Point to Point Tunneling Protocol (PPTP)

Technical Specifications

Updated February 22, 1996October 25, 1995

Gurdeep Singh Pall

Jeff Taarud

Kory Hamzeh

William Verthein

W.
And
rew
 Little

<kory@ascend.com>

1.0		Introduction

This document describes the Point to Point Tunneling Protocol (PPTP) developed by the PPTP Forum. The forum consists of the following organizations: Ascend Communications, Microsoft Corporation, 3Com/Primary Access, ECI-Telematics, and US Robotics.

The PPTP protocol is designed to perform the following tasks:

Query the status of Comm Servers

Provide In-Band management

Allocate channels and place outgoing calls.

Notify NT Server on incoming calls.

Transmit and Receive User Data with flow control in both directions.

Notify NT Server on disconnected calls.

2.0		Protocol

There are two basic packet types: data packets and control packets. Data packets contain user data that must be sent to the WAN or was received from the WAN. Data packets are PPP packets encapsulated using the Internet Generic Routing Encapsulation Protocol Version 2 (GRE V2).

Control packets are used strictly for status inquiry and signaling information. Control packets are transmitted and received over a TCP connection. Each NT Server and FEP pair will have exactly one TCP connection used for the control channel.

�3.0		PPTP Packet Format

The PPTP protocol consists of a fixed packet header, followed by a variable length protocol data portion (based on the command type).

All fields are in Network Byte Order (big endian).

3.1		General Definitions

Here are some global definitions of semi-useful information.

 /*

 * PPTP Well Known TCP Port number

 */

#define PPTP_TCP_PORT_NUMBER		5678

 /*

 * The Maximum MTU for User Data.

 */

#define PPTP_MAX_DATA_MTU		1532

 /*

 * PPTP Protocol Version and Revision. The high-byte is

 * the version number, and the low byte is the revision

 * number.

 */

#define PPTP_PROTOCOL_VERSION		0x0100

 /*

 * The PPTP SessionID used internally. It is essentialy the

 * IP Address of the remote host.

 */

typedef struct {

 IpAddress		id;

} PptpSessionID;

�3.2		The Packet Header

There are twothree different PPTP packet types:

Control Packet: Carries Signalling and Status Information.

Management Packets: Carries Device Management and Configuration information.

The PPTP packet header contains information describing the packet type (control or management), the packet length, and a Magic Cookie.

The PPTP packet format is as follows:

 /*

 * PPTP Packet Types.

 *

 * PPTP_CONTROL_PACKET:		This packet contains signalling

 *					information.

 *

 * PPTP_MGMT_PACKET:		This packet contain remote

 *					management data.

 */

typedef enum {

	 PPTP_CONTROL_PACKET = 1,

	 PPTP_MGMT_PACKET

 } PptpPacketType;

#define PPTP_MAGIC_COOKIE		0x1a2b3c4d

 /*

 * The PPTP Header.

 *

 * This is the command header for all PPTP packets.

 *

 * packetLength:		Total length of packet including

 *				the PptpPacketHeader.

 *

 * packetType:		One of PptpPacketType.

 *

 * magicCookie:		Must be 0x1a2b3c4d.

 */

typedef struct {

 	Word		packetLength;

 	Word		packetType;

 	LongWord	magicCookie;

} PptpPacketHeader;

� /*

 * Number of seconds of inactivity to wait before sending a

 * PPTP_ECHO_REQUEST message.

 */

#define PPTP_ECHO_ACTIVITY_SECONDS 	(60)

 /*

 * Number of bytes reserved for the "hostname" field used in PPTP

 * messages

 */

#define MAX_HOSTNAME_LENGTH (64)

 /*

 * Number of bytes reseverd for the "vendorString" field used in

 * PPTP messages

 */

#define MAX_VENDOR_STRING_LENGTH (64)

 /*

 * Number of bytes reserved for all variants of call addresses

 * used in PPTP messages

 */

#define MAX_PHONE_NUMBER_LENGTH (64)

 /*

 * Number of bytes reserved for the "callStatistics" field used in

 * PPTP messages

 */

#define MAX_CALL_STATS_LENGTH (128)

 /*

 * Number of seconds to wait for a PPTP_ECHO_REPLY response to a

 * PPTP_ECHO_REQUEST before timing out the control connection

 */

#define PPTP_ECHO_REPLY_TIMEOUT_SECONDS (60)

 /*

 * Number of seconds to wait before a new PPTP_WAN_ERROR_NOTIFY

 * message can be sent to a server for a particular call

 */

#define PPTP_WAN_ERROR_NOTIFY_RETRANSMIT_SECONDS (60)

�3.3		PPTP Control Messages

The PPTP Control Message header is very simple. The only information its contrains is the message type, which is one of the following:

 /*

 * The PPTP Control Message Types.

 *

 */

typedef enum {

	PPTP_START_SESSION_REQUEST = 1,

	PPTP_START_SESSION_REPLY,

	PPTP_STOP_SESSION_REQUEST,

	PPTP_STOP_SESSION_REPLY,

	PPTP_ECHO_REQUEST,

	PPTP_ECHO_REPLY,

	PPTP_OUT_CALL_REQUEST,

	PPTP_OUT_CALL_REPLY,

	PPTP_IN_CALL_REQUEST,

	PPTP_IN_CALL_REPLY,

	PPTP_IN_CALL_CONNECTED,

	PPTP_CALL_CLEAR_REQUEST,

	PPTP_CALL_DISCONNECT_NOTIFY,

	PPTP_WAN_ERROR_NOTIFY,

	PPTP_SET_LINK_INFO,

	PPTP_NUMBER_OF_CONTROL_MESSAGES

 PPTP_CONTROL_ACK = 0,

 PPTP_START_SESSION_REQUEST,

 PPTP_START_SESSION_REPLY,

 PPTP_STOP_SESSION_REQUEST,

 PPTP_STOP_SESSION_REPLY,

 PPTP_ECHO_REQUEST,

 PPTP_ECHO_REPLY,

 PPTP_CALL_REQUEST,

 PPTP_CALL_REPLY,

 PPTP_CALL_CONNECTED,

 PPTP_CLEAR_REQUEST,

 PPTP_DISCONNECT_NOTIFY,

 PPTP_WAN_ERROR_NOTIFY,

 PPTP_SET_LINK_INFO,

 PPTP_NUMBER_OF_CONTROL_MESSAGES

 } PptpControlMessageType;

�The following values are PPTP General Error codes:

 /*

 * General Error Codes. Each command, when applicable, has a

 * “resultCode” and “generalErrorCode” field. If the resultCode

 * field is set to *_GENERAL_ERROR, then the generalErrorCode field

 * must be examined to determine the true error code.

 *

 * PPTP_NOT_CONNECTED:		We have not done a fuluu handshake

 *					yet. Can’t accept this command.

 *

 * PPTP_BAD_FORMAT:			Command length is wrong.

 *

 * PPTP_BAD_VALUE:			One of the field values was out

 *					of range.

 *

 * PPTP_NO_RESOURCE:		Can’t deal with this command

 *					right now.

 *

 * PPTP_BAD_CALLID:			The callID is invalid for this

 *					context.

 *

 * PPTP_REMOTE_DEVICE_ERROR:	Generic vendor specific error

 *					occurred on the FEP.

 */

typedef enum {

	PPTP_ERROR_CODE_NONE = 0,

	PPTP_NOT_CONNECTED = 1,

	PPTP_BAD_FORMAT,

	PPTP_BAD_VALUE,

	PPTP_NO_RESOURCE,

	PPTP_BAD_CALLID,

	PPTP_REMOTE_DEVICE_ERROR

} PptpGeneralError;

The format for the Control message header is:

 /*

 * The PPTP Control Header

 *

 * 	messageType:			One of PptpControlMessageType

 *					which indicates which control

 *					message is being sent.

 *

 */

typedef struct {

	 Word		messageType;

	 Word		reserved;

} PptpControlHeader;

�3.3.1		Session Control

3.3.1.1	Start Session Request

This message is used to start a control channel between peers. This must be the first control message sent from one peer to another once the TCP connection reaches the ESTABLISHED state.

 /*

 * The following constants are bit fields which define the

 * framing capabilities of the sender of the StartSessionRequest

 * and StartSessionReply messages. These values are stored

 * in the “framingCapability” field of both messages.

 *

 * PPTP_FRAME_CAP_ASYNC:		Can do async PPP framing.

 *

 * PPRP_FRAME_CAP_SYNC:		Can do sync PPP framing.

 */

#define PPTP_FRAME_CAP_ASYNC		0x00000001L

#define PPTP_FRAME_CAP_SYNC		0x00000002L

 /*

 * The following constants are bit fields which define the

 * bearer capabilities of the sender of the StartSessionRequest

 * and StartSessionReply messages. These values are stored

 * in the “bearerCapability” field of both messages.

 *

 * PPTP_BEARER_CAP_ANALOG:	Can do analog calls.

 *

 * PPTP_BEARER_CAP_DIGITAL:	Can do digital calls.

 */

#define PPTP_BEARER_CAP_ANALOG	0x00000001L

#define PPTP_BEARER_CAP_DIGITAL	0x00000002L

�The format of this message is:

 /*

 * The PPTP Start Session Control Message. This message can be sent

 * by the Windows NT Server or the FEP to start a control

 * channel. A control channel must be opened before any other

 * commands can be issued.

 *

 * protocolVersion:		The Protocol Version that I speak.

 *

 * maxChannel:			Total number of channel this box

 *					can handle. Valid only if the

 *					FEP initiates the session.

 *

 * framingCapability:		Describes what type of framing

 * sender of this message can support.

 * See PPTP_FRAME_CAP_* above.

 *

 * bearerCapability:		Describes what type of bearer

 * capabilties is available to the

 * sender of this message. See

 * PPTP_BEARER_CAP_* above.

 *

 * maxChannel:			Total number of channel this box

 *					can handle. Valid only if the

 *					FEP initiates the session.

 *

 *

 * firmwareRevision:		The revision of the operating

 *					firmware of the sender of this

 *					message. This field contains the

 *					firmware revision if the FEP

 *					send this message, or the driver

 *					version if the NT server sends this

 *					message.

 *

 * hostName:				My host name.

 *

 * vendorString:			A sendervendor specific ASCII string

 *					to describe the sender’s equipmentFEP.

 */

typedef struct {

	 Word		protocolVersion;

	 Byte		reserved1;

	 Byte		reserved2;

 Word		maxChannels;

	 LongWord	framingCapability;

	 LongWord	bearerCapability;

	Word		maxChannels;

	 Word		firmwareRevision;

	 BByte		hostName[64];

	 Byte		vendorString[64];

} PptpStartSessionRequest;

�3.3.1.1.1	A Note About Start Session Collisions

A Start Session collision can happen when the two endpoints (the Windows NT Server and the FEP) attempt to open a session simultaniously. In such a case, arbitration is done by comparing the IP addresses of the endpoint. The peer with the higherst IP address wins. For example, in a collsion between 192.33.45.17 and 192.33.45.89, .89 will be the winner. The TCP connection initiated by the loser must be closed, and the loser must send a PptpStart Session Reply to the winner on the TCP connection initiated by the winner. The TCP connection initiated by the loser must be closed by both sides.

�3.3.1.2	Start Session Reply

This messages is the result of the Start -Session Request message. The result code can be one of the following:

 /*

 * The possible result codes returned by the Comm Server in the

 * StartSessionReply message.

 *

 * PPTP_START_OK:			Session opened succesfully.

 *

 * PPTP_START_ALREADY_CONNECTED:	I already have an open

 *						 connection with you.

 *

 * PPTP_START_NO_RESOURCES:	I've MAX'ed out (no puns intended).

 *

 * PPTP_START_NOT_AUTHORIZED:	I've been told I can't talk to you.

 *

 * PPTP_START_UNKNOWN_PROTOCOL: I don't know the protocol version

 *					that you know.

 */

typedef enum {

	 PPTP_START_OK = 1,

	PPTP_START_GENERAL_ERROR = 2,

	 PPTP_START_ALREADY_CONNECTED,

 PPTP_START_NO_RESOURCES,

	 PPTP_START_NOT_AUTHORIZED,

	 PPTP_START_UNKNOWN_PROTOCOL,

 } PptpStartSessionResultCode;

�The packet format for the Start Session -Reply is:

 /*

 * The PPTP Start Session Reply Message. This message is sent as

 * a reply to the StartSessionRequest.

 *

 * protocolVersion:		The PPTP protocol version being

 *					run by the sender of this message.

 *

 *

 * resultCode:			One of PptpStartSessionResultCode.

 *

 * generalErrorCode:		Valid is resultCode is

 *					PPTP_START_GENERAL_ERROR.

 *

 * maxChannel:			Total number of channel this box

 *					can handle.

 *

 * framingCapability:		Describes what type of framing

 * sender of this message can support.

 * See PPTP_FRAME_CAP_* above.

 *

 * bearerCapability:		Describes what type of bearer

 * capabilties is available to the

 * sender of this message. See

 * PPTP_BEARER_CAP_* above.

 *

 * maxChannels:			Total number of channels the

 *					sender can handle. The receiver

 *					of the message should not make

 *					any assumptions on channel

 *					availability at any point in time.

 *

 * firmwareRevision:		The revision of the operating

 *					firmware of the sender of this

 *					message.

 *

 * hostName:				The hostname of the sender of

 *					this message.

 *

 * vendorString:			A sendervendor specific ASCII string

 *					to describe the sender’s equipmentFEP.

 *					This string must be NULL terminated.

 *

 */

typedef struct {

	 Word		protocolVersion;

	 Byte 		resultCode;

	 Byte		generalErrorCodereserved;

 Word		maxChannels;

	 LongWord	framingCapability;

	 LongWord	bearerCapability;

 Word		maxChannels;

	 Word		firmwareRevision;

	 Byte		hostName[64];

	 Byte		vendorString[64];

} PptpStartSessionReply;

�3.3.1.2.1		A Note About Protocol Versions

Special attention must be given to the protocol version field during the Session Start Request and Reply phase. Each peer must examine the protocol version field and must “step down” to the lowest common version of the protocol. If the receiver of the Start Reply (i.e. the sender of the Start Request) can not or is not willing to step back, it must close the session by sending a PptpStop Session Request with the reason field set to PPTP_STOP_PROTOCOL. If the receiver of the Start Request can not is not willing to step back, it must send a PptpStart Session Reply with an error code of PPTP_START_UNKNOWN_PROTOCOL.

�3.3.1.3	Stop Session Request

The Stop -Session Request message is used when one end does not need/want to talk to the peer and wants to close the control channel. All active calls are implicitly cleared.

 /*

 * Possible reasons for stopping a session.

 *

 * PPTP_STOP_NONE:			I felt like it.

 *

 * PPTP_STOP_PROTOCOL:		Can’t support your version of the

 * 					PPTP protocol.

 *

 * PPTP_STOP_LOCAL_SHUTDOWN:	I am being shutdown.

 */

typedef enum {

	

	PPTP_STOP_NONE = 10,

		PPTP_STOP_PROTOCOL,

	PPTP_STOP_LOCAL_SHUTDOWN

	} PptpStopReasons;

 /*

 * The PPTP StopSessionRequest.

 *

 * This command will clear all calls and listens and close the

 * control channel.

 *

 * reason:			One of PptpStopCloseReasons.

 */

typedef struct {

	 Byte			reasonreason;

} PptpStopSessionRequest;

�3.3.1.4	Stop Session Reply

This command is the reply to the Stop Session Request. The possible result codes are:

 /*

 * The SessionStopReply Result Code.

 *

 * 	PPTP_STOP_OK:			Control channel closed.

 *

 * 	PPTP_STOP_NOT_CONNECTEDGENERAL_ERROR:		We never had a channel open.See the generalErrorCode field.

 */

typedef enum {

	 PPTP_STOP_OK = 1,

	PPTP_STOP_GENERAL_ERROR = 2

 PPTP_NOT_CONNECTED

 } PptpStopSessionResultCode;

 /*

 * The PPTP SessionStopReply packet.

 *

 *	 resultCode:			One of PptpStopSessionResultCode

 *					listed above.

 *

 * generalErrorCode:		Contains the general error if

 *					resultCode is *_GENERAL_ERROR.

 */

typedef struct {

 	B Byte		resultCode;

	Byte		generalErrorCode;

} PptpStopSessionReply;

�3.3.1.5	Echo Request

The Echo -Request can be sent by either peer to the other. This command is to be used as a “keep-alive” type command. This packet must be sent by either end after 60 seconds of no activity. An an Echo Reply is not received within 60 seconds, the control channel must be shutdown.

The format of the command is:

 /*

 * The Echo-Request packet format.

 *

 * identNumber:		This number is set by the sender of the

 *				echo-request. It is used to match up

 *				replies with requests.

 */

typedef struct {

	LongWord		identNumber;

} PptpEchoRequest;

�3.3.1.6	Echo Reply

This packet is sent as a response to an Echo -Request.

The format for this packet is:

 /*

 * PptpEchoReplyResultCode contains the specific result codes

 * for the resultCode field in the PPTP_ECHO_REPLY message

 *

 * PPTP_ECHO_OK				The echo reply is valid

 *

 * PPTP_ECHO_GENERAL_ERROR		A general error has occurred,

 *						look at the generalErrorCode

 *						field to determine the error.

 */

typedef enum {

	PPTP_ECHO_OK = 1,

	PPTP_ECHO_GENERAL_ERROR

} PptpEchoReplyResultCode;

 /*

 * The Echo-Reply packet format.

 *

 * identNumber:		Must match the indentNumber of the Echo

 *				request.

 *

 * resultCode:		If non-zero, then generalErrorCode

 *				indicates some sort of error.

 *

 * generalErrorCode:	Contains the general error if non-zero.

 */

typedef struct {

	LongWord		identNumber;

	Byte			resultCode;

	Byte			generalErrorCode;

	Word			reserved;

} PptpEchoReply;

�3.3.2		Call Control

The sequence of packets for incoming and outgoing calls are shown in Figure 1.

� EMBED Visio.Drawing.3 ����

Figure 1

Incoming Calls

The Incoming Call Request message is generated by the FEP to indicate an incoming call (ring) immediately following the ring or after the FEP has processed the user information. . If the NTSNTAS wants to answer the call it sends an Incoming Call Reply message. This instructs the FEP to go off hook answer the call and negotiate the connect speed. After the FEP makes the connection, it can determine based on the connect speed how large a receive window it wants and how long it will take to process the data it does receive. The amount of time required to process data is called the Packet Processing Delay (PPD). The FEP responds back with an Incoming Call Connected message containing its receive window size and PPD value.

Outgoing Calls

The Outgoing Call Request message is generated by NTSNTAS to initiate a call. After the FEP makes the connection, it can determine based on the connect speed how large a receive window it wants and how long it will take to process the data it does receive. The amount of time required to process data is called the Packet Processing Delay (PPD). The FEP then responds back to NTSNTAS with ana Outgoing Call Reply message containing its receive window size and PPD to NTSNTAS. NTAS completes the hand shake with a Call Connected message.

�The table below summarizes the Call Control sequence:

Message�Outgoing Call�Incoming Call��Call Request�NTSNTAS>Dial Request �FEP>Call is Ringing��Call Reply�FEP>Call Has Connected, FEP knows connect speed, FEP sends window and time-out.�NTSNTAS>FEP told to answer call.��Call Connected�NTAS>NTAS signals FEP that data transfer may begin.N/A�FEP>FEP indicates that call has been answered and speed negotiated. FEP sends window and time-out.��

Notice that the FEP does not know its connect speed until just before the Outgoing Call Reply message on an outgoing call and just before the Incoming Call Connected message on an incoming call.

The following diagram illustrates how calls can be aborted by the NTS:

� EMBED Visio.Drawing.3 ���

�This diagrams illustrates how the FEP would abort/disconnect calls:

� EMBED Visio.Drawing.3 ���

�3.3.2.1	Outgoing Call Request

The Outgoing Call -Request is sent by the NTSNTAS when it needs to place an outgoing call . and is sent by the FEP to notify the NTAS of an incoming call. The NTSNTAS can request packet framing and call bearer capabilities as follows:

 /*

 * Packet framing type:

 *

 * PPTP_ASYNC_FRAMING:		Async PPP.

 *

 * PPTP_SYNC_FRAMING:		Sync PPP.

 */

typedef enum {

		PPTP_ASYNC_FRAMING = 1,

	PPTP_SYNC_FRAMING,

	PPTP_DONT_CARE_FRAMING

	} PptpFramingType;

 /*

 * Call bearer type.

 *

 * PPTP_ANALOG_CALL:		This is an analog call.

 *

 * PPTP_DIGITAL_CALL:		This is a digital call.

 *

 * PPTP_DONT_CARE_BEARER_TYPE:	Don’t care what you use.

 */

typedef enum {

	 PPTP_ANALOG_CALL = 1,

	 PPTP_DIGITAL_CALL,

	PPTP_DONT_CARE_BEARER_TYPE

 } PptpCallBearerType;

�The packet format for the Outgoing Call -Request is as follows:

 /*

 * The CallRequest Packet.

 *

 * This command can be sent from the NT to the FEPComm Server to

 * indicate a request for an outgoing call., or can be sent from the

 * Comm Server to the NT to indicate an incoming call.

 *

 * callID:				A unique identifier assigned by

 *					the transmitter of this message.

 *					This field can be used for routing

 *					purposes.

 *

 * callSerialNumber			A unique identifier assigned by

 *					the transmitter of this message.

 *					This field can be used to log events

 *					associated with the call.

 *

 * minBbBPS:				The lowest acceptable BPS for

 *					outgoing calls. The actual

 *					BPS for incoming calls.

 *

 * maxBPS:				The highest acceptable BPS for

 *					outgoing calls. The actual

 *					BPS for incoming calls.

 *

 * bearerType:			Call bearer type. One of

 *					PptpCallBearerType.

 *

 * framingType:			Link framing type. One of

 *					PptpFramingType.

 *

 * packetWindow:			The receive packet window of

 *					the *sender* of this message.

 *

 * packetProcDelay:			The packet processing delay

 *					time for the sender of this packet.

 *					This value is in 10th of a second.

 *					For example, 64 would mean 6.4

 *					seconds.

 *

 * phoneNumberLength:		The actual number of valid digits

 *					in the phoneNumber field.

 *

 * phoneNumber:			NULL terminated phone number

 *					in ASCII format.The number that is to be dialed.

 *					For ISDN and analog calls, the

 *					phone number must be in ASCII.

 *

 * callingPartyID:			The Calling Party ID of this

 *					incoming call. Not used for outgoing

 *					calls.

 *

 * calledPartyID:			The Called Party ID of this incoming

 * call. Not used for outgoing calls.

 *

 * subAddress:			Sub-address field. Used for both

 *					incoming calls and outgoing calls.

 *

 * physChannelID:			This field is a vendor specific

 *					field which identifies the actual

 *					physical channel that this incoming

 *					call came in on. This field has

 *					no meaning for outgoing calls.

 */

typedef struct {

	 Word		callID;

	 Word		callSerialNumber;

	 LongWord	minBPS;

	 LongWord	maxBPS;

	 LongWord	bearerType;

	 LongWord	framingType;

	Word		packetWindow;

	Word		packetProcDelay;

	Word		reserved;

	Word		phoneNumberLength;

	Word		reserved;

	 Byte		phoneNumber[64];

 Byte		callingPartyID[64];

 Byte		calledPartyID[64];

 	Byte		subAddress[64];

 LongWord	physChannelID;

} PptpOutCallRequest;

The space of Callserial is intended to be large with respect to the maximum number of calls a vendor can support. Because all events associated with this call contain the call serial number, it will make it easier to locate logged events common to the call on both the FEP and NT endpoints.

The space of CallID may be as small as the maximum number of simultaneous calls supported by the vendor’s equipment. This field may be used for routing purposes within the vendor’s equipment.

Because each endpoint involved in the call is allowed to assign it’s own callIDCallID, different routing schemes (e.g. hashing, table lookup, binary search) can be used by each endpoint.

�3.3.2.2	Outgoing Call Reply

The Outgoing Call -Reply is sent by the FEP to the NT Server as a result of an Ooutgoing Call- Request. or sent by the NT to FEP to accept/reject an incoming call. This command may be sent back very quickly if no resources were available, or might be delayed until the call is placed.

The result of the call is returned in this packet and can have one of the following values:

 /*

 * Result Codes for Call Replies.

 *

 * PPTP_OUTCALL_CONNECT:		For outgoing calls, this

 *					means that the call connected

 *					OK. For incoming calls, the NT

 *					will send this status to the

 *					Comm Server when it wants to accept

 *					the incoming call.Call connected succesfully.

 *

 * PPTP_OUTCALL_GENERAL_ERROR:	See the generalErrorCode field.

 *

 * PPTP_OUTCALL_NO_CARRIER:		No carrier. For outgoing calls

 *					only.

 *

 * PPTP_OUTCALL_BUSY:			Got a busy signal. For outgoing

 *					calls only.

 *

 * PPTP_OUTCALL_NO_DIAL_TONE:	No dial-tone. Outgoing only.

 *

 * PPTP_CALL_DONT_ACCEPT:		Don't accept this incoming call.

 *

 * PPTP_CALL_LINE_IN_USE:		The line is in use. Should never

 *					happen.

 *

 * PPTP_OUTCALL_TIMEOUT:		The call did not complete in time.

 *

 * PPTP_OUTCALL_DONT_ACCEPT:	Do not accept this call.

 * PPTP_CALL_GENERAL_ERROR:	Any other error condition.

 */

typedef enum {

	 PPTP_OUTCALL_CONNECT = 1,

	PPTP_OUTCALL_GENERAL_ERROR = 2,

	 PPTP_OUTCALL_NO_CARRIER,

	 PPTP_OUTCALL_BUSY,

	 PPTP_OUTCALL_NO_DIAL_TONE,

 PPTP_CALL_DONT_ACCEPT,

 PPTP_CALL_LINE_IN_USE,

	 PPTP_OUTCALL_TIMEOUT,

	PPTP_OUTCALL_DONT_ACCEPT

 PPTP_CALL_GENERAL_ERROR

 } PptpCallResultCode;

	

�The packet format is as follows:

 /*

 * The CallReply packet.

 *

 * callID:				A unique identifier assigned by

 *					FEP. the transmitter of this message.

 *					This fThis field can be used

 *					for routing

 *					purposes.

 *

 * peersCallID:callSerialNumber			Set to the value received in the

 *					Outgoing Call Request Message.

 *

 * resultCode:			One of PptpCallResultCode.

 *

 * generalErrorCode:		Contains the general error if

 *					resultCode is *_GENERAL_ERROR.

 *

 * causeCode:				This is the cause code and can

 *					vary from call type to call type.

 *					For ISDN calls, it is the Q.931

 *					cause code.

 *

 * connectSpeed:			The actual connected speed in BPS.

 *					This field has no meaning for

 *					incoming calls.

 *

 * packetWindow:			The receive packet window of

 *					the *sender* of this message.

 *

 * packetProcDelay:			The packet processing delay

 *					time for the sender of this packet.

 *					This value is in 10th of a second.

 *					For example, 64 would mean 6.4

 *					seconds.

 *

 * physChannelID:			This field is initialized by

 *					FEP, in a vendor specific manner,

 *					which defines which physical channel

 *					number was used for this outgoing

 *					call. This field has no meaning

 *					for incoming calls.

 */

typedef struct {

	 Word		callID;

	 Word		peersCallIDcallSerialNumber;

	 ByteWord		resultCode;

	Byte		generalErrorCode;

	 Word		causeCode;

	 LongWord	connectSpeed;

	 Word		packetWindow;

	 Word		packetProcDelay;

	 LongWord	physChannelID;

} PptpOutCallReply;

Because all events associated with this call contain the callserial number found in the Call Request message, it will make it easier to locate logged events common to the call on both the FEP and NT endpoints.

The space of callIDCallID may be as small as the maximum number of simultaneous calls supported by the vendor’s equipment. This field may be used for routing purposes within the vendor’s equipment. Because callIDCallID may in fact map to a physical port with some implementations, it is suggested that the space of callIDCallID be at least {0..2*maxChannel}. This allows callIDCallID numbers to be retired in a leisurely fashion and eliminates potential race conditions from call to call.

The callIDcallserial number is used to associate the Call Reply message with the Call Request message for both incoming and outgoing calls. After receiving this message, each endpoint can use either the callIDCallID to associate control messages with a particular call. Note that the callIDCallID will be the same for all subsequent messages (e.g. Call Clear, WAN Eerror Nnotify) transmitted by the same endpoint, but different between endpoints of the same call. To clarify, a NTSFEP may transmit a cCall Rrequest message with callID set to 9CALLID=0x09 and CALLSERIAL=0x1234. The FEPNT may transmit a Ccall Rreply message with callID set to 44CALLID=0x5587 and peersCallID set to 9CALLSERIAL=0x1234. The NTSFEP can now associate callID 44CALLID=0x5587 received from the FEPNT with this call because the peersCallID in the Call Reply message matches the callID it sent in the Call Request message.CALLSERIAL numbers match. All further control frames associated with this call will contain the peersCallID of 9CALLID=0x5587 if transmitted by the FEP, or the peersCallID of 44 CALLID=0x09 if transmitted by the NT.

�3.3.2.3	Incoming Call Request

The Incoming Call Request is sent by the FEP to the NTS when a client calls the FEP. The format of this message is:

 /*

 * The Incoming Call Request packet. Sent by the FEP to the

 * NTS.

 *

 * callID:				A unique identifier assigned by

 *					the FEP. This field can be used

 *					for routing purposes.

 *

 * callSerialNumber			A unique identifier assigned by

 *					the FEP. This field can be used

 *					to log events associated with

 *					the call.

 *

 * callBearerType:			One of PptpCallBearerType.

 *

 *

 * physChannelID:			This field is initialized by

 *					FEP, in a vendor specific manner,

 *					which defines which physical channel

 *					number was used for this incoming

 *					call.

 *

 * dialedNumberLength:		The actual number of valid digits

 *					in the dialedNumber field.

 *

 * dialingNumberLength:		The actual number of valid digits

 *					in the dialingNumber field.

 *

 * dialedNumber:			The number that was dialed by the

 *					caller.

 *

 * dialingNumber:			The phone number of the client.

 *

 * subAddress:			The Sub-Address number.

 *

 */

typedef struct

	Word		callID;

	Word		callSerialNumber;

	LongWord	callBearerType;

	LongWord	physChannelID;

	Word		dialedNumberLength;

	Word		dialingNumberLength;

	Byte		dialedNumber[64];

	Byte		dialingNumber[64];

	Byte		subAddress[64];

} PptpInCallRequest;

�3.3.2.4	Incoming Call Reply

This message is sent by the NTS to the FEP as a reply to the Incoming Call Request sent by the FEP. The resultCode field in the Incoming Call Reply message can be one of the following:

 /*

 * Possible result code sent by the NTS to the FEP in the

 * Incoming Call Reply.

 *

 * PPTP_INCALL_ACCEPT:		Go ahead and answer the call.

 *

 * PPTP_INCALL_GENERAL_ERROR:	See the generalErrorCode field.

 *

 * PPTP_INCALL_DONT_ACCEPT:	Don’t accept the call. Hangup.

 *

 */

typedef enum {

	PPTP_INCALL_ACCEPT = 1,

	PPTP_INCALL_GENERAL_ERROR = 2,

	PPTP_INCALL_DONT_ACCEPT,

} PptpInCallResultCode;

 /*

 * The Incoming Call Reply packet.

 *

 * callID:				A unique identifier assigned by

 *					the NTS. This field can be used

 *					for routing purposes.

 *

 * peersCallID:			Set to the value received in the

 *					callID field in the Incoming Call

 *					Request.

 *

 * resultCode:			One of PptpCallResultCode.

 *

 * generalErrorCode:		Contains the general error code if

 *					resultCode is *_GENERAL_ERROR.

 *

 * packetWindow:			The receive packet window of

 *					the *sender* of this message.

 *

 * packetProcDelay:			The packet processing delay

 *					time for the sender of this message.

 *					This value is in 10th of a second.

 *					For example, 64 would mean 6.4

 *					seconds.

 */

typedef struct

	Word		callID;

	Word		peersCallID;

	Byte		resultCode;

	Byte		generalErrorCode;

	Word		packetWindow;

	Word		packetProcDelay;

	Word		reserved;

} PptpInCallRequest;

�3.3.2.53	Incoming Call Connected

The Incoming Call -Connected command is the last and final part of the three-way handshake used for incoming and outgoing call establishment. Once this message is received, user data can be sent.

The format of this command is:

 /*

 * The IncomingCallConnected packet.

 *

 * callID:				Set to the value transmitted in the

 *					Call Request Message. This field can

 *					be used for routing purposes.Set to the value that was in the

 *					callID field in the Incoming Call

 *					Request message.

 *

 * peersCallID:			Set to the value that was in the

 *					callID field in the Incoming Call

 *					Reply message.

 *

 * callSerialNumber			Set to the value transmitted in the

 *					Call Request Message.

 *

 * connectSpeed:			Actual connected speed, in BPS..

 *

 * packetWindow:			The receive packet window of

 *					the *sender* of this message.

 *

 * packetProcDelay:			The packet processing delay

 *					time for the sender of this message.

 *					This value is in 10th of a second.

 *					For example, 64 would mean 6.4

 *					seconds.

 *

 * framingType:			The type of framing.

 *

 * physChannelID:			This field is always initialized by

 *					FEP, in a vendor specific manner,

 *					which defines which physical channel

 *					number was used for this call.

 */

typedef struct {

	 Word		callID;

	 Word		callSerialNumber;peersCallID;

	 LongWord	connectSpeed;

	 Word		packetWindow;

	 Word		packetProcDelay

	LongWord	callFramingType;

 LongWord	physChannelID;

} PptpInCallConnected;

�3.3.2.64	Clear Call Request

This command is sent from the NTSNTAS to the FEP to clear a call. The call could be in any state other than Idle. The FEP, will respond with a Call Disconnect Notify.

The format for this command is:

 /*

 * PptpCallClearRequest

 *

 * This message is sent by a server to request a disconnect of a

 * connected call.

 *

 * callID:			Call ID value used by originator.

 *				This field is used instead of the

 *				peer call ID because the value

 *				of the peer call ID may not

 *				be known during call establishment

 *

 * reserved:			Currently used for padding

 *

 */

 /*

 * The ClearCallRequest.

 *

 * Sent by either end to clear an active call.

 *

 * callID:			The peer’s callID for the call that is

 *				to be cleared.

 */

typedef struct {

 Word		ccallID;

 Word		reserved;

} PptpClearCallRequest;

�3.3.2.75	Call Disconnected Notify

This message is sent by the FEP to the NTSNTAS when the NTSNTAS requests that a call be cleared via the Clear Call Request message or or when a call is dropped or disconnected.

Possible reasons for the call being cleared can be:

 /*

 * Call Disconnect Notify Codes.

 *

 */

typedef enum {

	 PPTP_DISCONNECT_LOST_CARRIER = 1,

	PPTP_DISCONNECT_GENERAL_ERROR = 2,

	 PPTP_DISCONNECT_ADMINLOCAL_SHUTDOWN,

 PPTP_DISCONNECT_GENERAL_ERROR

 } PptpCallDisconnectCode;

The format for this command is:

 /*

 * The CallDisconnectNotify message. There is no reply to this

 * message.

 *

 * callID:			Call ID value used by originator.

 *				This field is used instead of the

 *				peer call ID because the value

 *				of the peer call ID may not

 *				be known during call establishment

 * callID:			The peer’s callID of the call that was

 *				cleared.

 *

 * resultclearCode:			One of CallDisconnectCode.

 *

 * generalErrorCode:	A PptpGeneralErrorCode if resultCode is

 *				PPTP_DISCONNECT_GENERAL_ERROR.

 *

 * causeCode:			This is the cause code and can

 *				vary from call type to call type.

 *				For ISDN calls, it is the Q.931

 *				cause code.

 * *

 * callStatistics:		Vendor specific call statistics

 *				that can be log for diagnostic

 *				purposes. Must be null terminated

 *				ASCII string.

 */

typedef struct {

 Word		ccallID;

 ByteWord		resultclearCode;

 Byte		generalErrorCode;

 Word		causeCode;

 Word		reserved;

 Byte		callStatistics[128];

} PptpCallDisconnectNotify;

�3.3.2.86	WAN Error Notify

The Wan Error Notify messageis message is sent by the FEP to the NTSNTAS to indicate WAN error conditions. The counters in this message are cumulativecumalative. This message should only be sent when an error occurs, and not more than once every 60 seconds. These counters must be reset when a call is established.

The format for this command is:

 /*

 * The WanErrorNotify message. There is no reply to this

 * message.

 *

 * peersCcallID:			The peer’s call indentifier.

 */

typedef struct {

 Word		peersCcallID;

 Word		reserved;

 LongWord	crcErrors;

 LongWord	framingErrors;

 LongWord	hardwareOverRuns;

 LongWord	bufferOverRuns;

 LongWord	timeoutErrors;

 LongWord	alignmentErrors;

} PptpWanErrorNotify;

�3.3.2.97	Set Link Info

The Set Link Infois message is sent by the NTSNTAS to the FEP to set some of the PPP netgotiated options. These options can change at anytime during the life of the call, so the FEP must be able to update it’s internal info dynamically.

The message format is:

 /*

 * The PptpSetLinkInfo message. There is not reply to this

 * message.

 *

 * callID:			The peer’s call indentifier.

 *

 * peersAccm:			The peers Async Control Character Map

 *				(ACCM). Until this message is received,

 *				the FEP must use a ACCM of all 1’s for

 *				async PPP encapsulation.

 */

 /*

 * PptpSetLinkInfo

 *

 * This message is sent by the server to set the PPP LCP

 * options processing that should be done by a client so

 * it can be offloaded from the server to obtain better

 * PPP throughput

 *

 * peerCallID			Call ID value used by peer.

 *				This field is filled in with

 *				the callID field from the

 *				message sent by the peer

 *				during call establishment

 *

 * reserved			Currently used for padding

 *

 * sendAccm			Send ACCM value the client should use

 *				to process outgoing PPP packets.

 *			 The default value used by the client

 *				this message is received is 0XFFFFFFFF

 *

 * recvAccm:			Recv ACCM value the client should use

 *				to process incoming PPP packets.

 *				The default value

 *				used by the client until this

 *				message is received is 0XFFFFFFFF

 */

typedef struct {

	Word		peerCcallID;

	Word		reserved;

	LongWord	sendpeersAccm;

	LongWord	recvAccm;

} PptpSetLinkInfo;

For more information on the specifics of these PPP options, please refer for RFC 1661, The Point-to-Point Protocol (PPP).

�3.4		User Data Messages

3.4.1		GRE Encapsulation

Once a call is established, user data messages can be sent to carry the user data. This document details enhancements to the GRE (Generic Routing Encapsulation) protocol (RFC 1701 and 1702) for use in transporting PPTP packets. The enhanced GRE packet format (GRE v2) is depicted in Figure 21.

	 +---+

	 | Media Header |

	 +---+

	 | IP Header |

	 +---+

	 | GRE Header |

	 +---+

	 | Payload Packet |

	 +---+

Figure 1: GRE V2 Packet

The GRE v2 header when used as the PPTP data stream protocol has the following format:

 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

|C|R|K|S|s|Recur|A| Flags | Ver | Protocol Type |

+-+

| Key (HW)Payload Length | Key (LW)Call ID |

+-+

| Sequence Number (Opt) |

+-+

| Acknowledge Number (Opt) |

+-+

Figure 2: GRE V2 Packet

Where:

	(C (Bit 0) - Checksum Present. Set to zero (0).

	(R (Bit 1) - Routing Present. Set to zero (0).

	(K (Bit 2) - Key Present. Set to one (1).

(S (Bit 3) - Sequence Number Present. Set to one (1) if a payload (data) is actually present, set to zero (0) if no payload is present (packet is an acknowledgment only).

	(s (Bit 4) - Strict Source Route Present. Set to zero (0).

	(Recur (Bits 5-7) - Recursion control. set to zero (0).

(A (Bit 8) - Acknowledge Sequence Number. Set to one (1) if packet contains acknowledgment sequence and is used for acknowledging previous data.

	(Flags (Bits 910-12) - Must be set to zero.

	(Ver (Bits 13-15) - Must contain 1 (GRE V2).

(Protocol Type (2 octets) - Contains the Assigned Protocol ID for PPTP (see assigned numbers RFC).

(Key (4 octets) - Use of the Key field is up to the implementation. We propose using it as two fields:

		(Payload Length (2 octets) - Size of payload.

		(Call ID(2 octets) - Contains the peer’s call ID.

(Sequence Number (4 octets) - Contains the sequence number of the payload. Present if S bit (Bit 3) is one (1).

(Acknowledgment Number (4 octets) - Contains the acknowledgment number. Present if A bit (Bit 8) is one (1).

The payload sections contains the PPTP payload which is essentially a PPP packet without the media specific framing elements.

The proposed solution requires a GREv2 header and can be used directly over IP. Since the header size is variable in length, it makes the protocol overhead efficient. The maximum total header size at any given time would be 36 (20 IP + 16 GREv2 = 36), if both data and acknowledgements were carried within the packet.

This protocol allows acknowledgments to be carried with the data and would makes the overall protocol more efficient, which would in turn requires less buffering of packets.

This solution is backward compatible with GRE V1.v1 already supported by Cisco and other router implementations. Adding an acknowlegement bit and optional field can easily be argued within the working group and we do not believe it to be a problem. GRE v2 would also be easily implemented in IP V6 by using End to End Options header within the IP packet followed by the PPP payload.

A Protocol Type for PPP must be requested from the IANA.

3.4.2		Acknowledgement Timeouts

PPTP uses sliding windows and time-outs to provide both flow control across the internetwork as well as data buffering to keep the FEP data channel full. PPTP requires that a time-out be used to recover from dropped data or acknowledgment packets. The exact implementation of the time out is vendor specific. It is suggested that an adaptive time-out be implemented with backoff for congestion control. The time-out mechanism proposed here has the following properties:

Independent time outs for each destination. A device (FEP or NTAS) will have to maintain and calculate time-outs for every other device it has active communication with.

An administrator adjustable maximum time-out unique to each device (NTAS/FEP). Should this maximum be unique for each FEP/NTAS pair? If so where do we store it?

An adaptive time-out mechanism that compensates for changing throughput. To reduce packet processing overhead vendors may choose to not recompute the adaptive time-out for every received acknowledgment. The result of this overhead reduction is that the time-out will not respond as quickly to rapid network changes.

Timer Backoff on time-out to reduce congestion. The backed off timer is still limited by the maximum time-out. Timer backoff should be done every time an acknowledgment packet times out.

Some definitions:

Packet Processing Delay (PPD) is the amount of time required for each side to process the maximum amount of data buffered in their receive packet sliding window. The PPD is the value exchanged between the FEP and NTAS when a call connects. For NTAS this number should be small, for a FEP making modem connections this number could be significant. The PPD for NTAS could be made variable in response to changing processing loads.

Round Trip Time (RTT) is the estimated round trip time for an Acknowledge to return for a given transmitted packet. When the network link is a local network, this delay will be minimal (if not zero). When the network link is the Internet it could be substantial and vary widely. RTT is adaptive and will adjust to include the PPD and whatever shifting network delays contribute to the time between a packet being transmitted and receiving its acknowledgment.

Sample is the actual amount of time incurred receiving an acknowledge for a packet already transmitted. The Sample is measured (not calculated).

Adaptive Time Out (ATO) is the time that must elapse before an acknowledge is considered lost. After a time-out the sliding window is partially closed and the timer is backed off.

Packet Processing Delay

The PPD parameter is a 16 bit word exchanged during the Call Control phase that represents tenths of a second (64 means 6.4 seconds). The protocol only specifies that the parameter is exchanged it does not specify how it is calculated. The way values for PPD are arrived at is implementation dependent and need not be variable (static time-outs). The PPD must be exchanged in the call connect sequence even if it remains constant in an implementation. One possible way to calculate it is:

� EMBED Equation.2 ���

The header size consists of the IP and GREv2 header and is 36. The MTU is the overall MTU for the internetwork link between the FEP and NTAS. WindowSize represents the number of packets in the sliding window and its calculation or size is implementation dependent. The amount of latency in the internetwork could be used to pick a window size sufficient to keep the current connection’s pipe full. The constant 8 converts bytes to bits (assuming ConnectRate is in bits per second). If ConnectRate is in Bytes per Second then omit the 8. FEPFudge is not required but can be used to take overall processing overhead of the FEP into account.

The PPD is used to seed the adaptive algorithm with the initial RTT(n-1) value.

Sample

Sample is the actual measured time for a returned acknowledgment.

Round Trip Time

The RTT value represents our estimate of when the average packet acknowledge will return.

3.4.2.1	Calculating Adaptive Acknowledgment Time Out

We still must decide how much time to allow for acknowledges to return. If we set the time-out too high we end up unnecessarily waiting for dropped packets. If it is too short we end up timing out just before the acknowledge arrives. The acknowledge time out should also be reasonable and responsive to changing network congestion.

The suggested adaptive algorithm detailed below is based on the TCP 1989 implementation and is explained in Richard Steven’s book TCP/IP Illustrated, Volume 1 (page 300). ‘n’ means this iteration of the calculation and ‘n-1’ refers to values from the last calculation.

� EMBED Equation.2 ���

DIFF represents the error in the last estimated Round Trip Time. DIFF is calculated on each iteration.

RTT is the estimated Round Trip Time of an average packet. RTT is calculated each iteration and stored for use next iteration.

DEV is the estimated mean deviation. This approximates the standard deviation. DEV is calculated each iteration and stored for use next iteration.

ATO is the adaptive time-out for the next transmitted packet. ATO is calculated each iteration.

Alpha (() is the gain for the average and is typically 1/8 (0.125).

Beta (() is the gain for the deviation and is typically 1/4 (0.250).

Chi (() is the gain for the time-out and is typically set to 4.

To eliminate division operations for fractional gain elements the entire set of equations can be scaled. With the suggested gain constants they should be scaled by 8 to eliminate all division. To simplify calculations all gain values are kept to powers of two so that shift operations can be used in place of multiplication or division.

The final calculation of ATO should use a MIN function to insure that the time out does not exceed the maximum time-out.

3.4.2.2	Congestion Control: Adjusting for Time Out

If a time-out occurs the time-out value should be adjusted upward. Although GREv2 packets are not retransmitted when a time-out occurs, the time-out should be adjusted up toward a maximum limit. To compensate for shifting internetwork time delays a strategy must be employed to increase the time-out when it expires. A simple formula called Karn’s Algorithm is used in TCP implementations and may be used in implementing the backoff timers for NTAS or the FEP. Notice that in addition to increasing the time-out we are would also shrinking the size of the window.

The Timer Backoff algorithm as used in TCP is:

� EMBED Equation.2 ���

Adapted to our time-out calculations the new ATO is calculated:

� EMBED Equation.2 ���

In this modified calculation of ATO, only the two values which contribute to ATO and which are carried on to the next iteration are calculated. RTT is scaled by (and DEV is unmodified. DIFF is not carried forward and is not used in this scenario. (is suggested to be 2.

3.4.23		Sliding Window Protocol

The sliding window protocol used on the PPTP data path is used to flow control each side of the data exchange. The proposed GREv2 IP protocol allows packet acknowledgments to be piggybacked on data packets. Acknowledgments can still be sent separate of data packets. The main purpose of the sliding window protocol is for flow control, retransmissions are not supported.

3.4.23.1	Multi Packet Acknowledgment

One feature of the PPTP sliding window protocol is to allow an acknowledgment of multiple packets with one acknowledgment. All outstanding packets with a lower or equal sequence number of the acknowledgment are cleared. Time-out calculations are performed using the highest number packet acknowledged and all lower packet timers are cleared. This is shown in Figure 2 below.

� EMBED Visio.Drawing.3 ����

Figure 2

In Figure 2 the FEP acknowledges the last packet it received. This effectively acknowledges all prior messages and allows NTSNTAS to send another window full. AdaptiveTO time-out calculations are only performed when an Acknowledge is received. When Multi Packet Acknowledges are used the overhead of the adaptive time-out algorithm is reduced. The FEP is not required to take advantage of the Multi Packet Acknowledge and it can individually acknowledge each packet as they are sent to the PPP client.

3.4.23.2	Out of Order Packets

Occasionally packets loose their order across a complicated internetwork. In Figure 3 this is illustrated. Packet 3 arrives at the FEP after packet 4 although NTSNTAS sent them in order. The FEP acknowledges packet 4, and may assume packet 3 is lost. This acknowledgment grants credit beyond packet 4. When the FEP does receive packet 3, it should attempt to transmit it to the remote PPP client. effectively acknowledging all lesser number packets in the eyes of the sender (including packet 3 which has been sent but not received yet by the FEP). When the FEP does receive packet 3 which has a lower sequence number than the highest the FEP has already acknowledged it does not acknowledge it, but it will still transmit it to the remote PPP client. When packet 5 comes in it is acknowledged by the FEP since it has a higher sequence number than 4 which was the last highest packet acknowledged by the FEP.

� EMBED Visio.Drawing.3 ����

Figure 3

3.4.4		Acknowledge Time-out and Window Adjustment

3.4.4.1	Initial Window Size

Although each side has indicated the size of its receive window it is recommended that a slow start method be used to begin transmitting data. The initial window size on the transmitter is set to half the maximum size the receiver requested with a minimum size of 1 packet. As the receiver successfully digests each window the window size on the transmitter is bumped up by one packet up to the initial maximum.

This method prevents a system from flooding an already congested network because no history has been established.

3.4.4.2	Closing the Window

When a time-out does occur on a packet the sender adjusts the size of the transmit window down to one half the value it was when it failed. Fractions are rounded up and the minimum window size is one.

3.4.4.3	Opening the Window

With every successful transmission of a window without a time-out, the window is opened by one packet until it reaches the maximum window size that was sent by the other side when the call was connected. As stated earlier no retransmission is done on a time-out. After a time-out the transmission resumes with the window starting at one and adjusting upward with each success.

3.4.4.4	Window Overflow

When a receivers window overflows with too many incoming packets excess packets are thrown away.

�3.5		Management Data Request

TBD.

�Appendix A		Acknowledgement Timeouts

PPTP uses sliding windows and time-outs to provide both flow control across the internetwork as well as data buffering to keep the FEP data channel full. PPTP requires that a time-out be used to recover from dropped data or acknowledgment packets. The exact implementation of the time out is vendor specific. It is suggested that an adaptive time-out be implemented with backoff for congestion control. The time-out mechanism proposed here has the following properties:

Independent time outs for each destination. A device (FEP or NTS) will have to maintain and calculate time-outs for every other device it has active communication with.

An administrator adjustable maximum time-out unique to each device.

An adaptive time-out mechanism that compensates for changing throughput. To reduce packet processing overhead vendors may choose to not recompute the adaptive time-out for every received acknowledgment. The result of this overhead reduction is that the time-out will not respond as quickly to rapid network changes.

Timer Backoff on time-out to reduce congestion. The backed off timer is still limited by the maximum time-out. Timer backoff should be done every time an acknowledgment packet times out.

Some definitions:

Packet Processing Delay (PPD) is the amount of time required for each side to process the maximum amount of data buffered in their receive packet sliding window. The PPD is the value exchanged between the FEP and NTS when a call connects. For NTS this number should be small, for a FEP making modem connections this number could be significant.

Round Trip Time (RTT) is the estimated round trip time for an Acknowledge to return for a given transmitted packet. When the network link is a local network, this delay will be minimal (if not zero). When the network link is the Internet it could be substantial and vary widely. RTT is adaptive and will adjust to include the PPD and whatever shifting network delays contribute to the time between a packet being transmitted and receiving its acknowledgment.

Sample is the actual amount of time incurred receiving an acknowledge for a packet already transmitted. The Sample is measured (not calculated).

Adaptive Time Out (ATO) is the time that must elapse before an acknowledge is considered lost. After a time-out the sliding window is partially closed and the timer is backed off.

Packet Processing Delay

The PPD parameter is a 16 bit word exchanged during the Call Control phase that represents tenths of a second (64 means 6.4 seconds). The protocol only specifies that the parameter is exchanged it does not specify how it is calculated. The way values for PPD are arrived at is implementation dependent and need not be variable (static time-outs). The PPD must be exchanged in the call connect sequence even if it remains constant in an implementation. One possible way to calculate it is:

� EMBED Equation.2 ���

The header size consists of the IP and GREv2 header and is 36. The MTU is the overall MTU for the internetwork link between the FEP and NTS. WindowSize represents the number of packets in the sliding window and its calculation or size is implementation dependent. The amount of latency in the internetwork could be used to pick a window size sufficient to keep the current connection’s pipe full. The constant 8 converts bytes to bits (assuming ConnectRate is in bits per second). If ConnectRate is in Bytes per Second then omit the 8. FEPFudge is not required but can be used to take overall processing overhead of the FEP into account.

The PPD is used to seed the adaptive algorithm with the initial RTT(n-1) value.

Sample

Sample is the actual measured time for a returned acknowledgment.

Round Trip Time

The RTT value represents our estimate of when the average packet acknowledge will return.

A.1		Calculating Adaptive Acknowledgment Time Out

We still must decide how much time to allow for acknowledges to return. If we set the time-out too high we end up unnecessarily waiting for dropped packets. If it is too short we end up timing out just before the acknowledge arrives. The acknowledge time out should also be reasonable and responsive to changing network congestion.

The suggested adaptive algorithm detailed below is based on the TCP 1989 implementation and is explained in Richard Steven’s book TCP/IP Illustrated, Volume 1 (page 300). ‘n’ means this iteration of the calculation and ‘n-1’ refers to values from the last calculation.

� EMBED Equation.2 ���

DIFF represents the error in the last estimated Round Trip Time. DIFF is calculated on each iteration.

RTT is the estimated Round Trip Time of an average packet. RTT is calculated each iteration and stored for use next iteration.

DEV is the estimated mean deviation. This approximates the standard deviation. DEV is calculated each iteration and stored for use next iteration.

ATO is the adaptive time-out for the next transmitted packet. ATO is calculated each iteration.

Alpha (() is the gain for the average and is typically 1/8 (0.125).

Beta (() is the gain for the deviation and is typically 1/4 (0.250).

Chi (() is the gain for the time-out and is typically set to 4.

To eliminate division operations for fractional gain elements the entire set of equations can be scaled. With the suggested gain constants they should be scaled by 8 to eliminate all division. To simplify calculations all gain values are kept to powers of two so that shift operations can be used in place of multiplication or division.

The final calculation of ATO should use a MIN function to insure that the time out does not exceed the maximum time-out.

A.2		Congestion Control: Adjusting for Time Out

If a time-out occurs the time-out value should be adjusted upward. Although GREv2 packets are not retransmitted when a time-out occurs, the time-out should be adjusted up toward a maximum limit. To compensate for shifting internetwork time delays a strategy must be employed to increase the time-out when it expires. A simple formula called Karn’s Algorithm is used in TCP implementations and may be used in implementing the backoff timers for NTS or the FEP. Notice that in addition to increasing the time-out we are would also shrinking the size of the window.

The Timer Backoff algorithm as used in TCP is:

� EMBED Equation.2 ���

Adapted to our time-out calculations the new ATO is calculated:

� EMBED Equation.2 ���

In this modified calculation of ATO, only the two values which contribute to ATO and which are carried on to the next iteration are calculated. RTT is scaled by (and DEV is unmodified. DIFF is not carried forward and is not used in this scenario. (is suggested to be 2.

�Appendix B		Acknowledge Time-out and Window Adjustment

B.1			Initial Window Size

Although each side has indicated the size of its receive window it is recommended that a slow start method be used to begin transmitting data. The initial window size on the transmitter is set to half the maximum size the receiver requested with a minimum size of 1 packet. As the receiver successfully digests each window the window size on the transmitter is bumped up by one packet up to the initial maximum.This method prevents a system from flooding an already congested network because no history has been established.

B.2			Closing the Window

When a time-out does occur on a packet the sender adjusts the size of the transmit window down to one half the value it was when it failed. Fractions are rounded up and the minimum window size is one.

B.3			Opening the Window

With every successful transmission of a window without a time-out, the window is opened by one packet until it reaches the maximum window size that was sent by the other side when the call was connected. As stated earlier no retransmission is done on a time-out. After a time-out the transmission resumes with the window starting at one and adjusting upward with each success.

B.4			Window Overflow

When a receivers window overflows with too many incoming packets excess packets are thrown away.

�Appendix C		4.0		PPTP State Diagrams

� EMBED ShapewareVISIO20 ����

Hamzeh	CONFIDENTIAL DRAFT	[Page � PAGE �
42
136�]

