

�title �Microsoft At WorkTM Software Architecture

White Paper �

							�

�
Introduction

This goal of this document is to outline the Microsoft At Work(software architecture as implemented in Microsoft At Work-based fax machines, copiers, printers and handheld systems. The document begins with a discussion of the principles that underlie the Microsoft At Work software architecture in Section 2. A description of the logical elements that make up the architecture is in Section 3. Then, an overview of the architecture as a whole is presented, along with an profile of each element of the software, in Section 4. In Section 5, scenarios of Microsoft At Work-based facsimile machine operation illustrate the use of the software elements during sending and receiving of a facsimile. Section 6 describes the different product configurations of the software elements, from the core needed in every Microsoft At Work appliance to the most feature rich, high end machine.

Goals of the Architecture

The Microsoft At Work software architecture is the foundation for a new line of intelligent devices, including facsimile machines, copiers, and printers, comprising several hardware configurations and many feature packages. The Microsoft At Work software must meet the following goals:

The architecture must be versatile, allowing for a large variety of new and improved device specific features.

Some of the features that Microsoft At Work-based machines will have include: an improved user interface, using bit mapped screens and touch panels; a new communications protocol, allowing fast transmission of editable documents between Microsoft At Work-based machines and PCs; enhanced printing and scanning capabilities, producing higher resolution and higher quality documents; increased per-user personalization and security; and the capability to add application specific features for banking, databases, sales, and many other markets. Some of the software elements used to build the new and improved features need real time response. The architecture must allow for both real time and non real time software.

The architecture must be scalable so that new hardware and software can be added to the "core" system.

The Microsoft At Work software runs on a variety of devices. The core architecture must be the same across all machines. Going from the low end of a product line to the high end is accomplished by adding hardware and software modules to the core architecture. This enables manufacturers to produce a wide range of Microsoft At Work-based products easily, much as PC vendors can produce many hardware and software configurations that build on the core Intel hardware and Microsoft Windows family of operating systems. Some examples of capabilities that might be added to a core Microsoft At Work system include additional memory, higher resolution printers and scanner, LAN interfaces, bar code readers, and hard disk drives.

The architecture must be modular with well defined application programmer interfaces (APIs).

Just as in the PC market, eventually many companies will be writing application software for intelligent appliances. This cannot be done without well defined interfaces to the core software. The modular structure allows for easy programmer access to each major Microsoft At Work software element.

The architecture must be compatible with the Windows PC architecture.

The Microsoft At Work APIs are compatible with Windows APIs, and the Microsoft At Work programming paradigm is similar to, if not exactly the same as, that for Windows.

The architecture must be robust, allowing for graceful hardware and software error recovery.

Any Microsoft At Work-based machine is an appliance that often will run for many days in an unattended mode. It must be able to withstand internal and external errors without needing a user to hit "cntl-alt-delete". The architecture supports an error recovery strategy that includes the ability to automatically detect and correct many types of errors. For example, if an application fails, the software closes the application and allows the system to continue running.

The architecture must be upgradeable to take advantage of new processor technology.

Improved x86 architecture processors continue to be built, typically yielding a large increase in speed and over time becoming less expensive than the previous version. Also, new processors built on RISC technology are now entering the market. The Microsoft At Work software architecture must be built for the long term and allow for new CISC and RISC processors to be at the core of the intelligent fax machine, copier, and printer.

The Microsoft At Work software architecture has been built to satisfy these goals in a cost efficient, high performance manner. It is a layered, modular architecture: each major software element has a well defined API, and communication paths between elements are minimized where possible. A small software layer of abstraction has been built between the hardware and the great majority of the software elements. This permits hardware changes to be done invisibly to the software above the abstraction layer. The operating system provides real time services such as preemption, and its interfaces are compatible with those of Microsoft Windows. So, the applications that provide intelligent appliance buyers with new features can not only be built like PC applications but can also run with very high performance.

Logical Elements of the Architecture

The Microsoft At Work software process model is based on the Windows process model. A process is an independent program that has its own data and stack space. The architecture allows for multiple processes, with no theoretical limit: however, practical memory and performance constraints will limit the number of processes. A process may execute code that it alone uses, and it may execute code from shared libraries that other processes in the system also use. System services, such as the Microsoft At Work Operating System (OS), are accessed as shared libraries, known as dynamic linked libraries (DLLs).

Processes in an Microsoft At Work-based machine are not totally independent of each other. Often, communication between processes is needed. A process communicates with other processes through inter-process communication (IPC) messages, signals, and through pipes. The IPC message mechanisms are provided by the operating system and are identical to Windows messaging. Processes may also share certain types of data and may send data to other processes. Continuous data are sent between processes using pipes. A pipe is an abstraction for sending a stream of data from one process to another. A pipe is created when it is needed and deleted when the data stream has finished. Another interaction between processes is their sequence of execution. A Microsoft At Work-based machine is typically a uniprocessor system with multiple processes. Only one process at a time can be running. Scheduling of processes is performed by the operating system, and it is based on whether a process is ready to run and what priority the process is.

(Note: the term "message" is used in two ways in this document, here first for IPC messages and later for user to user - or machine to machine - messages that are sent as faxes or electronic mail. To keep them straight in this document, Windows IPC messages will always be referred to as IPC messages. User to user messages will be called simply messages).

Preemptive and Non-preemptive processes

There are two types of processes in the Microsoft At Work software architecture: preemptive and non-preemptive. This differs from Microsoft Windows 3.1. In the Windows architecture, all processes are non-preemptive. In the Microsoft At Work architecture, like in all real time systems, some (but not all) processes will need to be run within tight latency constraints, regardless of what else is happening in the system. For example, an incoming fax must be read from the phone line as it comes in. The process that executes the fax protocol cannot wait for other processes to voluntarily yield, or the fax will be lost. The Microsoft At Work software architecture provides preemptive processes for real time functionality, and it also provides non-preemptive processes to maintain compatibility with Windows.

Non-preemptive Microsoft At Work processes can use all of the Windows compatible services and resources, such as the graphics user interface. These processes will never be preempted by another non-preemptive process, so they can be written with no regard for resource locking. Any processes written for a standard Windows PC that are run on a Microsoft At Work-based machine will be non-preemptive processes.

Microsoft At Work preemptive processes cannot use all of the Windows compatible services. They can preempt other processes. Preemptive processes will be scheduled based on priority. Preemptive and non-preemptive processes will communicate with each other via IPC messages. The distinction between services and resources that can be used by both types of processes or by only one or the other will be clearly made in the Microsoft At Work Operating System API and will be automatically enforced within the software development kit.

The job model

Like processes, jobs can be of two different kinds - messaging jobs which relate to sending of message or command control data from a source to a destination and command control jobs which deal with manipulation of machine configuration options.

Messaging jobs involve the transport of data from a source to a destination. Sources and destinations have both logical and physical components. The logical source and destination of messages are in general either local users or remote phone numbers. At the physical level sources and destinations could be any of the devices attached to, for example, an intelligent copier/fax machine, like the printer, the scanner, or a serial connection. If Frank is an intelligent fax machine user scanning in a document to fax to a user named Sharon at a remote phone number, then the logical source and destination are Frank and Sharon, while the physical source and destination on the fax machine are the scanner and the fax modem. Another example of a messaging job is the copying of a file inside of an intelligent copier. The hard disk is the source, and the printer is the destination. Applications could also serve as sources or destinations of messages. A local router in the system determines the mapping from the logical entities to the physical entities. Messaging jobs could be invoked from the control panel - like a send fax from the scanner - or remotely from a PC over the serial port or LAN or whatever other means of connection exist. A central database, the Message Store (see Section 4.5.3) contains a record of all messages currently being processed in the system.

A messaging job primarily consists of some per message information such as job priority, a message header made up of various properties (fields), and the raw data which is to be transmitted or copied or printed or otherwise operated on. A message could also contain attachments, each of which consists of a header and data. The data in attachments may be of many formats or types. Examples of data types include Group 3 encoded bitmaps (MH, MR, or MMR encoding), renderable files, scanned images, and native binary formats such as Word for Windows format. Each data part is characterized by a handle to a pipe, one of the inter process communication mechanisms, which contains the data.

Command control jobs are mostly invoked by the user from the user interface, or remotely via a serial or LAN (or other) connection or via a messaging job. Command control jobs are generally short lived and require read/write access to system services and to various databases maintained in the system. Some of the important data entries include the machine configuration, the local user configuration, status and error information about the system and jobs in the system, phone directories etc. All requests submitted by the local user are completed synchronously - i.e. if the user pushes a button to get the value of a configuration option then he/she would not be expected to press any other key until this request was satisfied. However, remote command control jobs may be interactive and synchronous, just as in the local user example, or they might be sent to the intelligent appliance in the form of messaging jobs and be asynchronous. For example, an authorized user on a Windows PC could send a messaging job to an intelligent printer that consists of commands like "send me the contents of the user database", "send me an error report", etc. These commands would be received and answered with a similar message.

Physical Elements of the Architecture

This section describes at a high level the physical elements that make up the software architecture for an Microsoft At Work-based intelligent appliance. Figure 1 shows the Microsoft At Work software elements and the interfaces between them.

� EMBED Word.Picture.6 ���

Figure 1

The principle elements that make up the software architecture of an Microsoft At Work-based machine are: the user interface shell and remote control application, other applications, services, communications, the operating system, the basic operating system services (BOSS), and device drivers. The following descriptions in the remainder of this section are meant to provide an overview of the functionality of all the major software elements. Each Microsoft At Work-based machine, regardless of cost, will have these elements in some form. A low end intelligent fax machine will typically have, for example, fewer or no applications and less peripheral device drivers than a high end copier. Later, several different Microsoft At Work software configurations are presented, from the "core" software needed in all Microsoft At Work-based machines to the software in a high end appliance.

Device Drivers and Interrupt Service Routines

Peripheral devices in the Microsoft At Work based machine are accessed via device drivers and interrupt service routines (ISRs). These two software elements provide a layer of abstraction between the hardware and the rest of the system software. Typical devices include disk drives, scanners, printers, modems, and the display. When a device is upgraded or replaced while retaining the same basic functionality, only the device driver and ISR for that device will change in the software. The format of device drivers and ISRs is based on the Windows device driver standard.

All device drivers and ISRs provide the following basic functions for each device: initialization, including power on testing and reset; device control, principally the ability to set options in the device through registers; open, which allows a device to be reserved for use by a process; close, which frees the device; read, getting data in either byte or block form from the device; and write, sending data in either byte or block form to the device.

The ISRs work with the device drivers to notify higher level software when the device has completed an operation or when it is ready to start one.

Basic Operating System Services

The BOSS is the underlying framework that separates the Microsoft At Work OS from the peculiarities of the appliance processor hardware. The components of the BOSS are shown in figure 2.

� EMBED Word.Picture.6 ���

Figure 2

The BOSS includes basic start up procedures in its Power On and Self Test (POST) module, system tables that define the configuration of memory and interrupts, the hardware independent BOSS managers, and the hardware dependent Hardware Abstraction Layer (HAL) Device Interfaces.

Start up and POST

The BOSS gains control of the Microsoft At Work-based machine upon power-on. It may perform various power on self tests of essential hardware, including the processor, the memory, and devices such as the DMA, the interrupt controller, and the timers. This self test routine is provided by the appliance manufacturer. Finally, the BOSS sets up the interrupt control registers and the descriptor tables for protect mode operation and turns over control of the system to the OS.

System Tables

The System Tables provide all the basic memory and device configuration data needed to start the Microsoft At Work software. This includes information such as where the ROM and RAM are, what interrupts are used, how NVRAM is allocated, and so on. The appliance manufacturer supplies this data.

BOSS Managers

The Microsoft At Work OS relies on BOSS to perform low level memory management, error handling, and timing functions. BOSS includes a set of routines that manage these for the OS. These managers are hardware independent as they rely on the HAL interface to actually access hardware functions.

HAL Device Interfaces

Most of the visible devices in the intelligent appliance are controlled via device drivers. However, the devices that are usually considered as part of the processor complex are controlled by the BOSS. This includes the DMA controllers, the Interrupt Controllers, the Real Time Clock, the Watch Dog Timer, and the Interval Timers. The BOSS presents the Operating System with the functions needed to use these devices. These functions are abstractions of the actual register and bit manipulation needed to control specific chips. So, if the chips are changed from one Microsoft At Work machine to another, only a small part of the BOSS changes, not the larger Microsoft At Work OS.

The appliance manufacturer writes these Device Interface routines to the HAL Interface defined in BOSS.

Microsoft At Work Operating System

The Microsoft At Work OS provides a real time, multitasking operating environment for an Microsoft At Work based machine. The OS presents applications and services with a Windows-compatible API, allowing for development of applications on Windows PCs for any Microsoft At Work-based device. It also allows for the Windows PC development environment to be used to create the Microsoft At Work software itself and to test Microsoft At Work hardware. The OS utilizes the Basic Operating Services (BOSS) and device drivers to interface to the hardware of the machine. Because of this layered approach, the Microsoft At Work OS is portable across different Intel processors (286 and above) and many different specific device configurations. The Microsoft At Work OS is also able to be run while resident in ROM.

The major modules in the OS are the Kernel, the Installable File System, and the Graphics Services Module.

Kernel

The Kernel provides most of the functionality of the Operating System. The kernel is responsible for module (process and dynamic linked library) management and scheduling, inter-process messaging, memory management and timers. The Kernel portion of the Microsoft At Work OS API is an extension to the Windows Kernel API; i.e., the Microsoft At Work Kernel provides all the functions provided by the Windows Kernel, along with extra functionality to support preemptive processes.

The Kernel interfaces to the BOSS and to device drivers. The principle functions the Kernel uses from them are timer device services, interrupt services, program loading, and some memory management.

Module Management, IPC, and Scheduling

There are two kinds of software modules in a Microsoft At Work-based machine - processes and DLL's (Dynamic link libraries). DLL's are libraries which are linked in with the calling process. This saves memory space since multiple processes can share the same libraries without duplication of code. The Microsoft At Work OS itself consists of several DLL's which are used by the Microsoft At Work processes. The Microsoft At Work OS manages both types of modules, allowing them to be linked, loaded, and executed.

The Microsoft At Work OS provides facilities for two kinds of processes - non preemptive processes which run in the foreground, and preemptive background processing processes which do not use the display. It offers services to create and delete these processes (supported by the BOSS memory management functions), and for communication between them using the standard Windows Inter-Process communications (IPC) messaging mechanism. A process can send IPC messages to any other process. IPC messages are often used to exchange data. The Microsoft At Work OS will not attempt to schedule processes which are waiting for messages.

In addition to the Windows IPC messages, the Microsoft At Work OS also provides various other IPC services, including semaphores and events. Processes and DLLs may manage resource contention with semaphores and may use signals to notify each other of events. These IPC mechanisms were added to facilitate communications between preemptive processes.

Non-preemptive processes are scheduled just as they are in a Windows PC. Once a non-preemptive process gains control of the processor, it will not be preempted by another non-preemptive process until it voluntarily gives up control, usually through a call to wait for a IPC message to arrive. A preemptive process can preempt a non-preemptive process or another preemptive process. A preemptive process, once running, will run until another preemptive process of higher priority becomes ready or until it voluntarily gives up control of the processor. If both preemptive and non-preemptive processes are ready to run, they will time slice among each other. The preemptive processes will run for a period of time, perhaps preempting each other, and then the currently running non-preemptive process will run for a period of time. The time slices used are configurable by the appliance manufacturer.

Memory Management

Microsoft At Work machines are inherently data intensive and thus depend heavily on the efficiency of the memory manager. The OS implements global pools of standard size memory blocks in order to reduce fragmentation and make dynamic allocation and deallocations fast. It also controls access to the memory resource at a large granularity to make sure that the system does not freeze due to lack of memory.

The Microsoft At Work OS memory management system allows processes to allocate blocks of memory. A process can allocate blocks of memory from either the global or the local heap. The global heap is a pool of free memory available to all processes. The local heap is a pool of free memory available to a particular process. In managing the system memory, the Microsoft At Work OS also manages the code and data segments of processes.

In some memory-management systems, the memory allocated remains fixed at a specific memory location until it is freed. In the Microsoft At Work OS, allocated memory can be also be moveable and discardable. A moveable memory block does not have a fixed address; the Microsoft At Work OS can move it at any time to a new address. Moveable memory blocks let the Microsoft At Work OS make the best use of free memory. For example, if a moveable memory block separates two free blocks of memory, the Microsoft At Work OS can move the moveable block to combine the free blocks into one contiguous block. A discardable memory block is similar to moveable memory in that the Microsoft At Work OS can move it, but the Microsoft At Work OS can also reallocate a discardable block to zero length if it needs the space to satisfy an allocation request. Reallocating a memory block to zero length destroys the data the block contains, but a process always has the option of reloading the discarded data whenever it is needed.

Timers

The Microsoft At Work OS provides Windows compatible timer services. A process may set a timer and block (go to sleep) until the timer goes off. Processes are notified of the timer going off through the messaging mechanism. The BOSS provides the interface to the timer hardware.

Pipes and Buffers

To allow efficient usage of memory and sharing of data in a compatible fashion, the OS defines two high level data abstractions for all data manipulation, pipes and buffers. The basic abstractions provided allow applications to create and use pipes from which they can read and write data. Internally, pipes consist of a list of buffers of standard sizes which contain the actual data. Facilities are provided to manipulate and share both buffers and Microsoft At Work pipes efficiently.

Graphics Services

The OS provides a Windows compatible set of user interface services to allow applications to make use of the graphical capabilities of the intelligent appliance display. These are provided at two levels - graphics functions to draw graphics primitives like lines, bitmaps etc., and high level User Interface commands to draw logical objects like push buttons and windows and to recognize user input.

The Graphics Services Module is scalable. On low end machines with small amounts of memory, it will provide a small subset of Windows graphics services. This subset will be sufficient to create an advanced Microsoft At Work-based machine user interface, but it will not allow for overlapping windows and complete Windows compatibility. In a high end Microsoft At Work-based machine, the Graphics Services Module will contain all the functionality of the Windows User and GDI modules.

File System

The Microsoft At Work OS provides a Installable File System (IFS) Manager and a MS-DOS/Windows compatible FAT File System to allow applications to create, read and write files. Other file systems can be added, and many file systems may be used at the same time. All installed file systems use device drivers to interface to peripheral hardware. The hardware devices supported by a file system may include floppy drives, hard drives, or JEIDA drives. It also may write to "RAM disks". Files on removable media like floppy disks will be portable to and from Windows PCs when the FAT File System is used to create them.

Access to the file system is through the Microsoft At Work OS API. This access is identical to the Windows file system access, allowing for applications that use the Microsoft At Work file system to be portable to Windows PCs. A MS-DOS compatible interface (INT 21) and a Win32 interface are also included.

Object Store

The Object Store provides the database functionality in the Microsoft At Work architecture. It contains information that is used by multiple software modules. The Object Store is a general object database. Applications can create objects of any type, but the system provides objects that support all Microsoft At Work features.

The format of the Object Store is based on the Microsoft Messaging API (MAPI) Message Store. The Object Store is organized into a series of hierarchical containers, known as folders. A folder may contain another folder or a “message”. A message is just an object that contains data (as opposed to containing other messages or folders).

Despite the names “folder” and “message”, the Object Store contains not only such things as inboxes and outboxes with messages in them but also system configuration information, such as whether the system has a disk or not, and address books and any other relevant data.

A typical Microsoft At Work appliance might have the following Object Store folders shown in Figure 3:

� EMBED Word.Picture.6 ���

Figure 3

Inbox and Outbox folders hold messages that have been received or are going to be sent, respectively. The Poll Store and To Relay folders also hold messages.

The Configuration folder and its subfolders contain information on the system setup, including what hardware is present, what versions of software are installed, how many applications are on the system, etc.

Several differing types of objects are categorized as addresses that reside in an Address Book Folder. Each of these kinds of addresses can be fax message recipients. These include:

Local Users - user accounts on the local system

Remote Users - users of remote fax machines that faxes can be sent to

Relay Stations - remote fax machines that can route faxes to their final recipients

Group Lists - collections of recipients that can contain local user, remote user, and relay addresses

System logs (such as error logs) are stored in the log folder and reports are stored in the reports folder. There are any number of logs and reports available in the system, depending on the feature set of this particular Microsoft At Work machine and what storage exists to hold the information.

There are a variety of private system folders used by software like the Message Pump to store messages while they are in transit. These folders are not accessed by other modules.

Services

The software modules in the Microsoft At Work Services Element provide much of the basic functionality of the intelligent appliance.

Figure 4 shows the internals of the Services module, including its interfaces.

� EMBED Word.Picture.6 ���

Figure 4

Messaging Services

The Messaging Service provides the capabilities for composing and processing message jobs (where "message job" could mean copying a scanned image, sending an email message, or receiving a fax). The Microsoft At Work methods for handling messages are based on the Microsoft Messaging Application Program Interface (MAPI). This strategy is being used by Microsoft's mail programs and applications, and it is also subscribed to by a large number of Independent Software Vendors (ISVs). By using the same message formats and procedures, an Microsoft At Work-based appliance will seamlessly integrate with Microsoft's desktop messaging strategy and with mail-enabled PC applications.

The modules that comprise Messaging are the Microsoft At Work Messaging API (A-MAPI) DLL, the Message Pump, the Message Pump SPI that connects the Imaging Services to the Message Pump, and the Messaging Security Module, which includes encryption. Typically, these modules are used in the following manner: an application or the UI Shell uses A-MAPI to create a message, which is placed in the message store. This message contains the information necessary to start a messaging job, such as the job to be performed (e.g., send a fax), the source and destination for the job, per-job options, etc. The Message Pump reads the message, determines where the data is coming from and going to, and then sets up the pipes to move the data from the source device to the appropriate Imaging Services modules and finally to the output device or protocol. More detail on the four messaging modules follows, preceded by a description of a Microsoft At Work message.

Microsoft At Work Message Format

The Microsoft At Work message format is patterned on the message format espoused by the Microsoft MAPI Strategy. A message consists of properties and attachments, and attachments also consist of properties. Properties are attributes of a message or an attachment. Each property has a name (an ID) and a value. For example in a fax message, a message might have a property indicating the intended recipient. The ID for this property would be the string "To:" and the value might be "Sharon+1(206) 231-0985". A message for a printing job would not have a 'To:" property, but it would have a destination printer address, such as "LPT1". Message properties can be grouped into the message header and the message text. Similarly, attachment properties can be grouped into the attachment header and the attachment data. All binary files and bitmaps are processed as attachment data, with the message text property only used for text notes or annotations. (This is in keeping with the Microsoft MAPI and Mail message formats).

Microsoft At Work Messaging API (A-MAPI) Module

The A-MAPI Module provides the single interface to the Object Store for applications and for the message pump. All the messaging features of the Microsoft At Work intelligent appliance, such as fax sending and receiving, copying, and printing, are accessed by applications through A-MAPI. A-MAPI is based on the Microsoft MAPI 1.0 architecture.

The Object Store is the database for a Microsoft At Work-based machine. All database information, including messages, configuration, and addresses and capabilities reside in the Object Store. Through A-MAPI, all of these objects are operated on. Typical operations include creation, read/write, and deletion of messages in folders. Since messages can be configuration and system information holders as well as fax and email messages, A-MAPI provides not only the messaging interface to the Object Store but also the interface for all database access.

Message Pump

The Message Pump is the central controller for a Microsoft At Work-based appliance. It performs four functions: despooling of messages, local routing of messages, data transformation handling, and format resolution.

During the processing of a message job, the message pump first despools (removes) a newly created message from the Message Store. This message was either created in this machine or arrived from another Microsoft At Work machine, Windows PC, or Group 3 fax machine. The message will already include the intended destination and a pointer or handle to the pipe connected to the source of the message data. The Message Pump uses the configuration information in the Object Store to determine where the message will go based on the specified destination: either a local user, a remote user, or a hardware device. For example, if the recipient address is a phone number and the database points all phone numbers to the fax modem, the Message Pump will choose the fax modem as the ultimate destination. Once the device is chosen, the proper order of the Object Store is accessed by the Message Pump (through A-MAPI as always) to determine the capabilities of the recipient device. The format of the message and the capabilities of the intended recipient are processed by the format resolution function to choose the Rendering, Imaging, and Security Modules needed. Many messages require processing by more than one module, so a chain of Rendering and Imaging Modules is created. The Message Pump then connects the pipe which contains the data source to the first chosen Module. It then creates a second pipe to take the output of that Module and send it to the next Module in the chain. This continues until the last module in the chain, typically a protocol or an output device is in place. Once the pipes are in place and the data is flowing from the source to the output device, the Message Pump processes other jobs while waiting for this job to complete. When the job finishes, the Message Pump removes all the pipes and calls the OS to unload any imaging modules that were used.

Security and Encryption

The Security Module provides the message security functions in the Microsoft At Work system. This includes RSADIS public key encryption, RC4 bulk data encryption, and MD5 digital signatures. The Message Pump invokes these algorithms to provide the encryption, authentication, and digital signature features of Microsoft At Work messaging. Keys are created on a per user basis and stored in the Object Store.

Imaging Services

The Imaging Services Modules, consisting of both rendering and image processing DLLs and printing and scanning services, perform a simple function: they take data of one format in from a device or via a pipe, bundle or transform the data to a different format, and output the data into another pipe or device. The responsibility for setting up the pipes and assuring that the correct data transformation is made rests with the Message Pump.

Rendering and Image Processing

Any Microsoft At Work-based machine will support various rendering and image processing modules. For an intelligent fax machine, the three basic Group 3 fax formats, MH, MR, and MMR, are all renderable to a printable form. Also, rendering modules are provided for transforming ASCII and Microsoft At Work Rendering Format into bitmaps. The Microsoft At Work Rendering Format is based on the resource-based rendering technology is used in the Windows Printing System to optimize printing throughput. In addition to exchanging documents between Windows PCs, resource-based images can be sent to Microsoft At Work-based machines such as printers and fax machines. The primary advantage of resource-based images is that they are far more compact than raster images, greatly lowering storage requirements and transmission time. Resource-based images can employ conventional FAX compression and thus are always in the worst case as small as raster images. Resource-based images are typically much smaller because they capture high-level redundancy, particularly in text. This advantage will grow with the introduction of color and higher resolutions.

Imaging Services Modules can be written and installed by Microsoft At Work appliance manufacturers and by other software vendors. The control interface between the Message Pump and these Modules, called the Message Pump Service Provider Interface (SPI), allows for new renderers and imaging software to be added to any intelligent appliance. All rendering and image processing modules use the pipes and buffers mechanism as their data interface.

Printing

Microsoft At Work Printing has two primary interfaces to the rest of the Microsoft At Work software. Applications use the Printing DDI, which is compatible with the Windows Printer Driver DDI. The Printing Process is used to interface to pipes supplied by the Message Pump.

The Printer Driver is split into two pieces, the High Level and the Low Level Driver. The High Level Driver is supplied as part of Microsoft At Work, and it handles the interaction between the printer and the graphics system. The Low Level Driver is written by the Microsoft At Work machine manufacturer. It handles all the hardware specific operations. Since these vary from printer to printer, the Low Level Driver allows an Microsoft At Work machine to be customized to printer hardware.

Finishing Architecture

The Finishing Architecture Module provides functions needed by the printer for such features as collation, stapling, paper handling, etc. It is extendible: an intelligent fax machine may have very little in the way of finishing support, whereas a intelligent copier and maybe some intelligent printers will have extensive sets of finishing features.

Scanning

Microsoft At Work scanning is almost identical to Microsoft At Work Printing. The Scanning Interface for applications is compatible with the Windows Scanning Interface. The High Level Driver is a standard part of Microsoft At Work, and the manufacturer provides a Low Level Driver that handles specific scanner hardware operations.

Remote Access

The Remote Access module allows users on Windows PCs or other Microsoft At Work based machines communicating with this appliance to control it. The Remote Operation module receives commands from the controlling source and executes them on the local machine. The commands can be communicated to the local machine either asynchronously through a message carried by the Messaging Protocol or synchronously through the Interactive Protocol.

To control the Microsoft At Work machine in a synchronous manner, a user on a Windows PC might connect to, for example, an intelligent copier over a local area network (LAN). Remote Procedure Calls to update the machine with new email addresses would be sent over the network and arrive at the Remote Access module through the LAN protocol and the Interactive Protocol. The Remote Access module would then execute the remote procedure calls, usually accessing the Object Store through A-MAPI to make the changes. After each change was made, the status would be reported back via the LAN. In the asynchronous, message based control case, a special attachment could be sent as a fax message through the Messaging Protocol to an intelligent fax machine (or an intelligent copier with a fax modem) and put in the message store. The Remote Access module would read the attachment from the message store and execute the commands within. Synchronous reporting of success or failure would not be possible in this case, but the Remote Access module can send a message indicating success or failure back to the source of the control message.

In both types of control, the Remote Access module ensures that the controller is authorized to control this Microsoft At Work-based machine. At the least, the correct passwords are required to gain access. Other higher forms of security, such as call backs and authentication, can also be implemented as value-added features.

Communications

The Microsoft At Work Communications Architecture includes a family of protocols and interfaces for communications between PCs running one of the Microsoft Windows operating systems, Intelligent Office Appliances running the Microsoft At Work operating system, and any other devices that implement the same protocols. The communications module and associated interfaces for an Microsoft At Work-based office appliance are shown below in Figure 5.

 � EMBED Word.Picture.6 ���

Figure 5

Applications, including the User Shell, write to the Microsoft At Work A-MAPI (previously described) and the Interactive Services API to use Microsoft At Work communications services. For example, an application that wishes to send a fax or read a message would use the Microsoft At Work A-MAPI. A Compuserve access application that retrieves stock quotations from the bulletin board would use the Interactive Services API. These two APIs access the functionality of the two high level protocols: the Microsoft Messaging Protocol and the Interactive Protocol. Messages are processed (e.g., rendered and/or compressed) by services provided by the Imaging Services Modules that use the Message Processing SPI. Both of the high level protocols access the session level communications media specific protocols through the Sockets API. Figure 1 shows several examples of communication media specific protocols, including the Microsoft Fax and Data Protocols, an implementation of TCP/IP on top of an 802.2 LAN stack, and an ISDN Basic Rate Protocol. Any particular Microsoft At Work-based appliance will have a different combination of these lower level protocols, depending on its communications hardware. Finally, the session level protocols access the communications hardware through DDIs that are specific to the hardware device.

Interactive Services API

The Interactive Services API allows applications to establish interactive connections and exchange data with a variety of systems, including on-line information providers (e.g., Compuserve), Windows PCs, and other Microsoft At Work-based appliances. At its base level, the Interactive Services API provides an interactive communications API that is media independent, just as MAPI is a media independent API for messaging. In addition, to support applications that were created for the PC and to provide a high level of remote access services, the Interactive Services API supports several connection and media dependent calls. For example, the API subsumes the Windows COMM API, allowing Windows applications that use the COMM interface to run on a Microsoft At Work-based device (assuming these apps are also supported by the other Microsoft At Work system calls, such as GDI and USER calls).

The Interactive Services API consists of calls from the Unified Interactive Services module, the Microsoft At Work Telephony API (TAPI) Subset, the Windows COMM API, and the Microsoft At Work Remote Procedure Call module. (Note that although it has separate "parts", the Interactive Services API is one API, not four. It is simply convenient to describe it in terms of the four parts, much as MAPI can be described in terms of message calls store, address book calls, etc.).

Sockets API

The Sockets API allows for the Messaging Protocol and the Interactive Protocol to be communications media independent. All transport protocol stacks on a Microsoft At Work-based machine are exposed at the top the Sockets API. This makes it easy to add new communications devices to a Microsoft At Work-based appliance without changing any of the higher level software.

The Sockets API is the same as the Windows Sockets API.

Communications Protocols

Microsoft At Work defines two high-level media-independent protocols for messaging and interactive communications, and a family of lower level medium-specific protocols that host these high level protocols on specific media and associated protocol stacks.

The high level protocols defined by Microsoft At Work are the Messaging Protocol which provides uniform media-independent messaging, and the Interactive Protocol which provides a mechanism for a variety of interactive communications, such as on-line service access and PC-hosted remote control.

The Messaging and Interactive protocols are Presentation/Application layer protocols. They define data objects and streams, their meaning and interpretation, and their encoding for transmission. These protocols are therefore medium-independent, i.e. they run over any physical medium and it's associated lower-level protocol stack.

The Microsoft Messaging Protocol defines a message object, including its structure, parts and meaning. The protocol also defines how a message is encoded into a stream of bytes. This structure, meaning, and encoding remain exactly the same and are independent of the physical medium and session level protocols used in the message transfer.

The Microsoft Messaging Protocol is object-oriented, open and extensible, along with being medium and transport independent. It provides for exchange of documents and messages in editable or published form. It also provides security, and high-quality, high-compression image transfer. The Messaging Protocol has compatibility with existing fax and email standards and equipment, and it performs exchange and caching of recipients’ message-handling capabilities, to allow for intelligent message handling decisions.

The Microsoft Interactive Protocol provides RPC support for controlling a Microsoft At Work-based appliance from a PC or another Microsoft At Work-based appliance. It is compatible with and a proper subset of the RPC services provided in Windows NT.

Media Specific Session-Level Protocols

The Microsoft At Work-based appliance may have many types of communications hardware, from telephone line connections to Ethernet to wireless. Each communication medium typically has one or a few standard protocols that run on them. In the Microsoft At Work OS, these media-specific protocols are all hidden under the Sockets API. The Microsoft Messaging Protocol and the Microsoft Interactive Protocol are hosted on top of a family of media-specific protocols. These protocols provide a thin layer that allows MSMP and MSIP objects to be conveyed efficiently over any communications media using existing standard transport and lower-level protocol stacks. The thin layer is usually in the form of extensions or specific usage of standard protocol features.

One example of a Microsoft At Work Session Layer Protocol is the Microsoft At Work Fax Protocol. Current fax machines and PC-based fax modems communicate using the CCITT standard T.30 protocol. They exchange low-quality bitmaps compressed using the CCITT T.4 and T.6 standards. The T.30 protocol includes options for error-correction mode (ECM) and binary file transfer (BFT). It also provides hooks for non-standard features using the NSF/NSS/NSC (non-standard facilities/setup/command) frames.

The Microsoft At Work Fax Protocol conveys MSMP objects as binary files using the CCITT standard T.30 protocol. The ECM (error correction mode) and BFT (binary file transfer) options of the standard are used. In addition, the Microsoft protocol defines specific NSF, NSS and NSC frames and uses these to efficiently implement MSMP Capability Exchange and Polling features.

In relation to the OSI model again, the Microsoft At Work Fax Protocol provides a thin layer between the MSMP Presentation layer and the T.30 transport layer.

User Interface Shell

The User Interface (UI) Shell provides the local user with the functions to control the operation of the intelligent appliance. All of the basic functionality, including such things as sending faxes, copying, setting up user and recipient configurations, printing, etc., are invoked through the UI Shell. Also, the results of events, such as running out of paper, are displayed through the UI Shell.

Each intelligent appliance will have a somewhat different UI Shell, ranging from a few line character display to a full VGA style graphics interface. All Microsoft At Work graphic UI Shells will have the same general look and feel, provided by the Graphics Services module in the Microsoft At Work OS. But since Microsoft At Work-based devices have different functionality, their UI Shells will differ. Manufacturers of Microsoft At Work-based appliances are able to customize the UI Shell to the machine being built.

The principle interfaces for the UI Shell are the Messaging Services and the Microsoft At Work OS. The UI Shell is a non-preemptive process. Because of that, it has access to the UI Services of the OS, including input and output to the display hardware.

The UI Shell is of the same form as a Windows PC application. It has a main message loop that processes input from the keypad, touch panel, and any other devices, and it has dialog box routines to control the objects on the screen. It has access to the graphic capabilities provided by the Graphics Services module of the OS. In some Microsoft At Work based machines, this will be a subset of the Windows USER and GDI functions, and in others it will include all of the USER and GDI calls.

Applications

Applications software can provide specialized user visible features for a Microsoft At Work-based machine. Applications are generally non-preemptive processes that can use all the facilities of the Microsoft At Work software, including the user interface.

Applications use the Microsoft At Work Messaging Services to do such things as send messages, read received messages, and access the address book in the object store. The Messaging Protocol is invoked through the Messaging API to actually transmit messages to other intelligent appliances, Windows PCs, or Group 3 fax machines. Messages sent to the Microsoft At Work machine using the Messaging Protocol can be addressed to an application. The application would read these types of messages using the Messaging API. The Messaging API also provides an application with options that can be set on a per-message basis, such as the address of the recipient. Furthermore, it allows applications to read and/or write entries in the Object Store.

The Interactive Protocol APIs allow applications to establish interactive sessions with information service providers and with Windows PC and other Microsoft At Work machines. This supports such features as PC control of the Microsoft At Work machine, electronic software transfer, retrieving information from a remote database, and so on. Many of these functions can also be supported through the Messaging API.

The Microsoft At Work Operating System API provides a Windows-compatible API for operating system functions such as task management, graphics, file system access, and inter-task communication.

Summary

The Microsoft At Work software architecture provides the foundation for a new line of fully featured fax machines, copiers, and printers. The architecture is scalable, allowing for low end, inexpensive machines to run the same core software as high end machines. It supports a graphical user interface for easy feature access. The architecture is compatible with Microsoft Windows, giving Microsoft At Work-based appliances tight integration with the millions of Windows PCs already sold and allowing Windows developers to easily become Microsoft At Work developers.

(1994 Microsoft Corporation. All rights reserved.

The information contained in this document represents the current view of Microsoft Corporation on the issues discussed as of the date of publication. Because Microsoft must respond to changing market conditions, it should not be interpreted to be a commitment on the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information presented after the date of publication.

This document is for informational purposes only. MICROSOFT MAKES NO WARRANTIES, EXPRESS OR IMPLIED, IN THIS DOCUMENT.

Microsoft is a registered trademark and Microsoft At Work, the Microsoft At Work logo, and Windows are trademarks of Microsoft Corporation.

�
Overview of the Microsoft At WorkTM Software Architecture

On June 9th, 1993, Microsoft Corporation announced the Microsoft At WorkTM software architecture, a set of modular software technologies designed to bring ease of use, compatibility, and an enabling platform to devices in the wo
