Pcb-20141210

an open source, interactive
printed circuit board
layout system

harry eaton

Table of Contents

(707 03,7 11 1 1
History...... ..ottt 2
1 OVverview.......oouiiiiiiiennnennnnnnnns 4
2 Introduction.................. .. 5%
2.1 Symbols . ..)
2.2 Va8 . o 5
2.3 Elements 5
2.4 LAYEIS . oottt 7
2.5 LINes . .o 8
2.6 ATCS . ottt 9
2.7 POLygONS . ..ot 9
2.8 Xt ot 10
2.9 NS . oot 10

3 Getting Started........................... 11
3.1 The Application Windowo ... 11
311 Menus ..ot 11

3.1.2 The Status-line and Input-field 14

3.1.3 The Layer Controlso i, 14

3.1.4 The Tool Selectors 15

3.1.5 Layout Area........ ... 17

3.2 Log WIndowo 17
3.3 Library Window 18
3.4 Netlist Window ... 18
3.5 Drawing and Removing Basic Objects 18
3.5.1 Common Drawing and Removing Methods............... 19

3.5.2 Lines ... 20

3.0, ALCS oo 20

3.5.4 Polygons and Rectangles 20

355 Text oo 21

356 Vias .. 21

3.5.7 Elements............ 21

3.5.8 Pastebuffer........ 23

3.6 Moving and Copyingouuiee e 23
3.7 Loading and Saving i 24
3.8 Printingo 24
3.9 Exporting alayout 26
3.9.1 Bill of materials (bom)............ 26

3.9.2 G-code (gcode) ... 26

3.9.3 Gerber (gerber)..........o i 28
3.9.4 Nelma (nelma) i 28
3.9.5 Image (PNE) - v v v vt e 28
3.9.6 PoOStSCIipt (PS). .- vveireei e 28
3.9.7 Encapsulated Postscript (eps). ..., 28
3.10 Connection Listscoooin 28
311 Arrow Tool 29
3.12 Rats Nesto 30
3.13 Design Rule Checking 31
3.14 Trace Optimizer........ 31
3.15 Searching for elements.............. 32
3.16 Measuring distanceso i 32
3.17 Vendor Drill Mappingouiririieeenennn.. 32
Autorouter............... ..., 35
UserCommands............coovveeenennn.. 36
Command-Line Options 38
6.1 General Options.oorer e 38
6.2 General GUL Options. ...t 40
6.3 GTK+ GULOpPtionso 41
6.4 lesstif GUL Options. ... 41
6.5 COlOTS . .ottt 41
6.6 Layer Names.coimm e 42
6.7 Paths 43
6.8 SIZES .« v et 43
6.9 Commandsoniiiiie 44
6.10 DRC Optionsoovvr et et 45
6.11 BOM Creation......... ..o, 46
6.12 Gerber EXport 46
6.13 Postscript Export ... 46
6.14 Encapsulated Postscript Export 47
6.15 PNG Optionscoviie i 47
6.16 Ipr Printing Options............cooiiiiininn. .. 48
6.17 melma Optionsttt 49
X11 Interface.............oovvvvna... 50
7.1 Non-Standard X11 Application Resources.................... 50
T2 ACHIONS. ..ot 56

7.3 Default Translations. 66

ii

8 FileFormats.............................. 68
8.1 Pad and Line Representation................................ 68
8.2 Layout File Format........... 68
8.3 Element File Format 69
84 Font File Format 69
8.5 Netlist File Format............ 70
8.6 Library Contents File Format 70
8.7 Library File Format 70
8.8 File Syntaxo 71

8.1 ATC . . 72
8.8.2 Attribute 72
8.8.3 ConnNeECt.o 72
8.8.4 CUISOT . .ottt e e e e e e e e 73
8.8.5 DROU. ... 73
88.6 Element.......... 73
88.7 ElementArc 74
8.8.8 ElementLine........... 74
8.8.9 FileVersion......... ..o 75
8.8.10 Flags ... 75
8811 Grido 75
8.8.12 GIrOUPS « v vttt et et e e e e 75
8.8.13 Layer.....ooooi 76
88.14 Line 76
8815 Mark . ..o 76
8816 Net. ..o 76
8817 Netlist 77
8818 Pad ... 77
8.8.19 PCB 77
8.8.20 PIn ... 78
8.8.21 PolyArea...... ... 78
8.8.22 Polygon........ .. 78
8.8.23 Rab. 79
8.8.24 Styles.o 79
8.8.25 Symbolo 79
8.8.26 Symbolline 80
B.8.27 Lext ..o 80
88.28 Thermal 80
8.8.29 Via. ... 80
8.9 Object Flags.o 81

810 PCBFIags ... 82

iii

9 Library Creation.................oovuv.... 84
9.1 Old Style (m4) Librariesoooiiiiiii ... 84
9.1.1 Overview of Oldlib Operation........................... 84
9.1.2 The Library Scripts...........ooiiiiii i 85
9.1.2.1 Scripts Used During Compilation................... 85
9.1.2.2 Scripts Used by PCB at Runtime................... 86

9.1.3 Creating an Oldlib Footprint 87
9.1.4 Troubleshooting Old Style Libraries..................... 89
9.2 New Style Libraries. ... 90
9.2.1 Creating Newlib Footprints............................. 90
9.2.2 Modifying Newlib Footprints 91
10 Schematic Capture for PCB.............. 92
101 EEDA .« 92
10.1.1 Set Up Project Directories............................. 92
10.1.2 Set Up gEDA Config Files............................. 92
10.1.3 Set Up gsch2pcb Config Files, 93
10.1.4 Capture Schematics Using gschem 93
10.1.5 Create Any Unique PCB Footprints.................... 93
10.1.6 Generate Initial PCB Design Using gsch2pcb........... 94
10.1.7 Layout Circuit Board 94
10.1.8 Forward Annotation of Schematic Changes 94
10.1.9 Generate Photoplot Files (RS-274X) 94
10.2 xcircuib...... ... 95

Appendix A Installation and Troubleshooting

.. 96

A.1 Compiling and Installing 96
ATl Quick Start...... ... 96
A.1.2 Running the configure Script........................... 96
A.2 Troubleshooting 96
A.2.1 HP Series 700 and 800coiiiiiiiii. .. 97
A.2.2 Sun SPARC architecture................coovviiiin.... 97
A.2.3 Silicon Graphics. i 97
A24 DECAIpha. ... 97
A25 SCO UNIX ..ttt e e e e 97
A26 LinUX 97
A2.7 FreeBSD and NetBSD 98
A.2.8 Problems related to X11........... 98
A.2.9 Problems related to TeX............................... 98
Appendix B Customizing the Menus 99
B.1 Resource Syntax............oouiiiii 99
B.2 Menu Definitions 100

B.3 Menu Files and Defaults. 101

iv

Appendix C Element Search/Regular

Expressionsooiiiin... 102

C.1 Element Search/Regular Expressions 102
Appendix D Standard Drill Size Tables..... 104
D.1 American Standard Wire Size Drills........................ 104
D.2 American Standard Letter Size Drills....................... 104
D.3 Fractional Inch Size Drills 105
D.4 Metric Drills 105

Appendix E Centroid (X-Y) File Format ... 108

E 1 OVerviewot 108
E.2 File Format i 108
E.3 Computation of Centroid and Rotation..................... 108
Appendix F Annotation File Format 110
F1 OVerviewo 110
F.2 File Format 110
F2.1 *COMMENT™® e 110
F.2.2 *FILEVERSION* 110
F.2.3 *RENAME* 111
Appendix G Action Reference............. 112
G.1 Core actions.ttt 112
G.1.1 AddRAtS ..o 112
G.1.2 ApplyVendor 113
G.1.3 ALOMIC. ..ot 113
G.1.4 Attributes..........coo i 113
G.1.5 AutoPlaceSelected 113
G.1.6 AutoRoute 114
G.1.7 ChangeClearSize, 114
G.1.8 ChangeDrillSize........... 114
G.1.9 ChangeFlag 114
G.1.10 ChangeHole 115
G.1.11 ChangeJoin..............iiiiii ... 115
G.1.12 ChangeName ...t 115
G.1.13 ChangeOctagonooiiiin i, 115
G.1.14 ChangePastec i 116
G.1.15 ChangePinName oo, 116
G.1.16 ChangeSizeo 116
G.1.17 ChangeSquarecouuiiiiiiiiiiiinnneea... 116
G.1.18 ClearOctagomnt 117
G.1.19 ClearSquUAareottt e 117
G.1.20 CItFlag .. oo 117
G.1.21 Connectionuuiiniieie e, 117

G.1.22 Delete. ..o 118

G.1.23
G.1.24
G.1.25
G.1.26
G.1.27
G.1.28
G.1.29
G.1.30
G.1.31
G.1.32
G.1.33
G.1.34
G.1.35
G.1.36
G.1.37
G.1.38
G.1.39
G.1.40
G.1.41
G.1.42
G.1.43
G.1.44
G.1.45
G.1.46
G.1.47
G.1.48
G.1.49
G.1.50
G.1.51
G.1.52
G.1.53
G.1.54
G.1.55
G.1.56
G.1.57
G.1.58
G.1.59
G.1.60
G.1.61
G.1.62
G.1.63
G.1.64
G.1.65
G.1.66
G.1.67
G.1.68
G.1.69
G.1.70

DeleteRats 118
DisableVendor 118
DisperseElements 118
Display. ..o 119
0 0] 121
DRC . . 122
DumpLibrary...... 122
elementlist. 122
elementsetattr 122
EnableVendor 122
eXeCCOMMAN . . .ottt et 123
ExecuteFile.. 123
FIHp .o 123
FontEdit 123
FontSave 123
FreeRotateBuffer............... 123
GlobalPuller. 124
Do 124
Import ... 124
L 125
e . 126
LoadFootprint 126
LoadFrom 126
LoadVendorFrom 127
00 Y 127
MarkCrosshair. 127
MESSAZE - - o v e vt e 127
MinClearGapo vov e 127
MinMaskGap 128
Mode . ..o 128
MorphPolygon 129
MoveLayer 129
MoveObject . ..o 130
MoveToCurrentLayer. 130
Netlist 130
NOW oot 131
OptAutoOnly...... ... 131
PasteBuffer......... 131
Polygon 132
Puller 132
& PP 133
Al e 133
QUIt ..o 133
Redo. ... 133
RemoveSelected 133
Renumber 134
Report ... 134

vi

G.L7L RipUp oo 134
L 7 o 135
G.1.73 RouteStyleo 135
T O 135
G.1.75 SaveSettingso 135
G.L.T6 SaveTo ...ttt e 136
G.LTT SeleCt ..o 136
G.1.78 SetFlag 137
G.1.79 SetOctagomn...... ...t 137
G.1.80 SetSame....... ...t 137
G.1.81 SetSquareouierii 138
G.1.82 SetThermal......... 138
G.1.83 SetValue 138
G.1.84 ToggleHideName...............co ., 139
G.1.85 ToggleVendor......... ..o, 139
G.1.86 Undooovie e 139
G.1.87 UnloadVendor 139
G.1.88 Unselectooo 139
G L8 Wttt 140
GO0 W et 140
G.2 common actionsueiiin 141
G.2.1 LayersChangedo, 141
G.2.2 LibraryChanged i 141
G.2.3 NetlistChanged i 141
G.2.4 PCBChangedo, 141
G.2.5 RouteStylesChanged 142
G.3 gtkactions...... ... 142
G.3.1 gtk About 142
G.3.2 gtk AdjustStyle.......... 142
G.3.3 gtk Center.o 142
G.3.4 gtk CUrsSor. ..o 142
G.3.5 gtk DoWindows. ... 143
G.3.6 gtk EditLayerGroups.......... ... i 144
G.3.7 gtk GetXY ..o 144
G.3.8 gtk ImportGUT 144
G.3.9 gtk Pan 144
G.3.10 gtk Popup . ..o 144
G311 gtk Print.... ... 144
G.3.12 gtk PrintCalibrate 145
G.3.13 gtk Save. 145
G.3.14 gtk SelectLayer 145
G.3.15 gtk SetUnits. ... 145
G.3.16 gtk SwapSides 146
G.3.17 gtk ToggleView 146
G318 gtk Zoom. 146
G.4 lesstif actions. 147
G.4.1 lesstif About. ... 147
G.4.2 lesstif AdjustSizes. ... 147

vii

G.4.3 lesstif AdjustStyle. ... 147
G.4.4 lesstif Benchmark 147
G.4.5 lesstif Command 148
G.4.6 lesstif Cursoroiii 148
G.4.7 lesstif Debug...... ... i 149
G.4.8 lesstif DebugXY ... 149
G.4.9 lesstif DOWIndowst 149
G.4.10 lesstif DumpKeys 149
G.4.11 lesstif EditLayerGroups.............., 150
G.4.12 lesstif Export.......... .. 150
G.4.13 lesstif GetXY ..o 150
G.4.14 lesstif ImportGUIL 150
G.4.15 lesstif LibraryShow 150
G.4.16 lesstif Loadc i 150
G.4.17 lesstif LoadVendor 151
G.4.18 lesstif NetlistShow 151
G.4.19 lesstif Print...... ... 151
G.4.20 lesstif PrintCalibrate 151
G.4.21 lesstif PromptFor 151
G.4.22 lesstif Return......... i 152
G.4.23 lesstif Save ... 152
G.4.24 lesstif SelectLayer........ 152
G.4.25 lesstif SetUnitS.t 152
G.4.26 lesstif SwapSides............c i 153
G.4.27 lesstif ToggleView o i 153
G.4.28 lesstif Zoom 153
Appendix H Glossary 155
Index of Resources.................c.uu.... 156

Index of Actions, Commands and Options.... 158

Index of Conceptsv.... 161

viii

Copying 1

Copying

Copyright (©) 1994,1995,1996,1997 Thomas Nau
Copyright (©) 1998,1999,2000,2001,2002 harry eaton

This program is free software; you may redistribute it and/or modify it under the terms
of the GNU General Public License as published by the Free Software Foundation; either
version 2 of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANT-ABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.

History 2

History

Pcb is a handy tool for laying out printed circuit boards.

Pcb was first written by Thomas Nau for an Atari ST in 1990 and ported to UNIX and X11
in 1994. It was not intended as a professional layout system, but as a tool which supports
people who do some home-developing of hardware.

The second release 1.2 included menus for the first time. This made Pcb easier to use
and thus a more important tool.

Release 1.3 introduced undo for highly-destructive commands, more straightforward ac-
tion handling and scalable fonts. Layer-groups were introduced to group signal-layers to-
gether.

Release 1.4 provided support for add-on device drivers. Two layers (the solder and the
component side) were added to support SMD elements. The handling of libraries was also
improved in 1.4.1. Support for additional devices like GERBER plotters started in 1.4.4.
The undo feature was expanded and the redo-feature added in 1.4.5.

harry eaton took over pcb development beginning with Release 1.5, although he con-
tributed some code beginning with Release 1.4.3

Release 1.5 provides support for rats-nest generation from simple net lists. It also allows
for automatic clearances around pins that pierce a polygon. A variety of other enhancements
including a Gerber RS-274X driver and NC drill file generation have also been added.

Release 1.6 provides automatic screen updates of changed regions. This should eliminate
most of the need for the redraw (R key). Also some changes to what order items under the
cursor are selected were made for better consistency - it is no longer possible to accidentally
move a line or line point that is completely obscured by a polygon laying over top of it.
Larger objects on the upper most layers can be selected ahead of smaller objects on lower
layers. These changes make operations more intuitive. A new mode of line creation was
added that creates two line on 45 degree angles with a single click. The actual outline of the
prospective line(s) are now shown during line creation. An arc creation mode was added.
Drawn arcs are quarter circles and can be useful for high frequency controlled impedance
lines. (You can have eighth circle arc if the source is compiled with -DARC45, but be aware
that the ends of such arcs can never intersect a grid point). Two new flags for pins and
vias were created - one indicates that the pin or via is purely a drill hole and has no copper
annulus. You can only toggle this flag for vias - for elements, it must be an integral part of
the element definition. The other flag controls whether the pad will be round or octagonal.
There is also now a feature for converting the contents of a buffer into an element.

Release 1.6.1 added the ability to make groups of action commands bound to a single
X11 event to be undone by a single undo. Also a simple design rule checker was added - it
checks for minimum spacing and overlap rules. Plus many fixes for bugs introduced with
the many changes of 1.6

Release 1.7 added support for routing tracks through polygons without touching them.
It also added support for unplated drill files, and drawing directly on the silk layer. A
Netlist window for easily working with netlist was also added.

Release 2.0 adds an auto-router, a new simpler library mechanism, much improved sup-
port for graphically creating (and editing) elements, viewable solder-mask layers (and edit-
ing), snap to pins and pads, netlist entry by drawing rats, element files (and libraries)

History 3

that can contain whole sub-layouts, metric grids, improved user interface, a GNU auto-
conf/automake based build system, and a host of other improvements.

Special thanks goes to:

Thomas Nau (who started the project and wrote the early versions).
C. Scott Ananian (who wrote the auto-router code).
Bernhard Daeubler (Bernhard.Daeubler@physik.uni-ulm.de)
Harald Daeubler (Harald.Daeubler@physik.uni-ulm.de)

DJ Delorie (djdelorie@users.sourceforge.net)

Larry Doolittle (Idoolitt@recycle.lbl.gov)

Dan McMabhill (danmc@users.sourceforge.net)

Roland Merk (merkefaw.uni-ulm.de)

Erland Unruh (Erland.Unruh@malmo.trab.se)

Albert John FitzPatrick III (ajf_nylorac@acm.org)

Boerge Strand (borges@ifi.uio.no)

Andre M. Hedrick (hedrick@Astro.Dyer.Vanderbilt.Edu)

who provided all sorts of help including porting Pcb to several operating systems and plat-
forms, bug fixes, library enhancement, user interface suggestions and more. In addition to
these people, many others donated time for bug-fixing and other important work. Some of
them can be identified in the source code files. Thanks to all of them. If you feel left out of
this list, I apologize; please send me an e-mail and I'll try to correct the omission.

Chapter 1: Overview 4

1 Overview

Pcb is an open source printed circuit board editor. Pcb includes many professional features
such as:

Up to 16 copper layer designs by default. By changing a compile time setting, this can
be set as high as needed.

RS-274X (Gerber) output

NC Drill output

Centroid (X-Y) data output

Postscript and Encapsulated Postscript output

Autorouter

Trace optimizer

Rats nest

Design Rule Checker (DRC)

Connectivity verification

Pcb is Free Software

Can interoperate with free schematic capture tools such as gEDA and xcircuit
Runs under Linux, NetBSD, Solaris, and other similar operating systems.

Windows version is available

Chapter 2: Introduction 5)

2 Introduction

Each layout consists of several, mostly independent, objects. This chapter gives an overview
of the object types and their relationship to each other. For a complete description of how
to use Pcb, refer to Chapter 3 [Getting Started], page 11. The layout is generated on-screen
on a grid that can have its origin at any desired location. The X coordinate increases to
the right, Y increases down to the bottom. All distances and sizes in Pcb are measured in
mils (0.001 inch). One unit on the coordinate display is one mil in distance on the board.
The grid may be set on a metric pitch, but is only correct to within the nearest +/- 0.01
mil because Pcb stores all dimensions as integer multiples of 1/100 of a mil or 0.00001 inch.

The sections in this chapter are sorted by the order of appearance of the objects within
a layout file.

2.1 Symbols

The top object is the layout itself. It uses a set of symbols that resides at the first logical
level. Each symbol is uniquely identified by a seven bit ASCII code. All layout objects share
the same set of symbols. These symbols are used to form text objects on the silkscreen and
copper layers. Undefined symbols are drawn as filled rectangles.

Every font file is preprocessed by a user-defined command when it is loaded. For details
see ‘fontCommand’, Section 7.1 [Resources], page 50.

2.2 Vias

Vias provide through-hole connectivity across all layers. While vias look a lot like element
pins, don’t use vias for adding elements to the layout, even if that seems easier than creating
a new element. The default solder-mask will cover over vias, so you won’t be able to solder
to them. Of course, you can change this so that vias also have solder-mask cut-outs, but
it is not the default. Vias are also useful for defining arbitrary drill points such as those
used for mounting a board. Vias used in this way have a special flag set so that they have
no annular copper ring, and also appear in the unplated drill file. Ctrl-H key over a via
switches it between being a pure-mounting hole and a regular via. You can assign a name
to a via, which is useful during the creation of new element definitions. Each via exists on
all copper layers. (i.e. blind and buried vias are not supported)

2.3 Elements

Elements represent the components on a board. Elements are loaded from ASCII coded
files in a similar manner to the layout file itself, or from the library selector window. An
element is composed of lines and arcs on the silk-screen layer (used to define the package
outline), pins (or pads for SMD) and three labels that define the description, the element’s
layout-name (which also appears on the silk-screen layer) and its value. You can choose
which of the names are displayed on the screen with the Screen menu; however, the silk
screen in the printout will always show the layout-name. Element pins are contained on the
first logical level and so reside on all layers, but the pads of surface-mount elements reside
on only the component or solder layers. An element can have a mixture of pins, pads (on
one or both sides), and mounting holes.

Chapter 2: Introduction 6

A mark is used to position the element with respect to the cross hair during pasting. The
mark will lie on a grid point when the element is positioned. The mark is drawn as a small
diamond shape, but is only visible when both the silk and pins/pads layers are visible.
All parts of an element are treated as one unit, except for the name. It is not possible to
delete a single pin or move only part of an element on the layout. You can resize separate
pieces of an element, but doing so is usually a bad idea. You can move/rotate the element
name independently of the element it belongs to. When you move an element name, a line
is draw from the cursor to the element mark so it is easy to tell which element the name
belongs to.

Each pin and pad has two string identifiers, one is the "name" which is a functional
description of the pin (e.g. "clock in") and the other is the "number" of the pin which
is used to identify it in a netlist. The "number" is usually an integer, but it can be any
string. You can edit the "name" of each pin of an element, but the "number" is embedded
in the element definition and is determined when the new element is first created. Pads are
similar to lines on a layer but they must be oriented either vertically or horizontally. Pads
can have either rounded or square ends. Pins can be round, square, or octagonal.

Elements are supported by several special layers: silk, pins/pads and far-side. The
silk layer shows the package outline and also holds legend text and element names. The
pins/pads layer is used to toggle whether the element’s pins and pads are displayed. The
far-side layer controls visibility of objects (silkscreen and pads) that are on the far (i.e.
not currently viewed) side of the board.

The “oldlib” style of footprint libraries distributed with Pcb rely upon the M4 macro
processor. M4 is typically installed under the name m4 on most unix-like operating systems.
It is recommended that you use the GNU version of M4 to avoid limitations found in
some vendor implementations. See the m4 man page on your system for more information.
Every element file is preprocessed by a user-defined command when the file is read. For
details see ‘elementCommand’, Section 7.1 [Resources|, page 50. m4, the default value of
‘elementCommand’, allows you to create libraries for package definitions that are shared by
all elements. The old element libraries distributed with Pcb expect m4 or an equivalent
to be the elementCommand. The new library scheme simply has each element stored in a
self-contained file, so there is no need to learn m4 to add to the libraries.

Pcb can create a list of all connections from one (or all) elements to the others or a
list of unconnected pins. It can also verify the layout connections against a netlist file.
The element’s ‘layout-name’ is the name used to identify the element in a netlist file (see
Section 8.5 [Netlist File], page 70).

The old libraries, or very old (pre-1.6) layout files may have incorrect pin numbering
since there was no concept of pin numbers when they were created. Pcb uses the order of
appearance of the pin definitions in the layout or library file if it uses the old format, but
there is no guarantee that it will be correct for these old objects.

Be aware that a few of the old library parts may still be incorrectly implemented re-
garding pin-numbering. All of the DIL (Dual- Inline-Pins) parts are correct and most of
the others are too, but you should verify the pin numbering of any non-DIL part before
using an old library part. (use the ‘generate object report’ in the Info menu to see what
Pcb thinks a pin’s number is) All of the old library names begin with a ~, so you can easily
identify them. The old libraries also may contain other sorts of errors, including incorrect

Chapter 2: Introduction 7

pin spacing, silkscreen overlapping solder areas, etc. Check carefully any element in the old
library before using it! As the new library grows, the old library will be pared down to at
least remove all of the elements with errors, but this will take time.

You can make your own element definitions graphically now. Simply draw vias for the
pins, lines on the solder and/or component layers for surface-mount pads (they must be
either horizontal or vertical), and lines and arcs on the silkscreen layer for the silkscreen
outline. You should name (N key) each via and copper line with the pin number. Once you
are happy with the geometry, select everything that is to become part of the element, then
choose ‘convert selection to element’ from the Select menu. Afterwords you can make
pin (or pad) one square if you like, and give the element its various names. You can also
give the pins and pads their functional names. Note that the element mark corresponds
to the position you click after choosing the conversion from the menu, so decide where the
mark goes and make sure it falls on a grid point before you request the conversion. If the
vias/lines are not named, then the pin numbering will correspond to the order in which
they were placed.

When you create a new element, remember that silkscreen lines should never overlap the
copper part of the pins or pads, as this can interfere with soldering. The silkscreen should
identify the maximum extent of the element package so it is easy to see how close elements
can be placed together.

If you want to make an element similar to an existing one, you can break an element into
constituent pieces from the Buffer menu. Paste the pieces to the layout, make the necessary
changes, then convert it back into an element. If the pin numbers haven’t changed, there is
no need to name each via/line as they are pre-named when the element was broken apart.
When you create a new element, you can save it to a file in order to have easy access to it
the next time you run Pcb.

2.4 Layers

Every layout consists of several layers that can be used independently or treated as a
group. Layer groups can be used to logically separate (and color-code) different traces
(e.g. power and signal); however, all layers within a group reside on the same physical
copper layer of a board, so using different layers within the same group won’t provide
electrical separation where they touch or overlap. For details, see ‘layerGroups’, Section 7.1
[Resources|, page 50. Each layer is drawn in a color defined in the resource file and identified
by a name that you can change (for details see ‘layerColor’, Section 7.1 [Resources|,
page 50.) Layers are really just containers for line, arc, polygon, and text objects. The
component and solder layers contain SMD elements as well, but the file structure doesn’t
reflect that fact directly.

Each layer group represents a physical layer on the printed circuit board. If you want to
make a four layer board, you’ll need to have at least four layer groups. Connections between
layer groups are established only through element pins and vias. The relationship between
a specific layer and the board itself is configurable from the ‘Edit layer groups’ option in
the Settings menu. The layer groups corresponding to the physical layers: component-side
and solder-side are always defined and you must map at least one logical layer to each, even
if you plan to make a single-sided board. You are not obligated to put tracks on either of
them. Surface mount elements always reside on either the component-side or the solder-side

Chapter 2: Introduction 8

layer group. When you paste an element from the buffer, it will go onto whichever side
of the board you are viewing. You can swap which side of the board you are viewing by
pressing the Tab key, or by selecting ‘view solder side’ from the Screen menu. The layer
groups just have a name or number associated with them - where they are sandwiched in
the board is left for you to tell the manufacturer.

The silkscreen layer is special because there are actually two silkscreen layers, one for
the top (component) and one for the bottom (solder) side of the board. Which silk layer
you draw on is determined by the side of the board that you are viewing. If you are viewing
the component side, then drawing on the silk layer draws to the component-side silk layer.

The netlist layer is another special layer. It shows rat’s-nest lines (i.e. guides that show
how the netlist expects the element to interconnect). If you make this the active layer, you
can use the Line tool to add entries into the netlist, or to delete connections from the netlist
window. Except for these two purposes, you should not make the netlist layer the active
layer. Usually there is no need to do this because a separate schematic package should be
used to create the netlist. Pcb can automatically draw all of the rats from the netlist. In
some cases you may want to make a small change without going to the trouble of modifying
the schematic, which is why this facility is provided.

2.5 Lines

Lines are used to draw tracks on the pc board. When in the line mode, each Btnl press
establishes one end of a line. Once the second point is defined, the line is drawn and a new
line started where the first one ended. You can abandon the new starting point in favor of
another by pressing Ctri-Binl, or Btn3, but don’t use Btn2. The undo function (U key or
‘Undo’ from the Edit menu) will take you back point by point if you use it while in the line
mode.

New lines can be restricted to 45 degree angles if desired. You can toggle this restriction
on and off while creating lines by pressing the period key. If the 45 degree restriction is
turned on, then the / (forward slash) key can be used to cycle through three different
modes of 45 degree line creation. One mode just creates a single line forced to the nearest
45 degree vector. The next mode creates two lines from the start to end points such that
the first line leaves the start point at a 90 degree vector, and the second line enters the end
point on a 45 degree vector. The last mode creates two lines such that the first line leaves
the start point on a 45 degree vector and arrives at the end point on a 90 degree vector.
You can temporarily swap between the last two modes by holding the Shift key down.

It is simple to edit a line object by breaking it into pieces (insert point mode), moving
an end point or the whole line (Arrow tool), or changing the layer it resides on (M key
moves the line under the pointer to the active layer). In the case when two line segments
meet at exactly the same point you can delete the intermediate point, otherwise the delete
tool removes an entire line. Feel free to experiment since Pcb will allow you to undo and
redo anything that materially affects your work. If you switch active layers in the midst of
placing lines a via will automatically be placed, when necessary, in order to continue the
connection.

If you draw a line inside a polygon, it will either plow through the polygon creating a
clearance, or touch the polygon. This behavior is selectable in the Settings menu for new
lines. To change the behavior of an existing line, hit the J key with the cross hair over

Chapter 2: Introduction 9

the line. You can increase the size of the clearance by 2 mils on each edge with the K key.
Shift-K will decrease the clearance by 2 mils. The increment may be changed from 2 mils
through the application resource file. The clearance can be also increased, decreased and
set by the ChangeClearSize action.

Lines do not need to intersect the center of a pin, pad, via, or other line for Pcb to
understand that they make electrical connection. If the connection is too tenuous, running
the design rule checker will report that the connection may break if the line width shrinks
slightly.

2.6 Arcs

Pcb can handle arcs of any angular extent, but when you create an arc with the Arc tool, it
will be a quarter circle (this means they always bend a right angle). Arcs are very similar
to lines otherwise. They are created on the active layer and have the same thickness that
new lines will have. The various clicks for creating lines work pretty much the same way
for creating arcs. In order to make the arc curve in the desired direction, drag the mouse
along the tangent line from the starting position towards the end position. If the grid is too
coarse, it may not be possible to distinguish whether you’ve moved over then up, or up then
over, so if you can’t seem to make the arc go in the direction you want, try pressing the
Shift key while drawing the arc. Decreasing the grid spacing may also help. Alternatively
you can draw the wrong arc, then rotate and move it where you want. Like the Line tool,
after an arc is drawn a new starting point is established at the end point.

Whenever a starting point is established by either the Line or Arc tools it will be retained
if you switch directly between the tools (e.g. F2 key for Lines, F8 key for Arcs). Arcs can
either touch or clear polygons just like lines do. Of course connection searches, undo and
all the other features you'd expect work with arcs too.

2.7 Polygons

Sometimes it’s useful to fill large areas with solid copper. The way to do this is with
polygons. Polygons can be created in either the polygon mode or the rectangle mode. In
the polygon mode, you'll have to define each corner of the polygon with a mouse click
(Btn1). When the last point is clicked exactly on top of the starting point, the polygon is
finished. Since this can be hard to do, the Shift-P key will enter the final point for you,
closing the polygon. If the 45 degree angle restriction is turned on and you try to close the
polygon when it is not possible, you’ll get a warning instead. If you haven’t finished entering
a polygon, but want to undo one (or more) of the points that you’ve already defined, use
the undo command (U key).

With the rectangle tool, defining the two diagonally opposite corners is sufficient, but of
course the resulting polygon is a rectangle. Like lines, a polygon can by edited by deleting,
inserting and moving the points that define it. Pins and vias always clear through polygons
without touching them when first positioned. You must add a thermal with the thermal
tool in order to connect pins and vias to polygons. Thermals can be added and removed by
clicking Btn1 with the thermal tool over the pin or via. The thermal tool always places a
thermal to polygons on the active layer, so if the tool doesn’t seem to work, it’s probably
because the polygon you want to touch is not on the active layer. You can change the style

Chapter 2: Introduction 10

of thermal used or make a solid connection by holding down Shift while clicking Btn! with
the thermal tool over the pin or via.

Pcb is capable of handling complex polygons, but using a number of simpler ones im-
proves performance of the connection tracing code. You also must be careful not to create
polygons that touch or overlap themselves. The fabricated board may not look the way you
expect if you violate this principle. It is always ok to have two (or more) polygons touch or
overlap each other, but not for points within the same polygon to do so.

The great advantage to this new polygon behavior is that simple or complex ground
and/or power planes can be easily made with polygons and seen on the screen. If you don’t
want this auto-clearance behavior, or you load a layout created by an early version of Pcb,
the old behavior (shorts to all piercing pins and vias) is available. A ‘ChangeSize’ operation
(S key) toggles a polygon between the new and old polygon/pin behavior.

2.8 Text

Text objects should be used to label a layout or to put additional information on the board.
Elements have their ‘layout-name’ labels on the silk-screen layer. If you are making a
board without a silkscreen, you can use copper text to label the elements, but you have to
do this manually.

Text is always horizontal when first created, but the rotate mode can align it along 0,
90, 180 and 270 degree angles. Text on the far side of the board will automatically appear
mirror-imaged.

Warning: TEXT OBJECTS ON A COPPER LAYER CREATE COPPER LINES BUT
THEY ARE NOT SCANNED FOR CONNECTIONS OR TESTED FOR CREATING
SHORTS VS. THE NETLIST. NEITHER ARE TEXT OBJECTS TESTED AGAINST
ANY DESIGN RULES.

2.9 Nets

Layout files also contain the netlist that describes how the elements are supposed to be
interconnected. This list of connections can be loaded from a netlist file (see Section 8.5
[Netlist File], page 70), or entered by drawing rat-lines as described previously. Each net
has a name and routing style associated with it. The net contains a list of all element
layout-name names and pin numbers that should be connected to the net. Loading a netlist
file will replace all existing nets with the ones from the file. The Netlist window provides
an easy way to browse through the net list. You can display the rat’s-nest by selecting
‘optimize rats-nest’ from the Connects menu. If you move or rotate elements, the rat’s-
nest will automatically follow the movements, but they won’t necessarily show the shortest
paths until you optimize them again.

Chapter 3: Getting Started 11

3 Getting Started

The goal of this chapter is to give you enough information to learn how Pcb works and how
to develop your layouts to make the best use of Pcb’s features. All event translations (i.e.
the buttons and keys you press) refer to the default application resource file shipped with
Pcb. There is probably no need to change this unless your window manager uses some of the
button events itself; however, if you want to customize the behavior of Pcb then changing
the resource file is usually the best way to do it.

Get yourself a printout of this chapter and User Commands, if you haven’t already done
so, and follow the examples.

Start Pcb (the actual command will use all lower-case letters) without any additional
options. If you get the error message:

can’t find default font-symbol-file ’default_font’

then the font searchpath or filename in the application resource file is wrong. Be sure
that your m4 program supports search paths. If not, get GNU m4. For other messages, see
Section A.2 [problems], page 96. Another quick-start is provided by pcbtest.sh in the ‘src’
directory. If some features don’t seem to work, try running pcbtest.sh, if that works, then
Pcb hasn’t been installed properly.

3.1 The Application Window

The main window consists of five areas: the menu at the top, the layer control in the upper
left, the tool buttons located below the layer controls, the Layout area to the right of these,
and the status line at the bottom of the window.

3.1.1 Menus

The menus are located at the top of the Layout area. Most, but not all, of their functions
are also available from the keyboard. Similarly, some functions are only achievable through
the keyboard or command entry. Some menu entries such as ‘center layout’ in the Screen
menu require a certain cross hair position. In this case a prompt message will popup at the
bottom of the screen with wording similar to the following:

move pointer to the appropriate screen position and press a button

Any mouse button will do the job, whereas any key except the arrow (cursor) keys will
cancel the operation. If it seems like the menu hasn’t done what you expected, check to see
if it is waiting for the position click. For details see Section 7.2 [Actions]|, page 56.

Pressing Btn3 in the Layout area also pops up a menu with many of the most common
operations (except when you're in the midst of drawing a line or arc). When a choice in
the Btnd popup menu needs a cross hair position, it uses the position where the cross hair
was when Btnd was pressed. For example, to get detailed information on an object, place
the cross hair over the object, press Bitn3, then choose ‘object report’. If you pop up the
Bitn3 menu but don’t want to take any of the actions, click on one of the headers in the
menu.

File This menu offers a choice of loading, saving and printing data, saving connection
information to a file or quitting the application. Most of the entries in the
File menu are self explanatory. Selecting ‘Print. ..’ pops up a printer control

Chapter 3: Getting Started 12

Edit

dialog. Several output formats are available from the ‘Export. ..’ menu item.
Presently PostScript, encapsulated PostScript, and GerberX are some of the
supported filetypes. The GerberX driver produces all of the files necessary to
have the board professionally manufactured. The connection saving features in
the File menu produce outputs in an arcane format that is not too useful. They
do not produce netlist files.

The Edit menu provides the usual cut, copy, paste which work on selections. To
learn how to create complex selections, see Section 3.11 [Arrow Tool], page 29.
The Edit menu also provides access to Undo and Redo of the last operation.
These can also be accomplished with the U key and Shift-R key. Finally, the
Edit menu allows you to change the names of: the layout, the active layer, or
text objects on the layout.

Routes Style

View

Settings

The Edit menu allows you to select a group of line thickness, via diameter, via
drill size, and clearance (keepaway) (collectively called a "routing style") to
be copied to the "active" sizes. You can also change the names given to the
routing styles and adjust their values from this menu. The "active" sizes are
also adjustable from this menu. The "active" sizes are shown in the status-
line and control the initial size of new vias, drilling holes, lines, clearances,
text-objects and also the maximum dimensions of the board layout.

The View menu supports most functions related to the whole Layout area.
There are various entries to change the grid to some popular values, the zoom
factor, and which kind of element name is displayed. You can also re-align the
grid origin and turn on and off the display of the grid. Before changing the grid
alignment, I recommend that you zoom in as close as possible so that you're
sure the grid points appear exactly where you want them.

The View menu also allows you to turn on and off the visibility of the solder-
mask layer. When the solder-mask layer is made visible it obscures most of the
layout, so only turn this on when you really want to know what the solder-mask
will look like. The solder-mask that you see belongs to the side of the board
you are viewing, which can be changed with the ‘Flip up/down’ option, also
found in the View menu. When the solder-mask is displayed, the pin and pad
clearance adjustments (see Section 2.5 [Line Objects], page 8) alter the size of
mask cut-outs.

The Settings menu controls several operating configuration parameters. The
‘all-direction lines’ entry controls the clipping of lines to 45-degree angles.
You can also control whether moving individual objects causes the attached lines
to "rubber band" with the move or not from the Settings menu. Another entry
controls whether the starting clip angle for the two-line mode (see Section 2.5
[Line Objects], page 8) alternates every other line. You can also control whether
element names must be unique from the Settings menu. When unique element
names are enforced, copying a new element will automatically create a unique
‘layout-name’ name for it provided that the name originally ended with a digit
(e.g. UT or R6). The Settings menu allows you to control whether the cross
hair will snap to pins and pads even when they are off-grid. Finally you can

Chapter 3:

Select

Buffer

Connects

Info

Window

Getting Started 13

control whether new lines and arcs touch or clear intersecting polygons from
this menu.

This menu covers most of the operations that work with selected objects. You
may either (un)select all visible objects on a layout or only the ones which
have been found by the last connection scan see . You can delete all selected
objects from this menu. Other entries in the Select menu change the sizes of
selected objects. Note that a select action only affects those objects that are
selected and have their visibility turned on in the Layer Control panel. The
Select menu also provides a means for selecting objects by name using unix
Appendix C [Regular Expressions|, page 102.

From the Buffer menu you may select one out of five buffers to use, rotate
or clear its contents or save the buffer contents to a file. You can also use
the ‘break buffer elements to pieces’ entry to de-compose an element into
pieces for editing. Note: only objects with visibility turned on are pasted to the
layout. If you have something in a buffer, then change which side of the board
you are viewing, the contents of the buffer will automatically be mirrored for
pasting on the side you are viewing. It is not necessary to clear a buffer before
cutting or copying something into it - it will automatically be cleared first.

The entries available through the Connects menu allow you to find connections
from objects and to manipulate these. You can also optimize or erase rat’s
nests from this menu. Finally, the ‘auto-route all rats’ entry allows you to
auto-route all connections show by the rat’s nest. The auto-router will use any
visible copper layer for routing, so turn off the visibility of any layers you don’t
want it to use. The auto-router will automatically understand and avoid any
traces that are already on the board, but it is not restricted to the grid. Finally,
the auto-router routes using the active sizes (except for nets that have a route-
style defined). Pcb always knows which tracks were routed by the auto-router,
and you can selectively remove them without fear of changing tracks that you
have manually routed with the ‘rip-up all auto-routed tracks’ entry in the
Connects menu. The ‘design rule checker’ entry runs a check for copper
areas that are too close together, or connections that touch too tenuously for
reliable production. The DRC stops when the first problem is encountered so
after fixing a problem be sure to run it again until no problems are found.

Warning: COPPER TEXT IS IGNORED BY THE DRC CHECKER.

The ‘generate object report’ entry from the Info menu provides a way to get
detailed information about an object, such as its coordinates, dimensions, etc.
You can also get a report summarizing all of the drills used on the board with
‘generate drill summary’. Lastly, you can get a list of all pins, pads and vias
that were found during a connection search.

The Window menu provides a way to bring each of Pcb’s windows to the front.
The Library window is used to bring elements from the library into the paste-
buffer. The Message Log window holds the various messages that Pcb sends to
the user. The Netlist window shows the list of connections desired.

Now that you're familiar with the various menus, it’s time to try some things out. From
the File menu choose ‘Open. . .’, navigate to the tutorial folder, then load the file ‘tut1.pcb’.

Chapter 3: Getting Started 14

3.1.2 The Status-line and Input-field

The status-line is located at the bottom edge of the main window. During normal opera-
tion the status information is visible there. When a selected menu operation requires an
additional button click, the status-line is replaced by a message telling you to position the
cursor and click. When a text input is required, the status-line is replaced by the Input-field
which has a prompt for typing the input.

The status-line shows, from left to right, the side of the board that you are viewing (Tab
key changes this), the current grid values, if new lines are restricted to 45 degrees, which
type of 45 degree line mode is active, whether rubberband move and rotate mode is on (R),
and the zoom factor. This information is followed by the active line-width, via-size and
drilling hole, keepaway spacing, and text scaling. Last is the active buffer number and the
name of the layout. An asterisk appearing at the far left indicates that the layout has been
modified since the last save. Note that the name of the layout is not the same thing as the
filename of the layout. Change the grid factor to 1.0 mm from the Screen menu. Observe
how the status line shows the new grid setting. Except for the case of the metric grid, all
dimensions in the status line are in units of 0.001 inch (1 mil).

The input-field pops up (temporarily replacing the status-line) whenever user input is
required. Two keys are bound to the input field: the Escape key aborts the input, Return
accepts it. Let’s change the name of a component on the board to see how the input-field
works. Position the cross hair over R5, and press the N key. The input field pops-up
showing the name for you to edit. Go ahead and change the name, then hit return. Notice
the name of the element changed. Now undo the change by pressing the U key. You can
position the cross hair over the name, or the element before pressing the N key.

Now select ‘realign grid’ from the Screen menu. Notice that the status line has been
replaced with an instruction to position the cursor where you want a grid point to fall. In
this case, since the cross hair can only fall on a grid point, you must move the tip of the
finger cursor to the place where you want a grid point to appear. Do not worry that the
cross hair is not coincident with the cursor. Click Btni1 at your chosen location. See how
the grid has shifted, and the status line has returned.

The present cross hair position is displayed in the upper right corner of the window.
Normally this position is an absolute coordinate, but you can anchor a marker at the
cross hair location by pressing Ctri-M (try it now) and then the display will read both
the absolute cross hair position as well as the difference between it and the marker. The
numbers enclosed in < > are the X and Y distances between the cross hair and the mark,
while the numbers enclosed in parenthesis are the distance and angle from the mark to the
cross hair. The values displayed are always in units of 0.001 inch (1 mil). Pressing Ctri-M
again turns the marker off.

3.1.3 The Layer Controls

The layer control panel, located in the upper left, is used to turn on and off the display of
layer groups and to select the active drawing layer. If a layer hasn’t been named, the label
"(unknown)" is used as the default. If this happens, it probably means the application
resources are not installed properly.

The upper buttons are used to switch layers on and off. Click <Btni1> on one or more
of them. Each click toggles the setting. If you turn off the currently active layer, another

Chapter 3: Getting Started 15

one that is visible will become active. If there are no others visible, you will not be able to
turn off the active layer. When the layers are grouped, clicking on these buttons will toggle
the visibility of all layers in the same group. This is a good idea because layers in the same
group reside on the same physical layer of the actual board. Notice that this example has
2 groups each having 3 layers, plus two other layers named ‘unused’. Use the ‘Edit layer
groups’ option in the ‘Settings’ menu to change the layer groupings in the lesstif GUI or
the ‘Preferences’ dialog from the ‘File’ menu in the GTK+ GUI. Note that changing the
groupings can radically alter the connectivity on the board. Grouping layers is only useful
for helping you to color-code signals in your layout. Note that grouping layers actually
reduces the number of different physical layers available for your board, so to make an eight
layer board, you cannot group any layers.

The far side button turns on and off the visibility of elements (including SMD pads)
on the opposite (to the side you're viewing) board side, as well as silk screening on that
side. It does not hide the x-ray view of the other copper layers, these must be turned off
separately if desired. Use the tab key to view the entire board from the other side. To see
a view of what the back side of the board will actually look like, make the solder layer the
active layer then press tab until the status line says "solder" on the right, then turn off the
visibility of all layers except solder, pins/pads, vias, and silk. Now turn them all back on.

The lowest button, named active, is used to change the active drawing layer. Pressing
<Btn1> on it pops up a menu to select which layer should be active. Each entry is labeled
with the layer’s name and drawn in its color. The active layer is automatically made visible.
The active layer is always drawn on top of the other layers, so the ordering of layers on
the screen does not generally reflect the ordering of the manufactured board. Only the
solder, component, silkscreen, and solder-mask layers are always drawn in their physical
order. Bringing the active layer to the top makes it easier to select and change objects
on the active layer. Try changing the active layer’s name to ABC by selecting ‘edit name
of active layer’ from the ‘Edit’ menu. Changing the active layer can also be done by
pressing keys 1..MAX_LAYER.

Turn off the visibility of the component layer. Now make the component layer the active
layer. Notice that it automatically became visible. Try setting a few other layers as the
active layer. You should also experiment with turning on and off each of the layers to see
what happens.

The netlist layer is a special layer for adding connections to the netlist by drawing rat
lines. This is not the recommended way to add to the netlist, but occasionally may be
convenient. To learn how to use the netlist layer see Section 2.9 [Net Objects|, page 10.

3.1.4 The Tool Selectors

The tool selector buttons reside below the layer controls. They are used to select which
layout tool to use in the drawing area. KEach tool performs its function when Binl is
pressed. Every tool gives the cursor a unique shape that identifies it. The tool selector
buttons themselves are icons that illustrate their function. Each layout tool can also be
selected from the keyboard:

F1 key Via tool
F2 key Line tool
F3 key Arc tool

F4 key Text tool

Chapter 3: Getting Started 16

F5 key Rectangle tool

F6 key Polygon tool

F7 key Buffer tool

F8 key Delete tool

F9 key Rotate tool
Insert key Insert-point tool
F10 key Thermal tool

F11 key Arrow tool

F12 key Lock tool

Some of the tools are very simple, such as the Via tool. Clicking Btn! with the Via tool
creates a via at the cross hair position. The via will have the diameter and drill sizes that
are active, as shown in the status line. The Buffer tool is similar. With it, <BtnI1> copies
the contents of the active buffer to the layout, but only those parts that reside on visible
layers are copied. The Rotate tool allows you to rotate elements, arcs, and text objects 90
degrees counter-clockwise with each click. Holding the Shift key down changes the Rotate
tool to clockwise operation. Anything including groups of objects can be rotated inside a
buffer using the rotate buffer menu option.

The Line tool is explained in detail in Section 2.5 [Line Objects], page 8. Go read that
section if you haven’t already. Activate the Line tool. Set the active layer to the solder layer.
Try drawing some lines. Use the U key to undo some of the lines you just created. Zoom in
a bit closer with the Z key. Draw some more lines. Be sure to draw some separate lines by
starting a new anchor point with Ctrl-Btni. Change the ‘crosshair snaps to pin/pads’
behavior in the Settings menu. Now draw a line. Notice that the new line points must
now always be on a grid point. It might not be able to reach some pins or pads with this
setting. Increase the active line thickness by pressing the L key. Note that the status line
updates to reflect the new active line thickness. Now draw another line. Before completing
the next line, make the component layer active by pressing the / key. Now finish the line.
Notice that a via was automatically placed where you switched layers. Pcb does not do any
checks to make sure that the via could safely be placed there. Neither does it interfere with
your desire to place lines haphazardly. It is up to you to place things properly when doing
manual routing with the Line tool.

The Arc tool is explained in detail in Section 2.6 [Arc Objects|, page 9. Its use is very
similar to the Line tool.

The Rectangle tool, Polygon tool and Thermal tool are explained in detail in Section 2.7
[Polygon Objects], page 9. Go read that section. Remember that the Thermal tool will
only create and destroy thermals to polygons on the active layer. Use the Rectangle tool to
make a small copper plane on the component layer. Now place a via in the middle of the
plane. Notice that it does not touch the plane, and they are not electrically connected. Use
the Thermal tool to make the via connect to the plane. Thermals allow the via or pin to
be heated by a soldering iron without having to heat the entire plane. If solid connections
were made to the plane, it could be nearly impossible to solder. Shift-click on the via with
the Thermal tool to change the style of thermal used or to make the connection solid. Click
on the via again with the Thermal tool to remove the connection to the plane.

The Insert-point tool is an editing tool that allows you to add points into lines and
polygons. The Insert-point tool enforces the 45 degree line rule. You can force only the
shorter line segment to 45 degrees by holding the Shift key down while inserting the point.

Chapter 3: Getting Started 17

Try adding a point into one of the lines you created. Since line clipping is turned on, you
may need to move the cross hair quite far from the point where you first clicked on the line.
Turn off the line clipping by selecting ‘all-direction lines’ from the Settings menu (or
hit the Period key). Now you can place an inserted point anywhere. Try adding a point to
the rectangle you made earlier. Start by clicking somewhere along an edge of the rectangle,
then move the pointer to a new location and click again.

The delete-mode deletes the object beneath the cursor with each Btni click. If you click
at an end-point that two lines have in common, it will replace the two lines with a single
line spanning the two remaining points. This can be used to delete an "inserted" point in a
line, restoring the previous line. Now delete one of the original corner points of the polygon
you were just playing with. To do this, place the cross hair over the corner and click on
it with the Delete tool. You could also use the Backspace key if some other tool is active.
Try deleting some of the lines and intermediate points that you created earlier. Use undo
repeatedly to undo all the changes that you’ve made. Use redo a few times to see what
happens. Now add a new line. Notice that you can no longer use redo since the layout has
changed since the last undo happened. The undo/redo tree is always pruned in this way
(i.e. it has a root, but no branches).

The Arrow tool is so important, it has its own section: Section 3.11 [Arrow Tool], page 29.
Go read it now.

The Lock tool allows you to lock objects on the layout. When an object is locked, it
can’t be selected, moved, rotated, or resized. This is useful for very large objects like ground
planes, or board-outlines that are defined as an element. With such large objects, nearly
anywhere you click with the Arrow tool will be on the large object, so it could be hard to
draw box selections. If you lock an object, the Arrow tool will behave as if it didn’t exist.
You cannot unlock an object with undo. You must click on it again with the Lock tool.
If an object is locked, previous changes to it cannot be undone either. When you lock an
object, a report message about it is popped up and will always tell you what object it is,
and that it is locked if you just locked it. Other than noticing your inability to manipulate
something, the only way to tell an object is locked is with a report from the Info menu.
Use the Lock tool sparingly.

3.1.5 Layout Area

The layout area is where you see the layout. The cursor shape depends on the active tool
when the pointer is moved into the layout area. A cross hair follows the mouse pointer
with respect to the grid setting. Select a new grid from the Screen menu. The new value is
updated in the status line. A different way to change the grid is Shift< Key>g to decrease or
<Key>g to increase it, but this only works for English (integer mil) grids. The grid setting
is saved along with the data when you save a pcb layout. For homemade layouts a value
around 50 is a good setting. The cursor can also be moved in the layout area with the
cursor (arrow) keys or, for larger distances, by pressing the Shift modifier together with a
cursor key.

3.2 Log Window

This optional window is used to display all kind of messages including the ones written to
stderr by external commands. The main advantage of using it is that its contents are saved

Chapter 3: Getting Started 18

in a scrolling list until the program exits. Disabling this feature by setting the resource
useLogWindow to false will generate popup windows to display messages. The stderr of
external commands will appear on Pcbs stderr which normally is the parent shell. I suggest
you iconify the log window after startup for example by setting *log.iconic to true in the
resource file. If raiseLogWindow is set true, the window will deiconify and raise itself
whenever new messages are to be displayed.

3.3 Library Window

The library window makes loading elements (or even partial layouts) easy. Just click the
appropriate library from the list on the left. A list of its elements then appears on the right.
Select an element from the list by clicking on its description. Selecting an element from
the library will also automatically copy the element into the active buffer, then invoke the
Buffer tool so you can paste it to the layout. Elements in the old library should be taken
with a grain of salt (i.e. check them carefully before using). The old library names all begin
with ~ so you can easily distinguish between the old and new libraries. All of the elements in
the new library should be thoroughly vetted, so you can use them with confidence. The new
libraries are stored simply as directories full of element files, so making additions to the new
library is easy since there is no need to learn m4. For details on the old libraries, check-out
Section 8.7 [Library File|, page 70 and Section 8.6 [Library Contents File], page 70. For
details on the format of an element file used for the new libraries, see Section 8.3 [Element
File], page 69.

3.4 Netlist Window

The netlist window is very similar to the library window. On the left is a list of all of the
nets, on the right is the list of connections belonging to the chosen net. The chosen net is
highlighted in the list and also shown on the second line of the window in red. If the net
name has a star to the left of it then it is "disabled". A disabled net is treated as if it were
not in the net list. This is useful, for example, if you plan to use a ground plane and don’t
want the ground net showing up in the rat’s nest. You can enable/disable individual nets
by double-clicking the net name. If you want to enable or disable all nets at once, there are
two buttons at the top of the netlist window for this purpose.

The button labeled ‘Sel Net On Layout’ can be used to select (on the layout) everything
that is connected (or is supposed to be connected) to the net. If you click on a connection
in the connection list, it will select/deselect the corresponding pin or pad in the layout and
also center the layout window where it is located. If you "Find" (‘lookup connection’ in
the Connects menu [also F' key]), a pin or pad it will also choose the net and connection in
the netlist window if it exists in the netlist.

If no netlist exists for the layout, then the netlist window does not appear. You can
load a netlist from a file from the File menu. The format for netlist files is described in
Section 8.5 [Netlist File], page 70.

3.5 Drawing and Removing Basic Objects

hace begging gutting here, and do a real-world tutorial example.

Chapter 3: Getting Started 19

There are several ways of creating new objects: you can draw them yourself, you can
copy an existing object (or selection), or you can load an element from a file or from the
Library window. Each type of object has a particular tool for creating it.

The active tool can be selected from the tool selectors in the bottom left corner or by one
of the function keys listed earlier in this chapter. Each <BtnI> press with the tool tells the
application to create or change the appropriate object or at least take the first step to do so.
Each tools causes the cursor to take on a unique shape and also causes the corresponding
tool selector button to be highlighted. You can use either cue to see which tool is active.

Insert mode provides the capability of inserting new points into existing polygons or
lines. The 45 degree line clipping is now enforced when selected. Press and hold the shift
key while positioning the new point to only clip the line segment to the nearer of the two
existing points to 45 degrees. You can also toggle the 45-degree clipping in the middle of a
point insertion by pressing the <Key>. If the shift key is not depressed and the 45 degree
line clipping mode is on, both new line segments must be on 45 degree angles - greatly
restricting where the new point may be placed. In some cases this can cause confusion as to
whether an insertion has been started since the two new lines may be forced to lie parallel
on top of the original line until the pointer is moved far from the end points.

Removing objects, changing their size or moving them only applies to objects that are
visible when the command is executed.

3.5.1 Common Drawing and Removing Methods

There are several keystrokes and button events referring to an object without identifying
its type. Here’s a list of them:

<Btn1> creates (or deletes) an object depending on the current mode.

<Key>BackSpace or <Key>Delete removes the visible object at the cursor location. When
more than one object exists at the location, the order of removal is: via, line, text, polygon
and element. The drawn layer order also affects the search - whatever is top - most (except
elements) is affected before lower items. Basically all this means that what is removed is
probably just what you expect. If for some reason it isn’t, undo and try again. Only one
object is removed for each keystroke. If two or more of the same type match, the newest
one is removed.

Use <Key>s and Shift< Key>s to change the size (width) of lines, arcs, text objects, pins,
pads and vias, or to toggle the style of polygons (whether pins and vias automatically have
clearances).

<Key>n changes the name of pins, pads, vias, the string of a text object, or the currently
displayed label of an element.

<Key>m moves the line, arc, or polygon under the cross hair to the active layer if it
wasn’t on that layer already.

<Key>u (undo) recovers from an unlimited number of operations such as creating, re-
moving, moving, copying, selecting etc. It works like you’d expect even if you're in the
midst of creating something.

Shift< Key>r restores the last undone operation provided no other changes have been
made since the undo was performed.

<Key>tab changes the board side you are viewing.

For a complete list of keystrokes and button events see Section 7.3 [Translations], page 66.

Chapter 3: Getting Started 20

3.5.2 Lines

To draw new lines you have to be in line-mode. Get there either by selecting it from the
Tool palette or by pressing <Key>F2. Each successive notify event creates a new line. The
adjustment to 45 degree lines is done automatically if it is selected from the Display menu.
You can toggle the 45 degree mode setting by pressing the <Key>. (That is the period key).
When 45 degree enforcement is turned on there are three distinct modes of line creation: a
single line on the closest 45 degree vector towards the cross hair (but not necessarily actually
ending at the cross hair), two lines created such that the first leaves the start point on a
90 degree vector and the second arrives at the cross hair on a 45 degree vector, and finally
two lines created such that the first leaves the start point on a 45 degree vector and the
second arrives at the cross hair on a 90 degree vector. These last two modes always connect
all the way from the start and end points, and all lines have angles in 45 degree multiples.
The <Key>/ cycles through the three modes. The status line shows a text icon to indicate
which of the modes is active and the lines following the cross hair motion show the outline
of the line(s) that will actually be created. Press <Key>Escape to leave line-mode.

<Key>l, Shift<Key>l and the entries in the Sizes menu change the initial width of new
lines. This width is also displayed in the status line.

3.5.3 Arcs

An Arc is drawn with the arc-tool. Get there either by selecting it from the Tool palette or
by pressing <Key>F8. Press Bitnl to define the starting point for the arc. Drag the mouse
towards the desired end point along the path you want the arc to follow. The outline of
the arc that will be created is shown on the screen as you move the mouse. Arcs are always
forced to be 90 degrees and have symmetrical length and width (i.e. they are a quarter
circle). The next Btnl click creates the arc. It will have the same width as new lines
(displayed in the status line) and appear on the active layer. The arc leaves the starting
point towards the cross hair along the axis whose distance from the cross hair is largest.
Normally this means that if you drag along the path you want the arc to follow, you’ll get
what you want. If the grid is set to the arc radius, then the two distances will be equal
and you won’t be able to get all of the possible directions. If this is thwarting your desires,
reduce the grid spacing (/Shift< Key>G) and try again.

3.5.4 Polygons and Rectangles

A polygon is drawn by defining all of its segments as a series of consecutive line segments.
If the first point matches a new one and if the number of points is greater than two, then
the polygon is closed. Since matching up with the first point may be difficult, you may
use Shift<Key>p to close the polygon. The Shift< Key>p won’t work if clipping to 45 degree
lines is selected and the final segment cannot match this condition. I suggest you create
simple convex polygons in order to avoid a strong negative impact on the performance
of the connection scanning routines. The rectangle-mode is just an easy way to generate
rectangular polygons. Polygon-mode also is selected by <Key>F6 whereas rectangle-mode
uses <Key>F/. Pressing a <Btn1> at two locations creates a rectangle by defining two of its
corners. <Key>Insert brings you to insert-point-mode which lets you add additional points
to an already existing polygon. Single points may be removed by moving the cross hair
to them and selecting one of the delete actions (remove-mode, BackSpace, or Delete. This
only works if the remaining polygon will still have three or more corners. Pressing <Key>u

Chapter 3: Getting Started 21

or <Key>p while entering a new polygon brings you back to the previous corner. Removing
a point does not force clipping to 45 degree angles (because it’s not generally possible).
Newly created polygons will not connect to pins or vias that pierce it unless you create a
thermal (using the thermal mode) to make the connection. If the edge of a polygon gets
too close to a pin or via that lies outside of it, a warning will be issued and the pin will be
given a special color. Increasing the distance between them will remove the warning color.

3.5.5 Text

Pressing <Key>F5 or clicking one of the text selector buttons changes to text-mode. Each
successive notify event (<BtnI>) pops up the input line at the bottom and queries for a
string. Enter it and press <Key>Return to confirm or <Key>FEscape to abort. The text
object is created with its upper left corner at the current pointer location. The initial
scaling is changed by <Key>t and Shift<Key>t or from the Sizes menu.

Now switch to rotate-mode and press <BtnI> at the text-objects location. Text objects
on the solder side of the layout are automatically mirrored and flipped so that they are seen
correctly when viewing the solder-side.

Use <Key>n to edit the string.

TEXT OBJECTS ON COPPER LAYERS CREATE COPPER LINES BUT THEY ARE
NOT SCANNED FOR CONNECTIONS. If they are moved to the silkscreen layer, they no
longer create copper.

3.5.6 Vias

The initial size of new vias may be changed by <Key>v and Shift< Key>v or by selecting the
appropriate entry from the Sizes menu. Modi<Key>v and Mod1 Shift< Key>v do the same
for the drilling hole of the via. The statusline is updated with the new values. Creating a
via is similar to the other objects. Switch to via-mode by using either the selector button or
<Key>F1 then press <Key>/ or <Btnl> to create one. <Key>n changes the name of a via.
If you want to create a mounting hole for your board, then you can place a via where you
want the hole to be then convert the via into a hole. The conversion is done by pressing
ICtric Key>h with the cross hair over the via. Conceptually it is still a via, but it has no
copper annulus. If you create such a hole in the middle of two polygons on different layers,
it will short the layers. Theoretically you could arrange for such a hole not to be plated,
but a metal screw inserted in the hole would still risk shorting the layers. A good rule is to
realize that holes in the board really are vias between the layers and so place them where
they won’t interfere with connectivity. You can convert a hole back into a normal via with
the same keystroke used to convert it in the first place.

3.5.7 Elements

Some of the functions related to elements only work if both the package layer and the pin
layer are switched on.

Now that you’re familiar with many of the basic commands, it is time to put the first
element on the layout. First of all, you have to load data into the paste buffer. There are
four ways to do this:

1) load the data from a library
2) load the data from a file

Chapter 3: Getting Started 22

3) copy data from an already existing element
4) convert objects in the buffer into an element

We don’t have any elements on the screen yet nor anything in the buffer, so we use
number one.

Select Isi from the menu in the library window press < Btn1> twice at the appropriate text-
line to get the MC68030 CPU. The data is loaded and the mode is switched to pastebuffer-
mode. Each notify event now creates one of these beasts. Leave the mode by selecting a
different one or by <Key>Fscape which resets all modes.. The cross hair is located at the
mark position as defined by the data file. Rotating the buffer contents is done by selecting
the rotate entry of the Buffer menu or by pressing Shift< Key>F3. The contents of the buffer
are valid until new data is loaded into it either by a cut-to-buffer operation, copy-to-buffer
operation or by loading a new data file. There are 5 buffers available (possibly more or less
if changed at compile time with the MAX_BUFFER variable in ‘globalconfig.h’). Switching
between them is done by selecting a menu entry or by Shift< Key>1.. MAX_BUFFER. Each
of the two board sides has its own buffers.

The release includes all data files for the circuits that are used by the demo layout. The
elements in the LED example are not found in the library, but you can lift them from the
example itself if you want. If you have problems with the color of the cross hair, change
the resource cross hairColor setting to a different one.

Now load a second circuit, the MC68882 FPU for example. Create the circuit as ex-
plained above. You now have two different unnamed elements. Unnamed means that the
layout-name of the element hasn’t been set yet. Selecting description from the Display
menu displays the description string of the two circuits which are CPU and FPU. The val-
ues of the circuits are set to MC68030 and MC68882. Each of the names of an element may
be changed by <Key>n at the elements location and editing the old name in the bottom
input line. Naming pins and vias is similar to elements. You can hide the element name so
that it won’t appear on the board silkscreen by pressing <key>h with the cursor over the
element. Doing so again un-hides the element name.

Entering :1e and selecting an element data file is the second way to load circuits.

The third way to create a new element is to copy an existing one. Please refer to
Section 3.6 [Moving and Copying], page 23.

The fourth way to create a new element is to convert a buffer’s contents into an element.
Here’s how it’s done: Select the Via-tool from the Tool pallet. Set the grid spacing to
something appropriate for the element pin spacing. Now create a series of vias where the
pins go. Create them in pin number order. It is often handy to place a reference point
(!CtricKey>m) in the center of the first pin in order to measure the location of the other
pins. Next make a solder-side layer the active layer from the active-layer popup menu. Now
draw the outline of the element using lines and arcs. When you’re done, select everything
that makes up the element with a box selection (<Btn3Down> drag, <Btn3Up>). Now select
"cut to buffer" from the Buffer menu. Position the cursor over the center of pin 1 and press
the left button to load the data into the buffer. Finally select "convert buffer to element"
from the Buffer menu. You’ll only want to create elements this way if they aren’t already
in the library. It’s also probably a good idea to do this before starting any of the other
aspects of a layout, but it isn’t necessary.

Chapter 3: Getting Started 23

To display the pinout of a circuit move to it and press Shift< Key>d or select show pinout
from the Objects menu. A new window pops up and displays the complete pinout of the
element. This display can be difficult to read if the component has been rotated 90 degrees
:-(therefore, the new window will show an un-rotated view so the pin names are readable.
<Key>d displays the name of one or all pins/pads inside the Layout area, this is only for
display on-screen, it has no effect on any printing of the layout.

You also may want to change a pin’s or pad’s current size by pressing <Key>s to increase
or Shift<Key>s to decrease it. While this is possible, it is not recommended since care was
probably taken to define the element structure in the first place. You can also change the
thickness of the element’s silkscreen outline with the same keys. You can change whether
a pin or SMD pad is rounded or square with the <Key>q. SMD pads should usually have
squared ends. Finally, you can change whether the non-square pins are round or octagonal
with the /Ctri< Key>o.

SMD elements and silkscreen objects are drawn in the "invisible object" color if they
are located on the opposite side of the board.

For information on element connections refer to Section 3.10 [Connection Lists], page 28.

3.5.8 Pastebuffer

The line-stack and element-buffer of former releases have been replaced by 5 (possibly more
or less if changed at compile time with the MAX_BUFFER variable in ‘globalconfig.h’) multi-
purpose buffers that are selected by Shift<Key>1.. MAX_BUFFER. The status line shows
which buffer is the active one. You may load data from a file or layout into them. Cut-and-
paste works too. If you followed the instructions earlier in this chapter you should now have
several objects on the screen. Move the cross hair to one of them and press <Btn3Down> to
toggle its selection flag. (If you drag the mouse while the button is down, a box selection will
be attempted instead of toggling the selection.) The object is redrawn in a different color.
You also may want to try moving the pointer while holding the third button down and
release it on a different location. This selects all objects inside the rectangle and unselects
everything else. If you want to add a box selection to an existing selection, drag with
Modi1<Btn3Down> instead. Dragging Shift Modi<Btn3Down> unselects objects in a box.
Now change to pastebuffer-mode and select some operations from the Buffer menu. Copying
objects to the buffer is available as ModI<Key>c while cutting them uses ModI<Key>z as
shortcut. Both clear the buffer before new data is added. If you use the menu entries, you
have to supply a cross hair position by pressing a mouse button. The objects are attached
to the pastebuffer relative to that cross hair location. Element data or PCB data may be
merged into an existing layout by loading the datafiles into the pastebuffer. Both operations
are available from the File menu or as user commands.

3.6 Moving and Copying

All objects can be moved including element-names, by <Btn2Down>, dragging the pointer
while holding the button down and releasing it at the new location of the object. If you use
Mod1<Btn2Down> instead, the object is copied. Copying does not work for element-names
of course. You can move all selected objects with Shift <Btn1>. This uses the Pastebuffer,
so it will remove whatever was previously in the Pastebuffer. Please refer to Section 3.5.8
[Pastebuffer|, page 23. If you want to give a small nudge to an object, but you don’t think

Chapter 3: Getting Started 24

that the mouse will give you the fine level of control that you want, you can position the
cursor over the object, press <Key>[, move it with the arrow keys, then press <Key>/ when
it’s at the desired position. Remember that all movements are forced onto grid coordinates,
so you may want to change the grid spacing first.

To move a trace or group of traces to a different layer, first select the tracks to be moved.
It’s easiest to do this if you shut off everything but that layer first (i.e. silk, pins, other
layers, etc). Now set the current layer to be the new layer. Press Shift-M to move all the
selected tracks to the current layer. See the MoveToCurrentLayer action for more details.

3.7 Loading and Saving

After your first experience with Pcb you will probably want to save your work. :s name
passes the data to an external program which is responsible for saving it. For details see
saveCommand in Section 7.1 [Resources|, page 50. Saving also is available from the File
menu, either with or without supplying a filename. Pcb reuses the last filename if you do
not pass a new one to the save routine.

To load an existing layout either select Open... from the File menu or use :1 filename.
A file select box pops up if you don’t specify a filename. Merging existing layouts into the
new one is supported either by the File menu or by :m filename.

Pcb saves a backup of the current layout at a user specified interval. The backup
filename is created by appending a dash, "-", to the ‘.pcb’ filename. For example, if
you are editing the layout in ‘projects/board.pcb’ then the backup file name will be
‘projects/board.pcb-". If the layout is new and has not been saved yet, then the backup
file name is ‘PCB. ####.backup’ where the "##H##" will be replaced by the process ID of
the currenting running copy of Pcb. This default backup file name may be changed at com-
pilation time via the BACKUP_NAME variable in ‘globalconfig.h’. During critical sections
of the program or when data would be lost it is saved as ‘PCB.%i.save’. This file name
may be changed at compile time with the SAVE_NAME variable in ‘globalconfig.h’.

3.8 Printing

Pcb now has support for device drivers, PostScript, encapsulated PostScript, and Gerber
RS-274X drivers are available so far. The Gerber RS-274X driver additionally generates
a numerical control (NC) drill file for automated drilling, a bill of materials file to assist
in materials procurement and inventory control, and a centroid (X-Y) file which includes
the centroid data needed by automatic assembly (pick and place) machines. I recommend
the use of GhostScript if you don’t have a PostScript printer for handling the PostScript
output. Printing always generates a complete set of files for a specified driver. See the
page about the Print() action for additional information about the filenames. The control
panel offers a number of options. Most of them are not available for Gerber output because
it wouldn’t make sense, for example, to scale the gerber output (you’d get an incorrectly
made board!). The options are:

‘device’ The top menu button selects from the available device drivers.
‘rotate’ Rotate layout 90 degrees counter-clockwise before printing (default).

‘mirror’ Mirror layout before printing. Use this option depending on your production
line.

Chapter 3: Getting Started 25

‘color’

‘outline’

‘alignment’

‘scaling’

‘media’

‘offset’

Created colored output. All colors will be converted to black if this option is
inactive.

Add a board outline to the output file. The size is determined by the maximum
board size changeable from the sizes menu. The outline appears on the top and
bottom sides of the board, but not on the internal layers. An outline can be
useful for determining where to shear the board from the panel, but be aware
that it creates a copper line. Thus it has the potential to cause short circuits if
you don’t leave enough room from your wiring to the board edge. Use a viewer
to see what the output outline looks like if you want to know what it looks like.

Additional alignment targets are added to the output. The distances between
the board outline is set by the resource alignmentDistance. Alignment targets
should only be used if you know for certain that YOU WILL BE USING THEM
YOURSELF. It is extremely unlikely that you will want to have alignment
targets if you send gerber files to a commercial pcb manufacture to be made.

It’s quite useful to enlarge your printout for checking the layout. Use the
scrollbar to adjust the scaling factor to your needs.

Select the size of the output media from this menu. The user defined size may
be set by the resource media either from one of the well known paper sizes or
by a X11 geometry specification. This entry is only available if you use X11R5
or later. For earlier releases the user defined size or, if not available, A4 is used.
Well known size are:

A3

A4

A5

letter
tabloid
ledger
legal
executive

Adjust the offsets of the printout by using the panner at the right side of the
dialog box. This entry is only available if you use X11R5 or later. A zero offset
is used for earlier releases.

‘8.3 filenames’

Select this button to generate DOS compatible filenames for the output files.
The command input area will disappear if selected.

‘commandline’

Use this line to enter a command (starts with |) or a filename. A %f is replaced
by the current filename. The default is set by the resource printCommand.

The created file includes some labels which are guaranteed to stay unchanged

‘PCBMIN’
‘PCBMAX’

identifies the lowest x and y coordinates in mil.

identifies the highest x and y coordinates in mil.

Chapter 3: Getting Started 26

‘PCBOFFSET’
is set to the x and y offset in mil.

‘PCBSCALE’
is a floating point value which identifies the scaling factor.

‘PCBSTARTDATA’

‘PCBENDDATA’
all layout data is included between these two marks. You may use them with
an awk script to produce several printouts on one piece of paper by duplicating
the code and putting some translate commands in front. Note, the normal
PostScript units are 1/72 inch.

3.9 Exporting a layout

To export a layout choose Fzport layout from the File menu, then select the desired exporter.

3.9.1 Bill of materials (bom)
Produces a bill of materials (BOM) file and a centroid (XY) file.

3.9.2 G-code (gcode)

The gcode exporter can generate RS274/NGC G-CODE files to be used with a CNC mill
to produce pcb’s by mechanically removing copper from the perimeter of all elements.

The elements are enlarged in order to compensate for the cutting tool size so that the
remaining copper corresponds to the original size; however all polygons are left unchanged
and will end up being a little smaller; this is not a problem because the electrical connection
is done with traces, which are correctly enlarged.

A .cnc file is generated for every copper layer, with the bottom layer mirrored so that the
milling is done right; of course it’s not possible to produce directly multi-layer (more than
2) pcb’s with this method, but the cnc files for intermediate layers are generated anyways.

A drill file is also generated, and it contains all drills regardless of the hole size; the
drilling sequence is optimized in order to require the least amount of movement.

The export function generates an intermediate raster image before extracting the contour
of copper elements, and this image is saved as well (in .png format) for inspection.

When the spacing between two elements is less than the tool diameter they will merge
and no isolation will be cut between them; the control image should be checked for this
behaviour.

Possible workarounds are: increasing spacing, decreasing the tool size, increasing the
intermediate image resolution.

To maximize the chance of producing correct pcb’s it would be better to increase the
DRC clearance to at least the tool diameter and use traces as thick as possible; the rule is:
use the largest element that will not prevent the isolation cut.

The exporter parameters are:
basename base name for generated files

dpi intermediate image resolution; affects precision when extracting contours

Chapter 3: Getting Started 27

mill depth should be the copper depth
safe z 7 value when moving between polygons

tool radius
copper elements are enlarged by this amount

drill depth
depth of drills

measurement unit
for all parameters above, can be mm,um,inch,mil; g-code is always mm or inch

All .cnc files specify Z values as parameters, so that it’s easy to change them without
the need to run the exporter again.

Operation was verified with the EMC2 g-code interpreter.

Following is a sample layout that is converted with default settings:

Chapter 3: Getting Started 28

The final tool path follows the perimeter of all elements:

— 7 N
/%;j;

3.9.3 Gerber (gerber)
Produces RS274-X (a.k.a. gerber) photo plot files and Excellon drill files.

3.9.4 Nelma (nelma)

Numerical analysis package export.

3.9.5 Image (png)
Produces GIF/JPEG/PNG image files.

3.9.6 Postscript (ps)
Export as postscript. Can be later converted to pdf.

3.9.7 Encapsulated Postscript (eps)

Export as eps (encapsulated postscript) for inclusion in other documents. Can be later
converted to pdf.

3.10 Connection Lists

After completing parts of your layout you may want to check if all drawn connections match
the ones you have in mind. This is probably best done in conjunction with a net-list file:
see Section 3.12 [Rats Nest|, page 30. The following examples give more rudimentary ways
to examine the connections.

1) create at least two elements and name them
2) create some connections between their pins
3) optionally add some vias and connections to them

Chapter 3: Getting Started 29

Now select lookup connection from the Connections menu, move the cursor to a pin or
via and press any mouse button. Pcb will look for all other pins and/or vias connected to
the one you have selected and display the objects in a different color. Now try some of the
reset options available from the same menu.

There also is a way to scan all connections of one element. Select a single element from
the menu and press any button at the element’s location. All connections of this element
will be saved to the specified file. Either the layout name of the element or its canonical
name is used to identify pins depending on the one which is displayed on the screen (may
be changed by Display menu).

An automatic scan of all elements is initiated by choosing all elements. It behaves in a
similar fashion to scanning a single element except the resource resetAfterElement is used
to determine if connections should be reset before a new element is scanned. Doing so will
produce very long lists because the power lines are rescanned for every element. By default
the resource is set to false for this reason.

To scan for unconnected pins select unused pins from the same menu.

3.11 Arrow Tool

Some commands mentioned earlier in this chapter also are able to operate on all selected
and visible objects. The Arrow tool is used to select/deselect objects and also to move
objects or selections. If you click and release on an object with the Arrow tool, it will
unselect everything else and select the object. Selected objects change color to reflect that
they are selected. If you Shift click, it will add the object to (or remove) the object from
the existing selection. If you drag with the mouse button down with the Arrow tool, one of
several things could happen: if you first pressed the button on a selected object, you will
be moving the selection to where you release the button. If you first pressed the button on
an unselected object, you will be moving that object. If you first pressed the button over
empty space, you will be drawing a box to select everything inside the box. The Shift key
works the same way with box selections as it does with single objects.

Moving a single un-selected object is different from moving a selection. First of all, you
can move the end of line, or a point in a polygon this way which is impossible by moving
selections. Secondly, if rubber banding is turned on, moving a single object will rubber-band
the attached lines. Finally, it is faster to move a single object this way since there is no
need to select it first.

You can select any visible object unless it is locked. If you select an object, then turn off
its visibility with the Layer controls, it won’t be moved if you move the remaining visible
selection.

If you have not configured to use strokes in the Pcb user interface, then the middle
mouse button is automatically bound to the arrow tool, regardless of the active tool (which
is bound to the first mouse button). So using the middle button any time is just like using
the first mouse button with the Arrow tool active.

The entries of the Selection menu are hopefully self-explanatory. Many of the Action
Commands can take various key words that make them function on all or some of the
selected items.

Chapter 3: Getting Started 30

3.12 Rats Nest

If you have a netlist that corresponds to the layout you are working on, you can use the
rats-nest feature to add rat-lines to the layout. First you will need to load a netlist file
(see :rn, Chapter 5 [User Commands|, page 36). <Key>w adds rat-lines on the active layer
using the current line thickness shown in the status line (usually you’ll want them to be thin
lines). Only those rat-lines that fill in missing connectivity (since you have probably routed
some connections already) are added. If the layout is already completely wired, nothing
will be added, and you will get a message that the wiring is complete.

Rat-lines are lines having the special property that they only connect to pins and pads
at their end points. Rat-lines may be drawn differently to other lines to make them easier
to identify since they have special behavior and cannot remain in a completed layout. Rat-
lines are added in the minimum length straight-line tree pattern (always ending on pins or
pads) that satisfies the missing connectivity in the circuit. Used in connection with moves
and rotates of the elements, they are extremely useful for deciding where to place elements
on the board. The rat-lines will always automatically rubberband to the elements whether
or not the rubberband mode is on. The only way for you to move them is by moving the
parts they connect to. This is because it is never desirable to have the rat-lines disconnected
from their element pins. Rat-lines will normally criss-cross all over which gives rise to the
name "rats nest" describing a layout connected with them. If a SMD pad is unreachable
on the active layer, a warning will be issued about it and the rat-line to that pad will not
be generated.

A common way to use rats nests is to place some elements on the board, add the rat-
lines, and then use a series of moves/rotates of the elements until the rats nest appears to
have minimum tangling. You may want to iterate this step several times. Don’t worry if
the layout looks messy - as long as you can get a sense for whether the criss-crossing is
better or worse as you move things, you're fine. After moving some elements around, you
may want to optimize the rats nest <Key>o so that the lines are drawn between the closest
points (this can change once you've moved components). Adding rat-lines only to selected
pads/pins (Shift< Key>w) is often useful to layout a circuit a little bit at a time. Sometimes
you’ll want to delete all the rat-lines (<Key>e) or selected rat-lines (Shift< Key>e) in order to
reduce confusion. With a little practice you’ll be able to achieve a near optimal component
placement with the use of a rats nest.

Rat-lines are not only used for assisting your element placement, they can also help you
to route traces on the board. Use the <Key>m to convert a rat-line under the cursor into a
normal line on the active layer. Inserting a point into a rat-line will also cause the two new
lines to be normal lines on the board. Another way that you can use rat-lines is to use the
<Key>f with the cursor over a pad or pin. All of the pins and pads and rat-lines belonging
to that net will be highlighted. This is a helpful way to distinguish one net from the rest
of the rats nest. You can then route those tracks, turn off the highlighting (Shift<Key>f)
and repeat the process. This will work even if the layer that the rat-lines reside on is made
invisible - so only the pins and pads are highlighted. Be sure to erase the rat-lines (<Key>e
erases them all) once you've duplicated their connectivity by adding your own lines. When
in doubt, the <Key>o will delete only those rat-lines that are no longer needed.

If connections exist on the board that are not listed in the netlist when <Key>w is
pressed, warning messages are issued and the affected pins and pads are drawn in a special

Chapter 3: Getting Started 31

warnColor until the next Notify() event. If the entire layout agrees completely with the
netlist, a message informs you that the layout is complete and no rat-lines will be added
(since none are needed). If the layout is complete, but still has rat-lines then you will
be warned that rat-lines remain. If you get no message at all it’s probably because some
elements listed in the net list can’t be found and where reported in an earlier message.
There shouldn’t be any rat-lines left in a completed layout, only normal lines.

The Shift< Key>w is used to add rat-lines to only those missing connections among the
selected pins and pads. This can be used to add rat-lines in an incremental manner, or to
force a rat-line to route between two points that are not the closest points within the net.
Often it is best to add the rats nest in an incremental fashion, laying out a sub-section of
the board before going further. This is easy to accomplish since new rat-lines are never
added where routed connectivity already makes the necessary connections.

3.13 Design Rule Checking

After you’ve finished laying out a board, you may want to check to be certain that none
of your interconnections are too closely spaced or too tenuously touching to be reliably
fabricated. The design rule checking (DRC) function does this for you. Use the command
":DRC()" (without the quotes of course) to invoke the checker. If there are no problem
areas, you’ll get a message to that effect. If any problem is encountered, you will get a
message about it and the affected traces will be highlighted. Ome part of the tracks of
concern will be selected, while the other parts of concern will have the "FindConnection"
highlighting. The screen will automatically be centered in the middle of the object having
the "FindConnection" (Green) highlighting. The middle of the object is also the coordinates
reported to be "near" the problem. The actual trouble region will be somewhere on the
boundary of this object. If the two parts are from different nets then there is some place
where they approach each other closer than the minimum rule. If the parts are from the
same net, then there is place where they are only barely connected. Find that place and
connect them better.

After a DRC error is found and corrected you must run the DRC again because the
search for errors is halted as soon as the first problem is found. Unless you’ve been extremely
careless there should be no more than a few design rule errors in your layout. The DRC
checker does not check for minimum spacing rules to copper text, so always be very careful
when adding copper text to a layout. The rules for the DRC are specified in the application
resource file. The minimum spacing value (in mils) is given by the Settings. Bloat value. The
default is 7 mils. The minimum touching overlap (in mils) is given by the Settings.Shrink
value. This value defaults to 5 mils. Check with your fabrication process people to determine
the values that are right for you.

If you want to turn off the highlighting produced by the DRC, perform an undo (assuming
no other changes have been made). To restore the highlighting, use redo. The redo will
restore the highlighting quickly without re-running the DRC checker.

3.14 Trace Optimizer

PCB includes a flexible trace optimizer. The trace optimizer can be run after auto routing
or hand routing to clean up the traces.

Chapter 3: Getting Started 32

Auto-Optimize
Performs debumpify, unjaggy, orthopull, vianudge, and viatrim, in that order,
repeating until no further optimizations are performed.

Debumpify
Looks for U shaped traces that can be shortened or eliminated.

Unjaggy Looks for corners which could be flipped to eliminate one or more corners (i.e.
jaggy lines become simpler).

Vianudge Looks for vias where all traces leave in the same direction. Tries to move via
in that direction to eliminate one of the traces (and thus a corner).

Viatrim Looks for traces that go from via to via, where moving that trace to a different
layer eliminates one or both vias.

Orthopull Looks for chains of traces all going in one direction, with more traces orthogonal
on one side than on the other. Moves the chain in that direction, causing a net
reduction in trace length, possibly eliminating traces and/or corners.

SimpleOpts
Removing unneeded vias, replacing two or more trace segments in a row with a
single segment. This is usually performed automatically after other optimiza-
tions.

Miter Replaces 90 degree corners with a pair of 45 degree corners, to reduce RF losses
and trace length.

3.15 Searching for elements

To locate text or a specific element or grouping of similar elements choose ‘Select by name’
from the Select menu, then choose the appropriate subsection. At the bottom of the screen
the prompt pattern: appears. Enter the text or Appendix C [Regular Expressions|, page 102
of the text to be found. Found text will be highlighted.

3.16 Measuring distances

To measure distances, for example the pin-to-pin pitch of a part to validate a footprint,
place the cursor at the starting measurement point, then press /Ctri< Key>m. This marks
the current location with a X. The X mark is now the zero point origin for the relative cursor
position display. The cursor display shows both absolute position and position relative to
the mark as the mouse is moved away from the mark. If a mark is already present, the
mark is removed and the cursor display stops displaying relative cursor coordinates.

3.17 Vendor Drill Mapping

Pcb includes support for mapping drill holes to a specified set of sizes used by a particular
vendor. Many PCB manufacturers have a prefered set of drill sizes and charge extra when
others are used. The mapping can be performed on an existing design and can also be
enabled to automatically map drill holes as vias and elements are instantiated.

The first step in using the vendor drill mapping feature is to create a resource file de-
scribing the capabilities of your vendor. The file format is the resource file format described
in Section B.1 [Resource Syntax], page 99. A complete example is given below.

Chapter 3: Getting Started 33

Optional name of the vendor
vendor = "Vendor Name"

units for dimensions in this file.
Allowed values: mil/inch/mm
units = mil

drill table

drillmap = {
When mapping drill sizes, select the nearest size
or always round up. Allowed values: up/nearest
round = up

The list of vendor drill sizes. Units are as specified
above.
20

28

35

38

42

52

59.5

86

125

152

optional section for skipping mapping of certain elements

based on reference designator, value, or description

this is useful for critical parts where you may not

want to change the drill size. Note that the strings

are regular expressions.

skips = {

{refdes "~J3$"} # Skip J3.

{refdes "J3"} # Skip anything with J3 as part of the refdes.

{refdes ""U[1-3]$" ""X.x"} # Skip U1, U2, U3, and anything starting with X.
{value "~JOHNSTECH_.*"} # Skip all Johnstech footprints based on the value of a
{descr ""AMP_MICTOR_767054_1$"} # Skip based on the description.

H OB H HH

If specified, this section will change the current DRC
settings for the design. Units are as specified above.
drc = {

copper_space = 7

copper_width = 7

silk_width = 10

copper_overlap = 4

Chapter 3: Getting Started 34

}
The vendor resource is loaded using the LoadVendor action. This is invoked by entering:
:LoadVendor (vendorfile)

from within Pcb. Substitute the file name of your vendor resource file for ‘vendorfile’.
This action will load the vendor resource and modify all the drill holes in the design as well
as the default via hole size for the various routing styles.

Once a vendor drill map has been loaded, new vias and elements will automatically have
their drill hole sizes mapped to the vendor drill table. Automatic drill mapping may be
disabled under the “Settings” menu. To re-apply an already loaded vendor drill table to a
design, choose “Apply vendor drill mapping” from the “Connects” menu.

See Section 7.2 [Actions|, page 56 for a complete description of the actions associated
with vendor drill mapping.

Note that the expressions used in the skips section are regular expressions. See Appen-
dix C [Regular Expressions|, page 102 for an introduction to regular expressions.

Chapter 4: Autorouter 35

4 Autorouter

Pcb includes an autorouter which can greatly speed up the layout of a circuit board. The
autorouter is a rectangle-expansion type of autorouter based on “A Method for Gridless
Routing of Printed Circuit Boards” by A. C. Finch, K. J. Mackenzie, G. J. Balsdon, and
G. Symonds in the 1985 Proceedings of the 22nd ACM/IEEE Design Automation Confer-
ence. This reference is available from the ACM Digital Library at http://www.acm.org/dl
for those with institutional or personal access to it. It’s also available from your local
engineering library. The reference paper is not needed for using the autorouter.

Before using the autorouter, all elements need to be loaded into the layout and placed
and the connectivity netlist must be loaded. Once the elements have been placed and the
netlist loaded, the following steps will autoroute your design.

1. Turn off visibility of any layers that you don’t want the router to use.
2. Turn off via visibility if you don’t want the router to use any new vias.

3. Use only plain rectangles for power/ground planes that you want the router to use [use
the rectangle tool!]

4. Make at least one connection from any plane you want the router to use to the net you
want it to connect to.

5. Draw continuous lines (on all routing layers) to outline keep-out zones if desired.

6. Use routing styles in the netlist to have per-net routing styles. Note that the routing
style will be used for an entire net. This means if you have a wide metal setting for a
power net you will need to manually route breakouts from any fine pitch parts on their
power pins because the router will not be able to change to a narrow trace to connect
to the part.

7. Set the current routing style to whatever you'd like the router to use for any nets not
having a defined route style in the netlist.

8. Disable any nets that you don’t want the autorouter to route (double-click them in the
netlist window to add/remove the *).

NOTE: If you will be manually routing these later not using planes, it is usually better
to let the autorouter route them then rip them up yourself afterwards. If you plan to use
a ground/power plane manually, consider making it from one or more pure rectangles
and letting the autorouter have a go at it.

9. Create a fresh rat’s nest. (F then W)

10. Select “show autorouter trials” in the settings menu if you want to watch what’s hap-
pening.
11. Choose “autoroute all rats” in the connection menu.

12. If you really want to muck with the router because you have a special design, e.g.
all through-hole components you can mess with layer directional costs by editing the
autoroute.c source file and changing the directional costs in lines 929-940. and try
again. Even more mucking about with costs is possible in lines 4540-4569, but it’s
probably not such a good idea unless you really just want to experiment.

After the design has been autorouted, you may want to run the trace optimizer. See
section Section 3.14 [Trace Optimizer], page 31 for more information on the trace optimizer.

http://www.acm.org/dl

Chapter 5: User Commands 36

5 User Commands

The entering of user-commands is initiated by the action routine Command() (normally
bound to the (":") character) which replaces the bottom statusline with an input area or
opens a separate command window. It is finished by either <Key> Return or <Key>Fscape
to confirm or to abort. These two key-bindings cannot be changed from the resource file.
The triggering event, normally a key press, is ignored.

Commands can be entered in one of two styles, command entry syntax: “Command
argl arg2” or action script syntax “Actionl(argl, arg2); Action2(argl, arg2);”. Quoting
arguments works similar to bash quoting;:

e A backslash (\) is the escape character. It preserves the literal value of the next
character that follows. To get a literal "\’ use "\\".

e Enclosing characters in single quotes preserves the literal value of each character within
the quotes. A single quote may not occur between single quotes, even when preceded
by a blackslash.

e Enclosing characters in double quotes preserves the literal value of all characters within
the quotes, with the exception of ’\” which maintains its special meaning as an escape
character.

There are simple usage dialogs for each command and one for the complete set of com-
mands.

‘1 [filename]’
Loads a new datafile (layout) and, if confirmed, overwrites any existing unsaved
data. The filename and the searchpath (filePath) are passed to the command
defined by fileCommand. If no filename is specified a file select box will popup.

‘le [filename]’
Loads an element description into the paste buffer. The filename and the search-
path (elementPath) are passed to the command defined by elementCommand.
If no filename is specified a file select box will popup.

‘m [filename]’
Loads an layout file into the paste buffer. The filename and the searchpath
(filePath) are passed to the command defined by fileCommand. If no filename
is specified a file select box will popup.

‘ql!]’ Quits the program without saving any data (after confirmation). q! doesn’t
ask for confirmation, it just quits.

‘s [filename]’
Data and the filename are passed to the command defined by the resource
saveCommand. It must read the layout data from stdin. If no filename is
entered, either the last one is used again or, if it is not available, a file select
box will pop up.

‘rn [filename]’
Reads in a netlist file. If no filename is given a file select box will pop up.
The file is read via the command defined by the RatCommand resource. The
command must send its output to stdout.

Chapter 5: User Commands 37

Netlists are used for generating rat’s nests (see Section 3.12 [Rats Nest|, page 30)
and for verifying the board layout (which is also accomplished by the Ratsnest
command).

‘wlq] [filename]’
These commands have been added for the convenience of vi users and have the
same functionality as s combined with g.

‘actionCommand’

Causes the actionCommand to be executed. This allows you to initiate actions
for which no bindings exist in the resource file. It can be used to initiate
any action with whatever arguments you enter. This makes it possible to do
things that otherwise would be extremely tedious. For example, to change
the drilling hole diameter of all vias in the layout to 32 mils, you could select
everything using the selection menu, then type ":ChangeDrillSize(Selected Vias,
32)". (This will only work provided the via’s diameter is sufficiently large to
accommodate a 32 mil hole). Another example might be to set the grid to 1 mil
by typing ":SetValue(Grid, 1)". Note that some actions use the current cursor
location, so be sure to place the cursor where you want before entering the
command. This is one of my favorite new features in 1.5 and can be a powerful
tool. Study the Section 7.2 [Actions|, page 56 section to see what actions are
available.

Chapter 6: Command-Line Options 38

6 Command-Line Options

The synopsis of the pcb command is:
pcb [OPTION ...] [LAYOUT-FILE.pcb] to start the application in GUI mode,
or
pcb [-h | -V | —--copyright] for a list of options, version, and copyright,
or
pcb -p [OPTION ...] [LAYOUT-FILE.pcb] to print a layout,
or
pcb -x HID [OPTION ...] [LAYOUT-FILE.pcb] to export.

Possible values for the parameter ‘HID’ are:
‘bom’ Export a bill of materials
‘gcode’ Export to G-Code

‘gerber’ Export RS-274X (Gerber)

‘nelma’ Numerical analysis package export
‘png’ export GIF/JPEG/PNG

‘ps’ export postscript

‘eps’ export encapsulated postscript

There are several resources which may be set or reset in addition to the standard toolkit
command-line options. For a complete list refer to Section 7.1 [Resources|, page 50.

6.1 General Options

--help Show help on command line options.

—--version
Show version.

—--verbose

Be verbose on stdout.
—--copyright

Show copyright.

--show-defaults
Show option defaults.

—--show-actions
Show available actions and exit.

—--dump-actions
Dump actions (for documentation).
-—grid-units-mm <string>
Set default grid units. Can be mm or mil. Defaults to mil.

Chapter 6: Command-Line Options 39

--clear-increment-mm <string>
Set default clear increment (amount to change when user presses k or K) when
user is using a metric grid unit.

-—grid-increment-mm <string>
Set default grid increment (amount to change when user presses g or G) when
user is using a metric grid unit.

--line-increment-mm <string>
Set default line increment (amount to change when user presses 1 or L) when
user is using a metric grid unit.

--size-increment-mm <string>
Set default size increment (amount to change when user presses s or S) when
user is using a metric grid unit.

--clear-increment-mil <string>
Set default clear increment (amount to change when user presses k or K) when
user is using an imperial grid unit.

--grid-increment-mil <string>
Set default grid increment (amount to change when user presses g or G) when
user is using a imperial grid unit.

--line-increment-mil <string>
Set default line increment (amount to change when user presses 1 or L) when
user is using a imperial grid unit.

--size-increment-mil <string>
Set default size increment (amount to change when user presses s or S) when
user is using a imperial grid unit.

--backup-interval
Time between automatic backups in seconds. Set to 0 to disable. The default
value is 60.

—--groups <string>
Layer group string. Defaults to "1,c:2:3:4:5:6,s:7:8".

--route-styles <string>
A string that defines the route styles. Defaults to
"Signal, 1000,3600,2000,1000:Power,2500,6000,3500,1000
:Fat,4000,6000,3500,1000:Skinny,600,2402,1181,600"

--element-path <string>
A colon separated list of directories or commands (starts with ’|’). The path
is passed to the program specified in ‘--element-command’.

--action-script <string>

If set, this file is executed at startup.
--action-string <string>

If set, this string of actions is executed at startup.

Chapter 6: Command-Line Options 40

--fab-author <string>
Name of author to be put in the Gerber files.

--layer-stack <string>
Initial layer stackup, for setting up an export. A comma separated list of layer
names, layer numbers and layer groups.

--save-last-command
If set, the last user command is saved.

--save-in-tmp
If set, all data which would otherwise be lost are saved in a temporary file
‘/tmp/PCB.%1i.save’ . Sequence ‘%i’ is replaced by the process ID.

--save-metric-only
If set, save pcb files using only mm unit suffix rather than ’smart’ mil/mm.

--reset-after-element
If set, all found connections are reset before a new component is scanned.

--ring-bell-finished
Execute the bell command when all rats are routed.

6.2 General GUI Options

--pinout-offset-x <num>
Horizontal offset of the pin number display. Defaults to 100mil.

--pinout-offset-y <num>
Vertical offset of the pin number display. Defaults to 100mil.

--pinout-text-offset-x <num>
Horizontal offset of the pin name display. Defaults to 800mil.

--pinout-text-offset-y <num>
Vertical offset of the pin name display. Defaults to -100mil.

--draw-grid
If set, draw the grid at start-up.

-—clear-line
If set, new lines clear polygons.

-—full-poly
If set, new polygons are full ones.

--unique-names
If set, you will not be permitted to change the name of an component to match
that of another component.

--snap-pin
If set, pin centers and pad end points are treated as additional grid points that
the cursor can snap to.

--all-direction-lines
Allow all directions, when drawing new lines.

Chapter 6: Command-Line Options 41

—-show—number
Pinout shows number.

6.3 GTK+ GUI Options

--listen Listen for actions on stdin.

--bg-image <string>
File name of an image to put into the background of the GUI canvas. The
image must be a color PPM image, in binary (not ASCII) format. It can be
any size, and will be automatically scaled to fit the canvas.

—--pcb-menu <string>
Location of the ‘gpcb-menu.res’ file which defines the menu for the GTK+
GUL

6.4 lesstif GUI Options

--listen Listen for actions on stdin.

--bg-image <string>
File name of an image to put into the background of the GUI canvas. The
image must be a color PPM image, in binary (not ASCII) format. It can be
any size, and will be automatically scaled to fit the canvas.

--pcb-menu <string>
Location of the ‘pcb-menu.res’ file which defines the menu for the lesstif GUI.

6.5 Colors

--black-color <string>
Color value for black. Default: ‘4000000’

--black-color <string>
Color value for white. Default: ‘#ffffff’

--background-color <string>
Background color of the canvas. Default: ‘#e5e5e5’

--crosshair-color <string>
Color of the crosshair. Default: ‘#££0000’

--cross—color <string>
Color of the cross. Default: ‘#cdcd00’

--via-color <string>
Color of vias. Default: ‘#7£7£7f’

--via-selected-color <string>
Color of selected vias. Default: ‘#00ffff’

-—-pin-color <string>
Color of pins. Default: ‘#4d4d4d’

Chapter 6: Command-Line Options

--pin-selected-color <string>
Color of selected pins. Default: ‘#00ffff’

--pin-name-color <string>
Color of pin names and pin numbers. Default: ‘#ff£0000’

--element-color <string>
Color of components. Default: ‘4000000’

--rat-color <string>
Color of ratlines. Default: ‘#b8860b’

--invisible-objects-color <string>
Color of invisible objects. Default: ‘#cccccc’

--invisible-mark-color <string>
Color of invisible marks. Default: ‘#cccccc’

-—element-selected-color <string>
Color of selected components. Default: ‘#00ffff’

--rat-selected-color <string>
Color of selected rats. Default: ‘#00f£ff’

--connected-color <string>
Color to indicate physical connections. Default: ‘#00££00’

-—found-color <string>
Color to indicate logical connections. Default: ‘#ff00ff’

--off-limit-color <string>
Color of off-canvas area. Default: ‘#cccccc’

--grid-color <string>
Color of the grid. Default: ‘#££0000’

--layer—-color-<n> <string>
Color of layer <n>, where <n> is an integer from 1 to 16.

--layer-selected-color-<n> <string>
Color of layer <n>, when selected. <n> is an integer from 1 to 16.

--warn-color <string>
Color of offending objects during DRC. Default value is "#££8000"

--mask-color <string>
Color of the mask layer. Default value is "#££0000"

6.6 Layer Names

--layer—name-1 <string>

Name of the 1st Layer. Default is "top".
--layer—-name-2 <string>

Name of the 2nd Layer. Default is "ground".

42

Chapter 6: Command-Line Options 43

--layer—name-3 <string>
Name of the 3nd Layer. Default is "signal2".

-—-layer—-name-4 <string>
Name of the 4rd Layer. Default is "signal3".

--layer-name-5 <string>
Name of the 5rd Layer. Default is "power".

--layer—-name-6 <string>
Name of the 6rd Layer. Default is "bottom".

--layer-name-7 <string>
Name of the 7rd Layer. Default is "outline".

--layer—-name-8 <string>
Name of the 8rd Layer. Default is "spare".

6.7 Paths

--lib-newlib <string>
Top level directory for the newlib style library.

--lib-name <string>
The default filename for the library.

--default-font <string>
The name of the default font.

--file-path <string>
A colon separated list of directories or commands (starts with ’|”). The path is
passed to the program specified in ‘--file-command’ together with the selected
filename.

--font-path <string>
A colon separated list of directories to search the default font. Defaults to the
default library path.

--lib-path <string>
A colon separated list of directories that will be passed to the commands spec-
ified by ‘--element-command’ and ‘--element-contents-command’.

6.8 Sizes

All parameters should be given with an unit. If no unit is given, 1/100 mil (cmil) will be
used. Write units without space to the number like 3mm, not 3 mm. Valid Units are:

‘km’ Kilometer
‘m’ Meter

‘em’ Centimeter
‘mm’ Millimeter

um Micrometer

Chapter 6: Command-Line Options 44

‘nm’ Nanometer

‘in’ Inch (lin = 0.0254m)
‘mil’ Mil (1000mil = 1in)
‘emil’ Centimil (1/100 mil)

—--via-thickness <num>
Default diameter of vias. Default value is 60mil.

--via-drilling-hole <num>
Default diameter of holes. Default value is 28mil.

—-line-thickness <num>
Default thickness of new lines. Default value is 10mil.

-—rat-thickness <num><unit>
Thickness of rats. If no unit is given, PCB units are assumed (i.e. 100 means
"1 nm"). This option allows for a special unit px which sets the rat thickness
to a fixed value in terms of screen pixels. Maximum fixed thickness is 100px.
Minimum saling rat thickness is 101lnm. Default value is 10mil.

--keepaway <num>
Default minimum distance between a track and adjacent copper. Default value
is 10mil.

——-default-PCB-width <num>
Default width of the canvas. Default value is 6000mil.

--default-PCB-height <num>
Default height of the canvas. Default value is 5000mil.

-—text-scale <num>
Default text scale. This value is in percent. Default value is 100.

--alignment-distance <num>
Specifies the distance between the board outline and alignment targets. Default
value is 2mil.

--grid <num>
Initial grid size. Default value is 10mil.

--minimum polygon area <num>
Minimum polygon area.

6.9 Commands

pcb uses external commands for input output operations. These commands can be con-
figured at start-up to meet local requirements. The command string may include special
sequences %f, %p or %a. These are replaced when the command is called. The sequence %f
is replaced by the file name, %p gets the path and %a indicates a package name.

-—font-command <string>
Command to load a font.

Chapter 6: Command-Line Options 45

—-—file-command <string>
Command to read a file.

--element-command <string>
Command to read a footprint.
Defaults to "M4PATH="%p’ ; export M4PATH;echo ’include(%f)’ | m4"

--print-file <string>
Command to print to a file.

--lib-command-dir <string>
Path to the command that queries the library.

--lib-command <string>
Command to query the library.
Defaults to "QueryLibrary.sh *%p’ *%f’ %a"

--lib-contents-command <string>
Command to query the contents of the library.
Defaults to "ListLibraryContents.sh %p %f" or, on Windows builds, an
empty string (to disable this feature).

--save-command <string>
Command to save to a file.

--rat-command <string>
Command for reading a netlist. Sequence %f is replaced by the netlist filename.

6.10 DRC Options

All parameters should be given with an unit. If no unit is given, 1/100 mil (cmil) will be
used for backward compability. Valid units are given in section Section 6.8 [Sizes], page 43.

--bloat <num>
Minimum spacing. Default value is 10mil.

—-—shrink <num>
Minimum touching overlap. Default value is 10mil.

--min-width <num>
Minimum width of copper. Default value is 10mil.

--min-silk <num>
Minimum width of lines in silk. Default value is 10mil.

—-—-min-drill <num>
Minimum diameter of holes. Default value is 15mil.

--min-ring <num>
Minimum width of annular ring. Default value is 10mil.

Chapter 6: Command-Line Options 46

6.11 BOM Creation

--bomfile <string>
Name of the BOM output file.

--xyfile <string>
Name of the XY output file.

--Xxy-unit <unit>
Unit of XY dimensions. Defaults to mil.

6.12 Gerber Export

-—gerberfile <string>
Gerber output file prefix. Can include a path.

--all-layers
Output contains all layers, even empty ones.

--verbose
Print file names and aperture counts on stdout.

--metric generate metric Gerber and drill files

6.13 Postscript Export
--psfile <string>
Name of the postscript output file. Can contain a path.

--drill-helper
Print a centering target in large drill holes.

--align-marks
Print alignment marks on each sheet. This is meant to ease alignment during
exposure.

--outline
Print the contents of the outline layer on each sheet.

--mirror Print mirror image.
--fill-page
Scale output to make the board fit the page.

-—auto-mirror
Print mirror image of appropriate layers.

—--ps-color
Postscript output in color.

--ps-bloat <num>

Amount to add to trace/pad/pin edges.
--ps-invert

Draw objects as white-on-black.

Chapter 6: Command-Line Options 47

--media <media-name>
Size of the media, the postscript is fitted to. The parameter <media-name>
can be any of the standard names for paper size: ‘A0’ to ‘A10’, ‘BO’ to ‘B10’,
‘Letter’, ‘11x17’, ‘Ledger’, ‘Legal’, ‘Executive’, ‘A-Size’, ‘B-size’, ‘C-Size’,
‘D-size’, ‘E-size’, ‘US-Business_Card’, ‘Intl1-Business_Card’.

-—-psfade <num>
Fade amount for assembly drawings (0.0=missing, 1.0=solid).

--scale <num>
Scale value to compensate for printer sizing errors (1.0 = full scale).

--multi-file
Produce multiple files, one per page, instead of a single multi page file.

--xcalib <num>
Paper width. Used for x-Axis calibration.

--ycalib <num>
Paper height. Used for y-Axis calibration.

--drill-copper
Draw drill holes in pins / vias, instead of leaving solid copper.

--show-legend
Print file name and scale on printout.

6.14 Encapsulated Postscript Export

--eps-file <string>
Name of the encapsulated postscript output file. Can contain a path.

--eps-scale <num>
Scale EPS output by the parameter ‘num’.

-—as-shown
Export layers as shown on screen.

—-—-monochrome
Convert output to monochrome.

--only-visible
Limit the bounds of the EPS file to the visible items.

6.15 PNG Options

--outfile <string>
Name of the file to be exported to. Can contain a path.

--dpi Scale factor in pixels/inch. Set to 0 to scale to size specified in the layout.
--x-max Width of the png image in pixels. No constraint, when set to 0.

--y-max Height of the png output in pixels. No constraint, when set to 0.

Chapter 6: Command-Line Options 48

-—xy-max Maximum width and height of the PNG output in pixels. No constraint, when
set to 0.

—--as-shown
Export layers as shown on screen.

—--monochrome
Convert output to monochrome.

--only-visible
Limit the bounds of the exported PNG image to the visible items.

--use-alpha
Make the background and any holes transparent.

--fill-holes
Drill holes in pins/pads are filled, not hollow.

--format <string>
File format to be exported. Parameter <string> can be ‘PNG’, ‘GIF’, or ‘JPEG’.

--png-bloat <num><dim>
Amount of extra thickness to add to traces, pads, or pin edges. The parameter
‘<num><dim>’ is a number, appended by a dimension ‘mm’, ‘mil’, or ‘pix’. If no
dimension is given, the default dimension is 1/100 mil.

—--photo-mode
Export a photo realistic image of the layout.

--photo-flip-x
In photo-realistic mode, export the reverse side of the layout. Left-right flip.

—--photo-flip-y
In photo-realistic mode, export the reverse side of the layout. Up-down flip.

—--photo-mask-colour <colour>
In photo-realistic mode, export the solder mask as this colour. Parameter
<colour> can be ‘green’, ‘red’, ‘blue’, or ‘purple’.

--photo-plating
In photo-realistic mode, export the exposed copper as though it has this type
of plating. Parameter <colour> can be ‘tinned’, ‘gold’, ‘silver’, or ‘copper’.

--photo-silk-colour
In photo-realistic mode, export the silk screen as this colour. Parameter
<colour> can be ‘white’, ‘black’, or ‘yellow’.

6.16 lpr Printing Options

--lprcommand <string>
Command to use for printing. Defaults to 1pr. This can be used to produce
PDF output with a virtual PDF printer. Example:
--lprcommand "lp -d CUPS-PDF-Printer".

In addition, all Section 6.13 [Postscript Export], page 46 options are valid.

Chapter 6: Command-Line Options

6.17 nelma Options

-- basename <string>
File name prefix.

--dpi <num>

Horizontal scale factor (grid points/inch).

—--copper-height <num>
Copper layer height (um).

--substrate-height <num>
Substrate layer height (um).

--substrate-epsilon <num>
Substrate relative epsilon.

49

Chapter 7: X11 Interface 50

7 X11 Interface

This chapter gives an overview about the additional X11 resources which are defined by Pcb
as well as the defined action routines.

7.1 Non-Standard X11 Application Resources

In addition to the toolkit resources, Pcb defines the following resources:

‘absoluteGrid (boolean)’
Selects if either the grid is relative to the position where it has changed last or
absolute, the default, to the origin (0,0).

‘alignmentDistance (dimension)’
Specifies the distance between the boards outline to the alignment targets.

‘allDirectionLines (boolean)’
Enables (default) or disables clipping of new lines to 45 degree angles.

‘backgroundImage (string)’

If specified, this image will be drawn as the background for the board. The
purpose of this option is to allow you to use a scan of an existing layout as
a prototype for your new layout. To do this, there are some limitations as to
what this image must be. The image must be a PPM binary image (magic
number ‘P6’). It must have a maximum pixel value of 255 or less (i.e. no 16-
bit images). It must represent the entire board, as it will be scaled to fit the
board dimensions exactly. Note that it may be scaled unevenly if the image
doesn’t have the same aspect ratio of your board. You must ensure that the
image does not use more colors than are available on your system (mostly this
is for pseudo-color displays, like old 8-bit displays). For best results, I suggest
the following procedure using The Gimp: Load your image (any type). Image-
>Scale if needed. Image->Colors->Curves and for each of Red, Green, and Blue
channel move the lower left point up to about the 3/4 line (value 192). This will
make your image pale so it doesn’t interfere with the traces you’ll be adding.
Image->Mode->Indexed and select, say, 32 colors with Normal F-S dithering.
File->Save As, file type by extension, use ‘.ppm’ as the extension. Select Raw
formatting.

‘backupInterval (int)’
Pcb has an automatic backup feature which saves the current data every
n seconds. The default is 300 seconds. A value of zero disables the
feature. The backup file is named ‘/tmp/PCB.%i.backup’ by default (this
may have been changed at compilation time via the BACKUP_NAME variable
in ‘globalconfig.h’). %i is replaced by the process ID. See also, the
command-line option —backup-interval.

‘Bloat (dimension)’
Specifies the minimum spacing design rule in mils.

Chapter 7: X11 Interface 51

‘connectedColor (color)’
All pins, vias, lines and rectangles which are selected during a connection search
are drawn with this color. The default value is determined by XtDefaultFore-
ground.

‘cross hairColor (color)’
This color is used to draw the cross hair cursor. The color is a result of a XOR
operation with the contents of the Layout area. The result also depends on the
default colormap of the X11 server because only the colormap index is used in
the boolean operation and Pcb doesn’t create its own colormap. The default
setting is XtDefaultForeground.

‘elementColor (color)’

‘elementSelectedColor (color)’
The elements package part is drawn in these colors, for normal and selected
mode, respectively, which both default to XtDefaultForeground.

‘elementCommand (string)’
Pcb uses a user defined command to read element files. This resource is used
to set the command which is executed by the users default shell. Two escape
sequences are defined to pass the selected filename (%f) and the current search
path (%p). The command must write the element data to its standard output.
The default value is

M4PATH="%p" ;export M4PATH;echo ’include(%f)’ | m4

Using the GNU version of m4 is highly recommended. See also, the command-
line option —element-command.

‘elementPath (string)’
A colon separated list of directories or commands (starts with ’|”). The path is
passed to the program specified in elementCommand together with the selected
element name. A specified command will be executed in order to create entries
for the fileselect box. It must write its results to stdout one entry per line. See
also, the user-command le/!].

‘fileCommand (string)’
The command is executed by the user’s default shell whenever existing layout
files are loaded. Data is read from the command’s standard output. T'wo escape
sequences may be specified to pass the selected filename (%f) and the current
search path (%p). The default value is:

cat %f

See also, the command-line option —file-command.

‘filePath (string)’
A colon separated list of directories or commands (starts with ’|’). The path
is passed to the program specified in fileCommand together with the selected
filename. A specified command will be executed in order to create entries for
the fileselect box. It must write its results to stdout one entry per line. See
also, the user-command [//].

Chapter 7: X11 Interface 52

‘fontCommand (string)’
Loading new symbol sets also is handled by an external command. You again
may pass the selected filename and the current search path by passing %f and
%p in the command string. Data is read from the commands standard output.
This command defaults to

cat %f
See also, the command-line option —font-command.

‘fontFile (string)’
The default font for new layouts is read from this file which is searched in the
directories as defined by the resource fontPath. Searching is only performed if
the filename does not contain a directory component. The default filename is
‘default_font’.

‘fontPath (string)’
This resource, a colon separated list of directories, defines the searchpath for
font files. See also, the resource fontFile.

‘grid (int)’
This resource defines the initial value of one cursor step. It defaults to 100 mil
and any changes are saved together with the layout data.

‘gridColor (color)’
This color is used to draw the grid. The color is a result of a INVERT operation
with the contents of the Layout area. The result also depends on the default
colormap of the X11 server because only the colormap index is used in the
boolean operation and Pcb doesn’t create its own colormap. The default setting
is XtDefaultForeground.

‘invisibleObjectsColor (color)’
Elements located on the opposite side of the board are drawn in this color. The
default is XtDefaultForeground.

‘layerColorl..MAX_LAYER (color)’

‘layerSelectedColorl. .MAX_LAYER (color)’
These resources define the drawing colors of the different layers in normal and
selected state. All values are preset to XtDefaultForeground.

‘layerGroups (string)’
The argument to this resource is a colon separated list of comma separated
layer numbers (1.MAX_LAYER). All layers within one group are switched
on/off together. The default setting is 1:2:3:....MAX_LAYER which means
all layers are handled separately. Grouping layers one to three looks like
1,2,8:4:....MAX_LAYER

‘layerNamel..MAX_LAYER (string)’
The default name of the layers in a new layout are determined by these re-
sources. The defaults are empty strings.

‘libraryCommand (string)’
Pcb uses a command to read element data from libraries. The resource is used
to set the command which is executed by the users default shell. Three escape

Chapter 7: X11 Interface 53

sequences are defined to pass the selected filename (%f), the current search path
(%p) as well (%a) as the three parameters template, value and package to the
command. It must write the element data to its standard output. The default
value is

NONE/share/pcb/oldlib/QueryLibrary.sh %p %f %a

‘libraryContentsCommand (string)’
Similar to libraryCommand, Pcb uses the command specified by this resource
to list the contents of a library.

NONE/share/pcb/oldlib/ListLibraryContents.sh %p %f
is the default.

‘libraryFilename (string)’
The resource specifies the name of the library. The default value is pcblib
unless changed at compile time with the LIBRARYFILENAME variable in
‘globalconfig.h’.

‘libraryPath (string)’
A colon separated list of directories that will be passed to the commands spec-
ified by elementCommand and elementContentsCommand.

‘lineThickness (dimension)’
The value, in the range [1..250] (the range may be changed at compile time with
the MIN_LINESIZE and MAX_LINESIZE variables in ‘globalconfig.h’), defines
the initial thickness of new lines. The value is preset to ten mil.

‘media (<predefined> | <width>x<height>+-<left_margin>+-<top_margin>)’
The default (user defined) media of the PostScript device. Predefined values
are a3, a4, ad, letter, tabloit, ledger, legal, and executive. The second way is to
specify the medias width, height and margins in mil. The resource defaults to
a4 size unless changed at compile time with the DEFAULT_MEDIASIZE variable
in ‘globalconfig.h’.

‘offLimitColor (color)’
The area outside the current maximum settings for width and height is drawn
with this color. The default value is determined by XtDefaultBackground.

‘pinColor (color)’

‘pinSelectedColor(color)’
This resource defines the drawing color of pins and pads in both states. The
values are preset to XtDefaultForeground.

‘pinoutFont (string)’
This fonts are used to display pin names. There is one font for each zoom value.
The values are preset to XtdefaultFont.

‘pinoutNameLength (int)’
This resource limits the number of characters which are displayed for pin names
in the pinout window. By default the string length is limited to eight characters
per name.

Chapter 7: X11 Interface 54

‘pinoutOffsetX (int)’

‘pinout0ffsetY (int)’
These resources determine the offset in mil of the circuit from the upper left
corner of the window when displaying pinout information. Both default to 100
mil.

‘pinoutText0ffsetX (int)’

‘pinoutText0ffsetY (int)’
The resources determine the distance in mil between the drilling hole of a pin
to the location where its name is displayed in the pinout window. They default
to X:50 and Y:0.

‘pinoutZoom (int)’
Sets the zoom factor for the pinout window according to the formula: scale =
1:(2 power value). Its default value is two which results in a 1:/ scale.

‘printCommand (string)’
Default file for printouts. If the name starts with a the output is piped
through the command. A %f is replaced by the current filename. There is no
default file or command.

7|7

‘raiseLogWindow (boolean)’
The log window will be raised when new messages arrive if this resource is set
true, the default.

‘ratCommand (string)’
Default command for reading a netlist. A %f is replaced by the netlist filename.
Its default value is "cat %f".

‘ratPath (string)’
Default path to look for netlist files. It’s default value is "."

‘resetAfterElement (boolean)’
If set to true, all found connections will be reset before a new element is scanned.
This will produce long lists when scanning the whole layout for connections.
The resource is set to false by default. The feature is only used while looking
up connections of all elements.

‘ringBellWhenFinished (boolean)’
Whether to ring the bell (the default) when a possibly lengthy operation has
finished or not. See also, the command-line option —ring-bell-finished.

‘routeStyle (string)’
Default values for the menu of routing styles (seen in the sizes menu). The
string is a comma separated list of name, line thickness, via diameter, and via
drill size. e.g. "Fat,50,100,40:Skinny,8,35,20:750hm,110,110,20" See also, the
command-line option —route-styles and Sizes Menu

‘rubberBandMode (boolean)’
Whether rubberband move and rotate (attached lines stretch like rubberbands)
is enabled (the default).

Chapter 7: X11 Interface 55

‘saveCommand (string)’
This command is used to save data to a layout file. The filename may be
indicated by placing %f in the string. It must read the data from its standard
input. The default command is:

cat - > Yf

See also, the command-line option —save-command.

‘saveInTMP (boolean)’
Enabling this resource will save all data which would otherwise be lost in a
temporary file ‘/tmp/PCB.%i.save’. The file name may be changed at compile
time with the EMERGENCY_NAME variable in ‘globalconfig.h’. . %i is replaced
by the process ID. As an example, loading a new layout when the old one
hasn’t been saved would use this resource. See also, the command-line option
—save-in-tmp.

‘saveLastCommand (boolean)’
Enables the saving of the last entered user command. The option is disabled
by default. See also, the command-line option —save-last-command.

‘Shrink (dimension)’
Specifies the minimum overlap (touching) design rule in mils.

‘size (Kwidth>x<height>)’
Defines the width and height of a new layout. The default is 700025000 unless
changed at compile time with the DEFAULT_SIZE variable in ‘globalconfig.h’.

‘stipllePolygons (boolean)’
Determines whether to display polygons on the screen with a stippled pattern.
Stippling can create some amount of transparency so that you can still (to some
extent) see layers beneath polygons. It defaults to False.

‘textScale (dimension)’
The font scaling in percent is defined by this resource. The default is 100
percent.

‘useLogWindow (boolean)’
Several subroutines send messages to the user if an error occurs. This resource
determines if they appear inside the log window or as a separate dialog box. See
also, the resource raiseLogWindow and the command line option -loggeometry.
The default value is true.

‘viaColor (color)’

‘viaSelectedColor (color)’
This resource defines the drawing color of vias in both states. The values are
preset to XtDefaultForeground.

‘viaThickness (dimension)’

‘viaDrillingHole (dimension)’
The initial thickness and drilling hole of new vias. The values must be in
the range [30..400] (the range may be changed at compile time with the MIN_
PINORVIASIZE and MAX_PINEORVIASIZE variables in ‘globalconfig.h’), with

Chapter 7: X11 Interface 56

at least 20 mil of copper. The default thickness is 40 mil and the default drilling
hole is 20 mil.

‘volume (int)’
The value is passed to XBell() which sets the volume of the X speaker. The
value lies in the range -100..100 and it defaults to the maximum volume of 100.

‘warnColor (color)’
This resource defines the color to be used for drawing pins and pads when a
warning has been issued about them.

‘zoom (int)’
The initial value for output scaling is set according to the following formula:
scale = 1:(2 power value). It defaults to three which results in an output scale
of 1:8.

Refer also to Chapter 6 [Command-Line Options|, page 38.

7.2 Actions

All user accessible commands may be bound to almost any X event. Almost no default
binding for commands is done in the binaries, so it is vital for the application that at least
a system-wide application resource file exists. This file normally resides in the ‘share/pcb’
directory and is called ‘Pcb’. The bindings to which the manual refers to are the ones as
defined by the shipped resource file. Besides binding an action to an X11 event, you can
also execute any action command using a ":" command (see Chapter 5 [User Commands],
page 36).

Take special care about translations related to the functions keys and the pointer buttons
because most of the window managers use them too. Change the file according to your hard-
ware/software environment. You may have to replace all occurrences of baseTranslations
to translations if you use a X11R4 server.

Passing Object as an argument to an action routine causes the object at the cursor
location to be changed, removed or whatever. If more than one object is located at the
cross hair position the smallest type is used. If there are two of the same type the newer
one is taken. SelectedObjects will handle all selected and visible objects.

‘AddRats (AllRats|SelectedRats)’
Adds rat-lines to the layout using the loaded netlist file (see the :rn, Chapter 5
[User Commands], page 36.). Rat lines are added on the active layer using
the current line thickness shown in the status line. Only missing connectivity
is added by the AddRats command so if, for example, the layout is complete
nothing will be added. Rat lines may be drawn different to other lines on the
screen to make them easier to identify since they cannot appear in a completed
layout. The rat-lines are added in the minimum length straight-line tree pattern
(always ending on pins or pads) that satisfies the missing connectivity in the
circuit. If a SMD pad is unreachable on the active layer, a warning will be issued
about it and the rat-line to that pad will not be generated. If connections exist
on the board which are not listed in the netlist while AllRats are being added,
warning messages will be issued and the affected pins and pads will be drawn
in a special warnColor until the next Notify() event. If the entire layout agrees

Chapter 7: X11 Interface 57

completely with the net-list a message informs you that the layout is complete
and no rat-lines are added (since none are needed). If SelectedRats is passed
as the argument, only those missing connections that might connect among the
selected pins and pads are drawn. Default:

None<Key>w: AddRats(AllRats)

IShift<Key>w: AddRats(SelectedRats)

None<Key>o: DeleteRats(AllRats) AddRats(AllRats)
IShift<Key>o: DeleteRats(SelectedRats) AddRats(SelectedRats)

‘ApplyVendor ()’
Applies an already loaded vendor drill map to the design.

ApplyVendor ()

‘Atomic(Save|Restore|Block|Close)’
Controls the undo grouping of sequences of actions. Before the first action
in a group, Atomic(Save) should be issued. After each action that might be
undoable, Atomic(Restore) should be issued. Atomic(Block) concludes and save
the undo grouping if there was anything in the group to undo. Atomic(Close)
concludes and save the undo grouping even if nothing was actually done. Thus
it might produce an "empty" undo. This can be useful when you want to use
undo in a group of actions.

‘Bell([-100..100])’
Rings the bell of your display. If no value is passed the setting of the resource
volume will be used.

‘ChangeClearSize(Object, value[, unit])’
‘ChangeClearSize(SelectedPins|SelectedVias, value[, unit])’
The effect of this action depends on if the soldermask display is presently turned
on or off. If soldermask is displayed, then the soldermask relief size will be
changed. If soldermask display is turned off, then the clearance to polygons
will be changed. unit is "mil" or "mm". If not specified the units will default
to the internal unit of 0.01 mil.

IMod1<Key>k: ChangeClearSize(Object, +2, mil)
IMod1l Shift<Key>k: ChangeClearSize(Object, -2, mil)

‘ChangeDrillSize(Object, valuel, unit])’
‘ChangeDrillSize(SelectedPins|SelectedVias, value[, unit])’
This action routine changes the drilling hole of pins and vias. If value starts
with + or -, then it adds (or subtracts) value from the current hole diameter,
otherwise it sets the diameter to the value. wnit is "mil" or "mm". If not
specified the units will default to the internal unit of 0.01 mil. Default:

IMod1<Key>s: Change2ndSize(Object, +5, mil)
IModl Shift<Key>s: Change2ndSize(Object, -5, mil)

‘ChangeFlag(Object|SelectElements|SelectedPins|SelectedVias|Selected,thermal|octagonl|square,
Sets/clears the indicated flag. This adds/removes thermals, adds/removes the
flag which indicates a pin/pad should be square, or adds/removes the flag which
indicates a pin/pad should be octagonal.

Chapter 7: X11 Interface 58

:ChangeFlag(SelectedVias,thermal,1)
:ChangeFlag(SelectedPads,square,0)

‘ChangeHole(Object|SelectedVias)’
This action routine converts a via to and from a hole. A hole is a via that has
no copper annulus. The drill size for the via determines the hole diameter.

ICtrl<Key>h: ChangeHole(Object)

‘ChangeName (Object)’

‘ChangeName (Layer |Layout)’
Changes the name of the visible object at the cursor location. A text ob-
ject doesn’t have a name therefore the text string itself is changed. The el-
ement name currently used for display is always the one changed with this
command. See Display(Description| NameOnPCB| Value) for details. Passing
Layer changes the current layers name. Default:

None<Key>n: ChangeName (Object)

‘ChangeOctagon(Object|SelectElements|SelectedPins|SelectedVias|Selected)’
Toggles what shape the affected pin(s) or via(s) will be drawn when they are
not square. The shape will either be round or octagonal. Default:

ICtrl<Key>o: ChangeOctagon(Object)

‘ChangePinName (ElementName, PinNumber, PinName)’
Changes the name for a specified pin or pad number on a specified element. This
action is typically used to forward annotate pin/pad names from a schematic
to the layout.

ChangePinName (U1, 14, VDD)

‘ChangeSize(Object, valuel, unit])’
‘ChangeSize(SelectedLines|SelectedPins|SelectedVias, valuel[, unit])’
‘ChangeSize(SelectedPads|SelectedTexts|SelectedNames, value[, unit])’
‘ChangeSize(SelectedElements, valuel[, unit])’
To change the size of an object you have to bind these action to some X event (or
use :ChangeSize(...)). If value begins with a + or - then the value will be added
(or subtracted) from the current size, otherwise the size is set equal to value.
Range checking is done to insure that none of the maximum/minimums of any
size are violated. If Object is passed then a single object at the cursor location
is changed. If any of the Selected arguments are passed then all selected and
visible objects of that type are changed. If the type being modified is an element,
then the thickness of the silkscreen lines defining the element is changed. unit
is "mil" or "mm". If not specified the units will default to the internal unit of
0.01 mil. Default:

None<Key>s: ChangeSize(Object, +5)
IShift<Key>s: ChangeSize(Object, -5)

‘ChangeSquare (0Object|SelectedElements|SelectedPins)’
Toggles the setting of the square flag. The flag is used to identify a certain
pin, normally the first one, of circuits. It is also used to make SMD pads have
square ends.

Chapter 7: X11 Interface 59

None<Key>q: ChangeSquare(Object)

‘ClrFlag(Object|SelectElements|SelectedPins|SelectedVias|Selected,thermal |octagon|square)’
Clears the indicated flag. This removes thermals, removes the flag which indi-
cates a pin/pad should be square, or removes the flag which indicates a pin/pad
should be octagonal.

:ClrFlag(SelectedVias,thermal)

‘Command ()’
Calling Command() pops up an input line at the bottom of the window which
allows you to enter commands. Including all action commands! The dialog ends
when None<Key>Return to confirm or None<Key>FEscape to abort is entered.
Default:

<Key>colon: Command()

‘Connection(Find)’

‘Connection(ResetFoundLinesAndRectangles|ResetPinsViasAndPads|Reset)’
The Connection() action is used to mark all connections from one pin, line or
via to others. The ResetFoundLinesAndRectangles, ResetFoundPinsAndVias
and Reset arguments may be used to reset all marked lines and rectangles, vias
and pins or all of them. The search starts with the pin or via at the cursor
position. All found objects are drawn with the color defined by the resource
connectedColor. See also, Display(Description| NameOnPCB| Value). Default:

IShift<Key>c: Connection(Reset)
None<Key>f: Connection(Find)
IShift<Key>f: Connection(Reset)

‘DeleteRats(AllRats|SelectedRats)’
This routine deletes either all rat-lines in the layout, or only the selected and
visible ones. Non-rat-lines and other layout objects are unaffected. Default:

None<Key>e: DeleteRats(AllRats)
IShift<Key>e: DeleteRats(SelectedRats)

‘DisableVendor ()’
Disables automatic drill size mapping to the loaded vendor drill table.
DisableVendor ()
‘DisperseElements(All|Selected)’
Disperses either all elements or only the selected elements in the layout. This

action should be used at the start of a design to spread out all footprints before
any placement or routing is done.

DisperseElements (A11l)

Chapter 7: X11 Interface 60

‘Display(Description|NameOnPCB|Value)’
‘Display(Toggle45Degree|CycleClip)’
‘Display(Grid|ToggleGrid)’
‘Display(ToggleRubberBandMode)’
‘Display(Center|ClearAndRedraw|Redraw)’
‘Display(Pinout |PinOrPadName)’

‘DRC()’

This action routines handles some output related settings. It is used to center
the display around the cursor location and to redraw the output area optionally
after clearing the window. Centering is done with respect to the grid setting.
Displaying the grid itself may be switched on and off by Grid but only if the
distance between two pixels exceeds 4 pixels. Pcb is able to handle several labels
of an element. One of them is a description of the functionality (eg resistor), the
second should be a unique identifier (R1) whereas the last one is a value (100k).
The Display() action selects which of the names is displayed. It also controls
which name will be affected by the ChangeName command. If ToggleGrid is
passed, Pcb changes between relative ('rel’ in the statusline) and absolute grid
(an ’abs’ in the statusline). Relative grid means the pointer position when the
command is issued is used as the grid origin; while (0,0) is used in the absolute
grid case. Passing Pinout displays the pinout of the element at the current
cursor location whereas PinOrPadName toggles displaying of the pins or pads
name under the cursor. If none of them matches but the cursor is inside of
an element, the flags is toggled for all of its pins and pads. For details about
rubberbands see also the details about Mode. Default:

None<Key>c: Display(Center)
None<Key>d: Display(PinOrPadName)
IShift<Key>d: Display(Pinout)
None<Key>r: Display(ClearAndRedraw)
None<Key>.: Display(Toggle4bDegree)
None<Key>/: Display(CycleClip)

Initiates design rule checking of the entire layout. Must be repeated until no
errors are found.

‘ExecuteFile(filename)’

Executes the PCB actions contained in the specified file. This can be used to
automate a complex sequence of operations.

:ExecuteFile(custom.cmd)

The command file contains a list of PCB actions. Blank lines are ignored and
lines starting with a # are treated as comment lines. For example

This is a comment line
Display(Grid)

SetValue (Zoom,?2)

DRC(Q)

‘EditLayerGroups ()’

Pops up a dialog box to edit the layergroup setting. The function is also avail-
able from the Objects menu. There are no defaults.

Chapter 7: X11 Interface 61

‘EnableVendor ()’
Enables automatic drill size mapping to the loaded vendor drill table.

EnableVendor ()

‘Load (ElementToBuffer|Layout |LayoutToBuffer|Nelist)’
This routine pops up a fileselect box to load layout, element data, or netlist. The
passed filename for layout data is saved and may be reused. FElementToBuffer
and LayoutToBuffer load the data into the current buffer. There are no defaults.

‘LoadVendor (vendorfile)’
Loads the specified vendor resource file.

LoadVendor (myvendor.res)

‘MarkCrosshair ()’
This routine marks the current cursor location with an X, and then the cursor
display shows both absolute position and position relative to the mark. If a
mark is already present, this routine removes it and stops displaying relative
cursor coordinates. Defaults:

ICtrl<key>m: MarkCrosshair()

‘Mode (Copy | InsertPoint |Line |Move | None |PasteBuffer |Polygon|Thermal)’

‘Mode (Remove |Rectangle | RubberbandMove | Text |Via)’

‘Mode (Cycle)’

‘Mode (Notify)’

‘Mode (Save |Restore)’
Switches to a new mode of operation. The active mode is displayed by a thick
line around the matching mode selector button. Most of the functionality of Pcb
is implemented by selecting a mode and calling Mode(Notify). The arguments
Line, Polygon, Rectangle, Text and Via are used to create the appropriate object
whenever Mode(Notify) is called. Some of them, such as Polygon, need more
than one call for one object to be created. InsertPoint adds points to existing
polygons or lines. Save and Restore are used to temporarily save the mode,
switch to another one, call Mode(Notify) and restore the saved one. Have a look
at the application resource file for examples. Copy and Move modes are used
to change an object’s location and, optionally, to create a new one. The first
call of Mode(Notify) attaches the object at the pointer location to the cross
hair whereas the second one drops it to the layout. The rubberband version
of move performs the move while overriding the current rubberband mode.
Passing PasteBuffer attaches the contents of the currently selected buffer to
the cross hair. Each call to Mode(Notify) pastes this contents to the layout.
Mode(Cycle) cycles through the modes available in the mode-button pallet.
Mode(None) switches all modes off. Default:

<Key>Escape: Mode (None)

<Key>space: Mode (Cycle)

None<Key>BackSpace: Mode (Save) Mode(Remove) Mode(Notify) Mode(Restore)
None<Key>Delete: Mode (Save) Mode(Remove) Mode(Notify) Mode(Restore)
None<Key>F1: Mode (Via)

None<Key>F2: Mode (Line)

Chapter 7: X11 Interface 62

None<Key>F3: Mode (PasteBuffer)

None<Key>F4: Mode (Rectangle)

None<Key>F5: Mode (Text)

None<Key>F6: Mode (Polygon)

None<Key>F7: Mode (Thermal)

None<Key>F8: Mode (Arc)

None<Key>Insert: Mode (InsertPoint)

None<Key>[: Mode (Save) Mode(Move) Mode(Notify)
None<Key>] : Mode (Notify) Mode(Restore)
None<Btn1>: Mode (Notify)

IShift Ctrl<Btnl>: Mode(Save) Mode(Remove) Mode(Notify) Mode(Restore)
None<Btn2Down>: Mode (Save) Mode(Move) Mode(Notify)
None<Btn2Up>: Mode (Notify) Mode (Restore)
Mod1<Btn2Down>: Mode (Save) Mode(Copy) Mode(Notify)
IMod1<Btn2Up>: Mode (Notify) Mode(Restore)

Shift BTNMOD<Btn2Down>: Mode(Save) Mode(RubberbandMove) Mode(Notify)

‘MovePointer(delta_x, delta_y)’
With this function it is possible to move the cross hair cursor by using the
cursor keys. The X server’s pointer follows because the necessary events are
generated by Pcb. All movements are performed with respect to the currently
set grid value. Default:

None<Key>Up: MovePointer (0, -1)
IShift<Key>Up: MovePointer (0, -10)
None<Key>Down: MovePointer (0, 1)

IShift<Key>Down: MovePointer (0, 10)
None<Key>Right: MovePointer(1, 0)

IShift<Key>Right: MovePointer (10, 0)
None<Key>Left: MovePointer (-1, 0)
IShift<Key>Left: MovePointer(-10, 0)

‘MoveToCurrentLayer (Object|SelectedObjects)’
The function moves a single object at the cross hair location or all selected
objects to the current layer. Elements are not movable by this function. They
have to be deleted and replaced on the other side. If a line segment is moved
and the movement would result in a loss of connectivity to another segment
then via(s) are automatically added to maintain the connectivity.

None<Key>m: MoveToCurrentLayer (Object)
IShift<Key>m: MoveToCurrentLayer (SelectedObjects)
‘New()’ Clear the current layout and starts a new one after entering its name. Refer to

the resource backup for more information. No defaults.

‘PasteBuffer (AddSelected|Clear|1..5)’

‘PasteBuffer(Rotate, 1..3)’

‘PasteBuffer (Convert)’
This action routine controls and selects the pastebuffer as well as all cut-and-
paste operations. Passing a buffer number selects one in of the range 1..5.
The statusline is updated with the new number. Rotate performs a number

Chapter 7: X11 Interface 63

of 90 degree counter clockwise rotations of the buffer contents. AddSelected as
first argument copies all selected and visible objects into the buffer. Passing
Clear removes all objects from the currently selected buffer. Convert causes
the contents of the buffer (lines, arc, vias) to be converted into an element
definition. Refer to Section 3.5.8 [Pastebuffer], page 23 for examples. Default:

ICtrl<Key>x: PasteBuffer(Clear) PasteBuffer(AddSelected)
Mode (PasteBuffer)

IShift Ctrl<Key>x: PasteBuffer(Clear) PasteBuffer(AddSelected)
RemoveSelected() Mode(PasteBuffer)

IMod1<Key>c: PasteBuffer(Clear) PasteBuffer(AddSelected)
IMod1<key>x: PasteBuffer(Clear) PasteBuffer(AddSelected)
RemoveSelected ()

IShift<Key>1: PasteBuffer (1)

IShift<Key>2: PasteBuffer(2)

IShift<Key>3: PasteBuffer(3)

IShift<Key>4: PasteBuffer(4)

IShift<Key>5: PasteBuffer(5)

None<Key>F3: Mode (PasteBuffer)

‘Polygon(Close|PreviousPoint)’

‘Print ()’

‘Quit)’

Polygons need a special action routine to make life easier. Calling
Polygon(PreviousPoint) resets the newly entered corner to the previous one.
The Undo action will call Polygon(PreviousPoint) when appropriate to do so.
Close creates the final segment of the polygon. This may fail if clipping to 45
degree lines is switched on, in which case a warning is issued. Default:

None<Key>p: Polygon(Close)
IShift<Key>p: Polygon(Close)

Pops up a print control box that lets you select the output device, scaling and
many more options. Each run creates all files that are supported by the selected
device. These are mask files as well as drilling files, silk screens and so on. The
table shows the filenames for all possible files:

POSIX (extension) 8.3 filename
*_componentmask. * cmsk. *
*_componentsilk. * cslk.*
*_soldermask. * smsk. *
_soldersilk.x sslk.*
_drill. dril.=*
*_groundplane. * gpl.*
*x_group[1..8].x [..8].%

The output may be sent to a post-processor by starting the filename with the

pipe ("|") character. Any "%f" in a command is replaced with the current

filename. The function is available from the file menu. There are no defaults.

Quits the application after confirming the operation. Default:
<Message>WM_PROTOCOLS: Quit()

Chapter 7: X11 Interface 64

‘Redo ()’ This routine allows you to recover from the last undo command. You might
want to do this if you thought that undo was going to revert something other
than what it actually did (in case you are confused about which operations
are un-doable), or if you have been backing up through a long undo list and
over-shoot your stopping point. Any change that is made since the undo in
question will trim the redo list. For example if you add ten lines, then undo
three of them you could use redo to put them back, but if you move a line on
the board before performing the redo, you will lose the ability to "redo" the
three "undone" lines. Default:

IShift<Key>r: Redo()

‘RemoveSelected()’
This routine removes all visible and selected objects. There are no defaults.

‘Report (0bject|DrillReport)’
This routine pops up a dialog box describing the various characteristics of an
object (or piece of an object such as a pad or pin) in the layout at the cursor
position, or a report about all of the drill holes in the layout. There are no
defaults.

‘RouteStyle(1]2(34)’
This routine copies the sizes corresponding to the numbered route style into
the active line thickens, via diameter, and via drill size. Defaults:

ICtrl<Key>1: RouteStyle(1)

ICtrl<Key>NUM_STYLES: RouteStyle(NUM_STYLES)
The variable NUM_STYLES is set at compile time in ‘globalconfig.h’.

‘Save (Layout | LayoutAs)’

‘Save (Al1Connections|Al1UnusedPins|ElementConnections)’
Passing Layout saves the layout using the file from which it was loaded or, if
it is a new layout, calls Save(LayoutAs) which queries the user for a filename.
The values: AllConnections, AllUnusedPins and ElementConnections start a
connection scan and save all connections, all unused pins or the connections of
a single element to a file. There are no defaults.

‘Select (Al1l|Block]|Connection|ToggleObject)’

‘Select (ElementByName | ObjectByName | PadByName | PinByName)’

‘Select (TextByName | ViaByName)’
Toggles either the selection flag of the object at the cross hair position (7Tog-
gleObject) or selects all visible objects, all inside a rectangle or all objects which
have been found during the last connection scan. The ByName functions use a
Appendix C [Regular Expressions], page 102 search, always case insensitive, to
select the objects. Default:

None<Btn3Down>: Select(TogglelObject)
None<Btn3Down>,None<Btn3Motion>: See resource file - this is complex

Chapter 7: X11 Interface 65

‘SetFlag(Object|SelectElements|SelectedPins|SelectedVias|Selected,thermal|octagon|square)’
Sets the indicated flag. This adds thermals, sets the flag which indicates a
pin/pad should be square, or sets the flag which indicates a pin/pad should be
octagonal.

:SetFlag(Selected,thermal)

‘SetValue(Grid|LineSize|TextScale|ViaDrillingHole|ViaSize|Zoom, value)’
Some internal values may be changed online by this function. The first pa-
rameter specifies which data has to be changed. The other one determines if
the resource is set to the passed value, if value is specified without sign, or
increments/decrements if it is specified with a plus or minus sign. The function
doesn’t change any existing object only the initial values of new objects. Use
the ChangeSize() and ChangeDrillSize() to change existing objects. Default:

None<Key>g: SetValue(Grid, +5)
IShift<Key>g: SetValue(Grid, -5)
None<Key>1: SetValue(LineSize, +5)
IShift<Key>1: SetValue(LineSize, -5)
None<Key>t: SetValue(TextScale, +10)
IShift<Key>t: SetValue(TextScale, -10)
None<Key>v: SetValue(ViaSize, +5)
IShift<Key>v: SetValue(ViaSize, -5)
IMod1<Key>v: SetValue(ViaDrillingHole, +5)
IModl Shift<Key>v: SetValue(ViaDrillingHole, -5)
None<Key>z: SetValue(Zoom, -1)
IShift<Key>z: SetValue(Zoom, +1)
‘SwapSides ()’
This routine changes the board side you are viewing. Default:
None<Key>Tab: SwapSides ()

‘SwitchDrawingLayer (value)’
Makes layer number 1..MAX_LAYER the current one. Default:

None<Key>1: SwitchDrawingLayer (1)

None<Key>MAX_LAYER: SwitchDrawingLayer (MAX_LAYER)

‘ToggleHideName (Object|SelectedElements)’
Toggles whether the element’s name is displayed or hidden. If it is hidden you
won’t see it on the screen and it will not appear on the silk layer when you
print the layout.
None<Key>h: ToggleHideName (Object)
IShift<Key>h: ToggleHideName (SelectedElements)

‘ToggleVendor ()’
Toggles automatic drill size mapping to the loaded vendor drill table.
ToggleVendor ()
‘ToggleVisibility(Layer)’
Toggles the visibility of the layer.

Chapter 7: X11 Interface 66

Mod1<Key>1: ToggleVisibility(1)
Mod1<Key>2: ToggleVisibility(2)
Mod1<Key>3: ToggleVisibility(3)
Mod1<Key>4: ToggleVisibility(4)

‘Undo ()’
‘Undo (ClearList)’
The unlimited undo feature of Pcb allows you to recover from most operations
that materially affect you work. Calling Undo() without any parameter recovers
from the last (non-undo) operation. ClearList is used to release the allocated
memory. ClearList is called whenever a new layout is started or loaded. See
also Redo. Default:
None<Key>u: Undo ()
IShift Ctrl<Key>u: Undo(ClearList)

‘UnloadVendor ()’
Unloads the loaded vendor drill table.

UnloadVendor ()

‘Unselect (Al1l|Block|Connection)’
Unselects all visible objects, all inside a rectangle or all objects which have been
found during the last connection scan. Default:

IShift <Btn3Down>: Mode(Save) Mode(None) Unselect(Block)
IShift <Btn3Up>: Unselect(Block) Mode(Restore)

7.3 Default Translations

This section covers some default translations of key and button events as defined in the
shipped default application resource file. Most of them have already been listed in Sec-
tion 7.2 [Actions|, page 56. Pcb makes use of a nice X11 feature; calling several action
routines for one event.

‘None<Key>BackSpace:’

‘None<key>Delete:’

‘1Shift<Key>BackSpace:’

‘1Shift Ctrl<Btnil>:’
The object at the cursor location is removed by None< Key>BackSpace or Shift
Ctrli< Btn1> whereas Shift< Key>BackSpace also removes all other objects that
are fully-connected to the one at the cursor location.

‘IMod1 Ctrl<Key>Left:’
‘1Mod1 Ctrl<Key>Right:’
‘1Mod1 Ctrl<Key>Up:’
‘1Mod1 Ctrl<Key>Down:’
Scroll one page in one of the four directions.

‘None<Key>Left:, !Shift<Key>Left:’
‘None<Key>Right:, !Shift<Key>Right:’
‘None<Key>Up:, !Shift<Key>Up:’
‘None<Key>Down:, !Shift<Key>Down:’
Move cross hair either one or ten points in grid.

Chapter 7: X11 Interface 67

‘None<Key>Return:’
Finished user input, selects the 'default’ button of dialogs.

‘None<Key>Escape:’
Mode(Reset), aborts user input, selects the "abort’ button of dialogs or resets
all modes.

‘None<Btn2Down>, Btn2<Motion>, None<Btn2Up>:’

‘1Mod1<Btn2Down>, Btn2<Motion>, !Mod1<Btn2Up>:’
The first sequence moves the object or element name at the cursor location.
The second one copies the objects. Copying isn’t available for element names.

Chapter 8: File Formats 68

8 File Formats

All files used by Pcb are read from the standard output of a command or written to the
standard input of one as plain seven bit ASCII. This makes it possible to use any editor to
change the contents of a layout file. It is the only way for element or font description files to
be created. To do so you’ll need to study the example files ‘example/*’ and ‘default_font’
which are shipped with Pcb. For an overview refer to Chapter 2 [Intro|, page 5.

The following sections provide the necessary information about the syntax of the files.
Netlist files are not created by Pcb, but it does use them. For information on the for-
mat of a netlist file see the :rn, Chapter 5 [User Commands|, page 36. The commands
described allow you to add almost any additional functionality you may need. Examples
are compressed read and write access as well as archives. The commands themselves are
defined by the resources elementCommand, fileCommand, fontCommand, libraryCommand,
libraryContentsCommand and saveCommand. Note that the commands are not saved along
with the data. It is considered an advantage to have the layout file contain all necessary
information, independent of any other files.

One thing common to all files is they may include comments, newlines, and carriage
returns at any place except within quoted strings.

8.1 Pad and Line Representation

Pads and lines (copper traces, silk screen lines, etc) are represented by the line end points
and the aperture used to draw the line. It is important to understand this when creating the
pads for a new footprint. The following figure illustrates a pad or line which is drawn using
a square aperture. The end points (X0,Y0), (X1,Y1) specify the center of the aperture.

The size parameter specifies the size of the aperture.
Pad Aperture

Mask Boert Pad Shape E
ask Aperture 0
i —
L 1]
| —
(X08,Y0) (X1,Y1)

Clearances2 Soldermask Opening

Clearance to non-connecting
polygons
Pads and lines are represented in this way because this is how lines are specified in
RS-274X (Gerber) files which are used for creating the masks used in board manufacturing.
In fact, older mask making equipment created lines in precisely this fashion. A physical
aperture was used to pass light through onto a photosensitive film.

8.2 Layout File Format

The layout file describes a complete layout including symbols, vias, elements and layers
with lines, rectangles and text. This is the most complex file of all. As Pcb has evolved, the
file format has changed several times to accommodate new features. Pcb has always been
able to read all older versions of the .pcb file. This allows the migration of older designs to

Chapter 8: File Formats 69

newer versions of the program. Obviously older versions of Pcb will not be able to properly
read layout files stored in newer versions of the file format.

In practice it is very common for footprint libraries to contain elements which have been
defined in various versions of the Pcb file format. When faced with trying to understand
an element file or layout file which includes syntax not defined here, the best approach is
to examine the file ‘src/parse_y.y’ which is the definitive definition of the file format.

The PCB layout file contains the following contents, in this order (individual items are
defined in Section 8.8 [File Syntax], page 71):

PCB This names the board and sets its size
Grid Optional.
Cursor Optional.
Flags Optional.

Groups Optional.
Styles Optional.
Symbols Optional.

Vias, Rats, Layers, and Elements
These may occur in any order, at this point in the file.

Netlists Optional.

8.3 Element File Format

Element files are used to describe one component which then may be used several times
within one or more layouts. You will normally split the file into two parts, one for the
pinout and one for the package description. Using m4 allows you to define pin names as
macros in one file and include a package description file which evaluates the macros. See
the resource elementCommand for more information. The pins (and pads) must appear in
sequential order in the element file (new in 1.5) so that pin 1 must be the first PIN(...) in
the file.

Doing things this way makes it possible to use one package file for several different
circuits. See the sample files ‘dil*’.

The lowest x and y coordinates of all sub-objects of an element are used as an attachment
point for the cross hair cursor of the main window, unless the element has a mark, in which
case that’s the attachment point.

8.4 Font File Format

A number of user defined Symbols are called a font. There is only one per layout. All
symbols are made of lines. See the file ‘default_font’ as an example.

The lowest x and y coordinates of all lines of a font are transformed to (0,0).

Chapter 8: File Formats 70

8.5 Netlist File Format

Netlists read by Pcb must have this simple text form:
netname [style] NAME-PINNUM NAME2-PINNUM2 NAME3-PINNUM3 ... [\]

for each net on the layout. where "netname" is the name of the net which must be unique
for each net, [style] is an optional route-style name, NAME is the layout-name name given to
an element, and PINNUM is the (usually numeric) pin number of the element that connects
to the net (for details on pin numbering see Section 2.3 [Element Objects|, page 5). Spaces
or tabs separate the fields. If the line ends with a "\" the net continues on the next line and
the "\" is treated exactly as if it were a space. If a NAME ends with a lower-case letter,
all lower-case letters are stripped from the end of the NAME to determine the matching
layout-name name. For example:

Data Ul1-3 U2abc-4 FLOPla-7 Uabc3-A9

specifies that the net called "Data" should have pin 3 of Ul connected to pin 4 of U2, to
pin 7 of FLOP1 and to pin A9 of Uabc3. Note that element name and pin number strings
are case-sensitive. It is up to you to name the elements so that their layout-name names
agrees with the netlist.

8.6 Library Contents File Format

There is nothing like a special library format. The ones that have been introduced in 1.4.1
just use some nice (and time consuming) features of GNU m4. The only predefined format
is the one of the contents file which is read during startup. It is made up of two basic line

types:

menu entry = "TYPE="name

contents line = template":'"package":"value":"description
name = String

template = String

package = String

value = String

description = String

String = <anything except ":", "\n" and "\r">

No leading white spaces or comments are allowed in this file. If you need either one, define
a command that removes them before loading. Have a look to the libraryContentsCommand
resource.

The menu entry will appear in the selection menu at the top and of the library window.

8.7 Library File Format

This section provides an overview about the existing m4 definitions of the elements. There
are basically two different types of files. One to define element specific data like the pinout,
package and so on, the other to define the values. For example the static RAM circuits
43256 and 62256 are very similar. They therefore share a common definition in the macro
file but are defined with two different value labels.

The macro file entry:
define(‘Description_43256_dil’, ‘SRAM 32Kx8’)

Chapter 8: File Formats 71

define(‘Paraml_43256_dil’, 28)

define(‘Param2_43256_dil’, 600)

define(‘PinList_43256_dil’, ‘‘pinl’, ‘pin2’, ...?%)
And the list file:

43256_dil:N:43256:62256

The macro must define a description, the pin list and up to two additional parameters
that are passed to the package definitions. The first one is the number of pins whereas the
second one defines for example the width of a package.

It is very important to select a unique identifier for each macro. In the example this
would be 43256_dil which is also the templates name. It is required by some low-level
macros that Description_, Parami_, Param2_ and PinList_ are perpended.

The list file uses a syntax:
template:package:value[:more values]

This means that the shown example will create two element entries with the same package
and pinout but with different names.
A number of packages are defined in ‘common.m4’. Included are:
DIL packages with suffix D, DwW, J, JD, JG, N, NT, P
PLCC
T03
generic connectors
DIN 41.612 connectors
zick-zack (SD suffix)
15 pin multiwatt

If you are going to start your own library please take care about m4 functions. Be aware
of quoting and so on and, most important check your additional entry by calling the macro:

CreateObject(‘template’, ‘value’, ‘package suffix’)
If quoting is incorrect an endless loop may occur (broken by a out-of-memory message).

The scripts in the ‘1ib’ directory handle the creation of libraries as well as of their
contents files. Querying is also supported.

I know quite well that this description of the library implementation is not what some
out there expect. But in my opinion it’s much more useful to look at the comments and
follow the macros step by step.

8.8 File Syntax

A special note about units: Older versions of pcb used mils (1/1000 inch) as the base unit;
a value of 500 in the file meant half an inch. Newer versions uses a "high resolution" syntax,
where the base unit is 1/100 of a mil (0.000010 inch); a value of 500 in the file means 5
mils. As a general rule, the variants of each entry listed below which use square brackets
are the high resolution formats and use the 1/100 mil units, and the ones with parentheses
are the older variants and use 1 mil units. Note that when multiple variants are listed, the
most recent (and most preferred) format is the first listed.

Symbolic and numeric flags (SFlags and NFlags) are described in Section 8.9 [Object
Flags|, page 81.

Chapter 8: File Formats 72

8.8.1 Arc

Arc [X' Y Width Height Thickness Clearance StartAngle DeltaAngle SFlags|
Arc (XY Width Height Thickness Clearance StartAngle DeltaAngle NFlags)
Arc (XY Width Height Thickness StartAngle DeltaAngle NFlags)

XY Coordinates of the center of the arc.

Width Height
The width and height, from the center to the edge. The bounds of the circle of
which this arc is a segment, is thus 2 * Width by 2 x Height.

Thickness The width of the copper trace which forms the arc.

Clearance The amount of space cleared around the arc when the line passes through a
polygon. The clearance is added to the thickness to get the thickness of the
clear; thus the space between the arc and the polygon is Clearance/2 wide.

StartAngle
The angle of one end of the arc, in degrees. In PCB, an angle of zero points
left (negative X direction), and 90 degrees points down (positive Y direction).

DeltaAngle
The sweep of the arc. This may be negative. Positive angles sweep counter-
clockwise.

SFlags Symbolic or numeric flags.

NFlags Numeric flags.
8.8.2 Attribute

[Attribute ("Name" "Value") }

Attributes allow boards and elements to have arbitrary data attached to them, which is
not directly used by PCB itself but may be of use by other programs or users.

Name The name of the attribute

Value The value of the attribute. Values are always stored as strings, even if the value
is interpreted as, for example, a number.

8.8.3 Connect

[Connect ("PinPad") }

PinPad The name of a pin or pad which is included in this net. Pin and Pad names are
named by the refdes and pin name, like "U14-7" for pin 7 of Ul4, or "T4-E"
for pin E of T4.

Chapter 8: File Formats 73

8.8.4 Cursor

Cursor [X'Y Zoom]
Cursor (XY Zoom)

XY Location of the cursor when the board was saved. As of November 2012 the
cursor position is not written to file anymore. Older versions of pcb ignore the
absence of this line in the pcb file.

Zoom The current zoom factor. Note that a zoom factor of "0" means 1 mil per screen
pixel, N means 2" mils per screen pixel, etc. The first variant accepts floating
point numbers. The special value "1000" means "zoom to fit"

This field is ignored by PCB.
8.8.5 DRC

DRC [Bloat Shrink Line Silk Drill Ring]
DRC [Bloat Shrink Line Silk]
DRC [Bloat Shrink Line]

Bloat Minimum spacing between copper.

Shrink Minimum copper overlap to guarantee connectivity.

Line Minimum line thickness.

Silk Minimum silk thickness.

Drill Minimum drill size.

Ring Minimum width of the annular ring around pins and vias.

8.8.6 Element

-
Element [SFlags "Desc" "Name" "Value" MX MY TX TY TDir TScale TSFlags| (
Element (NFlags "Desc" "Name" "Value" MX MY TX TY TDir TScale TNFlags) (
Element (NFlags "Desc" "Name" "Value" TX TY TDir TScale TNFlags) (

Element (NFlags "Desc" "Name" TX TY TDir TScale TNFlags) (

Element ("Desc" "Name" TX TY TDir TScale TNFlags) (

... contents ...
)
SFlags Symbolic or numeric flags, for the element as a whole.
NFlags Numeric flags, for the element as a whole.
Desc The description of the element. This is one of the three strings which can be

displayed on the screen.

Name The name of the element, usually the reference designator.

Chapter 8: File Formats 74

Value The value of the element.

MX MY The location of the element’s mark. This is the reference point for placing the
element and its pins and pads.

TX TY The upper left corner of the text (one of the three strings).

TDir The relative direction of the text. 0 means left to right for an unrotated element,
1 means up, 2 left, 3 down.

TScale Size of the text, as a percentage of the “default” size of of the font (the default
font is about 40 mils high). Default is 100 (40 mils).

TSFlags Symbolic or numeric flags, for the text.
TNFlags Numeric flags, for the text.

Elements may contain pins, pads, element lines, element arcs, attributes, and (for older
elements) an optional mark. Note that element definitions that have the mark coordinates
in the element line, only support pins and pads which use relative coordinates. The pin
and pad coordinates are relative to the mark. Element definitions which do not include the
mark coordinates in the element line, may have a Mark definition in their contents, and
only use pin and pad definitions which use absolute coordinates.

8.8.7 ElementArc

ElementArc [X Y Width Height StartAngle DeltaAngle Thickness|
ElementArc (X Y Width Height StartAngle DeltaAngle Thickness)

XY Coordinates of the center of the arc. These are relative to the Element’s mark
point for new element formats, or absolute for older formats.

Width Height
The width and height, from the center to the edge. The bounds of the circle of
which this arc is a segment, is thus 2 x Width by 2 x Height.

StartAngle
The angle of one end of the arc, in degrees. In PCB, an angle of zero points
left (negative X direction), and 90 degrees points down (positive Y direction).

DeltaAngle
The sweep of the arc. This may be negative. Positive angles sweep counter-
clockwise.

Thickness The width of the silk line which forms the arc.

8.8.8 ElementLine

ElementLine [X1 Y1 X2 Y2 Thickness]
ElementLine (X1 Y1 X2 Y2 Thickness)

Chapter 8: File Formats 75

X1Y1X2Y2

Coordinates of the endpoints of the line. These are relative to the Element’s
mark point for new element formats, or absolute for older formats.

Thickness The width of the silk for this line.
8.8.9 FileVersion

[FileVersion [Version]

|

Version

File format version. This version number represents the date when the pcb file
format was last changed.

Any version of pcb build from sources equal to or newer than this number should be able
to read the file. If this line is not present in the input file then file format compatibility is
not checked.

8.8.10 Flags

[Flags(Number)

|

Number

A number, whose value is normally given in hex, individual bits of which rep-
resent pcb-wide flags as defined in Section 8.10 [PCBFlags], page 82.

8.8.11 Grid

Grid [Step OffsetX OffsetY Visible]
Grid (Step OffsetX OffsetY Visible)
Grid (Step OffsetX OffsetY)

Step

Distance from one grid point to adjacent points. This value may be a floating
point number for the first two variants.

OffsetX OffsetY

Visible

The "origin" of the grid. Normally zero.

If non-zero, the grid will be visible on the screen.

8.8.12 Groups

[Groups("String")

String

Encodes the layer grouping information. Each group is separated by a colon,
each member of each group is separated by a comma. Group members are
either numbers from 1..N for each layer, and the letters c or s representing the
component side and solder side of the board. Including ¢ or s marks that group
as being the top or bottom side of the board.

Chapter 8: File Formats 76

Groups("1,2,c:3:4:5,6,s:7,8")
8.8.13 Layer

Layer (LayerNum "Name") (
. contents . ..

-

LayerNum The layer number. Layers are numbered sequentially, starting with 1. The last
two layers (9 and 10 by default) are solder-side silk and component-side silk, in
that order.

Name The layer name.

contents The contents of the layer, which may include attributes, lines, arcs, rectangles,
text, and polygons.

8.8.14 Line

Line [X1 Y1 X2 Y2 Thickness Clearance SFlags]
Line (X1 Y1 X2 Y2 Thickness Clearance NFlags)
Line (X1 Y1 X2 Y2 Thickness NFlags)

X1Y1X2Y2
The end points of the line

Thickness The width of the line

Clearance The amount of space cleared around the line when the line passes through a
polygon. The clearance is added to the thickness to get the thickness of the
clear; thus the space between the line and the polygon is Clearance/2 wide.

SFlags Symbolic or numeric flags

NFlags Numeric flags.
8.8.15 Mark

Mark [X Y]
Mark (X Y)

XY Coordinates of the Mark, for older element formats that don’t have the mark
as part of the Element line.

8.8.16 Net

Net ("Name" "Style") (
. connects ...

-

Chapter 8: File Formats 7

Name The name of this net.

Style The routing style that should be used when autorouting this net.

8.8.17 Netlist

Netlist () (
. nets ...

-

8.8.18 Pad

Pad [rX1 rY1 rX2 rY2 Thickness Clearance Mask "Name" "Number" SFlags]
Pad (rX1 rY1 rX2 rY2 Thickness Clearance Mask "Name" "Number" NFlags)
Pad (aX1 aY1 aX2 aY2 Thickness "Name" "Number" NFlags)

Pad (aX1 aY1 aX2 aY2 Thickness "Name" NFlags)

rX1rYlrX2rY2
Coordinates of the endpoints of the pad, relative to the element’s mark. Note
that the copper extends beyond these coordinates by half the thickness. To
make a square or round pad, specify the same coordinate twice.

aX1laYl aX2 aY2
Same, but absolute coordinates of the endpoints of the pad.

Thickness width of the pad.

Clearance add to thickness to get clearance width.
Mask width of solder mask opening.

Name name of pin

Number number of pin

SFlags symbolic or numerical flags
NFlags numerical flags only
8.8.19 PCB

PCB ["Name" Width Height]
PCB ("Name" Width Height]
PCB ("Name")

Name Name of the PCB project

Width Height
Size of the board

If you don’t specify the size of the board, a very large default is chosen.

Chapter 8: File Formats 78

8.8.20 Pin

(N
Pin [rX rY Thickness Clearance Mask Drill "Name" "Number" SFlags]

Pin (rX rY Thickness Clearance Mask Drill "Name" "Number" NFlags)

Pin (aX aY Thickness Drill "Name" "Number" NFlags)

Pin (aX aY Thickness Drill "Name" NFlags)

Pin (aX aY Thickness "Name" NFlags)

- J
rXrY coordinates of center, relative to the element’s mark
aXaY absolute coordinates of center.

Thickness outer diameter of copper annulus

Clearance add to thickness to get clearance diameter

Mask diameter of solder mask opening
Drill diameter of drill
Name name of pin

Number number of pin
SFlags symbolic or numerical flags

NFlags numerical flags only

8.8.21 PolyArea

[PolyArea [Area] J

Area Minimum area of polygon island to retain. If a polygon has clearances that
cause an isolated island to be created, then will only be retained if the area
exceeds this minimum area.

8.8.22 Polygon

4 R
Polygon (SFlags) (
o (XY) .
XY
Hole (
L (XY) L
XY
)
)
. J
SFlags Symbolic or numeric flags.

XY Coordinates of each vertex. You must list at least three coordinates.

Chapter 8: File Formats 79

Hole (...) Defines a hole within the polygon’s outer contour. There may be zero or more
such sections.

8.8.23 Rat

Rat [X1 Y1 Groupl X2 Y2 Group2 SFlags]
Rat (X1 Y1 Groupl X2 Y2 Group2 NFlags)

X1Y1X2Y2
The endpoints of the rat line.

Groupl Group?2
The layer group each end is connected on.

SFlags Symbolic or numeric flags.

NFlags Numeric flags.
8.8.24 Styles

[Styles("String")

String
Encodes the four routing styles pcb knows about. The four styles are separated
by colons. Each style consists of five parameters as follows:

Name The name of the style.

Thickness Width of lines and arcs.
Diameter Copper diameter of pins and vias.
Drill Drill diameter of pins and vias.

Keepaway Minimum spacing to other nets. If omitted, 10 mils is the default.
Styles("Signal,10,40,20:Power,25,60,35:Fat,40,60,35:Skinny,8,36,20")
Styles["Logic,1000,3600,2000,1000:Power,2500,6000,3500,1000:

Line,4000,6000,3500,1000:Breakout,600,2402,1181,600"]
Note that strings in actual files cannot span lines; the above example is split across lines
only to make it readable.

8.8.25 Symbol

Symbol [Char Delta] (
Symbol (Char Delta) (

. symbol lines . ..
)

Char The character or numerical character value this symbol represents. Characters
must be in single quotes.

Chapter 8: File Formats 80

Delta Additional space to allow after this character.

8.8.26 SymbolLine

SymbolLine [X1 Y1 X2 Y2 Thickness]
SymbolLine (X1 Y1 X2 Y2 Thickness)

X1Y1X2Y2
The endpoints of this line.

Thickness The width of this line.
8.8.27 Text

Text [X Y Direction Scale "String" SFlags]
Text (X Y Direction Scale "String" NFlags)
Text (X Y Direction "String" NFlags)

XY The location of the upper left corner of the text.

Direction 0 means text is drawn left to right, 1 means up, 2 means right to left (i.e. upside
down), and 3 means down.

Scale Size of the text, as a percentage of the “default” size of of the font (the default
font is about 40 mils high). Default is 100 (40 mils).

String The string to draw.
SFlags Symbolic or numeric flags.

NFlags Numeric flags.
8.8.28 Thermal

[Thermal [Scale] }

Scale Relative size of thermal fingers. A value of 1.0 makes the finger width twice
the clearance gap width (measured across the gap, not diameter). The normal
value is 0.5, which results in a finger width the same as the clearance gap width.

8.8.29 Via

(7

Via [X Y Thickness Clearance Mask Drill "Name" SFlags]

Via (XY Thickness Clearance Mask Drill "Name" NFlags)

Via (XY Thickness Clearance Drill "Name" NFlags)

Via (XY Thickness Drill "Name" NFlags)
(

Via (X Y Thickness "Name" NFlags)
- J

XY coordinates of center

Chapter 8: File Formats 81

Thickness outer diameter of copper annulus

Clearance add to thickness to get clearance diameter

Mask diameter of solder mask opening

Drill diameter of drill

Name string, name of via (vias have names?)
SFlags symbolic or numerical flags

NFlags numerical flags only

8.9 Object Flags

Note that object flags can be given numerically (like 0x0147) or symbolically (like
"found, showname,square". Some numeric values are reused for different object types.
The table below lists the numeric value followed by the symbolic name.

0x0001 pin
If set, this object is a pin. This flag is for internal use only.

0x0002 via
Likewise, for vias.

0x0004 found
If set, this object has been found by FindConnection().

0x0008 hole
For pins and vias, this flag means that the pin or via is a hole without a copper
annulus.

0x0008 nopaste
For pads, set to prevent a solderpaste stencil opening for the pad. Primarily
used for pads used as fiducials.

0x0010 rat
If set for a line, indicates that this line is a rat line instead of a copper trace.
0x0010 pininpoly
For pins and pads, this flag is used internally to indicate that the pin or pad
overlaps a polygon on some layer.

0x0010 clearpoly
For polygons, this flag means that pins and vias will normally clear these poly-
gons (thus, thermals are required for electrical connection). When clear, poly-
gons will solidly connect to pins and vias.

0x0010 hidename
For elements, when set the name of the element is hidden.

0x0020 showname
For elements, when set the names of pins are shown.

0x0020 clearline
For lines and arcs, the line/arc will clear polygons instead of connecting to
them.

Chapter 8: File Formats 82

0x0020 fullpoly
For polygons, the full polygon is drawn (i.e. all parts instead of only the biggest
one).

0x0040 selected
Set when the object is selected.

0x0080 onsolder
For elements and pads, indicates that they are on the solder side.

0x0080 auto
For lines and vias, indicates that these were created by the autorouter.

0x0100 square
For pins and pads, indicates a square (vs round) pin/pad.

0x0200 rubberend
For lines, used internally for rubber band moves.

0x0200 warn
For pins, vias, and pads, set to indicate a warning.

0x0400 usetherm
Obsolete, indicates that pins/vias should be drawn with thermal fingers.

0x0400 Obsolete, old files used this to indicate lines drawn on silk.

0x0800 octagon
Draw pins and vias as octagons.

0x1000 drc
Set for objects that fail DRC.

0x2000 lock
Set for locked objects.

0x4000 edge2
For pads, indicates that the second point is closer to the edge. For pins, indicates
that the pin is closer to a horizontal edge and thus pinout text should be vertical.

0x8000 marker
Marker used internally to avoid revisiting an object.

0x10000 connected
If set, this object has been as physically connected by FindConnection().

8.10 PCBFlags

0x00001 Pinout displays pin numbers instead of pin names.

0x00002 Use local reference for moves, by setting the mark at the beginning of each
move.

0x00004 When set, only polygons and their clearances are drawn, to see if polygons have
isolated regions.

0x00008 Display DRC region on crosshair.

Chapter 8:

0x00010
0x00020
0x00040
0x00080

0x00100
0x00200
0x00400
0x00800
0x01000
0x02000
0x04000
0x08000
0x10000
0x20000
0x40000
0x80000
0x100000
0x200000

File Formats 83

Do all move, mirror, rotate with rubberband connections.
Display descriptions of elements, instead of refdes.
Display names of elements, instead of refdes.

Auto-DRC flag. When set, PCB doesn’t let you place copper that violates
DRC.

Enable ’all-direction’ lines.

Switch starting angle after each click.

Force unique names on board.

New lines/arc clear polygons.

Crosshair snaps to pins and pads.

Show the solder mask layer.

Draw with thin lines.

Move items orthogonally.

Draw autoroute paths real-time.

New polygons are full ones.

Names are locked, the mouse cannot select them.
Everything but names are locked, the mouse cannot select anything else.
New polygons are full polygons.

When set, element names are not drawn.

Chapter 9: Library Creation 84

9 Library Creation

This chapter provides a detailed look at how footprint libraries are created and used. The
chapter is split into two section, the first section covers the "old" style libraries which use
the m4 macro processor and the second section covers the "new" style libraries.

Despite the names "old" and "new", both styles of libraries are useful and the "old"
style should not be discounted because of its name. The advantage of the old style libraries
is that one can define a family of footprints, say a DIP package, and then quickly produce all
the members of that family. Because the individual packages make use of a base definition,
corrections made to the base definition propagate to all the members of a family. The
primary drawback to using this library approach is that the effort to create a single footprint
is more than a graphical interface and may take even longer if the user has not used the m4
macro language previously.

The new style of footprint libraries stores each footprint in its own file. The footprints
are created graphically by placing pads and then converting a group of pads to a component.
This library method has the advantage of being quick to learn and it is easily to build single
footprints quickly. If you are building a family of parts, however, the additional effort in
creating each one individually makes this approach undesirable. In addition, creating a part
with a large pin count can be quite tedious when done by hand.

9.1 Old Style (m4) Libraries

The old style libraries for pcb use the m4 macro processor to allow the definition of a family
of parts. There are several files associated with the old style library. The file ‘common.m4’ is
the top level file associated with the library. ‘common.m4’ defines a few utility macros which
are used by other portions of the library, and then includes a predefined set of library files
(the lines like include(geda.inc)).

9.1.1 Overview of Oldlib Operation

The big picture view of the old style library system is that the library is simply a collection
of macro definitions. The macros are written in the m4 macro language. An example of
a macro and what it expands to is the following. One of the predefined footprints in the
library which comes with PCB is the PKG_S08 macro. Note that all the footprint macros
begin with PKG_. For this particular example, PKG_S08 is a macro for an 8-pin small outline
surface mount package. All of the footprint macros take 3 arguments. The first is the
canonical name of the footprint on the board. In this case "SO8" is an appropriate name.
The second argument is the reference designator on the board such as "U1" or "U23".
The third and final argument is the value. For an integrated circuit this is usually the
part number such as "MAX4107" or "78L05" and for a component such as a resistor or
capacitor it is the resistance or capacitance. The complete call to the macro in our example
is ‘PKG_S08(S08, U1, MAX4107)’. When processed by m4 using the macros defined in the
PCB library, this macro expands to

Element (0x00 "S08" "U1" "MAX4107" 146 50 3 100 0x00)
(

Pad(10 25 38 25 20 "1" 0x00)

Pad(10 75 38 75 20 "2" 0x100)

Chapter 9: Library Creation 85

Pad(10 125 38 125 20 "3" 0x100)
Pad(10 175 38 175 20 "4" 0x100)
Pad (214 175 242 175 20 "5" 0x100)
Pad(214 125 242 125 20 "6" 0x100)
Pad(214 75 242 75 20 "7" 0x100)
Pad (214 25 242 25 20 "8" 0x100)
ElementLine(0 O 151 0 10)
ElementArc(126 0 25 25 0 180 10)
ElementLine (101 0 252 0 10)
ElementLine (252 0 252 200 10)
ElementLine (252 200 0 200 10)
ElementLine (0 200 0 O 10)

Mark (29 25)

)

which is the actual definition of the footprint that the PCB program works with. As
a user of PCB the only time you will need or want to run m4 directly is when you are
debugging a new library addition. In normal operation, the calls to m4 are made by helper
scripts that come with PCB.

Tools such as gsch2pcb (used to interface the gEDA schematic capture program to PCB
layout) will call m4 to produce an initial PCB layout that includes all the components on
a schematic. In addition, when manually instantiating parts from within PCB, m4 will be
called by PCB’s helper scripts to produce the footprints.

9.1.2 The Library Scripts

There are several scripts that are used for processing the m4 libraries. This section briefly
describes these scripts and details how they are used by PCB.

9.1.2.1 Scripts Used During Compilation

The scripts described in this section are used during compilation of PCB. They are run
automatically by the build system, but are described here to help document the complete
library processing that occurs. During the build of PCB, the following actions are taken.
The CreateLibrary.sh script is run to produce an M4 "frozen file". This frozen file is
simply a partially processed M4 input file which can be loaded by M4 more quickly than
the original input file.

A typical call to CreateLibrary.sh used during the compilation of PCB is:

./CreateLibrary.sh -I . pcblib ./common.m4 TTL_74xx_DIL.m4
connector.m4 crystal.m4 generic.m4 genericsmt.m4 gtag.mé4
jerry.m4 linear.m4 logic.m4 1lsi.m4 memory.m4 optical.m4 pci.m4
resistor_0.25W.m4 resistor_adjust.m4 resistor_array.m4
texas_inst_amplifier.m4 texas_inst_voltage_reg.m4
transistor.m4 geda.m4

The ‘-I .’ says to search in the current directory for the ‘.m4’ files. The output frozen
file is ‘pcblib’. The main ‘common.m4’ file is listed as well as all of the ‘*.m4’ files which
define the components in the library.

Chapter 9: Library Creation 86

In addition, a library contents file is created during the build with the
CreatelLibraryContents.sh script. A typical call to CreateLibrary.sh used during the
compilation of PCB is:

./CreateLibraryContents.sh -I . ./common.m4 TTL_74xx_DIL.list
connector.list crystal.list generic.list genericsmt.list gtag.list
jerry.list linear.list logic.list 1lsi.list memory.list optical.list
pci.list resistor_0.25W.list resistor_adjust.list resistor_array.list
texas_inst_amplifier.list texas_inst_voltage_reg.list transistor.list
geda.list > pcblib.contents

The ‘pcblib.contents’ file is used by the PCB program to define the libraries and
components which will be displayed when you bring up the library window from within
PCB. An example of part of the ‘pcblib.contents’ file is:

TYPE="TTL 74xx DIL

7400_dil:N:7400:4 dual-NAND

7401_dil:N:7401:4 dual-NAND OC

7402_dil:N:7402:4 dual-NOR

TYPE="geda

geda_DIP6:DIP6:DIP6:Dual in-line package, narrow (300 mil)
geda_DIP8:DIP8:DIP8:Dual in-line package, narrow (300 mil)
geda_DIP14:DIP14:DIP14:Dual in-line package, narrow (300 mil)
geda_ACY300:ACY300:ACY300:Axial non-polar component,

The TYPE= lines define the library name that will show up in the library window in PCB.
The other lines define the actual components in the library.

9.1.2.2 Scripts Used by PCB at Runtime

When PCB is first executed, it makes a call to the ListLibraryContents.sh script. This
script provides the PCB program with the contents of the library contents file created when
PCB was compiled. A typical call to ListLibraryContents.sh is

../1lib/ListLibraryContents.sh .:/tmp/pcb-20030903/src/../1lib pcblib

This command says to search the path ‘.:/tmp/pcb-20030903/src/../1ib’ for a file
called ‘pcblib.contents’ (the ‘.contents’ part is added automatically) and display the
contents of the file. PCB parses this output and generates the library window entries.

When you pick a library component from the library window, PCB calls the
QueryLibrary.sh script to actually pull the footprint into the layout. For example, when
the ACY300 component is selected from the ~“geda library, the generated call may be:

/tmp/pcb-20030903/src/../1lib/QueryLibrary.sh
.:/tmp/pcb-20030903/src/. ./1ib pcblib geda_ACY300 ACY300

ACY300

If you were to run this command by hand you would see the PCB code for the element:
Element (0x00 "Axial non-polar component," "" "ACY300" 245 70 O 100 0x00)
(

Pin(0 25 50 20 "1" 0x101)
Pin(300 25 50 20 "2" 0x01)

Chapter 9: Library Creation 87

ElementLine(0 25 75 25 10)
ElementLine (225 25 300 25 10)

ElementLine(75 0 225 0 10)
ElementLine (225 0 225 50 10)
ElementLine (225 50 75 50 10)
ElementLine(75 50 75 0 10)

ElementArc(X1 Y 50 50 270 180 10)
ElementArc(X2 Y 50 50 90 180 10)

Mark(75 25)
)

9.1.3 Creating an Oldlib Footprint

This section provides a complete example of defining a family of footprints using the M4
style library. As a vehicle for this example, a family of footprints for surface mount resistors
and capacitors will be developed. The file ‘example.inc’ should have been installed on your
system as ‘$prefix/share/examples/oldlib/example.inc’ where ‘$prefix’ is often times
‘/usr/local’.

The ‘example.inc’ file defines a macro called COMMON_PKG_RCSMT which is a generic
definition for a surface mount footprint with two identical, rectangular pads. This macro

will be called with different parameters to fill out the family of parts. The arguments to
the COMMON_PKG_RCSMT are:

the definition for surface mount resistors and capacitors

$1: canonical name

$2: name on PCB

$3: value

$4: pad width (in direction perpendicular to part)

$5: pad length (in direction parallel with part)

$6: pad spacing (center to center)

$7: distance from edge of pad to silk (in direction

perpendicular to part)

$8: distance from edge of pad to silk (in direction parallel
with part)

$9: Set to "no" to skip silk screen on the sides of the part

define (‘COMMON_PKG_RCSMT’,

‘define (‘XMIN’, ‘eval(-1*‘$6°/2 - ‘$5°/2 - ‘$8°)°)

define (‘XMAX’, ‘eval(‘$6°/2 + ‘$57/2 + ‘$87)?)

define (‘YMIN’, ‘eval(-1x‘$4°/2 - “$7°)?)

define (‘YMAX’, ‘eval(‘$4°/2 + ‘$7°)°)

Element (0x00 "$1" "$2" "$3" eval (XMIN+20) eval (YMAX+20) O 100 0x00)
(

ifelse(0, eval($4>$5),

Pads which have the perpendicular pad dimension less

Chapter 9: Library Creation 88

than or equal to the parallel pad dimension
Pad(eval(-1x($6 + $5 - $4)/2) 0

eval ((-1x$6 + $5 - $4)/2) 0 eval($4) "1" 0x100)
Pad(eval (-1*(-1*$6 + $5 - $4)/2) 0O

eval(($6 + $5 - $4)/2) 0 eval($4) "2" 0x100)
Pads which have the perpendicular pad dimension greater
than or equal to the parallel pad dimension
Pad(eval(-1*$6/2) eval(-1x($4 - $5)/2)

eval(-1%$6/2) eval(($4 - $5)/2) eval($5) "1" 0x100)
Pad(eval($6/2) eval(-1x($4 - $5)/2)

eval($6/2) eval(($4 - $5)/2) eval($5) "2" 0x100)

silk screen

ends

ElementLine (XMIN YMIN XMIN YMAX 10)
ElementLine (XMAX YMAX XMAX YMIN 10)
sides

ifelse($9, "no",

#skip side silk

ElementLine (XMIN YMIN XMAX YMIN 10)
ElementLine (XMAX YMAX XMIN YMAX 10)
)

Mark (0 0)

)?)

Note that the part has been defined with the mark located at (0,0) and that the pads
have been placed with the mark at the common centroid of the footprint. While not a
requirement, this is highly desirable when developing a library that will need to interface
with a pick and place machine used for factory assembly of a board.

The final part of ‘example.inc’ defines particular versions of the generic footprint we
have created. These particular versions correspond to various industry standard package

sizes.

0402 package
#
30x30 mil pad, 15 mil metal-metal spacing=>
15 + 15 + 15 = 45 center-to-center
define (‘PKG_RC0402’,
‘COMMON_PKG_RCSMT(‘$1”’, ‘$2’, ‘$3’, 30, 30, 45, 0, 10, "no")’)

0603 package

#

40x40 mil pad, 30 mil metal-metal spacing=>
30 + 20 + 20 = 70 center-to-center

define (‘PKG_RC0603’,

Chapter 9: Library Creation 89

‘COMMON_PKG_RCSMT(‘$1’, “$2°, “$3°, 40, 40, 70, 10, 10)’)

1206 package
#
40x60 mil pad, 90 mil metal-metal spacing=>
90 + 20 + 20 = 130 center-to-center
define (‘PKG_RC1206°,
‘COMMON_PKG_RCSMT(‘$1’, ‘$2’, ‘$3’, 60, 40, 130, 10, 10)’)

At this point, the ‘example.inc’ file could be used by third party tools such as gsch2pcb.
However to fully integrate our footprints into PCB we need to create the ‘example.m4’ and
‘example.list’ files. The ‘example.m4’ file defines descriptions for the new footprints.

define(‘Description_my_RC0402’,

‘‘Standard SMT resistor/capacitor (0402)’°)
define(‘Description_my_RC0603’,

‘‘Standard SMT resistor/capacitor (0603)°’)
define(‘Description_my_RC1206°,

¢‘Standard SMT resistor/capacitor (1206)°°)

Finally we need to create the ‘example.list’ file.

my_RC0402:RC0402:RES0402
my_RC0402:RC0402:CAP0402
my_RC0603:RC0603:RES0603
my_RC0603:RC0603:CAPO603
my_RC1206:RC1206:RES1206
my_RC1206:RC1206:CAP1206

The first field in the list file has the name corresponding to the Description definitions
in ‘example.m4’. The second field is the template name which corresponds to the macros
PKG_* we defined in ‘example.inc’ with the leading PKG_ removed. It is the second field
which controls what footprint will actually appear on the board. The final field is the name
of the part type on the board. The first line in our ‘example.list’ file will produce a menu
entry in the library window that reads:

CAP0402, Standard SMT resistor/capacitor (0402)

The CAP0402 portion comes directly from the third field in example.list and the longer
description comes from descriptions macros in example .m4. Please note that any extra white
space at the end of a line in the ‘.1list’ files will cause them to not work properly.

9.1.4 Troubleshooting Old Style Libraries

A powerful technique to help debug problems with libraries is to invoke the m4 processor
directly. This approach will provide error output which is not visible from within PCB. The
following example shows how one might try to debug an 8 pin small outline (SO8) package.
The macro name for the package is PKG_SOS8. In this example, the canonical name that
is to be associated with the part is SO8, the reference designator is Ul, and the value is
MAX4107 (the part number).

echo "PKG_S08(S08, U1, MAX4107)" | \
gm4 common.m4 - | \
awk /7 [\tl*$/ {next} {print}’ | \

Chapter 9: Library Creation 90

more
The awk call simply removes blank lines which make the output hard to read.
For this particular example, the output is:

Element (0x00 "S08" "U1" "MAX4107" 146 50 3 100 0x00)
(

Pad(10 25 38 25 20 "1" 0x00)
Pad(10 75 38 75 20 "2" 0x100)
Pad(10 125 38 125 20 "3" 0x100)
Pad(10 175 38 175 20 "4" 0x100)
Pad(214 175 242 175 20 "5" 0x100)
Pad (214 125 242 125 20 "6" 0x100)
Pad(214 75 242 75 20 "7" 0x100)
Pad(214 25 242 25 20 "8" 0x100)
ElementLine(0 O 151 0 10)
ElementArc(126 0 25 25 0 180 10)
ElementLine(101 0 252 0 10)
ElementLine (252 0 252 200 10)
ElementLine (252 200 0 200 10)
ElementLine(0 200 0 0 10)

Mark(29 25)

)

9.2 New Style Libraries

Footprints for the new style library are created graphically using the PCB program. A
single footprint is saved in each file.

9.2.1 Creating Newlib Footprints

To create

1. Start PCB with an empty layout.

2. Make the component layer active.

3. For a leaded part, select the via tool and place vias where the pads for the part should
go. For surface mount pads, draw line segments. Note that until the footprint is
completed, the surface mount pads will remain rounded. Currently a rectangle or
polygon may not be used as a pad.

4. For each via and line segment which will become a pad, select it and press 'n’ to be
able to enter a name. Enter the pin number and press enter.

5. Make the silk layer active.

6. Using the line and arc tools, draw a silk screen outline for the part.

7. Using the selection tool, select all of the pins and silk screen for the part.

8. Place the pointer above the reference point for the part. This is typically the common
centroid. Keeping the pointer there, shift-right-click to bring up the popup menu and
choose "convert selection to element".

9. At this point, the vias, line segments, and silk screen will have been converted to an

element. To change any of the line segments to have square ends rather than round

Chapter 9: Library Creation 91

10.

11.

12.

ends, select the pads by holding down the shift key and clicking each pad with the
center mouse button. Now under the Select menu, "Change square-flag of selected
objects" section, choose "Pins".

Select the element, shift-right-click to bring up the popup menu, and choose "Copy
Selection to Buffer". Now left-click on the center of the new element.

Under the buffer menu, choose "save buffer elements to file" to save the new footprint
to a file.

Press ESC to exit from buffer mode.

9.2.2 Modifying Newlib Footprints

1. In the Pcb program, instantiate the footprint you wish to modify.

2. Using the selection tool, select the footprint.

3. Now left-click on the selected element, this brings up a popup menu, choose "Cut to

Buffer" from the popup menu.

Under the buffer menu, choose "break buffer element to pieces", and then left-click to
place the broken apart footprint to an open area of the layout. Note that you must use
the items under the buffer menu, the items with the same names in the popup menu
do not work.

Make your desired modifications to the footprint and then convert the pieces back to
an element using the same procedure as when starting from scratch on a new footprint.

Chapter 10: Schematic Capture for PCB 92

10 Schematic Capture for PCB

When designing a circuit board of any complexity, a schematic capture front-end for the
design is highly desired. Any schematic capture program which is able to generate a netlist in
a user defined format as well as a bill of materials can be made to work with PCB. Currently,
we are aware of two freely available schematic capture programs which can interface with
PCB. This chapter shows how a design can be taken from start to finish using either of
these two tools for schematic capture and PCB for layout.

10.1 gEDA

This section shows how to use gEDA as the schematic capture front-end for a PCB design.
This section is not intended to be complete documentation on gEDA and it is assumed that
the user has at least some familiarity with the gEDA suite of programs.

The basic steps in a gEDA + PCB design flow are:
Set up project directories
Set up gEDA (gschem/gnetlist) config files
Set up gsch2pch config files
Capture schematics using gschem (part of gEDA)
Create any unique PCB footprints needed for the design
Generate initial PCB design using gsch2pcb (part of gEDA)

Layout circuit board using pcb

NS T WD

Make any additional schematic changes with gschem and forward annotate to PCB
with gsch2pcb

9. Generate photoplot files (RS-274X, also known as "Gerber") for board vendor

10.1.1 Set Up Project Directories

Although not required, a typical project directory will contain the schematics and board
layout at the top level. Schematic symbols and circuit board footprints which are unique
to this project are stored in subdirectories. For this example, ‘sym’ contains the project
specific schematic symbols and ‘pkg’ contains the project specific footprints. Set up the
project subdirectory and subdirectories by executing;:

mkdir ~/myproj
cd ~/myproj
mkdir sym

mkdir pkg

mkdir pkg/newlib
mkdir pkg/m4

10.1.2 Set Up gEDA Config Files

The gEDA tools, specifically gschem and gnetlist, use configuration files to set the search
path for symbol libraries in addition to other user preferences. Create a file in the top level
project directory called ‘gschemrc’. Add the following lines to that file:

Chapter 10: Schematic Capture for PCB 93

;3 list libraries here. Order matters as it sets the
;; search order
(component-library "./sym")

This sets the local search path for the schematic capture program gschem. Now the netlis-
ter, gnetlist, must also be configured. This can be done by copying the file ‘gschemrc’ to
‘gnetlistrc’ by running ‘cp gschemrc gnetlistrc’. Alternatively, you can create a soft
link so only a single file needs to be updated if additional symbol paths are added. The link
is created by running ‘ln -s gschemrc gnetlistrc’.

10.1.3 Set Up gsch2pcb Config Files

The program gsch2pcb, not to be confused with the older gschem2pcb script, is used to link
the schematic to layout. gsch2pcb is responsible for creating the netlist used to provide
connectivity information to PCB as well creating an initial layout with all components
instantiated in the design. Forward annotation of schematic changes to the layout is also
done using gsch2pcb. gsch2pcb uses a project file to set up the schematic file names, PCB
library locations, and output file names. Create a project file called ‘project’ using the
following as an example:

List all the schematics to be netlisted
and laid out on the pc board.
schematics first.sch second.sch third.sch

For an output-name of foo, gsch2pcb generates files

foo.net, foo.pcb, and foo.new.pcb. If there is no

output-name specified, the file names are derived from
the first listed schematic, i.e. first.net, etc.
output-name preamp

10.1.4 Capture Schematics Using gschem

This section is fairly brief and assumes familiarity with using the gschem schematic capture
program. As you are creating your schematics, be sure to observe the following rules:

e Make sure that each component in the schematic has a footprint attribute that cor-
responds to a footprint in the PCB library or a footprint you plan on creating.

e Make sure all reference designators are unique. One way to ensure this is to run the
refdes_renum script (part of gEDA) after the schematics are created.

10.1.5 Create Any Unique PCB Footprints

Create the new footprints you design needs using either the m4 style or newlib style of PCB
libraries. Refer to Chapter 9 [Library Creation|, page 84 for details on this process. For
m4 style footprints, store them in the ‘pkg/m4’ subdirectory and for newlib footprints, store
them in the ‘pkg/newlib’ subdirectory.

Chapter 10: Schematic Capture for PCB 94

10.1.6 Generate Initial PCB Design Using gsch2pcb

The gsch2pcb program connects the schematic and layout. It basic operation is to call
gnetlist to generate the connectivity netlist that PCB used to verify connectivity and to
instantiate all elements found in the schematic to a new layout. The default, as of gsch2pcb
version 0.9, is to use any found m4 style parts first and then search for newlib style if no
old style part was found. By using the --use-files or -f flag to gsch2pcb priority is
given to newlib style parts even if m4 style are found. You may wish to verify this in
the gsch2pcb documentation in case this changes in the future. To start your layout, run
‘gsch2pcb project’ where ‘project’ is the project file created previously. This will create
a new netlist file, ‘preamp.net’, and a new layout file, ‘preamp.pcb’.

10.1.7 Layout Circuit Board

Run PCB on the new layout by running ‘pcb preamp.pcb’. Load the netlist file by selecting
"load netlist file" from the "file" menu. In the file selection dialog box, choose ‘preamp.net’.
This loads connectivity information into PCB.

Using the selection tool, grab and move apart the various footprints with the middle
mouse button. Once the parts are moved apart from each other, choose "optimize rats-
nest" from the "Connects" menu. This menu choice will display and optimize the rats
nest. Use the rats nest to help guide placement of the parts. You may wish to re-run the
"optimize rats-nest" command after moving parts around.

After the placement is complete, use the line tool to add traces to the board. As traces
are added, the corresponding rats line will disappear.

10.1.8 Forward Annotation of Schematic Changes

If schematic changes are made after the layout has started, gsch2pcb can be used to for-
ward annotate these changes to the layout. To forward annotate schematic changes, run
‘gsch2pcb project’. This command will create the files ‘preamp.new.pcb’, ‘preamp.net’,
and modify the file ‘preamp.pcb’. The modifications to ‘preamp.pcb’ include forward an-
notation of schematic component value changes, adds any new components, and removes
any deleted components.

10.1.9 Generate Photoplot Files (RS-274X)

After the layout is complete, choose "edit layer-groupings" from the "Settings" menu. The
LayerGroups form lets you specify which layers will appear in each output layer group. For
example, in the default form, layer group 1 has "front" and "front side" in it. The output
file ‘1.gbr’ if DOS file names are used, or ‘somename_front.gbr’ if long file names are used
will contain the "front" and "front side" layers in it. Usually the defaults are sufficient, but
this form is still a useful reference.

Choose "print layout..." from the "File" menu. In the print dialog box, select
"Gerber/RS-274X" for the device driver. Select the "outline", "alignment", and
"drillhelper" options. To get DOS compatible file names, select the "DOS (8.3) names"
option, otherwise enter "preamp" for the filename. Press "OK".

The following output files should have been created in the project directory. The names
in parentheses correspond to the DOS compatible output file names.

Chapter 10: Schematic Capture for PCB 95

‘preamp_frontsilk.gbr (csilk.gbr)’
Top side silk screen.

‘preamp_frontmask.gbr (cmask.gbr)’
Top side soldermask relief.

‘preamp_front.gbr (1.gbr)’
Top copper.

‘preamp_backmask.gbr (smask.gbr)’
Bottom side soldermask relief.

‘preamp_back.gbr (2.gbr)’
Bottom Copper.

‘preamp_fab.gbr (fab.gbr)’
Fabrication drawing. Also known as the drill drawing. This drawing is used
for reference by the board vendor but is not directly used in the fabrication
process.

‘preamp_plated-drill.cnc (pdrill.cnc)’
NC Drill format file for the plated through holes.

‘preamp_unplated-drill.cnc (udrill.cnc)’
NC Drill format file for the unplated through holes.

‘preamp_bom.txt (bom.txt)’
A bill of materials for the layout.

‘preamp_xy.txt (xy.txt)’
Centroid (X-Y) data for driving automated assembly equipment.

10.2 xcircuit

If anyone cares to contribute this section, it will get added. Please submit changes
to the bug tracking system for PCB which can be found from the PCB homepage at
http://pcb.geda-project.org.

http://pcb.geda-project.org

Appendix A: Installation and Troubleshooting 96

Appendix A Installation and Troubleshooting

Compiling and installing the package should be straightforward. If any problems oc-
cur, please contact the author Thomas.Nau®@rz.uni-ulm.de, or the current maintainer
haceaton@aplcomm. jhuapl.edu to find a solution and include it into the next release.

A.1 Compiling and Installing

This section covers the steps which are necessary to compile the package.

A.1.1 Quick Start

Starting with version 2.0, Pcb has switched to a GNU autoconf/automake build system.
Installation of Pcb consists of three steps: configuration, building, and installing. In a
typical installation, these steps are as simple as

./configure
make
make install

A.1.2 Running the configure Script
The configure script accepts all of the standard GNU configure options. For a complete

list of configuration options, run ./configure --help.

‘INFOLIBDIR’
must be set to the directory where your GNU info files are located.

‘PCBLIBDIR’
is the path of a directory where the font files will be installed.

‘DEFAULTFONT’
the name of the default font file.

‘DEFAULTLIBRARY’
the name of the default library.

‘GNUM4’ the name of GNUs m4 version.

‘BTNMOD’ If your window manager has already bound ModI together with some function
keys you may want to change this setting. This is true for HP-VUE.

If you find things which must be changed to compile on your system, please add the
appropriate autoconf tests (if you are familiar with that) and mail a copy to the maintainer,
harry eaton, at haceaton@aplcomm. jhuapl.edu.

If you do not have the appropriate permissions you should run ‘./pcbtest.sh’ in the
‘src’ directory to run Pcb from the installation directory.

A.2 Troubleshooting

There are some known problems. Most of them are related to missing parts of a standard
X11 distribution. Some others are caused by third party applications such as X servers. To
make this list more complete please mail your problems and, if available, solutions to the

mailto:Thomas.Nau@rz.uni-ulm.de
mailto:haceaton@aplcomm.jhuapl.edu
mailto:haceaton@aplcomm.jhuapl.edu

Appendix A: Installation and Troubleshooting 97

author. The mail address may be found at the beginning of this chapter. In any case, read
Section A.2.8 [X11], page 98.

By the way, you MUST HAVE AN ANSI COMPILER to make Pcb work.

Another source of problems are older versions of flex and bison. Pcb definitely works
with flex-2.4.7 and bison-1.22 or later. The problems will result in a syntax error while
parsing files. This should only be a problem if you have modified the flex or bison input
files.

The following list gives you just an idea because I'm not able to test all Pcb releases on
all platforms.

A.2.1 HP Series 700 and 800

You have to install several X11 include files or, better, install a complete X11R5 release.
Hewlett-Packard doesn’t support the Athena Widgets. So the header files and libraries are
missing from the application media, but they are available as a patch. They also do not
ship the ANST compiler with the normal operating system release so you have to buy one or
use GCC. Some of the tools are available as patches.

In addition, Pcb has been successfully tested on these platforms with HPUX 9.*, 10.%*
running self-compiled X11R5.

A.2.2 Sun SPARC architecture

There are no known problems with Sun machines if they use X11R5 instead of OpenWindows.
Pcb compiled successfully with all kinds of SPARCstations Solaris-2. [345].

For problems with OpenWindows refer to Section A.2.8 [X11], page 98.

A.2.3 Silicon Graphics

Pcb has been tested on some boxes running either IRIX-4.0.5 or IRIX-5.3. The former
one uses a X11R4 server. There are no problems. For known problems with X11R4, see
Section A.2.8 [X11], page 98.

A.2.4 DEC Alpha
Pcb compiled and runs without problems on DEC UNIX V3.2c.

A.2.5 SCO Unix

John DuBois <spcecdt@deeptht.armory.com> wrote:

SCO0-0DT-3.0 requires the latest version of tls003, the Athena
widget library (available from sosco.sco.com). The main problems
I have encountered are it core dumps fairly often, especially
while loading/dropping elements...

I’ll see what I am able to do as soon as I have access to an SCO system.

A.2.6 Linux

Since the X11 version of Pcb has been developed on a Linux system here are no known
problems.

Appendix A: Installation and Troubleshooting 98

A.2.7 FreeBSD and NetBSD

Pcb has been tested on NetBSD and works without any problems. You may also be able to
find a NetBSD package at ftp://ftp.netbsd.org/pub/NetBSD/packages/cad/pcb/README. html
or a FreeBSD port at http://www.freebsd.org/cgi/url.cgi?ports/cad/pcb/pkg-descr.

A.2.8 Problems related to X11

There are a some problems related to X11R4 or systems derived from X11 such as
OpenWindows. See Section A.2.2 [Sun], page 97. You at least have to change all occurrences
of baseTranslations in the resource files to translations if you are using a X11R4 server.
Look at the X11R5 Intrinsics manual for details.

The panner widget (print dialog box) appears only in release X11R5 and later. It really
simplifies adjusting the offsets. With earlier releases the printout will always appear in the
center of the page.

You may have some problems in a mixed X11-OpenWindows environment.

Pcb has been tested successfully with X11R6 under Linux 1.1.59 and later.

A.2.9 Problems related to TeX

If your TeX installation complains about a missing ‘texinfo.tex’ file copy the one included
in this release (directory ‘doc’ to your TeX macro directory. Note, there are probably newer
versions of this file available from some FTP sites. TeX-3.0 failed, TeX-3.14 worked just
fine. Check our FTP server ftp.uni-ulm.de for ready-to-print versions of the manuals.

ftp://ftp.netbsd.org/pub/NetBSD/packages/cad/pcb/README.html
http://www.freebsd.org/cgi/url.cgi?ports/cad/pcb/pkg-descr

Appendix B: Customizing the Menus 99

Appendix B Customizing the Menus

The menu system is driven off a data file that contains resources. A resource is a hierarchical
description of a data tree which, in this case, is mapped to the hierarchical menus used by
Pcb.

B.1 Resource Syntax

A resource file is a simple text file. It contains curly braces to group things, spaces between
things, and double quotes when strings need to include spaces. There are four fundamental
ways of adding data to a resource.

First, a string (either a single word or a quoted string with spaces, we call both “strings”
in this appendix) can be added all by itself, to add a string resource to the current resource.
This is used, for example, to define the string printed on a menu button. In this example,
four strings are added to the File resource:

File = {
Sample
"longer sample"
some text

¥

Second, a named string may be added by giving two strings separated by an equals
sign. This is used to specify X resources and a few other optional parameters of menus, for
example. Note that a string all by itself is thus an “unnamed” string.

{"Layer groups" foreground=red sensitive=false}

Third, an unnamed subresource may be added. This is used to create submenus and
menu buttons. To add a subresource, simply group other things in curly braces. This
example describes a resource containing one string and three subresources:

{File
{New do_new()}
{Save do_save()}
{Quit do_quit(O}
}
Lastly, a named subresource may be added by prefixing an unnamed subresource with
a string and an equals sign, just as when naming strings. This syntax is used to name the
resources used for the main menu and popup menus:

MainMenu = {

}

Additionally, the menu parser allows for “hooks” whereby portions of the menu system
can be programmatically created at runtime by the application. These hooks are invoked
by a single word proceeded by an at sign, such as this example where most of the Sizes
menu is created automatically:

{Sizes
Q@sizes
{"Adjust active sizes ..." AdjustStyle(0)}

Appendix B: Customizing the Menus 100

}

In addition to all that, any unquoted pound sign (#) begins a comment. Commented
text continues until the end of the containing line. Comments may begin at the beginning
of a line, or after other text on the line:

This is a comment
MainMenu = { # This is also a comment

B.2 Menu Definitions

To best understand this section, you should find the ‘pcb-menu.res’ file that your Pcb uses
and refer to it for examples (see Section B.3 [Menu Files and Defaults], page 101). Note
that the lesstif GUI uses ‘pcb-menu.res’ and the GTK+ GUI uses ‘gpcb-menu.res’. The
file format is identical however and if so desired, one can make one file be a soft link to the
other.

A resource defines a menu when it meets certain semantic requirements. The menu
hierarchy is reflected as a hierarchy of unnamed subresources, with the first string of each
subresource defining the label used for the menu button. A subresource that itself contains
subresources becomes a submenu, a subresource that does not becomes a button.

A submenu should only contain subresources for the buttons or submenus within that
submenu. Two exceptions are allowed: an initial string sets the label, and the string “-” (a
single dash) will create a separator.

A button should not contain subresources, but will contain many strings, named and
unnamed. The first member shall be an unnamed string which is the label for the button.
Any other unnamed strings within the button’s resource will be used as actions (much
like the .Xdefaults action strings), which are functions that will be called when the button
is pressed (or popped up, or created, depending on the action). As a convenience, if a
left parenthesis is seen, the current “word” will continue at least until the matching right
parenthesis. This allows you to pass strings with spaces as arguments to actions without
needing to quote the action.

Named resources in button resources will be used as X resources. Such resources can be
used to set the font, color, and spacing of buttons. As a convenience, “fg” can be used as
an abbreviation for “foreground”.

Within the menu’s resource file, Pcb will look for a few key named subresources. At
the moment, there are just two key named subresources. MainMenu will be used for the
main menu bar and Mouse will be used to define mouse actions. In the future, other named
subresources will be used for popup resources.

Given all this, a small sample ‘pcb-menu.res’ would be:

MainMenu = {
{File
{"Open..." Load(Layout)}
{"Quit" Quit() fg=red font=10x20}
}
}

Appendix B: Customizing the Menus 101

Within the Pcb sources are specially crafted comments that mark all the actions, flags,
menu hooks, and whatnot that Pcb offers. Read the file ‘src/gather-actions’ in the Pch
source tree for documentation for these comments.

B.3 Menu Files and Defaults

Pcb will look for a file which defines its menus, trying the following names (the example is
for the lesstif GUI, the GTK+ GUI has “gpcb-menu.res” in place of “pcb-menu.res”):

./pcb-menu.res

$HOME/ .pcb-menu.res
$PCBLIBDIR/pcb-menu.res
<internal>

Note that pcblibdir defaults to ‘/usr/local/share/pcb’ (hence, ‘/usr/local/share/pcb/pcb-menu.res’).
The ‘<internal>’ entry refers to a menu definition within the Pcb application itself.
The master file for all this is the file ‘src/pcb-menu.res’ in the Pcb source tree. This
master source is used to create the internal menu definition as well as being installed in
‘$pcblibdir’.

Appendix C: Element Search/Regular Expressions 102

Appendix C Element Search/Regular Expressions

C.1 Element Search/Regular Expressions

Pcb’s search is based on POSIX 1003.2 Regular Expressions. Full POSIX Regular Expres-
sions are supported by Pcb if the regex library was available when Pcb was built. One
difference from the regular expressions found in tools like awk or grep is that PCB implic-
itly adds a “*” to the begining of a regular expression and “$” to the end of the regular
expression. For example, if you enter “C1”, the actual regular expression used internally is
“~C1$%”. Another difference is that search patterns in pcb are not case sensitive. That is,
“CON” is treated the same as “con”.

It is easier to show by example how to search than explain POSIX 1003.2. With regular
expressions most characters are just themselves, but some are special:

k7 Matches 0 or more instances of preceding character.
+ Matches 1 or more instances of preceding character.
e Matches 0 or 1 instances of preceding character.

Matches any single character other than the newline character.

The vertical bar is the alternation operator. It combines two regular expres-
sions. The result matches if either of them matches.

A\ A backslash indicates the next character should not be interpreted literally if
it normally is, and should be interpreted literally if it normally isn’t.

‘{n}’ An integer n enclosed in curly brackets matches the preceding item if it occurs
exactly n times.

‘01 A pair of square brackets matches every character they contain. Characters
may be given explicitly, or as ranges.

A hyphen in the context of square brackets denotes the range between the
preceding and the following character. E.g., the range of digits is “0-9” . The
range of letters from C to K is “C-K” .

(~

inside square brackets’
Inside square brackets the caret is an anti operator. Its presence makes the
square brackets match anything except the contents of the brackets.

)’ Round parenthesis group parts of a regular expression. This is very much like
they do in math formulas.
If you need a special character literally, you can escape it with a backslash.

The following examples illustrate how regular expressions can be used to specify element
names (reference designators) to search for.

‘C5’ Select the element whose name is exactly “C5”.
‘C5 | R3” Select C5 and R3.
‘C.* Select all elements whose name start with the letter “C”, such as C5, or C42,

or CF1.

Appendix C: Element Search/Regular Expressions 103

‘C.*x1’ Select all elements that start with “C” and end with “1”, such as C1, or C51
or C5/9BT71.
‘R107’ Search for R1 or R10, but will not select R100 or R105. The question mark is

a quantifier for the character “0”.
‘R128+’ Selects R128, R1288, R12888, etc.

‘TB.’ Select all terminal blocks having exactly one character designator after “TB”
such as TB1, TBA, or TBx but not TB.

‘TB..’ Select all terminal blocks having a two character designator such as TB21 or
TBla.

‘TB.*’ Select all terminal blocks with any designator.

¢ %31’ Select all items, whose name ends with “31” such as Q31, or R31, or R531.

‘QL121° Select Q1 and Q2.
‘[A-D] .*’ Select all items, whose name starts with “A”, “B”, “C”, or “D”.

CokN{2} .+
Select all items, whose name contains two “N” in a row such as CONN23, or
connA, but not CONS5.

‘["D].*> Select all items that do not start with the letter “D”, such as C2, or R34, but
not D34.

Appendix D: Standard Drill Size Tables 104

Appendix D Standard Drill Size Tables

D.1 American Standard Wire Size Drills

Drill Diameter Drill Diameter Drill Diameter
Size (inches) Size (inches) Size (inches)
97 .0059 96 .0063 95 .0067
94 .0071 93 .0075 92 .0079
91 .0083 90 .0087 89 .0091
88 .0095 87 .0100 86 .0105
85 .0110 84 0115 83 0120
82 .0125 81 .0130 80 .0135
79 .0145 78 .0160 7 .0180
76 .0200 75 .0210 74 .0225
73 .0240 72 .0250 71 .0260
70 .0280 69 0292 68 .0310
67 .0320 66 .0330 65 .0350
64 .0360 63 .0370 62 .0380
61 .0390 60 .0400 29 .0410
58 .0420 57 .0430 56 .0465
55 .0520 54 .0550 53 0595
52 .0635 51 .0670 50 .0700
49 .0730 48 .0760 47 .0785
46 .0810 45 .0820 44 .0860
43 .0890 42 .0935 41 .0960
40 .0980 39 0995 38 1015
37 .1040 36 .1065 35 .1100
34 1110 33 1130 32 .1160
31 .1200 30 1285 29 .1360
28 .1405 27 .1440 26 1470
25 1495 24 1520 23 .1540
22 .1570 21 1590 20 .1610
19 .1660 18 1695 17 1730
16 1770 15 1800 14 1820
13 .1850 12 1890 11 1910
10 1935 9 .1960 8 .1990
7 .2010 6 .2040) .2055
4 .2090 3 2130 2 2210
1 .2280

D.2 American Standard Letter Size Drills

Drill Diameter Drill Diameter Drill Diameter
Size (inches) Size (inches) Size (inches)

A .2340 B .2380 C .2420

Appendix D: Standard Drill Size Tables

“amPzZang

D.3 Fractional Inch Size Drills

Drill
Size

1/64
1/16
7/64
5/32
13/64
1/4
19/64
11/32
25,64
7/16
31/64
17/32
37/64
5/8
43/64
23/32
49/64
13/16
55,64
29/32
61,64
1

.2460
.2610
2770
.2950
.3230
.3480
3770
.4040

Diameter
(inches)

.0156
.0625
.1094
.1562
2031
.2500
.2969
.3438
.3906
4375
4844
5313
5781
.6250
.6719
7188
7656
.8125
.8594
.9062
9531
1.0000

D.4 Metric Drills

Drill
Size

0.20 mm
0.35 mm
0.50 mm
0.65 mm
0.80 mm
0.95 mm

Diameter
(inches)

.00787
.0138
.0197
.0256
.0315
.0374

NZ SO ZRE

Drill
Size

1/32
5,/64
1/8
11/64
7/32
17/64
5/16
23/64
13/32
29/64
1/2
35,64
19/32
41/64
11/16
47/64
25/32
53,/64
7/8
59,/64
31/32

Drill
Size

0.25 mm
0.40 mm
0.55 mm
0.70 mm
0.85 mm
1.00 mm

.2500
.2660
2810
.3020
3320
.3580
.3860
4130

Diameter
(inches)

0313
0781
1250
1719
2188
.2656
3125
3594
4062
4531
.5000
.5469
5938
.6406
.6875
7344
7812
.8281
8750
9219
9688

Diameter
(inches)

.00984
.0158
0217
.0276
0335
.0394

oI oo = o

Drill
Size

3/64
3/32
9/64
3/16
15/64
9/32
21/64
3/8
27/64
15/32
33/64
9/16
39/64
21/32
45/64
3/4
51/64
27/32
57/64
15/16
63/64

Drill
Size

0.30 mm
0.45 mm
0.60 mm
0.75 mm
0.90 mm
1.05 mm

.2570
2720
.2900
.3160
3390
.3680
.3970

Diameter
(inches)

.0469
.0938
.1406
1875
2344
2812
.3281
3750
4219
4688
5156
5625
.6094
.6562
.7031
7500
7969
.8438
.8906
9375
9844

Diameter
(inches)

0118
0177
.0236
.0295
.0354
.0413

105

Appendix D: Standard Drill Size Tables 106

1.10 mm .0433 1.15 mm .0453 1.20 mm .0472
1.25 mm .0492 1.30 mm .0512 1.35 mm .0531
1.40 mm .0551 1.45 mm 0571 1.50 mm .0591
1.55 mm .0610 1.60 mm .0630 1.65 mm .0650
1.70 mm .0669 1.75 mm .0689 1.80 mm .0709
1.85 mm 0728 1.90 mm .0748 1.95 mm .0768
2.00 mm 0787 2.05 mm .0807 2.10 mm 0827
2.15 mm .0846 2.20 mm .0866 2.25 mm .0886
2.30 mm .0906 2.35 mm .0925 2.40 mm .0945
2.45 mm .0965 2.50 mm .0984 2.55 mm .1004
2.60 mm .1024 2.65 mm .1043 2.70 mm .1063
2.75 mm .1083 2.80 mm .1102 2.85 mm 1122
2.90 mm 1142 2.95 mm 1161 3.00 mm 1181
3.10 mm 1220 3.15 mm .1240 3.20 mm .1260
3.25 mm 1280 3.30 mm .1299 3.40 mm .1339
3.50 mm 1378 3.60 mm 1417 3.70 mm 1457
3.75 mm 1476 3.80 mm .1496 3.90 mm .1535
4.00 mm 1575 4.10 mm .1614 4.20 mm .1654
4.25 mm 1673 4.30 mm .1693 4.40 mm 1732
4.50 mm 1772 4.60 mm 1811 4.70 mm .1850
4.75 mm 1870 4.80 mm .1890 4.90 mm .1929
5.00 mm .1969 5.10 mm .2008 5.20 mm .2047
5.25 mm 2067 5.30 mm 2087 5.40 mm 2126
5.50 mm .2165 5.60 mm .2205 5.70 mm .2244
5.75 mm .2264 5.80 mm 2283 5.90 mm 2323
6.00 mm .2362 6.10 mm .2402 6.20 mm .2441
6.25 mm .2461 6.30 mm .2480 6.40 mm .2520
6.50 mm .2559 6.60 mm .2598 6.70 mm .2638
6.75 mm .2657 6.80 mm 2677 6.90 mm 2717
7.00 mm .2756 7.10 mm .2795 7.20 mm .2835
7.25 mm 2854 7.30 mm 2874 7.40 mm .2914
7.50 mm .2953 7.60 mm .2992 7.70 mm .3031
8.00 mm .3150 8.10 mm 3189 8.20 mm 3228
8.25 mm .3248 8.30 mm .3268 8.40 mm 3307
8.50 mm .3346 8.60 mm .3386 8.70 mm .3425
8.75 mm .3445 8.80 mm .3465 8.90 mm .3504
9.00 mm .3543 9.10 mm .3583 9.20 mm .3622
9.25 mm .3642 9.30 mm .3661 9.40 mm 3701
9.50 mm .3740 9.60 mm 3780 9.70 mm .3819
9.75 mm .3839 9.80 mm .3858 9.90 mm .3898
10.00 mm .3937 10.10 mm .3976 10.20 mm 4016
10.25 mm 14035 10.30 mm 4055 10.40 mm .4094
10.50 mm 4134 10.60 mm 4173 10.70 mm 4213
10.80 mm 4252 10.90 mm 4291 11.00 mm 4331
11.10 mm 4370 11.20 mm .4409 11.25 mm .4429
11.30 mm .4449 11.40 mm 4488 11.50 mm 4528

11.60 mm 4567 11.70 mm .4606 11.75 mm 4626

Appendix D: Standard Drill Size Tables 107

11.80 mm .4646 11.90 mm 4685 12.00 mm 4724
12.50 mm 4921 13.00 mm H118 13.50 mm 0315
14.00 mm 0512 14.50 mm 5709 15.00 mm .5906
15.50 mm .6102 16.00 mm .6299 16.50 mm .6496
17.00 mm .6693 17.50 mm .6890 18.00 mm 7087
18.50 mm 7283 19.00 mm .7480 19.50 mm 1677
20.00 mm 7874 20.50 mm 8071 21.00 mm .8268
21.50 mm .8465 22.00 mm .8661 22.50 mm .8858
23.00 mm 9055 23.50 mm 9252 24.00 mm .9449

24.50 mm .9646 25.00 mm 9843

Appendix E: Centroid (X-Y) File Format 108

Appendix E Centroid (X-Y) File Format

E.1 Overview

E.2 File Format

The centroid output file is in a standard comma seperated values (CSV) format. Comment
lines begin with a “#”. The output file contains a header with a version number for the
file format, some comments containing the author and title of the board, and a comment
describing the remainder of the file format.

An example centroid file is shown below.

PcbXY Version 1.0

Date: Fri Jul 22 03:40:08 2005 UTC

Author: PCB User

Title: MyBoard - PCB X-Y

RefDes, Description, Value, X, Y, rotation, top/bottom
X,Y in mils. rotation in degrees.

H OH H H H R

R61,"0603","10",2610.00,3560.00,90,top
J5,"AMPHENOL_ARFX1231", "unknown",2390.00,4220.00,180, top
c13,"0402","0.01u",2340.00,3014.00,270,top

E.3 Computation of Centroid and Rotation

The center of each element is found by averaging the (X,Y) coordinates for the center of
each pin and pad in the element. For example if an element has 2 pins, 1 at (1,0) and
another at (1,4) then the centroid will be at (1,2).

The calculation of rotation is a bit more complex. Currently a rotation is not stored for
each element but rather the rotated element is stored. In other words if the element from
the library has a pin at (0,0) and (0,2) and it has been rotated by 90 degrees, then the
‘.pcb’ file will store (0,0) and (2,0) for the pin locations with no indication that they have
been rotated from the original.

In the event that the element has only 1 pin, then the rotation is set to zero. If the
element has only one pad (as opposed to a through-hole pin), then the rotation of the pad
is used.

When the element has multiple pins, the location of pin #1 is placed in the coordinate
system which has the centroid of the part at (0,0). Then which quadrant pin #1 falls in
determines the rotation. Zero degrees of rotation is defined as pin #1 being in the upper
left quadrant. Increasing angles correspond to counterclockwise rotation so a rotation of 90
degrees places pin #1 in the lower left quadrant. Currently, the only allowed rotations are
0, 90, 180, and 270 degrees.

If pin #1 happens to be at the centroid of the part, then pin #2 is examined to see
which quadrant it is located in. The same rules apply for the definitions of rotation. In

Appendix E: Centroid (X-Y) File Format 109

other words, when pin #1 is at the centroid of the part and pin #2 is in the upper left
quadrant, the rotation is declared to be zero degrees.

Appendix F: Annotation File Format 110

Appendix F Annotation File Format

F.1 Overview

F.2 File Format

The annotation output file an ASCII file that can be used to communicate layout changes
that affect the netlist back to a schematic tool. Currently the only place this file is used
is if when the Renumber() action is called within Pcb. Renumber() will renumber all the
reference designators (instance names) in the layout. The result of the renumbering will
be written out to an annotation file which can be used to propagate the changes to the
schematic sources. See Section G.1.68 [Renumber Action], page 134 for details on the
Renumber() action. If you are using gschem (part of gEDA /gaf) as your schematic entry
tool then refer to pcb_backannotate(1) for details on how to use the annotation file to make
the changes to the schematics.

The annotation file format is fairly simple. Each line consists of a command followed by
arguments. Blank lines and lines consisting of only whitespace are ignored. There are no
line continuations.

An example annotation file is shown below.

COMMENT PCB Annotation File
FILEVERSION 20061031
*RENAME*x "C17" "C1"

RENAME "U5" "U1"

RENAME "Ug" "U2"

RENAME "C21" "C2"

RENAME "R14" "R1"

RENAME "C7" "C3"

RENAME "C8" "C4"

RENAME "C6" "Cb"

F.2.1 *COMMENT*

Command for a comment. The text of a comment is ignored by tools which process the
annotation file.

E‘COMMENT‘< text j

F.2.2 *FILEVERSION*

Indicates what version of the annotation file is in use. The date code corresponds to the
date when the current version was added to the Pcb sources.

E‘FILEVERSION* datecode }

Appendix F: Annotation File Format 111

F.2.3 *RENAME*

Renames an element. The arguments are enclosed in double quotes and are the original
name and the new name.

{*RENAME’l< “old” “new”

Appendix G: Action Reference 112

Appendix G Action Reference

Many actions take a delta parameter as the last parameter, which is an amount to
change something. That delta may include units, as an additional parameter, such as
Action(Object,5,mm). If no units are specified, the default is PCB’s native units (cur-
rently 1/100 mil). Also, if the delta is prefixed by + or -, the size is increased or decreased
by that amount. Otherwise, the size size is set to the given amount.

Action(Object,5,mil)
Action(Object,+0.5,mm)
Action(Object,-1)

Actions which take a delta parameter which do not accept all these options will specify
what they do take.

Many actions act on indicated objects on the board. They will have parameters like
ToggleObject or SelectedVias to indicate what group of objects they act on. Unless
otherwise specified, these parameters are defined as follows:

Object

ToggleObject
Affects the object under the mouse pointer. If this action is invoked from a
menu or script, the user will be prompted to click on an object, which is then
the object affected.

Selected

SelectedObjects
Affects all objects which are currently selected. At least, all selected objects
for which the given action makes sense.

SelectedPins

SelectedVias

SelectedType

etc Affects all objects which are both selected and of the Type specified.

G.1 Core actions

G.1.1 AddRats

[N_("AddRats(AllRats | SelectedRats | Close)");

N_("Add one or more rat lines to the board.");
All1Rats Create rat lines for all loaded nets that aren’t already connected on with copper.

SelectedRats
Similarly, but only add rat lines for nets connected to selected pins and pads.

Close Selects the shortest unselected rat on the board.

Appendix G: Action Reference 113

G.1.2 ApplyVendor

[N_("ApplyVendor()");

N_("Applies the currently loaded vendor drill table to the current design.");

This will modify all of your drill holes to match the list of allowed sizes for your vendor.

G.1.3 Atomic

[N_(" Atomic(Save | Restore | Close | Block)");

N_("Save or restore the undo serial number.");

This action allows making multiple-action bindings into an atomic operation that will
be undone by a single Undo command. For example, to optimize rat lines, you’d delete the
rats and re-add them. To group these into a single undo, you’d want the deletions and the
additions to have the same undo serial number. So, you Save, delete the rats, Restore,
add the rats - using the same serial number as the deletes, then Block, which checks to see
if the deletions or additions actually did anything. If not, the serial number is set to the
saved number, as there’s nothing to undo. If something did happen, the serial number is
incremented so that these actions are counted as a single undo step.

Save Saves the undo serial number.
Restore Returns it to the last saved number.
Close Sets it to 1 greater than the last save.

Block Does a Restore if there was nothing to undo, else does a Close.

G.1.4 Attributes

N_("Attributes(Layout | Layer | Element)
Attributes(Layer,layername)");

N_("Let the user edit the attributes of the layout, current or given layer, or selected
element.");

This just pops up a dialog letting the user edit the attributes of the pcb, an element, or
a layer.

G.1.5 AutoPlaceSelected

[N_("AutoPlaceSelected()");

N_("Auto-place selected components.");

Attempts to re-arrange the selected components such that the nets connecting them are
minimized. Note that you cannot undo this.

Appendix G: Action Reference 114

G.1.6 AutoRoute

[N_(" AutoRoute(AllRats | SelectedRats)");

N_("Auto-route some or all rat lines.");
AllRats Attempt to autoroute all rats.

SelectedRats
Attempt to autoroute the selected rats.

Before autorouting, it’s important to set up a few things. First, make sure any layers you
aren’t using are disabled, else the autorouter may use them. Next, make sure the current
line and via styles are set accordingly. Last, make sure "new lines clear polygons" is set, in
case you eventually want to add a copper pour.

Autorouting takes a while. During this time, the program may not be responsive.

G.1.7 ChangeClearSize

N_("ChangeClearSize(Object, delta)
ChangeClearSize(SelectedPins | SelectedPads | Selected Vias, delta)
ChangeClearSize(SelectedLines| Selected Arcs, delta
ChangeClearSize(Selected | SelectedObjects, delta)");

N_("Changes the clearance size of objects.");

If the solder mask is currently showing, this action changes the solder mask clearance.
If the mask is not showing, this action changes the polygon clearance.

G.1.8 ChangeDrillSize

N_("ChangeDrillSize(Object, delta)
ChangeDrillSize(SelectedPins | Selected Vias | Selected | SelectedObjects, delta)");

N_("Changes the drilling hole size of objects.");

G.1.9 ChangeFlag

-
N_("ChangeFlag(Object | Selected | SelectedObjects, flag, value)

ChangeFlag(SelectedLines | SelectedPins | Selected Vias, flag, value)

ChangeFlag(SelectedPads| Selected Texts | SelectedNames, flag, value)

ChangeFlag(SelectedElements, flag, value)

flag = square | octagon | thermal | join

value =0 | 1");

-

N_("Sets or clears flags on objects.");

Appendix G: Action Reference 115

Toggles the given flag on the indicated object(s). The flag may be one of the flags listed
above (square, octagon, thermal, join). The value may be the number 0 or 1. If the value
is 0, the flag is cleared. If the value is 1, the flag is set.

G.1.10 ChangeHole

[N_("ChangeHole(ToggleObject | Object | Selected Vias | Selected)");

N_("Changes the hole flag of objects.");

The "hole flag" of a via determines whether the via is a plated-through hole (not set),
or an unplated hole (set).

G.1.11 ChangeJoin

[N_("ChangeJoin(ToggleObject | SelectedLines | Selected Arcs | Selected)");

N_("Changes the join (clearance through polygons) of objects.");

The join flag determines whether a line or arc, drawn to intersect a polygon, electrically
connects to the polygon or not. When joined, the line/arc is simply drawn over the polygon,
making an electrical connection. When not joined, a gap is drawn between the line and the
polygon, insulating them from each other.

G.1.12 ChangeName

N_("ChangeName(Object)
ChangeName(Layout | Layer)");

N_("Sets the name of objects.");
Object Changes the name of the element under the cursor.
Layout Changes the name of the layout. This is printed on the fab drawings.

Layer Changes the name of the currently active layer.

G.1.13 ChangeOctagon

N_("ChangeOctagon(Object | ToggleObject | SelectedObjects | Selected)
ChangeOctagon(SelectedElements | SelectedPins | Selected Vias)");

N_("Changes the octagon-flag of pins and vias.");

Pins, pads, and vias can have various shapes. All may be round. Pins and pads may be
square (obviously "square" pads are usually rectangular). Pins and vias may be octagonal.
When you change a shape flag of an element, you actually change all of its pins and pads.

Note that the square flag takes precedence over the octagon flag, thus, if both the square
and octagon flags are set, the object is square. When the square flag is cleared, the pins
and pads will be either round or, if the octagon flag is set, octagonal.

Appendix G: Action Reference 116

G.1.14 ChangePaste

[N_("ChangePaste(ToggleObject | Object | SelectedPads | Selected)");

N_("Changes the no paste flag of objects.");

The "no paste flag" of a pad determines whether the solderpaste stencil will have an
opening for the pad (no set) or if there wil be no solderpaste on the pad (set). This is used
for things such as fiducial pads.

G.1.15 ChangePinName

[N_("ChangePinName(ElementName,PinNumber,PinName)");

N_("Sets the name of a specific pin on a specific element.");

This can be especially useful for annotating pin names from a schematic to the layout
without requiring knowledge of the pcb file format.

ChangePinName (U3, 7, VCC)

G.1.16 ChangeSize

-
N_("ChangeSize(Object, delta)
ChangeSize(SelectedObjects | Selected, delta)
ChangeSize(SelectedLines | SelectedPins | Selected Vias, delta)
ChangeSize(SelectedPads| Selected Texts | SelectedNames, delta)
(

ChangeSize(SelectedElements, delta)");
N

N_("Changes the size of objects.");

For lines and arcs, this changes the width. For pins and vias, this changes the overall
diameter of the copper annulus. For pads, this changes the width and, indirectly, the length.
For texts and names, this changes the scaling factor. For elements, this changes the width
of the silk layer lines and arcs for this element.

G.1.17 ChangeSquare

N_("ChangeSquare(ToggleObject)
ChangeSquare(SelectedElements | Selected Pins)
ChangeSquare(Selected | SelectedObjects)");

N_("Changes the square flag of pins and pads.");
Note that Pins means both pins and pads.

Pins, pads, and vias can have various shapes. All may be round. Pins and pads may be
square (obviously "square" pads are usually rectangular). Pins and vias may be octagonal.
When you change a shape flag of an element, you actually change all of its pins and pads.

Appendix G: Action Reference 117

Note that the square flag takes precedence over the octagon flag, thus, if both the square
and octagon flags are set, the object is square. When the square flag is cleared, the pins
and pads will be either round or, if the octagon flag is set, octagonal.

G.1.18 ClearOctagon

N_("ClearOctagon(ToggleObject | Object | SelectedObjects | Selected)
ClearOctagon(SelectedElements | SelectedPins | Selected Vias)");

N_("Clears the octagon-flag of pins and vias.");

Pins, pads, and vias can have various shapes. All may be round. Pins and pads may be
square (obviously "square" pads are usually rectangular). Pins and vias may be octagonal.
When you change a shape flag of an element, you actually change all of its pins and pads.

Note that the square flag takes precedence over the octagon flag, thus, if both the square
and octagon flags are set, the object is square. When the square flag is cleared, the pins
and pads will be either round or, if the octagon flag is set, octagonal.

G.1.19 ClearSquare

[N_("ClearSquare(ToggleObject | SelectedElements | SelectedPins)");

N_("Clears the square-flag of pins and pads.");
Note that Pins means pins and pads.

Pins, pads, and vias can have various shapes. All may be round. Pins and pads may be
square (obviously "square" pads are usually rectangular). Pins and vias may be octagonal.
When you change a shape flag of an element, you actually change all of its pins and pads.

Note that the square flag takes precedence over the octagon flag, thus, if both the square
and octagon flags are set, the object is square. When the square flag is cleared, the pins
and pads will be either round or, if the octagon flag is set, octagonal.

G.1.20 ClrFlag

~
N_("ClrFlag(Object | Selected | SelectedObjects, flag)
ClrFlag(SelectedLines | SelectedPins | Selected Vias, flag)
ClrFlag(SelectedPads| Selected Texts | SelectedNames, flag)
ClrFlag(SelectedElements, flag)

flag = square | octagon | thermal | join");
N

N_("Clears flags on objects.");
Turns the given flag off, regardless of its previous setting. See ChangeFlag.

ClrFlag(SelectedLines, join)

Appendix G: Action Reference 118

G.1.21 Connection

[N_("Connection(Find | ResetLinesAndPolygons | ResetPinsAndVias | Reset)");

N_("Searches connections of the object at the cursor position.");

Connections found with this action will be highlighted in the “connected-color” color
and will have the “found” flag set.

Find The net under the cursor is “found”.

ResetLinesAndPolygons
Any “found” lines and polygons are marked “not found”.

ResetPinsAndVias
Any “found” pins and vias are marked “not found”.

Reset All “found” objects are marked “not found”.

G.1.22 Delete

N_("Delete(Object | Selected)
Delete(AllRats | SelectedRats)");

N_("Delete stuff.");
G.1.23 DeleteRats

[N_("DeleteRats(AllRats | Selected | SelectedRats)");

N_("Delete rat lines.");

G.1.24 DisableVendor

[N_("DisableVendor()");

N_("Disables automatic drill size mapping.");

When drill mapping is enabled, new instances of pins and vias will have their drill holes
mapped to one of the allowed drill sizes specified in the currently loaded vendor drill table.

G.1.25 DisperseElements

[N_(uDisperseElements(All | Selected) n);

N_("Disperses elements.");

Normally this is used when starting a board, by selecting all elements and then dispersing
them. This scatters the elements around the board so that you can pick individual ones,
rather than have all the elements at the same 0,0 coordinate and thus impossible to choose
from.

Appendix G: Action Reference 119

G.1.26 Display

-
N_("Display(NameOnPCB | Description | Value)
Display(Grid | Redraw)
Display(CycleClip | CycleCrosshair | Toggled5Degree | ToggleStartDirection)
Display(ToggleGrid | ToggleRubberBandMode | ToggleUniqueNames)
Display(ToggleMask | ToggleName | ToggleClearLine | ToggleFullPoly | ToggleSnapPin)
Display(ToggleThindraw | Toggle ThindrawPoly | ToggleOrthoMove | ToggleLocalRef)
Display(ToggleCheckPlanes | ToggleShowDRC | Toggle AutoDRC)
Display(ToggleLiveRoute | LockNames | OnlyNames)
(

Display(Pinout | PinOrPadName)");
k

N_("Several display-related actions.");

NameOnPCB
Description
Value Specify whether all elements show their name, description, or value.

Redraw Redraw the whole board.

ToggledbDegree
When clear, lines can be drawn at any angle. When set, lines are restricted to
multiples of 45 degrees and requested lines may be broken up according to the
clip setting.

CycleClip
Changes the way lines are restricted to 45 degree increments. The various
settings are: straight only, orthogonal then angled, and angled then orthogonal.
If AllDirections is set, this action disables it.

CycleCrosshair
Changes crosshair drawing. Crosshair may accept form of 4-ray, 8-ray and
12-ray cross.

ToggleRubberBandMode
If set, moving an object moves all the lines attached to it too.

ToggleStartDirection
If set, each time you set a point in a line, the Clip toggles between orth-angle
and angle-ortho.

ToggleUniqueNames
If set, you will not be permitted to change the name of an element to match
that of another element.

ToggleSnapPin
If set, pin centers and pad end points are treated as additional grid points that
the cursor can snap to.

ToggleLocalRef

If set, the mark is automatically set to the beginning of any move, so you can
see the relative distance you’ve moved.

Appendix G: Action Reference 120

ToggleThindraw
If set, objects on the screen are drawn as outlines (lines are drawn as center-
lines). This lets you see line endpoints hidden under pins, for example.

ToggleThindrawPoly
If set, polygons on the screen are drawn as outlines.

ToggleShowDRC
If set, pending objects (i.e. lines you're in the process of drawing) will be drawn
with an outline showing how far away from other copper you need to be.

ToggleLiveRoute
If set, the progress of the autorouter will be visible on the screen.

ToggleAutoDRC
If set, you will not be permitted to make connections which violate the current
DRC and netlist settings.

ToggleCheckPlanes
If set, lines and arcs aren’t drawn, which usually leaves just the polygons. If
you also disable all but the layer you're interested in, this allows you to check
for isolated regions.

ToggleOrthoMove
If set, the crosshair is only allowed to move orthogonally from its previous
position. Le. you can move an element or line up, down, left, or right, but not
up+left or down+right.

ToggleName
Selects whether the pinouts show the pin names or the pin numbers.

ToggleLockNames
If set, text will ignore left mouse clicks and actions that work on objects under
the mouse. You can still select text with a lasso (left mouse drag) and perform
actions on the selection.

ToggleOnlyNames
If set, only text will be sensitive for mouse clicks and actions that work on
objects under the mouse. You can still select other objects with a lasso (left
mouse drag) and perform actions on the selection.

ToggleMask
Turns the solder mask on or off.

ToggleClearLine
When set, the clear-line flag causes new lines and arcs to have their “clear
polygons” flag set, so they won’t be electrically connected to any polygons they
overlap.

ToggleFullPoly
When set, the full-poly flag causes new polygons to have their “full polygon”
flag set, so all parts of them will be displayed instead of only the biggest one.

Appendix G: Action Reference 121

ToggleGrid
Resets the origin of the current grid to be wherever the mouse pointer is (not
where the crosshair currently is). If you provide two numbers after this, the
origin is set to that coordinate.

Grid Toggles whether the grid is displayed or not.

Pinout Causes the pinout of the element indicated by the cursor to be displayed, usually
in a separate window.

PinOrPadName
Toggles whether the names of pins, pads, or (yes) vias will be displayed. If the
cursor is over an element, all of its pins and pads are affected.

G.1.27 djopt

djopt(debumpify | unjaggy | simple | vianudge | viatrim | orthopull | splitlines)
djopt(auto) - all of the above
djopt(miter)

Perform various optimizations on the current board.

The different types of optimizations change your board in order to reduce the total trace
length and via count.

debumpify
Looks for U-shaped traces that can be shortened or eliminated.

unjaggy Looks for corners which could be flipped to eliminate one or more corners (i.e.
jaggy lines become simpler).

simple Removing uneeded vias, replacing two or more trace segments in a row with a
single segment. This is usually performed automatically after other optimiza-
tions.

vianudge Looks for vias where all traces leave in the same direction. Tries to move via
in that direction to eliminate one of the traces (and thus a corner).

viatrim Looks for traces that go from via to via, where moving that trace to a different
layer eliminates one or both vias.

orthopull
Looks for chains of traces all going in one direction, with more traces orthogonal
on one side than on the other. Moves the chain in that direction, causing a net
reduction in trace length, possibly eliminating traces and/or corners.

splitlines
Looks for lines that pass through vias, pins, or pads, and splits them into
separate lines so they can be managed separately.

auto Performs the above options, repeating until no further optimizations can be
made.

miter Replaces 90 degree corners with a pair of 45 degree corners, to reduce RF losses

and trace length.

Appendix G: Action Reference 122

G.1.28 DRC

[N-("DRC()");]

N_("Invoke the DRC check.");

Note that the design rule check uses the current board rule settings, not the current
style settings.

G.1.29 DumpLibrary

[N_("DumpLibrary()"); }

N_("Display the entire contents of the libraries.");
G.1.30 elementlist

[N_("ElementList(Start | Done | Need,<refdes>,<footprint>,<value>)");

N_("Adds the given element if it doesn’t already exist.");
Start Indicates the start of an element list; call this before any Need actions.

Need Searches the board for an element with a matching refdes.

If found, the value and footprint are updated.

If not found, a new element is created with the given footprint and value.
Done Compares the list of elements needed since the most recent start with the

list of elements actually on the board. Any elements that weren’t listed are
selected, so that the user may delete them.

G.1.31 elementsetattr

[N_("ElementSetAttr(refdes,name|,value])");

N_("Sets or clears an element-specific attribute.");

If a value is specified, the named attribute is added (if not already present) or changed
(if it is) to the given value. If the value is not specified, the given attribute is removed if
present.

G.1.32 EnableVendor

[N_("EnableVendor()");]

N_("Enables automatic drill size mapping.");

When drill mapping is enabled, new instances of pins and vias will have their drill holes
mapped to one of the allowed drill sizes specified in the currently loaded vendor drill table.
To enable drill mapping, a vendor resource file containing a drill table must be loaded first.

Appendix G: Action Reference 123

G.1.33 execcommand

[N_("ExecCommand(command)"); J

N_("Runs a command.");

Runs the given command, which is a system executable.

G.1.34 ExecuteFile

[N_("ExecuteFile(filename)"); J

N_("Run actions from the given file.");

Lines starting with # are ignored.

G.1.35 Flip

[N_("Flip(Object | Selected | SelectedElements)");]

N_("Flip an element to the opposite side of the board.");

Note that the location of the element will be symmetric about the cursor location; i.e. if
the part you are pointing at will still be at the same spot once the element is on the other
side. When flipping multiple elements, this retains their positions relative to each other,
not their absolute positions on the board.

G.1.36 FontEdit

[FontEdit 0 }

Convert the current font to a PCB for editing.

G.1.37 FontSave

[Font Save() j

Convert the current PCB back to a font.

G.1.38 FreeRotateBuffer

[N_("FreeRotateBuffer([Angle])"); }

N_("Rotates the current paste buffer contents by the specified angle. The angle is given
in degrees. If no angle is given, the user is prompted for one. ");

Rotates the contents of the pastebuffer by an arbitrary angle. If no angle is given, the
user is prompted for one.

Appendix G: Action Reference 124

G.1.39 GlobalPuller

[GlobalPuller()

Pull all traces tight.

G.1.40 h

Print a help message for commands.

Gl

This is one of the command box helper actions. While it is a regular action and can be
used like any other action, its name and syntax are optimized for use with the command
box (:) and thus the syntax is documented for that purpose.

G.1.41 Import

-
N_("Import()
Import([gnetlist | make[,source,source,...]])
Import(setnewpoint[,(mark | center | X,Y)])
Import(setdisperse,D,units)
n) :

N

N_("Import schematics.");

Imports element and netlist data from the schematics (or some other source). The first
parameter, which is optional, is the mode. If not specified, the import: :mode attribute
in the PCB is used. gnetlist means gnetlist is used to obtain the information from the
schematics. make invokes make, assuming the user has a Makefile in the current directory.
The Makefile will be invoked with the following variables set:

PCB The name of the .pcb file
SRCLIST A space-separated list of source files

ouT The name of the file in which to put the command script, which may contain
any Pcb actions. By default, this is a temporary file selected by Pcb, but if you
specify an import::outfile attribute, that file name is used instead (and not
automatically deleted afterwards).
The target specified to be built is the first of these that apply:

e The target specified by an import: :target attribute.

e The output file specified by an import: :outfile attribute.

e If nothing else is specified, the target is pcb_import.

If you specify an import: :makefile attribute, then "-f <that file>" will be added to the
command line.

Appendix G: Action Reference 125

If you specify the mode, you may also specify the source files (schematics). If you do
not specify any, the list of schematics is obtained by reading the import::srckN attributes
(like import: :src0, import: :srcl, etc).

For compatibility with future extensions to the import file format, the generated file
must not start with the two characters #,.

If a temporary file is needed the TMPDIR environment variable is used to select its location.

Note that the programs gnetlist and make may be overridden by the user via the
make-program and gnetlist pcb settings (i.e. in ~/.pcb/settings or on the command
line).

If Pcb cannot determine which schematic(s) to import from, the GUI is called to let user
choose (see ImportGUIQ)).

Note that Import() doesn’t delete anything - after an Import, elements which shouldn’t
be on the board are selected and may be removed once it’s determined that the deletion is
appropriate.

If Import () is called with setnewpoint, then the location of new components can be
specified. This is where parts show up when they’re added to the board. The default is the
center of the board.

Import (setnewpoint)
Prompts the user to click on the board somewhere, uses that point. If called
by a hotkey, uses the current location of the crosshair.

Import (setnewpoint ,mark)
Uses the location of the mark. If no mark is present, the point is not changed.

Import (setnewpoint,center)
Resets the point to the center of the board.

Import (setnewpoint,X,Y,units)
Sets the point to the specific coordinates given. Example:
Import (setnewpoint,50,25,mm)

Note that the X and Y locations are stored in attributes named import::newX and
import: :newY so you could change them manually if you wished.

Calling Import(setdisperse,D,units) sets how much the newly placed elements are
dispersed relative to the set point. For example, Import (setdisperse,10,mm) will offset
each part randomly up to 10mm away from the point. The default dispersion is 1/10th of
the smallest board dimension. Dispersion is saved in the import: :disperse attribute.

G.1.42 1

[1 [name]

Loads layout data.

Loads a new datafile (layout) and, if confirmed, overwrites any existing unsaved data.
The filename and the searchpath (filePath) are passed to the command defined by fileCom-
mand. If no filename is specified a file select box will popup.

Appendix G: Action Reference 126

This is one of the command box helper actions. While it is a regular action and can be
used like any other action, its name and syntax are optimized for use with the command
box (:) and thus the syntax is documented for that purpose.

G.1.43 le

Ee [name] }

Loads an element into the current buffer.

The filename and the searchpath (elementPath) are passed to the command defined by
elementCommand. If no filename is specified a file select box will popup.

This is one of the command box helper actions. While it is a regular action and can be
used like any other action, its name and syntax are optimized for use with the command
box (:) and thus the syntax is documented for that purpose.

G.1.44 LoadFootprint

[N_("LoadFootprint(filename|,refdes,value|)"); }

N_("Loads a single footprint by name.");

Loads a single footprint by name, rather than by reference or through the library. If a
refdes and value are specified, those are inserted into the footprint as well. The footprint
remains in the paste buffer.

G.1.45 LoadFrom

[N_("LoadFrom(Layout | Layout ToBuffer | Element ToBuffer | Netlist | Revert,filename)"); }

N_("Load layout data from a file.");

This action assumes you know what the filename is. The various GUIs should have a
similar Load action where the filename is optional, and will provide their own file selection
mechanism to let you choose the file name.

Layout Loads an entire PCB layout, replacing the current one.

LayoutToBuffer
Loads an entire PCB layout to the paste buffer.

ElementToBuffer
Loads the given element file into the paste buffer. Element files contain only a
single Element definition, such as the “newlib” library uses.

Netlist Loads a new netlist, replacing any current netlist.

Revert Re-loads the current layout from its disk file, reverting any changes you may
have made.

Appendix G: Action Reference 127

G.1.46 LoadVendorFrom

[N_("LoadVendorFrom(filename)");

N_("Loads the specified vendor resource file.");

filename Name of the vendor resource file. If not specified, the user will be prompted to
enter one.

G.1.47 m

[m [name]

Loads a layout into the current buffer.

The filename and the searchpath (filePath) are passed to the command defined by
fileCommand. If no filename is specified a file select box will popup.

This is one of the command box helper actions. While it is a regular action and can be
used like any other action, its name and syntax are optimized for use with the command
box (:) and thus the syntax is documented for that purpose.

G.1.48 MarkCrosshair

N_("MarkCrosshair()
MarkCrosshair(Center)");

N_("Set/Reset the Crosshair mark.");

The “mark” is a small X-shaped target on the display which is treated like a second
origin (the normal origin is the upper let corner of the board). The GUI will display a
second set of coordinates for this mark, which tells you how far you are from it.

If no argument is given, the mark is toggled - disabled if it was enabled, or enabled at
the current cursor position of disabled. If the Center argument is given, the mark is moved
to the current cursor location.

G.1.49 Message

[N_("Message(message)");

N_("Writes a message to the log window.");

This action displays a message to the log window. This action is primarily provided for
use by other programs which may interface with PCB. If multiple arguments are given, each
one is sent to the log window followed by a newline.

Appendix G: Action Reference 128

G.1.50 MinClearGap

N_("MinClearGap(delta)
MinClearGap(Selected, delta)");

N_("Ensures that polygons are a minimum distance from objects.");

Checks all specified objects, and increases the polygon clearance if needed to ensure a
minimum distance between their edges and the polygon edges.

G.1.51 MinMaskGap

N_("MinMaskGap(delta)
MinMaskGap(Selected, delta)");

N_("Ensures the mask is a minimum distance from pins and pads.");

Checks all specified pins and/or pads, and increases the mask if needed to ensure a
minimum distance between the pin or pad edge and the mask edge.

G.1.52 Mode

N_("Mode(Arc| Arrow | Copy | InsertPoint | Line | Lock | Move | None | PasteBuffer)
Mode(Polygon | Rectangle | Remove | Rotate | Text | Thermal | Via)
Mode(Notify | Release | Cancel | Stroke)
Mode(Save | Restore)");

N_("Change or use the tool mode.");

Arc

Arrow

Copy
InsertPoint
Line

Lock

Move

None
PasteBuffer
Polygon
Rectangle
Remove
Rotate

Text
Thermal

Via Select the indicated tool.

Notify Called when you press the mouse button, or move the mouse.

Release Called when you release the mouse button.

Appendix G: Action Reference 129

Cancel Cancels any pending tool activity, allowing you to restart elsewhere. For exam-
ple, this allows you to start a new line rather than attach a line to the previous
line.

Escape Similar to Cancel but calling this action a second time will return to the Arrow
tool.

Stroke If your pcb was built with libstroke, this invokes the stroke input method. If
not, this will restart a drawing mode if you were drawing, else it will select
objects.

Save Remembers the current tool.

Restore Restores the tool to the last saved tool.

G.1.53 MorphPolygon

[N_(" MorphPolygon(ObjeCt | Selected) ")7 j

N_("Converts dead polygon islands into separate polygons.");

If a polygon is divided into unconnected "islands", you can use this command to convert
the otherwise disappeared islands into separate polygons. Be sure the cursor is over a
portion of the polygon that remains visible. Very small islands that may flake off are
automatically deleted.

G.1.54 MoveLayer

[MoveLayer(old,new) }

Moves/Creates/Deletes Layers.

Moves a layer, creates a new layer, or deletes a layer.

old The is the layer number to act upon. Allowed values are:
c Currently selected layer.
-1 Create a new layer.
number An existing layer number.

new Specifies where to move the layer to. Allowed values are:
-1 Deletes the layer.
up Moves the layer up.
down Moves the layer down.

c Creates a new layer.

Appendix G: Action Reference 130

G.1.55 MoveObject

[N_("MoveObject(X,Y,dim)");

N_("Moves the object under the crosshair.");

The X and Y are treated like delta is for many other objects. For each, if it’s prefixed
by + or -, then that amount is relative. Otherwise, it’s absolute. Units can be mil or mm;
if unspecified, units are PCB’s internal units, currently 1/100 mil.

G.1.56 MoveToCurrentLayer

[N_("MoveToCurrentLayer(Object | SelectedObjects)"); }

N_("Moves objects to the current layer.");

Note that moving an element from a component layer to a solder layer, or from solder
to component, won’t automatically flip it. Use the F1ip() action to do that.

G.1.57 Netlist

Net(find |select | rats | norats | clear|,net[,pin]])
Net(freeze | thaw | forcethaw)
Net(add,net,pin)

Perform various actions on netlists.

Each of these actions apply to a specified set of nets. net and pin are patterns which
match one or more nets or pins; these patterns may be full names or regular expressions. If
an exact match is found, it is the only match; if no exact match is found, then the pattern
is tried as a regular expression.

If neither net nor pin are specified, all nets apply. If net is specified but not pin, all nets
matching net apply. If both are specified, nets which match net and contain a pin matching

pin apply.

find Nets which apply are marked found and are drawn in the connected-color
color.

select Nets which apply are selected.

rats Nets which apply are marked as available for the rats nest.
norats Nets which apply are marked as not available for the rats nest.
clear Clears the netlist.

add Add the given pin to the given netlist, creating either if needed.

sort Called after a list of add’s, this sorts the netlist.

Appendix G: Action Reference 131

freeze

thaw

forcethaw
Temporarily prevents changes to the netlist from being reflected in the GUI. For
example, if you need to make multiple changes, you freeze the netlist, make the
changes, then thaw it. Note that freeze/thaw requests may nest, with the netlist
being fully thawed only when all pending freezes are thawed. You can bypass
the nesting by using forcethaw, which resets the freeze count and immediately
updates the GUI.

G.1.58 New

[N_("New([name]) ");

N_("Starts a new layout.");

If a name is not given, one is prompted for.

G.1.59 OptAutoOnly

[OptAutoOnly()

Toggles the optimize-only-autorouted flag.

The original purpose of the trace optimizer was to clean up the traces created by the
various autorouters that have been used with PCB. When a board has a mix of autorouted
and carefully hand-routed traces, you don’t normally want the optimizer to move your hand-
routed traces. But, sometimes you do. By default, the optimizer only optimizes autorouted
traces. This action toggles that setting, so that you can optimize hand-routed traces also.

G.1.60 PasteBuffer

N_("PasteBuffer(AddSelected | Clear | 1.MAX_BUFFER)
PasteBuffer(Rotate, 1..3)
PasteBuffer(Convert | Save | Restore | Mirror)
PasteBuffer(ToLayout, X, Y, units)");

N_("Various operations on the paste buffer.");

There are a number of paste buffers; the actual limit is a compile-time constant MAX_
BUFFER in ‘globalconst.h’. It is currently 5. One of these is the “current” paste buffer,
often referred to as “the” paste buffer.

AddSelected
Copies the selected objects to the current paste buffer.

Clear Remove all objects from the current paste buffer.

Convert Convert the current paste buffer to an element. Vias are converted to pins,
lines are converted to pads.

Appendix G: Action Reference 132

Restore Convert any elements in the paste buffer back to vias and lines.

Mirror Flip all objects in the paste buffer vertically (up/down flip). To mirror hori-
zontally, combine this with rotations.

Rotate Rotates the current buffer. The number to passis 1..3, where 1 means 90 degrees
counter clockwise, 2 means 180 degrees, and 3 means 90 degrees clockwise (270
CCW).

Save Saves any elements in the current buffer to the indicated file.

ToLayout Pastes any elements in the current buffer to the indicated X, Y coordinates in
the layout. The X and Y are treated like delta is for many other objects. For
each, if it’s prefixed by + or -, then that amount is relative to the last location.
Otherwise, it’s absolute. Units can be mil or mm; if unspecified, units are PCB’s
internal units, currently 1/100 mil.

1. .MAX_BUFFER
Selects the given buffer to be the current paste buffer.

G.1.61 Polygon

[N_("Polygon(Close | PreviousPoint)");

N_("Some polygon related stuff.");

Polygons need a special action routine to make life easier.

Close Creates the final segment of the polygon. This may fail if clipping to 45 degree
lines is switched on, in which case a warning is issued.

PreviousPoint
Resets the newly entered corner to the previous one. The Undo action will call
Polygon(PreviousPoint) when appropriate to do so.

G.1.62 Puller

[Puller()

Pull an arc-line junction tight.

The Puller() action is a special-purpose optimization. When invoked while the
crosshair is over the junction of an arc and a line, it will adjust the arc’s angle and the
connecting line’s endpoint such that the line intersects the arc at a tangent. In the example
below, the left side is “before” with the black target marking where to put the crosshair:

NOSGS

The right side is “after” with the black target marking where the arc-line intersection
was moved to.

Appendix G: Action Reference 133

G.1.63 q

«

Quits the application after confirming.
If you have unsaved changes, you will be prompted to confirm (or save) before quitting.

This is one of the command box helper actions. While it is a regular action and can be
used like any other action, its name and syntax are optimized for use with the command
box (:) and thus the syntax is documented for that purpose.

G.1.64 q!

\

Quits the application without confirming.
Note that this command neither saves your data nor prompts for confirmation.

This is one of the command box helper actions. While it is a regular action and can be
used like any other action, its name and syntax are optimized for use with the command
box (:) and thus the syntax is documented for that purpose.

G.1.65 Quit

[N—("Quit()“);

N_("Quits the application after confirming.");
If you have unsaved changes, you will be prompted to confirm (or save) before quitting.

G.1.66 Redo

[N-("RedO()");

N_("Redo recent “undo” operations.");

This routine allows you to recover from the last undo command. You might want to do
this if you thought that undo was going to revert something other than what it actually
did (in case you are confused about which operations are un-doable), or if you have been
backing up through a long undo list and over-shoot your stopping point. Any change that
is made since the undo in question will trim the redo list. For example if you add ten lines,
then undo three of them you could use redo to put them back, but if you move a line on the
board before performing the redo, you will lose the ability to "redo" the three "undone"
lines.

G.1.67 RemoveSelected

[N_("RemoveSelected()");

Appendix G: Action Reference 134

N_("Removes any selected objects.");

G.1.68 Renumber

N_("Renumber()
Renumber(filename)");

N_("Renumber all elements. The changes will be recorded to filename for use in back-
annotating these changes to the schematic.");

G.1.69 Report

[N_("Report(Object | DrillReport | FoundPins | NetLength | AllNetLengths | [,;name])"); }

N_("Produce various report.");

Object The object under the crosshair will be reported, describing various aspects of
the object.
DrillReport

A report summarizing the number of drill sizes used, and how many of each,
will be produced.

FoundPins
A report listing all pins and pads which are marked as “found” will be produced.

NetLength
The name and length of the net under the crosshair will be reported to the
message log.

AllNetLengths
The name and length of the net under the crosshair will be reported to the
message log. An optional parameter specifies mm, mil, pcb, or in units

G.1.70 ReportDialog

[N_("ReportDialog()"); }

N_("Report on the object under the crosshair");
This is a shortcut for Report (Object).

G.1.71 RipUp

[N_("RipUp(All|Selected | Element)"); }

N_("Ripup auto-routed tracks, or convert an element to parts.");

A1l Removes all lines and vias which were created by the autorouter.

Appendix G: Action Reference 135

Selected Removes all selected lines and vias which were created by the autorouter.

Element Converts the element under the cursor to parts (vias and lines). Note that this
uses the highest numbered paste buffer.

G.1.72 rn

[rn [name]

Reads netlist.

If no filename is given a file select box will pop up. The file is read via the command
defined by the RatCommand resource. The command must send its output to stdout.

Netlists are used for generating rat’s nests (see Section 3.12 [Rats Nest], page 30) and
for verifying the board layout (which is also accomplished by the Ratsnest command).

This is one of the command box helper actions. While it is a regular action and can be
used like any other action, its name and syntax are optimized for use with the command
box (:) and thus the syntax is documented for that purpose.

G.1.73 RouteStyle

[N_("RouteStyle(l [21314)");

N_("Copies the indicated routing style into the current sizes.");

G.1.74 s

[s [name]

Saves layout data.

Data and the filename are passed to the command defined by the resource save Command.
It must read the layout data from stdin. If no filename is entered, either the last one is used
again or, if it is not available, a file select box will pop up.

This is one of the command box helper actions. While it is a regular action and can be
used like any other action, its name and syntax are optimized for use with the command
box (:) and thus the syntax is documented for that purpose.

G.1.75 SaveSettings

N_("SaveSettings()
SaveSettings(local)");

N_("Saves settings.");

If you pass no arguments, the settings are stored in $HOME/ .pcb/settings. If you pass
the word local they’re saved in ./pcb.settings.

Appendix G: Action Reference 136

G.1.76 SaveTo

N_("SaveTo(Layout | LayoutAs,filename)
SaveTo(AllConnections | AllUnusedPins | Element Connections,filename)
SaveTo(PasteBuffer,filename)");

N_("Saves data to a file.");
Layout Saves the current layout.
LayoutAs Saves the current layout, and remembers the filename used.

Al1Connections
Save all connections to a file.

Al1UnusedPins
List all unused pins to a file.

ElementConnections
Save connections to the element at the cursor to a file.

PasteBuffer
Save the content of the active Buffer to a file. This is the graphical way to
create a footprint.

G.1.77 Select

-
N_("Select(Object | ToggleObject)

Select(All| Block | Connection)
Select(ElementByName | ObjectByName | PadByName | PinByName)
Select(ElementByName | ObjectByName | PadByName | PinByName, Name)
Select(TextByName | ViaByName | NetByName)
Select(TextByName | ViaByName | NetByName, Name)
Select(Convert)");

N_("Toggles or sets the selection.");

ElementByName

ObjectByName

PadByName

PinByName

TextByName

ViaByName

NetByName
These all rely on having a regular expression parser built into pcb. If the name
is not specified then the user is prompted for a pattern, and all objects that
match the pattern and are of the type specified are selected.

Object

ToggleObject
Selects the object under the cursor.

Appendix G: Action Reference 137

Block Selects all objects in a rectangle indicated by the cursor.
A1l Selects all objects on the board.

Found Selects all connections with the “found” flag set.
Connection

Selects all connections with the “connected” flag set.

Convert Converts the selected objects to an element. This uses the highest numbered
paste buffer.

G.1.78 SetFlag

-
N_("SetFlag(Object | Selected | SelectedObjects, flag)
SetFlag(SelectedLines | SelectedPins | Selected Vias, flag)
SetFlag(SelectedPads | Selected Texts | SelectedNames, flag)
SetFlag(SelectedElements, flag)

flag = square | octagon | thermal | join");
k

N_("Sets flags on objects.");
Turns the given flag on, regardless of its previous setting. See ChangeFlag.

SetFlag(SelectedPins,thermal)

G.1.79 SetOctagon

[N_("SetOctagon(Object | ToggleObject | SelectedElements | Selected)");

N_("Sets the octagon-flag of objects.");

Pins, pads, and vias can have various shapes. All may be round. Pins and pads may be
square (obviously "square" pads are usually rectangular). Pins and vias may be octagonal.
When you change a shape flag of an element, you actually change all of its pins and pads.

Note that the square flag takes precedence over the octagon flag, thus, if both the square
and octagon flags are set, the object is square. When the square flag is cleared, the pins
and pads will be either round or, if the octagon flag is set, octagonal.

G.1.80 SetSame

[N_("SetSame()");

N_("Sets current layer and sizes to match indicated item.");

When invoked over any line, arc, polygon, or via, this changes the current layer to be
the layer that item is on, and changes the current sizes (thickness, keepaway, drill, etc)
according to that item.

Appendix G: Action Reference 138

G.1.81 SetSquare

[N_("SetSquare(ToggleObject | SelectedElements | SelectedPins)"); }

N_("sets the square-flag of objects.");
Note that Pins means pins and pads.

Pins, pads, and vias can have various shapes. All may be round. Pins and pads may be
square (obviously "square" pads are usually rectangular). Pins and vias may be octagonal.
When you change a shape flag of an element, you actually change all of its pins and pads.

Note that the square flag takes precedence over the octagon flag, thus, if both the square
and octagon flags are set, the object is square. When the square flag is cleared, the pins
and pads will be either round or, if the octagon flag is set, octagonal.

G.1.82 SetThermal

[SetThermal(Ob ject | SelectedPins | Selected Vias | Selected, Style) }

N_("Set the thermal (on the current layer) of pins or vias to the given style. Style = 0
means no thermal. Style = 1 has diagonal fingers with sharp edges. Style = 2 has horizontal
and vertical fingers with sharp edges. Style = 3 is a solid connection to the plane.Style = 4
has diagonal fingers with rounded edges. Style = 5 has horizontal and vertical fingers with
rounded edges. ");

This changes how/whether pins or vias connect to any rectangle or polygon on the
current layer. The first argument can specify one object, or all selected pins, or all selected
vias, or all selected pins and vias. The second argument specifies the style of connection.
There are 5 possibilities: 0 - no connection, 1 - 45 degree fingers with sharp edges, 2 -
horizontal & vertical fingers with sharp edges, 3 - solid connection, 4 - 45 degree fingers
with rounded corners, 5 - horizontal & vertical fingers with rounded corners.

Pins and Vias may have thermals whether or not there is a polygon available to connect
with. However, they will have no effect without the polygon.

G.1.83 SetValue

[N_("SetValue(Grid | Line | LineSize | Text | TextScale | ViaDrillingHole | Via | ViaSize, delta) "ﬂ

N_("Change various board-wide values and sizes.");

ViaDrillingHole

Changes the diameter of the drill for new vias.
Grid Sets the grid spacing.
Line

LineSize Changes the thickness of new lines.

Via

Appendix G: Action Reference 139

ViaSize Changes the diameter of new vias.
Text

TextScale
Changes the size of new text.

G.1.84 ToggleHideName

[N_("ToggleHideName(Object | SelectedElements)");

N_("Toggles the visibility of element names.");

If names are hidden you won’t see them on the screen and they will not appear on the
silk layer when you print the layout.

G.1.85 ToggleVendor

[N_("ToggleVendor()");

N_("Toggles the state of automatic drill size mapping.");

When drill mapping is enabled, new instances of pins and vias will have their drill holes
mapped to one of the allowed drill sizes specified in the currently loaded vendor drill table.
To enable drill mapping, a vendor resource file containing a drill table must be loaded first.

G.1.86 Undo

N_("Undo()
Undo(ClearList)");

N_("Undo recent changes.");

The unlimited undo feature of Pcb allows you to recover from most operations that
materially affect you work. Calling Undo() without any parameter recovers from the last
(non-undo) operation. ClearList is used to release the allocated memory. ClearList is
called whenever a new layout is started or loaded. See also Redo and Atomic.

Note that undo groups operations by serial number; changes with the same serial number
will be undone (or redone) as a group. See Atomic.

G.1.87 UnloadVendor

[N_("UnloadVendor()");

N_("Unloads the current vendor drill mapping table.");

Appendix G: Action Reference

G.1.88 Unselect

140

p
N_("Unselect(All| Block | Connection)
Unselect(ElementByName | ObjectByName | PadByName | PinByName)
Unselect (ElementByName | ObjectByName | PadByName | PinByName, Name)
Unselect(TextByName | ViaByName)
Unselect(TextByName | ViaByName, Name)
");

=

N_("Unselects the object at the pointer location or the specified objects.");

A1l Unselect all objects.
Block Unselect all objects in a rectangle given by the cursor.
Connection

Unselect all connections with the “found” flag set.

ElementByName
ObjectByName
PadByName
PinByName
TextByName
ViaByName

These all rely on having a regular expression parser built into pcb. If the name
is not specified then the user is prompted for a pattern, and all objects that

match the pattern and are of the type specified are unselected.

G.1.89 w

[W [name]

Saves layout data.

This commands has been added for the convenience of vi users and has the same func-

tionality as s.

This is one of the command box helper actions. While it is a regular action and can be
used like any other action, its name and syntax are optimized for use with the command

box (:) and thus the syntax is documented for that purpose.

G.1.90 wq

-

Saves the layout data and quits.

This command has been added for the convenience of vi users and has the same func-

tionality as s combined with q.

Appendix G: Action Reference 141

This is one of the command box helper actions. While it is a regular action and can be
used like any other action, its name and syntax are optimized for use with the command
box (:) and thus the syntax is documented for that purpose.

G.2 common actions

G.2.1 LayersChanged

[LayersChanged() }

Tells the GUI that the layers have changed.
This includes layer names, colors, stacking order, visibility, etc.

This is one of a number of actions which are part of the HID interface. The core functions
use these actions to tell the current GUI when to change the presented information in
response to changes that the GUI may not know about. The user normally does not invoke
these directly.

G.2.2 LibraryChanged

[LibraryChanged() }

Tells the GUI that the libraries have changed.

This is one of a number of actions which are part of the HID interface. The core functions
use these actions to tell the current GUI when to change the presented information in
response to changes that the GUI may not know about. The user normally does not invoke
these directly.

G.2.3 NetlistChanged

[NetlistChanged() }

Tells the GUI that the netlist has changed.

This is one of a number of actions which are part of the HID interface. The core functions
use these actions to tell the current GUI when to change the presented information in
response to changes that the GUI may not know about. The user normally does not invoke
these directly.

G.2.4 PCBChanged

[P CBChanged([revert]) }

Tells the GUI that the whole PCB has changed. The optional “revert"parameter can be
used as a hint to the GUI that the same design is beingreloaded, and that it might keep
some viewport settings

Appendix G: Action Reference 142

This is one of a number of actions which are part of the HID interface. The core functions
use these actions to tell the current GUI when to change the presented information in
response to changes that the GUI may not know about. The user normally does not invoke
these directly.

G.2.5 RouteStylesChanged

[RouteStylesChanged()

Tells the GUI that the routing styles have changed.

This is one of a number of actions which are part of the HID interface. The core functions
use these actions to tell the current GUI when to change the presented information in
response to changes that the GUI may not know about. The user normally does not invoke
these directly.

G.3 gtk actions

G.3.1 gtk About

[About()

N_("Tell the user about this version of PCB.");

This just pops up a dialog telling the user which version of pcb they’re running.

G.3.2 gtk AdjustStyle

N_("AdjustStyle()
n)7

N_("Open the window which allows editing of the route styles.");

Opens the window which allows editing of the route styles.

G.3.3 gtk Center

Center()

N_("Moves the pointer to the center of the window.");

Move the pointer to the center of the window, but only if it’s currently within the window
already.

Appendix G: Action Reference 143

G.3.4 gtk Cursor

[Cursor(Type,DeltaUp,DeltaRight,Units)

N_("Move the cursor.");

This action moves the mouse cursor. Unlike other actions which take coordinates, this
action’s coordinates are always relative to the user’s view of the board. Thus, a positive
DeltaUp may move the cursor towards the board origin if the board is inverted.

Type is one of ‘Pan’ or ‘Warp’. ‘Pan’ causes the viewport to move such that the crosshair
is under the mouse cursor. ‘Warp’ causes the mouse cursor to move to be above the crosshair.

Units can be one of the following:

‘mil’

‘mm’ The cursor is moved by that amount, in board units.

‘grid’ The cursor is moved by that many grid points.

‘view’ The values are percentages of the viewport’s view. Thus, a pan of ‘100’ would
scroll the viewport by exactly the width of the current view.

‘board’ The values are percentages of the board size. Thus, a move of ‘60,50 moves

you halfway across the board.

G.3.5 gtk DoWindows

DoWindows(11213141516)
DoWindows(Layout | Library | Log | Netlist | Preferences | DRC)

N_("Open various GUI windows.");

1

Layout Open the layout window. Since the layout window is always shown anyway,
this has no effect.

2

Library Open the library window.

3

Log Open the log window.

4

Netlist Open the netlist window.

5

Preferences
Open the preferences window.

6

DRC Open the DRC violations window.

Appendix G: Action Reference 144

G.3.6 gtk EditLayerGroups

N_("EditLayerGroups()
")i

N_("Open the preferences window which allows editing of the layer groups.");

Opens the preferences window which is where the layer groups are edited. This action
is primarily provides to provide menu resource compatibility with the lesstif HID.

G.3.7 gtk GetXY

[GetXY() }

N_("Get a coordinate.");

Prompts the user for a coordinate, if one is not already selected.

G.3.8 gtk ImportGUI

[ImportGUI() }

N_("Asks user which schematics to import into PCB. ");

Asks user which schematics to import into PCB.

G.3.9 gtk Pan

[Pan([thumb], Mode) }

N_("Start or stop panning (Mode = 1 to start, 0 to stop) Optional thumb argument is
ignored for now in gtk hid. ");

Start or stop panning. To start call with Mode = 1, to stop call with Mode = 0.

G.3.10 gtk Popup

[Popup(MenuName, [Button]) }

N_("Bring up the popup menu specified by MenuName. If called by a mouse event then
the mouse button number must be specified as the optional second argument.");

This just pops up the specified menu. The menu must have been defined as a named
subresource of the Popups resource in the menu resource file. The second, optional (and
ignored) argument represents the mouse button number which is triggering the popup.

Appendix G: Action Reference 145

G.3.11 gtk Print

[Print ()

N_("Print the layout.");

This will find the default printing HID, prompt the user for its options, and print the
layout.

G.3.12 gtk PrintCalibrate

[PrintCalibrate()

N_("Calibrate the printer.");

This will print a calibration page, which you would measure and type the measurements
in, so that future printouts will be more precise.

G.3.13 gtk Save

Save()

Save(Layout | LayoutAs)

Save(AllConnections | AllUnusedPins | ElementConnections)
Save(PasteBuffer)

N_("Save layout and/or element data to a user-selected file.");

This action is a GUI front-end to the core’s SaveTo action (see Section G.1.76 [SaveTo
Action], page 136). If you happen to pass a filename, like SaveTo, then SaveTo is called
directly. Else, the user is prompted for a filename to save, and then SaveTo is called with
that filename.

G.3.14 gtk SelectLayer

[N_("SelectLayer(1..MAXLAYER | Silk | Rats)");

N_("Select which layer is the current layer.");

The specified layer becomes the currently active layer. It is made visible if it is not
already visible

G.3.15 gtk SetUnits

[SetUnits(mm | mil)

N_("Set the default measurement units.");

mil Sets the display units to mils (1/1000 inch).

Appendix G: Action Reference 146

mm Sets the display units to millimeters.

G.3.16 gtk SwapSides

[SwapSides(Ivih|r) }

N_("Swaps the side of the board you’re looking at.");

This action changes the way you view the board.

v Flips the board over vertically (up/down).
h Flips the board over horizontally (left/right), like flipping pages in a book.
r Rotates the board 180 degrees without changing sides.

If no argument is given, the board isn’t moved but the opposite side is shown.

Normally, this action changes which pads and silk layer are drawn as true silk, and which
are drawn as the "invisible" layer. It also determines which solder mask you see.

As a special case, if the layer group for the side you’re looking at is visible and currently
active, and the layer group for the opposite is not visible (i.e. disabled), then this action

will also swap which layer group is visible and active, effectively swapping the “working
side” of the board.

G.3.17 gtk ToggleView

N_("ToggleView(1.MAXLAYER)
ToggleView (layername)
ToggleView(Silk | Rats | Pins| Vias | Mask | BackSide)");

N_("Toggle the visibility of the specified layer or layer group.");

If you pass an integer, that layer is specified by index (the first layer is 1, etc). If you
pass a layer name, that layer is specified by name. When a layer is specified, the visibility
of the layer group containing that layer is toggled.

If you pass a special layer name, the visibility of those components (silk, rats, etc) is
toggled. Note that if you have a layer named the same as a special layer, the layer is chosen
over the special layer.

G.3.18 gtk Zoom

Zoom()
Zoom(factor)

N_("Various zoom factor changes."); Changes the zoom (magnification) of the view of
the board. If no arguments are passed, the view is scaled such that the board just fits inside
the visible window (i.e. “view all”). Otherwise, factor specifies a change in zoom factor. It
may be prefixed by +, =, or = to change how the zoom factor is modified. The factor is a
floating point number, such as 1.5 or 0.75.

Appendix G: Action Reference 147

+factor Values greater than 1.0 cause the board to be drawn smaller; more of the board
will be visible. Values between 0.0 and 1.0 cause the board to be drawn bigger;
less of the board will be visible.

-factor Values greater than 1.0 cause the board to be drawn bigger; less of the board
will be visible. Values between 0.0 and 1.0 cause the board to be drawn smaller;
more of the board will be visible.

=factor

The factor is an absolute zoom factor; the unit for this value is "PCB units per
screen pixel". Since PCB units are 0.01 mil, a factor of 1000 means 10 mils
(0.01 in) per pixel, or 100 DPI, about the actual resolution of most screens -
resulting in an "actual size" board. Similarly, a factor of 100 gives you a 10x
actual size.

Note that zoom factors of zero are silently ignored.
G.4 lesstif actions

G.4.1 lesstif About

[About()

Tell the user about this version of PCB.

This just pops up a dialog telling the user which version of pcb they’re running.

G.4.2 lesstif AdjustSizes

[AdjustSizes()

Let the user change the board size, DRC parameters, etc

Displays a dialog box that lets the user change the board size, DRC parameters, and
text scale.

The units are determined by the default display units.

G.4.3 lesstif AdjustStyle

[Adj ustStyle()

Displays the route style adjustment window.

G.4.4 lesstif Benchmark

[Benchmark()

Benchmark the GUI speed.

Appendix G: Action Reference 148

This action is used to speed-test the Lesstif graphics subsystem. It redraws the current
screen as many times as possible in ten seconds. It reports the amount of time needed to
draw the screen once.

G.4.5 lesstif Command

[Command ()

Displays the command line input window.

The command window allows the user to manually enter actions to be executed. Action
syntax can be done one of two ways:

e Follow the action name by an open parenthesis, arguments separated by commas, end
with a close parenthesis. Example: Abc(1,2,3)

e Separate the action name and arguments by spaces. Example: Abc 1 2 3.

The first option allows you to have arguments with spaces in them, but the second is
more “natural” to type for most people.

Note that action names are not case sensitive, but arguments normally are. However,
most actions will check for “keywords” in a case insensitive way.

There are three ways to finish with the command window. If you press the Enter key, the
command is invoked, the window goes away, and the next time you bring up the command
window it’s empty. If you press the Esc key, the window goes away without invoking
anything, and the next time you bring up the command window it’s empty. If you change
focus away from the command window (i.e. click on some other window), the command
window goes away but the next time you bring it up it resumes entering the command you
were entering before.

G.4.6 lesstif Cursor

[Cursor(Type,DeltaUp,DeltaRight,Units)

Move the cursor.

This action moves the mouse cursor. Unlike other actions which take coordinates, this
action’s coordinates are always relative to the user’s view of the board. Thus, a positive
DeltaUp may move the cursor towards the board origin if the board is inverted.

Type is one of ‘Pan’ or ‘Warp’. ‘Pan’ causes the viewport to move such that the crosshair
is under the mouse cursor. ‘Warp’ causes the mouse cursor to move to be above the crosshair.

Units can be one of the following:

‘mil’

‘mm’ The cursor is moved by that amount, in board units.

‘grid’ The cursor is moved by that many grid points.

‘view’ The values are percentages of the viewport’s view. Thus, a pan of ‘100’ would

scroll the viewport by exactly the width of the current view.

Appendix G: Action Reference 149

‘board’ The values are percentages of the board size. Thus, a move of ‘50,50 moves
you halfway across the board.

G.4.7 lesstif Debug

[Debug(...)

Debug action.

This action exists to help debug scripts; it simply prints all its arguments to stdout.

G.4.8 lesstif DebugXY

[DebngY()

Debug action, with coordinates

Like Debug, but requires a coordinate. If the user hasn’t yet indicated a location on the
board, the user will be prompted to click on one.

G.4.9 lesstif DoWindows

DoWindows(1121314)
DoWindows(Layout | Library | Log | Netlist)

Open various GUI windows.

1

Layout Open the layout window. Since the layout window is always shown anyway,
this has no effect.

2

Library Open the library window.

3

Log Open the log window.

4

Netlist Open the netlist window.

G.4.10 lesstif DumpKeys

[DumpKeys()

Dump Lesstif key bindings.

Causes the list of key bindings (from pcb-menu.res) to be dumped to stdout. This is
most useful when invoked from the command line like this:

pcb ——action-string DumpKeys

Appendix G: Action Reference 150

G.4.11 lesstif EditLayerGroups

[EditLayerGroups()

Let the user change the layer groupings

Displays a dialog that lets the user view and change the layer groupings. Each layer
(row) can be a member of any one layer group (column). Note the special layers solder
and component allow you to specify which groups represent the top and bottom of the
board.

See Section G.1.12 [ChangeName Action], page 115.

G.4.12 lesstif Export

[Export 0

Export the layout.

Prompts the user for an exporter to use. Then, prompts the user for that exporter’s
options, and exports the layout.

G.4.13 lesstif GetXY

[GetXY()

Get a coordinate.

Prompts the user for a coordinate, if one is not already selected.

G.4.14 lesstif ImportGUI

[ImportGUI()

Lets the user choose the schematics to import from

Displays a dialog that lets the user select the schematic(s) to import from, then saves
that information in the layout’s attributes for future imports.

G.4.15 lesstif LibraryShow

[LibraryShow()

Displays the library window.

Appendix G: Action Reference 151

G.4.16 lesstif Load

Load()
Load(Layout | Layout ToBuffer | Element ToBuffer | Netlist | Revert)

Load layout data from a user-selected file.

This action is a GUI front-end to the core’s LoadFrom action (see Section G.1.45 [Load-
From Action|, page 126). If you happen to pass a filename, like LoadFrom, then LoadFrom
is called directly. Else, the user is prompted for a filename to load, and then LoadFrom is
called with that filename.

G.4.17 lesstif LoadVendor

[Load\/endor()

Loads a user-selected vendor resource file.

The user is prompted for a file to load, and then LoadVendorFrom is called (see Sec-
tion G.1.46 [LoadVendorFrom Action|, page 127) to load that vendor file.

G.4.18 lesstif NetlistShow

[NetlistShow(pinname | netname)

Selects the given pinname or netname in the netlist window.

G.4.19 lesstif Print

[Print()

Print the layout.

This will find the default printing HID, prompt the user for its options, and print the
layout.

G.4.20 lesstif PrintCalibrate

[PrintCalibrate()

Calibrate the printer.

This will print a calibration page, which you would measure and type the measurements
in, so that future printouts will be more precise.

G.4.21 lesstif PromptFor

[PromptFor([message|,default]])

Appendix G: Action Reference 152

Prompt for a response.

This is mostly for testing the lesstif HID interface. The parameters are passed to the
prompt_for () HID function, causing the user to be prompted for a response. The respose
is simply printed to the user’s stdout.

G.4.22 lesstif Return

[Return(() 1)

Simulate a passing or failing action.

This is for testing. If passed a 0, does nothing and succeeds. If passed a 1, does nothing
but pretends to fail.

G.4.23 lesstif Save

Save
Save
Save
Save

)

Layout | Layout As)
AllConnections | AllUnusedPins | ElementConnections)
PasteBuffer)

o e R T

Save layout data to a user-selected file.

This action is a GUI front-end to the core’s SaveTo action (see Section G.1.76 [SaveTo
Action], page 136). If you happen to pass a filename, like SaveTo, then SaveTo is called
directly. Else, the user is prompted for a filename to save, and then SaveTo is called with
that filename.

G.4.24 lesstif SelectLayer

[SelectLayer(l..MAXLAYER | Silk | Rats)

Select which layer is the current layer.

The specified layer becomes the currently active layer. It is made visible if it is not
already visible

G.4.25 lesstif SetUnits

[SetUnits(mrn | mil)

Set the default measurement units.

mil Sets the display units to mils (1/1000 inch).

mm Sets the display units to millimeters.

Appendix G: Action Reference 153

G.4.26 lesstif SwapSides

[SwapSides(lvihir)

Swaps the side of the board you’re looking at.

This action changes the way you view the board.

v Flips the board over vertically (up/down).
h Flips the board over horizontally (left/right), like flipping pages in a book.
r Rotates the board 180 degrees without changing sides.

If no argument is given, the board isn’t moved but the opposite side is shown.

Normally, this action changes which pads and silk layer are drawn as true silk, and which
are drawn as the "invisible" layer. It also determines which solder mask you see.

As a special case, if the layer group for the side you’re looking at is visible and currently
active, and the layer group for the opposite is not visible (i.e. disabled), then this action
will also swap which layer group is visible and active, effectively swapping the “working
side” of the board.

G.4.27 lesstif ToggleView

ToggleView(1..MAXLAYER)
ToggleView (layername)
ToggleView(Silk | Rats | Pins | Vias | Mask | BackSide)

Toggle the visibility of the specified layer or layer group.

If you pass an integer, that layer is specified by index (the first layer is 1, etc). If you
pass a layer name, that layer is specified by name. When a layer is specified, the visibility
of the layer group containing that layer is toggled.

If you pass a special layer name, the visibility of those components (silk, rats, etc) is
toggled. Note that if you have a layer named the same as a special layer, the layer is chosen
over the special layer.

G.4.28 lesstif Zoom

Zoom()
Zoom(factor)

Various zoom factor changes.

Changes the zoom (magnification) of the view of the board. If no arguments are passed,
the view is scaled such that the board just fits inside the visible window (i.e. “view all”).
Otherwise, factor specifies a change in zoom factor. It may be prefixed by +, -, or = to
change how the zoom factor is modified. The factor is a floating point number, such as 1.5
or 0.75.

Appendix G: Action Reference 154

+factor Values greater than 1.0 cause the board to be drawn smaller; more of the board
will be visible. Values between 0.0 and 1.0 cause the board to be drawn bigger;
less of the board will be visible.

-factor Values greater than 1.0 cause the board to be drawn bigger; less of the board
will be visible. Values between 0.0 and 1.0 cause the board to be drawn smaller;
more of the board will be visible.

=factor

The factor is an absolute zoom factor; the unit for this value is "PCB units per
screen pixel". Since PCB units are 0.01 mil, a factor of 1000 means 10 mils
(0.01 in) per pixel, or 100 DPI, about the actual resolution of most screens -
resulting in an "actual size" board. Similarly, a factor of 100 gives you a 10x
actual size.

Note that zoom factors of zero are silently ignored.

Appendix H: Glossary 155

Appendix H Glossary

Footprint The pattern of metal, silkscreen, soldermask relief, and drills which defines
where you place a component on a circuit board. Footprints are the placed by
the user onto the PC board during the placement phase of PCB layout.

Gerber File
The file format used in the industry to convey a board database to the manu-
facturer is RS-274X (which replaces the now obsolete RS-274D format). This

file format was originally developed by Gerber for their photo plotters and thus
RS-274D and RS-274X format files are often times refered to as “Gerber” files.

Thermal, Thermal Relief

A thermal relief is a way of connecting a pin to a ground or power plane. Instead
of directly connecting to the plane, small "spokes" are used to increase the
thermal resistance between the pin and the plane. Often times these connections
are refered to as simply a thermal. By increasing the thermal resistance to the
plane, it becomes easier to solder to the pin. In the drawing below, the pin on
the left is connected to the polygon using a solid connection with no thermal
relief, the middle pin is connected using a thermal, while the pin on the right
has no connection to the polygon. In Pcb, the “Thermal” Tool is used to make
both a solid connection and one with thermal relief (see Section 2.7 [Polygon
Objects], page 9).

e @ ©

Uia/Pin with Uia/Pin with Uia/Pin with

solid connection erma no connection

Index of Resources

Index of Resources

A

absoluteGrid 50
alignmentDistance.......................... 50
allDirectionlLines...................cu.... 50
backgroundImage 50
backupInterval 50
bloato 50
BTNMOD . . oottt e e e 96
connectedColorovii i 50
cross hairColor 51
DEFAULTFONT 96
DEFAULTLIBRARY 96
Element Search 102
elementColor ...t 51
elementCommand.......................... 51, 68
elementContentsCommand 53
elementPath 51
elementSelectedColor....................... 51
Exporting a layout 26
fileCommand............................. 51, 68
filePath........ ... 51
fontCommand 51, 68
fontFile...... 52
fontPath........ ..o 52
GNUMA . . . e 96
grid. ... 52
gridColor 52
INFOLIBDIR ...ttt ettt 96
invisibleObjectsColor 52
layerColor ...t 52

156
1ayerGroupsvveeiie e 52
layerNameoiiiiiiinaa., 52
layerSelectedColor......................... 52
libraryCommand.......................... 52, 68
libraryContentsCommand 68
libraryFilename 53
libraryPath 53
lineThickness, 53
M
Measuring distances........................ 32
media.t 53
O
offLimitColor 53
P
PCBLIBDIRciiii e 96
pinColor...... 53
pinoutFont0..6............................. 53
pinoutNameLength........................... 53
pinoutOffsetX 53
pinoutOffsetY, 53
pinoutTextOffsetX.......................... 54
pinoutTextOffsetY.......................... 54
pinoutZooml 54
pinSelectedColor........................... 53
printCommand 54
R
raiseLogWindow............................. 54
ratCommand 54
ratPath.......... 54
Regular Expressions....................... 102
resetAfterElement.......................... 54
ringBellWhenFinished....................... 54
routeStyle 54
rubberBandMode Ll 54
S
saveCommand 54, 68
saveInTMP 55
saveLastCommand 55
Searching for elements 32
shrink........ 55
SIZE . 55
stipplePolygons............................ 55

Index of Resources

T

textScale 55

U

useLogWindow 55

vV

viaColor.. ...t 55
viaDrillingHole 55

157
viaSelectedColor................cviiiin... 55
viaThickness 55
VOLUME . . ot et e ettt et e e 56
WarnColorvit et 56
ZOOM .« vt et e et e e e e e 56

Index of Actions, Commands and Options

Index of Actions, Commands and Options

—-- basename <string>....................... 49
—-—action-script <string>................... 39
——action-string <string>................... 39
——align-marks 46
--alignment-distance <num> 44
--all-direction-lines 40
——all-layers ... 46
——as-shown.............. 47, 48
——auto-mirror 46
--background-color <string> 41
--backup-interval 39
--bg-image <string>........................ 41
--black-color <string>..................... 41
—-bloat <num>...................... ... 45
—-bomfile <string>......................... 46
--clear-increment-mil <string>............ 39
--clear-increment-mm <string>............. 39
--clear-line............. 40
—--connected-color <string> 42
—--copper-height <num>...................... 49
——copyright 38
--cross-color <string>..................... 41
--crosshair-color <string> 41
--default-font <string>.................... 43
--default-PCB-height <num> 44
--default-PCB-width <num>.................. 44
—=dpd . 47
—=dpil <num> ... 49
——draw-grid 40
——drill-copperiiiaa 47
--drill-helper 46
-—dump-actions.............., 38
--element-color <string>................... 42
--element-command <string> 45
--element-path <string>.................... 39
--element-selected-color <string>......... 42
-—eps—file <string>........................ 47
-—eps-scale<num> 47
--fab-author <string>...................... 40
—--file-command <string>.................... 45
--file-path <string>....................... 43
--fill-holes 48
——fill-page 46
--font-command <string>.................... 44
--font-path <string>....................... 43
--format <string>.......................... 48
--found-color <string>..................... 42
—=full-poly ...t 40
--gerberfile <string>...................... 46
——grid<num>. ... 44
—-grid-color <string>...................... 42
--grid-increment-mil <string>............. 39

--grid-increment-mm <string> 39

158
—-grid-units-mm <string>................... 38
—-—groups <string>.......................... 39
—=help.. ... 38
--invisible-mark-color <string>........... 42
--invisible-objects-color <string>........ 42
—-keepaway <num>c.ii..... 44
--layer-color-<n> <string> 42
—-layer-name-1 <string>.................... 42
--layer-name-2 <string>.................... 42
--layer-name-3 <string>.................... 43
--layer-name-4 <string>.................... 43
--layer-name-5 <string>.................... 43
--layer-name-6 <string>.................... 43
--layer-name-7 <string>.................... 43
--layer-name-8 <string>.................... 43
--layer-selected-color-<n> <string>....... 42
--layer-stack <string>..................... 40
--lib-command <string>..................... 45
--lib-command-dir <string> 45
--lib-contents-command <string>........... 45
--lib-name <string>........................ 43
--lib-newlib <string>...................... 43
--lib-path <string>........................ 43
--line-increment-mil <string>............. 39
--line-increment-mm <string>.............. 39
--line-thickness <num>..................... 44
—=listen........ ... 41
--lprcommand <string>...................... 48
—-mask-color <string>...................... 42
--media <media-name>....................... 47
—metTric. ... 46
—-min-drill <num>0.. ... 45
--min-ring <num> 45
--min-silk <num> 45
--min-width <num> 45
--minimum polygon area <num> 44
SSMAYTOT. ... 46
—-monochrome............................ 47, 48
——multi-file........... oLl 47
—-off-limit-color <string> 42
—-only-visible.......................... 47, 48
——outfile <string>......................... 47
——outline i, 46
—-pcb-menu <string>........................ 41
——photo-flip-x............. 48
—-photo-flip-y......... 48
--photo-mask-colour <colour>.............. 48
--photo-mode 48
--photo-plating............................ 48
—-photo-silk-colour........................ 48
--pin-color <string>....................... 41
--pin-name-color <string>.................. 42
--pin-selected-color <string>............. 42
--pinout-offset-x <num>.................... 40

Index of Actions, Commands and Options

--pinout-offset-y <num>.................... 40
--pinout-text-offset-x <num> 40
--pinout-text-offset-y <num> 40
--png-bloat <num><dim>..................... 48
—-print-file <string>...................... 45
—-ps-bloat <num> 46
—mPS=COLOT ..ttt 46
—-ps-invert ... 46
—-psfade <num> 47
—-psfile <string>.......................... 46
—-rat-color <string>....................... 42
--rat-command <string>..................... 45
--rat-selected-color <string>............. 42
--rat-thickness <num><unit> 44
--reset-after-element 40
--ring-bell-finished....................... 40
--route-styles <string>.................... 39
--save-command <string>.................... 45
--save-in-tmp............ 40
--save-last-command........................ 40
--save-metric-only......................... 40
—-scale <nuUmM>.l 47
--show-actions 38
--show-defaults............................ 38
--show-legend 47
—-show-number 41
—-shrink <num> 45
--size-increment-mil <string>............. 39
--size-increment-mm <string> 39
—=SNAP-PIN ... 40
--substrate-epsilon <num>.................. 49
--substrate-height <num>................... 49
——text-scale<num> 44
—-unique-namesiiiiiiaa... 40
--use-alphal 48
--—verbose il 38, 46
—-version ... 38
--via-color <string>....................... 41
--via-drilling-hole <num>.................. 44
--via-selected-color <string>............. 41
--via-thickness <num>...................... 44
—-warn-color <string>...................... 42
B S 1T 47
——xcalib<num>l 47
TP TIMAK L e e e e e e 48
--xy-unit <unit>.......... 46
—-xyfile <string>.......................... 46
STV TIAX e e 47
——ycalib<num> 47
actionCommand () 37
Lo 36
e . o 36
Moot e e 36
o 36

159
< 36
wlal oo 37
A
AddRats() 56
ApplyVendor() 57, 113
Atomic() . .ovr e 57
B
Bell() oo 57
C
ChangeClearSize() o7
ChangeDrillSize() 57
ChangeFlag()oii... 57
ChangeHole()couuio.... 58
ChangeName()cooeio.... 58
ChangeOctagon() ..., 58
ChangePinName() 58
ChangeSize() 58
ChangeSquare() 58
CILF1ag() .o 59
Command ()oounein i 59
Connection()oouniiineiinin., 59
D
DeleteRats() ..., 59
DisableVendor () 59, 118
DisperseElements() 59
Display()ooinnii 59
DRC(Q) .o 60
E
EditLayerGroups() 60
EnableVendor() 60, 122
ExecuteFile() 60
L
Load() ..o 61
LoadVendor ()vuiiinnininennnnan.. 61
LoadVendorFrom()c.oovuuunnai... 127
M
MarkCrosshair()ooiiiinnin... 61
Mode () oo v 61
MovePointer ()ot 62
MoveToCurrentLayer() 62

Index of Actions, Commands and Options

N

NeWw() oo 62
P

PasteBuffer() 62
Polygon()coouiiiiiiniiiii . 63
Print() .. .o 63
QUIt() oo 63
R

Redo() ..o 63
RemoveSelected()ciiio... 64
Report () 64
RouteStyle() ..., 64

160
S
Save() o 64
Select() ... 64
SetFlag() ... 64
SetValue() ...t 65
SwapSides()l 65
SwitchDrawinglayer()....................... 65
T
ToggleHideName () 65
ToggleVendor() 65, 139
ToggleVisibility () 65
U
Undo() ..o 66
UnloadVendor()c.cooveunnn... 66, 139

Index of Concepts

Index of Concepts

action command 37
action reference............................. 112
ACtIONSo 56
actions file, executing 60
Actions, initiating oL 37
align-marks 46
alignment 50
alignment targets........... L. 25
Alpha. ... 97
annotation file format....................... 110
ATC ottt e e e 9
arc, anexample......... oo 20
architecture 97
arrow tool....... 29
as-shown (EPS) 47
ASCII files, format of 68
Atari version 2
AtOIMNIC . . ot e e 57
auto-router.......... ... 13
autorouter 35

B

backannotation file format................... 110
background L 50
backup......... ... 24, 50, 55
bell ... 57
bill of materials..................... 26
bloat ... 50
bomo 26
buffer, an example 23
buffer, convert contents to element 22
Buffer, popup menu.......................... 13
buffer, selecting a............................ 62
button translations 56
C

Cab . v 51, 54
centering. ... 59
centroid file format 108
centroid file, algorithms 108
change active layer........................ ... 14
change drawing layer...................... ... 65
change object name.......................... 58
change settings, 65
change sizes............. 57, 58
change square flag 58

change viewing side................ 65

161
changing layers....................... 24
changing pin/pad names 58
clearance. 8
clearance, changing of objects................. 57
clearance, for new lines....................... 12
clipping lines to 45 degree................. 50, 59
closing a polygon 63
(3 0 L 26
color printout L 24
color, Warningouuiinenena... 56
colors...........ooil. 50, 51, 52, 53, 55, 56
command-line options........................ 38
compile, how to.......... 96
configure........... ... 96
connection, removing an...................... 66
connections, colors........................... 50
connections, creating list of 28
connections, reseting 59
connections, reseting after element 54
connections, searching for 59
Connects, popup Mmenuo..... 13
copy an object........ ... 67
copying objects 62
copying, an example 23
creating objects.......... oo L 19
Cursor Color 51
cursor movements. L. 62
cursor position 61
CUISOT StEPS . o v o v 52
cutting objects o il 62
D
DEC. ... 97
default font 52
default layout size 55
default library 53
default text scaling 55
default translations 66
design rule checker, invoking.................. 13
design rule checking 31, 60
device, selecting an output 24
directory /tmp ... 24, 55
dispersing elements 59
display 55
displaying element names 12, 59
displaying pinout 59
displaying status information 14
distributing elements......................... 59
DOS filenames. 25
drawing objects.......... 18
dre...oooi 31, 50, 55, 60
drill ... 64
drill report 13

Index of Concepts

drill sizes, list of standard 104
Drill table........... ... 32
drill-helpero 46
drilling hole, changing of objects.............. 57
drilling hole, setting of initial size............. 65

E

Edit, popupmenu 12
element name, hiding 65
element name, removing from silk-screen 65
Element Search............................. 102
element, an example 21
element, an overview 5
element, color............................ 51, 52
element, command 51
element, creating a new package 22
element, display names of 12, 59
element, editing oL 13
element, file format 69
element, files, 51
element, loading to buffer 36
element, move name of 67
elements, dispersing.......................... 59
elements, distributing 59
encapsulated postscript 28
entering user commands...................... 36
DS o i 28
erasing objects il 18
example files 22
example of buffer handling 23
example of connection lists 28
example of copying 23
example of creating an element 22
example of element handling............... ... 21
example of line handling...................... 20
example of loading 24
example of loading an element file............. 22
example of moving, .. 23
example of pastebuffer handling............... 23
example of pin handling...................... 22
example of polygon handling.................. 20
example of printing oo 24
example of rectangle handling 20
example of saving L 24
example of text handling 21
example of via handling 21
XAt ot 36, 63
Exporting alayout........................... 26

F

file format, element data 69
file format, font data......................... 69
file format, layout data....................... 68
file format, libraries.......................... 70
file format, library contents................... 70

fileformats.............. 68

162
file formats, pads and lines 68
file load command, 51
file save command 54
File syntax.......... 71
File, popup menu............................ 11
flags, changing................... 57
flags, clearing., 59
flags, setting.................. ... 64
font command 51
font file, format of, 69
font files......... ... 51, 52
font, an overview 5
font, used for pin names...................... 53
format of element files........................ 69
format of font files............. 69
format of layout files.............. 68
format of libraries 70
format of library contents 70
FreeBSD ... 98
G
G-COAE .ottt 26
BCOAE . v 26
gEDA, how to interface with.................. 92
gerber 28
glossary ... 155
GNU build system, 96
GNU configure script 96
grid. ..o 17, 50, 52
grid color 52
grid, absolute and relative.................... 59
grid, alignment 12
grid, display oo 12, 59
grid, setting of. o L 65
GTOUDS - ot et e et ettt e et 52
groups, editing of 60
gschem, how to interface with................. 92
H
Hewlett Packard 97
hide element name................ 65
how tostart i 11
HP o 97
I
image exXport ... 28
indexof terms............, 155
Info, popupmenu........... 13
information about objects 64
input-field, position of................ 14
inputfield, saving entered command-line 55
inputfield, start user input.................... 59
install, how to.......... 96

Index of Concepts

K

key translations..............., 56
keyboard bell........... i . 54

L

layer controls............., 14
layer groups............ ... i 7
layer visibility, toggling....................... 65
layer, change active 65
layer, name of L. 52
layers, an overview............. 7
layers, changing which is active 14
layers, colors 52
layers, editing of groups 60
layers, groups. ... 52
layers, switching on/off....................... 14
layout files..................., 51, 54
layout files, format of 68
layout files, saving of 36, 37
layout objects, an overview 5
layout, default size of 55
layout, loading a............ 36
layout, loading to buffer...................... 36
layout, merging a............. 36
layout, printing a.................. 63
layout, start anew.............. 62
layout-name L il 5, 36
length of a pinname......................... 53
library accuracyc.oeeiiiiniiiaa... 6
library command 52
library contents command 53
library contents file, format of 70
library creation................. ..o ... 84
library file, format of 70
library name i 53
library searchpath 53
library window 18
lines, an example 20
lines, an OVerviewouueiunneao... 8
lines, clipping to 45 degree 50, 59
lines, setting of initial size.................... 65
lines, SiZ€ 53
Linux.......oo 97
listing library contents 53
loading a layout to buffer..................... 36
loading elements 51, 52
loading elements to buffer 36
loading files 61
loading fonts................. 51, 52
loading layouts........................... 36, 51
loading symbols.................... 51, 52
loading, an example.......................... 24
log window 17, 54, 55

M

163
m4, preprocessing example files............... 22
Mark 61
Measuring distances.......................... 32
media.o 53
media margin 53
media, size of 25
IMENUS .« e vttt ettt e e e e e 11
merging layouts............., 36
IMESSAZES .+« o e vee e 17, 54, 55
mirroring printout 24
mode selection............ 15
mode, selecting of 61
mounting holes 58
IMOVE .ottt et e e e e et e e 54
move an object 67
moving objects o oL 29
moving objects to current layer 62
moving, an example.......................... 23
moving, traces to a different layer............. 24
multi-file......... 47
N
name of an element 59
name, change an objects 58
namelength of pins........................... 53
nelma.......... ... 28
NetBSD. ..o 98
netlist......................... 10, 30, 54, 56, 59
Netlist Window 18
netlist, file format............................ 70
netlist, reading 70
O
object report ... 13
object, change name of 58
object, changing the size of an................ 19
object, copy an i 67
object, creating an.............. 19
object, drawing and removing................. 18
object, move an 67
object, removing an 19, 66
objects, moving to current layer............... 62
octagonal flag, changing...................... 57
octagonal flag, clearing....................... 59
octagonal flag, setting 64
octagonal pins and vias 58
off limit color.................... 53
offset of pinnames 54
offset of pinout 53
offset of printout............................. 25
old library....... 6
only-visible. 47
OpenWindows.............o .. 97
operation modes, selecting of 61
optimizer 31

outline printout.............. 25

Index of Concepts

output device. ... 24
overlap, minimum 31

P

pad specification............................. 68
pastebuffer, an example 23
pastebuffer, convert contents to element 22
pastebuffer, popup menu 13
pastebuffer, selecting a................. 62
path for element files......................... 51
path for font files 52
path for layout files.......................... 51
path for libraries................... 53
PCUNIX. ... 97, 98
PCB, anoverview. 4
photo-mask-colour 48
photo-mode 48
photo-plating 48
photo-silk-colour................ 48
pincolor............. . 53
pin,name of 53
pin/pad names, changing..................... 58
pinout, display of L. 59
pinout, font to display pin names 53
pinout, zoomfactor of display 54
pins, an example.......... ... oo 22
pins, changing shape of....................... 58
PO e et 28
pointer, moving of L 62
polygon 55
polygon point, go back to previous............ 63
polygon, an example 20
polygon, an overview 9
polygon, closing a............................ 63
POPPING UP MENUS .« v voeveeeeeeeeaenn 11
postprocessing layout data.................... 54
postscript 28
preprocessing element data 51
preprocessing font data....................... 51
preprocessing layout data..................... 51
preventing loss of data.................... 24, 55
print command 25
print media............ ... 25, 53
print offset 25
printing.......... 54
printing a layout.......... o 63
printing, an example 24
problems....... 96
P e e 28
ps-bloat..... 46
ps-invert 46
psfade ... 47
Q

QUIb - oo 36, 63

164
R
rat’'smnest. 36
rat-line......... L 30, 56, 59
ratsmest......... L. 30, 54, 56, 59
rats-mest 10
TECOVET . o vvete ettt e e et 63, 66
rectangle, an example 20
redo. ... 12, 63
redrawing layout.......... 59
refreshing layout.......... 59
Regular Expressions 102
removing connections 66
removing objects........... 18, 19, 66
removing selected objects..................... 64
TEPOrt . ..o 13, 64
reseting found connections 54, 59
TESOULCES . . v oee e et et e e e e e et et 50
rotate. ... 54
rotating a buffer.............. 62
rotating printout L il 24
Route Styles, popup menu.................... 12
routing style 54, 64
rubber band......... 12
rubberband L 54, 59
S
saving connections 64
saving files 64
saving found connections 59
saving last entered user command............. 55
saving layouts.................. 24, 36, 37, 54, 55
saving, an example.............. 24
scaling a printout 25
scanning connections......................... 59
schematic capture............................ 92
schematic frontend 92
SCO o 97
script file, executing. oL 60
scrolling. ... 66
searching connections 59
Searching for elements 32
searchpath for element files................... 51
searchpath for font files 52
searchpath for layout files 51
searchpath for libraries....................... 53
Select, popupmenu.......................... 13
selected object, removing an.................. 64
selected objects, changing sizes 13
selected objects, removing 13
selecting a buffer L. 62
selecting anew tool 15
selecting objects ool 64
selecting, using the arrow tool 29
selection.......... 64, 66
Settings, popup menu........................ 12
SGI. 97

Index of Concepts

shrink 55
signal 57
Silicon Graphicsciiiiii. .. 97
sizeof lines............ ... 53
size of lines and vias 64
sizeof vias 55
sizes, changing of objects.................. 57, 58
Snap to PiNS 12
Solaris 97
solder mask, viewing and editing.............. 12
spacing, minimum 31
speaker volume 56
square flag, changing......................... 57
square flag, changing of objects 58
square flag, clearing.......................... 59
square flag, setting.................... 64
standard drill sizes............... 104
start user input.......... 59
starting Pcb 38
starting a new layout 62
status information L 14
strings, an example L 21
strings, an overview............... 10
SUN . oo 97
symbols........ ... 52
symbols, an overview.............. 5
Syntax, file........ 71

T

temporary files............... ... L. 24, 55
terminology ... 155
TeX, problems........ 98
text, an example............ 21
text, an overview 10
text, default scaling.......................... 55
thermal flag, changing........................ 57
thermal flag, clearing......................... 59
thermal flag, setting 64
thickness of lines............................. 53
thickness of objects 19
thickness of vias 55
thickness, changing of objects................. 58
toggle layer visibility 65
tool selection o L. 15
tOOL, AITOW . .o v ottt 29
trace optimizer L L 31
translations 56, 66
troubleshooting 96
two linemode 8

165
UNIQUE NAMES . « . vevve et e e e ee e 12
unix command 51, 52, 53, 54
unselect objects.......... L. 66
user commands 36
user input ... 66, 67
\V
vendor drill table...... 57, 113, 118, 122, 127, 139
Vendor drill table............................ 32
vendor drill table, disabling................... 59
vendor drill table, enabling 60
vendor drill table, loading 61
vendor drill table, toggling.................... 65
vendor drill table, unloading 66
vendor map........... 57, 113, 118, 122, 127, 139
vendor map, disabling.................. 59
vendor map, enabling 60
vendor map, loading 61
vendor map, toggling......................... 65
vendor map, unloading 66
Vendor mappingcoiiii... 32
Vendorrules............... .. 32
vias, an example.......... 21
VIias, an OVEIVIEWt 5
vias, changing shape of....................... 58
vias, COloT 55
vias, converting to mounting hole 58
vias, setting of initial size..................... 65
Vias, SIZ€ 55
View, popup menu..............c.c.ooovuunn.... 12
viewing side, changing of 65
volume of speaker............................ 56
%%
Window, popup menu........................ 13
X
x-y file formato L oo il 108
x-y file, algorithms.......................... 108
) 50
X11 default translations...................... 66
X11 reSOUTCES v v vevee e 50
X11 translations i 56
X11, problems........ ... i 98
xcircuit, how to interface with 95
Z
zoom of Layout area 56
zoom of pinout window....................... 54
zoom, setting........... 12
zoom, setting of 65

	Copying
	History
	Overview
	Introduction
	Symbols
	Vias
	Elements
	Layers
	Lines
	Arcs
	Polygons
	Text
	Nets

	Getting Started
	The Application Window
	Menus
	The Status-line and Input-field
	The Layer Controls
	The Tool Selectors
	Layout Area

	Log Window
	Library Window
	Netlist Window
	Drawing and Removing Basic Objects
	Common Drawing and Removing Methods
	Lines
	Arcs
	Polygons and Rectangles
	Text
	Vias
	Elements
	Pastebuffer

	Moving and Copying
	Loading and Saving
	Printing
	Exporting a layout
	Bill of materials (bom)
	G-code (gcode)
	Gerber (gerber)
	Nelma (nelma)
	Image (png)
	Postscript (ps)
	Encapsulated Postscript (eps)

	Connection Lists
	Arrow Tool
	Rats Nest
	Design Rule Checking
	Trace Optimizer
	Searching for elements
	Measuring distances
	Vendor Drill Mapping

	Autorouter
	User Commands
	Command-Line Options
	General Options
	General GUI Options
	GTK+ GUI Options
	lesstif GUI Options
	Colors
	Layer Names
	Paths
	Sizes
	Commands
	DRC Options
	BOM Creation
	Gerber Export
	Postscript Export
	Encapsulated Postscript Export
	PNG Options
	lpr Printing Options
	nelma Options

	X11 Interface
	Non-Standard X11 Application Resources
	Actions
	Default Translations

	File Formats
	Pad and Line Representation
	Layout File Format
	Element File Format
	Font File Format
	Netlist File Format
	Library Contents File Format
	Library File Format
	File Syntax
	Arc
	Attribute
	Connect
	Cursor
	DRC
	Element
	ElementArc
	ElementLine
	FileVersion
	Flags
	Grid
	Groups
	Layer
	Line
	Mark
	Net
	Netlist
	Pad
	PCB
	Pin
	PolyArea
	Polygon
	Rat
	Styles
	Symbol
	SymbolLine
	Text
	Thermal
	Via

	Object Flags
	PCBFlags

	Library Creation
	Old Style (m4) Libraries
	Overview of Oldlib Operation
	The Library Scripts
	Scripts Used During Compilation
	Scripts Used by PCB at Runtime

	Creating an Oldlib Footprint
	Troubleshooting Old Style Libraries

	New Style Libraries
	Creating Newlib Footprints
	Modifying Newlib Footprints

	Schematic Capture for PCB
	gEDA
	Set Up Project Directories
	Set Up gEDA Config Files
	Set Up gsch2pcb Config Files
	Capture Schematics Using gschem
	Create Any Unique PCB Footprints
	Generate Initial PCB Design Using gsch2pcb
	Layout Circuit Board
	Forward Annotation of Schematic Changes
	Generate Photoplot Files (RS-274X)

	xcircuit

	Installation and Troubleshooting
	Compiling and Installing
	Quick Start
	Running the configure Script

	Troubleshooting
	HP Series 700 and 800
	Sun SPARC architecture
	Silicon Graphics
	DEC Alpha
	SCO Unix
	Linux
	FreeBSD and NetBSD
	Problems related to X11
	Problems related to TeX

	Customizing the Menus
	Resource Syntax
	Menu Definitions
	Menu Files and Defaults

	Element Search/Regular Expressions
	Element Search/Regular Expressions

	Standard Drill Size Tables
	American Standard Wire Size Drills
	American Standard Letter Size Drills
	Fractional Inch Size Drills
	Metric Drills

	Centroid (X-Y) File Format
	Overview
	File Format
	Computation of Centroid and Rotation

	Annotation File Format
	Overview
	File Format
	COMMENT
	FILEVERSION
	RENAME

	Action Reference
	Core actions
	AddRats
	ApplyVendor
	Atomic
	Attributes
	AutoPlaceSelected
	AutoRoute
	ChangeClearSize
	ChangeDrillSize
	ChangeFlag
	ChangeHole
	ChangeJoin
	ChangeName
	ChangeOctagon
	ChangePaste
	ChangePinName
	ChangeSize
	ChangeSquare
	ClearOctagon
	ClearSquare
	ClrFlag
	Connection
	Delete
	DeleteRats
	DisableVendor
	DisperseElements
	Display
	djopt
	DRC
	DumpLibrary
	elementlist
	elementsetattr
	EnableVendor
	execcommand
	ExecuteFile
	Flip
	FontEdit
	FontSave
	FreeRotateBuffer
	GlobalPuller
	h
	Import
	l
	le
	LoadFootprint
	LoadFrom
	LoadVendorFrom
	m
	MarkCrosshair
	Message
	MinClearGap
	MinMaskGap
	Mode
	MorphPolygon
	MoveLayer
	MoveObject
	MoveToCurrentLayer
	Netlist
	New
	OptAutoOnly
	PasteBuffer
	Polygon
	Puller
	q
	q!
	Quit
	Redo
	RemoveSelected
	Renumber
	Report
	ReportDialog
	RipUp
	rn
	RouteStyle
	s
	SaveSettings
	SaveTo
	Select
	SetFlag
	SetOctagon
	SetSame
	SetSquare
	SetThermal
	SetValue
	ToggleHideName
	ToggleVendor
	Undo
	UnloadVendor
	Unselect
	w
	wq

	common actions
	LayersChanged
	LibraryChanged
	NetlistChanged
	PCBChanged
	RouteStylesChanged

	gtk actions
	gtk About
	gtk AdjustStyle
	gtk Center
	gtk Cursor
	gtk DoWindows
	gtk EditLayerGroups
	gtk GetXY
	gtk ImportGUI
	gtk Pan
	gtk Popup
	gtk Print
	gtk PrintCalibrate
	gtk Save
	gtk SelectLayer
	gtk SetUnits
	gtk SwapSides
	gtk ToggleView
	gtk Zoom

	lesstif actions
	lesstif About
	lesstif AdjustSizes
	lesstif AdjustStyle
	lesstif Benchmark
	lesstif Command
	lesstif Cursor
	lesstif Debug
	lesstif DebugXY
	lesstif DoWindows
	lesstif DumpKeys
	lesstif EditLayerGroups
	lesstif Export
	lesstif GetXY
	lesstif ImportGUI
	lesstif LibraryShow
	lesstif Load
	lesstif LoadVendor
	lesstif NetlistShow
	lesstif Print
	lesstif PrintCalibrate
	lesstif PromptFor
	lesstif Return
	lesstif Save
	lesstif SelectLayer
	lesstif SetUnits
	lesstif SwapSides
	lesstif ToggleView
	lesstif Zoom

	Glossary
	Index of Resources
	Index of Actions, Commands and Options
	Index of Concepts

