Section 5: Directories and Files

Microsoft Windows Services for UNIX 3.0 Interix
POSIX.1 Conformance Document

© 2002 Microsoft Corporation. All rights reserved.

Interix is a trademark of Microsoft Corporation.

Microsoft and Windows are registered trademarks of Microsoft Corporation.

1Preface

1Purpose and Audience

1Manual Organization

1Notations and Conventions

2Section 1: General

21.1
Scope

21.3
Conformance

21.3.1
Implementation Conformance

21.3.3
Language-Dependent Services for the C Programming Language

3Section 2: Terminology and General Requirements

32.2
Definitions

32.2.2
General Terms

32.3
General Concepts

32.3.1
Extended Security Controls

32.3.2
File Access Permissions

32.4
Error Numbers

42.5
Primitive-System Data Types

42.6
Environment Description

42.7
C Language Definitions

42.7.2
POSIX.1 Symbols

42.8
Numerical Limits

42.8.3
Run-Time Increasable Values

42.8.4
Run-Time Invariant Values

52.8.5
Pathname Variable Values

52.9
Symbolic Constants

52.9.3
Compile-Time Symbolic Constants for Portability Specifications

52.9.4
Execution-Time Symbolic Constants for Portability Specifications

6Section 3: Process Primitives

63.1
Process Creation and Execution

63.1.1
Process Creation

63.1.2
Execute a File

63.2
Process Termination

63.2.2
Terminate a Process

63.3
Signals

63.3.1
Signal Concepts

73.3.3
Manipulate Signal Sets

73.3.6
Examine Pending Signals

7Section 4: Process Environment

74.2
User Identification

74.2.2
Set User and Group lBs

74.2.3
Get Supplementary Group IDs

74.2.4
Get User Name

84.4
System Identification

84.4.1
Get System Name

84.5
Time

84.5.1
Get System Time

84.5.2
Get Process Times

94.6
Environment Variables

94.6.1
Environment Access

94.7
Terminal Identification

94.7.1
General Terminal Pathname

94.7.2
Determine Terminal Device Name

94.8
Configurable System Variables

94.8.1
Get Configurable System Variables

10Section 5: Directories and Files

105.1
Directories

105.1.2
Directory Operations

105.2
Working Directory

105.2.2
Get Working Directory Patlrname

105.3
General File Creation

105.3.1
Open a File

115.3.3
Set File Creation Mask

115.3.4
Link to a File

115.4
Special File Creation

115.4.1
Make a Directory

115.4.2
Make a FIFO Special File

125.5
File Removal

125.5.1
Remove Directory Entries

125.5.2
Remove a Directory

125.5.3
Rename a File

125.6
File Characteristics

125.6.1
File Characteristics: Header and Data Structure

125.6.2
Get File Status

135.6.3
Check File Accessibility

135.6.4
Change File Modes

135.6.5
Change Owner and Group of a File

135.6.6
Set File Access and Modification Times

135.7
Configurable Pathname Variables

135.7.1
Get Configurable Pathname Variables

14Section 6: Input and Output Primitives

146.4
Input and Output

146.4.1
Read from a File

146.4.2
Write to a File

146.5
Control Operations on Files

146.5.2
File Control

156.5.3
Reposition Read/Write File Offset

15Section 7: Device- and Class-Specific Functions

157.1
General Terminal Interface

157.1.1
Interface Characteristics

157.1.2
Parameters that Can Be Set

167.2
General Terminal Interface Control Functions

167.2.1
Get and Set State

167.2.2
Line Control Functions

16Section 8: Language-Specific Services for C

168.1
Referenced C Language Routines

168.1.1
Extensions to Time Functions

178.1.2
Extensions to the setlocale() Function

178.2
C Language Input/Output Functions

178.2.1
Map a Stream Pointer to a File Descriptor

178.2.2
Open a Stream on a File Descriptor

178.2.3
Interactions of Other FILE-Type C Functions

178.3
Other C Language Functions

178.3.2
Set Time Zone

18Section 9: System Databases

189.1
System Databases

189.2
Database Access

189.2.1
Group Database Access

189.2.2
User Database Access

18Section 10: Data Interchange Format

1810.1
Archive/Interchange File Format

1810.1.1
Extended tar Format

1910.1.2
Extended cpio Format

1916.1.3
Multiple Volumes

Preface

Purpose and Audience

The purpose of this document is to meet the requirements outlined in §1.3.1.2 of the POSIX Standard.
This manual is intended for C programmers who are writing POSIX-conforming programs and need to know the behavior of the implementation-defined features discussed in the POSIX.1Standard.
A conformance document with the following information shall be available for an implementation claiming conformance to this part of ISO/IEC 9945. The conformance document shall have the same structure as this part of ISO/IEC 9945, with the information presented in the appropriately numbered sections, clauses, and subclasses. The conformance document shall not contain information about extended facilities or capabilities outside the scope of this part of ISO/IEC 9945.
The conformance document shall contain a statement that indicates the full name, number, and date of the standard that applies. The conformance document may also list international software standards that are available for use by a Conforming POSIX.1 Application. Applicable characteristics where documentation is required by one of these standards, or by standards of government bodies, may also be included.
The conformance document shall describe the limit values found in <limits.h> and <unistd.h> headers, stating values, the conditions under which those values may change, and the limits of such variations, if any
The conformance document shall describe the behavior of the implementation for all implementation-defined features defined in this part of ISO/IEC 9941 This requirement shall be met by listing these features and providing either a specific reference to the system documentation or providing full syntax and semantics of these features The conformance document may specify the behavior of the implementation for those features where this part of ISO/IEC 9945 states that implementations may vary or where features are identified as undefined or unspecified.
Manual Organization

This manual follows the POSIX.1 Standard in format and structure. Section 1 contains the POSIX conformance statement, the C Standard conformance statement, and the contents of the <limits.h> and <unistd.h> header files. Sections 2 through 10 correspond to the same sections in the POSIX.1 Standard.
Notations and Conventions

Throughout this manual, the following typographic notations are used:
· Fixed-width font (Courier) is used to reference C language header files, utility names, and to provide examples of system input/output.
· Italic typeface is used to reference symbolic function paralneters, C language function names, C language data types, and global external variables. Examples: printfO, argc, uidj, and errno.
· Bold typeface is used to reference environment variables and with the term NULL pointer.
· Braces are used to enclose symbolic constants and limits defined by various header files. Examples: {ARO MAX} and {CLPLTCK}.
· Brackets are use to enclose symbolic error codes, which are set by many of the functions. Examples: [ENOENT] and [ENOMEM].
Section 1: General
1.1
Scope

This document defines how Interix implements the implementation-defined and selected unspecified features in the ISO/IEC 9945-1:1990 POSIX Standard; henceforth, known as the POSIX.1 Standard. (This standard is entirely equivalent to IEEE 1003.1-1990.) All section and line references within this document refer to the POSIX.1 Standard rather than any subsequently published form in which amendments or supplements have been incorporated (e.g. IEEE 1003.1b-1993).
1.3
Conformance

1.3.1
Implementation Conformance

1.3.1.1
Requirements
For an application to run with the behavior specified by the standard, Windows systems must be configured to deny the “Bypass Traverse Check” privilege to those users running POSIX.1 applications. Denying the Bypass Traverse Check privilege means that when access to a file is requested, the user must have execute permission on all of the directory components of the path. If the Bypass Traverse Cheek privilege is granted, access is checked only on the last component of the path.
To deny the Bypass Traverse Check privilege, complete the following steps.
1. Log in as Administrator.
2. Start the User Manager.
3. From the Policies menu, select User Rights.
4. Choose the Show Advanced User Rights button.
5. In the Bypass Traverse Checking area, replace “Everyone” with a list of the users who don’t require POSIX.1 conformance.
The system must be configured so that all files and directories that are to be used by POSIX applications have ACLs that will allow the stat() and fstat() functions to return correct permission bits. The simplest way to do this is to use the chmod program. For example, you would type:
chmod —r mode pathname
It is also possible to use the File Manager’s Security Editor to ensure that the ACLs on the files in a hierarchy will generate correct POSIX permission bits. For details, see Windows Services for UNIX Help.
On WindowsXP, case-sensitivity must be enabled. This can be done when Interix is installed. To change this setting at a later date, see MSKB article xyzzy.
1.3.1.2
Documentation
Interix conforms to ISO/IEC 9945-1:1990 (IEEE Std 1003.1-1990), Information Technology — Portable Operating System Interface (POSIX) Part 1: System Application Program Interface (API) [C Language].
1.3.3
Language-Dependent Services for the C Programming Language

1.3.3.2
C Standard Language-Dependent System Support
Interix meets the requirements of POSIIX.1, Section 8 by reference to ISO/IEC 9989:1990, Information Technology — Programming Languages — C/ANSI X3.189-1989, Programming Language — C.
Section 2: Terminology and General Requirements
2.2
Definitions

2.2.2
General Terms

2.2.2.4
Appropriate Privileges
For the purpose of this subclause, the following set of users are defined to be the administrator:
· BUILTIN\SYSTEM

· hostname\Administrator or its localized name
· domainname\Administrator or its localized name
The definition of appropriate privilege is tied to the specific privileged action. These actions are identified below.

	Section
	Line
	Action
	Definition

	2.9.4
	1136
	chown()
	The administrator

	3.3.2.2
	593
	kill() arbitrary process
	The administrator

	4.2.2.2
	47-55
	setuid()
	The administrator

	5.3.4.2
	330
	link() directories
	There is no appropriate privilege

	5.5.1.2
	472
	unlink() directories
	There is no appropriate privilege

	5.6.3.2
	766
	access() and X_OK
	The administrator

	5.6.4.2
	798-809
	chmod()
	The administrator

	5.6.5.2
	843-858
	chown()
	The administrator

	5.6.6.2
	898
	utime()
	The administrator

	5.7.1.3
	998
	pathconf()/fpathconf()
	The administrator

	10
	All
	Archive mechanism
	The administrator

	2.3.2
	425
	Alternate access control mechanism
	Any user with the NT_RESTORE privilege enabled

	2.3.2
	432
	Privileged file access
	The administrator

2.2.2.55
Parent Process ID
When the lifetime of the parent process of a child process ends, the parent process ID of the child process is assigned to a special system process ID of 1.
2.2.2.68
Process Lifetime
When a process terminates, its thread of control and address space are returned to the system.
2.2.2.69
Read-Only File System
Interix does not provide a mechanism to mark an NTFS file system as read-only. NTFS is the only file system type supported by Windows that provides all the required semantics of POSIX.l.
2.2.2.83
Supplementary Group ID
A process’ effective group ID is included in its list of supplementary group IDs.
2.3
General Concepts

2.3.1
Extended Security Controls

Interix does not expose any extended security controls. However, all files residing on NTFS filesystems support Windows ACLs as an alternate file access control mechanism. This mechanism can be directly manipulated using components of the Windows operating system. The file access permissions defined by POSIX.1 are implemented using this underlying ACL mechanism and are thus fully integrated with it. See MSKB xyzzy for a description of this integration. When file access permissions are defined or altered using interfaces defined in POSIX.1 they operate in full conformance with that standard.
2.3.2
File Access Permissions
Windows further provides access control lists (ACLs) in NTFS as an alternate mechanism for controlling file access. ACLs cannot be manipulated via the POSIX subsystem, but an ACL can further allow or deny access to a file beyond its permission bits.
2.4
Error Numbers

The error [EFAULT] is reliably detected.
The maximum size of a file is 232-1 bytes in length (4,294,967,295 bytes).
2.5
Primitive-System Data Types

These type symbols are defined in the indicated headers. The symbols are not specified by

POSIX.1.
	Type Symbol
	Defined In

	time_t
	<sys/types.>

	wchar_t
	<ctype.h>, <stddef.h>, <stdio.h>, <stdlib.h>, <string.h>, <time.h>

	wctype_t
	<ctype.h>, <stdio.h>

2.6
Environment Description

Environment variable names may consist of characters from the portable filename character set, as well as other 8-bit characters, excluding equals (=) and the NUL character (\0).
2.7
C Language Definitions

2.7.2
POSIX.1 Symbols
The {_POSIX_SOURCE} feature test macro is supported.
2.8
Numerical Limits

2.8.3
Run-Time Increasable Values

	Symbolic Constant
	Value

	NGROUPS_MAX
	999

2.8.4
Run-Time Invariant Values

	Symbolic Constant
	Value

	ARG_MAX
	1048576

	CHILD_MAX
	195

	OPEN_MAX
	200

	STREAM_MAX
	200

	TZNAME_MAX
	10

2.8.5
Pathname Variable Values

	Symbolic Constant
	Value

	LINK_MAX
	1024

	MAX_CANON
	255

	MAX_INPUT
	255

	NAME_MAX
	255

	PATH_MAX
	512

	PIPE_BUF
	5120

2.9
Symbolic Constants

2.9.3
Compile-Time Symbolic Constants for Portability Specifications
The information shown in the following table is from the <unistd.h> header file.
	Symbolic Variable
	Value
	Comments

	_POSIX_JOB_CONTROL
	
	is defined

	_POSIX_SAVED_IDS
	
	is defined

2.9.4
Execution-Time Symbolic Constants for Portability Specifications
The information shown in the following table is from the <unistd.h> header file.

	Symbolic Variable
	Value
	Comments

	_POSIX_CHOWN_RESTRICTED
	1
	

	_POSIX_NO_TRUNC
	1
	

	_POSIX_VDISABLE
	0
	

The constant {_POSIX_CHOWN_RESTRICTED} is defined in the <unistd.h> header file with a value of 1 and the option is provided on all files.
The constant {_POSIX_NO_TRUNC} is defined in the <unistd.h> header file with a value of 1 and the option is provided on all files.
The constant {_POSIX_VDISABLE} is defined in the <unistd.h> header files with a value of 0 and the option is provided on all files.
Section 3: Process Primitives
3.1
Process Creation and Execution

3.1.1
Process Creation
3.1.1.2
Description
The calling process (parent) and the new process (child), after a call to the fork() function, do not share open directory streams.

3.1.1.4
Errors
The fork() function does not detect the [ENOMEM] condition in all cases.
3.1.2
Execute a File
3.1.2.2
Description
When the environment variable PATH is not defined, the search for the executable file when calling the execlp() and execvp() functions is limited to the current directory.

When an exec function fails to execute, but is able to locate a process image file, the st_atime field for the process image file is not updated.

3.1.2.4
Errors
The execution of files other than regular files is not supported.
The exec functions support the detection of the [ENOMEM] error code.
3.2
Process Termination

3.2.2
Terminate a Process
3.2.2.2
Description
The child processes of a terminated process are assigned a new parent process ID of 1.
3.3
Signals

3.3.1
Signal Concepts
3.3.1.2
Signal Generation and Delivery
A signal is discarded upon generation when the signal is being blocked and the action associated with the signal is SIG_IGN.
When a pending signal is generated again, the signal is only delivered once.
There are no conditions, other than those specified by this part of ISO/IEC 9945, under which the implementation generates signals.

3.3.1.3
Signal Actions
When a process sets the actions for the SIGCHLD signal to SIG_IGN, the signal will be ignored.
A SIGCHLD signal will not be generated when a process establishes a signal-catching function for the SIGCHLD signal while it has a terminated child process for which it has not waited.
3.3.3
Manipulate Signal Sets

3.3.3.4
Errors
If the value of the signo argument is an unsupported signal number, then the [EINVAL] error condition is detected by the sigaddset(), sigdelset(), and sigismember() functions.
3.3.6
Examine Pending Signals

3.3.6.4
Errors
The sigpending() function detects the [EFAULT] error code when the value of the set argument is an invalid pointer.
Section 4: Process Environment
4.2
User Identification

4.2.2
Set User and Group lDs
4.2.2.2
Description
See the “Appropriate Privileges” table in Section 2 of this document.
4.2.3
Get Supplementary Group IDs
4.2.3.2
Description
The values of the array entries in grouplist[] (with indices larger than or equal to the returned value from the getgroups() function) are unchanged by a call to the getgroups() function.
4.2.4
Get User Name
4.2.4.3
Returns
The login name indicated by the pointer returned from a call to the getlogin() function is overwritten on each call to the getlogin() function.
4.2.4.4
Errors
The getlogin() function does not support the detection of errors.
4.4
System Identification

4.4.1
Get System Name
4.4.1.2
Description
The values shown in the following table are supported for each member of the utsname structure:

	Member Name
	Values
	Comments

	sysname
	Interix
	Operating system name

	nodename
	
	Name of node within network

	release
	3.0
	Current release of Interix

	version
	SP-buildstring
	Specific build of installed version of Interix

	machine
	x86
	Generic hardware platform type

	sysname_host
	Windows NT
	Host OS identification

	release_host
	3.51, 4.0, 5.0, 5.1
	Host OS base version number

	version_host
	SPx
	Host OS service pack level

	processor
	
	Specific CPU type identification, including vendor, family, model and stepping data

4.4.1.4
Errors
The uname()function returns the [EFAULT] error code when the name argument is an invalid address.
4.5
Time

4.5.1
Get System Time
4.5.1.4
Errors
The time() function sets errno to the [EFAULT] error code when the tloc argument is an invalid address. In addition, the time() function returns –1 when the date is not within the range 1970 to 2105.
4.5.2
Get Process Times
4.5.2.3
Returns
The return value from a call to the times() function can overflow the range of type clock_t.

4.5.2.4
Errors
The times() function returns –1 and sets errno to the [EFAULT] error code when the buffer argument is an invalid address.
4.6
Environment Variables

4.6.1
Environment Access
4.6.1.3
Returns
The pointer returned from the getenv() function does not address static data; therefore, it is not overwritten on each call to the getenv() function.
4.6.1.4
Errors
The getenv() function does not support the detection of errors.
4.7
Terminal Identification

4.7.1
General Terminal Pathname
4.7.1.3
Returns
The pathname addressed by the pointer returned from a call to the ctermid() function is overwritten on each call to the ctermid() function.
4.7.1.4
Errors
The ctermid() function does not support the detection of errors.
4.7.2
Determine Terminal Device Name
4.7.2.2
Description
The pathname addressed by the pointer returned from a call to the ttyname() function is overwritten on each call to the ttyname() function.
4.7.2.4
Errors
The ttyname() and isatty() functions do not support the detection of errors.
Section 5: Directories and Files
5.1
Directories

5.1.2
Directory Operations
5.1.2.2
Description
When a file is added to or removed from a directory after a call to the opendir() or rewinddir() functions, the change is reflected in the set of files returned via the readdir() function call.
The link count of a directory is not incremented when a subdirectory is created.
A directory pointer dirp is unusable after a call to the closedir() function.
5.1.2.4
Errors
The opendir() function supports the detection of the [EMFILE] and [ENFILE] error codes under the conditions described in the POSIX.1 Standard.
The readdir(), closedir(), and rewinddir() functions support the detection of the [EBADF] error code when dirp does not refer to an open directory stream.
5.2
Working Directory

5.2.2
Get Working Directory Pathname
5.2.2.2
Description
When a call to the getcwd() function is made and the first argument (buf) is NULL, the system returns NULL and sets errno to the [EFAULT] error code.
5.2.2.3
Returns
The contents of the buffer passed to the getcwd() function after an error has occurred are unchanged.
5.2.2.4
Errors
The getcwd() function does not detect the [EACCES] condition.
5.3
General File Creation

5.3.1
Open a File
5.3.1.2
Description
When a call to the open() function is made with O_CREAT set, a new file’s group is set to the group ID of its parent directory.
When a call to the open() function is made with O_EXCL set and O_CREAT not set, the O_EXCL flag is ignored.

When a call to the open() function is made for file types other than socket, FIFO, block special and character special, the status of the O_NONBLOCK flag is ignored.
When a call to the open() function is made for file types other than FIFO special files, regular files, and terminal device files, the value of the O_TRUNC flag is ignored.
When a call to the open() function is made with O_TRUNC and O_RDONLY set, the value of the O_TRUNC flag is ignored.
5.3.3
Set File Creation Mask
5.3.3.2
Description
All bits other than file permission bits in the argument to the umask() function are ignored. The value returned by the umask() function will not include any bits other than the file permission bits.
5.3.4
Link to a File
5,3.4.2
Description
Linking across file systems is not supported.
Linking to a directory is not supported; therefore, obtaining appropriate privileges to link to a directory is not supported.
When calling the link() function, the calling process needs permission to access the existing file.
5.4
Special File Creation

5.4.1
Make a Directory
5.4.1.2
Description
When calling the mkdir() function, the bits (other than the permission bits in mode) have no effect.
When calling the mkdir() function, a new directory’s group is set to the group ID of its parent directory.
5.4.2
Make a FIFO Special File
5.4.2.2
Description
When calling the mkfifo() function, the bits (other than the permission bits in mode) have no effect.
When calling the mkfifo() function, a new FIFO group is set to the group ID of its parent directory.
5.5
File Removal

5.5.1
Remove Directory Entries
5.5.1.2
Description
See “Appropriate Privilege” in Section 2.
5.5.1.4
Errors
Calling the unlink() function with a directory is not supported; therefore, the unlink() function does not set errno to the [EBUSY] error code and return –1 when the directory named by the path argument cannot be unlinked because it is being used by the system or another process.
5.6
File Characteristics

5.6.1
File Characteristics: Header and Data Structure
The st_size field in the stat structure for FIFO files contains its PIPE_BUF value.
5.6.2
Get File Status
5.6.2.2
Description
The Windows ACL mechanism embodies the alternate file access control mechanism used by Interix. It is possible to place a Windows ACL on a file which will cause the stat() and fstat() functions to fail, returning EACCESS. Interix requires that the ACL grant to the user the “Read Attributes” and “Read Extended Attributes” access rights for the file in question. However, it is not possible to use this mechanism to cause Interix to deny the existence of the file specified by path as an argument to stat().
5.6.3
Check File Accessibility
5.6.3.4
Errors
The access() function supports the detection of the [EINVAL] error code under the conditions described in the POSIX.1 Standard.
5.6.4
Change File Modes
5.6.4.2
Description
Calling the chmod() function on a file with open file descriptors has no effect on the open file descriptors.
See “Appropriate Privilege” in Section 2 for the privileges associated with the use of S_ISGID and S_ISUID.
5.6.5
Change Owner and Group of a File
5.6.5.4
Errors
The chown() function supports the detection of the [EINVAL] conditions as described in POSIX.1.
5.7
Configurable Pathname Variables

5.7.1
Get Configurable Pathname Variables
5.7.1.2
Description
Only the named variables listed in Table 5-2 of ISO/IEC 9945-1:1990 are supported.
When calling the pathconf() or fpathconf() functions, the association of the variable name {_PC_PIPE_BUF) is supported for all file types.
5.7.1.4
Errors
The pathconf() function supports the detection of the [EACCES], [ENAMETOOLONG], [ENOENT], [ENOTDIR], and [EINVAL] error codes under the conditions described in the POSIX.1 Standard.
The fpathconf() function supports the detection of the [EINVAL] and [EBADF] error codes under the conditions described in the POSIX.1 Standard.
Section 6: Input and Output Primitives
6.4
Input and Output

6.4.1
Read from a File
6.4.1.2
Description
When the read() function is interrupted by a signal after it has successfully read some data, it returns the number of bytes read.
For all device special files, once the starting position is at or after the end-of-file, all subsequent read() requests will return 0 unless the starting position is changed (for seekable device special files).
When the nbyte parameter exceeds SSIZE_MAX, the return value from the read() function is truncated to type ssize_t.
6.4.2
Write to a File
6.4.2.2
Description
When calling the write() function on a file that is not a regular file with nbyte set to zero, the function returns 0.
When the write()function is interrupted by a signal after it successfully writes some data, it returns the number of bytes written.
When the nbyte parameter exceeds SSIZE_MAX, the return value from the writeO function is truncated to type ssizej.
6.5
Control Operations on Files

6.5.2
File Control

6.5.2.2
Description
Advisory record locking is supported only for regular files.
If l_len is negative, then the lock is placed on the file starting with offset l_start–l_len through l_start–1. If the starting point is before the beginning of the file, then fcntl() returns –1 and sets errno to the [EINVAI] error code.
6.5.3
Reposition Read/Write File Offset
6.5.3.2
Description
For special device files which are incapable of seeking, lseek() returns -1 and sets errno to [EINVAL].
Section 7: Device- and Class-Specific Functions
7.1
General Terminal Interface

7.1.1
Interface Characteristics
7.1.1.3
The Controlling Terminal
If a session leader with no controlling terminal opens a terminal not already associated with a session and the O_NOCTTY is clear, then this terminal will become the controlling terminal for this session. If all file descriptors to a controlling terminal by a session are closed then this terminal remains the controlling terminal until all members of the session have exited or have created a new session.
7.1.1.5
Input Processing and Reading Data
When {MAX_INPUT} is exceeded the behavior is determined by the setting of the IMAXBEL bit with c_iflag. If IMIAXBEL is set then no more input will be accepted and the terminal will sound its bell. If IMAXBEL is clear then input will continue to be accepted after the input and output queues have been flushed.
7.1.2
Parameters that Can Be Set
7.1.2.2
Input Modes
The break condition is only defined for asynchronous communication ports.
The initial control value for c_iflag is with the following bits set: BRKINT, ICRCL, IMAXBEL and IXON.

7.1.2.3
Output Modes
The initial control value for c_oflag is with the following bits set: OPOST and ONLCR.

7.1.2.4
Control Modes
The initial control value for c_cflag is with the following bits set: CREAD and CS8.
7.1.2.5
Local Modes
The initial control value for c_lflag is with the following bits set: ICANON, ECHO, ECHOE, ECHOK and ISIG.
7.1.2.6
Special Control Characters

The initial control value fort cc members are the following values:

	Member Name
	Values

	VEOF
	^D

	VEOL
	{_POSIX_VDISABLE}

	VERASE
	^H

	VINTR
	^C

	VKILL
	^U

	VQUIT
	^\

	VSUSP
	^Z

	VSTART
	^Q

	VSTOP
	^S

	VMIN
	1

	VTIME
	0

	VBELTIME
	3

7.2
General Terminal Interface Control Functions

7.2.1
Get and Set State
7.2.1.2
Description
For Interix changes in baud rate apply only to asynchronous communication ports.
7.2.2
Line Control Functions
7.2.2.2
Description
For Interix these functions apply only to asynchronous communication ports.
Section 8: Language-Specific Services for C
8.1
Referenced C Language Routines

8.1.1
Extensions to Time Functions
If the TZ variable is of the :characters format, the characters following the colon are ignored.
8.1.2
Extensions to the setlocale() Function
8.1.2.2
Description
The category argument defines the functions affected by the setlocale() function. The locale argument is a pointer to a string that specified the name of the locale.
When the locale argument points to an empty string, environment variables can provide a value ($LANG. $LC_ALL, or specific variables for the category being set). If none of these environment variables is present or if they have NULL values, the locale argument defaults to the value C (the minimal ANSI conforming environment for C translation).
The locale argument can be either C or POSIX.
8.2
C Language Input/Output Functions

8.2.1
Map a Stream Pointer to a File Descriptor
8.2.1.4
Errors
The fileno() function does not support the detection of errors.
8.2.2
Open a Stream on a File Descriptor
8.2.2.2
Description
There are no additional values supported for the type argument beyond those specified in the POSIX.1 Standard.
8.3
Other C Language Functions

8.3.2
Set Time Zone
8.3.2.2
Description
When the TZ variable is absent from the environment, the system default value of PST8PDT is used for the time-zone.
Section 9: System Databases
9.1
System Databases

The initial working directory may be set from the Windows User Manager. If the initial working directory is NULL, then a value of / is used. The initial working program is always /bin/ksh.
Only the fields specified in the POSIX.1 Standard for the group and user databases are available to a POSIX-compliant program.
Section 10: Data Interchange Format
10.1
Archive/Interchange File Format

The name of the format-creating utility and format-reading utility is pax. The pax utility is fully described in the IEEE POSIX.2-1992 Standard.
10.1.1
Extended tar Format
The pax utility supports the use of 8-bit characters in names for users and groups; the character encoding associated with the current locale is used when displaying these names.
When data is found on the medium that would create an invalid file name, the pax utility does not create the file on the file hierarchy and displays an error message to show that the entry is not being stored.
The field sizes defined for uid and gid are insufficient to store the entire range of uid and gid values which are likely to be in use on a system. The pax utility will emit a warning message when uid or gid values are truncated when an archive is created.
10.1.2
Extended cpio Format
10.1.2.2
cpio File Name
When data is found on the medium that would create an invalid file name, the pax utility does not create the file on the file hierarchy and displays an error message to show that the entry is not being stored.
16.1.3
Multiple Volumes
The pax format-creating utility for the tar and cpio formats determines what file to read or write for the next volume of a multi-volume archive by prompting the user.

v

