parameter may not be device or vendor-independent.

�Execute Commands

WFS_CMD_IDC_READ_TRACK

Description	Motor driven card reader devices: the ID card unit checks whether a card has been inserted. If a card has been inserted, the tracks are read immediately as described in the specified form. If no card is inserted and for all other categories of devices, the ID card unit waits for a specified period of time for a card to be either inserted or pulled through. Again the next step is reading the tracks specified in the specified form (see Section 7.2.4, Form Description, for a more detailed description of the forms mechanism). In addition to that, the results of a security check via a security module (i.e., MM, CIM86) are specified and added to the track data.

Input Param	LPSTR	lpFormsName;

	lpFormsName�Points to the name of the form that defines the behavior for the reading of tracks (see Section 7.2.4, Form Description)

Output Param	LPSTR	lpstrTrackData;

	lpstrTrackData�Points to the data read from the selected tracks (and value of security module if available).

Error Codes

Value	Description

WFS_ERR_IDC_MEDIAJAM	The card is jammed.

WFS_ERR_IDC_INVALIDDATA	None of the tracks could be read successfully.

WFS_ERR_IDC_NOMEDIA	No card inserted in time specified.

WFS_ERR_IDC_INVALIDMEDIA	No track found; card may have been inserted or pulled through the wrong way.

WFS_ERR_DEV_NOT_READY	device not ready

Execute Events	WFS_EXEE_IDC_INVALIDTRACKDATA�WFS_EXEE_IDC_NOMEDIA�WFS_EXEE_IDC_MEDIAINSERTED�WFS_EXEE_IDC_MEDIAREMOVED

Comments	The track data is preceded by the keyword for the track, separated by a ‘:’. The field data is always preceded by the corresponding keyword, separated by a ‘=’. The fields are separated by 0x00. The data of the different tracks is separated by an additional 0x00. The end of the buffer is marked by another additional 0x00 (see also example).

Example	example for lpstrTrackData :�TRACK2:ALL=47..\0\0TRACK3:MII=59\0PAN=500..\0\0\0�	(see Section 7.2.4, Form Description, for possible keywords)

�WFS_CMD_IDC_WRITE_TRACK

Description	For motor-driven card readers: the ID card unit checks whether a card is inserted. If so, the data defined by the form and the parameters received are written to the respective track immediately.

	If no card has been inserted and for all other categories of devices, ID card unit waits for a period of time specified in the WFSExecute call for a card to be either inserted or pulled through. The next step is writing the data defined by the form and the parameters to the respective track (see Section 7.2.4, Form Description, for a more detailed description of the forms mechanism).

	This procedure is followed by data verification (which can be performed several times for the same set).

Input Param	LPWFSIDCWRITETRACK	lpWriteTrack, as defined below.

struct _wfs_idc_write_track�	{�	LPSTR			lpstrForm;�	LPSTR			lpstrData;�	} WFSIDCWRITETRACK, * LPWFSIDCWRITETRACK;

	lpstrForm�Points to the form name to be used.

	lpstrData�Points to the data to be used in the form.

Output Param	None.

Error Codes	The following error codes may be returned.

Value	Meaning

WFS_ERR_IDC_MEDIAJAM	jammed card

WFS_ERR_IDC_NOMEDIA	no card inserted in time specified

WFS_ERR_IDC_INVALIDDATA	write data is invalid

WFS_ERR_DEV_NOT_READY	device not ready

Execute Events	WFS_EXEE_IDC_NOMEDIA�WFS_EXEE_IDC_MEDIAINSERTED�WFS_EXEE_IDC_MEDIAREMOVED

Comments	The field data is always preceeded by the corresponding keyword, separated by a ‘=’. Fields are separated by 0x00. The end of the buffer is marked with an additional 0x00. (See also the example below and Section 7.2.4, Form Description.)

Examples	RETRYCOUNT=3\0DATE=3132\0..\0\0\0) �(see Section 7.2.4, Form Description for keywords definitions)

�WFS_CMD_IDC_EJECT_CARD

Description	Available only for motor driven card readers. The card is returned to the customer. Its actual withdrawal is subject to timer supervision. The timer is defined in the WFSExecute call. If the card is not withdrawn within the specified period of time, an echo is given. The card remains in the position for withdrawal.

Input Param	None.

Output Param	None.

Error Codes 	Value	Meaning

WFS_ERR_IDC_MEDIAJAM	jammed card

WFS_ERR_IDC_MEDIALEFT	card not withdrawn within period of time set

WFS_ERR_IDC_NOMEDIA	no card inserted

WFS_ERR_DEV_NOT_READY	device not ready

Comments	The timer defined for the WFSExecute call must be greater than the timer defined in the configuration data for the WFS_CMD_IDC_EJECT_CARD command.

WFS_CMD_IDC_RETAIN_CARD

Description	For motor-driven card readers only: the card is removed from its present position (card inserted into device, card entering, unknown position) and stored in an ID card box. The ID card unit sends an event, if the storage capacity of the ID card box for retained cards is reached. If the storage capacity has already been reached, and the command cannot be executed, an error is returned and the card remains in its present position.

If the execution of WFS_CMD_IDC_RETAIN_CARD is performed without errors, the total number of cards retained includes the current card. If , however, an error occurs during the execution of this command, the total number of cards retained does not include the current card.

Input Param	None.

Output Param	LPWFSIDCRETAINCARD	lpRetainCard, as defined below.

typedef struct _wfs_idc_retain_card�	{�	USHORT		usCount;�	WORD		fwPosition;�	} WFSIDCRETAINCARD, * LPWFSIDCRETAINCARD;

	usCount�Number of ID cards retained.

	fwPosition�Position of card, only relevant if card could not be retained. Possible positions:

Value	Meaning

WFS_IDC_MEDIAUNKNOWN	The position of the card can not be determined with the device in its current state.

WFS_IDC_MEDIAPRESENT	The card is present in the reader.

WFS_IDC_MEDIAENTERING	The card is in the entering position (shutter).

Error Codes 	Value	Meaning

WFS_ERR_IDC_MEDIAJAM	The card is jammed.

WFS_ERR_IDC_NOMEDIA	No card has been inserted.

WFS_ERR_IDC_RETAINFULL	The retain bin is full; no more cards can be retained.

WFS_ERR_DEV_NOT_READY	The device is not ready.

WFS_CMD_IDC_RESET_COUNT

Description	This function resets the present value for number of cards retained to zero. The function is possible for motor-driven card readers only.

The number of cards retained is controlled by the service and can be requested before resetting via the WFS_INF_IDC_STATUS.

Input Param	None.

Output Param	None.

Error Codes	None.

WFS_CMD_IDC_RESET

Description	The ID card unit is reset after a failure. The action to be performed with a card that is inside the ID card unit in the moment of the resetting can be defined via the input parameter.

	The reaction to be performed with a card inside the ID card unit on the next closing or power on of the ID card unit can also be defined.

	If no input parameter is transferred, the default reaction (as defined in the configuration) is performed).

Input Param	LPWFSIDCRESET	lpReset, as defined below.

typedef struct _wfs_idc_reset�	{�	WORD		fwResetAct;�	WORD		fwPowerOnAct;�	WORD		fwPowerOffAct;�	} WFSIDCRESET, * LPWFSIDCRESET;

	fwResetAct�Action to be performed with a card inside the ID card unit on resetting. Possible values are:

Value	Meaning

WFS_IDC_RESETDONTCHANGE	Default action is not changed.

WFS_IDC_RESETEJECTCARD	Default action with card is eject.

WFS_IDC_RESETRETAINCARD	Default action with card is retain.

	fwPowerOnAct�Action to be performed with a card inside the ID card unit on next power on (or opening). For possible values see fwResetAct.

	fwPowerOffAct�Action to be performed with a card inside the ID card unit on next power off (or closing). For possible values see fwResetAct.

Output Param	None.

Error Codes 	Value	Meaning

WFS_ERR_IDC_MEDIAJAM	The card is jammed.

WFS_ERR_DEV_NOT_READY	The device is not ready.

Comments	None.

Messages

WFS_EXEE_IDC_INVALIDTRACKDATA

Description	This event specifies that a track contained invalid or no data.

Event Param	LPWFSIDCTRACKEVENT	lpTrackEvent; as defined below.

struct _wfs_idc_track_event�	{�	WORD			fwStatus;�	LPSTR			lpstrTrack;�	LPSTR			lpstrData;�	} WFSIDCTRACKEVENT, * LPWFSIDCTRACKEVENT

	fwStatus�Status of reading the track. Possible values are :

Value	Meaning

WFS_IDC_DATAMISSING	The track is blank.

WFS_IDC_DATAINVALID	The data contained on the track is invalid.

WFS_IDC_DATATOOLONG	The data contained on the track is too long.

WFS_IDC_DATATOOSHORT	The data contained on the track is too short.

	lpstrTrack�Keyword of the track for which the error occured.

	lpstrData�Data that could be read (that may be only a fragment of the track).

WFS_EXEE_IDC_NOMEDIA

Description	This event specifies that a read/write request was issued, but no card was inserted.

Event Param	None.

WFS_EXEE_IDC_MEDIAINSERTED

Description	This event specifies that a card was inserted into the device.

Event Param	None.

WFS_EXEE_IDC_MEDIAREMOVED

Description	This event specifies that the inserted card was manually removed by the user during the processing of a read/write command.

Event Param	None.

�WFS_SRVE_IDC_CARDACTION

Description	This event specifies that a card has been retained.

Event Param	LPWFSIDCCARDACT		lpCardAct; as defined below.

typedef struct _wfs_idc_card_act�	{�	WORD			wAction;�	WORD			wPosition;�	WORD			wReason;�	} WFSIDCCARDACT, * LPWFSIDCCARDACT

	wAction�Specifies which action has been performed with the card. Possible values are :

Value	Meaning

WFS_IDC_RESETRETAINCARD	The card has been retained.

WFS_IDC_RESETEJECTCARD	The card has been ejected.

	wPosition�Position of card before being retained. Possible values are :

Value	Meaning

WFS_IDC_MEDIAUNKNOWN	The position of the card in the reader can not be determined.

WFS_IDC_MEDIAPRESENT	The card has is present in the reader.

WFS_IDC_MEDIAENTERING	The card has just been entered.

	wReason�Reason for retaining the card. Possible values are :

Value	Meaning

WFS_IDC_DEVRESET	Card was retained because of a device reset.

WFS_IDC_DEVOPEN	Card was retained because of a device open.

WFS_IDC_DEVCLOSE	Card was retained because of a device close.

WFS_USRE_IDC_RETAINBINFULL

Description	This event specifies that the retain bin holding the retained cards is full.

Event Param	LPUSHORT	lpusCount;

	lpusCount�Points to the number of cards contained in the retain bin.

�Form Description

This section describes the forms mechanism used to define the tracks to be read or written. The forms file contains one section for every defined form.

The read forms define which tracks should be read in the WFS_CMD_IDC_READ_TRACK command and what should the response should be to a read failure. The read forms can also be used to define logical track data, i.e. fields like “account number,” “issuer identifier,” and their position within the physical track data. In that case, the output parameter of the WFS_CMD_IDC_READ_TRACK command with input parameter lpForm = READTRACK3GERMAN could look like (see examples):��	"TRACK3 MII=59 ISSUERID=50050500 ACCOUNTNUMBER=1234567890 LUHN=1"

The write forms defines which tracks are to be written. Here it is possible, as it is in the read forms, to define logical track data that are handed over in the WFS_CMD_IDC_WRITE_TRACK command and how they are to be converted to the physical data to be written.

Reserved Keywords/Signs	Meaning

FIELDSEPT1	value of field separator of track 1

FIELDSEPT2	value of field separator of track 2

FIELDSEPT3	value of field separator of track 3

READ	description of read action

WRITE	description of write action

ALL	read or write the complete track

SECURE	do the security check via the security module (CIM86 or MM)

&	read all tracks specified, abort reading on read failure

|	read at least one of the tracks specified, continue reading on read failure

FIELDSEPPOSx	position of x-th occurence of field separator on track

,	separator in a list of logical fields

DEFAULT	Default substitution of track data to be written, that is not defined explicitly

?	Substitute track data to write with its value read before

Example	Reading tracks:

[READTRACK3GERMAN]

	FIELDSEPT1= = 		/* fieldseparator of track1 */

	FIELDSEPT2= =		/* fieldseparator of track2 */

	FIELDSEPT3= =		/* fieldseparator of track3 */

	READ= TRACK3 & TRACK1 & TRACK2		/* all tracks must be read */

	TRACK3= MII, ISSUERID, ACCOUNT, LUHN, SECURE	/* read logical fields as �								 defined below, also�								 check the security */

	MII= FIELDSEP1 + 1, FIELDSEP1 + 2

	ISSUERID= FIELDSEPPOS1 + 3, FIELDSEPPOS1 + 10

	ACCOUN = FIELDSEPPOS1 + 11, FIELDSEPPOS2 - 2

	LUHNT3= FIELDSEPPOS2 - 1, FIELDSEPPOS2 -1

	TRACK2= ALL		/* return track2 complete, �				 don't return logical fields */

	TRACK1= ALL		/* return track1 complete, �				 don't return logical fields */

�	All tracks must be read, that is, the reading is to be aborted if an error occurs on reading one of the tracks. The field “major industry identifier” is located after the first field separator and its length is 2 bytes. The “issuer identifier” is located after the MII with a length of 8 bytes. After the “issuer identifier” the “account number” can be found. Its length is variable, it ends before the luhn digit that is the last digit in front of the second field separator.

Example	Write a track:

[WRITETRACK3]

	FIELDSEPT3= =

	DEFAULT= ?	/* read track and write fields �			not explicitly specified as read */

	WRITE= TRACK3

	TRACK3= RETRYCOUNT, DATE

	RETRYCOUNT= FIELDSEPPOS2, + 22, FIELDSEPPOS2 + 22

	DATE= FIELDSEPPOS5 + 1, FIELDSEPPOS5 + 4

	Track 3 is to be written. In the example only the retry counter and the date of the last transaction are updated, the other fields are unchanged. If the field ALL is defined, the data passed in the IDC_WRITE_TRACK is written one by one to the physical track.

�Cash Dispensers

This section describes the functionality of a cash dispenser module (CDM) service that applies to both Automated Teller Safes (ATS) and Automated Teller Machines (ATM).

The components of a Automated Teller Safe are a cash (notes) dispenser, a transport unit, an output unit, and in some cases it also contains a coin dispenser and an alert unit.

An Automated Teller Machine contains the modules for cash dispensing plus additional modules such as magnetic card reader/writer, PIN pad, terminal, etc. The modules used for cash dispensing are essentially the same as those contained in the ATS: a dispenser, a transport module, an output module, and a coin dispenser, if available. Therefore, the cash dispensing functionality of the ATS and of the ATM is included in a single service class definition, referred to in this specification as “CDM” (cash dispenser module).

The implementation of the individual commands is device dependent (ATS or ATM). This is described in the documentation of each function.

The following table specifies which functions are meaningful for the two kinds of devices.

Command Verb�ATS�ATM��WFS_CMD_CDM_DENOMINATE�X�X��WFS_CMD_CDM_DISPENSE�X�X��WFS_CMD_CDM_PRESENT��X��WFS_CMD_CDM_REJECT��X��WFS_CMD_CDM_RETRACT��X��WFS_CMD_CDM_CASH_IN�X���WFS_CMD_CDM_SET_TELLER_INFO�X���WFS_CMD_CDM_SET_CASH_UNIT_INFO�X���WFS_CMD_CDM_START_EXCHANGE�X�X��WFS_CMD_CDM_END_EXCHANGE�X�X��WFS_CMD_CDM_OPEN_SAFE DOOR�X�X��WFS_CMD_CDM_CLOSE_SHUTTER��X��WFS_CMD_CDM_OPEN_SHUTTER��X��WFS_CMD_CDM_CHECK_VANDALISM��X��

Info Commands

WFS_INF_CDM_STATUS

Description	This command is used to request the status of the devices attached to a CDM, such as the safedoor and other devices, or to retrieve device specific information, such as the PROM version of the device.

Input Param	None.

Output Param	LPWFSCDMSTATUS	lpStatus, as defined below.

typedef struct _wfs_cdm_status�	{�	WORD			fwDevice;�	WORD			fwSafeDoor;�	WORD			fwDispenser;�	LPSTR			lpszExtra;	�	} WFSCDMSTATUS, * LPWFSCDMSTATUS;

	fwDevice�Specifies the state of the print device as one of the following flags:

Value	Meaning

WFS_CDM_DEVONLINE	The device is online.

WFS_CDM_DEVOFFLINE	The device is offline.

WFS_CDM_DEVPOWEROFF	The device is powered off.

WFS_CDM_DEVBUSY	The device is busy processing a request.

WFS_CDM_DEVNODEVICE	There is no device connected.

WFS_CDM_DEVHWERROR	The device is inoperable due to a hardware error.

	fwSafeDoor�Specifies the state of the safe door as one of the following flags:

Value	Meaning

WFS_CDM_DOORNOTSUPPORTED	Physical device has no safe door.

WFS_CDM_DOOROPEN	Safe door is open.

WFS_CDM_DOORCLOSED	Safe door is closed.

WFS_CDM_DOORLOCKED	Safe door is locked.

	fwDispenser�Specifies the state of the dispenser as one of the following flags:

Value	Meaning

WFS_CDM_DISPOK	Dispenser is ready and working.

WFS_CDM_DISPCUSTATE	One of the cash units is in an abnormal state.

WFS_CDM_DISPCUSTOP	Due to a cash unit failure dispensing is impossible.

	lpszExtra�Points to a list of vendor-specific, or any other extended information. The information is returned as a series of “key=value” strings so that it is easily extensible by service providers. Each string will be null-terminated, with the final string terminating with two null characters.

Error Codes	None.

Comments	Applications which require or expect specific information to be present in the lpszExtra parameter may not be device or vendor-independent.

�WFS_INF_CDM_CAPABILITIES

Description	This command is used to retrieve the capabilities of the cash dispenser.

Input Param	None.

Output Param	LPWFSCDMCAPS	lpCapabilities, as defined below.

typedef struct _wfs_cdm_caps�	{�	WORD			wClass;�	WORD			fwType;�	BOOL			bCompound;�	BOOL			bShutter;�	BOOL			bRetract;�	BOOL			bSafeDoor;�	BOOL			bCoins;�	BOOL			bCylinders;�	BOOL			bCashBox;�	BOOL			bCashIn;�	BOOL			bRefill;�	BOOL			bAutoDeposit;�	BOOL			bVandalCheck;�	LPSTR			lpszExtra;�	} WFSCDMCAPS, * LPWFSCDMCAPS;

	wClass�Specifies the logical service class, value is:�WFS_SERVICE_CLASS_CDM

	fwType�Specifies the type of the physical device driven by the logical service. Values are:

Value	Meaning

WFS_CDM_TYPEATSAFE	Device is an Automated Teller Safe.

WFS_CDM_TYPEATMACHINE	Device is an Automated Teller Machine.

	bCompound�Specifies whether the logical device is part of a compound physical device and is either TRUE or FALSE.

	bShutter�Specifies whether the cash dispenser transport mechanism includes a shutter which normally is controlled by the dispensE command, but can be explicitly opened using WFS_CMD_CDM_OPEN_SHUTTER and closed using WFS_CMD_CDM_CLOSE_SHUTTER. Value is either TRUE or FALSE.

	bRetract�Specifies whether the cash dispenser transport mechanism has the ability to retract presented amounts. Value is either TRUE or FALSE.

	bSafedoor�Specifies whether the safe door has an electrical time lock, controlled by the WFS_CMD_CDM_OPEN_SAFE_DOOR command. Value is either TRUE or FALSE.

	bCoins�Specifies whether the cash dispenser device includes a coin dispensing facility. Value is either TRUE or FALSE.

	bCylinders�Specifies whether the coin dispenser device allows for number of coins per cylinder as input, or whether only totals are allowed. Value is either TRUE or FALSE.

	bCashBox�Specifies whether service provides the ability to count for a cashbox assigned to each teller. Value is either TRUE or FALSE.

	bCashIn�Specifies whether service provides the ability to accumulate an cash in amount per currency assigned to each teller. Value is either TRUE or FALSE.

	bRefill�Specifies whether the device is equipped with refill containers. Value is either TRUE or FALSE.

	bAutoDeposit�Specifies whether the cash in device is able to deposit money and to provide the denomination as result. Value is either TRUE or FALSE.

	bVandalCheck�Specifies whether the physical device includes a feature to check for vandalism. Value is either TRUE or FALSE.

	lpszExtra�Points to a list of vendor-specific, or any other extended information. The information is returned as a series of "key=value" strings so that it is easily extensible by service providers. Each string will be null-terminated, with the final string terminating with two null characters.

Error Codes	None.

Comments	Applications which require or expect specific information to be present in the lpszExtra parameter may not be device or vendor-independent.

�WFS_INF_CDM_CASH_UNIT_INFO

Description	This command is used to get information about the status and contents of the cash units used in the dispenser module.

Input Param	None.

Output Param	LPWFSCDMCUINFO	lpCashUnitInfo; as defined below

typedef struct _wfs_cdm_cu_info�	{�	USHORT					usTellerID;�	USHORT					usCount;�	LPWFSCDMCASHUNIT *	lppList;�	} WFSCDMCUINFO, * LPWFSCDMCUINFO;

	usTellerID�Identification of teller.

	usCount�Specifies the number of cash unit structures returned.

	lppList�Pointer to an array of pointers to cash unit structures:

typedef struct _wfs_cdm_cashunit�	{�	USHORT			usNumber;�	USHORT			usType;�	CHAR			cUnitID[5];�	CHAR			cCurrency[3];�	ULONG			ulValues;�	ULONG			ulInitialCount;�	ULONG			ulCount;�	BOOL			bAppLock;�	BOOL			bDevLock;�	USHORT			usStatus;�	} WFSCDMCASHUNIT, * LPWFSCDMCASHUNIT;

	usNumber�Logical number of cash unit.

	usType�Type of cash unit used. Possible values are:

Value	Meaning

WFS_CDM_TYPENOTUSED		Cash unit not used in the moment.

WFS_CDM_TYPEREJECTCASSETTE	Reject bin of the cash dispenser.

WFS_CDM_TYPEMONEYCASSETTE	Document cassette of the cash dispenser.

WFS_CDM_TYPECOINCYLINDER	Cylinder of the coin dispenser.

WFS_CDM_TYPECOINDISPENSER	Coin dispenser as a hole unit.

	cUnitID�Cash unit ID.

	cCurrency�Currency ID (ISO format).

	ulValues�Values of coins/bills.

	ulInitialCount�Initial number of coins/bills.

	ulCount�Actual count of coins/bills.

	bAppLock�Application lock status of cassette. If set to TRUE cash unit is locked by the application.

	bDevLock�Device lock status of cassette. If set to TRUE cash unit is locked by the device.

	usStatus�Describes the fill status of the physical cash unit. Values are:

Value	Meaning

WFS_CDM_STATCUOK	The contents of the cash unit is OK.

WFS_CDM_STATCUFULL	The reject bin is full.

WFS_CDM_STATCUHIGH	The reject bin is almost full (threshold).

WFS_CDM_STATCULOW	The cassette or coin cylinder is almost empty (threshold).

WFS_CDM_STATCUEMPTY	The cassette or coin cylinder is empty.

WFS_CDM_STATCUMISSING	The cassette or reject bin is missing.

Error Codes	There are no additional error codes generated by this command.

�WFS_INF_CDM_TELLER_INFO

Description	This command is used for getting the tallies assigned to a teller. A set of tallies can be requested for each currency assigned to the teller.

Input Param	LPWFSCDMTELLERINFO	lpTellerInfo, as described below

typedef struct _wfs_cdm_teller_info�	{�	USHORT			usTellerId;�	CHAR			cCurrencyId[3];�	} WFSCDMTELLERINFO, *LPWFSCDMTELLERINFO;

	usTellerID�Identification of teller.

	cCurrencyID�Identification of currency (ISO format).

Output Param	LPWFSCDMTELLERTOTALS lpTellerTotals; as described below.

typedef struct _wfs_cdm_teller_totals�	{�	USHORT			usTellerID;�	CHAR			cCurrencyId[3];�	ULONG			ulDispensed;�	ULONG			ulCoins;�	ULONG			ulCashIn;�	ULONG			ulCashBox;�	} WFSCDMTELLERTOTALS, * LPWFSCDMTELLERTOTALS;

	usTellerID�Identification of teller.

	cCurrencyID�Identification of currency (ISO format).

	ulDispensed�Amount of money dispensed from cash units.

	ulCoins�Amount/number of coins dispensed from cylinders.

	ulCashIn�Amount of money cashed in by teller.

	ulCashBox�Amount dispensed from teller’s cash box.

Error Codes

Value						Description

WFS_ERR_CDM_INVALIDCURRENCY	Currency not provided

WFS_ERR_CDM_INVALIDTELLERID		Teller not configured

�WFS_INF_CDM_TELLER_POSITIONS

Description	This command is used to get the output position assigned to each teller.

Input Param	None.

Output Param	LPWFSCDMTELLERPOS *	lppTellerPos;�Points to null-terminated array of LPWFSCDMTELLERPOS structures, as defined below.

typedef struct _wfs_cdm_teller_pos�	{�	USHORT		usTellerID;�	USHORT		usPosition;�	} WFSCDMTELLERPOS, *LPWFSCDMTELLERPOS;

	usTellerID�Identification of teller.

	usPosition�Output position where cash is presented to the teller.

WFS_INF_CDM_CURRENCY_EXP

Description	This command is used for getting the exponents assigned to each currency used.

Input Param	None.

Output Param	LPWFSCDMCURRENCYEXP *	lppCurrencyExp;�Points to null-terminated array of LPWFSCDMCURRENCYEXP structures, as defined below.

typedef struct _wfs_cdm_currency_exp�	{�	CHAR			cCurrencyId[3];�	USHORT			usExponent;�	} WFSCDMCURRENCYEXP, *LPWFSCDMCURRENCYEXP;

	cCurrencyID�Identification of currency (ISO format).

	usExponent�Decimal currency exponent.

Comments	For each currency a configuration parameter allows the application to define the smallest unit to be used for all amount parameters in the interface (including cash unit values). The equation for calculating the amount in the currency unit is:��	<smallest unit> X 10^<CurrencyExponent> = <amount in currency unit>

�WFS_INF_CDM_MIX_TYPES

Description	This command is used to retrieve a list of supported mix algorithms and available house mix tables.

Input Param	None.

Output Param	LPWFSCDMMIXTYPE *	lppMixTypes;�Points to null-terminated array of LPWFSCDMMIXTYPESs, as defined below.

typedef struct _wfs_cdm_mix_type�	{�	USHORT				usNumber;�	USHORT				usMixType;�	LPSTR				lpszName;�	} WFSCDMMIXTYPE, *LPWFSCDMMIXTYPE;

	usNumber�Internal number defining the mix algorithm or the house mix table. This number is passed to the WFS_CMD_CDM_DISPENSE and WFS_CMD_CDM_DENOMINATE commands.

	usMixType�Specifies whether it is an algorithm or a house mix table. Values are:

Value	Meaning

WFS_CDM_MIXALGORITHM	Denominations are calculated using a mix algorithm.

WFS_CDM_MIXTABLE	Denominations are calculated using a house mix table.

	lpszName�Points to the name of the table/algorithm used.

�WFS_INF_CDM_MIX_TABLE

Description	This command is used to retrieve a house mix table specified by the table number.

Input Param	LPUSHORT	lpusTableNo;

	lpusTableNo�Points to the number of the requested house mix table.

Output Param	LPWFSCDMMIXTABLE	lpMixTable;

typedef struct _wfs_cdm_mix_table�	{�	USHORT				usTableNo;�	USHORT				usRows;�	USHORT				usCols;�	LPUSHORT			lpusMixHeader;�	LPWFSCDMMIXROW *	lppMixRows;�	} WFSCDMMIXTABLE, *LPWFSCDMMIXTABLE;

	usTableNumber�Internal number of house mix table.

	usRows�Number of rows of the house mix table. One row specifies the denomination of a special amount.

	usCols�Number of columns of the house mix table. The number of columns is dependent on the different note values of a currency.

	lpusMixHeader�Pointer to an array of USHORTs of length usCols containing the values of the bills.

	lppMixRows�Pointer to an array of pointers to WFSCDMMIXROW structures (the length of the array is specified by usRows). lpusMixture points to an array of USHORTS of length usCols containing the individual numbers of bills for dispensing ulAmount.

typedef struct _wfs_cdm_mix_row�	{�	ULONG					ulAmount;�	LPUSHORT				lpusMixture;�	} WFSCDMMIXROW, *LPWFSCDMMIXROW;

	ulAmount�Amount whichs denomination is described in this mix row.

	lpusMixture�Pointer to an array of unsigned integers (length of array is specified by usCols) which holds the number of bills used in the denomination of ulAmount.

Execute Commands

WFS_CMD_CDM_DENOMINATE

Description	This command, which is designed to support denomination dialogues, will provide a denomination, i.e., a mix of bills and/or coins, capable of being paid out according to both the amount and currency specified, the mix algorithm selected and the desired denomination. In addition to that, it provides a facility for checking any given denomination for its capability of being paid out.

For the denomination of a specified amount the money can be retrieved from three different sources:

�\SYMBOL 183 \f "Symbol" \s 10 \h�	the cash dispenser

�\SYMBOL 183 \f "Symbol" \s 10 \h�	the coin dispenser (see WFS_INF_CDM_CAPABILITIES)

�\SYMBOL 183 \f "Symbol" \s 10 \h�	the teller's cash box (see WFS_INF_CDM_CAPABILITIES)

The configuration specifies which of these three sources are allowed to be used in the denomination. For a ATS all three can be used. If the device used is an ATM, only the cash dispenser and, optionally, the coin dispenser can be available.

For the cash dispenser module there is a parameter controlling the maximum number of bills/documents that can be paid out within a single dispensing command. The coin dispenser has a parameter specifying the maximum amount to be paid out in coins.

Existing variants for dispensing of bills/documents are:

�\SYMBOL 183 \f "Symbol" \s 10 \h�	House mix tables (denomination tables), defined in the configuration

�\SYMBOL 183 \f "Symbol" \s 10 \h�	Mix type (denomination algorithms) like: balanced use of the different cash units, using bills with highest possible values, etc.

Input combinations for the command:

1.	Input parameters are denomination, mix type is INDIVIDUAL and the amount is zero.�In this case the service checks only whether the denomination is valid according to the counters and the states of the cash units.

2.	Input parameters are denomination, amount and currency. The service checks amount and denomination and returns amount, currency and denomination, if the denomination specified is OK.

3.	Input parameters are amount, currency and mix type. The denomination is performed depending on the specified amount and mix type and the configuration (coin dispenser and/or cash box; see WFS_INF_CDM_CAPABILITIES). The service returns the values for amount and currency and its denomination (given the general capability to pay out the amount specified; see above).

	If, for example, the amount of £34.00 has been chosen, the CDM service will try to separate the required coins (up to the configured maximum value) using a coin dispenser. If no coin dispenser is available, the separated amount is assigned to sources other than the CDM (such as the teller's cash box). An ATM (having no cash box) raises an error indicating that this amount cannot be denominated.

	If, for example, there are no more £10.00 bills in the CDM (cash unit minimum has been reached), it performs payments using bills denominating £20.00 while the remaining £10.00 will have to be paid out from the cash box, if present.

4.	Input parameters are amount, currency and mix type where the desired denomination is partly defined or a minimum amount for the cashbox is specified. In these cases the partly specified denomination is completed; the cashbox amount may be updated and returned together with the amount and the desired currency.

The following errors can occur:

�\SYMBOL 183 \f "Symbol" \s 10 \h�	If the denomination specified requires the selection of a locked cash unit, the CDM service returns the error WFS_ERR_CDM_CASHUNITERROR.

�\SYMBOL 183 \f "Symbol" \s 10 \h�	If the sum total of the denomination is greater than the amount specified (exception: amount is zero), the CDM service returns the error WFS_ERR_CDM_INVALIDDENOMINATION.

�\SYMBOL 183 \f "Symbol" \s 10 \h�	If the amount specified cannot be dispensed, either because a bill value or coin type is not in the machine, the difference is requested from the teller's cash box. If the device is an ATM, there is no cash box and the error WFS_ERR_CDM_NOTDISPENSABLE is returned.

�\SYMBOL 183 \f "Symbol" \s 10 \h�	If no coin dispenser is in the unit and a coin amount is specified, a WFS_ERR_CDM_CASHUNITERROR error is returned.

�\SYMBOL 183 \f "Symbol" \s 10 \h�	If the desired denomination refers to cash units containing different currencies, the CDM-service returns the error WFS_ERR_CDM_NOCURRENCYMIX. A cash unit with a currency type indicating a coupon or non-cash item can be mixed with other currencies.

�\SYMBOL 183 \f "Symbol" \s 10 \h�	If the currency specified is not configured for the service, a WFS_ERR_CDM_INVALIDCURRENCY error is returned.

Input Param	LPWFSCDMDENOMINATE	lpDenominate;

typedef struct _wfs_cdm_denominate�	{�	USHORT						usTellerID;�	USHORT						usMixType;�	LPWFSCDMDENOMINATION	lpDenomination;�	} WFSCDMDENOMINATE, * LPWFSCDMDENOMINATE;

	usTellerID�Identification of Teller.

	usMixType�Mix algorithm or house mix table to be used. If the value is zero (individual) the service does not calculate an alternative denomination.

	lpDenomination�Pointer to a WFSCDMDENOMINATION structure, describing the contents of the denomination operation.

typedef struct _wfs_cdm_denomination�	{�	CHAR			cCurrencyId[3];�	ULONG			ulAmount;�	USHORT			usCount;�	LPULONG		lpulValues;�	ULONG			ulCashBox;�	} WFSCDMDENOMINATION, * LPWFSCDMDENOMINATION;

	cCurrencyID�Identification of currency (ISO format).

	ulAmount�The total amount of money to be dispensed (in the smallest unit for that currency).

	usCount�Number of cash units used. Size of the array lpulValues.

	lpulValues�Pointer to a list of ULONGs, specifying the number of coins/bills to take from the cash unit. The position in the list defines the logical number of the cash unit to be used, the first value in the array is related to the cash unit with the logical number 1.

	ulCashBox�Amount of money that could not be denominated and has to be paid from the tellers cash box.

Output Param	LPWFSCDMDENOMINATION	lpDenomination, as defined above

Error Codes	Additional error codes generated by this command.

Value	Description

WFS_ERR_CDM_CASHUNITERROR	The specified cash unit caused a problem. A WFS_EXECUTE_EVENT with an id of WFS_EXEE_CDM_CASHUNITERROR is posted with the details.

WFS_ERR_CDM_INVALIDCURRENCY	Currency type is not configured.

WFS_ERR_CDM_INVALIDDENOMINATION	The sum of the values for cashbox, cash unit and coin were greater than the amount specified. Or, usMixType was INDIVIDUAL and the calculated denomination is smaller than the given amount.

WFS_ERR_CDM_INVALIDMIXTYPE	Mix algorithm is not known.

WFS_ERR_CDM_INVALIDTELLERID	Teller ID not in configuration file.

WFS_ERR_CDM_NOCURRENCYMIX	More than one currency was selected when the cash units were specified. The exception to this is when the cash unit selected contains a non-currency value such as a coupon.

WFS_ERR_CDM_NOTDISPENSABLE	The amount is not dispensable by the cash dispenser.

WFS_ERR_CDM_TOOMANYDOCUMENTS	The request would require too many bills to be dispensed.

�WFS_CMD_CDM_DISPENSE

Description	This command controls the dispensing of money. It requires specifications for the amount of the dispense (in minimal currency units to allow for coins to be used for the actual payout), the desired denomination (or, alternatively, a procedure for the denomination) and the currency desired for the payout. If both the amount and the denomination have been specified, their consistency is checked, while a specification of amount, mix type and currency will produce a response that indicates the denomination. If the amount is not specified (amount is zero), but the denomination is, there is only a check for an approved denomination.

	Instead of using the input parameter usPosition (which is set to NULL in this case), the teller number can be used so that the teller list can be employed to assign the dispensing to either the left or the right teller.

	The WFS_CMD_CDM_DISPENSE command is essentially the same as the WFS_CMD_CDM_DENOMINATE command, the main difference between them being that, in addition to the denomination, the dispensing is performed, too. A configuration parameter (WFS_INF_CDM_CAPABILITIES cashbox) determines whether even if only part of the total amount is capable of being denominated, its dispensing will be performed by the CDM.

	Examples:

	1.	If $30.00 is to be dispensed by the CDM but the smallest currency unit available is a $20 bill, it is possible to dispense $20.00 from the CDM, while the remaining $10.00 is requested from the teller's cash box.

	2.	The CDM service returns a message saying that the amount of a payout cannot be denominated (WFS_ERR_CDM_NOTDISPENSABLE).

Input Param	LPWFSCDMDISPENSE	lpDispense; as defined below

typedef struct _wfs_cdm_dispense�	{�	USHORT						usTellerID;�	USHORT						usMixType;�	USHORT						usPosition;�	BOOL						bPresent;�	LPWFSCDMDENOMINATION	lpDenomination;�	} WFSCDMDISPENSE, *LPWFSCDMDISPENSE;

	usTellerID�Identification of teller.

	usMixType�Mix algorithm or house mix table to be used. If the value is zero (individual) the service does not calculate an alternative denomination.

	usPosition�Determines to which side the amount is dispensed, values are:

Value	Meaning

WFS_CDM_POSNULL	This implies that the default configuration information is used. This can be either position dependent or teller dependent for determining which side the currency is presented.

WFS_CDM_POSLEFT	Present money to left side of device.

WFS_CDM_POSRIGHT	Present money to right side of device.

	bPresent�Controls whether the money should be presented to the user or only transported to the stacker (see WFS_CMD_CDM_PRESENT).

	�lpDenomination�Pointer to a WFSCDMDENOMINATION structure, describing the denominations used for the dispense operation. For a description of the WFSCDMDENOMINATION structure see the definition of the command verb WFS_CMD_CDM_DENOMINATE.

Output Param	LPWFSCDMDENOMINATION	lpDenomination;�For a description of the struct WFSCDMDENOMINATION see the definition of the command verb WFS_CMD_CDM_DENOMINATE.

Error Codes	Additional error codes generated by this command.

Value	Description

WFS_ERR_CDM_CASHUNITERROR	A cash unit specified caused a problem. A WFS_EXECUTE_EVENT with an id of WFS_EXEE_CDM_CASHUNITERROR is posted with the details.

WFS_ERR_CDM_DOCUMENTSLEFT	Some or all of the money presented has not been removed.

WFS_ERR_CDM_INVALIDCURRENCY	Currency type is not configured

WFS_ERR_CDM_INVALIDDENOMINATION	The sum of the values for cashbox, cash unit and coin were greater than the amount specified.

WFS_ERR_CDM_INVALIDMIXTYPE	Mix algorithm is not known

WFS_ERR_CDM_INVALIDPOSITION	The specified output position is invalid.

WFS_ERR_CDM_INVALIDTELLERID	Teller ID not in configuration file

WFS_ERR_CDM_NOCURRENCYMIX	More than one currency was selected when the cash units were specified. The exception to this is when the cash unit selected contains a non-currency value such as a coupon.

WFS_ERR_CDM_NOTDISPENSABLE	The amount is not dispensible by the cash dispenser.

WFS_ERR_CDM_POSITIONLOCKED	The output position is locked.

WFS_ERR_CDM_SAFEDOOROPEN	The safe door is open.

WFS_ERR_CDM_TOOMANYDOCUMENTS	The request would require too many bills to be dispensed.

WFS_ERR_DEV_NOT_READY	Device not ready

Execute Events	The following execute events are generated:

Value	Meaning

WFS_EXEE_CDM_DELAYEDDISPENSE	Time before dispensing starts, because of a security procedure (German national regulation).

WFS_EXEE_CDM_STARTDISPENSE	Point of time where the dispense order starts. Necessary to know for a CDM application because of queueing orders from different clients.

�WFS_CMD_CDM_PRESENT

Description	This command is only used for an ATM; it controls the presentation of the currency. It is used in conjunction with the WFS_CMD_CDM_DISPENSE command when the money is only put on the stacker.

Input Param	None.

Output Param	None.

Error Codes	Additional error codes generated by this command.

Value	Description

WFS_ERR_CDM_DOCUMENTSLEFT	Some of the money presented has not been removed.

WFS_ERR_DEV_NOT_READY	Device not ready.

WFS_ERR_UNSUPP_COMMAND	Command is not supported by this service.

Comments	The time to wait before retracting the money is a configuration parameter.

WFS_CMD_CDM_REJECT

Description	This command is used only for ATMs. It allows money to be transported from the stacker into the reject bin. It only can be used in conjunction with the WFS_CMD_CDM_DISPENSE (parameter present = TRUE).

Input Param	None.

Output Param	None.

Error Codes	Additional error codes generated by this command.

Value	Description

WFS_ERR_DEV_NOT_READY	Device not ready

WFS_ERR_UNSUPP_COMMAND	Command is not supported by this service.

WFS_CMD_CDM_RETRACT

Description	This command is used only for ATMs. It allows the application to force cash that has been presented to be retracted. Not all cash dispensers support this capability.

Input Param	LPUSHORT	lpusRetractArea;�Pointer to the area in the reject bin where retracted cash is stored. Not all systems require this parameter, and it may differ in content from system to system.

Output Param	None.

Error Codes	Additional error codes generated by this command.

Value	Description

WFS_ERR_CDM_INVALIDRETRACT	Retract area is invalid for this system.

WFS_ERR_DEV_NOT_READY	Device not ready.

WFS_ERR_UNSUPP_COMMAND	Command is not supported by this service.

�WFS_CMD_CDM_CASH_IN

Description	This command is not used for the ATM; there are three possibilities for use of this API.

	This command is used for deposits. The amount to be deposited has to be specified in the smallest currency unit, e.g., DM100.00 is expressed as 10000. It affects the teller counters only. The input parameters CurrencyId and Amount are required as input.

	If the hardware is capable of identifying the currency and the denomination of the amount deposited, the output parameters CurrencyId, Amount, CashUnitInfo, and CashBox will be returned.

	If the hardware is equipped with refill containers the amount cashed in is simply placed on top of the cash already in the refill containers. The input parameters CurrencyId, Amount and NotesPerCashUnit are required.

Input Param	LPWFSCDMCASHIN	lpCashIn; as defined below.

typedef struct _wfs_cdm_cashin�	{�	USHORT						usTellerID;�	LPWFSCDMDENOMINATION	lpDenomination;�	} WFSCDMCASHIN, * LPWFSCDMCASHIN;

	usTellerID�Identification of Teller.

	lpDenomination�Pointer to a WFSCDMDENOMINATION structure, describing the denomination of the cash in operation. For a description of the WFSCDMDENOMINATION structure see the definition of the WFS_CMD_CDM_DENOMINATE function.

Output Param	LPWFSCDMDENOMINATION	lpDenomination;�For a description of the WFSCDMDENOMINATION structure see the definition of the command verb WFS_CMD_CDM_DENOMINATE.

Error Codes	Additional error codes generated by this command.

Value	Description

WFS_ERR_CDM_INVALIDCURRENCY	Currency not provided

WFS_ERR_CDM_INVALIDTELLERID	Teller is not configured for this service

WFS_ERR_DEV_NOT_READY	Device not ready

WFS_ERR_UNSUPP_COMMAND	Command is not supported by this service.

Comments	In the case where money is taken in and counted by the CDM, there may be additional errors that need to be defined.

�WFS_CMD_CDM_OPEN_SHUTTER

Description	This command is only used for the ATM. It opens the shutter in case of an error.

Input Param	None.

Output Param	None.

Error Codes	Additional error codes generated by this command.

Value	Description

WFS_ERR_CDM_SHUTTERNOTOPEN	Shutter failed to open

WFS_ERR_CDM_SHUTTEROPEN	Shutter was already open

WFS_ERR_DEV_NOT_READY	Device not ready

WFS_CMD_CDM_CLOSE_SHUTTER

Description	This command is only used for the ATM. It closes the shutter in case of an error.

Input Param	None.

Output Param	None.

Error Codes	Additional error codes generated by this command.

Value	Description

WFS_ERR_CDM_SHUTTERCLOSED	Shutter was already closed

WFS_ERR_CDM_SHUTTERNOTCLOSED	Shutter failed to close

WFS_ERR_DEV_NOT_READY	Device not ready

WFS_CMD_CDM_SET_TELLER_INFO

Description	This command is used for initializing the tallies assigned to a teller. All values are absolute. For each currency a different set of tallies is used.

Input Param	LPWFSCDMTELLERTOTALS	lpTellerTotals;�For a description of the struct WFSCDMTELLERTOTALS see the definition of the info verb WFS_INF_CDM_TELLER_INFO.

Output Param	None.

Error Codes	Additional error codes generated by this command.

Value	Description

WFS_ERR_CDM_INVALIDCURRENCY	Currency not provided

WFS_ERR_CDM_INVALIDTELLERID	Teller is not configured for this service

�WFS_CMD_CDM_SET_CASH_UNIT_INFO

Description	This command is used to adjust both cash unit counters and cash unit IDs. In addition to that, application locks for cash units can be either installed or removed. It is not used for an ATM.

	This command is to be used only when a problem has occurred and the start and end cash unit exchange is not acceptable.

Input Param	LPWFSCDMCUINFO	lpCUInfo;�For a description of the struct WFSCDMCUINFO see the definition of the info verb WFS_INF_CDM_CASH_UNIT_INFO.

Output Param	None.

Error Codes	Additional error codes generated by this command.

Value	Description

WFS_ERR_CDM_CASHUNITERROR	A cash unit specified caused a problem. A WFS_EXECUTE_EVENT with an ID of WFS_EXEE_CDM_CASHUNITERROR is posted with the details.

WFS_ERR_CDM_INVALIDCASHUNIT	Wrong cash unit ID.

WFS_ERR_CDM_INVALIDTELLERID	Teller not configured for the system.

Comments	This command creates a service event (WFS_SRVE_CDM_CASHUNIT_INFO_CHANGED) which is sent to every teller to force the application to read in the new value (using the WFS_INF_CDM_CASH_UNIT_INFO token).

WFS_CMD_CDM_START_EXCHANGE

Description	This command is used to start the exchange of cash units as well as their refill, removal or replacement. The command returns the current values in the device and the device itself initiates cash unit removal (for example by means of lowering the cash units). A lock must be performed before this command is initiated.

	After WFS_CMD_CDM_START_EXCHANGE has been performed the CDM will accept only the following commands :

�SYMBOL 183 \f "Symbol" \s 10 \h�	WFSExecute with WFS_CMD_CDM_END_EXCHANGE

�SYMBOL 183 \f "Symbol" \s 10 \h�	WFSClose

	If, during the performance of WFS_CMD_CDM_START_EXCHANGE, an error occurs at the CDM, the cash unit values are not returned.

Input Param	LPUSHORT	lpusTellerID;	Identification of teller

Output Param	LPWFSCDMCUINFO	lpCUInfo;�For a description of the WFSCDMCUINFO structure, see the definition of the info verb WFS_INF_CDM_CASH_UNIT_INFO.

Error Codes	Additional error codes generated by this command.

Value	Description

WFS_ERR_CDM_INVALIDTELLERID	Teller is not configured in system

WFS_ERR_DEV_NOT_READY	Device not ready

�WFS_CMD_CDM_END_EXCHANGE

Description	This command is initiated after a cash unit has been exchanged, refilled, etc. It supplies the latest cash unit information and cash unit IDs. Cash units are set as ready (e.g., lifted upwards; there may also be a dispenser test), reject counters are reset; the present status of the safe door is ignored. After this command the cash dispenser can be unlocked.

	If a cash unit was locked before this command, the lock is cleared by the command.

	Errors can be generated by this function. When a cash unit error is returned, the application must issue a WFSGetInfo command with token WFS_INF_CDM_CASH_UNIT_INFO to get the cash unit status.

Input Param	LPWFSCDMCUINFO	lpCUInfo;�For a description of the struct WFSCDMCUINFO see the definition of the info verb WFS_INF_CDM_CASH_UNIT_INFO.

Output Param	None.

Error Codes	Additional error codes generated by this command.

Value	Description

WFS_ERR_CDM_INVALIDCASHUNIT	wrong cash unit ID

WFS_ERR_DEV_NOT_READY	device not ready

Comments	When this command completes, and the currency or value of a cash unit or cylinder has changed, an unsolicited teller event is sent to every teller. Upon receipt of this event, the application should issue a WFS_INF_CDM_CASH_UNIT_INFO command to retrieve the new values.

WFS_CMD_CDM_OPEN_SAFE_DOOR

Description	This command controls the time lock for the safe door. It takes the time for the current configuration and sends it to the device.

Input Param	None.

Output Param	None.

Error Codes	Additional error codes generated by this command.

Value	Description

WFS_ERR_DEV_NOT_READY	Device not ready

WFS_CMD_CDM_CHECK_VANDALISM

Description	This command is used only for ATMs. If implemented, it checks whether there was any attempt to manipulate the ATM. If vandalism was detected, it is reported through this function.

Input Param	None.

Output Param	LPUSHORT	lpusVandalism;

	Flag specifying whether there had been an attempt to manipulate the device. Values are:

Value	Description

WFS_CDM_NODEVMANIPULATION	No attempt to manipulate the device.

WFS_CDM_DEVMANIPULATION	An attempt to manipulate the device detected.

Error Codes	Additional error codes generated by this command.

Value	Description

WFS_ERR_DEV_NOT_READY	Device not ready

Messages

WFS_SRVE_CDM_SAFEDOOROPEN

Description	This service event specifies that the safe door has been opened.

Event Param	NULL

WFS_SRVE_CDM_SAFEDOORCLOSED

Description	This service event specifies that the safe door has been closed.

Event Param	NULL

WFS_USRE_CDM_CASHUNITTHRESHOLD

Description	This user event specifies that a threshold condition has occured in one of the cash units.

Event Param	LPWFSCDMCASHUNIT		lpCashUnit;

	lpCashUnit�Pointer to WFSCDMCASHUNIT structure, describing the cash unit on which the threshold occurred. See lpCashUnit->usStatus for the type of threshold. For a description of the WFSCDMCASHUNIT structure see the definition of the info verb WFS_INF_CDM_CASH_UNIT_INFO.

WFS_SRVE_CDM_CASHUNITINFOCHANGED

Description	This service event specifies that a cash unit has been exchanged, or that the contents of a cash unit was modified using the WFS_CMD_CDM_SET_CASH_UNIT_INFO command.

Event Param	LPWFSCDMCASHUNIT		lpCashUnit;

	lpCashUnit�Pointer to the changed cash unit structure. For a description of the WFSCDMCASHUNIT structure see the definition of the info verb WFS_INF_CDM_CASH_UNIT_INFO.

WFS_SRVE_CDM_TELLERINFOCHANGED

Description	This service event specifies that the tallies assigned to a special teller have been changed.

Event Param	LPUSSHORT	lpusTellerID;

	lpusTellerID�Pointer to an unsigned short holding the ID of the teller whose tallies were changed.

�WFS_EXEE_CDM_DELAYEDDISPENSE

Description	This execute event specifies that the start of the physical dispensing of the money has been delayed.

Event Param	LPULONG	lpulDelay;

	lpulDelay�Pointer to the time in milliseconds the dispense job will be delayed.

WFS_EXEE_CDM_STARTDISPENSE

Description	This execute event specifies the start of the physical dispensing of the money of the formerly delayed job.

Event Param	LPREQUESTID	lpReqID;

	lpReqID�Pointer to the request ID of the dispense command that is now started.

WFS_EXEE_CDM_CASHUNITERROR

Description	This execute event specifies that in a denominate or dispense command a cash unit was addressed which caused a problem.

Event Param	LPWFSCDMCUERROR	lpCashUnitError;

typedef struct _wfs_cdm_cu_error�	{�	WORD					wFailure;�	LPWFSCDMCASHUNIT 	lpCashUnit;�	} WFSCDMCUERROR, * LPWFSCDMCUERROR;

	wFailure�Specifies the kind of failure that occurred in the cash unit. Values are:

Value	Meaning

WFS_CDM_CASHUNITEMPTY	Specified cash unit is empty.

WFS_CDM_CASHUNITLOCKED	Specified cash unit is locked.

WFS_CDM_CASHUNITNOTCONF	Specified cash unit is not configured.

WFS_CDM_CASHUNITINVALID	Specified cash unit is invalid.

	lpCashUnit�Pointer to the cash unit structure that caused the problem. For a description of the WFSCDMCASHUNIT structure see the definition of the info verb WFS_INF_CDM_CASH_UNIT_INFO.

Comments	None.

�Personal Identification Number (PIN) Keypads

This section describes the application program interface for PIN pads and other encryption/decryption devices. A future version of this document will describe encryption devices in general.

This section describes the general interface for the verification of magnetic stripe card devices, including the following functions:

�\SYMBOL 183 \f "Symbol" \s 10 \h�	Administration of encryption devices

�\SYMBOL 183 \f "Symbol" \s 10 \h�	Loading of encryption keys

�\SYMBOL 183 \f "Symbol" \s 10 \h�	Encryption / decryption

�\SYMBOL 183 \f "Symbol" \s 10 \h�	Entering Personal Identification Numbers (PINs)

�\SYMBOL 183 \f "Symbol" \s 10 \h�	PIN verification

�\SYMBOL 183 \f "Symbol" \s 10 \h�	PIN block generation (encrypted PIN)

�\SYMBOL 183 \f "Symbol" \s 10 \h�	Generation of encryption keys

�\SYMBOL 183 \f "Symbol" \s 10 \h�	Decryption of data

�\SYMBOL 183 \f "Symbol" \s 10 \h�	Clear text data handling

Although current PIN pad encryption and the necessary parameters use the Data Encryption Standard (DES) algorithm from the U.S. National Bureau of Standards (NBS), now known as National Institute of Standards and Technology (NIST), this interface is designed so that other encryption algorithms can be used in the future. Currently only symmetrical keys are used.

�Info Commands

WFS_INF_PIN_STATUS

Description	The WFS_INF_PIN_STATUS command returns several kinds of status information.

Input Param	None.

Output Param	LPWFSPINSTATUS	lpStatus;

typedef struct _wfs_pin_status�	{�	WORD			fwDevice;�	WORD			fwEncStat;�	WORD			fwKeyStat;�	LPSTR			lpszExtra;	�	} WFSPINSTATUS, * LPWFSPINSTATUS;

	fwDevice�Specifies the state of the print device as one of the following flags:

Value	Meaning

WFS_PIN_DEVONLINE	The device is online.

WFS_PIN_DEVOFFLINE	The device is offline.

WFS_PIN_DEVPOWEROFF	The device is powered off.

WFS_PIN_DEVBUSY	The device is busy processing a request.

WFS_PIN_DEVNODEVICE	There is no device connected.

WFS_PIN_DEVHWERROR	The device is inoperable due to a hardware error.

	fwEncStat�Specifies the state of the PIN pad unit as one of the following flags:

Value	Meaning

WFS_PIN_ENCNOTREADY	encryption module is not ready

WFS_PIN_ENCNOTINITIALIZED	encryption module is not initialized

WFS_PIN_ENCREADY	encryption module is ready

WFS_PIN_ENCBUSY	encryption module is busy

WFS_PIN_ENCUNDEFINED	encryption module state is undefined

	fwKeyStat�Specifies the state of the key as one of the following flags:

Value	Meaning

WFS_PIN_KEYIMPORTED	key is imported

WFS_PIN_KEYNOVALUE	key has no value

	lpszExtra�Specifies a list of vendor-specific, or any other extended, information. The information is returned as a series of “key=value” strings so that it is easily extensible by service providers. Each string will be null-terminated, with the final string terminating with two null characters.

Error Codes	None.

Comments	Applications which require or expect specific information to be present in the lpszExtra parameter may not be device or vendor-independent.

�WFS_INF_PIN_CAPABILITIES

Description	This command is used to retrieve the capabilities of the PIN pad.

Input Param	None.

Output Param	LPWFSPINCAPS	lpCaps;

typedef struct _wfs_pin_caps�	{�	WORD			wClass;�	WORD			wType;�	BOOL			bCompound;�	USHORT			usKeyNum;�	WORD			wAlgorithms;�	WORD			wPinFormats;�	WORD			wDisplay;�	WORD			wKeyType;�	BOOL			bIdConnect;�	LPSTR			lpsExtra;	�	} WFSPINCAPS, * LPWFSPINCAPS;

	wClass�Specifies the logical service class, value is:�WFS_SERVICE_CLASS_PIN

	wType�Specifies the type of the PIN pad security module as one of the following flags:

Value	Meaning

WFS_PIN_TYPEEPP	electronic PIN pad

WFS_PIN_TYPEEDM	encryption/decryption module

	bCompound�Specifies whether the logical device is part of a compound physical device and is either TRUE or FALSE.

	usKeyNum�Number of the keys which can be stored in the encryption/decryption module.

	wAlgorithms�Supported NBS encryption modes; a combination of the following flags:

Value	Meaning

WFS_PIN_CRYPTDESECB	Electronic Code Book

WFS_PIN_CRYPTDESCBC	Cipher Block Chaining

WFS_PIN_CRYPTDESCFB	Cipher Feed Back

WFS_PIN_CRYPTRSA	RSA Encryption

WFS_PIN_CRYPTECMA	ECMA Encryption

	wPinFormats�Supported NBS encryption modes; a combination of the following flags:

Value	Meaning

WFS_PIN_FORM3624	similar to WFS_PIN_FORMECI2

WFS_PIN_FORMANSI	similar to WFS_PIN_FORMISO0

WFS_PIN_FORMISO0	similar to WFS_PIN_FORMANSI

WFS_PIN_FORMISO1		

WFS_PIN_FORMECI2	similar to WFS_PIN_FORM3624

WFS_PIN_FORMECI3	similar to WFS_PIN_FORMVISA

WFS_PIN_FORMVISA	similar to WFS_PIN_FORMECI3

WFS_PIN_FORMDIEBOLD	

	wDisplay�Specifies the type of the display used in the PIN pad module as one of the following flags:

Value	Meaning

WFS_PIN_DISPNONE	no display unit

WFS_PIN_DISPLEDTHROUGH	lights next to test guide user

WFS_PIN_DISPDISPLAY	a real display is available

	wKeyType�Specifies the type of key returned by the PIN pad module as one of the following flags:

Value	Meaning

WFS_PIN_KEYNUMERIC	PIN pad has only numeric keys

WFS_PIN_KEYALPHANUMERIC	PIN pad can return alphabetic and numeric keys

	bIdConnect�Specifies whether the PIN pad is directly connected to the ID card unit, eliminating the need to pass stripe information.

	lpsExtra�Points to a list of vendor-specific, or any other extended information. The information is returned as a series of "key=value" strings so that it is easily extensible by service providers. Each string is null-terminated, with the final string terminating with two null characters.

Error Codes	None.

Comments	Applications which require or expect specific information to be present in the lpsExtra parameter may not be device or vendor-independent.

�WFS_INF_PIN_KEY_LIST

Description	This command returns a list of available key names.

Input Param	None.

Output Param	LPSTR		lpsKeyNames;

	lpsKeyNames�Points to a list of null-terminated key names, with the final name terminating with two null characters.

Error Codes	None.

WFS_INF_PIN_KEY_DETAIL

Description	This command describes how specific information can be obtained about a key.

Input Param	LPSTR lpsKeyName; name of the key for which detailed information is requested.

Output Param	LPWFSPINKEYDETAIL	lpKeyDetail;

typedef struct _wfs_pin_key_detail�	{�	WORD			wType;�	WORD			fwUse;�	LPSTR			lpsDevName;�	WORD			wStatus;�	} WFSPINKEYDETAIL, * LPWFSPINKEYDETAIL;

	wType�Specifies the type of the key used in the PIN pad module as one of the following flags:

Value	Meaning

WFS_PIN_KEYCLEAR	unencrypted key

WFS_PIN_KEYENCRYPTED	active key is encrypted by a key encryption key

WFS_PIN_KEYTRIPLEACTIVE	triple encrypted active key

WFS_PIN_KEYTRIPLEMASTER	triple encrypted master key

WFS_PIN_KEYENCKEY	key used as key encryption key

	fwUse�Specifies the type of access for which the key is used as a combination of the following flags:

Value	Meaning

WFS_PIN_USECRYPT	key can be used for encryptyion/decryption

WFS_PIN_USEFUNCTION	key can be used for PIN functions

WFS_PIN_USEMACING	key can be used for MACing

WFS_PIN_USEIMPORT	key can be imported

	lpsDevName�Name of the security module in which the key is stored.

	wStatus�Specifies the state of the key as one of the following flags:

Value	Meaning

WFS_PIN_KEYIMPORTED	key is imported

WFS_PIN_KEYNOVALUE	key has no value

Error Codes	None.

�Execute Commands

WFS_CMD_PIN_CRYPT

Description	The input data is either encrypted or decrypted using the specified or selected encryption mode. The available modes are: Electronic Code Book (ECB), Cipher Block Chaining (CBC), and Cipher FeedBack (CFB). These modes use either a "Clear" key (i.e. a key that has been stored in the encryption module in clear text), an Encrypted key (i.e. a key that has been stored in the encryption module in an encrypted form that needs to be decrypted with a "Key Encryption Key" before being used) or an "Indirect" key (i.e. a key that is encrypted with a key stored in the encryption module, in this case the value of the encrypted key is passed at the interface).

This command can also be used for Message Authentication Code generation (i.e. MACing). For this purpose, it is possible to specify how the data is formatted before the encryption.

The input data can be expanded with a fill-character to the necessary length (mandated by the encryption algorithm being used).

Input Param	LPWFSPINCRYPT	lpCrypt;

typedef struct _wfs_pin_crypt�	{�	WORD				wMode;�	LPSTR				lpsKey;�	LPWFSXDATA		lpxKeyEncKey;�	WORD				wType;�	WORD				wAlgorithm;�	LPWFSXDATA		lpxStartValue;�	BYTE				bPadding;�	BOOL				bCompression;�	LPWFSXDATA		lpxCryptData;�	} WFSPINCRYPT, * LPWFSPINCRYPT;

	wMode�Specifies whether to encrypt or decrypt, values are one of the following:

Value	Meaning

WFS_PIN_MODEENCRYPT	encrypt with key

WFS_PIN_MODEDECRYPT	decrypt with key

	lpsKey�Specifies the name of the stored key.

	lpxKeyEncKey�Value of "indirect" key (for wType == WFS_PIN_KEYENCKEY).

	wType�Specifies the type of key used, values are one of the following:

Value	Meaning

WFS_PIN_KEYCLEAR	unencrypted key

WFS_PIN_KEYENCRYPTED	active key is encrypted by a key encryption key

WFS_PIN_KEYTRIPLEACTIVE	triple encrypted active key

WFS_PIN_KEYTRIPLEMASTER	triple encrypted master key

WFS_PIN_KEYENCKEY	the key to use is passed in encrypted form in lpxKeyEncKey, encrypted with key lpsKey

	�wAlgorithms�Specifies the encryption algorithm, possible values are:

Value	Meaning

WFS_PIN_CRYPTDESECB	Electronic Code Book

WFS_PIN_CRYPTDESCBC	Cipher Block Chaining

WFS_PIN_CRYPTDESCFB	Cipher Feed Back

WFS_PIN_CRYPTRSA	RSA Encryption

WFS_PIN_CRYPTECMA	ECMA Encryption

	lpxStartValue�DES initialization vector for CBC / CFB encryption and MACing, else parameter is NULL.

	bPadding�Specifies the padding character.

	bCompression�Specifies whether data is to be compressed before building the MAC.

	lpxData�Pointer to the data to be encrypted or decrypted.

Output Param	LPWFSXDATA	lpxCryptData;

	lpxCryptData�Pointer to the encrypted or decrypted data.

Error Codes	The following errors can be returned:

Value	Meaning

WFS_ERR_PIN_KEYNOTFOUND	The specified key was not loaded.

WFS_ERR_PIN_MODENOTSUPPORTED	The specified mode is not supported.

WFS_ERR_PIN_ACCESDENIED	Access to the module is denied.

Comments	The datatype LPWFSXDATA is used to pass hexadecimal data and is defined as follows :

typedef struct _wfs_hex_data�	{�	USHORT		usLength;�	LPBYTE		lpbData;�	} WFSXDATA, *LPWFSXDATA;

�WFS_CMD_PIN_GENERATE_KEY

Description	This function can be used to generate either a clear text key or an encrypted key. When an encrypted key is generated, the "Key Encryption Key" must be one known to the PIN pad and previously stored in the encryption module. The generated key can then be stored directly in the encryption module for further use. Key values are hex values preceeded by their length (LPWFSXDATA).

Input Param	LPWFSPINGENERATE	lpGenerate;

typedef struct _wfs_pin_generate�	{�	WORD			wMode;�	BOOL			bLoadKey;�	LPSTR			lpsKey;�	LPSTR			lpsEncKey;�	} WFSPINGENERATE, * LPWFSPINGENERATE;

	wMode�Specifies whether to encrypt or decrypt, values are one of the following:

Value	Meaning

WFS_PIN_MODEENCRYPT	Generate new key using the "Key Encryption Key" passed in lpsKey

WFS_PIN_MODERANDOM	Generate random key

	bLoadKey�Specifies whether the generated key will be stored at location indicated by lpsKey (bLoadKey == TRUE) or is returned in the output parameter of this command (bLoadKey == FALSE).

	lpsKey�Specifies the name where the generated key will be stored. If bLoadKey is set to FALSE this pointer will be ignored.

	lpsEncKey�Specifies the name of "Key Encryption Key" to be used to generate encrypted key, when wMode is set to WFS_PIN_MODEENCRYPT.

Output Param	LPWFSXDATA	lpxKeyValue;

	lpxKeyValue�Points to the encrypted/decrypted data.

Error Codes	The following errors can be returned:

Value	Meaning

WFS_ERR_PIN_KEYNOTFOUND	The specified key was not loaded.

WFS_ERR_PIN_MODENOTSUPPORTED	The specified mode is not supported.

WFS_ERR_PIN_ACCESDENIED	Access to the module is denied.

�WFS_CMD_PIN_IMPORT_KEY

Description	The key passed by the application is loaded in the encryption module. A key can be loaded only when the application passes a previously-loaded key-owner identification (see WFS_ENC_ADMINISTRATION). The key can be passed in clear text mode or encrypted with an accompanying “key encryption key”.

Input Param	LPWFSPINIMPORT	lpImport;

typedef struct _wfs_pin_import�	{�	LPSTR				lpsKey;�	LPSTR				lpsEncKey;�	LPWFSXDATA		lpxIdent;�	LPWFSXDATA		lpxValue;�	} WFSPINIMPORT, * LPWFSPINIMPORT;

	lpsKey�Specifies the name of key being loaded, if NULL then key is not encrypted.

	lpsEncKey�Specifies the name of “key encryption key”, used to decrypt key being loaded.

	lpxIdent�Specifies the previously loaded key owner identification, NULL if device does not have that capability.

	lpxValue�Specifies the value of key to be loaded.

Output Param	LPWFSXDATA	lpxKVC;

	lpxKVC�pointer to the key that can be used for verification of the loaded key.

Error Codes	The following errors can be returned:

Value	Meaning

WFS_ERR_PIN_KEYNOTFOUND	The specified key was not loaded.

WFS_ERR_PIN_MODENOTSUPPORTED	The specified mode is not supported.

WFS_ERR_PIN_ACCESDENIED	Access to the module is denied.

WFS_ERR_PIN_INVALIDID	The ID passed was not valid.

WFS_ERR_PIN_DUPLICATEKEY	A key exists with that name and cannot be overwritten.

�WFS_CMD_PIN_TRANSLATE

Description	The input data is either encrypted or decrypted using the specified or selected NBS DES mode. The available modes are: Electronic Code Book (ECB), Cipher Block Chaining (CBC), and Cipher FeedBack (CFB). These modes use either a “direct” key (i.e. a key that has been stored in the encryption module in clear text), an “encrypted” key (i.e. a key that has been stored in the encryption module in an encrypted form that needs to be decrypted with a “key encryption key” before being used) or an “indirect” key (i.e. a key that is encrypted with a key stored in the encryption module, in this case the value of the encrypted key is passed at the interface).

Input Param	LPWFSPINTRANSLATE	lpTranslate;

typedef struct _wfs_pin_translate�	{�	LPSTR				lpsDecKey;�	LPWFSXDATA		lpxDecKeyValue;�	WORD				wDecType;�	WORD				wDecAlgorithm;�	LPWFSXDATA		lpxDecStartValue;�	LPSTR				lpsEncKey;�	LPWFSXDATA		lpxEncKeyValue;�	WORD				wEncType;�	WORD				wEncAlgorithm;�	LPWFSXDATA		lpxEncStartValue;�	LPWFSXDATA		lpxData;�	} WFSPINTRANSLATE, * LPWFSPINTRANSLATE;

	lpsDecKey�Specifies the name of the key being used for decryption.

	lpxDecKeyValue�Value of “indirect” key (only for wDecType == WFS_PIN_KEYENCKEY, else NULL)

	wDecType�Specifies the type of the key used in the decryption as one of the following flags:�(see command WFS_INF_PIN_KEY_DETAIL)

	wDecAlgorithm�Specifies the algorithm used for decryption. Values are:�(see command WFS_INF_PIN_CAPABILITIES)

	lpxDecStartValue�DES initialization vector for CBC / CFB encryption and MACing, else parameter is NULL.

	lpsEncKey�Specifies the name of key being used for encryption.

	lpxEncKeyValue�Value for “indirect” key (only for wEncType == WFS_PIN_KEYENCKEY, else NULL).

	wEncType�Specifies the type of the key used in the encryption as one of the following flags:�(see wDecType)

	wEncAlgorithm�Specifies the algorithm used for encryption. Values are: (see wDecAlgorithm)

	lpxEncStartValue�DES initialization vector for CBC / CFB encryption, else parameter is NULL.

	lpxData�Pointer to the data to be encrypted/decrypted.

Output Param	LPWFSXDATA	lpxTransData;

	lpxTransData�pointer to the encrypted/decrypted data.

Error Codes	The following errors can be returned:

Value	Meaning

WFS_ERR_PIN_KEYNOTFOUND	The specified key was not loaded.

WFS_ERR_PIN_INVALIDKEY	The specified key is invalid.

WFS_ERR_PIN_MODENOTSUPPORTED	The specified mode is not supported.

WFS_ERR_PIN_ACCESDENIED	Access to the module is denied.

WFS_ERR_PIN_INVALIDID	The ID passed was not valid.

WFS_CMD_PIN_GET_PIN

Description	This function stores the PIN entry via the PIN pad. From the point this function is invoked, all PIN digit entries are retained in the EPP (Electronic PIN pad) device, and not passed to the application. For each PIN digit or the <Correct> key entered an execute notification event is sent in order to allow an application to perform the appropriate display action (i.e. when the PIN pad has no integrated display). The application is not informed of the value entered, the execute notification only informs that a key has been depressed.

	When the maximum number of PIN digits is entered, or the <Enter> key is pressed after the minimum number of PIN digits is entered, a WFS_EXEC_COMPLETE event message is sent to the application. Once this notification is received, the output parameters are then returned to the application from this function call. The depression of the <Cancel> key is also passed to the application via the WFS_EXEC_COMPLETE event message.

Input Param	LPWFSPINGETPIN	lpGetPin;

typedef struct _wfs_pin_getpin�	{�	USHORT		usMaxLen;�	USHORT		usMinLen;�	BOOL			bLeadingZero;�	BOOL			bAutoEnd;�	CHAR			cEcho;�	} WFSPINGETPIN, * LPWFSPINGETPIN;

	usMaxLen�Specifies the maximum PIN length.

	usMinLen�Specifies the minimum PIN length.

	bLeadingZero�If set to TRUE leading zeros are permitted.

	bAutoEnd�If set to TRUE the PIN entry is automatically ended when the maximum number of digits are entered. Otherwise, the PIN entry must be terminated by an enter, correct or cancel key, no matter how many digits are entered.

	cEcho�Specifies the character to be echoed on the display.

�Output Param	LPWFSPINENTRY	lpEntry;

typedef struct _wfs_pin_entry�	{�	USHORT		usDigits;�	WORD			wCompletion;�	} WFSPINENTRY, * LPWFSPINENTRY;

	usDigits�Specifies the number of digits/characters entered.

	wCompletion�Specifies the reason for completion of the entry. Possible values are:

Value	Meaning

WFS_PIN_COMPAUTO	command terminated automatically, because maximum PIN length was reached.

WFS_PIN_COMPENTER	the enter key was pressed

WFS_PIN_COMPCANCEL	the cancel key was pressed

WFS_PIN_COMPZERO	user entered a leading zero

WFS_PIN_COMPMAXLEN	maximum PIN length was exceeded

WFS_PIN_COMPMINLEN	minimum PIN length was violated

WFS_PIN_COMPCONTINUE	input continues (this value is only used in the execute event WFS_EXEE_PIN_DIGIT)

Error Codes	None.

Execute Events	WFS_EXEE_PIN_DIGIT

�WFS_CMD_PIN_VALIDATE

Description	The PIN, which was entered with the WFS_PIN_GET_PIN command, is combined with the requisite data and verified for correctness. The result of the verification is returned to the application. The PIN block algorithm can be designated as direct (the institution PIN key in the encryption module is in clear text mode) or indirect (the institution PIN key must be decrypted by a specified master key), or "double indirect" (the institution PIN key must be decrypted with an encrypted master key which must first be decrypted by a key encryption key or KEK). In case of indirect and double indirect the encrypted key value can be passed at the interface instead of being stored in the encryption module.

Input Param	LPWFSPINVALIDATE	lpValidate;

typedef struct _wfs_pin_validate�	{�	LPSTR			lpsValidation;�	LPSTR			lpsOffsetStr;�	WORD			wDir;�	BYTE			bPadding;�	WORD			wFormat;�	USHORT			usPosition;�	USHORT			usValDigits;�	LPSTR			lpsKey;�	LPSTR			lpsDecTable;�	LPSTR			lpsDecKey;�	LPSTR			lpsEncKey;�	LPWFSXDATA	lpxEncKeyValue;�	} WFSPINVALIDATE, * LPWFSPINVALIDATE;

	lpsValidation�Information about the customer (usually from a magnetic card).

	lpsOffsetStr�Offset for the PIN block; if no offset then NULL is required.

	wDir�Specifies from which direction from the offset the PIN is compared, possible values are:

Value	Meaning

WFS_PIN_DIRRIGHT	comparison of the calculated PIN begins from the right

WFS_PIN_DIRLEFT	comparison of the calculated PIN begins from the left

	bPadding�Specifies the padding character.

	wFormat�Specifies the format of the PIN block. Possible values are:�(see command WFS_INF_PIN_CAPABILITIES)

	usPosition�Specifies the offset of the PIN in the encrypted value.

	usValDigits�Number of PIN digits to be used for validation.

	lpsKey�Name of the active key

	lpsDecTable�Specifies the decimalization table to replace values greater than 10 in each 4 bit nibble.

	lpsDecKey�Specifies the key used to decrypt the active key (or the lpxEncKeyValue).

	lpsKeyEncKey�Specifies the key encryption key.

	lpxEncKeyValue�Value for "Indirect" key (only with lpxKeyEncKey != NULL) or "double indirect" key (only with lpxDecKey != NULL and lpxKeyEncKey != N ULL)

Output Param	BOOL	bResult;

	bResult�Specifies whether PIN is correct or not.

Comments	The decimalization table should be an array of characters. The first byte contains the value to substitute for 10, the second byte for 11 and so on until 16.

Error Codes	The following errors can be returned:

Value	Meaning

WFS_ERR_PIN_KEYNOTFOUND	The specified key was not loaded.

WFS_ERR_PIN_INVALIDKEY	The specified key is invalid.

WFS_ERR_PIN_MODENOTSUPPORTED	The specified mode is not supported.

WFS_ERR_PIN_ACCESDENIED	Access to the module is denied.

WFS_ERR_PIN_INVALIDID	The ID passed was not valid.

�WFS_CMD_PIN_GET_PIN BLOCK

Description	This function takes the account information and a PIN entered by the user to build a formatted PIN. Encrypting this formatted PIN once or twice returns a PIN block which can be written on a magnetic card or sent to a host. The PIN block can be calculated using one of the following standards: 3624-, ANSI-, ECI-2, ECI-3, VISA, ISO-0, or ISO-1.

Input Param	LPWFSPINBLOCK	lpPinBlock;

typedef struct _wfs_pin_block�	{�	UCHAR			uchPVKI;�	LPSTR			lpsCustomerData;�	LPSTR			lpsXORData;�	BYTE			bPadding;�	WORD			wFormat;�	LPSTR			lpsDecTable;�	LPSTR			lpsKey;�	LPSTR			lpsKeyEncKey;�	} WFSPINBLOCK, * LPWFSPINBLOCK;

	uchPVKI�Specifies the character key indicator for the VISA algorithm.

	lpsCustomerData�Used for ANSI, ISO-0 and ISO-1 algorithm to build the formatted PIN, if not used a NULL is required

	lpsXORData�If the formatted PIN is encrypted twice to build the resulting PIN block, this data can be used to modify the result of the first encryption by an XOR-operation.

	bPadding�Specifies the padding character.

	wFormat�Specifies the format of the PIN block. Possible values are:�(see command WFS_INF_PIN_CAPABILITIES)

	lpsDecTable�Specifies the decimalization table to replace values greater than 10 in each 4 bit nibble.

	lpsKey�Specifies the key used to encrypt the formatted pin for the first time, NULL if no encryption is required.

	lpsEncKey�Specifies the key used to format the once encrypted formatted PIN, NULL if no second encryption required..

Output Param	LPWFSXDATA	lpxPinBlock;

	lpxPinBlock�Pointer to the encrypted/decrypted data.

Error Codes	The following errors can be returned:

Value	Meaning

WFS_ERR_PIN_KEYNOTFOUND	The specified key was not loaded.

WFS_ERR_PIN_INVALIDKEY	The specified key is invalid.

WFS_ERR_PIN_MODENOTSUPPORTED	The specified mode is not supported.

WFS_ERR_PIN_ACCESDENIED	Access to the module is denied.

WFS_ERR_PIN_INVALIDID	The ID passed was not valid.

�WFS_CMD_PIN_GET_DATA

Description	This function is used to return keystrokes entered on the PIN pad by the user. It will automatically set the PIN pad to echo characters on the display if there is a display. For each keystroke an execute notification event is sent in order to allow an application to perform the appropriate display action (i.e. when the PIN pad has no integrated display). The value of the key depressed is returned to the application.

	When the maximum number of PIN digits is entered, or, the <Enter> key is depressed after the minimum number of PIN digits is entered, a WFS_EXEC_COMPLETE event message is sent to the application. Once this notification is received, the output parameters are then returned to the application from this function call. The depression of the <Cancel> key is also passed to the application via the WFS_EXEC_COMPLETE event message.

Input Param	LPWFSPINGETDATA	lpPinGetData;

typedef struct _wfs_pin_getdata�	{�	USHORT		usMaxLen;�	USHORT		usMinLen;�	BOOL			bNumeric;�	BOOL			bAutoEnd;�	} WFSPINGETDATA, * LPWFSPINGETDATA;

	usMaxLen�Specifies the maximum data length.

	usMinLen�Specifies the minimum data length.

	bNumeric�If set to TRUE, only numeric keys are allowed to be input, otherwise also alpha characters.

	bAutoEnd�If set to TRUE the input is automatically ended when the maximum number of digits are entered. Otherwise, the input must be terminated by an ENTER or CANCEL key, no matter how many digits are entered.

Output Param	LPWFSPINDATA	lpPinData;

typedef struct _wfs_pin_data�	{�	LPSTR			lpsData;�	WORD			wCompletion;�	} WFSPINENTRY, * LPWFSPINENTRY;

	lpsData�Pointer to the data entered by the user.

	wCompletion�Specifies the reason for completion of the entry. Possible values are:�(see command WFS_CMD_PIN_GET_PIN)

Execute Events	WFS_EXEE_PIN_DIGIT

Error Codes	None.

�WFS_CMD_PIN_ADMINISTRATION

Description	The encryption module must be initialized before keys can be entered. Every initialization destroys all keys that have been installed. During initialization of encryption a clear text identification key must be entered. This ID number is encrypted by the encryption module and is then returned by the application. This identification key serves as authorization of the client to enter keys. This function must be a privileged function (to be fully defined in a later version of this document; see Appendix D).

Input Param	LPWFSPINADMIN	lpAdmin;

typedef struct _wfs_pin_admin�	{�	WORD				wAdminMode;�	LPWFSXDATA		lpxIdent;�	LPSTR				lpsKeyName;�	LPWFSXDATA		lpxKey;�	LPWFSXDATA		lpxMaster;�	LPWFSXDATA		lpxCheckSum;�	} WFSPINADMIN, * LPWFSPINADMIN;

	wAdminMode�Specifies the administration mode. Possible values are:

Value	Meaning

WFS_PIN_ADMINTRANSKEY	Only the identificaiton key is transmitted and the encryption module uses an internal key to encrypt it.

WFS_PIN_ADMINCOMPLETE	Both the identification key and a master encryption key are transmitted. The master encryption key is used to encrypt the identification key.

	lpxIdent�Pointer to an identification.

	lpsKeyName�Specifies the name of the identification key.

	lpxKey�Clear text value of the identification key.

	lpxMaster�Optional master key value.

	lpxCheckSum�Specifies a check sum.

Output Param	LPWFSXDATA	lpxIdentification;

	lpxIdentification�Pointer to an encrypted identification key for future use.

Error Codes	The following errors can be returned:

Value	Meaning

WFS_ERR_PIN_KEYNOTFOUND	The specified key was not loaded.

WFS_ERR_PIN_INVALIDKEY	The specified key is invalid.

WFS_ERR_PIN_MODENOTSUPPORTED	The specified mode is not supported.

WFS_ERR_PIN_ACCESDENIED	Access to the module is denied.

WFS_ERR_PIN_INVALIDID	The ID passed was not valid.

WFS_CMD_PIN_DISPLAY

Description	This command displays the requested form. It is modeled on print form.

Input Param	LPWFSPINDISPLAY	lpDisplay;

typedef struct _wfs_pin_display�	{�	LPSTR			lpsForm;�	LPSTR			lpsData;�	} WFSPINDISPLAY, * LPWFSPINDISPLAY;

	lpsForm�Specifies the form name.

	lpsData�Specifies the data associated with form.

Output Param	None.

Comments	In the case where there are LED leadthrough lights, these lights can also be associated with a form name. The light next to the text 'Please enter your PIN' for example would be one 'Form' etc. The forms definition language could be extended to cover this.

Error Codes	The following errors can be returned:

Value	Meaning

WFS_ERR_PIN_INVALIDFORM	The specified form is invalid.

�Messages

The following execute notification event is generated by the commands of the PIN pad service.

WFS_EXEE_PIN_DIGIT

Description	This event specifies that a key has been pressed at the PIN pad. It is used if the device has no internal display unit and the application has to manage the display of the entered digits.

Event Param	LPWFSPINDIGIT	lpDigit;

typedef struct _wfs_pin_digit�	{�	WORD			wCompletion;�	USHORT		usDigit;�	} WFSPINDIGIT, * LPWFSPINDIGIT;

	wCompletion�Specifies the reason for completion of the entry. Possible values are:�(see command WFS_CMD_PIN_GET_PIN)

	usDigit�Specifies the digit entered by the user or the replace character when working in encryption mode (WFS_CMD_PIN_GET_PIN). If no digit but a function key (i.e. <Correct Key>) has been depressed, the keycode is returned in this parameter.

�Check Readers and Scanners

This section describes the WOSA/XFS service class of check readers and scanners. Check image scanners are treated as a special case of check readers, i.e., image-enabled instances of the latter. This class includes devices with a range of features, from small hand-held read-only devices through which checks are manually swiped one at a time, to much larger devices (i.e., tabletop) which automatically feed checks by the batch past a reader, an encoder, an endorser, an optional image scanner, to be sorted into one of several pockets. The high end device of this class usually found in bank branches shares many capabilities with the still larger devices usually found only in a bank's central data processing site (i.e., high-speed reader/sorters), but the latter are not explicitly addressed here.

In the U.S., checks are always encoded in magnetic ink for reading by Magnetic Ink Character Recognition (MICR), and a single font is always used. In Europe some countries use MICR and some use Optical Character Recognition (OCR) character sets, with different fonts, for their checks.

In all countries, typical fields found encoded on a check include the bank ID number and the account number. Part of the processing done by the bank is to also encode the amount on the check, usually done by having an operator enter the handwritten or typewritten face amount on a numeric keypad.

�Info Commands

WFS_INF_CHK_STATUS

Description	This function is used to query the status of the device and the service.

Input Param	None.

Output Param	LPWFSCHKSTATUS

		struct _wfs_chk_status�			{�			WORD	fwDevice;	�			WORD	fwMedia; �			WORD	fwInk; �			DWORD	dwMode;	�			WORD	fwLamp;	�			LPSTR	lpszExtra;

		} WFSCHKSTATUS, * LPWFSCHKSTATUS;

fwDevice

Specifies the state of the check reader device as one of:

WFS_CHK_DEVONLINE		Device is online.

WFS_CHK_DEVOFFLINE		Device is offline.

WFS_CHK_DEVPOWEROFF		Device is powered off.

WFS_CHK_DEVNODEVICE		No device is connected.

fwMedia

Specifies the status of the media in the check reader as one of:

WFS_CHK_MEDIANOTPRESENT	 No media is inserted in device.

WFS_CHK_MEDIAREQUIRED		 Insertion of media required.

WFS_CHK_MEDIAPRESENT		 Media inserted in device.

WFS_CHK_MEDIAJAMMED		 Media jam in device.

fwInk

Specifies the status of the ink in the check reader as one of:

WFS_CHK_INKFULL			 Ink supply in device is full.

WFS_CHK_INKLOW			 Ink supply in device is low.

WFS_CHK_INKOUT			 Ink supply in device is empty.

dwMode	

Specifies the autofeed status of the check reader as one of:

WFS_CHK_MODEMANUAL		Device is in manual mode.

WFS_CHK_MODEAUTOFEED		Device is in autofeed mode.

fwLamp

Specifies the status of the check reader lamp as one of the following:

WFS_CHK_LAMPOK

WFS_CHK_LAMPFADING		The imaging lamp should be changed.

lpszExtra	

Points to a list of vendor-specific, or any other extended information. The information is returned as a series of “key=value” strings so that it is easily extensible by service providers. Each string is null-terminated, with the final string terminating with two null characters.

Error Code	None.

Comments 	Applications which require or expect specific information to be present in the lpszExtra parameter may not be device or vendor-independent.

�WFS_INF_CHK_CAPABILITIES

Description	This function is used to request device capability information.

Input Param	None.

Output Param	LPWFSCHKCAPS

	typedef struct _wfs_chk_caps

		{

		WORD	wClass;

		WORD	fwType;

		BOOL	bCompound;

		BOOL	fMICR;

		BOOL	fOCR;

		BOOL	fAutoFeed;

		BOOL	fEndorser;

		BOOL	fEncoder;

		WORD	fwStamp;

		WORD	wImageCapture;

		USHORT	nPockets;

		LPSTR	lpszFontNames;

		LPSTR	lpszEncodeNames;

		LPSTR	lpszExtra;

		} WFSCHKCAPS, * LPWFSCHKCAPS

fwClass �Specifies the logical service; value is WFS_SERVICE_CLASS_CHK.

fwType�Specifies the type of the physical device; only current value is WFS_CHK_TYPECHK.

bCompound�TRUE if the logical device is part of a compound device.

fMICR�Can read MICR on checks.

fOCR�Can read OCR on checks.

fAutoFeed�Has autofeed capability; if FALSE has only manual feed.

fEndorser�A programmable endorser is present.

fEncoder�An encoder is present.

fwStamp�One of:

WFS_CHK_STAMPNONE�WFS_CHK_STAMPFRONT�WFS_CHK_STAMPREAR�WFS_CHK_STAMPBOTH

wImageCapture�Same values as wStamp

nPockets�Number of pockets; if 0 or 1, device has no pockets.

lpszFontNames �The names of the fonts supported for reading; each is terminated with a NULL and the string is terminated with two NULLs.

lpszEncodeNames�The names of the fonts supported for encoding; each is terminated with a NULL and the string is terminated with two NULLs.

lpszExtra�Points to a list of vendor-specific, or any other extended information. The information is returned as a series of “key=value” strings so that it is easily extensible by service providers. Each string is null-terminated, with the final string terminating with two null characters.

Error Code	None.

Comments 	The font names are standardized so that applications can check for standard literals, e.g.: CMC7, E13B. Reserved OCR font names are TBD due to numerous local variants. (i.e. OCRA and OCRB are not enough).

	Applications which require or expect specific information to be present in the lpszExtra parameter may not be device or vendor-independent.

WFS_INF_CHK_FORM_LIST

Description	This function is used to retrieve the list of forms available to the service.

Input Param	None.

Output Param	LPSTR		lpszFormList;

	lpszFormList�Points to a list of null-terminated form names, with the final name terminating with two null characters.

Error Codes	None.

WFS_INF_CHK_QUERY_FORM

Description	This function is used to retrieve the details on the definition of a specified form.

Input Param	LPSTR		lpszFormName;

	lpszFormName�Specifies the null-terminated name of the form on which to retrieve details.

Output Param	LPWFSFRMHEADER

	See section 7.1.4.5 WFS_INF_PTR_QUERY_FORM, for details of this structure.

Error Codes	The following error can be returned:

Value	Meaning

WFS_ERR_CHK_FORMNOTFOUND	The specified form cannot be found.

�WFS_INF_CHK_QUERY_FIELD

Description	This function is used to retrieve details on the definition of a single or all fields on a specified form.

Input Param	LPWFSCHKQUERYFIELD, as defined below.

typedef struct _wfs_chk_query_field�	{�	LPSTR				lpszFormName;�	LPSTR				lpszFieldName;�	} WFSCHKQUERYFIELD, * LPWFSCHKQUERYFIELD;

	lpszFormName�Points to the null-terminated form name.

	lpszFieldName�Points to the null-terminated name of the field about which to retrieve details. If this value is NULL, then retrieve details for all fields on the form.

Output Param	LPWFSFRMFIELD		* lpFields;

	See Section 7.1.4.7, WFS_PTR_QUERY_FIELD for details of this structure.

Error Codes	The following errors can be returned:

Value	Meaning

WFS_ERR_CHK_FORMNOTFOUND	The specified form cannot be found.

WFS_ERR_CHK_FIELDNOTFOUND	The specified field cannot be found.

�Execute Commands

WFS_CMD_CHK_READ_FORM

Description	This function returns the data from the current check. The contents of all the fields within the form are returned to the application. For small hand-held check readers, this command might be the only one used.

Input Param	LPWFSCHKINREADFORM

	typedef struct _wfs_chk_in_read_form

		{

		LPSTR	lpszFormName;

		LPSTR	lpszFieldNames;

		DWORD	dwOptions;

		LPSTR	lpszExtra;

		} WFSCHKINREADFORM, * LPWFSCHKINREADFORM;

lpszFormName�Points to the null-terminated name of the form.

lpszFieldNames�Points to a list of NULL-terminated field names from which to read input data, with the final name terminating with two NULLs.

dwOptions�WFS_CHK_OPTAUTOFEED

lpszExtra

Points to a list of vendor-specific, or any other extended information. The information is returned as a series of “key=value” strings so that it is easily extensible by service providers. Each string is null-terminated, with the final string terminating with two null characters.

Output Param	LPWFSCHKOUTREADFORM

	typedef struct _wfs_chk_out_read_form

		{

		WORD	hDoc;

		LPSTR	lpszFields;

		} WFSCHKOUTREADFORM, * LPWFSCHKOUTREADFORM;

hDoc�Handle to this check

lpszFields�list of fields

Error Code	In the case of a failure the following error codes can be returned.

Value	Meaning

WFS_ERR_CHK_REQDFIELDMISSING	The check was blank.

WFS_ERR_CHK_FORMNOTFOUND	Invalid form name.

WFS_ERR_CHK_FIELDSPECFAILURE	The syntax of the lpszFields member is invalid.

WFS_ERR_CHK_INCOMPLETEREAD	Read errors occurred and an incomplete code line is available. Question marks are returned in place of any numbers which could not be read. A code line will always be returned when this error occurs, and the application may choose different behavior depending on the number of question marks returned, e.g., prompt the operator to enter missing numbers.

Execute Events	WFS_EXEE_CHK_NOMEDIA	No check has been inserted in the (manual mode) check reader; to be used by the application to generate a message to the operator to insert a check.

WFS_EXEE_CHK_MEDIAINSERTED	A check was inserted; this is only issued following the above event.

	

Comments.	At the end of a successful WFS_CMD_CHK_READ_FORM, the string pointed to by lpsFields will contain a sequence such as (given a U.S. personal check):

	ROUTETRANS=021203501\0ACCOUNT=370361\0TRANCODE=2199\0AMOUNT=0000001000\0\0

Each fieldname=value pair is terminated by a NULL; the end of the buffer is marked with an additional NULL. Any embedded space characters (0x20) are significant; trailing spaces are not.

The timeout parameter (dwTimeOut) in the WFSExecute request that passes this command should always be large enough to accomodate prompting the operator to insert a check, having the operator do so, and processing the check. If the timeout expires before these operations are completed, the WFSExecute will be canceled, possibly leaving an application-generated prompt on the operator's screen.

�WFS_CMD_CHK_MULTICOMMAND

Description	This function is used to encode the amount field of the check, optionally stamp and endorse the check, and select a pocket to which the check will be sorted if the device supports these capabilities.

Input Param	LPWFSCHKMULTICOMMAND

typedef struct _wfs_in_multicommand

	{

	WORD	hDoc;	

	DWORD	dwOptions;

	BYTE	pocket;

	LPSTR	lpszEncodeFormName;

	LPSTR	lpszEncodeFields;

	LPSTR	lpszEndorserFormName;

	LPSTR	lpszEndorserFields;

	LPSTR	lpszExtra;

	} WFSCHKMULTICOMMAND, * LPWFSCHKMULTICOMMAND;

hDoc�handle to the check to be processed; NULL means "current" check.

dwOptions�Command options, as a combination of the following flags:�WFS_CHK_OPTSTAMPFRONT�WFS_CHK_OPTSTAMPBACK�WFS_CHK_OPTENDORSEFRONT�WFS_CHK_OPTENDORSEBACK�WFS_CHK_OPTSORTONLY�WFS_CHK_OPTTAKEIMAGE

pocket�Ignored if no sorter present.

lpszEncodeFormName�Name of form defining encoder fields.

lpszEncodeFields�List of fieldname/value pairs for encoder.

lpszEndorserFormName�Name of form defining endorser fields.

lpszEndorserFields�List of fieldname/value pairs for endorser.

lpszExtra	

Points to a list of vendor-specific, or any other extended information. The information is returned as a series of “key=value” strings so that it is easily extensible by service providers. Each string is null-terminated, with the final string terminating with two null characters.

Output Param	None.

�Error Codes	In case of a failure the following errors can be returned:

Value	Meaning

WFS_ERR_CHK_FORMNOTFOUND	Invalid form name.

WFS_ERR_CHK_FIELDNOTFOUND	Invalid field name.

WFS_ERR_CHK_REQDFIELDMISSING	A field required by the form is not supplied.

WFS_ERR_CHK_EXTRAFIELD	A field supplied by the application does not exist in this form (warning).

WFS_ERR_CHK_FIXEDOVERWRITE	The application passed a field which is marked as fixed in the form description (warning).

WFS_ERR_CHK_FIELDSPECFAILURE	The syntax of the lpszFields member is invalid.

WFS_ERR_CHK_UNSUPPORTEDCAP	The service does not have a capability requested in this command (i.e. a pocket sort was requested on a device with zero pockets). This is a warning; the requested capability is ignored.

Execute Events	WFS_EXEE_CHK_NOMEDIA	No check has been inserted in the (manual mode) check reader.

WFS_EXEE_CHK_MEDIAINSERTED	A check was inserted; this is only issued following the above event.

Comments	The contents of the lpszFields parameter is as follows:

fieldname=value\0fieldname=value\0.......fieldname=value\0\0

Each fieldname=value pair is terminated with a NULL; the end of the buffer is marked with an additional NULL.

If an extra field is passed to the command verb a warning message will be returned. If a required field is missing an error message is returned and the form is not printed. Missing optional fields don't cause a problem. Overwriting of a fixed field results in an error and the print operation does not occur.

The lpszEncodeFormName parameter should be the same as the form name used previously to read the encode line with WFS_CMD_CHK_READ_FORM. Results are unpredictable if a different form name is used.

�WFS_CMD_CHK_READ_IMAGE

Description	This function returns image data from the current check in TIFF 6.0 format.

Input Param	LPWFSCHKINREADIMAGE

	typedef struct _wfs_in_read_image

		{

		WORD	hDoc;

		DWORD	dwOptions;

		LPSTR	lpszExtra;

		} WFSCHKINREADIMAGE, * LPWFSCHKINREADIMAGE;

hDoc�Handle to the check whose image is to be returned.

dwOptions

lpszExtra	

Points to a list of vendor-specific, or any other extended information. The information is returned as a series of “key=value” strings so that it is easily extensible by service providers. Each string is null-terminated, with the final string terminating with two null characters.

Output Param	LPWFSCHKOUTREADIMAGE

	struct wfs_out_read_image

		{

		WORD	cbImage;

		LPSTR	lpImage;

		} WFSCHKOUTREADIMAGE, * LPWFSCHKOUTREADIMAGE;

cbImage�Count of bytes of image data.

lpImage�Points to the image data.

Error Code	In the case of a failure the following error codes can be returned:

Value	Meaning

WFS_ERR_CHK_INVALIDHDOC	hDoc is required but the value input does not correspond to a previously read document.

WFS_ERR_CHK_IMAGENOTAVAIL	The check referred to by hDoc does not have an image available.

Execute Events	None.

Comments.	Applications which require or expect specific information to be present in the lpszExtra parameter may not be device or vendor-independent.

�WFS_CMD_CHK_MODE_SWITCH

Description	This function is used to turn the autofeed mechanism off if it is running, or to turn it on if it is not.

Input Param	struct _wfs_in_mode_switch

		{

			DWORD	dwMode;			# WFS_CHK_MODEMANUAL

								# WFS_CHK_MODEAUTOFEED

		}

Output Param	None.

Error Codes	In case of a failure the following error can be returned:

Value	Meaning

WFS_ERR_CHK_INVALIDCOMMAND	The device does not support a mode switch.

Execute Events	None.

Comments	None.

�Pragmatics of using the commands

This section discusses how the WFSExecute commands above map to the variety of check readers used in branch banking.

Small hand-held devices which contain only a MICR or an OCR reader, and through which checks are manually swiped, will normally be managed using only the WFS_CMD_CHK_READ_FORM command. Applications written for such devices can make sure that the check readers to which they are configured to attach are suitable by using the WFS_INF_CHK_CAPABILITIES command in WFSGetInfo to make sure that fAutoFeed is FALSE, nPockets is zero, and so on.

Applications written for table-top check readers with autofeed and/or sorting capability should ensure that the services to which they connect have the appropriate capabilities. The error WFS_ERR_UNSUPP_CATEGORY will be returned if the service does not have these capabilities. In many cases, the applications for such devices will have to run on the workstation to which the check reader is directly attached in order that the commands be able to keep up with the track through which the checks are moving.

Execute Events, Results, Codes

WFS_EXEE_CHK_NOMEDIA

Description	This event specifies that the physical check must be inserted into the device in order for the execute command to proceed.

Event Param	LPSTR	lpszUserPrompt;

	lpszUserProm

pt�Points to a null-terminated string which identifies the prompt string which is configured for the form (the USERPROMPT attribute of the XFSFORM section).

Comments	The application may use the lpszUserPrompt in any manner it sees fit. For example, it might display the string to the operator, along with a message that the check should be inserted.

WFS_EXEE_CHK_MEDIAINSERTED

Description	This event specifies that the physical check has been inserted into the device.

Event Param	None.

Comments	The application may use this event to, for example, remove a message box from the screen telling the user to insert the next check.

�Forms Language Usage

This section covers the usage of the forms language to accomodate check readers. The WOSA/XFS forms language is defined in section 7.1.

The forms language contains the FORMAT attribute in the XFSFIELD section. For check readers, the formatstring is used to generate the delimiters for the check fields; its usage is not application-defined. The usage is the same for the check readers service class. For forms intended for use with check readers, the FORMAT attribute is required:

	field Amount				FORMAT ":NNNNNNNNNN:"

	field AccountNum			FORMAT "0000NNNNNN<"

	field RouteTransit			FORMAT ";NNNNNNNNN;"

using punctuation in place of the standard field separators. A capital N means a number to be read and returned. A zero (“0”) means an optional number which, if present, is read and returned. Note that all fields on a check encoder line that have optional numbers should place the zeros on the same end of the format string as an aid to the Service Provider in parsing the code line (for instance, most check readers read the MICR line right to left, so optional numbers should always be on the left side of fields which have them.).

Normally, the format string, which gives the starting delimiter for each field, and the FOLLOWS clause, allow the service to parse the fields from the check's code line. The position attributes are used to specify the minimum and maximum starting locations for each field, so that a misread delimiter character can be detected and the parsing corrected (if the service is sophisticated enough to do this).

If the device supports reading multiple fonts, the FONT attribute of the XFSFIELD section might be significant. The name of the font (e.g. CMC7, E13B, etc), given here, will cause the check reader to use the appropriate font.

For endorsing checks, the field description specifies the “front” or “back” of the check using the SIDE attribute, and position relative to the trailing or (usually) leading edge of the check.

Service Provider Interface (SPI) Functions

The service provider functions are described in the following sections, in alphabetical order. The table below shows the SPI functions, the sections in which they are defined, their modes, and the API functions they implement.

Section�WOSA/XFS SPI�Mode�WOSA/XFS API�Mode��8.1�WFPCancelAsyncRequest�Immediate�WFSCancelAsyncRequest�Immediate��8.1�WFPCancelAsyncRequest�Immediate�WFSCancelBlockingCall�Immediate���(none)�-�WFSCleanUp�Synchronous��8.2�WFPClose�Asynchronous�WFSClose�Synchronous��8.2�WFPClose�Asynchronous�WFSAsyncClose�Asynchronous���(none)�-�WFSCreateAppHandle�Immediate��8.3�WFPDeregister�Asynchronous�WFSDeregister�Synchronous��8.3�WFPDeregister�Asynchronous�WFSAsyncDeregister�Asynchronous���(none)�-�WFSDestroyAppHandle�Immediate��8.4�WFPExecute�Asynchronous�WFSExecute�Synchronous��8.4�WFPExecute�Asynchronous�WFSAsyncExecute�Asynchronous���(none)�-�WFSFreeResult�Immediate��8.5�WFPGetInfo�Asynchronous�WFSGetInfo�Synchronous��8.5�WFPGetInfo�Asynchronous�WFSAsyncGetInfo�Asynchronous���(none)�-�WFSGetSCode�Immediate���(none)�-�WFSIsBlocking�Immediate��8.6�WFPLock�Asynchronous�WFSLock�Synchronous��8.6�WFPLock�Asynchronous�WFSAsyncLock�Asynchronous��8.7�WFPOpen�Asynchronous�WFSOpen�Synchronous��8.7�WFPOpen�Asynchronous�WFSAsyncOpen�Asynchronous��8.8�WFPRegister�Asynchronous�WFSRegister�Synchronous��8.8�WFPRegister�Asynchronous�WFSAsyncRegister�Asynchronous���(none)�-�WFSSetBlockingHook�Immediate��8.9�WFPSetTraceLevel�Immediate�(none)�-���(none)�-�WFSStartUp�Immediate���(none)�-�WFSUnhookBlockingHook�Immediate��8.10�WFPUnloadService�����8.11�WFPUnlock�Asynchronous�WFSUnlock�Synchronous.��8.11�WFPUnlock�Asynchronous�WFSAsyncUnlock�Asynchronous��

Note that in this section device drivers and devices are mentioned frequently, instead of service providers and services. This is due primarily to the fact that access to financial peripheral devices is the first category of financial services being addressed by the BSVC. However, note that in the future other financial services will be part of the WOSA Extensions to Financial Services, and will also use these interfaces, with additions as necessary. See Section 4 for more on this subject.

�WFPCancelAsyncRequest

HRESULT	WFPCancelAsyncRequest(hService, RequestID)

Cancels the specified (or every) asynchronous request being performed on the specified service provider, before its (their) completion.

Parameters	HSERVICE hService

Handle to the service provider.

	REQUESTID RequestID

The request identifier (NULL to cancel all requests for the specified hService).

Mode	Immediate. Although the cancellation process itself is asynchronous, the completion message(s) are associated with the original request, not the cancel request (even if they indicate a WFS_ERR_CANCELED status).

Comments	If the RequestID parameter is set to NULL, the command will cancel all asynchronous requests on the specified service that are in progress on behalf of the calling application.

	A previously initiated asynchronous request is canceled prior to completion by issuing the WFSCancelAsyncRequest function, specifying the request identifier returned by the asynchronous function. This function is immediate with respect to its calling application, but the cancellation process is inherently asynchronous. On completion, the specified request (or all the requests) will have finished, with a completion message indicating a status of WFS_ERR_CANCELED, unless the cancel request was made after the request had completed.

	The cancellation applies to the service provider level. The request is passed through the SPI, and the service provider normally then also cancels any physical I/O or other device operation in progress, in the appropriate manner for the device or service.

Error Codes	If the function return is not WFS_SUCCESS, WFSGetSCode(hResult) returns one of the following error conditions:

WFS_ERR_INTERNAL_ERROR

An internal inconsistency or other unexpected error occurred in the WOSA/XFS subsystem.

WFS_ERR_INVALID_HSERVICE

The hService parameter is not a valid service handle.

WFS_ERR_INVALID_REQ_ID

The RequestID parameter does not correspond to an outstanding request on the service.

�WFPClose

HRESULT	WFPClose(hService, hWnd, ReqID)

Terminates a session (a series of service requests initiated with the WFPOpen SPI function) between the XFS Manager and the specified service provider.

Parameters	HSERVICE hService

Handle to the service provider.

	HWND hWnd

The window handle which is to receive the completion message for this request.

	REQUESTID ReqID

Request identification number.

Mode	Asynchronous

Comments	WFPClose directs the service to free all resources associated with the series of requests made using the hService parameter. If the service is locked by the application, the close automatically unlocks it. If no WFPDeregister has been issued, it is automatically performed. The lpSpecificData parameter can be used to pass service-specific data.

	See WFPOpen and Section 5.6 for further discussion.

Messages	WFS_CLOSE_COMPLETE

Error Codes	If the function return is not WFS_SUCCESS, WFSGetSCode(hResult) returns one of the following error conditions, indicating that the asynchronous operation was not initiated. The service-specific errors that can be returned are defined in the specifications for each service class.

WFS_ERR_INTERNAL_ERROR

An internal inconsistency or other unexpected error occurred in the WOSA/XFS subsystem.

WFS_ERR_INVALID_HSERVICE

The hService parameter is not a valid service handle.

WFS_ERR_INVALID_HWND

The hWnd parameter is not a valid window handle.

The following error conditions are returned via the asynchronous command completion message, by calling WFSGetSCode with the hResult from the WFSRESULT structure. Any service-specific errors that can be returned are defined in the specifications for each service class.

WFS_ERR_CANCELED

The request was canceled by WFSCancelAsyncRequest.

WFS_ERR_INTERNAL_ERROR

An internal inconsistency or other unexpected error occurred in the WOSA/XFS subsystem.

�WFPDeregister

HRESULT	WFPDeregister(hService, dwEventClass, hWndReg, hWnd, ReqID)

Discontinues monitoring of the specified message class(es) from the specified service provider, by the specified hWndReg (or all hWnd's).

Parameters	HSERVICE hService

Handle to the service provider

	DWORD dwEventClass

The class(es) of messages from which the application is deregistering. Specified as a set of bit masks that can be logically ORed together. A NULL value requests that all message classes be deregistered from the specified window for this service provider.

	HWND hWndReg

The window to which notification messages are posted. A NULL value requests that all the application's windows be deregistered from the specified message class(es) for this hService.

	HWND hWnd

The window handle which is to receive the completion message for this request.

	REQUESTID ReqID

Request identification number.

Mode	Asynchronous

Comments	WFPDeregister does not stop asynchronous command completion messages from being posted; a robust application should be designed to accept these messages even after a deregister is issued.

	A WFPDeregister os performed automatically if a WFPClose is issued without a previous WFPDeregister.

	To deregister all messages for all hWnds, the call supplies NULL values for both the dwEventClass and hWnd parameters.

 	See the WFPRegister function for a description of the types of events that may be monitored.

Messages	WFS_DEREGISTER_COMPLETE

Error Codes	If the function return is not WFS_SUCCESS, WFSGetSCode(hResult) returns one of the following error conditions, indicating that the asynchronous operation was not initiated. Any service-specific errors that can be returned are defined in the specifications for each service class.

WFS_ERR_INTERNAL_ERROR

An internal inconsistency or other unexpected error occurred in the WOSA/XFS subsystem.

WFS_ERR_INVALID_EVENT_CLASS

The dwEventClass parameter specifies one or more event classes not supported by the service.

WFS_ERR_INVALID_HSERVICE

The hService parameter is not a valid service handle.

WFS_ERR_INVALID_HWND

The hWnd parameter is not a valid window handle.

WFS_ERR_INVALID_HWNDREG

The hWndReg parameter is not a valid window handle.

WFS_ERR_NOT_REGISTERED

The specified hWndReg window was not registered to receive messages for any event classes.

The following error condition is returned via the asynchronous command completion message, by calling WFSGetSCode with the hResult from the WFSRESULT structure. Any service-specific errors that can be returned are defined in the specifications for each service class.

WFS_ERR_CANCELED

The request was canceled by WFSCancelAsyncRequest.

�WFPExecute

HRESULT	WFPExecute(hService, dwCommand, lpCmdData, dwTimeOut, hWnd, ReqID)

Sends asynchronous service class specific commands to a service provider.

Parameters	HSERVICE hService

Handle to the service provider.

	DWORD dwCommand

Command to be executed.

	LPVOID lpCmdData	

Pointer to the data structure to be passed.

	DWORD dwTimeOut

Number of milliseconds to wait for completion (WFS_INDEFINITE_WAIT to implement a request that will wait until completion).

	HWND hWnd

The window handle which is to receive the completion message for this request.

	REQUESTID ReqID

Request identification number.

Mode	Asynchronous

Comments	See WFSExecute, Section 6.1.10.

Messages	WFS_EXECUTE_COMPLETE

Error Codes	If the function return is not WFS_SUCCESS, WFSGetSCode(hResult) returns one of the following error conditions, indicating that the asynchronous operation was not initiated. Any service-specific errors that can be returned are defined in the specifications for each service class.

WFS_ERR_INTERNAL_ERROR

An internal inconsistency or other unexpected error occurred in the WOSA/XFS subsystem.

WFS_ERR_INVALID_COMMAND

The dwCommand issued is not supported by this service class.

WFS_ERR_INVALID_HSERVICE

The hService parameter is not a valid service handle.

WFS_ERR_INVALID_HWND

The hWnd parameter is not a valid window handle.

WFS_ERR_INVALID_POINTER

A pointer parameter does not point to accessible memory.

WFS_ERR_UNSUPP_COMMAND

The dwCommand issued, although valid for this service class, is not supported by this service provider.

�The following error conditions are returned via the asynchronous command completion message, by calling WFSGetSCode with the hResult from the WFSRESULT structure. Any service-specific errors that can be returned are defined in the specifications for each service class.

WFS_ERR_CANCELED

The request was canceled by WFSCancelAsyncRequest.

WFS_ERR_INTERNAL_ERROR

An internal inconsistency or other unexpected error occurred in the WOSA/XFS subsystem.

WFS_ERR_LOCKED

The service is locked under a different hService.

WFS_ERR_TIMEOUT

The timeout interval expired.

�WFPGetInfo

HRESULT 	WFPGetInfo(hService, dwCategory, lpQueryDetails, dwTimeOut, hWnd, ReqID)

Retrieves various kinds of information from the specified service provider.

Parameters	HSERVICE hService

Handle to the service provider.

	DWORD dwCategory

Specifies the category of the query. The available categories of the query depend on the specific class of services accessed. The information requested can be generic (e.g., the name of the class of the service provider �symbol 190 \f "Symbol"��FINANCIAL_PERIPHERALS, ALARM, etc.�symbol 190 \f "Symbol"��, the name of the service provider, the name of the service(s) used, its version, a vendor description,etc.), or class- or service-specific (e.g., the service provider capabilities).

	LPVOID lpQueryDetails

Pointer to the data structure to be passed to the service provider, containing further details to make the query more precise.

	DWORD dwTimeOut

Number of milliseconds to wait for completion (WFS_INDEFINITE_WAIT to specify a request that will wait until completion).

	HWND hWnd

The window handle which is to receive the completion message for this request.

	REQUESTID ReqID

Request identification number.

Mode	Asynchronous

Comments	The XFS Manager retrieves the information requested from the service provider itself, and, since the information can be stored remotely, the function cannot be guaranteed to complete immediately. Note that, typically, requests for generic and class specific categories can complete immediately. See WFSGetInfo, Section 6.1.13, for additional discussion.

	The specifications for the information structures for each service class can be found in the specifications for the service-specific commmands.

Messages	WFS_GETINFO_COMPLETE

Error Codes	If the function return is not WFS_SUCCESS, WFSGetSCode(hResult) returns one of the following error conditions, indicating that the asynchronous operation was not initiated. Any service-specific errors that can be returned are defined in the specifications for each service class.

WFS_ERR_INTERNAL_ERROR

An internal inconsistency or other unexpected error occurred in the WOSA/XFS subsystem.

WFS_ERR_INVALID_CATEGORY

The dwCategory issued is not supported by this service class.

WFS_ERR_INVALID_HSERVICE

The hService parameter is not a valid service handle.

WFS_ERR_INVALID_HWND

The hWnd parameter is not a valid window handle.

WFS_ERR_INVALID_POINTER

A pointer parameter does not point to accessible memory.

WFS_ERR_UNSUPP_CATEGORY

The dwCategory issued, although valid for this service class, is not supported by this service provider.

The following error conditions are returned via the asynchronous command completion message, by calling WFSGetSCode with the hResult from the WFSRESULT structure. Any service-specific errors that can be returned are defined in the specifications for each service class.

WFS_ERR_CANCELED

The request was canceled by WFSCancelAsyncRequest.

WFS_ERR_INTERNAL_ERROR

An internal inconsistency or other unexpected error occurred in the WOSA/XFS subsystem.

WFS_ERR_TIMEOUT

The timeout interval expired.

�WFPLock

HRESULT	WFPLock(hService, dwTimeOut, hWnd, ReqID)

Establishes exclusive control by the calling application over the specified service.

Parameters	HSERVICE hService

Handle to the service provider.

	DWORD dwTimeOut

Number of milliseconds to wait for completion (WFS_INDEFINITE_WAIT to implement a request that will wait until completion).

	HWND hWnd

The window handle which is to receive the completion message for this request.

	REQUESTID ReqID

Request identification number.

Mode	Asynchronous

Comments	See WFSLock, Section 6.1.17.

Messages	WFS_LOCK_COMPLETE

Error Codes	If the function return is not WFS_SUCCESS, WFSGetSCode(hResult) returns one of the following error conditions, indicating that the asynchronous operation was not initiated. Any service-specific errors that can be returned are defined in the specifications for each service class.

WFS_ERR_INTERNAL_ERROR

An internal inconsistency or other unexpected error occurred in the WOSA/XFS subsystem.

WFS_ERR_INVALID_HSERVICE

The hService parameter is not a valid service handle.

WFS_ERR_INVALID_HWND

The hWnd parameter is not a valid window handle.

WFS_ERR_INVALID_POINTER

A pointer parameter does not point to accessible memory.

The following error conditions are returned via the asynchronous command completion message, by calling WFSGetSCode with the hResult from the WFSRESULT structure. Any service-specific errors that can be returned are defined in the specifications for each service class.

WFS_ERR_CANCELED

The request was canceled by WFSCancelAsyncRequest.

WFS_ERR_INTERNAL_ERROR

An internal inconsistency or other unexpected error occurred in the WOSA/XFS subsystem.

WFS_ERR_TIMEOUT

The timeout interval expired.

�WFPOpen

HRESULT	WFPOpen(hService, lpszLogicalName, hApp, lpszAppID, dwTraceLevel, dwTimeOut, hWnd, ReqID, hProvider, dwSPIVersionsRequired, lpSPIVersion, dwSrvcVersionsRequired, lpSrvcVersion)

Establishes a connection between the XFS Manager and the service provider that supports the specified service, and initiates a session (a series of service requests terminated with the WFPClose function).

Parameters	HSERVICE hService

The service handle to be associated with the session being opened..

	LPSTR lpszLogicalName

Points to a null-terminated string containing the pre-defined logical name of a service. It is a high level name such as "SYSJOURNAL1," "PASSBOOKPTR3" or "ATM02," that is used by the XFS Manager and the service provider as a key to obtain the specific configuration information they need.

	HAPP hApp

The application handle to be associated with the session being opened. �See WFSCreateAppHandle and Sections 5.5 and 5.8.2 for details.

	LPSTR lpszAppID

Pointer to a null terminated string containing the application ID.

	DWORD dwTraceLevel

See WFPSetTraceLevel.

	DWORD dwTimeOut

Number of milliseconds to wait for completion (WFS_INDEFINITE_WAIT to implement a request that will wait until completion).

	HWND hWnd

The window handle which is to receive the completion message for this request.

	REQUESTID ReqID

Request identification number.

	HPROVIDER hProvider

Service provider handle supplied by the XFS Manager – used by the service provider to identify itself when calling the WFMReleaseDLL function.

	DWORD dwSPIVersionsRequired

Specifies the range of WOSA/XFS SPI versions that the XFS Manager can support. (See Comments.) The low-order word indicates the highest version the XFS Manager can support; the high-order word indicates the lowest version the XFS Manager can support. In each word, the low-order byte specifies the major version number and the high-order byte specifies the minor version number (i.e., the numbers before and after the decimal).

	LPWFSVERSION lpSPIVersion

Pointer to the data structure that is to receive SPI version support information and (optionally) other details about the SPI implementation (returned parameter).

	DWORD dwSrvcVersionsRequired

Service-specific interface versions required; see dwSPIVersionsRequired above, and WFSOpen.

	LPWFSVERSION lpSrvcVersion

Pointer to the service-specific interface implementation information; see lpSPIVersion above, and WFSOpen (returned parameter).

Mode	Asynchronous

Comments	This function establishes the connection between the XFS Manager and the service provider, including version negotiation and passing of implementation information, and initiates a session between the application and the service. This call is made by the XFS Manager each time any application issues a WFSOpen or WFSAsyncOpen call to the specified service (immediately after loading the service provider DLL, if it is not already loaded).

	In order to support future WOSA/XFS implementations with maximum flexibility, two version negotiations take place in WFPOpen. In the first, the XFS Manager specifies in the dwSPIVersionsRequired parameter the range of versions of the WOSA/XFS SPI specification which it can support. If the range of versions specified by the XFS Manager overlaps the range of versions that the service provider can support, the call succeeds. Otherwise the call fails.

	The WFSVERSION data structure (described in Appendix A) is used by the service provider to return the version of SPI support it expects the XFS Manager to use (the highest common version), as well as the lowest and highest versions it is capable of. In addition, this structure is used optionally by the XFS Manager to specify other information about the service provider implementation. If the call fails, WFSVERSION is still returned, to help with analysis of the failure.

	The version numbers refer to the SPI specification, specifically functions, parameters, data structures, error codes, and messages. If there are any changes to these, the version number should be changed.

	This version negotiation allows the XFS Manager and a service provider to operate successfully if there is any overlap in their versions. The following chart gives examples of how WFPOpen works in conjunction with different XFS Manager and service provider versions:

XFS Manager versions�Service Provider versions�Return status from WFPOpen�Result ��1.0�1.0�WFS_SUCCESS�use 1.0 ��1.0 - 2.0�1.0�WFS_SUCCESS�use 1.0 ��1.0�1.0 - 2.0�WFS_SUCCESS�use 1.0��1.0 - 3.0�1.0 - 3.0�WFS_SUCCESS�use 3.0 ��1.0�2.0 - 3.0�WFS_ERR_SPI_VER_TOO_LOW�fails��2.0 - 3.0�1.0�WFS_ERR_SPI_VER_TOO_HIGH�fails��

	The second negotiation is is in relation to the service-specific interface, between the application program and the service provider. See WFSOpen, Section 6.1.19, for details.

	Note that a version negotiation error also generates a system event (see Section 12.4).

	Also, see WFSStartUp, Section 6.1.24.

Messages	WFS_OPEN_COMPLETE

Error Codes	If the function return is not WFS_SUCCESS, WFSGetSCode(hResult) returns one of the following error conditions, indicating that the asynchronous operation was not initiated. Any service-specific errors that can be returned are defined in the specifications for each service class.

WFS_ERR_INTERNAL_ERROR

An internal inconsistency or other unexpected error occurred in the WOSA/XFS subsystem.

WFS_ERR_INVALID_HSERVICE

The hService parameter is not a valid service handle.

WFS_ERR_INVALID_HWND

The hWnd parameter is not a valid window handle.

WFS_ERR_INVALID_POINTER

A pointer parameter does not point to accessible memory.

WFS_ERR_INVALID_TRACELEVEL

The dwTraceLevel parameter does not correspond to a valid trace level or set of levels.

WFS_ERR_SPI_VER_TOO_HIGH

The range of versions of WOSA/XFS SPI support requested by the XFS Manager is higher than any supported by this particular service provider.

WFS_ERR_SPI_VER_TOO_LOW

The range of versions of WOSA/XFS SPI support requested by the XFS Manager is lower than any supported by this particular service provider.

WFS_ERR_SRVC_VER_TOO_HIGH

The range of versions of the service-specific interface support requested by the application is higher than any supported by the service provider for the logical service being opened.

WFS_ERR_SRVC_VER_TOO_LOW

The range of versions of the service-specific interface support requested by the application is lower than any supported by the service provider for the logical service being opened.

WFS_ERR_VERSION_ERROR_IN_SRVC

Within the service, a version mismatch of two modules occurred.

The following error conditions are returned via the asynchronous command completion message, by calling WFSGetSCode with the hResult from the WFSRESULT structure. The service-specific errors that can be returned are defined in the specifications for each service class.

WFS_ERR_CANCELED

The request was canceled by WFSCancelAsyncRequest.

WFS_ERR_INTERNAL_ERROR

An internal inconsistency or other unexpected error occurred in the WOSA/XFS subsystem.

WFS_ERR_TIMEOUT

The timeout interval expired.

WFS_ERR_VERSION_ERROR_IN_SRVC

Within the service, a version mismatch of two modules occurred.

�WFPRegister

HRESULT	WFPRegister(hService, dwEventClass, hWndReg, hWnd, ReqID)

Enables event monitoring for the specified service by the specified hWndReg; all events of the specified class(es) generate messages to the hWndReg.

Parameters	HSERVICE hService

Handle to the service provider.

	DWORD dwEventClass

The class(es) of events for which the application is registering. Specified as a set of bit masks that can be logically ORed together.

	HWND hWndReg

The window handle which is to be registered to receive the specified messages.

	HWND hWnd

The window handle which is to receive the completion message for this request.

	REQUESTID ReqID

Request identification number.

Mode	Asynchronous

Comments	WFPDeregister is used to cancel notifications. See WFSRegister, Section 6.###.

Messages	WFS_REGISTER_COMPLETE

Error Codes	If the function return is not WFS_SUCCESS, WFSGetSCode(hResult) returns one of the following error conditions, indicating that the asynchronous operation was not initiated. Any service-specific errors that can be returned are defined in the specifications for each service class.

WFS_ERR_INTERNAL_ERROR

An internal inconsistency or other unexpected error occurred in the WOSA/XFS subsystem.

WFS_ERR_INVALID_EVENT_CLASS

The dwEventClass parameter specifies one or more event classes not supported by the service.

WFS_ERR_INVALID_HSERVICE

The hService parameter is not a valid service handle.

WFS_ERR_INVALID_HWND

The hWnd parameter is not a valid window handle.

WFS_ERR_INVALID_HWNDREG

The hWndReg parameter is not a valid window handle.

The following error conditions are returned via the asynchronous command completion message, by calling WFSGetSCode with the hResult from the WFSRESULT structure. Any service-specific errors that can be returned are defined in the specifications for each service class.

WFS_ERR_CANCELED

The request was canceled by WFSCancelAsyncRequest.

WFS_ERR_INTERNAL_ERROR

An internal inconsistency or other unexpected error occurred in the WOSA/XFS subsystem.

�WFPSetTraceLevel

HRESULT	WFPSetTraceLevel(hService, dwTraceLevel)

Sets the specified trace level(s) at run time, in and/or below the service provider. See WFMSetTraceLevel.

Parameters	HSERVICE hService

Handle to the service provider.

	DWORD dwTraceLevel

The level(s) of tracing being requested. See below.

Mode	Immediate

Comments	Issuing WFPSetTraceLevel for a service enables tracing on that service at various levels. The predefined trace levels that can be used in this function, with their meanings to the service provider, are as follows (see WFMSetTraceLevel for the API and support function trace levels):

	WFS_TRACE_SPI	0x00000004

	Trace all the SPI calls to the service provider, and notification and event messages generated by the service provider, that are associated with the specified hService.

	WFS_TRACE_ALL_SPI	0x00000008

	Trace all SPI, notification and event activity of the service provider (the hService parameter is not relevant to this trace level).

	Other standard trace levels may be defined in the future, and a range of trace level values (the high order 16 bits of this parameter) is reserved for use by individual service providers. Example of other functions that may be traced include network messages, interactions between the service provider and service, and device interface interaction.

	Trace level values can be ORed together in a single dwTraceLevel parameter to request more than one kind of tracing be started. A NULL value stops all tracing in the service provider.

	If more than one process may be using the trace facility, this function should always be preceded with the WFMGetTraceLevel function. This value returned by this function is ORed together with the new trace level(s), and the resulting value is used with WFMSetTraceLevel, thus adding the new trace level(s) to whatever the existing trace level(s) had been,

	This function has the highest priority to the service provider; it activates the trace as soon as possible.

	WFPOpen also includes an option to set these trace levels, to allow the open process itself to be traced.

Error Codes	If the function return is not WFS_SUCCESS, WFSGetSCode(hResult) returns one of the following error conditions:

WFS_ERR_INTERNAL_ERROR

An internal inconsistency or other unexpected error occurred in the WOSA/XFS subsystem.

WFS_ERR_INVALID_HSERVICE

The hService parameter is not a valid service handle.

WFS_ERR_INVALID_TRACELEVEL

The dwTraceLevel parameter does not correspond to a valid trace level or set of levels.

WFS_ERR_NOT_STARTED

The application has not previously performed a successful WFSStartUp.

WFS_ERR_OP_IN_PROGRESS

A blocking operation is in progress on the thread; only WFSCancelBlockingCall and WFSIsBlocking are permitted at this time.

See Also	WFMGetTraceLevel, WFSOpen, WFSAsyncOpen

�WFPUnloadService

HRESULT	WFPUnloadService()

Asks the called service provider whether it is OK for the XFS Manager to unload the service provider’s DLL.

Parameters	None

Mode	Immediate

Comments	This function is issued after the XFS Manager has received a WFMReleaseDLL request from the service provider or during the processing of the WFSCleanUp command. The service provider returns WFS_SUCCESS only if it has fully “cleaned up,” i.e., has freed any resources it has allocated, has no separate threads running, etc. If this is not true, it returns the error below, and initiates or continues the clean up process.

Error Codes	If the function return is not WFS_SUCCESS, WFSGetSCode(hResult) returns one of the following error conditions:

WFS_ERR_NOT_OK_TO_UNLOAD

The XFS Manager may not unload the service provider DLL at this time. It will repeat this request to the service provider until the return is WFS_SUCCESS, or until a new session is started by an application with this service provider.

�WFPUnlock

HRESULT	WFPUnlock(hService, hWnd, ReqID)

Releases a service that has been locked by a previous WFPLock function.

Parameters	HSERVICE hService

Handle to the service provider

	HWND hWnd

The window handle which is to receive the completion message for this request.

	REQUESTID ReqID

Request identification number.

Mode	Asynchronous

Comments	See WFPLock, WFSLock, WFSUnlock and Section 5.9.

Messages	WFS_UNLOCK_COMPLETE

Error Codes	If the function return is not WFS_SUCCESS, WFSGetSCode(hResult) returns one of the following error conditions, indicating that the asynchronous operation was not initiated. Any service-specific errors that can be returned are defined in the specifications for each service class.

WFS_ERR_INTERNAL_ERROR

An internal inconsistency or other unexpected error occurred in the WOSA/XFS subsystem.

WFS_ERR_INVALID_HSERVICE

The hService parameter is not a valid service handle.

WFS_ERR_INVALID_HWND

The hWnd parameter is not a valid window handle.

The following error conditions are returned via the asynchronous command completion message, by calling WFSGetSCode with the hResult from the WFSRESULT structure. Any service-specific errors that can be returned are defined in the specifications for each service class.

WFS_ERR_CANCELED

The request was canceled by WFSCancelAsyncRequest.

WFS_ERR_INTERNAL_ERROR

An internal inconsistency or other unexpected error occurred in the WOSA/XFS subsystem.

WFS_ERR_NOT_LOCKED

The service to be unlocked is not locked under the calling hService.

Support Functions

Support functions are services of the XFS Manager used by service providers and applications. All the functions are immediate, since they are completely processed inside the XFS Manager, or use only immediate functions of the service providers.

WFMAllocateBuffer

HRESULT	WFMAllocateBuffer(ulSize, ulFlags, lppvData)

Allocates a memory buffer for the service provider in which to return results.

Parameters	ULONG ulSize

Size (in bytes) of the memory to be allocated.

	ULONG ulFlags

Flags, see comments below.

	LPVOID * lppvData

Address of the variable in which the XFS Manager will place the pointer to the allocated memory.

Comments	A service provider must use this call when creating data structures for the XFS Manager or an application to use, and may use it when allocating memory for its own private use. The flags can be ORed together, and specify:

WFS_MEM_SHARE		Allocates shareable memory.

WFS_MEM_ZEROINIT	Initializes memory contents to zero (not required in 32 bit Windows).

	The application, XFS Manager or service provider then must, in turn, use the WFSFreeResult or WFMFreeBuffer functions to deallocate the memory.

Error Codes	If the function return is not WFS_SUCCESS, WFSGetSCode(hResult) returns one of the following error conditions:

WFS_ERR_INVALID_POINTER

A pointer parameter does not point to accessible memory.

WFS_ERR_OUT_OF_MEMORY

There is not enough memory available to satisfy the request.

See also	WFMAllocateMore, WFMFreeBuffer, WFSFreeResult and Section 5.13.

�WFMAllocateMore

HRESULT	WFMAllocateMore(ulSize, lpvOriginal, lppvData)

Allocates a memory buffer, linking it to an previously allocated one.

Parameters	ULONG ulSize

Size (in bytes) of the memory to be allocated

	LPVOID lpvOriginal

Address of the original buffer to which the newly allocated buffer should be linked

	LPVOID * lppvData

Address of the variable in which the XFS Manager will place the pointer to the newly allocated memory.

Comments	This function allocates an additional memory buffer and link it to one previously allocated by WFMAllocateBuffer. The returned buffer has the same properties as the previous buffer (i.e., the WFS_MEM_SHARE and WFS_MEM_ZEROINIT flags) and it can be freed only by freeing the original buffer (using WFMFreeBuffer or WFSFreeResult).

Error Codes	If the function return is not WFS_SUCCESS, WFSGetSCode(hResult) returns one of the following error conditions:

WFS_ERR_INVALID_ADDRESS

The lpvOriginal parameter does not point to a previously allocated buffer.

WFS_ERR_INVALID_POINTER

A pointer parameter does not point to accessible memory.

WFS_ERR_OUT_OF_MEMORY

There is not enough memory available to satisfy the request.

See also	WFMAllocateBuffer, WFMFreeBuffer, WFSFreeResult and Section 5.13.

WFMFreeBuffer

HRESULT	 WFMFreeBuffer(lpvData)

Releases the memory buffer(s) allocated by WFMAllocateBuffer and WFMAllocateMore.

Parameters	LPVOID lpvData

Address of the memory buffer to free.

Comments	See WFMAllocateBuffer and WFSFreeResult. This function frees a set of one or more linked buffers, as does the WFSFreeResult API function, except that it is used by service providers to free memory that they have allocated for "private" use, via the WFMAllocateBuffer and WFMAllocateMore functions.

Error Codes	If the function return is not WFS_SUCCESS, WFSGetSCode(hResult) returns one of the following error conditions:

WFS_ERR_INVALID_BUFFER

The lpvData parameter is not a pointer to an allocated buffer structure.

WFS_ERR_INVALID_POINTER

A pointer parameter does not point to accessible memory.

See also	WFMAllocateBuffer, WFMAllocateMore, WFSFreeResult and Section 5.13.

�WFMGetTraceLevel

HRESULT	WFMGetTraceLevel(hService, lpdwTraceLevel)

Returns the trace level associated with the specified hService (at run time). See WFMSetTraceLevel.

Parameters	HSERVICE hService

Handle to the service provider as returned by WFSOpen or WFSAsyncOpen.

	LPDWORD lpdwTraceLevel

Pointer to the value defining the current trace level (returned parameter).

Mode	Immediate

Comments	This function returns the current tracing levels in the XFS Manager and the service provider specified by hService. See WFMSetTraceLevel.

Error Codes	If the function return is not WFS_SUCCESS, WFSGetSCode(hResult) returns one of the following error conditions:

WFS_ERR_INVALID_HSERVICE

The hService parameter is not a valid service handle.

WFS_ERR_INVALID_POINTER

A pointer parameter does not point to accessible memory.

WFS_ERR_NOT_STARTED

The application has not previously performed a successful WFSStartUp.

WFS_ERR_OP_IN_PROGRESS

A blocking operation is in progress on the thread; only WFSCancelBlockingCall and WFSIsBlocking are permitted at this time.

See Also	WFMSetTraceLevel, WFSOpen, WFSAsyncOpen

WFMKillTimer

HRESULT	WFMKillTimer(wTimerID)

Cancels the timer identified by the wTimerID parameter. Any pending WFS_TIMER_EVENT message associated with the timer is removed from the message queue.

Parameters	WORD wTimerID

ID of the timer to be canceled.

Comments	See WFMSetTimer.

Error Codes	If the function return is not WFS_SUCCESS, WFSGetSCode(hResult) returns the following error condition:

WFS_ERR_INVALID TIMER

The usTimerID parameter does not correspond to a currently active timer.

WFMMakeResult

HRESULT	WFMMakeResult(SCode)

Generates a result handle to be used to report the status of a call to a WOSA/XFS API, SPI or XFS Manager function.

Parameters	SCODE SCode

The Scode value defining the error being reported.

Comments	Returns the result handle (hResult) to be used to retrieve the specified SCode value. See Section 5.10. This function is provided for upward compatibility to future implementations of WOSA/XFS.

Error Codes	[None]

WFMOutputTraceData

HRESULT	 WFMOutputTraceData(lpszData)

Requests the XFS Manager to output the specified data to the current trace destination.

Parameters	LPSTR lpszData

Pointer to a null-terminated string containing the trace data.

Comments	Normally used by a service provider that has been requested via WFMSetTraceLevel to trace its operation. The XFS Manager adds standard header information (timestamp, etc.) to the data before writing it to the trace stream. Note that the XFS Manager also writes data to the trace stream if the appropriate trace level(s) have been requested.

Error Codes	If the function return is not WFS_SUCCESS, WFSGetSCode(hResult) returns the following error condition:

WFS_ERR_INVALID_POINTER

A pointer parameter does not point to accessible memory.

�WFMReleaseDLL

HRESULT	WFMReleaseDLL(hProvider)

Notifies the XFS Manager that the service provider is available to be unloaded from memory.

Parameters	HPROVIDER hProvider

Handle to the service provider, obtained from the XFS Manager in the WFPOpen call.

Comments	This function initiates the process in which the service provider is unloaded from memory by the XFS Manager. However, note that the Manager must issue the WFPUnloadService function to the service provider before it actually unloads the service provider DLL. The recommended procedure is as follows:

The service provider finishes processing the WFPClose for its last open session

The SP does appropriate cleanup (deallocating memory, killing separate threads, etc.)

The SP posts the WFS_CLOSE_COMPLETE message for the final close

The SP calls WFMReleaseDLL, and after the return from this call, does nothing other than return from the procedure that called WFMReleaseDLL

The XFS Manager calls WFPUnloadService, verifying that the SP is in fact still ready to be unloaded

If the SP says OK, the XFS Manager unloads the SP DLL

Error Codes	If the function return is not WFS_SUCCESS, WFSGetSCode(hResult) returns the following error condition:

WFS_ERR_INVALID_HPROVIDER

The hProvider parameter is not a valid provider handle.

�WFMSetTimer

HRESULT	 WFMSetTimer(hWnd, lpContext, dwTimeVal, lpwTimerID)

Starts a system timer.

Parameters	HWND hWnd

The window to which the requested timer message is to be posted.

	LPVOID lpContext

Context pointer supplied by the service provider requesting the timer; may be NULL.

	DWORD dwTimeVal

Timer value (in milliseconds).

	LPWORD lpwTimerID

Pointer to the timer identifier (returned parameter).

Comments	The WFMSetTimer function requests the XFS Manager to start a system timer with the specified time value; when that time interval expires, the XFS Manager posts a WFS_TIMER_EVENT message to the specified hWnd, containing the wTimerID value and the lpContext pointer.

Error Codes	If the function return is not WFS_SUCCESS, WFSGetSCode(hResult) returns one of the following error conditions:

WFS_ERR_INVALID_HWND

The hWnd parameter is not a valid window handle.

WFS_ERR_INVALID_POINTER

A pointer parameter does not point to accessible memory.

�WFMSetTraceLevel

HRESULT	WFMSetTraceLevel(hService, dwTraceLevel)

Sets the specified trace level(s) at run time; to be used for debugging and testing purposes.

Parameters	HSERVICE hService

Handle to the service provider as returned by WFSOpen or WFSAsyncOpen.

	DWORD dwTraceLevel

The level(s) of tracing being requested. See below.

Mode	Immediate

Comments	Issuing WFMSetTraceLevel for a service enables tracing on that service at various levels. Five standard trace levels are predefined:

	WFS_TRACE_API	0x00000001

	Trace all input and output parameters of all API function calls using the specified hService.

	WFS_TRACE_ALL_API	0x00000002

	Trace all input and output parameters of all API function calls associated with the service provider identified by the specified hService, not just the ones associated with the specified hService.

	WFS_TRACE_SPI	0x00000004

	Trace all input and output parameters of all SPI function calls associated with the specified hService, as well as all notification and event messages generated by the service provider for the hService.

	WFS_TRACE_ALL_SPI	0x00000008

	As for WFS_TRACE_ALL_API, but trace all SPI, notification and event activity on the service provider, not just that associated with the specified hService.

	WFS_TRACE_MGR	0x00000010

	Trace the support functions (WFMxxxxx) of the XFS Manager.

	Other standard trace levels may be defined in the future, and a range of trace level values (the high order 16 bits of this parameter) is reserved for use by individual service providers. Examples of other functions that may be traced include network messages, interactions between the service provider and service, and device interface interaction.

	Trace level values can be ORed together in a single dwTraceLevel parameter to request more than one kind of tracing be started. A NULL value stops all tracing.

	If more than one process may be using the trace facility, this function should always be preceded with a call to the WFMGetTraceLevel function. This value returned by this function is ORed together with the new trace level(s), and the resulting value is used with WFMSetTraceLevel, thus adding the new trace level(s) to whatever the existing trace level(s) had been,

	This function has the highest priority to the XFS Manager and the service provider; they activate the trace as soon as possible. Note that the XFS Manager performs all the traces defined above, other than the completion and event messages posted by the service providers.

	WFSOpen and WFSAsyncOpen also include an option to set these trace levels, to allow the open process itself to be traced.

Error Codes	If the function return is not WFS_SUCCESS, WFSGetSCode(hResult) returns one of the following error conditions:

WFS_ERR_INVALID_HSERVICE

The hService parameter is not a valid service handle.

WFS_ERR_INVALID_TRACELEVEL

The dwTraceLevel parameter does not correspond to a valid trace level or set of levels.

WFS_ERR_NOT_STARTED

The application has not previously performed a successful WFSStartUp.

WFS_ERR_OP_IN_PROGRESS

A blocking operation is in progress on the thread; only WFSCancelBlockingCall and WFSIsBlocking are permitted at this time.

See Also	WFMGetTraceLevel, WFPSetTraceLevel, WFSOpen, WFSAsyncOpen

Configuration Functions

See Section 5.7 for the overall discussion of configuration information. The configuration functions are used by service providers and applications to write and retrieve the configuration information for a WOSA/XFS subsystem, which is stored in a hierarchical structure called the XFS configuration registry. The structure and the functions are based on the Win32 Registry architecture and API functions, and are implemented in Windows NT and future versions of Windows using the Registry and the associated functions. For Win32s-based implementations on Windows 3.1 and Windows for Workgroups, a subset of the functionality described here will be available; see the SDK for the definition of this subset.

The logical structure of the configuration information is shown below. A logical service key has three mandatory values:

class	the service class of the logical service; the standard values are:�		PTR	Printer�		IDC	ID card (magnetic stripe) reader/writer�		CDM	Cash dispenser module�		PIN	Personal identification number (PIN) keypad�		CHK	Check reader/scanner�	See Section 7 for descriptions of these service classes and their functionality.

type	the service type of the logical service; the standard values are in the SDK

provider	the name of the service provider that provides the logical service �	 (the key name of the corresponding service provider key)

A service provider key also has three mandatory values:

dll_name	the name of the file containing the service provider DLL

vendor_name	the name of the supplier of this service provider

version	the version number of this service provider

WOSA/XFS Registry Root	Second Level Keys	Third Level Keys	Values

WFS_CFG_HKEY_XFS_ROOT

	XFS_MANAGER

		< values and/or keys as required >

	LOGICAL_SERVICES		

��		<Logical Service Name>	

			class=<service class>

			type=<service type>

			provider=<provider name>

			< optional values >

	

�	SERVICE_PROVIDERS		

�		<Provider Name>	

			dll_name=< DLL name>

			vendor_name=<vendor name>

			version=<version>

			< optional values >

	< other keys >		

WFMCloseKey

HRESULT 	WFMCloseKey (hKey)

Closes the specified key.

Parameters	HKEY hKey

Handle to the currently open key that is to be closed.

Comments	The hkey handle can not be used after it has been closed, because it will no longer be valid. Note that it is not valid to close the XFS root key (WFS_CFG_HKEY_XFS_ROOT).

Error Codes	If the function return is not WFS_SUCCESS, WFSGetSCode(hResult) returns the following error condition:

WFS_ERR_CFG_INVALID_HKEY

The specified hKey parameter does not correspond to a currently open key, or it is the XFS root.

WFMCreateKey

HRESULT 	WFMCreateKey (hKey, lpszSubKey, phkResult, lpdwDisposition)

Creates a new key, or if the specified key exists, opens it.

Parameters	HKEY hKey

Handle to a currently open key, or the predefined handle value:�	WFS_CFG_HKEY_XFS_ROOT�The key opened or created by this function is a subkey of the key identified by this parameter.

	LPSTR lpszSubKey

Pointer to a null-terminated string containing the name of the key to be created or opened.

	PHKEY phkResult	

Pointer to a variable that receives the handle of the created or opened key.

	LPDWORD lpdwDisposition

Pointer to a variable that receives one of the disposition values:�	WFS_CFG_CREATED_NEW_KEY�	WFS_CFG_OPENED_EXISTING_KEY

Comments	If this function creates a new key, it has no values. The WFMSetValue function is used to create values.

Error Codes	If the function return is not WFS_SUCCESS, WFSGetSCode(hResult) returns one of the following error conditions:

WFS_ERR_CFG_INVALID_HKEY

The specified hKey parameter does not correspond to a currently open key.

WFS_ERR_INVALID_POINTER

A pointer parameter does not point to accessible memory.

WFMDeleteKey

HRESULT 	WFMDeleteKey (hKey, lpszSubKey)

Deletes the specified key. This function cannot delete a key that has subkeys.

Parameters	HKEY hKey

Handle to a currently open key, or the predefined handle value:�	WFS_CFG_HKEY_XFS_ROOT�The key specified by the lpszSubKey parameter must be a subkey of the key identified by this parameter.

	LPSTR lpszSubKey

Pointer to a null-terminated string specifying the name of the key to be deleted.

Comments	If this function succeeds, the specified key is removed from the configuration information. The entire key, including all its values, is removed.

Error Codes	If the function return is not WFS_SUCCESS, WFSGetSCode(hResult) returns one of the following error conditions.

WFS_ERR_CFG_INVALID_HKEY

The specified hKey parameter does not correspond to a currently open key.

WFS_ERR_CFG_INVALID_SUBKEY

The key specified by lpszSubKey does not exist.

WFS_ERR_CFG_KEY_NOT_EMPTY

The specified key has subkeys and cannot be deleted. The subkeys must be deleted first.

WFS_ERR_INVALID_POINTER

A pointer parameter does not point to accessible memory.

WFMDeleteValue

HRESULT 	WFMDeleteValue (hKey, lpszValue)

Deletes the specified value (both name and data).

Parameters	HKEY hKey

Handle to a currently open key, or the predefined handle value:�	WFS_CFG_HKEY_XFS_ROOT

	LPSTR lpszValue

Pointer to a null-terminated string specifying the name of the value to be deleted.

Comments	The specified value is removed from the specified open key. The WFMSetValue function is used to create or modify values.

Error Codes	If the function return is not WFS_SUCCESS, WFSGetSCode(hResult) returns one of the following error conditions.

WFS_ERR_CFG_INVALID_HKEY

The specified hKey parameter does not correspond to a currently open key.

WFS_ERR_CFG_INVALID_VALUE

The specified value does not exist within the specified open key.

WFS_ERR_INVALID_POINTER

A pointer parameter does not point to accessible memory.

WFMEnumKey

HRESULT 	WFMEnumKey (hKey, iSubKey, lpszName, lpcchName, lpftLastWrite)

Enumerates the subkeys of the specified open key. Retrieves information about one subkey each time it is called.

Parameters	HKEY hKey

Handle to a currently open key, or the predefined handle value:�	WFS_CFG_HKEY_XFS_ROOT�The keys enumerated by this function are subkeys of the key identified by this parameter.

	DWORD iSubKey

The index of the subkey to retrieve. This parameter should be zero for the first call to this function, then incremented for each subsequent call, in order to enumerate all the subkeys of the specified open key.

Because subkeys are not ordered, any new subkey will have an arbitrary index. This means that the function may return subkeys in any order.

	LPSTR lpszName	

Pointer to a buffer that receives the name of the subkey, including the terminating null character.

	LPDWORD lpcchName

Pointer to a variable that specifies the size, in characters, of the buffer specified by the lpszName parameter, including the terminating null character. When the function returns, this variable contains the the number of characters actually stored in the buffer, not including the terminating null character.

	PFILETIME lpftLastWrite

Pointer to a variable that receives the time the enumerated subkey was last written to, in the form of a FILETIME structure (see Microsoft Win32 Programmer's Reference, Vol. 5):

typedef struct _FILETIME {�	DWORD dwLowDateTime;�	DWORD dwHighDateTime;�} FILETIME;

Comments	While a program is using this function iteratively, it should not call any other configuration functions that would change the key being enumerated.

Error Codes	If the function return is not WFS_SUCCESS, WFSGetSCode(hResult) returns one of the following error conditions.

WFS_ERR_CFG_INVALID_HKEY

The specified hKey parameter does not correspond to a currently open key.

WFS_ERR_CFG_NO_MORE_ITEMS

There are no more subkeys to be returned (the iSubKey parameter is greater than the index of the last subkey).

WFS_ERR_CFG_NAME_TOO_LONG

The length of the name to be returned exceeds the length of the buffer.

WFS_ERR_INVALID_POINTER

A pointer parameter does not point to accessible memory.

WFMEnumValue

HRESULT 	WFMEnumValue (hKey, iValue, lpszValue, lpcchValue, lpszData, lpcchData)

Enumerates the values of the specified open key. Retrieves the name and data for one value each time it is called.

Parameters	HKEY hKey

Handle to a currently open key, or the predefined handle value:�	WFS_CFG_HKEY_XFS_ROOT�The value enumerated by this function is a value of the key identified by this parameter.

	DWORD iValue

The index of the value to retrieve. This parameter should be zero for the first call to this function, then incremented for each subsequent call, in order to enumerate all the values of the specified open key.

Because values are not ordered, any new value will have an arbitrary index. This means that the function may return values in any order.

	LPSTR lpszValue	

Pointer to a buffer that receives the name of the value, including the terminating null character.

	LPDWORD lpcchValue

Pointer to a variable that specifies the size, in characters, of the buffer pointed to by the lpszValue parameter. This size should include the terminating null character. When the function returns, this variable contains the the number of characters actually stored in the buffer, not including the terminating null character.

	LPSTR lpszData	

Pointer to a buffer that receives the data for the value entry, including the terminating null character. This parameter can be NULL, if the data is not required.

	LPDWORD lpcchData

Pointer to a variable that specifies the size, in characters, of the buffer pointed to by the lpszData parameter, including the terminating null character. When the function returns, this variable contains the the number of characters actually stored in the buffer, not including the terminating null character. Ignored if lpszData is NULL.

Comments	While a program is using this function iteratively, it should not call any other configuration functions that would change the key being queried.

Error Codes	If the function return is not WFS_SUCCESS, WFSGetSCode(hResult) returns one of the following error conditions.

WFS_ERR_CFG_INVALID_HKEY

The specified hKey parameter does not correspond to a currently open key.

WFS_ERR_CFG_NO_MORE_ITEMS

There are no more values to be returned (the iValue parameter is greater than the index of the last value).

WFS_ERR_CFG_NAME_TOO_LONG

The length of the name to be returned exceeds the length of the buffer.

WFS_ERR_CFG_VALUE_TOO_LONG

The length of the value to be returned exceeds the length of the buffer.

WFS_ERR_INVALID_POINTER

A pointer parameter does not point to accessible memory.

WFMOpenKey

HRESULT 	WFMOpenKey (hKey, lpszSubKey, phkResult)

Opens the specified key.

Parameters	HKEY hKey

Handle to a currently open key, or the predefined handle value:�	WFS_CFG_HKEY_XFS_ROOT�The key opened by this function is a subkey of the key identified by this parameter.

	LPSTR lpszSubKey

Pointer to a null-terminated string containing the name of the key to be opened. If this parameter is NULL, or points to an empty string, the function opens another handle to the key identified by the hKey parameter (and does not close any previously opened handles).

	PHKEY phkResult

Pointer to a variable that receives the handle of the opened key.

Comments	In contrast with the WFMCreateKey function, this function does not create the specified key if it does not exist.

Error Codes	If the function return is not WFS_SUCCESS, WFSGetSCode(hResult) returns one of the following error conditions.

WFS_ERR_CFG_INVALID_HKEY

The specified hKey parameter does not correspond to a currently open key.

WFS_ERR_CFG_INVALID_SUBKEY

The key specified by lpszSubKey does not exist.

WFS_ERR_INVALID_POINTER

A pointer parameter does not point to accessible memory.

WFMQueryValue

HRESULT 	WFMQueryValue (hKey, lpszValueName, lpszData, lpcchData)

Retrieves the data for the value with the specified name, within the specified open key.

Parameters	HKEY hKey

Handle to a currently open key, or the predefined handle value:�	WFS_CFG_HKEY_XFS_ROOT�The value data returned is within the key identified by this parameter.

	LPSTR lpszValueName

Pointer to a null-terminated string containing the name of the value being queried.

	LPSTR lpszData

Pointer to a buffer that receives the data for the value entry, including the terminating null character.

	LPDWORD lpcchData

Pointer to a variable that specifies the size, in characters, of the buffer pointed to by the lpszData parameter, including the terminating null character. When the function returns, this variable contains the the number of characters actually stored in the buffer, not including the terminating null character.

Comments	

Error Codes	If the function return is not WFS_SUCCESS, WFSGetSCode(hResult) returns one of the following error conditions.

WFS_ERR_CFG_INVALID_HKEY

The specified hKey parameter does not correspond to a currently open key.

WFS_ERR_CFG_INVALID_NAME

The value specified by the lpszValueName parameter does not exist in the specified key.

WFS_ERR_CFG_VALUE_TOO_LONG

The length of the value to be returned exceeds the length of the buffer.

WFS_ERR_INVALID_POINTER

A pointer parameter does not point to accessible memory.

WFMSetValue

HRESULT 	WFMSetValue (hKey, lpszValueName, lpszData, cchData)

Stores data in the specified value of the specified key. If the value does not exist, it is created.

Parameters	HKEY hKey

Handle to a currently open key, or the predefined handle value:�	WFS_CFG_HKEY_XFS_ROOT�The value set or created is within the key identified by this parameter.

	LPSTR lpszValueName

Pointer to a null-terminated string containing the name of the value being set. If a value with this name does not already exist in the specified key, it is added to the key.

	LPSTR lpszData

Pointer to a buffer containing the data (a null-terminated character string) to be stored with the specified value name.

	DWORD cchData

The size, in characters, of the string pointed to by the lpszData parameter, including the terminating null character.

Comments	Value lengths are limited by available memory. Long values (more than 2048 bytes) should be stored as files with the filenames stored in the configuration information.

Error Codes	If the function return is not WFS_SUCCESS, WFSGetSCode(hResult) returns one of the following error conditions.

WFS_ERR_CFG_INVALID_HKEY

The specified hKey parameter does not correspond to a currently open key.

WFS_ERR_INVALID_POINTER

A pointer parameter does not point to accessible memory.

�Appendix A - Data Structures

A.1	WFSRESULT

This structure has three functions:

�symbol 183 \f "Symbol" \s 10 \h��	It is the parameter which returns the results of the synchronous WFSLock, WFSExecute and WFSGetInfo commands.

�symbol 183 \f "Symbol" \s 10 \h��	It is pointed to by all command completion messages, and delivers completion status (as a result handle) and results data (if any) for all asynchronous API and SPI calls.

�symbol 183 \f "Symbol" \s 10 \h��	It is pointed to by all event notification messages to deliver their contents.

Note that even though in many cases one or more members of this structure are not used, the adoption of a single, standard structure for request results simplifies the implementation and maintenance of applications, service providers and the XFS Manager itself.

typedef struct _wfs_result {

	REQUESTID	RequestID;

	HSERVICE	hService;

	TIMESTAMP	tsTimestamp;

	HRESULT	hResult;

	union {

		DWORD		dwCommandCode;

		DWORD		dwEventID;

	} u;

	LPVOID		lpBuffer;

} WFSRESULT, * LPWFSRESULT;

The members of this structure are:

Field	Description	

RequestID	Request ID of the completed command; not used for event notifications

hService	Service handle identifying the session that created the result

tsTimestamp	Time the event occurred (local time, in a Win32 SYSTEMTIME structure)

hResult	Result handle (note that for synchronous WFSExecute and WFSGetInfo commands, this value is identical to the synchronous function return value)

u.dwCommandCode	WFSExecute “command” code or WFSGetInfo “category” code; not used for other command completions

u.dwEventID	ID of the event (for unsolicited events)

lpBuffer	Pointer to the results of the command (if any) or the contents of the event notification

�A.2	WFSVERSION

This structure is used to return version information from WFSStartUp, WFSOpen and WFPOpen.

typedef struct _wfsversion {

	WORD 		wVersion;

	WORD 		wLowVersion;

	WORD 		wHighVersion;

	char 		szDescription[WFSDDESCRIPTION_LEN+1];

	char 		szSystemStatus[WFSDSYSSTATUS_LEN+1];

} WFSVERSION, *LPWFSVERSION;

The members of this structure are (note that this structure is used to report version information for three distinct WOSA/XFS interfaces: API, SPI, and the service-specific interface):

Element	Usage

wVersion	The version number to be used.

wLowVersion	The lowest version number that the called DLL can support.

wHighVersion	The highest version number that the called DLL can support.

szDescription	A null-terminated ASCII string into which the called DLL copies a description of the implementation. The text (up to 256 characters in length) may contain any characters: the most likely use that an application will make of this is to display it (possibly truncated) in a status message.

szSystemStatus 	A null-terminated ASCII string into which the called DLL copies relevant status or configuration information. Not to be considered as an extension of the szDescription field. Used only if the information might be useful to the user or support staff.

Appendix B - Messages

This section defines the Windows messages used in the WOSA/XFS subsystem.

B.1	Command Completions and Events

The following messages are sent to indicate:

�symbol 183 \f "Symbol" \s 10 \h��	the completion of an asynchronous command, or

�symbol 183 \f "Symbol" \s 10 \h��	the occurrence of an unsolicited event (execute, service, user, or system events).

All these messages have the same definition: �	wParam: 	not used�	lParam: 	points to a WFSRESULT data structure

WFS_<message_name>

wParam; /* not used */

lParam = LPWFSRESULT lpWFSResult;

B.1.1	Command Completion Messages

WFS_OPEN_COMPLETE

WFS_CLOSE_COMPLETE

WFS_LOCK_COMPLETE

WFS_UNLOCK_COMPLETE

WFS_REGISTER_COMPLETE

WFS_DEREGISTER_COMPLETE

WFS_GETINFO_COMPLETE

WFS_EXECUTE_COMPLETE

B.1.2	Event Messages

WFS_EXECUTE_EVENT

WFS_SERVICE_EVENT

WFS_USER_EVENT

WFS_SYSTEM_EVENT

B.2	Timer Events

The timer event message has the following format (see WFMSetTimer, WFMKillTimer):

WFS_TIMER_EVENT

wParam = wTimerID;	/* timer ID returned by the WFMSetTimer function */

lParam = lpContext;	/* context pointer supplied by the service provider */

							/* that requested the timer; may be NULL */

�B.3	Device Status Changes

Status changes of physical devices are reported as system events. This is in addition to being reported by the WFS_INF_xxx_STATUS query of the WFSGetInfo or WFSAsyncGetInfo functions. The WFSRESULT data structure (defined in Appendix A) is utilized as follows:

Field	Description	

RequestID	(not used)

hService	(not used)

tsTimestamp	Time the status change occurred (local time, in a Win32 SYSTEMTIME structure)

hResult	(not used)

u.dwEventID	= WFS_SYSE_DEVICE_STATUS

lpBuffer	Pointer to a WFSDEVSTATUS structure:

typedef struct	wfs_devstatus {

	LPSTR			lpszLogicalName;

	LPSTR			lpszWorkstationName;

	DWORD			dwState;

} WFSDEVSTATUS, * LPWFSDEVSTATUS;

The members of this structure are:

Field	Description	

lpszLogicalName	Pointer to the logical service name of the service that changed its state.

lpszWorkstationName	Pointer to the name of the workstation in which the logical service name is defined.

dwState	Specifies the new state of the physical device managed by the service as one of the following flags:

Value	Meaning

WFS_STAT_DEVONLINE	The device is online.

WFS_STAT_DEVOFFLINE	The device is offline.

WFS_STAT_DEVPOWEROFF	The device is powered off.

WFS_STAT_DEVNODEVICE	There is no device connected.

WFS_STAT_DEVHWERROR	The device is inoperable due to a hardware error.

�B.4	Undeliverable Messages

If a command completion or event message cannot be delivered, it is reported as a system event. The WFSRESULT data structure (defined in Appendix A) is utilized as follows:

Field	Description	

RequestID	(not used)

hService	Service handle identifying the session associated with the completion or event

tsTimestamp	Time the event occurred (local time, in a Win32 SYSTEMTIME structure)

hResult	(not used)

u.dwEventID	= WFS_SYSE_UNDELIVERABLE_MSG

lpBuffer	Pointer to a WFSUNDEVMSG structure:

typedef struct _wfs_undevmsg {

	LPSTR			lpszLogicalName;

	LPSTR			lpszWorkstationName;

	LPSTR			lpszAppID;

	DWORD			dwSize;

	LPBYTE			lpbDescription;

	DWORD			dwMsg;

	LPWFSRESULT	lpWFSResult;

} WFSUNDEVMSG, * LPWFSUNDEVMSG;

The members of this structure are:

Field	Description	

lpszLogicalName	Pointer to the logical service name of the service that generated the original undeliverable message

lpszWorkstationName	Pointer to the the name of the workstation in which the logical service name is defined

lpszAppID	Pointer to the the application ID associated with the session that generated the original message

dwSize	The size in bytes of the following description

lpbDescription	Pointer to a vendor-specific description of the reason why the message could not be delivered

dwMsg	The message identifier of the original message

lpWFSResult	Pointer to the WFSRESULT structure of the original message (which has the lpBuffer parameter set to NULL)

�B.5	Hardware Errors

Hardware errors are reported as system events. In most cases, this is in addition to being reported via the WFS_ERR_HARDWARE_ERROR error code that is returned when a hardware error occurs in the course of executing a function. The WFSRESULT data structure (defined in Appendix A), is utilized as follows:

Field	Description	

RequestID	Request ID of the request being processed when the error occurred (if any)

hService	Service handle identifying the session associated with the error (if any)

tsTimestamp	Time the error occurred (local time, in a Win32 SYSTEMTIME structure)

hResult	Result handle of the request being processed when the error occurred (if any)

u.dwEventID	= WFS_SYSE_HARDWARE_ERROR

lpBuffer	Pointer to a WFSHWERROR structure:

typedef struct _wfs_hwerror {

	LPSTR			lpszLogicalName;

	LPSTR			lpszWorkstationName;

	LPSTR			lpszAppID;

	DWORD			dwSize;

	LPBYTE			lpbDescription;

} WFSHWERROR, * LPWFSHWERROR;

The members of this structure are:

Field	Description	

lpszLogicalName	Pointer to the logical service name of the service that generated the hardware error (if any)

lpszWorkstationName	Pointer to the the name of the workstation in which the logical service name is defined (if any)

lpszAppID	Pointer to the application ID associated with the session that generated the error (if any)

dwSize	The size in bytes of the following description

lpbDescription	Pointer to a vendor-specific description of the hardware error

�B.6	Version Negotiation Failures

Failures in version negotiation are reported as system events. This is in addition to being reported by the version error code returned by the WFSStartUp or WFSOpen functions. The WFSRESULT data structure (defined in Appendix A) is utilized as follows:

Field	Description	

RequestID	(not used)

hService	(not used)

tsTimestamp	Time the error occurred (local time, in a Win32 SYSTEMTIME structure)

hResult	The version error code (e.g., WFS_ERR_SPI_VER_TOO_HIGH)

u.dwEventID	= WFS_SYSE_VERSION_ERROR

lpBuffer	Pointer to a WFSVRSNERROR structure:

typedef struct _wfs_vrsnerror {

	LPSTR			lpszLogicalName;

	LPSTR			lpszWorkstationName;

	LPSTR			lpszAppID;

	DWORD			dwSize;

	LPBYTE			lpbDescription;

	LPWFSVERSION	lpWFSVersion;

} WFSVRSNERROR, * LPWFSVRSNERROR

The members of this structure are:

Field	Description	

lpszLogicalName	Pointer to the logical service name of the service being opened (NULL if WFSStartUp)

lpszWorkstationName	Pointer to the name of the workstation in which the application made the WFSStartUp or WFSOpen request

lpszAppID	Pointer to the application ID from the open request that failed (NULL if WFSStartUp)

dwSize	The size in bytes of the following description

lpbDescription	Pointer to a vendor-specific description of the version negotiation failure

lpWFSVersion	Pointer to the WFSVERSION structure reporting the results of the version negotiation

Appendix C - Error Codes

The following are the error codes that can be returned from a call to a WOSA/XFS API or SPI function, either as a function return or in a result structure pointed to by a completion message. Errors from service-specific commands are defined in the specifications for each service class.

WFS_ERR_ALREADY_STARTED

A WFSStartUp has already been issued by the application, without an intervening WFSCleanUp.

WFS_ERR_API_VER_TOO_HIGH

The range of versions of WOSA/XFS API support requested by the application is higher than any supported by this particular XFS Manager implementation.

WFS_ERR_API_VER_TOO_LOW

The range of versions of WOSA/XFS API support requested by the application is lower than any supported by this particular XFS Manager implementation.

WFS_ERR_CANCELED

The request was canceled by WFSCancelAsyncRequest or WFSCancelBlockingCall.

WFS_ERR_CFG_INVALID_HKEY

The specified hKey parameter does not correspond to a currently open key.

WFS_ERR_CFG_INVALID_NAME

The value specified by the lpszValueName parameter does not exist in the specified key.

WFS_ERR_CFG_INVALID_SUBKEY

The key specified by lpszSubKey does not exist.

WFS_ERR_CFG_INVALID_VALUE

The specified value does not exist within the specified open key.

WFS_ERR_CFG_KEY_NOT_EMPTY

The specified key has subkeys and cannot be deleted. The subkeys must be deleted first.

WFS_ERR_CFG_NAME_TOO_LONG

The length of the name to be returned exceeds the length of the buffer.

WFS_ERR_CFG_NO_MORE_ITEMS

There are no more subkeys to be returned (the iSubKey parameter is greater than the index of the last subkey).

WFS_ERR_CFG_VALUE_TOO_LONG

The length of the value to be returned exceeds the length of the buffer.

WFS_ERR_DEV_NOT_READY

The function required device access, and the device was not ready or timed out.

WFS_ERR_HARDWARE_ERROR

The function required device access, and an error occured on the device.

WFS_ERR_INTERNAL_ERROR

An internal inconsistency or other unexpected error occurred in the WOSA/XFS subsystem.

WFS_ERR_INVALID_ADDRESS

The lpvOriginal parameter does not point to a previously allocated buffer.

WFS_ERR_INVALID_APP_HANDLE

The specified application handle is not valid, i.e., was not created by a preceding create call.

WFS_ERR_INVALID_BUFFER

The lpvData parameter is not a pointer to an allocated buffer structure.

�WFS_ERR_INVALID_CATEGORY

The dwCategory issued is not supported by this service class.

WFS_ERR_INVALID_COMMAND

The dwCommand issued is not supported by this service class.

WFS_ERR_INVALID_EVENT_CLASS

The dwEventClass parameter specifies one or more event classes not supported by the service.

WFS_ERR_INVALID_HSERVICE

The hService parameter is not a valid service handle.

WFS_ERR_INVALID_HPROVIDER

The hProvider parameter is not a valid provider handle.

WFS_ERR_INVALID_HWND

The hWnd parameter is not a valid window handle.

WFS_ERR_INVALID_HWNDREG

The hWndReg parameter is not a valid window handle.

WFS_ERR_INVALID_POINTER

A pointer parameter does not point to accessible memory.

WFS_ERR_INVALID_REQ_ID

The RequestID parameter does not correspond to an outstanding request on the service.

WFS_ERR_INVALID_RESULT

The lpResult parameter is not a pointer to an allocated WFSRESULT structure.

WFS_ERR_INVALID_SERVPROV

The file containing the service provider is invalid or corrupted.

WFS_ERR_INVALID_TIMER

The hWnd and usTimerID parameters do not correspond to a currently active timer.

WFS_ERR_INVALID_TRACELEVEL

The dwTraceLevel parameter does not correspond to a valid trace level or set of levels.

WFS_ERR_LOCKED

The service is locked under a different hService.

WFS_ERR_NO_BLOCKING_CALL

There is no outstanding blocking call for the specified thread.

WFS_ERR_NO_SERVPROV

The file containing the service provider does not exist.

WFS_ERR_NO_SUCH_THREAD

The specified thread does not exist.

WFS_ERR_NO_TIMER

The timer could not be created.

WFS_ERR_NOT_LOCKED

The application requesting a service be unlocked had not previously performed a successful WFSLock or WFSAsyncLock.

WFS_ERR_NOT_OK_TO_UNLOAD

The XFS Manager may not unload the service provider DLL.

WFS_ERR_NOT_STARTED

The application has not previously performed a successful WFSStartUp.

WFS_ERR_NOT_REGISTERED

The specified hWndReg window was not registered to receive messages for any event classes.

WFS_ERR_OP_IN_PROGRESS

A blocking operation is in progress on the thread; only WFSCancelBlockingCall and WFSIsBlocking are permitted at this time.

WFS_ERR_OUT_OF_MEMORY

There is not enough memory available to satisfy the request.

WFS_ERR_SERVICE_NOT_FOUND

The logical name is not a valid service provider name.

WFS_ERR_SPI_VER_TOO_HIGH

The range of versions of WOSA/XFS SPI support requested by the XFS Manager is higher than any supported by the service provider for the logical service being opened.

WFS_ERR_SPI_VER_TOO_LOW

The range of versions of WOSA/XFS SPI support requested by the XFS Manager is lower than any supported by the service provider for the logical service being opened.

WFS_ERR_SRVC_VER_TOO_HIGH

The range of versions of the service-specific interface support requested by the application is higher than any supported by the service provider for the logical service being opened.

WFS_ERR_SRVC_VER_TOO_LOW

The range of versions of the service-specific interface support requested by the application is lower than any supported by the service provider for the logical service being opened.

WFS_ERR_TIMEOUT

The timeout interval expired.

WFS_ERR_UNSUPP_CATEGORY

The dwCategory issued, although valid for this service class, is not supported by this service provider.

WFS_ERR_UNSUPP_COMMAND

The dwCommand issued, although valid for this service class, is not supported by this service provider.

WFS_ERR_VERSION_ERROR_IN_SRVC

Within the service, a version mismatch of two modules occurred.

Appendix D - Planned Enhancements and Extensions

This section describes functions and facilities that are not fully defined in this version of the WOSA/XFS specification; modifications and complete definitions will be supplied in later versions. Vendor and user input is encouraged on these functions and facilities, as well as suggestions as to additional functionality.

D.1	Event and System Management

The WOSA/XFS subsystem will need additional facilities for managing exception conditions (i.e., those that are not anticipated in the error codes, events, etc., that are defined in this specification). One general facility for this is the system event capability, as described in Section 5.11 and Appendix B. This will utilize a combination of one or more functions provided by the XFS Manager (e.g., the proposed WFMReportEvent function below) and other methods for applications, the XFS Manager, service providers, and services to report exception conditions in special circumstances (e.g., when the XFS Manager is not available). Such conditions would presumably be monitored by a system management agent responsible for logging and reporting them via a network management facility.

D.1.1	WFMReportEvent		

HRESULT	WFMReportEvent(lpEvent)

Requests the XFS Manager to generate a vendor-specific error event.

Parameters	LPWFSRESULT lpEvent

Pointer to the WFSRESULT structure defining the event to be generated.

Comments	If a vendor uses this function, the Configuration Registry must contain a second level key (EVENT_REPORTING), specifying the destination for this event.

Error Codes	If the function return is not WFS_SUCCESS, WFSGetSCode(hResult) returns the following error condition:

WFS_ERR_INVALID_POINTER

A pointer parameter does not point to accessible memory.

�D.2	Administration Function Definitions	

Another portion of the WOSA WOSA/XFS API set deals with administration issues. These functions are typically not used by a financial application directly; rather, they are provided for administrative or control programs, and would normally be managed by a security or management system layer of a WOSA/XFS implementation. The administration functions proposed initially are:

�symbol 183 \f "Symbol" \s 10 \h��	WFSLoad

�symbol 183 \f "Symbol" \s 10 \h��	WFSReset

�symbol 183 \f "Symbol" \s 10 \h��	WFSSuspend

�symbol 183 \f "Symbol" \s 10 \h��	WFSResume

�symbol 183 \f "Symbol" \s 10 \h��	WFSUnload

This set of administration functions may be modified or expanded in future releases of this specification, if changes or new functions are determined to be useful for all service providers.

D.2.1	WFSLoad

HINSTANCE	WFSLoad()

to be defined

Comments	This administration function is used by an application control program to load a WOSA/XFS service provider into a system, typically in order to update to a new version.

D.2.2	WFSReset

HRESULT	WFSReset()

to be defined

Comments	This administration function is used by an application control program to perform a "hard reset" of a device. A hard reset causes the driver to interface directly with the device. Typically, it sends a service-specific data stream which causes the device to reset itself to a known condition.

D.2.3	WFSResume

HRESULT	WFSResume()

to be defined

Comments	This administration function is used by an application control program to make a device reaccessible to application programs. This call could be used after maintenance has been performed on a faulty device service which had previously been suspended.

�D.2.4	WFSSuspend

HRESULT	WFSSuspend()

to be defined

Comments	This administration function is intended for use by an application control program in situations such as a service having entered a faulty state in which it requires maintenance. This allows the service to be brought off-line until the condition has been corrected. An orderly suspension allows any current requests to complete, but future requests are denied. An emergency suspension cancels any current requests, in addition to causing future requests to be denied. Applications which have registered to receive this class of event will be notified when a WFSSuspend has been performed.

	Note that this function can be applied to a service provider if it is blocked by another application.

D.2.5	WFSUnload

HRESULT	WFSUnload()

to be defined

Comments	This administration function is used by a control program to unload a WOSA/XFS service provider from memory. Typically, this function is used when a new version of a WOSA/XFS service provider is to be loaded onto a running system.

Appendix E - Banking System Vendor Council Contacts

Please submit comments and questions on the WOSA Extensions for Financial Services to any of the Banking Systems Vendor Council member contacts listed below, or to:

Email:

	Internet:	bsvc@microsoft.com

	CompuServe:	>INTERNET:bsvc@microsoft.com

Fax (U.S.):	+ 1 206 936 7329	ATTN: Banking Systems Vendor Council

Fax: (Europe):	+ 33 1 46 35 10 30	ATTN: Banking Systems Vendor Council

Mail:	Banking Systems Vendor Council	Banking Systems Vendor Council

		Microsoft Corporation 			Microsoft Europe

		One Microsoft Way 1/1174		Tour Pacific

		Redmond, WA 98052			Cedex 77

							92977 Paris La Defense - France

Updated versions of this specification, when released, may also be requested from these contacts.

The vendors participating in the development of the WOSA Extensions for Financial Services are listed below, with contacts.

Andersen Consulting�Mike Mikhail			�Product Manager, Open Foundation

AT&T Global Information Solutions�Herb Tharp						�Director of Engineering 				�Financial Systems Business Unit�AT&T GIS�Brown and Caldwell Streets�Dayton, OH 45479

Digital Equipment Corporation�Robert Waaler					Phone: +1 508 467 9746�Digital Equipment Corporation�200 Forest Street�Marlboro, MA 01752��Svante Burström					Phone: +46 8 759 49 58�Retail Banking Group					Fax: +46 8 739 86 76�Digital Equipment Corporation BCFI AB�Box 904�175 29 Jarfalla, Sweden

�EDS Corporation�Dale DuBois						Phone: +1 214 604 3444�EDS Corporation					Fax: +1 214 604 1172�LFI Division�5400 Legacy Drive MS: B3-2E-03�Plano, TX 75024

International Computers Limited	�Andrew Rixon					Internet: a.rixon@slh0101.wins.icl.icl.co.uk�Exploitation Manager					CompuServe ID: 100350,1321�ICL Financial Services Systems 			Phone: +44 753 555136�International House					Fax: +44 753 555343�292 High Street�Slough�Berkshire SL1 1NB, United Kingdom

�David J. Walker					Internet: d.j.walker@slh0101.wins.icl.co.uk�Systems Integration Consultant			CompuServe ID: 100141,2626�ICL Financial Services Systems			Phone: +44 753 555129�International House					Fax: +44 753 555343�292 High Street�Slough�Berkshire SL1 1NB, United Kingdom

Microsoft Corporation�Tom Sherrard					Internet: tomsh@microsoft.com�Microsoft Corporation				CompuServe ID: 70673,2167�One Microsoft Way					Phone: +1 206 936 4526�Redmond, WA 98052-6399				Fax: +1 206 936 7329

Ing. C. Olivetti & C. S.p.A�Terry Guth 						Phone: +1 203 926 6101�Director						Fax: +1 203 926 6144�Olivetti Advanced Finance Development�2 Enterprise Drive�Shelton, CT 06484-4636

	Scott Lengel 						Phone: +1 203 926 6103�Olivetti Advanced Finance Development		Fax: +1 203 926 6144�2 Enterprise Drive�Shelton, CT 06484-4636

�Siemens Nixdorf Informationssysteme AG�Ralph Müller					Phone: +49 69 6682 3554�Section Manager					Fax: +49 69 6682 1021�Application Software�Banking and Insurance Division�Siemens Nixdorf Informationssysteme AG�Herriotstrasse 7�W-6000 Frankfurt 71, Germany��Petra Hirtz-Bokämper					Phone: +49 5251 8 11396�Product Marketing					Fax: +49 5251 8 11381�Finance and Insurance Division/Banking�Siemens Nixdorf Informationssysteme AG�Furstenallee 7�W-4790 Paderborn, Germany

Tandem Computers�Chip Greenlee					Phone: +1 408 285 2110�Manager, Finance Industries				Fax: +1 408 255 8067�Tandem Computers�19191 Vallco Parkway, LOC 4-26�Cupertino, CA 95014-2525

Unisys Corporation�Colleen M. Madigan					Phone: +1 313 972 2968�Program Manager					Fax: +1 313 972 7001�Unisys Corporation �One Unisys Place - MS 5D18�Detroit, MI 48202

Appendix F - Other WOSA Specifications and Information

The Windows Open Services Architecture and the individual WOSA elements each have one or more specifications or other documents either available or under development, and in most cases, an associated Software Development Kit (SDK). The WOSA specifications or other documents that may be requested include the ones listed below.

�symbol 183 \f "Symbol" \s 10 \h��	WOSA Corporate Backgrounder [Microsoft part number 098-53420]

�symbol 183 \f "Symbol" \s 10 \h��	WOSA Extensions for Financial Services [this document]

�symbol 183 \f "Symbol" \s 10 \h��	Windows SNA API Specifications:

[all are included in the SDK for SNA Server for Windows NT, or orderable as part number 211-074-027]

�symbol 183 \f "Symbol" \s 6 \h��	Windows LUA (RUI and SLI)

�symbol 183 \f "Symbol" \s 6 \h��	Windows APPC

�symbol 183 \f "Symbol" \s 6 \h��	Windows CPI-C

�symbol 183 \f "Symbol" \s 6 \h��	Windows HLLAPI

�symbol 183 \f "Symbol" \s 6 \h��	Windows CSV

�symbol 183 \f "Symbol" \s 10 \h��	Windows Sockets Specification

�symbol 183 \f "Symbol" \s 10 \h��	Windows RPC (Remote Procedure Call) Specification [included in the Windows NT SDK]

�symbol 183 \f "Symbol" \s 10 \h��	ODBC (Open Database Connectivity) Specification

�symbol 183 \f "Symbol" \s 10 \h��	MAPI (Messaging API) Specification

�symbol 183 \f "Symbol" \s 10 \h��	License Service API Specification

�symbol 183 \f "Symbol" \s 10 \h��	Windows Telephony API Specification

�symbol 183 \f "Symbol" \s 10 \h��	WOSA Extensions for Real Time Market Data Specification

Most of these documents and some of the SDKs are available in the Microsoft developer services sections on CompuServe, and via Internet ftp download from Microsoft's ftp server (ftp.microsoft.com). They are all included in the Microsoft Developer Network (MSDN) products: the Development Platform (MSDN Level II subscription) and the Development Library (MSDN Level I subscription). The Development Platform is a set of CD-ROM disks, updated at least quarterly, that contains all Microsoft SDKs, DDKs and operating systems. This offering includes the MSDN Development Library, which is also available separately, and contains all the documentation for the development platform (but no code), as well as a wide variety of other technical reference material on developing software for the Windows operating systems.

To order the MSDN products, call +1 (800) 759-5474 in the US or Canada, +33 05-90-59-04 in France, +49 (130) 81-02-11 in Germany, +31 (60) 22-24-80 in the Netherlands, +44 (800) 96-02-79 in the U.K. For any other country in Europe call +31 (10) 258-88-64. For other countries outside of Europe, the U.S. and Canada, call +1 (402) 691-0173.

For other information on Microsoft developer services, call the Microsoft Developer Solutions Team toll�free at +1 (800) 227-4679 in the U.S. If you require TDD/TT (text telephone) for the hearing impaired, call +1 (206) 635-4948. In Canada, call (800) 563-9048. Outside the 50 United States or Canada, contact your local Microsoft subsidiary. You can also contact the Microsoft Developer Solutions Team by fax at +1 (206) 936-7329. You may also contact one of the Banking Systems Vendor Council members listed in Appendix E, or a Microsoft field sales or systems engineering representative.

Microsoft part number: 098-54431

WOSA Extensions for Financial Services, Revision 1.1	April 14, 1994	� PAGE �vi�

WOSA Extensions for Financial Services, Revision 1.1	April 14, 1994	� PAGE �163�

WOSA Extensions for Financial Services, Revision 1.1	April 14, 1994	A - �page * arabic�1�

There is one of these keys for each logical service accessible in this system.

There is one of these keys for each service provider accessible in this system.

