 STYLEREF "Heading 1" * MERGEFORMAT

Microsoft Windows Services for UNIX 3.5
Interix POSIX.1 Conformance Document
(Threads Component)
© 2003 Microsoft Corporation. All rights reserved.

Interix is a trademark of Microsoft Corporation.

Microsoft and Windows are registered trademarks of Microsoft Corporation.

1Preface

1Purpose and Audience

1Manual Organization

1Notations and Conventions

2Section 1: General

21.1
Scope

21.3
Conformance

21.3.1
Implementation Conformance

2Section 2: Terminology and General Requirements

22.2
Definitions

22.2.2.112 scheduling policy

32.5
Primitive-System Data Types

32.8
Numerical Limits

32.8.4
Run-Time Invariant Values

32.9
Symbolic Constants

32.9.3
Compile-Time Symbolic Constants for Portability Specifications

4Section 3: Process Primitives

43.3
Signals

43.3.8
Synchronously Accept a Signal

4Section 11: Synchronization

411.1
Semaphore Functions

411.2.3
Initialize/Open a Named Semaphore

411.2.4
Close a Named Semaphore

411.2.5
Remove a Named Semaphore

5Section 13: Execution Scheduling

513.1
Scheduling Policies

513.4
Thread Scheduling

513.4.1
Thread Scheduling Attributes

513.5
Thread Scheduling Functions

513.5.2
Dynamic Thread Scheduling Parameters Access

5Section 16.
Thread Management

516.2
Thread Functions

516.2.1
Thread Creation Attributes

Preface

Purpose and Audience

The purpose of this document is to meet the requirements outlined in §1.3.1.2 of the POSIX Standard.
This manual is intended for C programmers who are writing POSIX-conforming programs and are using the features described under the {_POSIX_THREADS} option and need to know the behavior of the implementation-defined features discussed in the POSIX.1 Standard.
A conformance document with the following information shall be available for an implementation claiming conformance to this part of ISO/IEC 9945. The conformance document shall have the same structure as this part of ISO/IEC 9945, with the information presented in the appropriately numbered sections, clauses, and subclasses. The conformance document shall not contain information about extended facilities or capabilities outside the scope of this part of ISO/IEC 9945.
The conformance document shall contain a statement that indicates the full name, number, and date of the standard that applies. The conformance document may also list international software standards that are available for use by a Conforming POSIX.1 Application. Applicable characteristics where documentation is required by one of these standards, or by standards of government bodies, may also be included.
The conformance document shall describe the limit values found in <limits.h> and <unistd.h> headers, stating values, the conditions under which those values may change, and the limits of such variations, if any
The conformance document shall describe the behavior of the implementation for all implementation-defined features defined in this part of ISO/IEC 9945 This requirement shall be met by listing these features and providing either a specific reference to the system documentation or providing full syntax and semantics of these features The conformance document may specify the behavior of the implementation for those features where this part of ISO/IEC 9945 states that implementations may vary or where features are identified as undefined or unspecified.
Manual Organization

This manual follows the POSIX.1 Standard in format and structure. Section 1 contains the POSIX conformance statement, the C Standard conformance statement, and the contents of the <limits.h> and <unistd.h> header files. Sections 2 through 10 correspond to the same sections in the POSIX.1 Standard.
Notations and Conventions

Throughout this manual, the following typographic notations are used:
· Fixed-width font (Courier) is used to reference C language header files, utility names, and to provide examples of system input/output.
· Italic typeface is used to reference symbolic function parameters, C language function names, C language data types, and global external variables. Examples: printf, argc, uid, and errno.
· Bold typeface is used to reference environment variables and with the term NULL pointer.
· Braces are used to enclose symbolic constants and limits defined by various header files. Examples: {ARGMAX} and {CLKTCK}.
· Brackets are used to enclose symbolic error codes, which are set by many of the functions. Examples: [ENOENT] and [ENOMEM].
Section 1: General
1.1
Scope

This conformance document is part of the POSIX.1 conformance requirements for Microsoft’s Interix Version 3.5. This document describes Interix’s Thread and Realtime specific implementation-defined features as specified by ISO/IEC 9945-1 ANSI/IEEE Std 1003.1 Second edition 1996-07-12 Information Technology – Portable Operating System Interface (POSIX) – Part 1: System Application Program Interface(API) [C Language]; also known as ISO/IEC 9945-1:1996. This ISO document contains the base features from the IEEE POSIX.1-1990 standard as well as the Realtime amendment (IEEE 1003.1b-1993) and the Threads amendment (IEEE 1003.1c-1995). All section and line references within this Interix conformance document refer to the ISO/IEC 9945-1:1996 document.

Interix’s POSIX.1-1990 base conformance information can be found in the document entitled Microsoft Windows Services for UNIX 3.5 Interix POSIX.1 Conformance Document
1.3
Conformance

1.3.1
Implementation Conformance

1.3.1.1
Requirements
The Interix system assumes an environment where the _POSIX_C_SOURCE environment variable is set to the value of 199506L. In addition, compilation with the C preprocessor symbol _REENTRANT is also necessary.

1.3.1.3 Conforming Implementation Options

The following implementation options are defined in Interix:
	{_POSIX_SEMAPHORES}
	the Semaphores option

	{_POSIX_THREADS}
	the Threads option

	{_POSIX_THREAD_ATTR_STACKADDR}
	the Thread Stack Address Attribute option

	{_POSIX_THREAD_ATTR_STACKSIZE}
	the Thread Stack Size Attribute option

	{_POSIX_THREAD_PRIORITY_SCHEDULING}
	the Thread Execution Scheduling option

	{_POSIX_THREAD_SAFE_FUNCTIONS}
	the Thread-Safe Functions option

	{_POSIX_VERSION}
	199009L

Section 2: Terminology and General Requirements
2.2
Definitions

2.2.2.112 scheduling policy

Interix threads support only the SCHED_OTHER scheduling policy. This policy maps to the underlying Windows operating system thread and process scheduling policies.
Threads are scheduled for execution based on their priority. The thread with the highest priority (of those threads that can be executed) is always scheduled to run first. If multiple threads with the same

priority are all available, the scheduler cycles through the threads at that priority, giving each thread a fixed time slice in which to execute. As long as a thread with a higher priority is available to run, lower priority threads do not get to execute. When there are no more runnable threads at a given priority, the scheduler moves to the next lower priority and schedules the threads at that priority for execution. If a higher priority thread becomes runnable, the lower priority thread is preempted and the higher priority thread is allowed to execute once again.
More detailed information can be obtained from

http://msdn.microsoft.com/library/en-us/dllproc/base/scheduling_priorities.asp
2.5
Primitive-System Data Types

The following type symbols are defined in the indicated headers.
	Type Symbol
	Defined In

	pthread_t
	<sys/types.h>

	pthread_attr_t
	<sys/types.h>

	pthread_mutex_t
	<sys/types.h>

	pthread_mutexattr_t
	<sys/types.h>

	pthread_cond_t
	<sys/types.h>

	pthread_condattr_t
	<sys/types.h>

	pthread_key_t
	<sys/types.h>

	pthread_once_t
	<sys/types.h>

2.8
Numerical Limits

2.8.4 Run-Time Invariant Values

	Symbolic Constant
	Value

	LOGIN_NAME_MAX
	298

	PTHREAD_DESTRUCTOR_ITERATIONS
	Omitted (not supported)

	PTHREAD_KEYS_MAX
	128

	PTHREAD_STACK_MIN
	sysconf(_SC_THREAD_STACK_MIN)

	PTHREAD_THREADS_MAX
	Omitted (not supported)

	SEM_NSEMS_MAX
	Omitted (indeterminate)

	SEM_VALUE_MAX
	Omitted (indeterminate)

2.9
Symbolic Constants

2.9.3
Compile-Time Symbolic Constants for Portability Specifications
The following are constants from Table 2-10:

	Symbolic Variable
	Value
	Comments

	_POSIX_SEMAPHORES
	
	is defined

	_POSIX_THREADS
	
	is defined

	_POSIX_THREAD_ATTR_STACKADDR
	
	is defined

	_POSIX_THREAD_ATTR_STACKSIZE
	
	is defined

	_POSIX_THREAD_SAFE_FUNCTIONS
	
	is defined

	_POSIX_THREAD_PRIORITY_SCHEDULING
	
	is defined

	_POSIX_THREAD_PROCESS_SHARED
	
	is not defined

	_POSIX_THREAD_PRIO_INHERIT
	
	is not defined

	_POSIX_THREAD_PRIO_PROTECT
	
	is not defined

	_POSIX_VERSION
	199090L
	

Section 3: Process Primitives
3.3
Signals

3.3.8
Synchronously Accept a Signal
3.3.8.2
Description
Interix does not permit multiple pending instances of any single signal number. Upon successful return from sigwait(), If prior to the call of sigwait() there are multiple pending instances of a single signal number, there are no remaining pending signals for that signal number.

Section 11: Synchronization
11.1
Semaphore Functions
11.2.3
Initialize/Open a Named Semaphore
Even though {_POSIX_SEMAPHORES} is defined, the function sem_open() is provided but always fails and sets errno to [ENOSYS].
11.2.4
Close a Named Semaphore

Even though {_POSIX_SEMAPHORES} is defined, the function sem_close() is provided but always fails and sets errno to [ENOSYS].
11.2.5
Remove a Named Semaphore

Even though {_POSIX_SEMAPHORES} is defined, the function sem_unlink() is provided but always fails and sets errno to [ENOSYS].
Section 13: Execution Scheduling

13.1
Scheduling Policies
There is only one scheduling policy implemented: SCHED_OTHER. This policy maps to the underlying Windows operating system thread and process scheduling policies.
More detailed information can be obtained from

http://msdn.microsoft.com/library/en-us/dllproc/base/scheduling_priorities.asp
All Interix threads use the same scheduling policy. Different threads cannot have different policies.
13.4
Thread Scheduling
13.4.1
Thread Scheduling Attributes
Interix only supports the contention scope of PTHREAD_SCOPE_SYSTEM. This scope is the default.

13.5
Thread Scheduling Functions

13.5.2
Dynamic Thread Scheduling Parameters Access
13.5.2.2
Description
For SCHED_OTHER, the only required member for the sched_param structure is the priority sched_priority.
If the policy parameter to the pthread_getschedparam() or pthread_setschedparam() functions is set to SCHED_RR or SCHED_FIFO, these functions return an error and set errno to [ENOSYS].

Section 16.
Thread Management

16.2
Thread Functions

16.2.1
Thread Creation Attributes

16.2.1.2
Description

The pthread_attr_init() function initializes a thread attributes object with the default value for all of the individual attributes. The individual attributes and their default values are:
	attribute member
	Default Value

	DetachState
	PTHREAD_CREATE_JOINABLE

	InheritSched
	PTHREAD_EXPLICIT_SCHED

	SchedPolicy
	SCHED_OTHER

	SchedParam.sched_priority
	PRIO_MIN – 1 (-21)

	Scope
	PTHREAD_SCOPE_SYSTEM

	StackAddr
	NULL

	StackSize
	0

	GuardSize
	PAGESIZE (65536)

iii

