GNU Awk

GAWK: Effective AWK Programming

A User’s Guide for GNU Awk
Edition 4.2
October, 2017

Arnold D. Robbins

“To boldly go where no man has gone before” is a Registered Trademark of Paramount
Pictures Corporation.

Published by:

Free Software Foundation

51 Franklin Street, Fifth Floor
Boston, MA 02110-1301 USA

Phone: +1-617-542-5942

Fax: +1-617-542-2652

Email: gnu@gnu.org

URL: https://www.gnu.org/

ISBN 1-882114-28-0

Copyright (©) 1989, 1991, 1992, 1993, 1996-2005, 2007, 2009—2017
Free Software Foundation, Inc.

This is Edition 4.2 of GAWK: Effective AWK Programming: A User’s Guide for GNU Awk,
for the 4.2.0 (or later) version of the GNU implementation of AWK.

Permission is granted to copy, distribute and/or modify this document under the terms
of the GNU Free Documentation License, Version 1.3 or any later version published by
the Free Software Foundation; with the Invariant Sections being “GNU General Public
License”, with the Front-Cover Texts being “A GNU Manual”, and with the Back-Cover
Texts as in (a) below. A copy of the license is included in the section entitled “GNU Free
Documentation License”.

a. The FSF’s Back-Cover Text is: “You have the freedom to copy and modify this GNU
manual.”

mailto:gnu@gnu.org
https://www.gnu.org/

To my parents, for their love, and for the wonderful example they set for me.
To my wife, Miriam, for making me complete. Thank you for building your life together with me.

To our children, Chana, Rivka, Nachum, and Malka, for enrichening our lives in innumerable ways.

Short Contents

Foreword to the Third Edition., 1
Foreword to the Fourth Edition........ 3
Preface. . .. 5

Part I: The awk Language

1 Getting Started with awk 17
2 Runningawkand gawk 31
3 Regular Expressions i 47
4 Reading Input Files......... i 61
5 Printing Output. 93
6 EXPressionsc..iiiiiiiiiiii 113
7 Patterns, Actions, and Variables. 141
8 Arraysin awk. 169
9 Functionscoiiiiiii e 185
Part II: Problem Solving with awk
10 A Library of awk Functions. 231
11 Practical awk Programs............. 265
Part III: Moving Beyond Standard awk with gawk
12 Advanced Features of gawk 313
13 Internationalization with gawk 329
14 Debugging awk Programs 339
15 Arithmetic and Arbitrary-Precision Arithmetic with gawk ... 355
16 Writing Extensions for gawk 369
Part IV: Appendices
A The Evolution of the awk Language 433
B Installing gawk........ ... i 451
C Implementation Notes.......... 469
D Basic Programming Concepts.......... 481
GloSSaTY .« v v e 485
GNU General Public License o it 497
GNU Free Documentation License.......................... 509

Table of Contents

Foreword to the Third Edition.....................
Foreword to the Fourth Edition....................
Preface........ ...
History of awk and gawkoiuiiiiiiiiii it 6
A Rose by Any Other Name ..., 6
Using This Book. 7
Typographical Conventions i, 9
Dark Corners.ouu i 10
The GNU Project and This Book ..., 10
How to Contribute.......o i 11
Acknowledgments. 11

Part I: The awk Language

Getting Started with awk...................... 17
1.1 How to Run awk Programs it 17
1.1.1 One-Shot Throwaway awk Programs 17
1.1.2 Running awk Without Input Files......................... 18
1.1.3 Running Long Programs..................oooiiiiiiian. 18
1.1.4 Executable awk Programs...............o 19
1.1.5 Comments in awk Programs............. 20
1.1.6 Shell Quoting Issueso, 21
1.1.6.1 Quoting in MS-Windows Batch Files................. 23

1.2 Data files for the Examples...................... 24
1.3 Some Simple Examples............c.ooiiiiiiiii i 25
1.4 An Example with Two Rules 26
1.5 A More Complex Example. 27
1.6 awk Statements Versus Lines.............o, 28
1.7 Other Featuresof awk i i 29
1.8 When to Use amwk.....oviiiiiiiit e 30
1.9 SUMMATY . ..ot 30
Running awk and gawk.......................... 31
2.1 Invoking awkt 31
2.2 Command-Line Options, 31
2.3 Other Command-Line Arguments.................coooiio ... 38
2.4 Naming Standard Input i i 39
2.5 The Environment Variables gawk Uses......................... 39

2.5.1 The AWKPATH Environment Variable....................... 39

iii

iv GAWK: Effective AWK Programming

2.5.2 The AWKLIBPATH Environment Variable 40
2.5.3 Other Environment Variables............................. 40
2.6 gawk’s Exit Status......... ... 42
2.7 Including Other Files into Your Program....................... 42
2.8 Loading Dynamic Extensions into Your Program............... 43
2.9 Obsolete Options and/or Featurescoovviiinan... 44
2.10 Undocumented Options and Features......................... 44
211 SUIMINATY « o oottt et et et et e e et 44
3 Regular Expressions 47
3.1 How to Use Regular Expressions..................ooiiiii... 47
3.2 ESCape SEqUENCES. ...\ .ttt 48
3.3 Regular Expression Operatorsc.ovviveiiinnnennnnn... 50
3.4 Using Bracket Expressions..............oooiiiiiiiiiiiii., 53
3.5 How Much Text Matches? i, 55
3.6 Using Dynamic Regexps.........ooiiiiiiiiiiiiii.. 55
3.7 gawk-Specific Regexp Operators ..., 56
3.8 Case Sensitivity in Matching................ o. 58
3.9 SUMMATY . o ettt e e 59
4 Reading Input Files............................ 61
4.1 How Input Is Split into Records 61
4.1.1 Record Splitting with Standard awk....................... 61
4.1.2 Record Splitting with gawkol 63
4.2 Examining Fields............ i 65
4.3 Nonconstant Field Numbers o .. 66
4.4 Changing the Contents of a Field............. 67
4.5 Specifying How Fields Are Separated 69
4.5.1 Whitespace Normally Separates Fields.................... 70
4.5.2 Using Regular Expressions to Separate Fields 70
4.5.3 Making Each Character a Separate Field.................. 71
4.5.4 Setting FS from the Command Line....................... 71
4.5.5 Making the Full Line Be a Single Field.................... 73
4.5.6 Field-Splitting Summary......... ... i 73
4.6 Reading Fixed-Width Data........... 74
4.6.1 Processing Fixed-Width Data............... 74
4.6.2 Skipping Intervening Fields............ 76
4.6.3 Capturing Optional Trailing Data......................... 76
4.6.4 Field Values With Fixed-Width Data 76
4.7 Defining Fields by Content oo, 7
4.8 Checking How gawk Is Splitting Records....................... 78
4.9 Multiple-Line Recordso 79
4.10 Explicit Input with getline............. L. 81
4.10.1 Using getline with No Arguments...................... 82
4.10.2 Using getline into a Variable.................. 83
4.10.3 Using getline froma File............ 83

4.10.4 Using getline into a Variable from a File 84

4.10.5 Using getline froma Pipe............ 84

4.10.6 Using getline into a Variable from a Pipe............... 86
4.10.7 Using getline from a Coprocess......................... 86
4.10.8 Using getline into a Variable from a Coprocess......... 86
4.10.9 Points to Remember About getline..................... 86
4.10.10 Summary of getline Variants.......................... 87
4.11 Reading Input with a Timeout 88
4.12 Retrying Reads After Certain Input Errors 89
4.13 Directories on the Command Line 90
414 SUIMIATY .« .ottt et et 90
415 EXOICISES . . v vttt ettt e 91
Printing Output.......... 93
5.1 The print Statement........ ..., 93
5.2 print Statement Examples......... ...t 93
5.3 Output Separators.uieiiit e 95
5.4 Controlling Numeric Output with print....................... 96
5.5 Using printf Statements for Fancier Printing.................. 96
5.5.1 Introduction to the printf Statement..................... 96
5.5.2 Format-Control Letters........... oL, 97
5.5.3 Modifiers for printf Formats..................... 98
5.5.4 Examples Using printf ..., 100
5.6 Redirecting Output of print and printf..................... 101
5.7 Special Files for Standard Preopened Data Streams........... 104
5.8 Special File names in gawk 105
5.8.1 Accessing Other Open Files with gawk................... 105
5.8.2 Special Files for Network Communications............... 105
5.8.3 Special File name Caveats..............cccoviiieeao.... 106
5.9 Closing Input and Output Redirections....................... 106
5.10 Enabling Nonfatal Output............. 109
5.11 SUIMINATY vttt et ettt et 110
D.12 EXEICISES . .. e 110
Expressions....................... 113
6.1 Constants, Variables, and Conversions........................ 113
6.1.1 Constant EXpressions.o .. 113
6.1.1.1 Numeric and String Constants 113
6.1.1.2 Octal and Hexadecimal Numbers.................... 113
6.1.1.3 Regular Expression Constants....................... 114

6.1.2 Using Regular Expression Constants..................... 115
6.1.2.1 Standard Regular Expression Constants............. 115
6.1.2.2 Strongly Typed Regexp Constants 116

6.1.3 Variables. ... 117
6.1.3.1 Using Variables in a Program 117
6.1.3.2 Assigning Variables on the Command Line.......... 118

6.1.4 Conversion of Strings and Numbers...................... 118

6.1.4.1 How awk Converts Between Strings and Numbers ... 118

vi GAWK: Effective AWK Programming

6.1.4.2 Locales Can Influence Conversion................... 119

6.2 Operators: Doing Something with Values..................... 121
6.2.1 Arithmetic Operators............oiiiiiiiiiiiiennn... 121
6.2.2 String Concatenation.................coiiiiiiiiii.. 122
6.2.3 Assignment Expressions i 123
6.2.4 Increment and Decrement Operators..................... 126
6.3 Truth Values and Conditions 127
6.3.1 Trueand False in awkcoooiiiiiiiiiiiiiiinnnn... 127
6.3.2 Variable Typing and Comparison Expressions............ 127
6.3.2.1 String Type versus Numeric Type................... 128
6.3.2.2 Comparison Operators............coovvuieeninee . 130
6.3.2.3 String Comparison Based on Locale Collating Order. . 132

6.3.3 Boolean Expressions...........ccoiiiiiiiiiiiiiiii ., 132
6.3.4 Conditional Expressionscoiiiiiiiiiii.. 134
6.4 Function Calls........ ... 135
6.5 Operator Precedence (How Operators Nest)................... 136
6.6 Where You Are Makes a Difference........................... 137
6.7 SUMMATY . ..ottt e e e 138
7 Patterns, Actions, and Variables 141
7.1 Pattern Elements...........oo i 141
7.1.1 Regular Expressions as Patterns......................... 141
7.1.2 Expressions as Patterns.................. 141
7.1.3 Specifying Record Ranges with Patterns 143
7.1.4 The BEGIN and END Special Patterns..................... 144
7.1.4.1 Startup and Cleanup Actions 144
7.1.4.2 Input/Output from BEGIN and END Rules............ 145

7.1.5 The BEGINFILE and ENDFILE Special Patterns............ 145
7.1.6 The Empty Patterno i 146
7.2 Using Shell Variables in Programs 146
T3 ACHIONS ..ot 147
7.4 Control Statements in Actions.......... ..., 148
7.4.1 The if-else Statement......................cooviio.... 148
7.4.2 The while Statement................., 149
7.4.3 The do-while Statement......................cciiiininn. 150
7.4.4 The for Statement i, 150
7.4.5 The switch Statement 151
7.4.6 The break Statement....................ciiiiiiiiii... 152
7.4.7 The continue Statement 153
7.4.8 The next Statement...............ccoiiiiiiiiiiiiiiinn. 154
7.4.9 The nextfile Statement................ 155
7.4.10 The exit Statement......... ..., 156
7.5 Predefined Variables.................. 157
7.5.1 Built-in Variables That Control awk...................... 157
7.5.2 Built-in Variables That Convey Information.............. 159
7.5.3 Using ARGC and ARGVttt 166

T6 SUMIMATY .« .ottt et 168

vii

8 Arraysin awk...............coiiiiiiiiiiiiii.. 169
8.1 The Basics of ATraysot 169
8.1.1 Introduction to Arrays..........c.ooviieiiiiiiiiiiiean.. 169
8.1.2 Referring to an Array Element........................... 171
8.1.3 Assigning Array Elements 172
8.1.4 Basic Array Example...... i 172
8.1.5 Scanning All Elements of an Array....................... 173
8.1.6 Using Predefined Array Scanning Orders with gawk 174
8.2 Using Numbers to Subscript Arrays........................... 177
8.3 Using Uninitialized Variables as Subscripts.................... 177
8.4 The delete Statementc.ooiiiiiiiiieiiiaan.. 178
8.5 Multidimensional ATrayscooeiiiiiiiiiiii 179
8.5.1 Scanning Multidimensional Arrays....................... 181
8.6 Arrays of Arrays 181
8.7 SUMMATY ...ttt e 183
9 Functions............. 185
9.1 Built-in Functions.......o i i 185
9.1.1 Calling Built-in Functions, 185
9.1.2 Numeric Functions ..., 186
9.1.3 String-Manipulation Functions........................... 187
9.1.3.1 More about ‘\’ and ‘& with
sub(), gsub(), and gensub()o 196
9.1.4 Input/Output Functions..................ooooiiiii... 199
9.1.5 Time Functions..........ccooiiiiiiiiiiiiiiiiiiinninn. 202
9.1.6 Bit-Manipulation Functions.............................. 207
9.1.7 Getting Type Information 210
9.1.8 String-Translation Functions............... 211
9.2 User-Defined Functions............. .o, 211
9.2.1 Function Definition Syntax i 211
9.2.2 Function Definition Examples............................ 213
9.2.3 Calling User-Defined Functions 215
9.2.3.1 Writing a Function Call............ 215
9.2.3.2 Controlling Variable Scope.......................... 215
9.2.3.3 Passing Function Arguments by Value Or by Reference.. 217
9.2.4 The return Statement 219
9.2.5 Functions and Their Effects on Variable Typing.......... 220
9.3 Indirect Function Calls......... i ... 221

9.4 SUIMIMATY ...ttt e e e e 226

viii GAWK: Effective AWK Programming

Part II: Problem Solving with awk

10 A Library of awk Functions 231
10.1 Naming Library Function Global Variables 232
10.2 General Programming.......... ..., 233

10.2.1 Converting Strings to Numbers......................... 233
10.2.2 ASSEItIONS . . v vttt et e 234
10.2.3 Rounding Numbers.......... ..., 236
10.2.4 The CIliff Random Number Generator................... 237
10.2.5 Translating Between Characters and Numbers 237
10.2.6 Merging an Array into a String......................... 239
10.2.7 Managing the Time of Day 239
10.2.8 Reading a Whole File at Once.......................... 241
10.2.9 Quoting Strings to Pass to the Shell 242
10.3 Data file Management.......... ..., 243
10.3.1 Noting Data file Boundaries 243
10.3.2 Rereading the Current File 244
10.3.3 Checking for Readable Data files........................ 246
10.3.4 Checking for Zero-Length Files 246
10.3.5 Treating Assignments as File names 247
10.4 Processing Command-Line Options.......................... 248
10.5 Reading the User Database............., 253
10.6 Reading the Group Database............ 257
10.7 Traversing Arrays of Arrays ..., 261
10.8 SUMIMATY .« oottt e 263
10.9 EXEICISES. . ..ottt ittt e 263

11 Practical awk Programs...................... 265
11.1 Running the Example Programs............................. 265
11.2 Reinventing Wheels for Fun and Profit 265

11.2.1 Cutting Out Fields and Columns 265
11.2.2 Searching for Regular Expressions in Files 270
11.2.3 Printing Out User Information....................... ... 274
11.2.4 Splitting a Large File into Pieces 276
11.2.5 Duplicating Output into Multiple Files 277
11.2.6 Printing Nonduplicated Lines of Text................... 279
11.2.7 Counting Things ... 283
11.3 A Grab Bag of awk Programs............... 285
11.3.1 Finding Duplicated Words in a Document 285
11.3.2 An Alarm Clock Program 286
11.3.3 Transliterating Characters............... ... 288
11.3.4 Printing Mailing Labels oL, 290
11.3.5 Generating Word-Usage Counts......................... 292
11.3.6 Removing Duplicates from Unsorted Text............... 294
11.3.7 Extracting Programs from Texinfo Source Files......... 295
11.3.8 A Simple Stream Editor................., 298

11.3.9 An Easy Way to Use Library Functions................. 299

11.3.10 Finding Anagrams from a Dictionary 306

11.3.11 And Now for Something Completely Different.......... 307
1104 SUMIMATY . o oottt e e e e e 308
11,5 EXEICISES . . vttt ittt e 308

Part ITI: Moving Beyond Standard awk with gawk

12 Advanced Features of gawk.................. 313
12.1 Allowing Nondecimal Input Data............................ 313
12.2 Controlling Array Traversal and Array Sorting............... 314

12.2.1 Controlling Array Traversal.............. 314
12.2.2 Sorting Array Values and Indices with gawk............. 318
12.3 Two-Way Communications with Another Process............ 320
12.4 Using gawk for Network Programming 323
12.5 Profiling Your awk Programs, 324
12,6 SUMIMATY .. oottt et e e e 328

13 Internationalization with gawk.............. 329
13.1 Internationalization and Localization 329
13.2 GNU gettext. . oot 329
13.3 Internationalizing awk Programs............................. 331
13.4 Translating awk Programs............ ..., 333

13.4.1 Extracting Marked Strings..............o L 333
13.4.2 Rearranging printf Arguments 334
13.4.3 awk Portability Issues............ooooiiiiiiiiiii 335
13.5 A Simple Internationalization Example 336
13.6 gawk Can Speak Your Language............................. 337
13,7 SUMIMATY ..o oot e 337

14 Debugging awk Programs.................... 339

14.1 Introduction to the gawk Debugger.......................... 339
14.1.1 Debugging in Generalo i, 339
14.1.2 Debugging Concepts.ccoviiiiiiiiiiiiieannn.. 339
14.1.3 awk Debugging o i 340

14.2 Sample gawk Debugging Session, 340
14.2.1 How to Start the Debugger.............. 341
14.2.2 Finding the Bug...... o i 341

14.3 Main Debugger Commands..............c.oooiiiiiiia... 344
14.3.1 Control of Breakpoints 344
14.3.2 Control of Executiono ., 346
14.3.3 Viewing and Changing Data............................ 347
14.3.4 Working with the Stack, 348
14.3.5 Obtaining Information About the

Program and the Debugger State............... 349
14.3.6 Miscellaneous Commands.c.oovueeevineeann... 351

14.4 Readline SUPPOTItovun it 352

x GAWK: Effective AWK Programming

14.5 Limitations i e 353
14.6 SUMIMATY ..ottt et e e e e 353

15 Arithmetic and Arbitrary-Precision

Arithmetic with gawk 355
15.1 A General Description of Computer Arithmetic.............. 355
15.2 Other Stuff to Know i 356
15.3 Arbitrary-Precision Arithmetic Features in gawk............. 358
15.4 Floating-Point Arithmetic: Caveat Emptor!.................. 358
15.4.1 Floating-Point Arithmetic Is Not Exact................. 359
15.4.1.1 Many Numbers Cannot Be Represented Exactly. ... 359
15.4.1.2 Be Careful Comparing Values...................... 359
15.4.1.3 Errors Accumulate L. 360
15.4.2 Getting the Accuracy You Need 360
15.4.3 Try a Few Extra Bits of Precision and Rounding........ 361
15.4.4 Setting the Precision i i 362
15.4.5 Setting the Rounding Mode 363
15.5 Arbitrary-Precision Integer Arithmetic with gawk............ 364
15.6 How To Check If MPFR Is Available 365
15.7 Standards Versus Existing Practice.......................... 366
15.8 SUMMATY .« oot e 367
16 Writing Extensions for gawk................. 369
16.1 Introductionc.ouoiiiiiiiii i 369
16.2 Extension Licensing............cooiiiiiiiiiiiiiiiiiii . 369
16.3 How It Works at a High Level 369
16.4 API Description..........ouieiiii i 371
16.4.1 Introduction.............cc.oeiiiiiiiiiiiiiiiiiiaann. 371
16.4.2 General-Purpose Data Types...............ooiina... 373
16.4.3 Memory Allocation Functions and Convenience Macros. . 377
16.4.4 Constructor Functions.............. ... i, 378
16.4.5 Registration Functions............... 380
16.4.5.1 Registering An Extension Function 380
16.4.5.2 Registering An Exit Callback Function............. 382
16.4.5.3 Registering An Extension Version String........... 382
16.4.5.4 Customized Input Parsers 382
16.4.5.5 Customized Output Wrappers 387
16.4.5.6 Customized Two-way Processors................... 388
16.4.6 Printing Messagesoouuiiiiiiiiiiiiii i 389
16.4.7 Updating ERRNOoiititiii i 390
16.4.8 Requesting Values........ ..., 390
16.4.9 Accessing and Updating Parameters.................... 390
16.4.10 Symbol Table Access........cvviiiiiiiiii .. 391
16.4.10.1 Variable Access and Update by Name............. 391
16.4.10.2 Variable Access and Update by Cookie............ 391
16.4.10.3 Creating and Using Cached Values................ 393

16.4.11 Array Manipulation...........o il 395

16.4.11.1 Array Data Types......cccovviiiiiiiinnnnn... 395

16.4.11.2 Array Functions............ot 396
16.4.11.3 Working With All The Elements of an Array...... 398
16.4.11.4 How To Create and Populate Arrays.............. 401
16.4.12 Accessing and Manipulating Redirections.............. 403
16.4.13 API Variables......... ... 404
16.4.13.1 API Version Constants and Variables............. 405
16.4.13.2 GMP and MPFR Version Information 405
16.4.13.3 Informational Variables........................... 406
16.4.14 Boilerplate Code ..., 406
16.4.15 Changes From Version 1 of the API 408
16.5 How gawk Finds Extensions ool 408
16.6 Example: Some File Functions 408
16.6.1 Using chdir() and stat()ccovviiiiiiiann. 409
16.6.2 C Code for chdir() and stat() 411
16.6.3 Integrating the Extensions................ 417
16.7 The Sample Extensions in the gawk Distribution............. 418
16.7.1 File-Related Functions........... oo, 418
16.7.2 Interface to fnmatch() ..., 421
16.7.3 Interface to fork(), wait(), and waitpid() 422
16.7.4 Enabling In-Place File Editing................... 422
16.7.5 Character and Numeric values: ord() and chr() 424
16.7.6 Reading Directoriesc.ooiiiiiiiiiiiiiiin.. 424
16.7.7 Reversing Output i 425
16.7.8 Two-Way I/O Example..............ooooiiiiiiiiii.. 425
16.7.9 Dumping and Restoring an Array....................... 426
16.7.10 Reading an Entire File......... 426
16.7.11 Extension Time Functions.......................... ... 427
16.7.12 API TSt . oottt 427
16.8 The gawkextlib Project il 427
16.9 SUMMATY ..ottt 428
16.10 EXETCISES. .. vttt ettt e 429

Part IV: Appendices

Appendix A The Evolution of the awk Language .. 433

A.1 Major Changes Between V7 and SVR3.1..................... 433
A.2 Changes Between SVR3.1and SVR4......................... 434
A.3 Changes Between SVR4 and POSIX awk 434
A.4 Extensions in Brian Kernighan’s awk......................... 435
A.5 Extensions in gawk Not in POSIX awk 435
A.6 History of gawk Features............ot 438
A.7 Common Extensions Summary................ccooviiiini ... 444
A.8 Regexp Ranges and Locales: A Long Sad Story 445
A.9 Major Contributors to gawk...................oiiiiii.L. 446

ATO SUMMATY . .o ettt e 448

xii GAWK: Effective AWK Programming

Appendix B Installing gawk..................... 451
B.1 The gawk Distribution 451
B.1.1 Getting the gawk Distribution.............. 451
B.1.2 Extracting the Distribution 451
B.1.3 Contents of the gawk Distribution....................... 452
B.2 Compiling and Installing gawk on Unix-Like Systems......... 455
B.2.1 Compiling gawk for Unix-Like Systems 455
B.2.2 Shell Startup Files ... 456
B.2.3 Additional Configuration Options 456
B.2.4 The Configuration Process 457
B.3 Installation on Other Operating Systems..................... 457
B.3.1 Installation on MS-Windows 457
B.3.1.1 Installing a Prepared

Distribution for MS-Windows Systems..................... 458
B.3.1.2 Compiling gawk for PC Operating Systems 458
B.3.1.3 Using gawk on PC Operating Systems 458
B.3.1.4 Using gawk In The Cygwin Environment............ 459
B.3.1.5 Using gawk In The MSYS Environment............. 459

B.3.2 Compiling and Installing gawk on Vax/VMS and OpenVMS. . 459
B.3.2.1 Compiling gawk on VMS 460
B.3.2.2 Compiling gawk Dynamic Extensions on VMS 460
B.3.2.3 Installing gawkon VMS..........., 461
B.3.2.4 Running gawkon VMS.........., 462
B.3.2.5 The VMS GNV Project ..., 463
B.3.2.6 Some VMS Systems Have An Old Version of gawk .. 463
B.4 Reporting Problems and Bugs........................ L 464
B.4.1 Submitting Bug Reports i 464
B.4.2 Please Don’t Post Bug Reports to USENET 464
B.4.3 Reporting Problems with Non-Unix Ports............... 465
B.5 Other Freely Available awk Implementations.................. 465
B.6 Summary 467
Appendix C Implementation Notes............ 469
C.1 Downward Compatibility and Debugging..................... 469
C.2 Making Additions to gawk ..., 469
C.2.1 Accessing The gawk Git Repository 469
C.2.2 Adding New Features, 470
C.2.3 Porting gawk to a New Operating System 471
C.2.4 Why Generated Files Are Kept In Git................... 473
C.3 Probable Future Extensions....................oooiiit. 475
C.4 Some Limitations of the Implementation 475
C.5 Extension API Design ... 475
C.5.1 Problems With The Old Mechanism..................... 476
C.5.2 Goals For A New Mechanism............................ 476
C.5.3 Other Design Decisions.............ccooiiiiiiiiii .. 477
C.5.4 Room For Future Growth 478
C.6 Compatibility For Old Extensions............................ 478

C.T SUMMATY . ..ottt e e e e e 479

Appendix D Basic Programming Concepts ... 481

D.1 What a Program Does.......... ..., 481
D.2 Data Values in a Computer.................cooiiiiiiiii... 482
Glossary 485
GNU General Public License.................... 497
GNU Free Documentation License.............. 509
ADDENDUM: How to use this License for your documents. 515

xiii

Foreword to the Third Edition 1

Foreword to the Third Edition

Arnold Robbins and I are good friends. We were introduced in 1990 by circumstances—and
our favorite programming language, AWK. The circumstances started a couple of years
earlier. I was working at a new job and noticed an unplugged Unix computer sitting in the
corner. No one knew how to use it, and neither did I. However, a couple of days later, it
was running, and I was root and the one-and-only user. That day, I began the transition
from statistician to Unix programmer.

On one of many trips to the library or bookstore in search of books on Unix, I found
the gray AWK book, a.k.a. Alfred V. Aho, Brian W. Kernighan, and Peter J. Weinberger’s
The AWK Programming Language (Addison-Wesley, 1988). awk’s simple programming
paradigm—find a pattern in the input and then perform an action—often reduced complex
or tedious data manipulations to a few lines of code. I was excited to try my hand at
programming in AWK.

Alas, the awk on my computer was a limited version of the language described in the
gray book. I discovered that my computer had “old awk” and the book described “new
awk.” I learned that this was typical; the old version refused to step aside or relinquish its
name. If a system had a new awk, it was invariably called nawk, and few systems had it.
The best way to get a new awk was to f£tp the source code for gawk from prep.ai.mit.edu.
gawk was a version of new awk written by David Trueman and Arnold, and available under
the GNU General Public License.

(Incidentally, it’s no longer difficult to find a new awk. gawk ships with GNU/Linux, and
you can download binaries or source code for almost any system; my wife uses gawk on her
VMS box.)

My Unix system started out unplugged from the wall; it certainly was not plugged into
a network. So, oblivious to the existence of gawk and the Unix community in general, and
desiring a new awk, I wrote my own, called mawk. Before I was finished, I knew about gawk,
but it was too late to stop, so I eventually posted to a comp.sources newsgroup.

A few days after my posting, I got a friendly email from Arnold introducing himself. He
suggested we share design and algorithms and attached a draft of the POSIX standard so
that I could update mawk to support language extensions added after publication of The
AWK Programming Language.

Frankly, if our roles had been reversed, I would not have been so open and we probably
would have never met. I'm glad we did meet. He is an AWK expert’s AWK expert and a
genuinely nice person. Arnold contributes significant amounts of his expertise and time to
the Free Software Foundation.

This book is the gawk reference manual, but at its core it is a book about AWK program-
ming that will appeal to a wide audience. It is a definitive reference to the AWK language
as defined by the 1987 Bell Laboratories release and codified in the 1992 POSIX Utilities
standard.

On the other hand, the novice AWK programmer can study a wealth of practical pro-
grams that emphasize the power of AWK’s basic idioms: data-driven control flow, pattern
matching with regular expressions, and associative arrays. Those looking for something
new can try out gawk’s interface to network protocols via special /inet files.

2 GAWK: Effective AWK Programming

The programs in this book make clear that an AWK program is typically much smaller
and faster to develop than a counterpart written in C. Consequently, there is often a payoff
to prototyping an algorithm or design in AWK to get it running quickly and expose problems
early. Often, the interpreted performance is adequate and the AWK prototype becomes the
product.

The new pgawk (profiling gawk), produces program execution counts. I recently exper-
imented with an algorithm that for n lines of input, exhibited ~ Cn? performance, while
theory predicted ~ Cnlogn behavior. A few minutes poring over the awkprof.out pro-
file pinpointed the problem to a single line of code. pgawk is a welcome addition to my
programmer’s toolbox.

Arnold has distilled over a decade of experience writing and using AWK programs, and
developing gawk, into this book. If you use AWK or want to learn how, then read this book.

Michael Brennan

Author of mawk
March 2001

Foreword to the Fourth Edition 3

Foreword to the Fourth Edition

Some things don’t change. Thirteen years ago I wrote: “If you use AWK or want to learn
how, then read this book.” True then, and still true today.

Learning to use a programming language is about more than mastering the syntax.
One needs to acquire an understanding of how to use the features of the language to solve
practical programming problems. A focus of this book is many examples that show how to
use AWK.

Some things do change. Our computers are much faster and have more memory. Con-
sequently, speed and storage inefficiencies of a high-level language matter less. Prototyping
in AWK and then rewriting in C for performance reasons happens less, because more often
the prototype is fast enough.

Of course, there are computing operations that are best done in C or C++. With gawk
4.1 and later, you do not have to choose between writing your program in AWK or in
C/C++. You can write most of your program in AWK and the aspects that require C/C++
capabilities can be written in C/C++, and then the pieces glued together when the gawk
module loads the C/C++ module as a dynamic plug-in. Chapter 16 [Writing Extensions for
gawk|, page 369, has all the details, and, as expected, many examples to help you learn the
ins and outs.

I enjoy programming in AWK and had fun (re)reading this book. I think you will too.

Michael Brennan
Author of mawk
October 2014

Preface 5

Preface

Several kinds of tasks occur repeatedly when working with text files. You might want to
extract certain lines and discard the rest. Or you may need to make changes wherever
certain patterns appear, but leave the rest of the file alone. Such jobs are often easy with
awk. The awk utility interprets a special-purpose programming language that makes it easy
to handle simple data-reformatting jobs.

The GNU implementation of awk is called gawk; if you invoke it with the proper options
or environment variables, it is fully compatible with the POSIX! specification of the awk
language and with the Unix version of awk maintained by Brian Kernighan. This means
that all properly written awk programs should work with gawk. So most of the time, we
don’t distinguish between gawk and other awk implementations.

Using awk you can:
e Manage small, personal databases
e Generate reports
e Validate data
e Produce indexes and perform other document-preparation tasks

e Experiment with algorithms that you can adapt later to other computer languages

In addition, gawk provides facilities that make it easy to:

e Extract bits and pieces of data for processing
e Sort data

e Perform simple network communications

e Profile and debug awk programs

e Extend the language with functions written in C or C++

This book teaches you about the awk language and how you can use it effectively. You
should already be familiar with basic system commands, such as cat and 1s,? as well as
basic shell facilities, such as input/output (I/O) redirection and pipes.

Implementations of the awk language are available for many different computing en-
vironments. This book, while describing the awk language in general, also describes the
particular implementation of awk called gawk (which stands for “GNU awk”). gawk runs
on a broad range of Unix systems, ranging from Intel-architecture PC-based computers up
through large-scale systems. gawk has also been ported to Mac OS X, Microsoft Windows
(all versions), and OpenVMS.?

1 The 2008 POSIX standard is accessible online at http: //wuw .opengroup.org/onlinepubs/9699919799/.

2 These utilities are available on POSIX-compliant systems, as well as on traditional Unix-based systems.
If you are using some other operating system, you still need to be familiar with the ideas of I/O redirection
and pipes.

3 Some other, obsolete systems to which gawk was once ported are no longer supported and the code for
those systems has been removed.

http://www.opengroup.org/onlinepubs/9699919799/

6 GAWK: Effective AWK Programming

History of awk and gawk

-
Recipe for a Programming Language

1 part egrep 1 part snobol
2 parts ed 3 parts C

Blend all parts well using lex and yacc. Document minimally and release.

and release.
N

After eight years, add another part egrep and two more parts C. Document very well

/)

The name awk comes from the initials of its designers: Alfred V. Aho, Peter J. Wein-
berger, and Brian W. Kernighan. The original version of awk was written in 1977 at AT&T
Bell Laboratories. In 1985, a new version made the programming language more powerful,
introducing user-defined functions, multiple input streams, and computed regular expres-
sions. This new version became widely available with Unix System V Release 3.1 (1987).
The version in System V Release 4 (1989) added some new features and cleaned up the
behavior in some of the “dark corners” of the language. The specification for awk in the
POSIX Command Language and Utilities standard further clarified the language. Both the
gawk designers and the original awk designers at Bell Laboratories provided feedback for
the POSIX specification.

Paul Rubin wrote gawk in 1986. Jay Fenlason completed it, with advice from Richard
Stallman. John Woods contributed parts of the code as well. In 1988 and 1989, David
Trueman, with help from me, thoroughly reworked gawk for compatibility with the newer
awk. Circa 1994, I became the primary maintainer. Current development focuses on bug
fixes, performance improvements, standards compliance, and, occasionally, new features.

In May 1997, Jiirgen Kahrs felt the need for network access from awk, and with a little
help from me, set about adding features to do this for gawk. At that time, he also wrote the
bulk of TCP/IP Internetworking with gawk (a separate document, available as part of the
gawk distribution). His code finally became part of the main gawk distribution with gawk
version 3.1.

John Haque rewrote the gawk internals, in the process providing an awk-level debugger.
This version became available as gawk version 4.0 in 2011.

See Section A.9 [Major Contributors to gawk], page 446, for a full list of those who have
made important contributions to gawk.

A Rose by Any Other Name

The awk language has evolved over the years. Full details are provided in Appendix A [The
Evolution of the awk Language|, page 433. The language described in this book is often
referred to as “new awk.” By analogy, the original version of awk is referred to as “old awk.”

On most current systems, when you run the awk utility you get some version of new
awk.? If your system’s standard awk is the old one, you will see something like this if you
try the test program:

$ awk 1 /dev/null

4 Only Solaris systems still use an old awk for the default awk utility. A more modern awk lives in
/usr/xpg6/bin on these systems.

Preface 7

awk: syntax error near line 1
awk: bailing out near line 1

In this case, you should find a version of new awk, or just install gawk!

Throughout this book, whenever we refer to a language feature that should be available
in any complete implementation of POSIX awk, we simply use the term awk. When referring
to a feature that is specific to the GNU implementation, we use the term gawk.

Using This Book

The term awk refers to a particular program as well as to the language you use to tell this
program what to do. When we need to be careful, we call the language “the awk language,”
and the program “the awk utility.” This book explains both how to write programs in the
awk language and how to run the awk utility. The term “awk program” refers to a program
written by you in the awk programming language.

Primarily, this book explains the features of awk as defined in the POSIX standard. It
does so in the context of the gawk implementation. While doing so, it also attempts to
describe important differences between gawk and other awk implementations.® Finally, it
notes any gawk features that are not in the POSIX standard for awk.

This book has the difficult task of being both a tutorial and a reference. If you are a
novice, feel free to skip over details that seem too complex. You should also ignore the
many cross-references; they are for the expert user and for the Info and HTML versions of
the book.

There are sidebars scattered throughout the book. They add a more complete explana-
tion of points that are relevant, but not likely to be of interest on first reading. All appear
in the index, under the heading “sidebar.”

Most of the time, the examples use complete awk programs. Some of the more advanced
sections show only the part of the awk program that illustrates the concept being described.

Although this book is aimed principally at people who have not been exposed to awk,
there is a lot of information here that even the awk expert should find useful. In particular,
the description of POSIX awk and the example programs in Chapter 10 [A Library of awk
Functions], page 231, and in Chapter 11 [Practical awk Programs|, page 265, should be of
interest.

This book is split into several parts, as follows:

e Part I describes the awk language and the gawk program in detail. It starts with
the basics, and continues through all of the features of awk. It contains the following
chapters:

— Chapter 1 [Getting Started with awk|, page 17, provides the essentials you need to
know to begin using awk.

— Chapter 2 [Running awk and gawk|, page 31, describes how to run gawk, the
meaning of its command-line options, and how it finds awk program source files.

— Chapter 3 [Regular Expressions], page 47, introduces regular expressions in general,
and in particular the flavors supported by POSIX awk and gawk.

5 All such differences appear in the index under the entry “differences in awk and gawk.”

https://www.gnu.org/software/gawk/manual/

8 GAWK: Effective AWK Programming

Chapter 4 [Reading Input Files|, page 61, describes how awk reads your data. It
introduces the concepts of records and fields, as well as the getline command.
I/0 redirection is first described here. Network I/0O is also briefly introduced here.

Chapter 5 [Printing Output], page 93, describes how awk programs can produce
output with print and printf.

Chapter 6 [Expressions|, page 113, describes expressions, which are the basic build-
ing blocks for getting most things done in a program.

Chapter 7 [Patterns, Actions, and Variables|, page 141, describes how to write pat-
terns for matching records, actions for doing something when a record is matched,
and the predefined variables awk and gawk use.

Chapter 8 [Arrays in awk], page 169, covers awk’s one-and-only data structure: the
associative array. Deleting array elements and whole arrays is described, as well
as sorting arrays in gawk. The chapter also describes how gawk provides arrays of
arrays.

Chapter 9 [Functions|, page 185, describes the built-in functions awk and gawk
provide, as well as how to define your own functions. It also discusses how gawk
lets you call functions indirectly.

e Part II shows how to use awk and gawk for problem solving. There is lots of code here
for you to read and learn from. This part contains the following chapters:

Chapter 10 [A Library of awk Functions|, page 231, provides a number of functions
meant to be used from main awk programs.

Chapter 11 [Practical awk Programs|, page 265, provides many sample awk pro-
grams.

Reading these two chapters allows you to see awk solving real problems.

e Part III focuses on features specific to gawk. It contains the following chapters:

Chapter 12 [Advanced Features of gawk|, page 313, describes a number of advanced
features. Of particular note are the abilities to control the order of array traversal,
have two-way communications with another process, perform TCP /IP networking,
and profile your awk programs.

Chapter 13 [Internationalization with gawk|, page 329, describes special features
for translating program messages into different languages at runtime.

Chapter 14 [Debugging awk Programs|, page 339, describes the gawk debugger.
Chapter 15 [Arithmetic and Arbitrary-Precision Arithmetic with gawk], page 355,
describes advanced arithmetic facilities.

Chapter 16 [Writing Extensions for gawk]|, page 369, describes how to add new

?

variables and functions to gawk by writing extensions in C or C++.

e Part IV provides the appendices, the Glossary, and two licenses that cover the gawk
source code and this book, respectively. It contains the following appendices:

Appendix A [The Evolution of the awk Language|, page 433, describes how the
awk language has evolved since its first release to the present. It also describes
how gawk has acquired features over time.

Appendix B [Installing gawk|, page 451, describes how to get gawk, how to compile
it on POSIX-compatible systems, and how to compile and use it on different non-

Preface 9

POSIX systems. It also describes how to report bugs in gawk and where to get
other freely available awk implementations.

— Appendix C [Implementation Notes|, page 469, describes how to disable gawk’s
extensions, as well as how to contribute new code to gawk, and some possible
future directions for gawk development.

— Appendix D [Basic Programming Concepts], page 481, provides some very cur-
sory background material for those who are completely unfamiliar with computer
programming.

The [Glossary], page 485, defines most, if not all, of the significant terms used
throughout the book. If you find terms that you aren’t familiar with, try looking
them up here.

— [GNU General Public License|, page 497, and [GNU Free Documentation License],
page 509, present the licenses that cover the gawk source code and this book,
respectively.

Typographical Conventions

This book is written in Texinfo, the GNU documentation formatting language. A single
Texinfo source file is used to produce both the printed and online versions of the documen-
tation. Because of this, the typographical conventions are slightly different than in other
books you may have read.

Examples you would type at the command line are preceded by the common shell primary
and secondary prompts, ‘$” and ‘>’. Input that you type is shown like this. Output from
the command is preceded by the glyph “-”. This typically represents the command’s
standard output. Error messages and other output on the command’s standard error are
preceded by the glyph ”. For example:

$ echo hi on stdout
- hi on stdout
$ echo hello on stderr 1>&2

hello on stderr

In the text, almost anything related to programming, such as command names, variable
and function names, and string, numeric and regexp constants appear in this font. Code
fragments appear in the same font and quoted, ‘1ike this’. Things that are replaced by the
user or programmer appear in this font. Options look like this: —-f. File names are indicated
like this: /path/to/ourfile. Some things are emphasized like this, and if a point needs
to be made strongly, it is done like this. The first occurrence of a new term is usually its
definition and appears in the same font as the previous occurrence of “definition” in this
sentence.

Characters that you type at the keyboard look 1ike this. In particular, there are special
characters called “control characters.” These are characters that you type by holding down
both the CONTROL key and another key, at the same time. For example, a Ctrl-d is typed
by first pressing and holding the CONTROL key, next pressing the d key, and finally releasing
both keys.

For the sake of brevity, throughout this book, we refer to Brian Kernighan’s version
of awk as “BWK awk.” (See Section B.5 [Other Freely Available awk Implementations],
page 465, for information on his and other versions.)

https://www.gnu.org/software/texinfo/

10 GAWK: Effective AWK Programming

Dark Corners

Dark corners are basically fractal—no matter how much you illuminate, there’s
always a smaller but darker one.
—Brian Kernighan

Until the POSIX standard (and GAWK: Effective AWK Programming), many features of
awk were either poorly documented or not documented at all. Descriptions of such features
(often called “dark corners”) are noted in this book with the picture of a flashlight in the
margin, as shown here. They also appear in the index under the heading “dark corner.”

But, as noted by the opening quote, any coverage of dark corners is by definition incom-
plete.

Extensions to the standard awk language that are supported by more than one awk
implementation are marked “(c.e.),” and listed in the index under “common extensions”
and “extensions, common.”

The GNU Project and This Book

The Free Software Foundation (FSF) is a nonprofit organization dedicated to the production
and distribution of freely distributable software. It was founded by Richard M. Stallman,
the author of the original Emacs editor. GNU Emacs is the most widely used version of
Emacs today.

The GNU® Project is an ongoing effort on the part of the Free Software Foundation
to create a complete, freely distributable, POSIX-compliant computing environment. The
FSF uses the GNU General Public License (GPL) to ensure that its software’s source code
is always available to the end user. A copy of the GPL is included in this book for your
reference (see [GNU General Public License], page 497). The GPL applies to the C language
source code for gawk. To find out more about the FSF and the GNU Project online, see
the GNU Project’s home page. This book may also be read from GNU’s website.

A shell, an editor (Emacs), highly portable optimizing C, C++, and Objective-C com-
pilers, a symbolic debugger and dozens of large and small utilities (such as gawk), have all
been completed and are freely available. The GNU operating system kernel (the HURD),
has been released but remains in an early stage of development.

Until the GNU operating system is more fully developed, you should consider using
GNU/Linux, a freely distributable, Unix-like operating system for Intel, Power Architecture,
Sun SPARC, IBM S/390, and other systems.” Many GNU/Linux distributions are available
for download from the Internet.

The book you are reading is actually free—at least, the information in it is free to anyone.
The machine-readable source code for the book comes with gawk. (Take a moment to check
the Free Documentation License in [GNU Free Documentation License|, page 509.)

The book itself has gone through multiple previous editions. Paul Rubin wrote the very
first draft of The GAWK Manual; it was around 40 pages long. Diane Close and Richard
Stallman improved it, yielding a version that was around 90 pages and barely described the
original, “old” version of awk.

6 GNU stands for “GNU’s Not Unix.”
" The terminology “GNU/Linux” is explained in the [Glossary], page 485.

https://www.gnu.org
https://www.gnu.org/software/gawk/manual/

Preface 11

I started working with that version in the fall of 1988. As work on it progressed, the FSF
published several preliminary versions (numbered 0.x). In 1996, edition 1.0 was released
with gawk 3.0.0. The FSF published the first two editions under the title The GNU Awk
User’s Guide.

This edition maintains the basic structure of the previous editions. For FSF edition 4.0,
the content was thoroughly reviewed and updated. All references to gawk versions prior
to 4.0 were removed. Of significant note for that edition was the addition of Chapter 14
[Debugging awk Programs], page 339.

For FSF edition 4.2, the content has been reorganized into parts, and the major new addi-
tions are Chapter 15 [Arithmetic and Arbitrary-Precision Arithmetic with gawk], page 355,
and Chapter 16 [Writing Extensions for gawk|, page 369.

This book will undoubtedly continue to evolve. If you find an error in the book, please
report it! See Section B.4 [Reporting Problems and Bugs|, page 464, for information on
submitting problem reports electronically.

How to Contribute

As the maintainer of GNU awk, I once thought that I would be able to manage a collection of
publicly available awk programs and I even solicited contributions. Making things available
on the Internet helps keep the gawk distribution down to manageable size.

The initial collection of material, such as it is, is still available at ftp://ftp .
freefriends.org/arnold/Awkstuff.

If you are seriously interested in helping set up a website for awk-language related things,
please contact me.

Acknowledgments
The initial draft of The GAWK Manual had the following acknowledgments:

Many people need to be thanked for their assistance in producing this manual.
Jay Fenlason contributed many ideas and sample programs. Richard Mlynarik
and Robert Chassell gave helpful comments on drafts of this manual. The
paper A Supplemental Document for AWK by John W. Pierce of the Chemistry
Department at UC San Diego, pinpointed several issues relevant both to awk
implementation and to this manual, that would otherwise have escaped us.

I would like to acknowledge Richard M. Stallman, for his vision of a better world and
for his courage in founding the FSF and starting the GNU Project.

Earlier editions of this book had the following acknowledgements:

The following people (in alphabetical order) provided helpful comments on var-
ious versions of this book: Rick Adams, Dr. Nelson H.F. Beebe, Karl Berry,
Dr. Michael Brennan, Rich Burridge, Claire Cloutier, Diane Close, Scott De-
ifik, Christopher (“Topher”) Eliot, Jeffrey Friedl, Dr. Darrel Hankerson, Michal
Jaegermann, Dr. Richard J. LeBlanc, Michael Lijewski, Pat Rankin, Miriam
Robbins, Mary Sheehan, and Chuck Toporek.

Robert J. Chassell provided much valuable advice on the use of Texinfo. He
also deserves special thanks for convincing me not to title this book How to
Gawk Politely. Karl Berry helped significantly with the TEX part of Texinfo.

ftp://ftp.freefriends.org/arnold/Awkstuff
ftp://ftp.freefriends.org/arnold/Awkstuff

12 GAWK: Effective AWK Programming

I would like to thank Marshall and Elaine Hartholz of Seattle and Dr. Bert
and Rita Schreiber of Detroit for large amounts of quiet vacation time in their
homes, which allowed me to make significant progress on this book and on gawk
itself.

Phil Hughes of SSC contributed in a very important way by loaning me his
laptop GNU/Linux system, not once, but twice, which allowed me to do a lot
of work while away from home.

David Trueman deserves special credit; he has done a yeoman job of evolving
gawk so that it performs well and without bugs. Although he is no longer
involved with gawk, working with him on this project was a significant pleasure.

The intrepid members of the GNITS mailing list, and most notably Ulrich
Drepper, provided invaluable help and feedback for the design of the interna-
tionalization features.

Chuck Toporek, Mary Sheehan, and Claire Cloutier of O’Reilly & Associates
contributed significant editorial help for this book for the 3.1 release of gawk.

Dr. Nelson Beebe, Andreas Buening, Dr. Manuel Collado, Antonio Colombo, Stephen
Davies, Scott Deifik, Akim Demaille, Daniel Richard G., Juan Manuel Guerrero, Darrel
Hankerson, Michal Jaegermann, Jiirgen Kahrs, Stepan Kasal, John Malmberg, Dave Pitts,
Chet Ramey, Pat Rankin, Andrew Schorr, Corinna Vinschen, and Eli Zaretskii (in alpha-
betical order) make up the current gawk “crack portability team.” Without their hard work
and help, gawk would not be nearly the robust, portable program it is today. It has been
and continues to be a pleasure working with this team of fine people.

Notable code and documentation contributions were made by a number of people. See
Section A.9 [Major Contributors to gawk|, page 446, for the full list.

Thanks to Michael Brennan for the Forewords.

Thanks to Patrice Dumas for the new makeinfo program. Thanks to Karl Berry, who
continues to work to keep the Texinfo markup language sane.

Robert P.J. Day, Michael Brennan, and Brian Kernighan kindly acted as reviewers for
the 2015 edition of this book. Their feedback helped improve the final work.

I would also like to thank Brian Kernighan for his invaluable assistance during the testing
and debugging of gawk, and for his ongoing help and advice in clarifying numerous points
about the language. We could not have done nearly as good a job on either gawk or its
documentation without his help.

Brian is in a class by himself as a programmer and technical author. I have to thank him
(vet again) for his ongoing friendship and for being a role model to me for close to 30 years!
Having him as a reviewer is an exciting privilege. It has also been extremely humbling. . .

I must thank my wonderful wife, Miriam, for her patience through the many versions of
this project, for her proofreading, and for sharing me with the computer. I would like to
thank my parents for their love, and for the grace with which they raised and educated me.
Finally, I also must acknowledge my gratitude to G-d, for the many opportunities He has
sent my way, as well as for the gifts He has given me with which to take advantage of those
opportunities.

Preface 13

Arnold Robbins
Nof Ayalon
Israel

February 2015

Part I:
The awk Language

Chapter 1: Getting Started with awk 17

1 Getting Started with awk

The basic function of awk is to search files for lines (or other units of text) that contain
certain patterns. When a line matches one of the patterns, awk performs specified actions
on that line. awk continues to process input lines in this way until it reaches the end of the
input files.

Programs in awk are different from programs in most other languages, because awk
programs are data driven (i.e., you describe the data you want to work with and then what
to do when you find it). Most other languages are procedural; you have to describe, in great
detail, every step the program should take. When working with procedural languages, it is
usually much harder to clearly describe the data your program will process. For this reason,
awk programs are often refreshingly easy to read and write.

When you run awk, you specify an awk program that tells awk what to do. The program
consists of a series of rules (it may also contain function definitions, an advanced feature
that we will ignore for now; see Section 9.2 [User-Defined Functions|, page 211). Each rule
specifies one pattern to search for and one action to perform upon finding the pattern.

Syntactically, a rule consists of a pattern followed by an action. The action is enclosed
in braces to separate it from the pattern. Newlines usually separate rules. Therefore, an
awk program looks like this:

pattern { action }
pattern { action }

1.1 How to Run awk Programs
There are several ways to run an awk program. If the program is short, it is easiest to
include it in the command that runs awk, like this:
awk ’program’ input-filel input-file2 ...
When the program is long, it is usually more convenient to put it in a file and run it
with a command like this:
awk -f program-file input-filel input-file2 ...

This section discusses both mechanisms, along with several variations of each.

1.1.1 One-Shot Throwaway awk Programs

Once you are familiar with awk, you will often type in simple programs the moment you want
to use them. Then you can write the program as the first argument of the awk command,
like this:

awk ’program’ input-filel input-file2 ...
where program consists of a series of patterns and actions, as described earlier.
This command format instructs the shell, or command interpreter, to start awk and use
the program to process records in the input file(s). There are single quotes around program
so the shell won’t interpret any awk characters as special shell characters. The quotes also

cause the shell to treat all of program as a single argument for awk, and allow program to
be more than one line long.

18 GAWK: Effective AWK Programming

This format is also useful for running short or medium-sized awk programs from shell
scripts, because it avoids the need for a separate file for the awk program. A self-contained
shell script is more reliable because there are no other files to misplace.

Later in this chapter, in Section 1.3 [Some Simple Examples|, page 25, we’ll see examples
of several short, self-contained programs.

1.1.2 Running awk Without Input Files
You can also run awk without any input files. If you type the following command line:
awk ’program’

awk applies the program to the standard input, which usually means whatever you type
on the keyboard. This continues until you indicate end-of-file by typing Ctrl-d. (On
non-POSIX operating systems, the end-of-file character may be different.)

As an example, the following program prints a friendly piece of advice (from Douglas
Adams’s The Hitchhiker’s Guide to the Galaxy), to keep you from worrying about the
complexities of computer programming:

$ awk ’BEGIN { print "Don\47t Panic!" }’
- Don’t Panic!

awk executes statements associated with BEGIN before reading any input. If there are
no other statements in your program, as is the case here, awk just stops, instead of trying
to read input it doesn’t know how to process. The ‘\47’ is a magic way (explained later)
of getting a single quote into the program, without having to engage in ugly shell quoting
tricks.

NOTE: If you use Bash as your shell, you should execute the command ‘set +H’
before running this program interactively, to disable the C shell-style command
history, which treats ‘!’ as a special character. We recommend putting this
command into your personal startup file.

This next simple awk program emulates the cat utility; it copies whatever you type on
the keyboard to its standard output (why this works is explained shortly):

$ awk ’{ print }’

Now is the time for all good men

- Now is the time for all good men

to come to the aid of their country.

- to come to the aid of their country.
Four score and seven years ago,

-| Four score and seven years ago,
What, me worry?

- What, me worry?

Ctri-d

1.1.3 Running Long Programs

Sometimes awk programs are very long. In these cases, it is more convenient to put the
program into a separate file. In order to tell awk to use that file for its program, you type:

awk -f source-file input-filel input-file2 ...

Chapter 1: Getting Started with awk 19

The -f instructs the awk utility to get the awk program from the file source-file (see
Section 2.2 [Command-Line Options|, page 31). Any file name can be used for source-file.
For example, you could put the program:

BEGIN { print "Don’t Panic!" }
into the file advice. Then this command:
awk -f advice
does the same thing as this one:
awk ’BEGIN { print "Don\47t Panic!" }’

This was explained earlier (see Section 1.1.2 [Running awk Without Input Files|, page 18).
Note that you don’t usually need single quotes around the file name that you specify with
-f, because most file names don’t contain any of the shell’s special characters. Notice that in
advice, the awk program did not have single quotes around it. The quotes are only needed
for programs that are provided on the awk command line. (Also, placing the program in a
file allows us to use a literal single quote in the program text, instead of the magic ‘\47’.)

If you want to clearly identify an awk program file as such, you can add the extension
.awk to the file name. This doesn’t affect the execution of the awk program but it does
make “housekeeping” easier.

1.1.4 Executable awk Programs

Once you have learned awk, you may want to write self-contained awk scripts, using the ‘#!’
script mechanism. You can do this on many systems.! For example, you could update the
file advice to look like this:

#! /bin/awk -f

BEGIN { print "Don’t Panic!" }

After making this file executable (with the chmod utility), simply type ‘advice’ at the shell
and the system arranges to run awk as if you had typed ‘awk -f advice’:

$ chmod +x advice
$ advice
-4 Don’t Panic!

(We assume you have the current directory in your shell’s search path variable [typically
$PATH]. If not, you may need to type ‘./advice’ at the shell.)

Self-contained awk scripts are useful when you want to write a program that users can
invoke without their having to know that the program is written in awk.

1 The ‘41’ mechanism works on GNU /Linux systems, BSD-based systems, and commercial Unix systems.

20 GAWK: Effective AWK Programming

(7
Understanding ‘#!’

awk is an interpreted language. This means that the awk utility reads your program and
then processes your data according to the instructions in your program. (This is different
from a compiled language such as C, where your program is first compiled into machine
code that is executed directly by your system’s processor.) The awk utility is thus termed
an interpreter. Many modern languages are interpreted.

The line beginning with ‘#!’ lists the full file name of an interpreter to run and a single
optional initial command-line argument to pass to that interpreter. The operating system
then runs the interpreter with the given argument and the full argument list of the executed
program. The first argument in the list is the full file name of the awk program. The rest
of the argument list contains either options to awk, or data files, or both. (Note that on
many systems awk may be found in /usr/bin instead of in /bin.)

Some systems limit the length of the interpreter name to 32 characters. Often, this can
be dealt with by using a symbolic link.

You should not put more than one argument on the ‘#!’ line after the path to awk. It
does not work. The operating system treats the rest of the line as a single argument and
passes it to awk. Doing this leads to confusing behavior—most likely a usage diagnostic of
some sort from awk.

Finally, the value of ARGV[0] (see Section 7.5 [Predefined Variables|, page 157) varies
depending upon your operating system. Some systems put ‘awk’ there, some put the full
pathname of awk (such as /bin/awk), and some put the name of your script (‘advice’).

Don’t rely on the value of ARGV[0] to provide your script name.
\ J

1.1.5 Comments in awk Programs

A comment is some text that is included in a program for the sake of human readers; it
is not really an executable part of the program. Comments can explain what the program
does and how it works. Nearly all programming languages have provisions for comments,
as programs are typically hard to understand without them.

In the awk language, a comment starts with the number sign character (‘4’) and continues
to the end of the line. The ‘#" does not have to be the first character on the line. The awk
language ignores the rest of a line following a number sign. For example, we could have put
the following into advice:

This program prints a nice, friendly message. It helps
keep novice users from being afraid of the computer.
BEGIN { print "Don’t Panic!" }

You can put comment lines into keyboard-composed throwaway awk programs, but this
usually isn’t very useful; the purpose of a comment is to help you or another person under-
stand the program when reading it at a later time.

CAUTION: As mentioned in Section 1.1.1 [One-Shot Throwaway awk Pro-
grams|, page 17, you can enclose short to medium-sized programs in single
quotes, in order to keep your shell scripts self-contained. When doing so, don’t
put an apostrophe (i.e., a single quote) into a comment (or anywhere else in
your program). The shell interprets the quote as the closing quote for the en-
tire program. As a result, usually the shell prints a message about mismatched

Chapter 1: Getting Started with awk 21

quotes, and if awk actually runs, it will probably print strange messages about
syntax errors. For example, look at the following;:

$ awk ’BEGIN { print "hello" } # let’s be cute’
>

The shell sees that the first two quotes match, and that a new quoted object
begins at the end of the command line. It therefore prompts with the secondary
prompt, waiting for more input. With Unix awk, closing the quoted string
produces this result:

$ awk ’{ print "hello" } # let’s be cute’
> J

awk: can’t open file be

source line number 1

Putting a backslash before the single quote in ‘let’s’ wouldn’t help, because
backslashes are not special inside single quotes. The next subsection describes
the shell’s quoting rules.

1.1.6 Shell Quoting Issues

For short to medium-length awk programs, it is most convenient to enter the program on
the awk command line. This is best done by enclosing the entire program in single quotes.
This is true whether you are entering the program interactively at the shell prompt, or
writing it as part of a larger shell script:

awk ’program text’ input-filel input-file2 ...

Once you are working with the shell, it is helpful to have a basic knowledge of shell
quoting rules. The following rules apply only to POSIX-compliant, Bourne-style shells
(such as Bash, the GNU Bourne-Again Shell). If you use the C shell, you're on your own.

Before diving into the rules, we introduce a concept that appears throughout this book,
which is that of the null, or empty, string.

The null string is character data that has no value. In other words, it is empty. It

is written in awk programs like this: "". In the shell, it can be written using single or
double quotes: "" or ’’. Although the null string has no characters in it, it does exist. For
example, consider this command:

$ echo nn

Here, the echo utility receives a single argument, even though that argument has no char-
acters in it. In the rest of this book, we use the terms null string and empty string inter-
changeably. Now, on to the quoting rules:

e Quoted items can be concatenated with nonquoted items as well as with other quoted
items. The shell turns everything into one argument for the command.

e Preceding any single character with a backslash (‘\’) quotes that character. The shell
removes the backslash and passes the quoted character on to the command.

e Single quotes protect everything between the opening and closing quotes. The shell
does no interpretation of the quoted text, passing it on verbatim to the command. It is
impossible to embed a single quote inside single-quoted text. Refer back to Section 1.1.5
[Comments in awk Programs|, page 20, for an example of what happens if you try.

22 GAWK: Effective AWK Programming

e Double quotes protect most things between the opening and closing quotes. The shell
does at least variable and command substitution on the quoted text. Different shells
may do additional kinds of processing on double-quoted text.

Because certain characters within double-quoted text are processed by the shell, they
must be escaped within the text. Of note are the characters ‘¢’, *“’, ‘\’, and ‘", all
of which must be preceded by a backslash within double-quoted text if they are to be
passed on literally to the program. (The leading backslash is stripped first.) Thus, the
example seen previously in Section 1.1.2 [Running awk Without Input Files], page 18:
awk ’BEGIN { print "Don\47t Panic!" }’
could instead be written this way:
$ awk "BEGIN { print \"Don’t Panic!\" }"
- Don’t Panic!
Note that the single quote is not special within double quotes.

e Null strings are removed when they occur as part of a non-null command-line argument,
while explicit null objects are kept. For example, to specify that the field separator FS
should be set to the null string, use:

awk -F "" ’program’ files # correct
Don’t use this:

awk -F"" ’program’ files # wrong!
In the second case, awk attempts to use the text of the program as the value of FS, and
the first file name as the text of the program! This results in syntax errors at best, and
confusing behavior at worst.

Mixing single and double quotes is difficult. You have to resort to shell quoting tricks,
like this:
$ awk ’BEGIN { print "Here is a single quote <’"’"’>" }’
- Here is a single quote <’>
This program consists of three concatenated quoted strings. The first and the third are
single-quoted, and the second is double-quoted.
This can be “simplified” to:
$ awk ’BEGIN { print "Here is a single quote <’\’’>" }’
-| Here is a single quote <’>
Judge for yourself which of these two is the more readable.
Another option is to use double quotes, escaping the embedded, awk-level double quotes:
$ awk "BEGIN { print \"Here is a single quote <’>\" }"
-| Here is a single quote <’>
This option is also painful, because double quotes, backslashes, and dollar signs are very
common in more advanced awk programs.
A third option is to use the octal escape sequence equivalents (see Section 3.2 [Escape
Sequences], page 48) for the single- and double-quote characters, like so:

$ awk ’BEGIN { print "Here is a single quote <\47>" 1}’
- Here is a single quote <’>
$ awk ’BEGIN { print "Here is a double quote <\42>" }’

Chapter 1: Getting Started with awk 23

- Here is a double quote <">
This works nicely, but you should comment clearly what the escapes mean.
A fourth option is to use command-line variable assignment, like this:

$ awk -v sgq="’" ’BEGIN { print "Here is a single quote <" sq ">" }’
- Here is a single quote <’>

(Here, the two string constants and the value of sq are concatenated into a single string
that is printed by print.)

If you really need both single and double quotes in your awk program, it is probably best
to move it into a separate file, where the shell won’t be part of the picture and you can say
what you mean.

1.1.6.1 Quoting in MS-Windows Batch Files

Although this book generally only worries about POSIX systems and the POSIX shell, the
following issue arises often enough for many users that it is worth addressing.

The “shells” on Microsoft Windows systems use the double-quote character for quot-
ing, and make it difficult or impossible to include an escaped double-quote character in
a command-line script. The following example, courtesy of Jeroen Brink, shows how to
escape the double quotes from this one liner script that prints all lines in a file surrounded
by double quotes:

{ pI'lIlt ll\" n $0 "\" n }
In an MS-Windows command-line the one-liner script above may be passed as follows:
gawk "{ print \"\042\" $0 \"\042\" }" file

In this example the ‘\042’ is the octal code for a double-quote; gawk converts it into a
real double-quote for output by the print statement.

In MS-Windows escaping double-quotes is a little tricky because you use backslashes to
escape double-quotes, but backslashes themselves are not escaped in the usual way; indeed
they are either duplicated or not, depending upon whether there is a subsequent double-
quote. The MS-Windows rule for double-quoting a string is the following:

1. For each double quote in the original string, let N be the number of backslash(es)
before it, N might be zero. Replace these N backslash(es) by 2 x N + 1 backslash(es)

2. Let N be the number of backslash(es) tailing the original string, N might be zero.
Replace these N backslash(es) by 2 x N backslash(es)

3. Surround the resulting string by double-quotes.

So to double-quote the one-liner script ‘{ print "\"" $0 "\"" }’ from the previous ex-
ample you would do it this way:

gawk ||{ print \n\\\u\u $0 \n\\\n\u }ll flle

However, the use of ‘\042’ instead of ‘\\\"’ is also possible and easier to read, because
backslashes that are not followed by a double-quote don’t need duplication.

24 GAWK: Effective AWK Programming

1.2 Data files for the Examples

Many of the examples in this book take their input from two sample data files. The first,
mail-list, represents a list of peoples’ names together with their email addresses and
information about those people. The second data file, called inventory-shipped, contains
information about monthly shipments. In both files, each line is considered to be one record.

In mail-list, each record contains the name of a person, his/her phone number, his/her
email address, and a code for his/her relationship with the author of the list. The columns
are aligned using spaces. An ‘A’ in the last column means that the person is an acquaintance.
An ‘F’ in the last column means that the person is a friend. An ‘R’ means that the person
is a relative:

Amelia 555-5553 amelia.zodiacusque@gmail.com F
Anthony 555-3412 anthony.asserturo@hotmail.com A
Becky 555-7685 becky.algebrarum@gmail.com A
Bill 555-1675 bill.drowning@hotmail.com A
Broderick 555-0542 broderick.aliquotiens@yahoo.com R
Camilla 555-2912 camilla.infusarum@skynet.be R
Fabius 555-1234 fabius.undevicesimus@ucb.edu F
Julie 555-6699 julie.perscrutabor@skeeve.com F
Martin 555-6480 martin.codicibus@hotmail.com A
Samuel 555-3430 samuel.lanceolis@shu.edu A
Jean-Paul 555-2127 jeanpaul . campanorum@nyu.edu R

The data file inventory-shipped represents information about shipments during the
year. Each record contains the month, the number of green crates shipped, the number of
red boxes shipped, the number of orange bags shipped, and the number of blue packages
shipped, respectively. There are 16 entries, covering the 12 months of last year and the first
four months of the current year. An empty line separates the data for the two years:

Jan 13 25 15 115
Feb 15 32 24 226
Mar 15 24 34 228
Apr 31 52 63 420
May 16 34 29 208
Jun 31 42 75 492
Jul 24 34 67 436
Aug 15 34 47 316
Sep 13 55 37 277
Oct 29 54 68 525
Nov 20 87 82 577
Dec 17 35 61 401

Jan 21 36 64 620
Feb 26 58 80 652
Mar 24 75 70 495
Apr 21 70 74 514

The sample files are included in the gawk distribution, in the directory awklib/eg/data.

Chapter 1: Getting Started with awk 25

1.3 Some Simple Examples

The following command runs a simple awk program that searches the input file mail-list
for the character string ‘1i’ (a grouping of characters is usually called a string; the term
string is based on similar usage in English, such as “a string of pearls” or “a string of cars
in a train”):

awk ’/1i/ { print $0 }’ mail-list

When lines containing ‘1i’ are found, they are printed because ‘print $0’ means print the
current line. (Just ‘print’ by itself means the same thing, so we could have written that
instead.)

You will notice that slashes (‘/’) surround the string ‘1i’ in the awk program. The slashes
indicate that ‘1i’ is the pattern to search for. This type of pattern is called a regular
expression, which is covered in more detail later (see Chapter 3 [Regular Expressions],
page 47). The pattern is allowed to match parts of words. There are single quotes around
the awk program so that the shell won’t interpret any of it as special shell characters.

Here is what this program prints:
$ awk ’/1i/ { print $0 }’ mail-list

- Amelia 555-5553 amelia.zodiacusque@gmail.com F
- Broderick 555-0542 broderick.aliquotiens@yahoo.com R
- Julie 555-6699 julie.perscrutabor@skeeve.com F
- Samuel 555-3430 samuel.lanceolis@shu.edu A

In an awk rule, either the pattern or the action can be omitted, but not both. If the
pattern is omitted, then the action is performed for every input line. If the action is omitted,
the default action is to print all lines that match the pattern.

Thus, we could leave out the action (the print statement and the braces) in the previous
example and the result would be the same: awk prints all lines matching the pattern ‘1i’.
By comparison, omitting the print statement but retaining the braces makes an empty
action that does nothing (i.e., no lines are printed).

Many practical awk programs are just a line or two long. Following is a collection of
useful, short programs to get you started. Some of these programs contain constructs that
haven’t been covered yet. (The description of the program will give you a good idea of what
is going on, but you’ll need to read the rest of the book to become an awk expert!) Most
of the examples use a data file named data. This is just a placeholder; if you use these
programs yourself, substitute your own file names for data. For future reference, note that
there is often more than one way to do things in awk. At some point, you may want to
look back at these examples and see if you can come up with different ways to do the same
things shown here:

e Print every line that is longer than 80 characters:
awk ’length($0) > 80’ data
The sole rule has a relational expression as its pattern and has no action—so it uses
the default action, printing the record.
e Print the length of the longest input line:

awk ’{ if (length($0) > max) max = length($0) }
END { print max }’ data

26

GAWK: Effective AWK Programming

The code associated with END executes after all input has been read; it’s the other side
of the coin to BEGIN.

Print the length of the longest line in data:

expand data | awk ’{ if (x < length($0)) x = length($0) }
END { print "maximum line length is " x }’

This example differs slightly from the previous one: the input is processed by the
expand utility to change TABs into spaces, so the widths compared are actually the
right-margin columns, as opposed to the number of input characters on each line.

Print every line that has at least one field:
awk ’NF > 0’ data

This is an easy way to delete blank lines from a file (or rather, to create a new file
similar to the old file but from which the blank lines have been removed).

Print seven random numbers from 0 to 100, inclusive:

awk ’BEGIN { for (i = 1; i <= 7; i++)
print int(101 * rand()) 1}’

Print the total number of bytes used by files:

ls -1 files | awk ’{ x += $5 }
END { print "total bytes: " x }’

Print the total number of kilobytes used by files:

1ls -1 files | awk ’{ x += $5 }
END { print "total K-bytes:", x / 1024 }’

Print a sorted list of the login names of all users:

awk -F: ’{ print $1 }’ /etc/passwd | sort
Count the lines in a file:

awk ’END { print NR }’ data
Print the even-numbered lines in the data file:

awk °’NR % 2 == 0’ data

If you used the expression ‘NR % 2 == 1’ instead, the program would print the odd-
numbered lines.

1.4 An Example with Two Rules

The awk utility reads the input files one line at a time. For each line, awk tries the patterns
of each rule. If several patterns match, then several actions execute in the order in which
they appear in the awk program. If no patterns match, then no actions run.

After processing all the rules that match the line (and perhaps there are none), awk

reads the next line. (However, see Section 7.4.8 [The next Statement]|, page 154, and also
see Section 7.4.9 [The nextfile Statement|, page 155.) This continues until the program
reaches the end of the file. For example, the following awk program contains two rules:

/12/ { print $0 }
/21/ { print $0 }

Chapter 1: Getting Started with awk 27

The first rule has the string ‘12’ as the pattern and ‘print $0’ as the action. The second
rule has the string ‘21’ as the pattern and also has ‘print $0’ as the action. Each rule’s
action is enclosed in its own pair of braces.

This program prints every line that contains the string ‘12’ or the string ‘21°. If a line
contains both strings, it is printed twice, once by each rule.

This is what happens if we run this program on our two sample data files, mail-list
and inventory-shipped:

$ awk ’/12/ { print $0 }

> /21/ { print $0 }’ mail-list inventory-shipped

- Anthony 555-3412 anthony.asserturo@hotmail.com A
- Camilla 5565-2912 camilla.infusarum@skynet.be R
- Fabius 555-1234 fabius.undevicesimus@ucb.edu F
- Jean-Paul 555-2127 jeanpaul.campanorum@nyu.edu R
- Jean-Paul 555-2127 jeanpaul . campanorum@nyu. edu R
- Jan 21 36 64 620

4 Apr 21 70 74 514

Note how the line beginning with ‘Jean-Paul’ in mail-list was printed twice, once for
each rule.

1.5 A More Complex Example

Now that we’ve mastered some simple tasks, let’s look at what typical awk programs do.
This example shows how awk can be used to summarize, select, and rearrange the output of
another utility. It uses features that haven’t been covered yet, so don’t worry if you don’t
understand all the details:
1ls -1 | awk ’$6 == "Nov" { sum += $5 }
END { print sum }’

This command prints the total number of bytes in all the files in the current directory
that were last modified in November (of any year). The ‘1s -1’ part of this example is a
system command that gives you a listing of the files in a directory, including each file’s size
and the date the file was last modified. Its output looks like this:

-rw-r--r-- 1 arnold user 1933 Nov 7 13:05 Makefile
-rw-r--r-- 1 arnold user 10809 Nov 7 13:03 awk.h

-rw—r——r—— 1 arnold wuser 983 Apr 13 12:14 awk.tab.h
-rw-r--r—— 1 arnold user 31869 Jun 15 12:20 awkgram.y
-rw-r—--r-—- 1 arnold user 22414 Nov 7 13:03 awkl.c
-rw-r--r-—- 1 arnold user 37455 Nov 7 13:03 awk2.c
-rw-r—--r-—- 1 arnold user 27511 Dec 9 13:07 awk3.c

-rw-r--r-- 1 arnold user 7989 Nov 7 13:03 awk4.c

The first field contains read-write permissions, the second field contains the number of links
to the file, and the third field identifies the file’s owner. The fourth field identifies the file’s
group. The fifth field contains the file’s size in bytes. The sixth, seventh, and eighth fields
contain the month, day, and time, respectively, that the file was last modified. Finally, the
ninth field contains the file name.

The ‘$6 == "Nov"’ in our awk program is an expression that tests whether the sixth field
of the output from ‘1s -1’ matches the string ‘Nov’. Each time a line has the string ‘Nov’

28 GAWK: Effective AWK Programming

for its sixth field, awk performs the action ‘sum += $5’. This adds the fifth field (the file’s
size) to the variable sum. As a result, when awk has finished reading all the input lines, sum
is the total of the sizes of the files whose lines matched the pattern. (This works because
awk variables are automatically initialized to zero.)

After the last line of output from 1s has been processed, the END rule executes and prints
the value of sum. In this example, the value of sum is 80600.

These more advanced awk techniques are covered in later sections (see Section 7.3 [Ac-
tions|, page 147). Before you can move on to more advanced awk programming, you have to
know how awk interprets your input and displays your output. By manipulating fields and
using print statements, you can produce some very useful and impressive-looking reports.

1.6 awk Statements Versus Lines

Most often, each line in an awk program is a separate statement or separate rule, like this:

awk ’/12/ { print $0 }
/21/ { print $0 }’ mail-list inventory-shipped

However, gawk ignores newlines after any of the following symbols and keywords:
5 { ? : N && do else
A newline at any other point is considered the end of the statement.?

If you would like to split a single statement into two lines at a point where a newline
would terminate it, you can continue it by ending the first line with a backslash character
(‘\’). The backslash must be the final character on the line in order to be recognized as
a continuation character. A backslash is allowed anywhere in the statement, even in the
middle of a string or regular expression. For example:

awk ’/This regular expression is too long, so continue it\
on the next line/ { print $1 }’

We have generally not used backslash continuation in our sample programs. gawk places
no limit on the length of a line, so backslash continuation is never strictly necessary; it
just makes programs more readable. For this same reason, as well as for clarity, we have
kept most statements short in the programs presented throughout the book. Backslash
continuation is most useful when your awk program is in a separate source file instead of
entered from the command line. You should also note that many awk implementations are
more particular about where you may use backslash continuation. For example, they may
not allow you to split a string constant using backslash continuation. Thus, for maximum
portability of your awk programs, it is best not to split your lines in the middle of a regular
expression or a string.

CAUTION: Backslash continuation does not work as described with the C shell.
It works for awk programs in files and for one-shot programs, provided you are
using a POSIX-compliant shell, such as the Unix Bourne shell or Bash. But
the C shell behaves differently! There you must use two backslashes in a row,

2 The ‘?” and ‘:’ referred to here is the three-operand conditional expression described in Section 6.3.4
[Conditional Expressions|, page 134. Splitting lines after ‘7’ and ‘:’ is a minor gawk extension; if ~-posix
is specified (see Section 2.2 [Command-Line Options|, page 31), then this extension is disabled.

Chapter 1: Getting Started with awk 29

followed by a newline. Note also that when using the C shell, every newline in
your awk program must be escaped with a backslash. To illustrate:
% awk ’BEGIN { \
? print \\
? "hello, world" \
7 F
- hello, world
Here, the ‘%’ and ‘?’ are the C shell’s primary and secondary prompts, analogous
to the standard shell’s ‘$’ and *>’.
Compare the previous example to how it is done with a POSIX-compliant shell:
$ awk ’BEGIN {
> print \
> "hello, world"
> 3}
- hello, world

awk is a line-oriented language. Each rule’s action has to begin on the same line as
the pattern. To have the pattern and action on separate lines, you must use backslash
continuation; there is no other option.

Another thing to keep in mind is that backslash continuation and comments do not mix.
As soon as awk sees the ‘#’ that starts a comment, it ignores everything on the rest of the
line. For example:

$ gawk ’BEGIN { print "dont panic" # a friendly \

> BEGIN rule

> }

gawk: cmd. line:2: BEGIN rule
gawk: cmd. line:2: " syntax error

In this case, it looks like the backslash would continue the comment onto the next line.
However, the backslash-newline combination is never even noticed because it is “hidden”
inside the comment. Thus, the BEGIN is noted as a syntax error.

When awk statements within one rule are short, you might want to put more than one of
them on a line. This is accomplished by separating the statements with a semicolon (*;’).
This also applies to the rules themselves. Thus, the program shown at the start of this
section could also be written this way:

/12/ { print $0 } ; /21/ { print $0 }
NOTE: The requirement that states that rules on the same line must be sepa-

rated with a semicolon was not in the original awk language; it was added for
consistency with the treatment of statements within an action.

1.7 Other Features of awk

The awk language provides a number of predefined, or built-in, variables that your programs
can use to get information from awk. There are other variables your program can set as
well to control how awk processes your data.

In addition, awk provides a number of built-in functions for doing common computa-
tional and string-related operations. gawk provides built-in functions for working with

30 GAWK: Effective AWK Programming

timestamps, performing bit manipulation, for runtime string translation (internationaliza-
tion), determining the type of a variable, and array sorting.

As we develop our presentation of the awk language, we will introduce most of the
variables and many of the functions. They are described systematically in Section 7.5
[Predefined Variables|, page 157, and in Section 9.1 [Built-in Functions], page 185.

1.8 When to Use awk

Now that you’ve seen some of what awk can do, you might wonder how awk could be
useful for you. By using utility programs, advanced patterns, field separators, arithmetic
statements, and other selection criteria, you can produce much more complex output. The
awk language is very useful for producing reports from large amounts of raw data, such as
summarizing information from the output of other utility programs like 1s. (See Section 1.5
[A More Complex Example|, page 27.)

Programs written with awk are usually much smaller than they would be in other lan-
guages. This makes awk programs easy to compose and use. Often, awk programs can
be quickly composed at your keyboard, used once, and thrown away. Because awk pro-
grams are interpreted, you can avoid the (usually lengthy) compilation part of the typical
edit-compile-test-debug cycle of software development.

Complex programs have been written in awk, including a complete retargetable assem-
bler for eight-bit microprocessors (see [Glossary], page 485, for more information), and a
microcode assembler for a special-purpose Prolog computer. The original awk’s capabilities
were strained by tasks of such complexity, but modern versions are more capable.

If you find yourself writing awk scripts of more than, say, a few hundred lines, you might
consider using a different programming language. The shell is good at string and pattern
matching; in addition, it allows powerful use of the system utilities. Python offers a nice
balance between high-level ease of programming and access to system facilities.?

1.9 Summary

e Programs in awk consist of pattern—action pairs.

e An action without a pattern always runs. The default action for a pattern without one
is ‘{ print $0 }'.

o Use either ‘awk ’program’ files’ or ‘awk —-f program-file files’ to run awk.

e You may use the special ‘#!’ header line to create awk programs that are directly
executable.

e Comments in awk programs start with ‘#’ and continue to the end of the same line.

e Be aware of quoting issues when writing awk programs as part of a larger shell script
(or MS-Windows batch file).

e You may use backslash continuation to continue a source line. Lines are automatically
continued after a comma, open brace, question mark, colon, ‘| |’, ‘&&’, do, and else.

3 Other popular scripting languages include Ruby and Perl.

Chapter 2: Running awk and gawk 31

2 Running awk and gawk

This chapter covers how to run awk, both POSIX-standard and gawk-specific command-line
options, and what awk and gawk do with nonoption arguments. It then proceeds to cover
how gawk searches for source files, reading standard input along with other files, gawk’s en-
vironment variables, gawk’s exit status, using include files, and obsolete and undocumented
options and/or features.

Many of the options and features described here are discussed in more detail later in the
book; feel free to skip over things in this chapter that don’t interest you right now.

2.1 Invoking awk

There are two ways to run awk—with an explicit program or with one or more program
files. Here are templates for both of them; items enclosed in [...] in these templates are
optional:
awk [options| -f progfile [--] file . ..
awk [options| [--| ’program’ file . ..
In addition to traditional one-letter POSIX-style options, gawk also supports GNU long
options.

It is possible to invoke awk with an empty program:
awk ’’ datafilel datafile2

Doing so makes little sense, though; awk exits silently when given an empty program. If
--lint has been specified on the command line, gawk issues a warning that the program is
empty.

2.2 Command-Line Options

Options begin with a dash and consist of a single character. GNU-style long options consist
of two dashes and a keyword. The keyword can be abbreviated, as long as the abbreviation
allows the option to be uniquely identified. If the option takes an argument, either the
keyword is immediately followed by an equals sign (‘=’) and the argument’s value, or the
keyword and the argument’s value are separated by whitespace. If a particular option with
a value is given more than once, it is the last value that counts.

Each long option for gawk has a corresponding POSIX-style short option. The long
and short options are interchangeable in all contexts. The following list describes options
mandated by the POSIX standard:

-F fs

--field-separator fs
Set the FS variable to fs (see Section 4.5 [Specifying How Fields Are Separated],
page 69).

-f source-file

-—file source-file
Read the awk program source from source-file instead of in the first nonoption
argument. This option may be given multiple times; the awk program consists
of the concatenation of the contents of each specified source-file.

32 GAWK: Effective AWK Programming

-v var=val

-—assign var=val

Set the variable var to the value val before execution of the program begins.
Such variable values are available inside the BEGIN rule (see Section 2.3 [Other
Command-Line Arguments|, page 38).
The -v option can only set one variable, but it can be used more than once,
setting another variable each time, like this: ‘awk -v foo=1 -v bar=2
CAUTION: Using -v to set the values of the built-in variables may
lead to surprising results. awk will reset the values of those variables
as it needs to, possibly ignoring any initial value you may have
given.

-W gawk-opt

Provide an implementation-specific option. This is the POSIX convention for
providing implementation-specific options. These options also have correspond-
ing GNU-style long options. Note that the long options may be abbreviated, as
long as the abbreviations remain unique. The full list of gawk-specific options
is provided next.

Signal the end of the command-line options. The following arguments are not
treated as options even if they begin with ‘~’. This interpretation of —- follows
the POSIX argument parsing conventions.

This is useful if you have file names that start with ‘-’ or in shell scripts, if
you have file names that will be specified by the user that could start with ‘- .
It is also useful for passing options on to the awk program; see Section 10.4
[Processing Command-Line Options|, page 248.

The following list describes gawk-specific options:

-b

--characters-as-bytes

-C

Cause gawk to treat all input data as single-byte characters. In addition, all
output written with print or printf is treated as single-byte characters.

Normally, gawk follows the POSIX standard and attempts to process its input
data according to the current locale (see Section 6.6 [Where You Are Makes a
Difference], page 137). This can often involve converting multibyte characters
into wide characters (internally), and can lead to problems or confusion if the
input data does not contain valid multibyte characters. This option is an easy
way to tell gawk, “Hands off my data!”

—--traditional

-C

Specify compatibility mode, in which the GNU extensions to the awk language
are disabled, so that gawk behaves just like BWK awk. See Section A.5 [Exten-
sions in gawk Not in POSIX awk], page 435, which summarizes the extensions.
Also see Section C.1 [Downward Compatibility and Debugging], page 469.

-—copyright

Print the short version of the General Public License and then exit.

~-d|[file]

Chapter 2: Running awk and gawk 33

--dump-variables|=file]

-D|[file]

Print a sorted list of global variables, their types, and final values to file. If
no file is provided, print this list to a file named awkvars.out in the current
directory. No space is allowed between the -d and file, if file is supplied.

Having a list of all global variables is a good way to look for typographical
errors in your programs. You would also use this option if you have a large
program with a lot of functions, and you want to be sure that your functions
don’t inadvertently use global variables that you meant to be local. (This is a
particularly easy mistake to make with simple variable names like i, j, etc.)

--debug|[=file]

Enable debugging of awk programs (see Section 14.1 [Introduction to the gawk
Debugger|, page 339). By default, the debugger reads commands interactively
from the keyboard (standard input). The optional file argument allows you to
specify a file with a list of commands for the debugger to execute noninterac-
tively. No space is allowed between the -D and file, if file is supplied.

—e program-text
—-—source program-text

-E file
--exec file

Provide program source code in the program-text. This option allows you to mix
source code in files with source code that you enter on the command line. This is
particularly useful when you have library functions that you want to use from
your command-line programs (see Section 2.5.1 [The AWKPATH Environment
Variable], page 39).
Note that gawk treats each string as if it ended with a newline character (even
if it doesn’t). This makes building the total program easier.
CAUTION: At the moment, there is no requirement that each
program-text be a full syntactic unit. I.e., the following currently
works:
$ gawk -e ’BEGIN { a = 5 ;’ -e ’print a }’
4 5
However, this could change in the future, so it’s not a good idea to
rely upon this feature.

Similar to -f, read awk program text from file. There are two differences from
-f:
e This option terminates option processing; anything else on the command
line is passed on directly to the awk program.

e Command-line variable assignments of the form ‘var=value’ are disal-
lowed.

This option is particularly necessary for World Wide Web CGI applications
that pass arguments through the URL; using this option prevents a malicious
(or other) user from passing in options, assignments, or awk source code (via

34 GAWK: Effective AWK Programming

)
--gen-pot

-h
--help

-e) to the CGI application.! This option should be used with ‘#!” scripts (see
Section 1.1.4 [Executable awk Programs], page 19), like so:

#! /usr/local/bin/gawk -E

awk program here ...

Analyze the source program and generate a GNU gettext portable object
template file on standard output for all string constants that have been marked
for translation. See Chapter 13 [Internationalization with gawk]|, page 329, for
information about this option.

Print a “usage” message summarizing the short- and long-style options that
gawk accepts and then exit.

-i source-file
--include source-file

-1 ext
—-load ext

-L[value]

Read an awk source library from source-file. This option is completely equivalent
to using the @include directive inside your program. It is very similar to the
-f option, but there are two important differences. First, when -i is used, the
program source is not loaded if it has been previously loaded, whereas with
-f, gawk always loads the file. Second, because this option is intended to be
used with code libraries, gawk does not recognize such files as constituting main
program input. Thus, after processing an -i argument, gawk still expects to
find the main source code via the —f option or on the command line.

Load a dynamic extension named ext. Extensions are stored as system shared
libraries. This option searches for the library using the AWKLIBPATH environment
variable. The correct library suffix for your platform will be supplied by default,
so it need not be specified in the extension name. The extension initialization
routine should be named d1_load (). An alternative is to use the @load keyword
inside the program to load a shared library. This advanced feature is described
in detail in Chapter 16 [Writing Extensions for gawk], page 369.

--lint[=value]

Warn about constructs that are dubious or nonportable to other awk imple-
mentations. No space is allowed between the -L and value, if value is supplied.
Some warnings are issued when gawk first reads your program. Others are
issued at runtime, as your program executes. With an optional argument of
‘fatal’, lint warnings become fatal errors. This may be drastic, but its use
will certainly encourage the development of cleaner awk programs. With an

1 For more detail, please see Section 4.4 of RFC 3875. Also see the explanatory note sent to the gawk bug
mailing list.

http://www.ietf.org/rfc/rfc3875
https://lists.gnu.org/archive/html/bug-gawk/2014-11/msg00022.html
https://lists.gnu.org/archive/html/bug-gawk/2014-11/msg00022.html

Chapter 2: Running awk and gawk 35

optional argument of ‘invalid’, only warnings about things that are actually
invalid are issued. (This is not fully implemented yet.)

Some warnings are only printed once, even if the dubious constructs they warn
about occur multiple times in your awk program. Thus, when eliminating prob-
lems pointed out by --1int, you should take care to search for all occurrences
of each inappropriate construct. As awk programs are usually short, doing so
is not burdensome.

—--bignum Select arbitrary-precision arithmetic on numbers. This option has no effect if
gawk is not compiled to use the GNU MPFR and MP libraries (see Chapter 15
[Arithmetic and Arbitrary-Precision Arithmetic with gawk], page 355).

-n
--non-decimal-data
Enable automatic interpretation of octal and hexadecimal values in input data
(see Section 12.1 [Allowing Nondecimal Input Data], page 313).

CAUTION: This option can severely break old programs. Use with
care. Also note that this option may disappear in a future version
of gawk.

-N
—--use-lc—numeric

Force the use of the locale’s decimal point character when parsing numeric input
data (see Section 6.6 [Where You Are Makes a Difference], page 137).

-olfile]

--pretty-print|=file]
Enable pretty-printing of awk programs. Implies ——no-optimize. By default,
the output program is created in a file named awkprof.out (see Section 12.5
[Profiling Your awk Programs|, page 324). The optional file argument allows
you to specify a different file name for the output. No space is allowed between
the -o and file, if file is supplied.

NOTE: In the past, this option would also execute your program.
This is no longer the case.

-0

--optimize
Enable gawk’s default optimizations on the internal representation of the pro-
gram. At the moment, this includes simple constant folding and tail recursion
elimination in function calls.

These optimizations are enabled by default. This option remains primarily for
backwards compatibility. However, it may be used to cancel the effect of an
earlier —s option (see later in this list).

-plfile]

--profile[=file]
Enable profiling of awk programs (see Section 12.5 [Profiling Your awk Pro-
grams|, page 324). Implies -—no-optimize. By default, profiles are created in

36 GAWK: Effective AWK Programming

-P
--posix

-r

a file named awkprof .out. The optional file argument allows you to specify a
different file name for the profile file. No space is allowed between the -p and
file, if file is supplied.

The profile contains execution counts for each statement in the program in the
left margin, and function call counts for each function.

Operate in strict POSIX mode. This disables all gawk extensions (just like
--traditional) and disables all extensions not allowed by POSIX. See
Section A.7 [Common Extensions Summary], page 444, for a summary of
the extensions in gawk that are disabled by this option. Also, the following
additional restrictions apply:

e Newlines are not allowed after ‘?” or ‘:’ (see Section 6.3.4 [Conditional
Expressions], page 134).

e Specifying ‘-Ft’ on the command line does not set the value of FS to be
a single TAB character (see Section 4.5 [Specifying How Fields Are Sepa-
rated], page 69).

e The locale’s decimal point character is used for parsing input data (see
Section 6.6 [Where You Are Makes a Difference], page 137).

If you supply both —-traditional and --posix on the command line, -—posix
takes precedence. gawk issues a warning if both options are supplied.

--re-interval

-S

Allow interval expressions (see Section 3.3 [Regular Expression Operators],
page 50) in regexps. This is now gawk’s default behavior. Nevertheless, this
option remains (both for backward compatibility and for use in combination
with -——traditional).

--no-optimize

-S
—-sandbox

-t

—--lint-old

Disable gawk’s default optimizations on the internal representation of the pro-
gram.

Disable the system() function, input redirections with getline, output redi-
rections with print and printf, and dynamic extensions. This is particularly
useful when you want to run awk scripts from questionable sources and need to
make sure the scripts can’t access your system (other than the specified input
data file).

Warn about constructs that are not available in the original version of awk from
Version 7 Unix (see Section A.1 [Major Changes Between V7 and SVR3.1],
page 433).

Chapter 2: Running awk and gawk 37

-V

--version
Print version information for this particular copy of gawk. This allows you to
determine if your copy of gawk is up to date with respect to whatever the Free
Software Foundation is currently distributing. It is also useful for bug reports
(see Section B.4 [Reporting Problems and Bugs], page 464).

As long as program text has been supplied, any other options are flagged as invalid with
a warning message but are otherwise ignored.

In compatibility mode, as a special case, if the value of fs supplied to the -F option is
‘t’, then FS is set to the TAB character ("\t"). This is true only for --traditional and
not for ——posix (see Section 4.5 [Specifying How Fields Are Separated], page 69).

The -f option may be used more than once on the command line. If it is, awk reads
its program source from all of the named files, as if they had been concatenated together
into one big file. This is useful for creating libraries of awk functions. These functions can
be written once and then retrieved from a standard place, instead of having to be included
in each individual program. The -i option is similar in this regard. (As mentioned in
Section 9.2.1 [Function Definition Syntax|, page 211, function names must be unique.)

With standard awk, library functions can still be used, even if the program is entered at
the keyboard, by specifying ‘-f /dev/tty’. After typing your program, type Ctrl-d (the
end-of-file character) to terminate it. (You may also use ‘-f -’ to read program source from
the standard input, but then you will not be able to also use the standard input as a source
of data.)

Because it is clumsy using the standard awk mechanisms to mix source file and command-
line awk programs, gawk provides the —e option. This does not require you to preempt the
standard input for your source code; it allows you to easily mix command-line and library
source code (see Section 2.5.1 [The AWKPATH Environment Variable|, page 39). As with -f,
the —e and -i options may also be used multiple times on the command line.

If no -f or -e option is specified, then gawk uses the first nonoption command-line
argument as the text of the program source code.

If the environment variable POSIXLY_CORRECT exists, then gawk behaves in strict POSIX
mode, exactly as if you had supplied ——posix. Many GNU programs look for this environ-
ment variable to suppress extensions that conflict with POSIX, but gawk behaves differently:
it suppresses all extensions, even those that do not conflict with POSIX, and behaves in
strict POSIX mode. If --1int is supplied on the command line and gawk turns on POSIX
mode because of POSIXLY_CORRECT, then it issues a warning message indicating that POSIX
mode is in effect. You would typically set this variable in your shell’s startup file. For a
Bourne-compatible shell (such as Bash), you would add these lines to the .profile file in
your home directory:

POSIXLY_CORRECT=true
export POSIXLY_CORRECT
For a C shell-compatible shell,> you would add this line to the .login file in your home
directory:
setenv POSIXLY_CORRECT true

2 Not recommended.

—(x

38 GAWK: Effective AWK Programming

Having POSIXLY_CORRECT set is not recommended for daily use, but it is good for testing
the portability of your programs to other environments.

2.3 Other Command-Line Arguments

Any additional arguments on the command line are normally treated as input files to be
processed in the order specified. However, an argument that has the form var=value, as-
signs the value value to the variable var—it does not specify a file at all. (See Section 6.1.3.2
[Assigning Variables on the Command Line], page 118.) In the following example, count=1
is a variable assignment, not a file name:

awk -f program.awk filel count=1 file2

All the command-line arguments are made available to your awk program in the ARGV
array (see Section 7.5 [Predefined Variables|, page 157). Command-line options and the
program text (if present) are omitted from ARGV. All other arguments, including variable
assignments, are included. As each element of ARGV is processed, gawk sets ARGIND to the
index in ARGV of the current element.

Changing ARGC and ARGV in your awk program lets you control how awk processes the
input files; this is described in more detail in Section 7.5.3 [Using ARGC and ARGV], page 166.

The distinction between file name arguments and variable-assignment arguments is made
when awk is about to open the next input file. At that point in execution, it checks the file
name to see whether it is really a variable assignment; if so, awk sets the variable instead
of reading a file.

Therefore, the variables actually receive the given values after all previously specified
files have been read. In particular, the values of variables assigned in this fashion are
not available inside a BEGIN rule (see Section 7.1.4 [The BEGIN and END Special Patterns],
page 144), because such rules are run before awk begins scanning the argument list.

The variable values given on the command line are processed for escape sequences (see
Section 3.2 [Escape Sequences]|, page 48).

In some very early implementations of awk, when a variable assignment occurred before
any file names, the assignment would happen before the BEGIN rule was executed. awk’s
behavior was thus inconsistent; some command-line assignments were available inside the
BEGIN rule, while others were not. Unfortunately, some applications came to depend upon
this “feature.” When awk was changed to be more consistent, the -v option was added to
accommodate applications that depended upon the old behavior.

The variable assignment feature is most useful for assigning to variables such as RS, OFS,
and ORS, which control input and output formats, before scanning the data files. It is also
useful for controlling state if multiple passes are needed over a data file. For example:

awk ’pass == 1 { pass 1 stuff }
pass == 2 { pass 2 stuff }’ pass=1 mydata pass=2 mydata

Given the variable assignment feature, the -F option for setting the value of FS is not
strictly necessary. It remains for historical compatibility.

Chapter 2: Running awk and gawk 39

2.4 Naming Standard Input

Often, you may wish to read standard input together with other files. For example, you
may wish to read one file, read standard input coming from a pipe, and then read another

file.

The way to name the standard input, with all versions of awk, is to use a single, stand-
alone minus sign or dash, ‘-’. For example:

some_command | awk -f myprog.awk filel - file2

Here, awk first reads filel, then it reads the output of some_command, and finally it reads
file2.

You may also use "-" to name standard input when reading files with getline (see
Section 4.10.3 [Using getline from a File], page 83).

In addition, gawk allows you to specify the special file name /dev/stdin, both on the
command line and with getline. Some other versions of awk also support this, but it is not
standard. (Some operating systems provide a /dev/stdin file in the filesystem; however,
gawk always processes this file name itself.)

2.5 The Environment Variables gawk Uses

A number of environment variables influence how gawk behaves.

2.5.1 The AWKPATH Environment Variable

In most awk implementations, you must supply a precise pathname for each program file,
unless the file is in the current directory. But with gawk, if the file name supplied to the
-f or -i options does not contain a directory separator ‘/’, then gawk searches a list of
directories (called the search path) one by one, looking for a file with the specified name.

The search path is a string consisting of directory names separated by colons.> gawk
gets its search path from the AWKPATH environment variable. If that variable does not exist,
or if it has an empty value, gawk uses a default path (described shortly).

The search path feature is particularly helpful for building libraries of useful awk func-
tions. The library files can be placed in a standard directory in the default path and then
specified on the command line with a short file name. Otherwise, you would have to type
the full file name for each file.

By using the -i or —f options, your command-line awk programs can use facilities in awk
library files (see Chapter 10 [A Library of awk Functions|, page 231). Path searching is not
done if gawk is in compatibility mode. This is true for both --traditional and --posix.
See Section 2.2 [Command-Line Options|, page 31.

If the source code file is not found after the initial search, the path is searched again
after adding the suffix ‘.awk’ to the file name.

gawk’s path search mechanism is similar to the shell’s. (See The Bourne-Again SHell
manual.) It treats a null entry in the path as indicating the current directory. (A null entry
is indicated by starting or ending the path with a colon or by placing two colons next to
each other [‘::7].)

3 Semicolons on MS-Windows.

https://www.gnu.org/software/bash/manual/
https://www.gnu.org/software/bash/manual/

40 GAWK: Effective AWK Programming

NOTE: To include the current directory in the path, either place . as an entry
in the path or write a null entry in the path.

Different past versions of gawk would also look explicitly in the current direc-
tory, either before or after the path search. As of version 4.1.2, this no longer
happens; if you wish to look in the current directory, you must include . either
as a separate entry or as a null entry in the search path.

The default value for AWKPATH is ‘. : /usr/local/share/awk’.? Since . is included at the
beginning, gawk searches first in the current directory and then in /usr/local/share/awk.
In practice, this means that you will rarely need to change the value of AWKPATH.

See Section B.2.2 [Shell Startup Files|, page 456, for information on functions that help
to manipulate the AWKPATH variable.

gawk places the value of the search path that it used into ENVIRON ["AWKPATH"]. This
provides access to the actual search path value from within an awk program.

Although you can change ENVIRON["AWKPATH"] within your awk program, this has no
effect on the running program’s behavior. This makes sense: the AWKPATH environment
variable is used to find the program source files. Once your program is running, all the files
have been found, and gawk no longer needs to use AWKPATH.

2.5.2 The AWKLIBPATH Environment Variable

The AWKLIBPATH environment variable is similar to the AWKPATH variable, but it is used to
search for loadable extensions (stored as system shared libraries) specified with the -1 option
rather than for source files. If the extension is not found, the path is searched again after
adding the appropriate shared library suffix for the platform. For example, on GNU /Linux
systems, the suffix ‘.so’ is used. The search path specified is also used for extensions loaded
via the @load keyword (see Section 2.8 [Loading Dynamic Extensions into Your Program],
page 43).

If AWKLIBPATH does not exist in the environment, or if it has an empty value, gawk uses
a default path; this is typically ‘/usr/local/lib/gawk’, although it can vary depending
upon how gawk was built.

See Section B.2.2 [Shell Startup Files|, page 456, for information on functions that help
to manipulate the AWKLIBPATH variable.

gawk places the value of the search path that it used into ENVIRON ["AWKLIBPATH"]. This
provides access to the actual search path value from within an awk program.

2.5.3 Other Environment Variables

A number of other environment variables affect gawk’s behavior, but they are more special-
ized. Those in the following list are meant to be used by regular users:

GAWK_MSEC_SLEEP
Specifies the interval between connection retries, in milliseconds. On systems
that do not support the usleep() system call, the value is rounded up to an
integral number of seconds.

4 Your version of gawk may use a different directory; it will depend upon how gawk was built and installed.
The actual directory is the value of $(datadir) generated when gawk was configured. You probably
don’t need to worry about this, though.

Chapter 2: Running awk and gawk 41

GAWK_READ_TIMEQUT
Specifies the time, in milliseconds, for gawk to wait for input before returning
with an error. See Section 4.11 [Reading Input with a Timeout], page 88.

GAWK_SOCK_RETRIES
Controls the number of times gawk attempts to retry a two-way TCP/IP
(socket) connection before giving up. See Section 12.4 [Using gawk for
Network Programming]|, page 323. Note that when nonfatal I/O is enabled
(see Section 5.10 [Enabling Nonfatal Output|, page 109), gawk only tries to
open a TCP/IP socket once.

POSIXLY_CORRECT
Causes gawk to switch to POSIX-compatibility mode, disabling all traditional
and GNU extensions. See Section 2.2 [Command-Line Options|, page 31.

The environment variables in the following list are meant for use by the gawk developers
for testing and tuning. They are subject to change. The variables are:

AWKBUFSIZE
This variable only affects gawk on POSIX-compliant systems. With a value of
‘exact’, gawk uses the size of each input file as the size of the memory buffer
to allocate for I/O. Otherwise, the value should be a number, and gawk uses
that number as the size of the buffer to allocate. (When this variable is not
set, gawk uses the smaller of the file’s size and the “default” blocksize, which is
usually the filesystem’s I/O blocksize.)

AWK_HASH If this variable exists with a value of ‘gst’, gawk switches to using the hash func-
tion from GNU Smalltalk for managing arrays. This function may be marginally
faster than the standard function.

AWKREADFUNC
If this variable exists, gawk switches to reading source files one line at a time,
instead of reading in blocks. This exists for debugging problems on filesystems

on non-POSIX operating systems where 1/O is performed in records, not in
blocks.

GAWK_MSG_SRC
If this variable exists, gawk includes the file name and line number within the
gawk source code from which warning and/or fatal messages are generated. Its
purpose is to help isolate the source of a message, as there are multiple places
that produce the same warning or error message.

GAWK_LOCALE_DIR
Specifies the location of compiled message object files for gawk itself. This is
passed to the bindtextdomain() function when gawk starts up.

GAWK_NO_DFA
If this variable exists, gawk does not use the DFA regexp matcher for “does it
match” kinds of tests. This can cause gawk to be slower. Its purpose is to help
isolate differences between the two regexp matchers that gawk uses internally.
(There aren’t supposed to be differences, but occasionally theory and practice
don’t coordinate with each other.)

42 GAWK: Effective AWK Programming

GAWK_STACKSIZE
This specifies the amount by which gawk should grow its internal evaluation
stack, when needed.

INT_CHAIN_MAX
This specifies intended maximum number of items gawk will maintain on a hash
chain for managing arrays indexed by integers.

STR_CHAIN_MAX
This specifies intended maximum number of items gawk will maintain on a hash
chain for managing arrays indexed by strings.

TIDYMEM If this variable exists, gawk uses the mtrace() library calls from the GNU C
library to help track down possible memory leaks.

2.6 gawk’s Exit Status

If the exit statement is used with a value (see Section 7.4.10 [The exit Statement]
page 156), then gawk exits with the numeric value given to it.

’

Otherwise, if there were no problems during execution, gawk exits with the value of the
C constant EXIT_SUCCESS. This is usually zero.

If an error occurs, gawk exits with the value of the C constant EXIT_FAILURE. This is
usually one.

If gawk exits because of a fatal error, the exit status is two. On non-POSIX systems,
this value may be mapped to EXIT_FAILURE.

2.7 Including Other Files into Your Program

This section describes a feature that is specific to gawk.

The @include keyword can be used to read external awk source files. This gives you the
ability to split large awk source files into smaller, more manageable pieces, and also lets you
reuse common awk code from various awk scripts. In other words, you can group together
awk functions used to carry out specific tasks into external files. These files can be used
just like function libraries, using the @include keyword in conjunction with the AWKPATH
environment variable. Note that source files may also be included using the -i option.

Let’s see an example. We'll start with two (trivial) awk scripts, namely test1 and test2.
Here is the test1 script:

BEGIN {
print "This is script testl."

b

and here is test2:

@include "testl"
BEGIN {

print "This is script test2."
}

Running gawk with test2 produces the following result:
$ gawk -f test2

Chapter 2: Running awk and gawk 43

- This is script testl.
4 This is script test2.

gawk runs the test2 script, which includes testl using the @include keyword. So, to
include external awk source files, you just use @include followed by the name of the file to
be included, enclosed in double quotes.

NOTE: Keep in mind that this is a language construct and the file name cannot
be a string variable, but rather just a literal string constant in double quotes.

The files to be included may be nested; e.g., given a third script, namely test3:

@include "test2"
BEGIN {
print "This is script test3."

}
Running gawk with the test3 script produces the following results:

$ gawk -f test3

- This is script testl.
- This is script test2.
- This is script test3.

The file name can, of course, be a pathname. For example:
@include "../io_funcs"
and:
@include "/usr/awklib/network"

are both valid. The AWKPATH environment variable can be of great value when using
@include. The same rules for the use of the AWKPATH variable in command-line file searches
(see Section 2.5.1 [The AWKPATH Environment Variable], page 39) apply to @include also.

This is very helpful in constructing gawk function libraries. If you have a large script
with useful, general-purpose awk functions, you can break it down into library files and put
those files in a special directory. You can then include those “libraries,” either by using the
full pathnames of the files, or by setting the AWKPATH environment variable accordingly and
then using @include with just the file part of the full pathname. Of course, you can keep
library files in more than one directory; the more complex the working environment is, the
more directories you may need to organize the files to be included.

Given the ability to specify multiple -f options, the @include mechanism is not strictly
necessary. However, the @include keyword can help you in constructing self-contained
gawk programs, thus reducing the need for writing complex and tedious command lines. In
particular, @include is very useful for writing CGI scripts to be run from web pages.

The rules for finding a source file described in Section 2.5.1 [The AWKPATH Environment
Variable|, page 39, also apply to files loaded with @include.

2.8 Loading Dynamic Extensions into Your Program

This section describes a feature that is specific to gawk.

The @load keyword can be used to read external awk extensions (stored as system shared
libraries). This allows you to link in compiled code that may offer superior performance
and/or give you access to extended capabilities not supported by the awk language. The

44 GAWK: Effective AWK Programming

AWKLIBPATH variable is used to search for the extension. Using @load is completely equiv-
alent to using the -1 command-line option.

If the extension is not initially found in AWKLIBPATH, another search is conducted after
appending the platform’s default shared library suffix to the file name. For example, on
GNU/Linux systems, the suffix ‘.so’ is used:

$ gawk ’@load "ordchr"; BEGIN {print chr(65)}’
-4 A

This is equivalent to the following example:

$ gawk -lordchr ’BEGIN {print chr(65)}’
4 A

For command-line usage, the -1 option is more convenient, but @load is useful for embedding
inside an awk source file that requires access to an extension.

Chapter 16 [Writing Extensions for gawk|, page 369, describes how to write extensions

(in C or C++) that can be loaded with either @load or the -1 option. It also describes the
ordchr extension.

2.9 Obsolete Options and/or Features

This section describes features and/or command-line options from previous releases of gawk
that either are not available in the current version or are still supported but deprecated
(meaning that they will not be in the next release).

The process-related special files /dev/pid, /dev/ppid, /dev/pgrpid, and /dev/user
were deprecated in gawk 3.1, but still worked. As of version 4.0, they are no longer inter-
preted specially by gawk. (Use PROCINFO instead; see Section 7.5.2 [Built-in Variables That
Convey Information], page 159.)

2.10 Undocumented Options and Features
Use the Source, Luke!
—Obi-Wan

This section intentionally left blank.

2.11 Summary

o Use either ‘awk ’program’ files’ or ‘awk -f program-file files’ to run awk.
e The three standard options for all versions of awk are -f, -F, and -v. gawk supplies
these and many others, as well as corresponding GNU-style long options.

e Nonoption command-line arguments are usually treated as file names, unless they have
the form ‘var=value’, in which case they are taken as variable assignments to be
performed at that point in processing the input.

e All nonoption command-line arguments, excluding the program text, are placed in the
ARGV array. Adjusting ARGC and ARGV affects how awk processes input.

e You can use a single minus sign (‘=’) to refer to standard input on the command line.
gawk also lets you use the special file name /dev/stdin.

Chapter 2: Running awk and gawk 45

gawk pays attention to a number of environment variables. AWKPATH, AWKLIBPATH, and
POSIXLY_CORRECT are the most important ones.

gawk’s exit status conveys information to the program that invoked it. Use the exit
statement from within an awk program to set the exit status.

gawk allows you to include other awk source files into your program using the @include
statement and/or the -i and -f command-line options.

gawk allows you to load additional functions written in C or C++ using the @load state-
ment and/or the -1 option. (This advanced feature is described later, in Chapter 16
[Writing Extensions for gawk|, page 369.)

Chapter 3: Regular Expressions 47

3 Regular Expressions

A regular expression, or regexp, is a way of describing a set of strings. Because regular
expressions are such a fundamental part of awk programming, their format and use deserve
a separate chapter.

A regular expression enclosed in slashes (‘/’) is an awk pattern that matches every input
record whose text belongs to that set. The simplest regular expression is a sequence of
letters, numbers, or both. Such a regexp matches any string that contains that sequence.
Thus, the regexp ‘foo’ matches any string containing ‘foo’. Thus, the pattern /foo/
matches any input record containing the three adjacent characters ‘foo’ anywhere in the
record. Other kinds of regexps let you specify more complicated classes of strings.

Initially, the examples in this chapter are simple. As we explain more about how regular
expressions work, we present more complicated instances.

3.1 How to Use Regular Expressions

A regular expression can be used as a pattern by enclosing it in slashes. Then the regular
expression is tested against the entire text of each record. (Normally, it only needs to match
some part of the text in order to succeed.) For example, the following prints the second
field of each record where the string ‘1i’ appears anywhere in the record:

$ awk ’/1i/ { print $2 }’ mail-list
-1 B555-5553
- 555-0542
- 555-6699
- 555-3430

Regular expressions can also be used in matching expressions. These expressions allow
you to specify the string to match against; it need not be the entire current input record.
The two operators ‘=" and ‘!~ perform regular expression comparisons. Expressions using
these operators can be used as patterns, or in if, while, for, and do statements. (See
Section 7.4 [Control Statements in Actions|, page 148.) For example, the following is true
if the expression exp (taken as a string) matches regexp:

exp ~ /regexp/
This example matches, or selects, all input records with the uppercase letter ‘J’ somewhere
in the first field:

$ awk ’$1 ~ /J/’ inventory-shipped

-4 Jan 13 25 15 115

< Jun 31 42 75 492

-4 Jul 24 34 67 436

4 Jan 21 36 64 620

So does this:
awk ’{ if ($1 ~ /J/) print }’ inventory-shipped

This next example is true if the expression exp (taken as a character string) does not
match regexp:

exp !~ /regexp/

48 GAWK: Effective AWK Programming

The following example matches, or selects, all input records whose first field does not
contain the uppercase letter ‘J’:

$ awk ’$1 !~ /J/’ inventory-shipped
<4 Feb 15 32 24 226
-4 Mar 15 24 34 228
- Apr 31 52 63 420
- May 16 34 29 208

When a regexp is enclosed in slashes, such as /foo/, we call it a regexp constant, much
like 5.27 is a numeric constant and "foo" is a string constant.

3.2 Escape Sequences

Some characters cannot be included literally in string constants ("foo") or regexp constants
(/foo/). Instead, they should be represented with escape sequences, which are character
sequences beginning with a backslash (‘\’). One use of an escape sequence is to include a
double-quote character in a string constant. Because a plain double quote ends the string,
you must use ‘\"’ to represent an actual double-quote character as a part of the string. For
example:

$ awk ’BEGIN { print "He said \"hi!\" to her." }’
-1 He said "hi!" to her.

The backslash character itself is another character that cannot be included normally;
you must write ‘\\’ to put one backslash in the string or regexp. Thus, the string whose
contents are the two characters ‘"’ and ‘\’ must be written "\"\\".

Other escape sequences represent unprintable characters such as TAB or newline. There
is nothing to stop you from entering most unprintable characters directly in a string constant
or regexp constant, but they may look ugly.

The following list presents all the escape sequences used in awk and what they represent.
Unless noted otherwise, all these escape sequences apply to both string constants and regexp
constants:

\\ A literal backslash, ‘\’.

\a The “alert” character, Ctrl-g, ASCII code 7 (BEL). (This often makes some
sort of audible noise.)

\b Backspace, Ctrl-h, ASCII code 8 (BS).

\f Formfeed, Ctrl-1, ASCII code 12 (FF).

\n Newline, Ctrl-j, ASCII code 10 (LF).

\r Carriage return, Ctrl-m, ASCII code 13 (CR).

\t Horizontal TAB, Ctrl-i, ASCII code 9 (HT).

\v Vertical TAB, Ctrl-k, ASCII code 11 (VT).

\nnn The octal value nnn, where nnn stands for 1 to 3 digits between ‘0’ and ‘7’. For

example, the code for the ASCII ESC (escape) character is ‘\033’.

\xhh. ..

\/

\ll

Chapter 3: Regular Expressions 49

The hexadecimal value hh, where hh stands for a sequence of hexadecimal digits
(‘0'—*9’, and either ‘A’—F’ or ‘a’™~‘f’). A maximum of two digts are allowed
after the ‘\x’. Any further hexadecimal digits are treated as simple letters or
numbers. (c.e.) (The ‘\x’ escape sequence is not allowed in POSIX awk.)

CAUTION: In ISO C, the escape sequence continues until the first
nonhexadecimal digit is seen. For many years, gawk would con-
tinue incorporating hexadecimal digits into the value until a non-
hexadecimal digit or the end of the string was encountered. How-
ever, using more than two hexadecimal digits produced undefined
results. As of version 4.2, only two digits are processed.

A literal slash (necessary for regexp constants only). This sequence is used
when you want to write a regexp constant that contains a slash (such as
/.*:\/home\/[[:alnum:]]+:.*/; the ‘[[:alnum:]] notation is discussed in
Section 3.4 [Using Bracket Expressions]|, page 53). Because the regexp is de-
limited by slashes, you need to escape any slash that is part of the pattern, in
order to tell awk to keep processing the rest of the regexp.

A literal double quote (necessary for string constants only). This sequence is
used when you want to write a string constant that contains a double quote
(such as "He said \"hi!\" to her."). Because the string is delimited by dou-
ble quotes, you need to escape any quote that is part of the string, in order to
tell awk to keep processing the rest of the string.

In gawk, a number of additional two-character sequences that begin with a backslash have
special meaning in regexps. See Section 3.7 [gawk-Specific Regexp Operators|, page 56.

In a regexp, a backslash before any character that is not in the previous list and not listed
in Section 3.7 [gawk-Specific Regexp Operators|, page 56, means that the next character
should be taken literally, even if it would normally be a regexp operator. For example,
/a\+b/ matches the three characters ‘a+b’.

For complete portability, do not use a backslash before any character not shown in the
previous list or that is not an operator.

—(x

50 GAWK: Effective AWK Programming

(7
Backslash Before Regular Characters

If you place a backslash in a string constant before something that is not one of the
characters previously listed, POSIX awk purposely leaves what happens as undefined. There
are two choices:

Strip the backslash out
This is what BWK awk and gawk both do. For example, "a\qc" is the same
as "aqc". (Because this is such an easy bug both to introduce and to miss,
gawk warns you about it.) Consider ‘FS = "[\t]1+\|[\t]+"’ to use vertical
bars surrounded by whitespace as the field separator. There should be two
backslashes in the string: ‘FS = "[\t]+\\|[\t]+"".)

Leave the backslash alone
Some other awk implementations do this. In such implementations, typing
"a\qc" is the same as typing "a\\qc".

- J

To summarize:

e The escape sequences in the preceding list are always processed first, for both string
constants and regexp constants. This happens very early, as soon as awk reads your
program.

e gawk processes both regexp constants and dynamic regexps (see Section 3.6 [Using
Dynamic Regexps|, page 55), for the special operators listed in Section 3.7 [gawk-
Specific Regexp Operators|, page 56.

e A backslash before any other character means to treat that character literally.

()
Escape Sequences for Metacharacters

Suppose you use an octal or hexadecimal escape to represent a regexp metacharacter.
(See Section 3.3 [Regular Expression Operators|, page 50.) Does awk treat the character as
a literal character or as a regexp operator?

Historically, such characters were taken literally. = However, the POSIX standard in-
dicates that they should be treated as real metacharacters, which is what gawk does. In
compatibility mode (see Section 2.2 [Command-Line Options|, page 31), gawk treats the
characters represented by octal and hexadecimal escape sequences literally when used in

regexp constants. Thus, /a\52b/ is equivalent to /a*b/.
=)

3.3 Regular Expression Operators

You can combine regular expressions with special characters, called regular expression op-
erators or metacharacters, to increase the power and versatility of regular expressions.

The escape sequences described earlier in Section 3.2 [Escape Sequences|, page 48, are
valid inside a regexp. They are introduced by a ‘\’ and are recognized and converted into
corresponding real characters as the very first step in processing regexps.

Here is a list of metacharacters. All characters that are not escape sequences and that
are not listed here stand for themselves:

\ This suppresses the special meaning of a character when matching. For exam-
ple, ‘\$’ matches the character ‘$’.

. (period)

~...

Chapter 3: Regular Expressions 51

This matches the beginning of a string. ‘~@chapter’ matches ‘@chapter’ at
the beginning of a string, for example, and can be used to identify chapter
beginnings in Texinfo source files. The ‘~’ is known as an anchor, because it
anchors the pattern to match only at the beginning of the string.

It is important to realize that ‘*’ does not match the beginning of a line (the
point right after a ‘\n’ newline character) embedded in a string. The condition
is not true in the following example:

if ("1inei\nLINE 2" = /"L/)

This is similar to ‘~’, but it matches only at the end of a string. For example,
‘p$’ matches a record that ends with a ‘p’. The ‘¢’ is an anchor and does
not match the end of a line (the point right before a ‘\n’ newline character)
embedded in a string. The condition in the following example is not true:

if ("linel\nLINE 2" ~ /1$/)

This matches any single character, including the newline character. For ex-
ample, ‘.P’ matches any single character followed by a ‘P’ in a string. Using
concatenation, we can make a regular expression such as ‘U.A’, which matches
any three-character sequence that begins with ‘U’ and ends with ‘A’.

In strict POSIX mode (see Section 2.2 [Command-Line Options], page 31), *.’
does not match the NUL character, which is a character with all bits equal to
zero. Otherwise, NUL is just another character. Other versions of awk may not
be able to match the NUL character.

This is called a bracket expression.' It matches any one of the characters that
are enclosed in the square brackets. For example, ‘[MVX]’ matches any one
of the characters ‘M, ‘V’, or ‘X’ in a string. A full discussion of what can be
inside the square brackets of a bracket expression is given in Section 3.4 [Using
Bracket Expressions]|, page 53.

This is a complemented bracket expression. The first character after the ‘[’
must be a ‘~’. It matches any characters except those in the square brackets.
For example, ‘[“awk]’ matches any character that is not an ‘a’, ‘w’, or ‘k’.
This is the alternation operator and it is used to specify alternatives. The ‘|’
has the lowest precedence of all the regular expression operators. For example,
‘“P| [aeiouy]’ matches any string that matches either ‘"P’ or ‘[aeiouy]’. This
means it matches any string that starts with ‘P’ or contains (anywhere within
it) a lowercase English vowel.

The alternation applies to the largest possible regexps on either side.

Parentheses are used for grouping in regular expressions, as in arithmetic. They
can be used to concatenate regular expressions containing the alternation oper-
ator, ‘|’. For example, ‘@(samp|code) \{["}]+\}’ matches both ‘@code{foo}’
and ‘@samp{bar}’. (These are Texinfo formatting control sequences. The ‘+’ is
explained further on in this list.)

1 In other literature, you may see a bracket expression referred to as either a character set, a character
class, or a character list.

52 GAWK: Effective AWK Programming

{n}
{n,}
{n,m}

This symbol means that the preceding regular expression should be repeated
as many times as necessary to find a match. For example, ‘ph*’ applies the ‘*’
symbol to the preceding ‘h’ and looks for matches of one ‘p’ followed by any
number of ‘h’s. This also matches just ‘p’ if no ‘h’s are present.

There are two subtle points to understand about how ‘*’ works. First, the ‘¥’
applies only to the single preceding regular expression component (e.g., in ‘ph*’,
it applies just to the ‘h’). To cause ‘*’ to apply to a larger subexpression, use
parentheses: ‘(ph)*’ matches ‘ph’, ‘phph’, ‘phphph’, and so on.

Second, ‘*’ finds as many repetitions as possible. If the text to be matched is
‘phhhhhhhhhhhhhhooey’, ‘ph*’ matches all of the ‘h’s.

This symbol is similar to ‘*’, except that the preceding expression must be
matched at least once. This means that ‘wh+y’ would match ‘why’ and ‘whhy’,
but not ‘wy’, whereas ‘wh*y’ would match all three.

This symbol is similar to ‘*’, except that the preceding expression can be
matched either once or not at all. For example, ‘fe?d’ matches ‘fed’ and
‘fd’, but nothing else.

One or two numbers inside braces denote an interval expression. If there is one
number in the braces, the preceding regexp is repeated n times. If there are
two numbers separated by a comma, the preceding regexp is repeated n to m
times. If there is one number followed by a comma, then the preceding regexp
is repeated at least n times:

wh{3}y Matches ‘whhhy’, but not ‘why’ or ‘whhhhy’.
wh{3,5}y Matches ‘whhhy’, ‘whhhhy’, or ‘whhhhhy’ only.
wh{2,}y Matches ‘whhy’, ‘whhhy’, and so on.

Interval expressions were not traditionally available in awk. They were added
as part of the POSIX standard to make awk and egrep consistent with each
other.

Initially, because old programs may use ‘{’ and ‘}’ in regexp constants, gawk
did not match interval expressions in regexps.

However, beginning with version 4.0, gawk does match interval expressions by
default. This is because compatibility with POSIX has become more important
to most gawk users than compatibility with old programs.

For programs that use ‘{” and ‘}’ in regexp constants, it is good practice to
always escape them with a backslash. Then the regexp constants are valid and
work the way you want them to, using any version of awk.?

Finally, when ‘{’ and ‘}’ appear in regexp constants in a way that cannot be
interpreted as an interval expression (such as /q{a}/), then they stand for
themselves.

2 Use two backslashes if you’re using a string constant with a regexp operator or function.

Chapter 3: Regular Expressions 53

In regular expressions, the ‘*’, ‘+’. and ‘?’ operators, as well as the braces ‘{’ and ‘}’,
have the highest precedence, followed by concatenation, and finally by ‘|’. As in arithmetic,
parentheses can change how operators are grouped.

In POSIX awk and gawk, the ‘*’; ‘+’_ and ‘?’ operators stand for themselves when there
is nothing in the regexp that precedes them. For example, /+/ matches a literal plus sign.
However, many other versions of awk treat such a usage as a syntax error.

If gawk is in compatibility mode (see Section 2.2 [Command-Line Options|, page 31),
interval expressions are not available in regular expressions.

3.4 Using Bracket Expressions

As mentioned earlier, a bracket expression matches any character among those listed be-
tween the opening and closing square brackets.

Within a bracket expression, a range expression consists of two characters separated by a
hyphen. It matches any single character that sorts between the two characters, based upon
the system’s native character set. For example, ‘[0-9]’ is equivalent to ‘[0123456789]".
(See Section A.8 [Regexp Ranges and Locales: A Long Sad Story], page 445, for an expla-
nation of how the POSIX standard and gawk have changed over time. This is mainly of
historical interest.)

With the increasing popularity of the Unicode character standard, there is an additional
wrinkle to consider. Octal and hexadecimal escape sequences inside bracket expressions are
taken to represent only single-byte characters (characters whose values fit within the range
0-256). To match a range of characters where the endpoints of the range are larger than
256, enter the multibyte encodings of the characters directly.

()

To include one of the characters ‘\’, ‘1, ‘-7, or in a bracket expression, put a ‘\’ in
b)))

front of it. For example:
[d\]1]

matches either ‘d’ or ‘1°. Additionally, if you place ‘]’ right after the opening ‘ [’, the closing
bracket is treated as one of the characters to be matched.

The treatment of ‘\’ in bracket expressions is compatible with other awk implementations
and is also mandated by POSIX. The regular expressions in awk are a superset of the POSIX
specification for Extended Regular Expressions (EREs). POSIX EREs are based on the
regular expressions accepted by the traditional egrep utility.

Character classes are a feature introduced in the POSIX standard. A character class is
a special notation for describing lists of characters that have a specific attribute, but the
actual characters can vary from country to country and/or from character set to character
set. For example, the notion of what is an alphabetic character differs between the United
States and France.

A character class is only valid in a regexp inside the brackets of a bracket expression.
Character classes consist of ‘[:’, a keyword denoting the class, and ‘:]1°. Table 3.1 lists the
character classes defined by the POSIX standard.

http://www.unicode.org

54 GAWK: Effective AWK Programming

Class Meaning

[:alnum:] Alphanumeric characters

[:alpha:] Alphabetic characters

[:blank:] Space and TAB characters

[:cntrl:] Control characters

[:digit:] Numeric characters

[:graph:] Characters that are both printable and visible (a space is printable but not
visible, whereas an ‘a’ is both)

[:lower:] Lowercase alphabetic characters

[:print:] Printable characters (characters that are not control characters)

[:punct:] Punctuation characters (characters that are not letters, digits, control char-
acters, or space characters)

[:space:] Space characters (such as space, TAB, and formfeed, to name a few)

[:upper:] Uppercase alphabetic characters

[:xdigit:] Characters that are hexadecimal digits
Table 3.1: POSIX character classes

For example, before the POSIX standard, you had to write /[A-Za-z0-9]/ to match
alphanumeric characters. If your character set had other alphabetic characters in it, this
would not match them. With the POSIX character classes, you can write /[[:alnum:]]/
to match the alphabetic and numeric characters in your character set.

Some utilities that match regular expressions provide a nonstandard ‘[:ascii:]’ char-
acter class; awk does not. However, you can simulate such a construct using ‘ [\x00-\x7F]’.
This matches all values numerically between zero and 127, which is the defined range of the
ASCII character set. Use a complemented character list (‘[~\x00-\x7F]’) to match any
single-byte characters that are not in the ASCII range.

Two additional special sequences can appear in bracket expressions. These apply to
non-ASCII character sets, which can have single symbols (called collating elements) that
are represented with more than one character. They can also have several characters that
are equivalent for collating, or sorting, purposes. (For example, in French, a plain “e¢” and
a grave-accented “¢” are equivalent.) These sequences are:

Collating symbols
Multicharacter collating elements enclosed between ‘[.” and ‘.]’. For example,
if ‘ch’ is a collating element, then ‘[[.ch.]]’ is a regexp that matches this
collating element, whereas ‘[ch]’ is a regexp that matches either ‘c’ or ‘h’.

Equivalence classes
Locale-specific names for a list of characters that are equal. The name is en-
closed between ‘[=’ and ‘=]’. For example, the name ‘e’ might be used to

[43 WA N Wy

represent all of “e,” “¢,” “¢,” and “é.” In this case, ‘[[=e=]]" is a regexp that

[(a?) (g7

matches any of ‘e’, ‘@’, ‘é’, or ‘@’.

These features are very valuable in non-English-speaking locales.

Chapter 3: Regular Expressions 55

CAUTION: The library functions that gawk uses for regular expression match-
ing currently recognize only POSIX character classes; they do not recognize
collating symbols or equivalence classes.

Inside a bracket expression, an opening bracket (‘[’) that does not start a character
class, collating element or equivalence class is taken literally. This is also true of ‘.’ and ‘*’.

3.5 How Much Text Matches?

Consider the following:
echo aaaabcd | awk ’{ sub(/a+/, "<A>"); print }’

This example uses the sub() function to make a change to the input record. (sub()
replaces the first instance of any text matched by the first argument with the string provided
as the second argument; see Section 9.1.3 [String-Manipulation Functions|, page 187.) Here,
the regexp /a+/ indicates “one or more ‘a’ characters,” and the replacement text is ‘<A>’.

The input contains four ‘a’ characters. awk (and POSIX) regular expressions always
match the leftmost, longest sequence of input characters that can match. Thus, all four ‘a’
characters are replaced with ‘<A>’ in this example:

$ echo aaaabcd | awk ’{ sub(/at/, "<A>"); print }’
- <A>bcd

For simple match /no-match tests, this is not so important. But when doing text match-
ing and substitutions with the match(), sub(), gsub(), and gensub() functions, it is very
important. Understanding this principle is also important for regexp-based record and field
splitting (see Section 4.1 [How Input Is Split into Records], page 61, and also see Section 4.5
[Specifying How Fields Are Separated], page 69).

3.6 Using Dynamic Regexps

The righthand side of a *~” or ‘!’ operator need not be a regexp constant (i.e., a string
of characters between slashes). It may be any expression. The expression is evaluated and
converted to a string if necessary; the contents of the string are then used as the regexp. A
regexp computed in this way is called a dynamic regexp or a computed regexp:

BEGIN { digits_regexp = "[[:digit:]1]1+" }

$0 ~ digits_regexp { print }
This sets digits_regexp to a regexp that describes one or more digits, and tests whether
the input record matches this regexp.

NOTE: When using the ‘~” and ‘!’ operators, be aware that there is a difference
between a regexp constant enclosed in slashes and a string constant enclosed in
double quotes. If you are going to use a string constant, you have to understand
that the string is, in essence, scanned twice: the first time when awk reads your
program, and the second time when it goes to match the string on the lefthand
side of the operator with the pattern on the right. This is true of any string-
valued expression (such as digits_regexp, shown in the previous example),
not just string constants.

What difference does it make if the string is scanned twice? The answer has to do
with escape sequences, and particularly with backslashes. To get a backslash into a regular
expression inside a string, you have to type two backslashes.

56 GAWK: Effective AWK Programming

For example, /*/ is a regexp constant for a literal ‘*’. Only one backslash is needed.
To do the same thing with a string, you have to type "*". The first backslash escapes
the second one so that the string actually contains the two characters ‘\’ and ‘*’.

Given that you can use both regexp and string constants to describe regular expressions,
which should you use? The answer is “regexp constants,” for several reasons:

e String constants are more complicated to write and more difficult to read. Using regexp
constants makes your programs less error-prone. Not understanding the difference
between the two kinds of constants is a common source of errors.

e [t is more efficient to use regexp constants. awk can note that you have supplied a
regexp and store it internally in a form that makes pattern matching more efficient.
When using a string constant, awk must first convert the string into this internal form
and then perform the pattern matching.

e Using regexp constants is better form; it shows clearly that you intend a regexp match.

(N
Using \n in Bracket Expressions of Dynamic Regexps

Some older versions of awk do not allow the newline character to be used inside a bracket
expression for a dynamic regexp:

$ awk ’$0 ~ "[\t\n]"’
awk: newline in character class [
1...
source line number 1
context is
$0 ~ "[>>> A\t\n]" <<
But a newline in a regexp constant works with no problem:
$ awk ’$0 ~ /[\t\nl/’
here is a sample line
- here is a sample line
Ctrl-d
gawk does not have this problem, and it isn’t likely to occur often in practice, but it’s

worth noting for future reference.
= J

3.7 gawk-Specific Regexp Operators

GNU software that deals with regular expressions provides a number of additional regexp
operators. These operators are described in this section and are specific to gawk; they are
not available in other awk implementations. Most of the additional operators deal with
word matching. For our purposes, a word is a sequence of one or more letters, digits, or
underscores (‘_’):

\s Matches any whitespace character. Think of it as shorthand for ‘[[:space:1]".

\S Matches any character that is not whitespace. Think of it as shorthand for
‘[*[:space:1]".

\w Matches any word-constituent character—that is, it matches any letter, digit,

or underscore. Think of it as shorthand for ‘[[:alnum:]_]".

Chapter 3: Regular Expressions 57

\W Matches any character that is not word-constituent. Think of it as shorthand
for ‘["[:alnum:]_]".

\< Matches the empty string at the beginning of a word. For example, /\<away/
matches ‘away’ but not ‘stowaway’.

\> Matches the empty string at the end of a word. For example, /stow\>/ matches
‘stow’ but not ‘stowaway’.

\y Matches the empty string at either the beginning or the end of a word (i.e., the
word boundary). For example, ‘\yballs?\y’ matches either ‘ball’ or ‘balls’,
as a separate word.

\B Matches the empty string that occurs between two word-constituent characters.
For example, /\Brat\B/ matches ‘crate’, but it does not match ‘dirty rat’.
‘\B’ is essentially the opposite of ‘\y’.

There are two other operators that work on buffers. In Emacs, a buffer is, naturally, an
Emacs buffer. Other GNU programs, including gawk, consider the entire string to match
as the buffer. The operators are:

\¢ Matches the empty string at the beginning of a buffer (string)
\’ Matches the empty string at the end of a buffer (string)
Because ‘°7 and ‘$’ always work in terms of the beginning and end of strings, these

operators don’t add any new capabilities for awk. They are provided for compatibility with
other GNU software.

In other GNU software, the word-boundary operator is ‘\b’. However, that conflicts
with the awk language’s definition of ‘\b’ as backspace, so gawk uses a different letter. An
alternative method would have been to require two backslashes in the GNU operators, but
this was deemed too confusing. The current method of using ‘\y’ for the GNU ‘\b’ appears
to be the lesser of two evils.

The various command-line options (see Section 2.2 [Command-Line Options], page 31)
control how gawk interprets characters in regexps:

No options
In the default case, gawk provides all the facilities of POSIX regexps and the
previously described GNU regexp operators.

--posix Match only POSIX regexps; the GNU operators are not special (e.g., ‘\w’
matches a literal ‘w’). Interval expressions are allowed.

--traditional
Match traditional Unix awk regexps. The GNU operators are not special, and
interval expressions are not available. Because BWK awk supports them, the
POSIX character classes (‘[[:alnum:]]’, etc.) are available. Characters de-
scribed by octal and hexadecimal escape sequences are treated literally, even if
they represent regexp metacharacters.

--re—-interval
Allow interval expressions in regexps, if ——traditional has been provided.
Otherwise, interval expressions are available by default.

58 GAWK: Effective AWK Programming

3.8 Case Sensitivity in Matching

Case is normally significant in regular expressions, both when matching ordinary characters
(i.e., not metacharacters) and inside bracket expressions. Thus, a ‘w’ in a regular expression
matches only a lowercase ‘w’ and not an uppercase ‘W’.

The simplest way to do a case-independent match is to use a bracket expression—for
example, ‘[Ww]’. However, this can be cumbersome if you need to use it often, and it can
make the regular expressions harder to read. There are two alternatives that you might
prefer.

One way to perform a case-insensitive match at a particular point in the program is
to convert the data to a single case, using the tolower() or toupper() built-in string
functions (which we haven’t discussed yet; see Section 9.1.3 [String-Manipulation Functions|,
page 187). For example:

tolower($1) ~ /foo/ { ... }

converts the first field to lowercase before matching against it. This works in any POSIX-
compliant awk.

Another method, specific to gawk, is to set the variable IGNORECASE to a nonzero value
(see Section 7.5 [Predefined Variables|, page 157). When IGNORECASE is not zero, all regexp
and string operations ignore case.

Changing the value of IGNORECASE dynamically controls the case sensitivity of the pro-
gram as it runs. Case is significant by default because IGNORECASE (like most variables) is
initialized to zero:

x = "aB"
if (x ~ /ab/) ... # this test will fail

IGNORECASE = 1
if (x ~ /ab/) ... # now it will succeed

In general, you cannot use IGNORECASE to make certain rules case insensitive and other
rules case sensitive, as there is no straightforward way to set IGNORECASE just for the pattern
of a particular rule.> To do this, use either bracket expressions or tolower (). However,
one thing you can do with IGNORECASE only is dynamically turn case sensitivity on or off
for all the rules at once.

IGNORECASE can be set on the command line or in a BEGIN rule (see Section 2.3 [Other
Command-Line Arguments|, page 38; also see Section 7.1.4.1 [Startup and Cleanup Actions],
page 144). Setting IGNORECASE from the command line is a way to make a program case
insensitive without having to edit it.

In multibyte locales, the equivalences between upper- and lowercase characters are tested
based on the wide-character values of the locale’s character set. Otherwise, the characters
are tested based on the ISO-8859-1 (ISO Latin-1) character set. This character set is a
superset of the traditional 128 ASCII characters, which also provides a number of characters
suitable for use with European languages.*

3 Experienced C and C++ programmers will note that it is possible, using something like ‘IGNORECASE =
1 && /foObAr/ { ... }’ and ‘IGNORECASE = 0 || /foobar/ { ... }’. However, this is somewhat obscure
and we don’t recommend it.

4If you don’t understand this, don’t worry about it; it just means that gawk does the right thing.

Chapter 3: Regular Expressions 59

The value of IGNORECASE has no effect if gawk is in compatibility mode (see Section 2.2
[Command-Line Options|, page 31). Case is always significant in compatibility mode.

3.9 Summary

e Regular expressions describe sets of strings to be matched. In awk, regular expression
constants are written enclosed between slashes: /.../.

e Regexp constants may be used standalone in patterns and in conditional expressions,
or as part of matching expressions using the ‘~” and ‘!’ operators.

e Escape sequences let you represent nonprintable characters and also let you represent
regexp metacharacters as literal characters to be matched.

e Regexp operators provide grouping, alternation, and repetition.

e Bracket expressions give you a shorthand for specifying sets of characters that can
match at a particular point in a regexp. Within bracket expressions, POSIX character
classes let you specify certain groups of characters in a locale-independent fashion.

e Regular expressions match the leftmost longest text in the string being matched. This
matters for cases where you need to know the extent of the match, such as for text
substitution and when the record separator is a regexp.

e Matching expressions may use dynamic regexps (i.e., string values treated as regular
expressions).

e gawk’s IGNORECASE variable lets you control the case sensitivity of regexp matching. In
other awk versions, use tolower () or toupper().

Chapter 4: Reading Input Files 61

4 Reading Input Files

In the typical awk program, awk reads all input either from the standard input (by default,
this is the keyboard, but often it is a pipe from another command) or from files whose names
you specify on the awk command line. If you specify input files, awk reads them in order,
processing all the data from one before going on to the next. The name of the current input
file can be found in the predefined variable FILENAME (see Section 7.5 [Predefined Variables]
page 157).

9

The input is read in units called records, and is processed by the rules of your program
one record at a time. By default, each record is one line. Each record is automatically split
into chunks called fields. This makes it more convenient for programs to work on the parts
of a record.

On rare occasions, you may need to use the getline command. The getline command
is valuable both because it can do explicit input from any number of files, and because
the files used with it do not have to be named on the awk command line (see Section 4.10
[Explicit Input with getline|, page 81).

4.1 How Input Is Split into Records

awk divides the input for your program into records and fields. It keeps track of the number
of records that have been read so far from the current input file. This value is stored in
a predefined variable called FNR, which is reset to zero every time a new file is started.
Another predefined variable, NR, records the total number of input records read so far from
all data files. It starts at zero, but is never automatically reset to zero.

4.1.1 Record Splitting with Standard awk

Records are separated by a character called the record separator. By default, the record
separator is the newline character. This is why records are, by default, single lines. To use
a different character for the record separator, simply assign that character to the predefined
variable RS.

Like any other variable, the value of RS can be changed in the awk program with the
assignment operator, ‘=" (see Section 6.2.3 [Assignment Expressions|, page 123). The new
record-separator character should be enclosed in quotation marks, which indicate a string
constant. Often, the right time to do this is at the beginning of execution, before any
input is processed, so that the very first record is read with the proper separator. To do
this, use the special BEGIN pattern (see Section 7.1.4 [The BEGIN and END Special Patterns]
page 144). For example:

awk ’BEGIN { RS = "u"
{ print $0 }’ mail-list

9

changes the value of RS to ‘u’, before reading any input. The new value is a string whose
first character is the letter “u”; as a result, records are separated by the letter “u”. Then
the input file is read, and the second rule in the awk program (the action with no pattern)
prints each record. Because each print statement adds a newline at the end of its output,
this awk program copies the input with each ‘u’ changed to a newline. Here are the results

of running the program on mail-list:
$ awk ’BEGIN { RS = "u"

62 GAWK: Effective AWK Programming

{ print $0 }’ mail-list

Amelia 555-5553 amelia.zodiac
5q
e@gmail.com F
Anthony 555-3412 anthony.assert
roGhotmail.com A
Becky 555-7685 becky.algebrar
m@gmail.com A
Bill 555-1675 bill.drowning@hotmail.com A
Broderick 555-05642 broderick.aliq
otiens@yahoo.com R
Camilla 555-2912 camilla.inf
sar
m@skynet.be R
Fabi
s 555-1234 fabi
s.
ndevicesim
s@
cb.ed
F
J
lie 555-6699 J

lie.perscr
tabor@skeeve.com F
Martin 555-6480 martin.codicib
s@hotmail.com A
Sam
el 555-3430 sam
el.lanceolis@sh
.ed

A
Jean-Pa
1 555-2127 jeanpa
1.campanor
m@ny
.ed

T T T T I I I I I I I I I I I [[I N I N N N R N O N B B B 4

Note that the entry for the name ‘Bill’ is not split. In the original data file (see Section 1.2
[Data files for the Examples], page 24), the line looks like this:

Bill 555-1675 bill.drowning@hotmail.com A

It contains no ‘u’, so there is no reason to split the record, unlike the others, which each
have one or more occurrences of the ‘u’. In fact, this record is treated as part of the previous
record; the newline separating them in the output is the original newline in the data file,
not the one added by awk when it printed the record!

Chapter 4: Reading Input Files 63

Another way to change the record separator is on the command line, using the variable-
assignment feature (see Section 2.3 [Other Command-Line Arguments], page 38):

awk ’{ print $0 }’ RS="u" mail-list
This sets RS to ‘u’ before processing mail-list.

Using an alphabetic character such as ‘u’ for the record separator is highly likely to
produce strange results. Using an unusual character such as ¢/’ is more likely to produce
correct behavior in the majority of cases, but there are no guarantees. The moral is: Know
Your Data.

When using regular characters as the record separator, there is one unusual case that
occurs when gawk is being fully POSIX-compliant (see Section 2.2 [Command-Line Options,
page 31). Then, the following (extreme) pipeline prints a surprising ‘1’:

$ echo | gawk --posix ’BEGIN { RS = "a" } ; { print NF }’
-4 1

There is one field, consisting of a newline. The value of the built-in variable NF is the
number of fields in the current record. (In the normal case, gawk treats the newline as
whitespace, printing ‘0’ as the result. Most other versions of awk also act this way.)

Reaching the end of an input file terminates the current input record, even if the last
character in the file is not the character in RS.

The empty string "" (a string without any characters) has a special meaning as the value
of RS. It means that records are separated by one or more blank lines and nothing else. See
Section 4.9 [Multiple-Line Records|, page 79, for more details.

If you change the value of RS in the middle of an awk run, the new value is used to
delimit subsequent records, but the record currently being processed, as well as records
already processed, are not affected.

After the end of the record has been determined, gawk sets the variable RT to the text
in the input that matched RS.

4.1.2 Record Splitting with gawk

When using gawk, the value of RS is not limited to a one-character string. It can be any
regular expression (see Chapter 3 [Regular Expressions|, page 47). (c.e.) In general, each
record ends at the next string that matches the regular expression; the next record starts
at the end of the matching string. This general rule is actually at work in the usual case,
where RS contains just a newline: a record ends at the beginning of the next matching string
(the next newline in the input), and the following record starts just after the end of this
string (at the first character of the following line). The newline, because it matches RS, is
not part of either record.

When RS is a single character, RT contains the same single character. However, when RS is
a regular expression, RT contains the actual input text that matched the regular expression.

If the input file ends without any text matching RS, gawk sets RT to the null string.
The following example illustrates both of these features. It sets RS equal to a regular

expression that matches either a newline or a series of one or more uppercase letters with
optional leading and/or trailing whitespace:

$ echo record 1 AAAA record 2 BBBB record 3 |
> gawk ’BEGIN { RS = "\nl| (*[[:upper:]]+ *)" }

64 GAWK: Effective AWK Programming

> { print "Record =", $0,"and RT = [" RT "]J" }’
-4 Record = record 1 and RT = [AAAA]

-+ Record = record 2 and RT = [BBBB]

- Record = record 3 and RT = [

4]

The square brackets delineate the contents of RT, letting you see the leading and trailing
whitespace. The final value of RT is a newline. See Section 11.3.8 [A Simple Stream Editor],
page 298, for a more useful example of RS as a regexp and RT.

If you set RS to a regular expression that allows optional trailing text, such as ‘RS =
"abc (XYZ) 7"’ it is possible, due to implementation constraints, that gawk may match the
leading part of the regular expression, but not the trailing part, particularly if the input
text that could match the trailing part is fairly long. gawk attempts to avoid this problem,
but currently, there’s no guarantee that this will never happen.

NOTE: Remember that in awk, the ‘~” and ‘¢’ anchor metacharacters match the
beginning and end of a string, and not the beginning and end of a line. As a
result, something like ‘RS = "~ [[:upper:]1]1"’ can only match at the beginning
of a file. This is because gawk views the input file as one long string that happens
to contain newline characters. It is thus best to avoid anchor metacharacters
in the value of RS.

The use of RS as a regular expression and the RT variable are gawk extensions; they are
not available in compatibility mode (see Section 2.2 [Command-Line Options|, page 31). In
compatibility mode, only the first character of the value of RS determines the end of the
record.

Chapter 4: Reading Input Files 65

(N
RS = "\0" Is Not Portable

There are times when you might want to treat an entire data file as a single record. The
only way to make this happen is to give RS a value that you know doesn’t occur in the input
file. This is hard to do in a general way, such that a program always works for arbitrary
input files.

You might think that for text files, the NUL character, which consists of a character with
all bits equal to zero, is a good value to use for RS in this case:

BEGIN { RS = "\0" } # whole file becomes one record?

gawk in fact accepts this, and uses the NUL character for the record separator. This
works for certain special files, such as /proc/environ on GNU/Linux systems, where the
NUL character is in fact the record separator. However, this usage is not portable to most
other awk implementations.

Almost all other awk implementations® store strings internally as C-style strings. C
strings use the NUL character as the string terminator. In effect, this means that ‘RS =
"\0"’ is the same as ‘RS = """

It happens that recent versions of mawk can use the NUL character as a record separator.
However, this is a special case: mawk does not allow embedded NUL characters in strings.
(This may change in a future version of mawk.)

See Section 10.2.8 [Reading a Whole File at Once|, page 241, for an interesting way
to read whole files. If you are using gawk, see Section 16.7.10 [Reading an Entire File],

page 426, for another option.
N J

4.2 Examining Fields

When awk reads an input record, the record is automatically parsed or separated by the awk
utility into chunks called fields. By default, fields are separated by whitespace, like words in
a line. Whitespace in awk means any string of one or more spaces, TABs, or newlines; other
characters that are considered whitespace by other languages (such as formfeed, vertical
tab, etc.) are not considered whitespace by awk.

The purpose of fields is to make it more convenient for you to refer to these pieces of the
record. You don’t have to use them—you can operate on the whole record if you want—but
fields are what make simple awk programs so powerful.

You use a dollar sign (‘$’) to refer to a field in an awk program, followed by the number
of the field you want. Thus, $1 refers to the first field, $2 to the second, and so on. (Unlike
in the Unix shells, the field numbers are not limited to single digits. $127 is the 127th field
in the record.) For example, suppose the following is a line of input:

This seems like a pretty nice example.
Here the first field, or $1, is ‘This’, the second field, or $2, is ‘seems’, and so on. Note that

the last field, $7, is ‘example.’. Because there is no space between the ‘e’ and the ‘.’ the
period is considered part of the seventh field.

NF is a predefined variable whose value is the number of fields in the current record. awk
automatically updates the value of NF each time it reads a record. No matter how many
fields there are, the last field in a record can be represented by $NF. So, $NF is the same as

L At least that we know about.

66 GAWK: Effective AWK Programming

$7, which is ‘example.’. If you try to reference a field beyond the last one (such as $8 when
the record has only seven fields), you get the empty string. (If used in a numeric operation,
you get zero.)

The use of $0, which looks like a reference to the “zeroth” field, is a special case: it
represents the whole input record. Use it when you are not interested in specific fields.
Here are some more examples:

$ awk ’$1 ~ /1i/ { print $0 }’ mail-list
- Amelia 555-5553 amelia.zodiacusque@gmail.com F
- Julie 555-6699 julie.perscrutabor@skeeve.com F

This example prints each record in the file mail-1ist whose first field contains the string
‘11,
By contrast, the following example looks for ‘1i’ in the entire record and prints the first

and last fields for each matching input record:

$ awk ’/1i/ { print $1, $NF }’ mail-list

- Amelia F

-4 Broderick R

- Julie F

- Samuel A

4.3 Nonconstant Field Numbers

A field number need not be a constant. Any expression in the awk language can be used
after a ‘$’ to refer to a field. The value of the expression specifies the field number. If the
value is a string, rather than a number, it is converted to a number. Consider this example:

awk ’{ print $NR }’
Recall that NR is the number of records read so far: one in the first record, two in the second,
and so on. So this example prints the first field of the first record, the second field of the
second record, and so on. For the twentieth record, field number 20 is printed; most likely,
the record has fewer than 20 fields, so this prints a blank line. Here is another example of
using expressions as field numbers:

awk ’{ print $(2*2) }’ mail-list

awk evaluates the expression ‘ (2*2)’ and uses its value as the number of the field to print.

The ‘*’ represents multiplication, so the expression ‘2x2’ evaluates to four. The parentheses
are used so that the multiplication is done before the ‘$’ operation; they are necessary
whenever there is a binary operator? in the field-number expression. This example, then,
prints the type of relationship (the fourth field) for every line of the file mail-1ist. (All
of the awk operators are listed, in order of decreasing precedence, in Section 6.5 [Operator
Precedence (How Operators Nest)], page 136.)

If the field number you compute is zero, you get the entire record. Thus, ‘$(2-2)’ has the
same value as $0. Negative field numbers are not allowed; trying to reference one usually
terminates the program. (The POSIX standard does not define what happens when you
reference a negative field number. gawk notices this and terminates your program. Other
awk implementations may behave differently.)

2 A binary operator, such as ‘*’ for multiplication, is one that takes two operands. The distinction is
required because awk also has unary (one-operand) and ternary (three-operand) operators.

Chapter 4: Reading Input Files 67

As mentioned in Section 4.2 [Examining Fields], page 65, awk stores the current record’s
number of fields in the built-in variable NF (also see Section 7.5 [Predefined Variables],
page 157). Thus, the expression $NF is not a special feature—it is the direct consequence
of evaluating NF and using its value as a field number.

4.4 Changing the Contents of a Field

The contents of a field, as seen by awk, can be changed within an awk program; this changes
what awk perceives as the current input record. (The actual input is untouched; awk never
modifies the input file.) Consider the following example and its output:

$ awk ’{ nboxes = $3 ; $3 = $3 - 10

> print nboxes, $3 }’ inventory-shipped

- 25 15

- 32 22

-4 24 14
The program first saves the original value of field three in the variable nboxes. The ‘-’
sign represents subtraction, so this program reassigns field three, $3, as the original value
of field three minus ten: ‘$3 - 10’. (See Section 6.2.1 [Arithmetic Operators|, page 121.)
Then it prints the original and new values for field three. (Someone in the warehouse made
a consistent mistake while inventorying the red boxes.)

For this to work, the text in $3 must make sense as a number; the string of characters
must be converted to a number for the computer to do arithmetic on it. The number
resulting from the subtraction is converted back to a string of characters that then becomes
field three. See Section 6.1.4 [Conversion of Strings and Numbers|, page 118.

When the value of a field is changed (as perceived by awk), the text of the input record
is recalculated to contain the new field where the old one was. In other words, $0 changes
to reflect the altered field. Thus, this program prints a copy of the input file, with 10
subtracted from the second field of each line:

$ awk ’{ $2 = $2 - 10; print $0 }’ inventory-shipped
4 Jan 3 25 15 115
- Feb 5 32 24 226
- Mar 5 24 34 228

It is also possible to assign contents to fields that are out of range. For example:
$ awk ’{ $6 = ($5 + $4 + $3 + $2)
> print $6 }’ inventory-shipped
-4 168
- 297
- 301

We’ve just created $6, whose value is the sum of fields $2, $3, $4, and $5. The ‘+’ sign
represents addition. For the file inventory-shipped, $6 represents the total number of
parcels shipped for a particular month.

Creating a new field changes awk’s internal copy of the current input record, which is
the value of $0. Thus, if you do ‘print $0’ after adding a field, the record printed includes

68 GAWK: Effective AWK Programming

the new field, with the appropriate number of field separators between it and the previously
existing fields.

This recomputation affects and is affected by NF (the number of fields; see Section 4.2
[Examining Fields|, page 65). For example, the value of NF is set to the number of the
highest field you create. The exact format of $0 is also affected by a feature that has
not been discussed yet: the output field separator, OFS, used to separate the fields (see

Section 5.3 [Output Separators|, page 95).

Note, however, that merely referencing an out-of-range field does not change the value
of either $0 or NF. Referencing an out-of-range field only produces an empty string. For
example:

if ($(NF+1) t="")
print "can’t happen'
else
print "everything is normal"

should print ‘everything is normal’, because NF+1 is certain to be out of range. (See
Section 7.4.1 [The if-else Statement], page 148, for more information about awk’s if-else
statements. See Section 6.3.2 [Variable Typing and Comparison Expressions|, page 127, for
more information about the ‘!=" operator.)

It is important to note that making an assignment to an existing field changes the value

of $0 but does not change the value of NF, even when you assign the empty string to a field.
For example:

$ echoabcd | awk ’{ OFS = ":"; $2 ="

> print $0; print NF }’
- a::c:d

- 4

The field is still there; it just has an empty value, delimited by the two colons between ‘a’
and ‘c’. This example shows what happens if you create a new field:

$ echo abcd | awk ’{ OFS = ":"; $2 = ""; $6 = "new"
> print $0; print NF }’

-4 a::c:d::new

- 6

The intervening field, $5, is created with an empty value (indicated by the second pair of
adjacent colons), and NF is updated with the value six.
Decrementing NF throws away the values of the fields after the new value of NF and

recomputes $0. Here is an example:

$ echo a bcde f | awk ’{ print "NF =", NF;

> NF = 3; print $0 }’

- NF = 6

4 abec

CAUTION: Some versions of awk don’t rebuild $0 when NF is decremented.

Finally, there are times when it is convenient to force awk to rebuild the entire record,
using the current values of the fields and OFS. To do this, use the seemingly innocuous
assignment:

$1 = $1 # force record to be reconstituted

Chapter 4: Reading Input Files 69

print $0 # or whatever else with $0
This forces awk to rebuild the record. It does help to add a comment, as we’ve shown here.

There is a flip side to the relationship between $0 and the fields. Any assignment to $0
causes the record to be reparsed into fields using the current value of FS. This also applies
to any built-in function that updates $0, such as sub() and gsub() (see Section 9.1.3
[String-Manipulation Functions|, page 187).

()
Understanding $0

It is important to remember that $0 is the full record, exactly as it was read from the
input. This includes any leading or trailing whitespace, and the exact whitespace (or other
characters) that separates the fields.

It is a common error to try to change the field separators in a record simply by setting
FS and OFS, and then expecting a plain ‘print’ or ‘print $0’ to print the modified record.

But this does not work, because nothing was done to change the record itself. Instead,
you must force the record to be rebuilt, typically with a statement such as ‘$1 = $1°, as

described earlier.
N J

4.5 Specifying How Fields Are Separated

The field separator, which is either a single character or a regular expression, controls the
way awk splits an input record into fields. awk scans the input record for character sequences
that match the separator; the fields themselves are the text between the matches.

In the examples that follow, we use the bullet symbol (e) to represent spaces in the
output. If the field separator is ‘oo’, then the following line:
moo goo gai pan

is split into three fields: ‘m’, ‘eg’, and ‘egaiepan’. Note the leading spaces in the values of
the second and third fields.

The field separator is represented by the predefined variable FS. Shell programmers take
note: awk does not use the name IFS that is used by the POSIX-compliant shells (such as
the Unix Bourne shell, sh, or Bash).

The value of FS can be changed in the awk program with the assignment operator, ‘=’
(see Section 6.2.3 [Assignment Expressions|, page 123). Often, the right time to do this is
at the beginning of execution before any input has been processed, so that the very first
record is read with the proper separator. To do this, use the special BEGIN pattern (see
Section 7.1.4 [The BEGIN and END Special Patterns|, page 144). For example, here we set
the value of FS to the string ",":

awk ’BEGIN { FS = "," } ; { print $2 }’
Given the input line:

John Q. Smith, 29 0Oak St., Walamazoo, MI 42139
this awk program extracts and prints the string ‘e29e0akeSt. .

Sometimes the input data contains separator characters that don’t separate fields the
way you thought they would. For instance, the person’s name in the example we just used
might have a title or suffix attached, such as:

John Q. Smith, LXIX, 29 0Oak St., Walamazoo, MI 42139

70 GAWK: Effective AWK Programming

The same program would extract ‘eLXIX’ instead of ‘e29e0akeSt.’. If you were expecting
the program to print the address, you would be surprised. The moral is to choose your data
layout and separator characters carefully to prevent such problems. (If the data is not in a
form that is easy to process, perhaps you can massage it first with a separate awk program.)

4.5.1 Whitespace Normally Separates Fields

Fields are normally separated by whitespace sequences (spaces, TABs, and newlines), not
by single spaces. Two spaces in a row do not delimit an empty field. The default value of
the field separator FS is a string containing a single space, " ". If awk interpreted this value
in the usual way, each space character would separate fields, so two spaces in a row would
make an empty field between them. The reason this does not happen is that a single space
as the value of FS is a special case—it is taken to specify the default manner of delimiting
fields.

If FS is any other single character, such as ",", then each occurrence of that character
separates two fields. Two consecutive occurrences delimit an empty field. If the character
occurs at the beginning or the end of the line, that too delimits an empty field. The space
character is the only single character that does not follow these rules.

4.5.2 Using Regular Expressions to Separate Fields

The previous subsection discussed the use of single characters or simple strings as the value
of FS. More generally, the value of FS may be a string containing any regular expression. In
this case, each match in the record for the regular expression separates fields. For example,
the assignment:

FS =", \t"

makes every area of an input line that consists of a comma followed by a space and a TAB
into a field separator.

For a less trivial example of a regular expression, try using single spaces to separate
fields the way single commas are used. FS can be set to "[1" (left bracket, space, right
bracket). This regular expression matches a single space and nothing else (see Chapter 3
[Regular Expressions|, page 47).

There is an important difference between the two cases of ‘FS = " "’ (a single space) and
‘FS = "[\t\n]+" (a regular expression matching one or more spaces, TABs, or newlines).
For both values of FS, fields are separated by runs (multiple adjacent occurrences) of spaces,
TABs, and/or newlines. However, when the value of FS is " ", awk first strips leading and
trailing whitespace from the record and then decides where the fields are. For example, the
following pipeline prints ‘b’:

$ echo > abcd’ | awk ’{ print $2 }’
4 b

However, this pipeline prints ‘a’ (note the extra spaces around each letter):

$ echo >’ a b ¢ d°’ | awk ’BEGIN { FS = "[\t\n]+" }
> { print $2 }’
- a

In this case, the first field is null, or empty.

Chapter 4: Reading Input Files 71

The stripping of leading and trailing whitespace also comes into play whenever $0 is
recomputed. For instance, study this pipeline:
$ echo > abcd’ | awk ’{ print; $2 = $2; print }’
o abcd
4 abcd

The first print statement prints the record as it was read, with leading whitespace intact.
The assignment to $2 rebuilds $0 by concatenating $1 through $NF together, separated by
the value of OFS (which is a space by default). Because the leading whitespace was ignored
when finding $1, it is not part of the new $0. Finally, the last print statement prints the
new $0.

There is an additional subtlety to be aware of when using regular expressions for field
splitting. It is not well specified in the POSIX standard, or anywhere else, what ‘~’ means
when splitting fields. Does the ‘~’ match only at the beginning of the entire record? Or
is each field separator a new string? It turns out that different awk versions answer this
question differently, and you should not rely on any specific behavior in your programs.

As a point of information, BWK awk allows ‘~’ to match only at the beginning of the
record. gawk also works this way. For example:

$ echo ’xxAA xxBxx C’ |
> gawk -F *(Cx+)|(+)? °{ for (i = 1; i <= NF; i++)

> printf "-->Js<--\n", $i }’
H —=><—-

4 ——>AA<—-

- —-=>xxBxx<--

4 -=>C<--

4.5.3 Making Each Character a Separate Field

There are times when you may want to examine each character of a record separately. This
can be done in gawk by simply assigning the null string ("") to FS. (c.e.) In this case, each
individual character in the record becomes a separate field. For example:

$ echo a b | gawk ’BEGIN { FS = "" }

> {

> for (i =1; i <= NF; i =1+ 1)
> print "Field", i, "is", $i
> F’

4 Field 1 is a
-4 Field 2 is
- Field 3 is b

Traditionally, the behavior of FS equal to "" was not defined. In this case, most versions
of Unix awk simply treat the entire record as only having one field. In compatibility mode
(see Section 2.2 [Command-Line Options]|, page 31), if FS is the null string, then gawk also
behaves this way.

4.5.4 Setting FS from the Command Line

FS can be set on the command line. Use the -F option to do so. For example:

awk -F, ’program’ input-files

A=

72 GAWK: Effective AWK Programming

sets FS to the ¢,” character. Notice that the option uses an uppercase ‘F’ instead of a
lowercase ‘f’. The latter option (-f) specifies a file containing an awk program.

The value used for the argument to -F is processed in exactly the same way as assign-
ments to the predefined variable FS. Any special characters in the field separator must be
escaped appropriately. For example, to use a ‘\’ as the field separator on the command
line, you would have to type:

same as FS = "\\"
awk -F\\\\ ’...’> files ...

Because ‘\’ is used for quoting in the shell, awk sees ‘-F\\’. Then awk processes the ‘\\’ for
escape characters (see Section 3.2 [Escape Sequences|, page 48), finally yielding a single ‘\’
to use for the field separator.

As a special case, in compatibility mode (see Section 2.2 [Command-Line Options],
page 31), if the argument to -F is ‘t’, then FS is set to the TAB character. If you type
‘~F\t’ at the shell, without any quotes, the ‘\’ gets deleted, so awk figures that you really
want your fields to be separated with TABs and not ‘t’s. Use ‘-v FS="t"’ or ‘-F"[t]"’
on the command line if you really do want to separate your fields with ‘t’s. Use ‘-F >\t’’
when not in compatibility mode to specify that TABs separate fields.

As an example, let’s use an awk program file called edu.awk that contains the pattern
/edu/ and the action ‘print $1”:
/edu/ { print $1 }

Let’s also set FS to be the ‘=’ character and run the program on the file mail-list.
The following command prints a list of the names of the people that work at or attend a
university, and the first three digits of their phone numbers:

$ awk -F- -f edu.awk mail-list

-4 Fabius 555
- Samuel 555
- Jean

Note the third line of output. The third line in the original file looked like this:
Jean-Paul 5565-2127 jeanpaul . campanorum@nyu.edu R

The ‘=’ as part of the person’s name was used as the field separator, instead of the ‘=’
in the phone number that was originally intended. This demonstrates why you have to be
careful in choosing your field and record separators.

Perhaps the most common use of a single character as the field separator occurs when
processing the Unix system password file. On many Unix systems, each user has a separate
entry in the system password file, with one line per user. The information in these lines
is separated by colons. The first field is the user’s login name and the second is the user’s
encrypted or shadow password. (A shadow password is indicated by the presence of a single
‘x” in the second field.) A password file entry might look like this:

arnold:x:2076:10:Arnold Robbins:/home/arnold:/bin/bash

The following program searches the system password file and prints the entries for users
whose full name is not indicated:

awk -F: ’$5 == ""’ /etc/passwd

Chapter 4: Reading Input Files 73

4.5.5 Making the Full Line Be a Single Field
Occasionally, it’s useful to treat the whole input line as a single field. This can be done
easily and portably simply by setting FS to "\n" (a newline):?
awk -F’\n’ ’program’ files ...
When you do this, $1 is the same as $0.

(7
Changing FS Does Not Affect the Fields

According to the POSIX standard, awk is supposed to behave as if each record is split
into fields at the time it is read. In particular, this means that if you change the value of
FS after a record is read, the values of the fields (i.e., how they were split) should reflect
the old value of FS, not the new one.

However, many older implementations of awk do not work this way. Instead, they defer
splitting the fields until a field is actually referenced. The fields are split using the current
value of FS! This behavior can be difficult to diagnose. The following example illustrates
the difference between the two methods:

sed 1q /etc/passwd | awk { FS = ":" ; print $1 }’
which usually prints:
root

on an incorrect implementation of awk, while gawk prints the full first line of the file,
something like:

root:x:0:0:Root:/:

(The sed* command prints just the first line of /etc/passwd.)
- J

4.5.6 Field-Splitting Summary

It is important to remember that when you assign a string constant as the value of FS,
it undergoes normal awk string processing. For example, with Unix awk and gawk, the
assignment ‘FS = "\.."’ assigns the character string ".." to FS (the backslash is stripped).
This creates a regexp meaning “fields are separated by occurrences of any two characters.”
If instead you want fields to be separated by a literal period followed by any single character,
use ‘FS = "\\.."".

The following list summarizes how fields are split, based on the value of FS (‘==" means
“is equal t0”):

FS=="" Fields are separated by runs of whitespace. Leading and trailing whitespace
are ignored. This is the default.

FS == any other single character
Fields are separated by each occurrence of the character. Multiple successive
occurrences delimit empty fields, as do leading and trailing occurrences. The
character can even be a regexp metacharacter; it does not need to be escaped.

3 Thanks to Andrew Schorr for this tip.
4 The sed utility is a “stream editor.” Its behavior is also defined by the POSIX standard.

74 GAWK: Effective AWK Programming

FS == regexp
Fields are separated by occurrences of characters that match regexp. Leading
and trailing matches of regexp delimit empty fields.

FS=="" Fach individual character in the record becomes a separate field. (This is a
common extension; it is not specified by the POSIX standard.)

(N
FS and IGNORECASE

The IGNORECASE variable (see Section 7.5.1 [Built-in Variables That Control awk],
page 157) affects field splitting only when the value of FS is a regexp. It has no effect when
FS is a single character, even if that character is a letter. Thus, in the following code:

FS = "¢"
IGNORECASE = 1
$0 = "aCa"
print $1

The output is ‘aCa’. If you really want to split fields on an alphabetic character while ignor-
ing case, use a regexp that will do it for you (e.g., ‘FS = "[c]"’). In this case, IGNORECASE

will take effect.
N J

4.6 Reading Fixed-Width Data

This section discusses an advanced feature of gawk. If you are a novice awk user, you might
want to skip it on the first reading.

gawk provides a facility for dealing with fixed-width fields with no distinctive field sep-
arator. We discuss this feature in the following subsections.

4.6.1 Processing Fixed-Width Data

An example of fixed-width data would be the input for old Fortran programs where numbers
are run together, or the output of programs that did not anticipate the use of their output
as input for other programs.

An example of the latter is a table where all the columns are lined up by the use of
a variable number of spaces and empty fields are just spaces. Clearly, awk’s normal field
splitting based on FS does not work well in this case. Although a portable awk program
can use a series of substr() calls on $0 (see Section 9.1.3 [String-Manipulation Functions],
page 187), this is awkward and inefficient for a large number of fields.

The splitting of an input record into fixed-width fields is specified by assigning a string
containing space-separated numbers to the built-in variable FIELDWIDTHS. Each number
specifies the width of the field, including columns between fields. If you want to ignore the
columns between fields, you can specify the width as a separate field that is subsequently
ignored. It is a fatal error to supply a field width that has a negative value.

The following data is the output of the Unix w utility. It is useful to illustrate the use of
FIELDWIDTHS:

Chapter 4: Reading Input Files

10:06pm up 21 days, 14:04, 23 users

User tty login idle JCPU PCPU what

hzuo ttyVo 8:58pm 9 5 vi p24.tex
hzang ttyV3 6:37pm 50 -csh

eklye ttyVb 9:53pm 7 1 em thes.tex
dportein ttyVé 8:17pm 1:47 -csh

gierd ttyD3 10:00pm 1 elm

dave ttyD4 9:47pm 4 4 w

brent ttypO 26Jun91 4:46 26:46 4:41 Dbash

dave ttyqd 26Jun9115days 46 46 wnewmail

75

The following program takes this input, converts the idle time to number of seconds,

and prints out the first two fields and the calculated idle time:
BEGIN { FIELDWIDTHS = "9 6 10 6 7 7 35" }

NR > 2 {
idle = $4
sub(/~ +/, "", idle) # strip leading spaces
if (idle == "")
idle = 0
if (idle ~ /:/) A # hh:mm
split(idle, t, ":")

idle = t[1] * 60 + t[2]
+
if (idle ~ /days/)

idle *= 24 x 60 * 60

print $1, $2, idle
}

NOTE: The preceding program uses a number of awk features that haven’t been

introduced yet.

Running the program on the data produces the following results:

hzuo ttyVo O
hzang ttyvV3 50
eklye ttyVs O
dportein ttyVé 107
gierd ttyD3 1

dave ttyD4 O

brent ttyp0 286
dave ttyq4 1296000

Another (possibly more practical) example of fixed-width input data is the input from
a deck of balloting cards. In some parts of the United States, voters mark their choices by
punching holes in computer cards. These cards are then processed to count the votes for
any particular candidate or on any particular issue. Because a voter may choose not to vote
on some issue, any column on the card may be empty. An awk program for processing such
data could use the FIELDWIDTHS feature to simplify reading the data. (Of course, getting

gawk to run on a system with card readers is another story!)

76 GAWK: Effective AWK Programming

4.6.2 Skipping Intervening Fields

Starting in version 4.2, each field width may optionally be preceded by a colon-separated
value specifying the number of characters to skip before the field starts. Thus, the preceding
program could be rewritten to specify FIELDWIDTHS like so:

BEGIN { FIELDWIDTHS = "8 1:5 4:7 6 1:6 1:6 2:33" }

This strips away some of the white space separating the fields. With such a change, the
program produces the following results:

hzang ttyV3 50
eklye ttyVs O
dportein ttyVé 107
gierd ttyD3 1

dave ttyD4 O
brent ttyp0O 286
dave ttyq4 1296000

4.6.3 Capturing Optional Trailing Data

There are times when fixed-width data may be followed by additional data that has no fixed
length. Such data may or may not be present, but if it is, it should be possible to get at it
from an awk program.

Starting with version 4.2, in order to provide a way to say “anything else in the record
after the defined fields,” gawk allows you to add a final ‘¥’ character to the value of
FIELDWIDTHS. There can only be one such character, and it must be the final non-whitespace
character in FIELDWIDTHS. For example:

$ cat fw.awk Show the program
- BEGIN { FIELDWIDTHS = "2 2 %" }
- { print NF, $1, $2, $3 }

$ cat fw.in Show sample input
- 1234abcdefghi
$ gawk -f fw.awk fw.in Run the program

- 3 12 34 abcdefghi

4.6.4 Field Values With Fixed-Width Data

So far, so good. But what happens if there isn’t as much data as there should be based on
the contents of FIELDWIDTHS? Or, what happens if there is more data than expected?

For many years, what happens in these cases was not well defined. Starting with version
4.2, the rules are as follows:

Enough data for some fields
For example, if FIELDWIDTHS is set to "2 3 4" and the input record is ‘aabbb’.
In this case, NF is set to two.

Not enough data for a field
For example, if FIELDWIDTHS is set to "2 3 4" and the input record is ‘aab’.
In this case, NF is set to two and $2 has the value "b". The idea is that even
though there aren’t as many characters as were expected, there are some, so
the data should be made available to the program.

Chapter 4: Reading Input Files 77

Too much data
For example, if FIELDWIDTHS is set to "2 3 4" and the input record is
‘aabbbccccddd’. In this case, NF is set to three and the extra characters
(‘ddd’) are ignored. If you want gawk to capture the extra characters, supply a
final ‘¢’ in the value of FIELDWIDTHS.

Too much data, but with ‘*’ supplied
For example, if FIELDWIDTHS is set to "2 3 4 *" and the input record is
‘aabbbccccddd’. In this case, NF is set to four, and $4 has the value "ddd".

4.7 Defining Fields by Content

This section discusses an advanced feature of gawk. If you are a novice awk user, you might
want to skip it on the first reading.

Normally, when using FS, gawk defines the fields as the parts of the record that occur in
between each field separator. In other words, FS defines what a field is not, instead of what
a field is. However, there are times when you really want to define the fields by what they
are, and not by what they are not.

The most notorious such case is so-called comma-separated values (CSV) data. Many
spreadsheet programs, for example, can export their data into text files, where each record
is terminated with a newline, and fields are separated by commas. If commas only separated
the data, there wouldn’t be an issue. The problem comes when one of the fields contains
an embedded comma. In such cases, most programs embed the field in double quotes.® So,
we might have data like this:

Robbins,Arnold,"1234 A Pretty Street, NE",MyTown,MyState,12345-6789,USA

The FPAT variable offers a solution for cases like this. The value of FPAT should be a
string that provides a regular expression. This regular expression describes the contents of
each field.

In the case of CSV data as presented here, each field is either “anything that is not a
comma,” or “a double quote, anything that is not a double quote, and a closing double
quote.” If written as a regular expression constant (see Chapter 3 [Regular Expressions|,
page 47), we would have /([~,1+) | ("[""]+")/. Writing this as a string requires us to
escape the double quotes, leading to:

FPAT = "([7,1+) [(\"["\"1+\")"
Putting this to use, here is a simple program to parse the data:

BEGIN {
FPAT = "([~,1+) [(\"["\"]+\")"

print "NF = ", NF
for (i = 1; i <= NF; i++) {
printf ("$%d = <Js>\n", i, $i)

5 The CSV format lacked a formal standard definition for many years. RFC 4180 standardizes the most
common practices.

http://www.ietf.org/rfc/rfc4180.txt

78 GAWK: Effective AWK Programming

}
When run, we get the following:

$ gawk -f simple-csv.awk addresses.csv
NF = 7
$1 = <Robbins>
$2 = <Arnold>
$3 = <"1234 A Pretty Street, NE">
$4 = <MyTown>
$5 = <MyState>
$6 = <12345-6789>
$7 = <USA>
Note the embedded comma in the value of $3.

A straightforward improvement when processing CSV data of this sort would be to
remove the quotes when they occur, with something like this:

if (substr($i, 1, 1) == "\"") {

len = length($i)

$i = substr($i, 2, len - 2) # Get text within the two quotes
}

As with FS, the IGNORECASE variable (see Section 7.5.1 [Built-in Variables That Control
awk], page 157) affects field splitting with FPAT.

Assigning a value to FPAT overrides field splitting with FS and with FIELDWIDTHS.

NOTE: Some programs export CSV data that contains embedded newlines
between the double quotes. gawk provides no way to deal with this. Even
though a formal specification for CSV data exists, there isn’t much more to
be done; the FPAT mechanism provides an elegant solution for the majority of
cases, and the gawk developers are satisfied with that.

As written, the regexp used for FPAT requires that each field contain at least one charac-
ter. A straightforward modification (changing the first ‘+’ to ‘*’) allows fields to be empty:

FPAT = "([7,1%) | (\"["\"]+\")"
Finally, the patsplit() function makes the same functionality available for splitting
regular strings (see Section 9.1.3 [String-Manipulation Functions], page 187).

4.8 Checking How gawk Is Splitting Records

As we’ve seen, gawk provides three independent methods to split input records into fields.
The mechanism used is based on which of the three variables—FS, FIELDWIDTHS, or FPAT—
was last assigned to. In addition, an API input parser may choose to override the record
parsing mechanism; please refer to Section 16.4.5.4 [Customized Input Parsers|, page 382,
for further information about this feature.

To restore normal field splitting after using FIELDWIDTHS and/or FPAT, simply assign a
value to FS. You can use ‘FS = FS’ to do this, without having to know the current value of
FS.

In order to tell which kind of field splitting is in effect, use PROCINFO["FS"] (see
Section 7.5.2 [Built-in Variables That Convey Information], page 159). The value is "FS"

Chapter 4: Reading Input Files 79

if regular field splitting is being used, "FIELDWIDTHS" if fixed-width field splitting is being
used, or "FPAT" if content-based field splitting is being used:

if (PROCINFO["FS"] == "FS")
regular field splitting ...
else if (PROCINFO["FS"] == "FIELDWIDTHS")
fixed-width field splitting ...
else if (PROCINFO["FS"] == "FPAT")
content-based field splitting ...
else
API input parser field splitting ... (advanced feature)

This information is useful when writing a function that needs to temporarily change FS
or FIELDWIDTHS, read some records, and then restore the original settings (see Section 10.5
[Reading the User Database|, page 253, for an example of such a function).

4.9 Multiple-Line Records

In some databases, a single line cannot conveniently hold all the information in one entry.
In such cases, you can use multiline records. The first step in doing this is to choose your
data format.

One technique is to use an unusual character or string to separate records. For example,
you could use the formfeed character (written ‘\f’ in awk, as in C) to separate them, making
each record a page of the file. To do this, just set the variable RS to "\f" (a string containing
the formfeed character). Any other character could equally well be used, as long as it won’t
be part of the data in a record.

Another technique is to have blank lines separate records. By a special dispensation, an
empty string as the value of RS indicates that records are separated by one or more blank
lines. When RS is set to the empty string, each record always ends at the first blank line
encountered. The next record doesn’t start until the first nonblank line that follows. No
matter how many blank lines appear in a row, they all act as one record separator. (Blank
lines must be completely empty; lines that contain only whitespace do not count.)

You can achieve the same effect as ‘RS = ""’ by assigning the string "\n\n+" to RS. This
regexp matches the newline at the end of the record and one or more blank lines after the
record. In addition, a regular expression always matches the longest possible sequence when
there is a choice (see Section 3.5 [How Much Text Matches?], page 55). So, the next record
doesn’t start until the first nonblank line that follows—no matter how many blank lines
appear in a row, they are considered one record separator.

However, there is an important difference between ‘RS = ""” and ‘RS = "\n\n+"’. In the
first case, leading newlines in the input data file are ignored, and if a file ends without extra
blank lines after the last record, the final newline is removed from the record. In the second
case, this special processing is not done.

Now that the input is separated into records, the second step is to separate the fields
in the records. One way to do this is to divide each of the lines into fields in the normal
manner. This happens by default as the result of a special feature. When RS is set to the

80 GAWK: Effective AWK Programming

empty string and FS is set to a single character, the newline character always acts as a field
separator. This is in addition to whatever field separations result from FS.%

The original motivation for this special exception was probably to provide useful behavior
in the default case (i.e., FS is equal to " "). This feature can be a problem if you really
don’t want the newline character to separate fields, because there is no way to prevent
it. However, you can work around this by using the split() function to break up the
record manually (see Section 9.1.3 [String-Manipulation Functions], page 187). If you have
a single-character field separator, you can work around the special feature in a different way,
by making FS into a regexp for that single character. For example, if the field separator is
a percent character, instead of ‘FS = "J"’ use ‘FS = "[/]".

Another way to separate fields is to put each field on a separate line: to do this, just
set the variable FS to the string "\n". (This single-character separator matches a single
newline.) A practical example of a data file organized this way might be a mailing list,
where blank lines separate the entries. Consider a mailing list in a file named addresses,
which looks like this:

Jane Doe
123 Main Street
Anywhere, SE 12345-6789

John Smith
456 Tree-lined Avenue
Smallville, MW 98765-4321

A simple program to process this file is as follows:

addrs.awk --- simple mailing list program

Records are separated by blank lines.
Each line is one field.
BEGIN { RS = "" ; FS = "\n" }

print "Name is:", $1

print "Address is:", $2

print "City and State are:", $3
print nn

}
Running the program produces the following output:
$ awk -f addrs.awk addresses
- Name is: Jane Doe
Address is: 123 Main Street
City and State are: Anywhere, SE 12345-6789

e

Name is: John Smith

6 When FS is the null string ("") or a regexp, this special feature of RS does not apply. It does apply to
the default field separator of a single space: ‘FS =" "’.

Chapter 4: Reading Input Files 81

- Address is: 456 Tree-lined Avenue
- City and State are: Smallville, MW 98765-4321
_|

See Section 11.3.4 [Printing Mailing Labels], page 290, for a more realistic program
dealing with address lists. The following list summarizes how records are split, based on
the value of RS:

RS == n\nu
Records are separated by the newline character (‘\n’). In effect, every line in
the data file is a separate record, including blank lines. This is the default.

RS == any single character
Records are separated by each occurrence of the character. Multiple successive
occurrences delimit empty records.

RS == "" Records are separated by runs of blank lines. When FS is a single character, then
the newline character always serves as a field separator, in addition to whatever
value FS may have. Leading and trailing newlines in a file are ignored.

RS == regexp
Records are separated by occurrences of characters that match regexp. Leading
and trailing matches of regexp delimit empty records. (This is a gawk extension;
it is not specified by the POSIX standard.)

If not in compatibility mode (see Section 2.2 [Command-Line Options]|, page 31), gawk
sets RT to the input text that matched the value specified by RS. But if the input file ended
without any text that matches RS, then gawk sets RT to the null string.

4.10 Explicit Input with getline

So far we have been getting our input data from awk’s main input stream—either the
standard input (usually your keyboard, sometimes the output from another program) or
the files specified on the command line. The awk language has a special built-in command
called getline that can be used to read input under your explicit control.

The getline command is used in several different ways and should not be used by
beginners. The examples that follow the explanation of the getline command include
material that has not been covered yet. Therefore, come back and study the getline
command after you have reviewed the rest of Parts I and II and have a good knowledge of
how awk works.

The getline command returns 1 if it finds a record and 0 if it encounters the end of the
file. If there is some error in getting a record, such as a file that cannot be opened, then
getline returns —1. In this case, gawk sets the variable ERRNO to a string describing the
error that occurred.

If ERRNO indicates that the I/O operation may be retried, and PROCINFO["input",
"RETRY"] is set, then getline returns —2 instead of —1, and further calls to getline may
be attempted. See Section 4.12 [Retrying Reads After Certain Input Errors], page 89, for
further information about this feature.

82 GAWK: Effective AWK Programming

In the following examples, command stands for a string value that represents a shell

command.

NOTE: When --sandbox is specified (see Section 2.2 [Command-Line Options],
page 31), reading lines from files, pipes, and coprocesses is disabled.

4.10.1 Using getline with No Arguments

The getline command can be used without arguments to read input from the current
input file. All it does in this case is read the next input record and split it up into fields.
This is useful if you’ve finished processing the current record, but want to do some special
processing on the next record right now. For example:

Remove text between /* and */, inclusive

{
if ((i = index(30, "/*")) !=0) {
out = substr($0, 1, i - 1) # leading part of the string
rest = substr($0, i + 2) # ... %/ ...
j = index(rest, "x/") # is */ in trailing part?
if (5 >0) {
rest = substr(rest, j + 2) # remove comment
} else {
while (j == 0) {
get more text
if (getline <= 0) {
print ("unexpected EOF or error:", ERRNO) > "/dev/stderr"
exit
}
build up the line using string concatenation
rest = rest $0
j = index(rest, "*/") # is */ in trailing part?
if (5 '=0) {
rest = substr(rest, j + 2)
break
}
}
}
build up the output line using string concatenation
$0 = out rest
}
print $0
}
This awk program deletes C-style comments (‘/* ... */’) from the input. It uses a

number of features we haven’t covered yet, including string concatenation (see Section 6.2.2
[String Concatenation|, page 122) and the index() and substr() built-in functions (see
Section 9.1.3 [String-Manipulation Functions|, page 187). By replacing the ‘print $0’ with
other statements, you could perform more complicated processing on the decommented
input, such as searching for matches of a regular expression. (This program has a subtle
problem—it does not work if one comment ends and another begins on the same line.)

Chapter 4: Reading Input Files 83

This form of the getline command sets NF, NR, FNR, RT, and the value of $0.

NOTE: The new value of $0 is used to test the patterns of any subsequent
rules. The original value of $0 that triggered the rule that executed getline
is lost. By contrast, the next statement reads a new record but immediately
begins processing it normally, starting with the first rule in the program. See
Section 7.4.8 [The next Statement], page 154.

4.10.2 Using getline into a Variable

You can use ‘getline var’ to read the next record from awk’s input into the variable var.
No other processing is done. For example, suppose the next line is a comment or a special
string, and you want to read it without triggering any rules. This form of getline allows you
to read that line and store it in a variable so that the main read-a-line-and-check-each-rule
loop of awk never sees it. The following example swaps every two lines of input:

{
if ((getline tmp) > 0) {
print tmp
print $0
} else
print $0
}
It takes the following list:
wan
tew
free
phore
and produces these results:
tew
wan
phore
free

The getline command used in this way sets only the variables NR, FNR, and RT (and,
of course, var). The record is not split into fields, so the values of the fields (including $0)
and the value of NF do not change.

4.10.3 Using getline from a File

Use ‘getline < file’ to read the next record from file. Here, file is a string-valued expres-
sion that specifies the file name. ‘< file’ is called a redirection because it directs input
to come from a different place. For example, the following program reads its input record
from the file secondary.input when it encounters a first field with a value equal to 10 in
the current input file:

{
if (81 == 10) {
getline < "secondary.input"
print
} else

84 GAWK: Effective AWK Programming

print
}
Because the main input stream is not used, the values of NR and FNR are not changed.
However, the record it reads is split into fields in the normal manner, so the values of $0
and the other fields are changed, resulting in a new value of NF. RT is also set.

According to POSIX, ‘getline < expression’ is ambiguous if expression contains un-
parenthesized operators other than ‘$’; for example, ‘getline < dir "/" file’is ambiguous
because the concatenation operator (not discussed yet; see Section 6.2.2 [String Concatena-
tion], page 122) is not parenthesized. You should write it as ‘getline < (dir "/" file)’ if
you want your program to be portable to all awk implementations.

4.10.4 Using getline into a Variable from a File

Use ‘getline var < file’ to read input from the file file, and put it in the variable var. As
earlier, file is a string-valued expression that specifies the file from which to read.

In this version of getline, none of the predefined variables are changed and the record is
not split into fields. The only variable changed is var.” For example, the following program
copies all the input files to the output, except for records that say ‘@include filename’.
Such a record is replaced by the contents of the file filename:

{
if (NF == 2 && $1 == "@include") {
while ((getline line < $2) > 0)
print line
close($2)
} else
print
}

Note here how the name of the extra input file is not built into the program; it is taken
directly from the data, specifically from the second field on the @include line.

The close() function is called to ensure that if two identical @include lines appear
in the input, the entire specified file is included twice. See Section 5.9 [Closing Input and
Output Redirections], page 106.

One deficiency of this program is that it does not process nested @include statements
(i.e., @include statements in included files) the way a true macro preprocessor would. See
Section 11.3.9 [An Easy Way to Use Library Functions]|, page 299, for a program that does
handle nested @include statements.

4.10.5 Using getline from a Pipe

Omniscience has much to recommend it. Failing that, attention to details would
be useful.
—Brian Kernighan

The output of a command can also be piped into getline, using ‘command | getline’.
In this case, the string command is run as a shell command and its output is piped into awk
to be used as input. This form of getline reads one record at a time from the pipe. For

" This is not quite true. RT could be changed if RS is a regular expression.

Chapter 4: Reading Input Files 85

example, the following program copies its input to its output, except for lines that begin
with ‘@execute’, which are replaced by the output produced by running the rest of the line
as a shell command:

{
if ($1 == "Qexecute") {
tmp = substr($0, 10) # Remove "Qexecute"
while ((tmp | getline) > 0)
print
close(tmp)
} else
print
}

The close() function is called to ensure that if two identical ‘@execute’ lines appear in
the input, the command is run for each one. Given the input:

foo

bar

baz

Q@execute who
bletch

the program might produce:

foo

bar

baz

arnold ttyv0 Jul 13 14:22

miriam ttyp0 Jul 13 14:23 (murphy:0)
bill ttypl Jul 13 14:23 (murphy:0)
bletch

Notice that this program ran the command who and printed the result. (If you try this
program yourself, you will of course get different results, depending upon who is logged in
on your system.)

This variation of getline splits the record into fields, sets the value of NF, and recom-
putes the value of $0. The values of NR and FNR are not changed. RT is set.

According to POSIX, ‘expression | getline’ is ambiguous if expression contains un-
parenthesized operators other than ‘¢’—for example, ‘"echo " "date" | getline’ is am-
biguous because the concatenation operator is not parenthesized. You should write it as
‘("echo " "date") | getline’ if you want your program to be portable to all awk imple-
mentations.

NOTE: Unfortunately, gawk has not been consistent in its treatment of a con-
struct like ‘"echo " "date" | getline’. Most versions, including the current
version, treat it at as ‘("echo " "date") | getline’. (This is also how BWK
awk behaves.) Some versions instead treat it as ‘"echo " ("date" | getline)’.
(This is how mawk behaves.) In short, always use explicit parentheses, and then
you won’t have to worry.

86 GAWK: Effective AWK Programming

4.10.6 Using getline into a Variable from a Pipe

When you use ‘command | getline var’, the output of command is sent through a pipe to
getline and into the variable var. For example, the following program reads the current
date and time into the variable current_time, using the date utility, and then prints it:

BEGIN {
"date" | getline current_time
close("date")
print "Report printed on " current_time

¥

In this version of getline, none of the predefined variables are changed and the record
is not split into fields. However, RT is set.

4.10.7 Using getline from a Coprocess

Reading input into getline from a pipe is a one-way operation. The command that is
started with ‘command | getline’ only sends data to your awk program.

On occasion, you might want to send data to another program for processing and then
read the results back. gawk allows you to start a coprocess, with which two-way communi-
cations are possible. This is done with the ‘&’ operator. Typically, you write data to the
coprocess first and then read the results back, as shown in the following:

print "some query" |& "db_server"
"db_server" |& getline

which sends a query to db_server and then reads the results.

The values of NR and FNR are not changed, because the main input stream is not used.
However, the record is split into fields in the normal manner, thus changing the values of
$0, of the other fields, and of NF and RT.

Coprocesses are an advanced feature. They are discussed here only because this is the
section on getline. See Section 12.3 [Two-Way Communications with Another Process],
page 320, where coprocesses are discussed in more detail.

4.10.8 Using getline into a Variable from a Coprocess

When you use ‘command |& getline var’, the output from the coprocess command is sent
through a two-way pipe to getline and into the variable var.

In this version of getline, none of the predefined variables are changed and the record
is not split into fields. The only variable changed is var. However, RT is set.

4.10.9 Points to Remember About getline

Here are some miscellaneous points about getline that you should bear in mind:

e When getline changes the value of $0 and NF, awk does not automatically jump to the
start of the program and start testing the new record against every pattern. However,
the new record is tested against any subsequent rules.

e Some very old awk implementations limit the number of pipelines that an awk program
may have open to just one. In gawk, there is no such limit. You can open as many
pipelines (and coprocesses) as the underlying operating system permits.

Chapter 4: Reading Input Files 87

e An interesting side effect occurs if you use getline without a redirection inside a BEGIN
rule. Because an unredirected getline reads from the command-line data files, the
first getline command causes awk to set the value of FILENAME. Normally, FILENAME
does not have a value inside BEGIN rules, because you have not yet started to process
the command-line data files. (See Section 7.1.4 [The BEGIN and END Special Pat-
terns|, page 144; also see Section 7.5.2 [Built-in Variables That Convey Information],
page 159.)

e Using FILENAME with getline (‘getline < FILENAME') is likely to be a source of con-
fusion. awk opens a separate input stream from the current input file. However, by
not using a variable, $0 and NF are still updated. If you’re doing this, it’s probably by
accident, and you should reconsider what it is you’re trying to accomplish.

e Section 4.10.10 [Summary of getline Variants|, page 87, presents a table summarizing
the getline variants and which variables they can affect. It is worth noting that those
variants that do not use redirection can cause FILENAME to be updated if they cause
awk to start reading a new input file.

e If the variable being assigned is an expression with side effects, different versions of
awk behave differently upon encountering end-of-file. Some versions don’t evaluate the
expression; many versions (including gawk) do. Here is an example, courtesy of Duncan

Moore:
BEGIN {
system("echo 1 > ")
while ((getline a[++c] < "f") > 0) { }
print c
}

Here, the side effect is the ‘++c’. Is ¢ incremented if end-of-file is encountered before
the element in a is assigned?

gawk treats getline like a function call, and evaluates the expression ‘a[++c]’ before
attempting to read from f. However, some versions of awk only evaluate the expression
once they know that there is a string value to be assigned.

4.10.10 Summary of getline Variants

Table 4.1 summarizes the eight variants of getline, listing which predefined variables are
set by each one, and whether the variant is standard or a gawk extension. Note: for each
variant, gawk sets the RT predefined variable.

88 GAWK: Effective AWK Programming

Variant Effect awk / gawk
getline Sets $0, NF, FNR, NR, and RT awk
getline var Sets var, FNR, NR, and RT awk
getline < file Sets $0, NF, and RT awk
getline var < file Sets var and RT awk
command | getline Sets $0, NF, and RT awk
command | getline var Sets var and RT awk
command |& getline Sets $0, NF, and RT gawk
command |& getline var Sets var and RT gawk

Table 4.1: getline variants and what they set

4.11 Reading Input with a Timeout

This section describes a feature that is specific to gawk.

You may specify a timeout in milliseconds for reading input from the keyboard, a pipe,
or two-way communication, including TCP/IP sockets. This can be done on a per-input,
per-command, or per-connection basis, by setting a special element in the PROCINFO array
(see Section 7.5.2 [Built-in Variables That Convey Information], page 159):

PROCINFO["input_name", "READ_TIMEQOUT"] = timeout in milliseconds

When set, this causes gawk to time out and return failure if no data is available to read
within the specified timeout period. For example, a TCP client can decide to give up on
receiving any response from the server after a certain amount of time:

Service = "/inet/tcp/0/localhost/daytime"
PROCINFO[Service, "READ_TIMEOUT"] = 100
if ((Service |& getline) > 0)
print $0
else if (ERRNO != "")
print ERRNO
Here is how to read interactively from the user® without waiting for more than five
seconds:
PROCINFO["/dev/stdin", "READ_TIMEOUT"] = 5000
while ((getline < "/dev/stdin") > 0)
print $0
gawk terminates the read operation if input does not arrive after waiting for the timeout
period, returns failure, and sets ERRNO to an appropriate string value. A negative or zero
value for the timeout is the same as specifying no timeout at all.
A timeout can also be set for reading from the keyboard in the implicit loop that reads
input records and matches them against patterns, like so:
$ gawk ’BEGIN { PROCINFO["-", "READ_TIMEQOUT"] = 5000 }
> { print "You entered: " $0 }’
gawk

8 This assumes that standard input is the keyboard.

Chapter 4: Reading Input Files 89

- You entered: gawk
In this case, failure to respond within five seconds results in the following error message:

gawk: cmd. line:2: (FILENAME=- FNR=1) fatal: error reading input file ‘-
>: Connection timed out

The timeout can be set or changed at any time, and will take effect on the next attempt
to read from the input device. In the following example, we start with a timeout value of
one second, and progressively reduce it by one-tenth of a second until we wait indefinitely
for the input to arrive:

PROCINFO[Service, "READ_TIMEQUT"] = 1000
while ((Service |& getline) > 0) {

print $0

PROCINFO[Service, "READ_TIMEQUT"] -= 100
}

NOTE: You should not assume that the read operation will block exactly after
the tenth record has been printed. It is possible that gawk will read and buffer
more than one record’s worth of data the first time. Because of this, changing
the value of timeout like in the preceding example is not very useful.

If the PROCINFO element is not present and the GAWK_READ_TIMEOUT environment vari-
able exists, gawk uses its value to initialize the timeout value. The exclusive use of the
environment variable to specify timeout has the disadvantage of not being able to control
it on a per-command or per-connection basis.

gawk considers a timeout event to be an error even though the attempt to read from the
underlying device may succeed in a later attempt. This is a limitation, and it also means
that you cannot use this to multiplex input from two or more sources. See Section 4.12
[Retrying Reads After Certain Input Errors], page 89, for a way to enable later I/O attempts
to succeed.

Assigning a timeout value prevents read operations from blocking indefinitely. But bear
in mind that there are other ways gawk can stall waiting for an input device to be ready.
A network client can sometimes take a long time to establish a connection before it can
start reading any data, or the attempt to open a FIFO special file for reading can block
indefinitely until some other process opens it for writing.

4.12 Retrying Reads After Certain Input Errors

This section describes a feature that is specific to gawk.

When gawk encounters an error while reading input, by default getline returns —1, and
subsequent attempts to read from that file result in an end-of-file indication. However, you
may optionally instruct gawk to allow I/O to be retried when certain errors are encountered
by setting a special element in the PROCINFO array (see Section 7.5.2 [Built-in Variables
That Convey Information|, page 159):

PROCINFO["input_name", "RETRY"] = 1

When this element exists, gawk checks the value of the system (C language) errno

variable when an I/O error occurs. If errno indicates a subsequent I/O attempt may

succeed, getline instead returns —2 and further calls to getline may succeed. This
applies to the errno values EAGAIN, EWOULDBLOCK, EINTR, or ETIMEDOUT.

90 GAWK: Effective AWK Programming

This feature is useful in conjunction with PROCINFO["input_name", "READ_TIMEQUT"]
or situations where a file descriptor has been configured to behave in a non-blocking fashion.

4.13 Directories on the Command Line

According to the POSIX standard, files named on the awk command line must be text files;
it is a fatal error if they are not. Most versions of awk treat a directory on the command
line as a fatal error.

By default, gawk produces a warning for a directory on the command line, but otherwise
ignores it. This makes it easier to use shell wildcards with your awk program:

$ gawk -f whizprog.awk * Directories could kill this program

If either of the ——posix or ——traditional options is given, then gawk reverts to treating
a directory on the command line as a fatal error.

See Section 16.7.6 [Reading Directories|, page 424, for a way to treat directories as usable
data from an awk program.

4.14 Summary

e Input is split into records based on the value of RS. The possibilities are as follows:

Value of RS Records are split on ... awk / gawk
Any single character That character awk

The empty string ("") Runs of two or more newlines awk

A regexp Text that matches the regexp gawk

e FNR indicates how many records have been read from the current input file; NR indicates
how many records have been read in total.

e gawk sets RT to the text matched by RS.

e After splitting the input into records, awk further splits the records into individual
fields, named $1, $2, and so on. $0 is the whole record, and NF indicates how many
fields there are. The default way to split fields is between whitespace characters.

e Fields may be referenced using a variable, as in $NF. Fields may also be assigned values,
which causes the value of $0 to be recomputed when it is later referenced. Assigning to
a field with a number greater than NF creates the field and rebuilds the record, using
OFS to separate the fields. Incrementing NF does the same thing. Decrementing NF
throws away fields and rebuilds the record.

e Field splitting is more complicated than record splitting:

Field separator value Fields are split . .. awk / gawk
FS==1"n" On runs of whitespace awk

FS == any single character On that character awk

FS == regexp On text matching the regexp awk

Fg =="" Such that each individual charac- gawk

ter is a separate field
FIELDWIDTHS == list of columns Based on character position gawk
FPAT == regexp On the text surrounding text gawk

matching the regexp

Chapter 4: Reading Input Files 91

e Using ‘FS = "\n"’ causes the entire record to be a single field (assuming that newlines
separate records).

e FS may be set from the command line using the -F option. This can also be done using
command-line variable assignment.

e Use PROCINFO["FS"] to see how fields are being split.

e Use getline in its various forms to read additional records from the default input
stream, from a file, or from a pipe or coprocess.

e Use PROCINFO[file, "READ_TIMEQOUT"] to cause reads to time out for file.

e Directories on the command line are fatal for standard awk; gawk ignores them if not
in POSIX mode.

4.15 Exercises

1. Using the FIELDWIDTHS variable (see Section 4.6 [Reading Fixed-Width Datal, page 74),
write a program to read election data, where each record represents one voter’s votes.
Come up with a way to define which columns are associated with each ballot item, and
print the total votes, including abstentions, for each item.

2. Section 4.10.1 [Using getline with No Arguments|, page 82, presented a program to
remove C-style comments (‘/* ... */’) from the input. That program does not work
if one comment ends on one line and another one starts later on the same line. That
can be fixed by making one simple change. What is it?

Chapter 5: Printing Output 93

5 Printing Output

One of the most common programming actions is to print, or output, some or all of the
input. Use the print statement for simple output, and the printf statement for fancier
formatting. The print statement is not limited when computing which values to print.
However, with two exceptions, you cannot specify how to print them—how many columns,
whether to use exponential notation or not, and so on. (For the exceptions, see Section 5.3
[Output Separators], page 95, and Section 5.4 [Controlling Numeric Output with print],
page 96.) For printing with specifications, you need the printf statement (see Section 5.5
[Using printf Statements for Fancier Printing|, page 96).

Besides basic and formatted printing, this chapter also covers I/O redirections to files
and pipes, introduces the special file names that gawk processes internally, and discusses
the close() built-in function.

5.1 The print Statement

Use the print statement to produce output with simple, standardized formatting. You
specify only the strings or numbers to print, in a list separated by commas. They are
output, separated by single spaces, followed by a newline. The statement looks like this:

print iteml, item2,

The entire list of items may be optionally enclosed in parentheses. The parentheses are
necessary if any of the item expressions uses the ‘>’ relational operator; otherwise it could
be confused with an output redirection (see Section 5.6 [Redirecting Output of print and
printf], page 101).

The items to print can be constant strings or numbers, fields of the current record (such
as $1), variables, or any awk expression. Numeric values are converted to strings and then
printed.

The simple statement ‘print’ with no items is equivalent to ‘print $0’: it prints the
entire current record. To print a blank line, use ‘print ""’. To print a fixed piece of text,
use a string constant, such as "Don’t Panic", as one item. If you forget to use the double-
quote characters, your text is taken as an awk expression, and you will probably get an
error. Keep in mind that a space is printed between any two items.

Note that the print statement is a statement and not an expression—you can’t use it
in the pattern part of a pattern—action statement, for example.

5.2 print Statement Examples

FEach print statement makes at least one line of output. However, it isn’t limited to only
one line. If an item value is a string containing a newline, the newline is output along with
the rest of the string. A single print statement can make any number of lines this way.

The following is an example of printing a string that contains embedded newlines:

$ awk ’BEGIN { print "line one\nline two\nline three" }’
- line one

- line two

- line three

94 GAWK: Effective AWK Programming

The next example, which is run on the inventory-shipped file, prints the first two fields
of each input record, with a space between them:

$ awk ’{ print $1, $2 }’ inventory-shipped
- Jan 13
- Feb 15
- Mar 15

A common mistake in using the print statement is to omit the comma between two
items. This often has the effect of making the items run together in the output, with
no space. The reason for this is that juxtaposing two string expressions in awk means to
concatenate them. Here is the same program, without the comma:

$ awk ’{ print $1 $2 }’ inventory-shipped
< Jani13
-1 Feblb
- Mari1b

To someone unfamiliar with the inventory-shipped file, neither example’s output
makes much sense. A heading line at the beginning would make it clearer. Let’s add
some headings to our table of months ($1) and green crates shipped ($2). We do this using
a BEGIN rule (see Section 7.1.4 [The BEGIN and END Special Patterns|, page 144) so that the
headings are only printed once:

awk ’BEGIN { print "Month Crates"

{ print $1, $2 }’ inventory-shipped
When run, the program prints the following:
Month Crates

The only problem, however, is that the headings and the table data don’t line up! We can
fix this by printing some spaces between the two fields:

awk ’BEGIN { print "Month Crates"

{ print $1, " ", $2 }’ inventory-shipped

Lining up columns this way can get pretty complicated when there are many columns
to fix. Counting spaces for two or three columns is simple, but any more than this can take
up a lot of time. This is why the printf statement was created (see Section 5.5 [Using
printf Statements for Fancier Printing], page 96); one of its specialties is lining up columns
of data.

NOTE: You can continue either a print or printf statement simply by putting
a newline after any comma (see Section 1.6 [awk Statements Versus Lines],
page 28).

Chapter 5: Printing Output 95

5.3 Output Separators

As mentioned previously, a print statement contains a list of items separated by commas.
In the output, the items are normally separated by single spaces. However, this doesn’t
need to be the case; a single space is simply the default. Any string of characters may be
used as the output field separator by setting the predefined variable OFS. The initial value
of this variable is the string " " (i.e., a single space).

The output from an entire print statement is called an output record. Fach print
statement outputs one output record, and then outputs a string called the output record
separator (or ORS). The initial value of ORS is the string "\n" (i.e., a newline character).
Thus, each print statement normally makes a separate line.

In order to change how output fields and records are separated, assign new values to the
variables OFS and ORS. The usual place to do this is in the BEGIN rule (see Section 7.1.4
[The BEGIN and END Special Patterns|, page 144), so that it happens before any input is
processed. It can also be done with assignments on the command line, before the names
of the input files, or using the -v command-line option (see Section 2.2 [Command-Line
Options|, page 31). The following example prints the first and second fields of each input
record, separated by a semicolon, with a blank line added after each newline:

awk ’BEGIN { OFS = ";"; ORS = "\n\n" }
{ print $1, $2 }’ mail-list

Amelia;555-5553

Anthony;555-3412

Becky;555-7685

Bill;555-1675

Broderick;555-0542

$

>

_|

_|

_|

_|

4|

_|

_|

_|

_|

4|

+ Camilla;555-2912
_|

- Fabius;555-1234
_|

4 Julie;555-6699
_|

- Martin;555-6480
_|

- Samuel;555-3430
_|

-4 Jean-Paul ;555-2127
_|

If the value of ORS does not contain a newline, the program’s output runs together on a
single line.

96 GAWK: Effective AWK Programming

5.4 Controlling Numeric Output with print

When printing numeric values with the print statement, awk internally converts each num-
ber to a string of characters and prints that string. awk uses the sprintf () function to
do this conversion (see Section 9.1.3 [String-Manipulation Functions|, page 187). For now,
it suffices to say that the sprintf () function accepts a format specification that tells it
how to format numbers (or strings), and that there are a number of different ways in which
numbers can be formatted. The different format specifications are discussed more fully in
Section 5.5.2 [Format-Control Letters|, page 97.

The predefined variable OFMT contains the format specification that print uses with
sprintf () when it wants to convert a number to a string for printing. The default value
of OFMT is "%.6g". The way print prints numbers can be changed by supplying a different
format specification for the value of OFMT, as shown in the following example:

$ awk ’BEGIN {

> OFMT = "J.0f" # print numbers as integers (rounds)
> print 17.23, 17.54 }’°

- 17 18

According to the POSIX standard, awk’s behavior is undefined if OFMT contains anything
but a floating-point conversion specification.

5.5 Using printf Statements for Fancier Printing

For more precise control over the output format than what is provided by print, use printf.
With printf you can specify the width to use for each item, as well as various formatting
choices for numbers (such as what output base to use, whether to print an exponent, whether
to print a sign, and how many digits to print after the decimal point).

5.5.1 Introduction to the printf Statement
A simple printf statement looks like this:

printf format, iteml, item2,

As for print, the entire list of arguments may optionally be enclosed in parentheses. Here
too, the parentheses are necessary if any of the item expressions uses the ‘>’ relational oper-
ator; otherwise, it can be confused with an output redirection (see Section 5.6 [Redirecting
Output of print and printf], page 101).

The difference between printf and print is the format argument. This is an expression
whose value is taken as a string; it specifies how to output each of the other arguments. It
is called the format string.

The format string is very similar to that in the ISO C library function printf (). Most
of format is text to output verbatim. Scattered among this text are format specifiers—one
per item. Each format specifier says to output the next item in the argument list at that
place in the format.

The printf statement does not automatically append a newline to its output. It outputs
only what the format string specifies. So if a newline is needed, you must include one in
the format string. The output separator variables OFS and ORS have no effect on printf
statements. For example:

$ awk ’BEGIN {

>
>
>

> 3}

Chapter 5: Printing QOutput 97

ORS = "\nOUCH!\n"; OFS = "+"
msg = "Don\47t Panic!"
printf "Js\n", msg

-4 Don’t Panic!

Here, neither the ‘+” nor the ‘OUCH!’ appears in the output message.

5.5.2 Format-Control Letters

A format specifier starts with the character ‘%’ and ends with a format-control letter—it
tells the printf statement how to output one item. The format-control letter specifies what
kind of value to print. The rest of the format specifier is made up of optional modifiers that
control how to print the value, such as the field width. Here is a list of the format-control

letters:

%c

%d, %hi

%e, hE

hE

Print a number as a character; thus, ‘printf "%c", 65’ outputs the letter ‘A’.
The output for a string value is the first character of the string.

NOTE: The POSIX standard says the first character of a string
is printed. In locales with multibyte characters, gawk attempts to
convert the leading bytes of the string into a valid wide character
and then to print the multibyte encoding of that character. Sim-
ilarly, when printing a numeric value, gawk allows the value to be
within the numeric range of values that can be held in a wide char-
acter. If the conversion to multibyte encoding fails, gawk uses the
low eight bits of the value as the character to print.

Other awk versions generally restrict themselves to printing the first

byte of a string or to numeric values within the range of a single
byte (0-255).

Print a decimal integer. The two control letters are equivalent. (The ‘%i’
specification is for compatibility with ISO C.)

Print a number in scientific (exponential) notation. For example:
printf "%4.3e\n", 1950
prints ‘1.950e+03’, with a total of four significant figures, three of which follow

the decimal point. (The ‘4.3’ represents two modifiers, discussed in the next
subsection.) ‘%E’ uses ‘E’ instead of ‘e’ in the output.

Print a number in floating-point notation. For example:
printf "%4.3f", 1950

prints ‘1950.000’°, with a total of four significant figures, three of which follow
the decimal point. (The ‘4.3’ represents two modifiers, discussed in the next
subsection.)

On systems supporting IEEE 754 floating-point format, values representing
negative infinity are formatted as ‘~inf’ or ‘-infinity’, and positive infinity
as ‘inf’ or ‘infinity’. The special “not a number” value formats as ‘-nan’ or
‘nan’ (see Section 15.2 [Other Stuff to Know], page 356).

98 GAWK: Effective AWK Programming

A3

hg, hG

%o

%s

%u

hx, %X

Toth

Like ‘%£’, but the infinity and “not a number” values are spelled using uppercase
letters.

The ‘“%F’ format is a POSIX extension to ISO C; not all systems support it. On
those that don’t, gawk uses ‘%f’ instead.

Print a number in either scientific notation or in floating-point notation, which-
ever uses fewer characters; if the result is printed in scientific notation, ‘%G’ uses
‘E’ instead of ‘e’.

Print an unsigned octal integer (see Section 6.1.1.2 [Octal and Hexadecimal
Numbers], page 113).

Print a string.

Print an unsigned decimal integer. (This format is of marginal use, because
all numbers in awk are floating point; it is provided primarily for compatibility
with C.)

Print an unsigned hexadecimal integer; ‘%X’ uses the letters ‘A’ through ‘F’
instead of ‘a’ through ‘£’ (see Section 6.1.1.2 [Octal and Hexadecimal Numbers],
page 113).

Print a single ‘%4’. This does not consume an argument and it ignores any
modifiers.

NOTE: When using the integer format-control letters for values that are outside
the range of the widest C integer type, gawk switches to the ‘%g’ format specifier.
If --1lint is provided on the command line (see Section 2.2 [Command-Line
Options|, page 31), gawk warns about this. Other versions of awk may print
invalid values or do something else entirely.

5.5.3 Modifiers for printf Formats

A format specification can also include modifiers that can control how much of the item’s
value is printed, as well as how much space it gets. The modifiers come between the ‘%’
and the format-control letter. We use the bullet symbol “e” in the following examples to
represent spaces in the output. Here are the possible modifiers, in the order in which they
may appear:

N$

An integer constant followed by a ‘$’ is a positional specifier. Normally, format
specifications are applied to arguments in the order given in the format string.
With a positional specifier, the format specification is applied to a specific
argument, instead of what would be the next argument in the list. Positional
specifiers begin counting with one. Thus:

printf "%s %s\n", "don’t", "panic"

printf "%2$s %1$s\n", "panic", "don’t"
prints the famous friendly message twice.

At first glance, this feature doesn’t seem to be of much use. It is in fact
a gawk extension, intended for use in translating messages at runtime. See
Section 13.4.2 [Rearranging printf Arguments|, page 334, which describes how
and why to use positional specifiers. For now, we ignore them.

- (Minus)

space

width

Chapter 5: Printing Output 99

The minus sign, used before the width modifier (see later on in this list), says
to left-justify the argument within its specified width. Normally, the argument
is printed right-justified in the specified width. Thus:

printf "%-4s", "foo"
prints ‘fooe’.

For numeric conversions, prefix positive values with a space and negative values
with a minus sign.

The plus sign, used before the width modifier (see later on in this list), says
to always supply a sign for numeric conversions, even if the data to format is
positive. The ‘+’ overrides the space modifier.

Use an “alternative form” for certain control letters. For ‘%o’, supply a leading
zero. For ‘%%’ and ‘%X’, supply a leading ‘0x’ or ‘0X’ for a nonzero result. For
‘he’, “RE’, “%f’, and ‘%F’, the result always contains a decimal point. For ‘%g’
and ‘%G’, trailing zeros are not removed from the result.

A leading ‘0’ (zero) acts as a flag indicating that output should be padded with
zeros instead of spaces. This applies only to the numeric output formats. This
flag only has an effect when the field width is wider than the value to print.

A single quote or apostrophe character is a POSIX extension to ISO C. It
indicates that the integer part of a floating-point value, or the entire part of an
integer decimal value, should have a thousands-separator character in it. This
only works in locales that support such characters. For example:

$ cat thousands.awk Show source program

- BEGIN { printf "%’d\n", 1234567 }

$ LC_ALL=C gawk -f thousands.awk

- 1234567 Results in "C" locale
$ LC_ALL=en_US.UTF-8 gawk -f thousands.awk
- 1,234,567 Results in US English UTF locale

For more information about locales and internationalization issues, see
Section 6.6 [Where You Are Makes a Difference], page 137.

NOTE: The ‘’’ flag is a nice feature, but its use complicates things:
it becomes difficult to use it in command-line programs. For in-
formation on appropriate quoting tricks, see Section 1.1.6 [Shell
Quoting Issues], page 21.

This is a number specifying the desired minimum width of a field. Inserting
any number between the ‘%’ sign and the format-control character forces the
field to expand to this width. The default way to do this is to pad with spaces
on the left. For example:

printf "%4s", "foo"
prints ‘efoo’.
The value of width is a minimum width, not a maximum. If the item value
requires more than width characters, it can be as wide as necessary. Thus, the
following:

printf "%4s", "foobar"

100 GAWK: Effective AWK Programming

prints ‘foobar’.
Preceding the width with a minus sign causes the output to be padded with
spaces on the right, instead of on the left.

.prec A period followed by an integer constant specifies the precision to use when
printing. The meaning of the precision varies by control letter:

hd, %i, %o, hu, %x, hX
Minimum number of digits to print.

he, hE, %E, WF
Number of digits to the right of the decimal point.

he, hG Maximum number of significant digits.
%s Maximum number of characters from the string that should print.

Thus, the following:
printf "%.4s", "foobar"
prints ‘foob’.
The C library printf’s dynamic width and prec capability (e.g., "%*.*s") is supported.

Instead of supplying explicit width and/or prec values in the format string, they are passed
in the argument list. For example:

w=25
p=3
s = "abcdefg"

printf "%*.xs\n", w, p, s
is exactly equivalent to:

s = "abcdefg"
printf "%5.3s\n", s

Both programs output ‘eeabc’. Earlier versions of awk did not support this capability. If
you must use such a version, you may simulate this feature by using concatenation to build
up the format string, like so:

w =25

p=3

s = "abcdefg"

printf n%n W u'n p “s\n", s

This is not particularly easy to read, but it does work.

C programmers may be used to supplying additional modifiers (‘h’, ‘j’, ‘1’, ‘L’, ‘t’, and
‘z’) in printf format strings. These are not valid in awk. Most awk implementations silently
ignore them. If --1int is provided on the command line (see Section 2.2 [Command-Line
Options|, page 31), gawk warns about their use. If --posix is supplied, their use is a fatal
€rror.

5.5.4 Examples Using printf

The following simple example shows how to use printf to make an aligned table:
awk ’{ printf "%-10s %s\n", $1, $2 }’ mail-list

Chapter 5: Printing Output 101

This command prints the names of the people ($1) in the file mail-1list as a string of 10
characters that are left-justified. It also prints the phone numbers ($2) next on the line.
This produces an aligned two-column table of names and phone numbers, as shown here:

$ awk ’{ printf "7-10s /%s\n", $1, $2 }’ mail-list

- Amelia 555-5553
- Anthony 555-3412
- Becky 555-7685
-4 Bill 555-1675
- Broderick 555-0542
- Camilla 555-2912
- Fabius 555-1234
- Julie 555-6699
- Martin 555-6480
- Samuel 555-3430

€

Jean-Paul 555-2127

In this case, the phone numbers had to be printed as strings because the numbers are
separated by dashes. Printing the phone numbers as numbers would have produced just
the first three digits: ‘555’. This would have been pretty confusing.

It wasn’t necessary to specify a width for the phone numbers because they are last on
their lines. They don’t need to have spaces after them.

The table could be made to look even nicer by adding headings to the tops of the columns.
This is done using a BEGIN rule (see Section 7.1.4 [The BEGIN and END Special Patterns]
page 144) so that the headers are only printed once, at the beginning of the awk program:

awk ’BEGIN { print "Name Number"
print "---— = —————- "}
{ printf "%-10s %s\n", $1, $2 }’ mail-list

The preceding example mixes print and printf statements in the same program. Using
just printf statements can produce the same results:

awk ’BEGIN { printf "%-10s %s\n", "Name", "Number"
printf "%-10s %s\n", "---—-", "-————- "}
{ printf "%-10s %s\n", $1, $2 }’ mail-list
Printing each column heading with the same format specification used for the column ele-
ments ensures that the headings are aligned just like the columns.

)

The fact that the same format specification is used three times can be emphasized by
storing it in a variable, like this:

awk ’BEGIN { format = "%-10s %s\n"
printf format, "Name", "Number"
printf format, "----", "----—- "}
{ printf format, $1, $2 }’ mail-list

5.6 Redirecting Output of print and printf

So far, the output from print and printf has gone to the standard output, usually the
screen. Both print and printf can also send their output to other places. This is called
redirection.

102 GAWK: Effective AWK Programming

NOTE: When --sandbox is specified (see Section 2.2 [Command-Line Options],
page 31), redirecting output to files, pipes, and coprocesses is disabled.

A redirection appears after the print or printf statement. Redirections in awk are
written just like redirections in shell commands, except that they are written inside the awk
program.

There are four forms of output redirection: output to a file, output appended to a file,
output through a pipe to another command, and output to a coprocess. We show them all
for the print statement, but they work identically for printf:

print items > output-file
This redirection prints the items into the output file named output-file. The
file name output-file can be any expression. Its value is changed to a string and
then used as a file name (see Chapter 6 [Expressions|, page 113).

When this type of redirection is used, the output-file is erased before the first
output is written to it. Subsequent writes to the same output-file do not erase
output-file, but append to it. (This is different from how you use redirections
in shell scripts.) If output-file does not exist, it is created. For example, here
is how an awk program can write a list of peoples’ names to one file named
name-1list, and a list of phone numbers to another file named phone-list:

$ awk ’{ print $2 > "phone-list"

> print $1 > "name-list" }’ mail-list
$ cat phone-list

-+ 555-5553

-| 555-3412

$ cat name-list
- Amelia
- Anthony

Each output file contains one name or number per line.

print items >> output-file
This redirection prints the items into the preexisting output file named output-
file. The difference between this and the single-‘>’ redirection is that the old
contents (if any) of output-file are not erased. Instead, the awk output is ap-
pended to the file. If output-file does not exist, then it is created.

print items | command
It is possible to send output to another program through a pipe instead of into
a file. This redirection opens a pipe to command, and writes the values of items
through this pipe to another process created to execute command.

The redirection argument command is actually an awk expression. Its value is
converted to a string whose contents give the shell command to be run. For
example, the following produces two files, one unsorted list of peoples’ names,
and one list sorted in reverse alphabetical order:

awk ’{ print $1 > "names.unsorted"
command = "sort -r > names.sorted"

Chapter 5: Printing Output 103

print $1 | command }’ mail-list

The unsorted list is written with an ordinary redirection, while the sorted list
is written by piping through the sort utility.

The next example uses redirection to mail a message to the mailing list
bug-system. This might be useful when trouble is encountered in an awk
script run periodically for system maintenance:

report = "mail bug-system"

print("Awk script failed:", $0) | report

print("at record number", FNR, "of", FILENAME) | report
close(report)

The close() function is called here because it’s a good idea to close the pipe
as soon as all the intended output has been sent to it. See Section 5.9 [Closing
Input and Output Redirections|, page 106, for more information.

This example also illustrates the use of a variable to represent a file or com-
mand—it is not necessary to always use a string constant. Using a variable
is generally a good idea, because (if you mean to refer to that same file or
command) awk requires that the string value be written identically every time.

print items |& command
This redirection prints the items to the input of command. The difference
between this and the single-‘|’ redirection is that the output from command
can be read with getline. Thus, command is a coprocess, which works together
with but is subsidiary to the awk program.

This feature is a gawk extension, and is not available in POSIX awk. See
Section 4.10.7 [Using getline from a Coprocess], page 86, for a brief discussion.

See Section 12.3 [Two-Way Communications with Another Process]|, page 320,
for a more complete discussion.

Redirecting output using *>’, *>>’, ‘|’, or ‘|& asks the system to open a file, pipe, or

coprocess only if the particular file or command you specify has not already been written
to by your program or if it has been closed since it was last written to.

It is a common error to use ‘>’ redirection for the first print to a file, and then to use
*>>’ for subsequent output:

clear the file
print "Don’t panic" > '"guide.txt"

append

print "Avoid improbability generators" >> "guide.txt"
This is indeed how redirections must be used from the shell. But in awk, it isn’t necessary.
In this kind of case, a program should use ‘>’ for all the print statements, because the
output file is only opened once. (It happens that if you mix ‘>" and ‘>>’ output is produced
in the expected order. However, mixing the operators for the same file is definitely poor
style, and is confusing to readers of your program.)

As mentioned earlier (see Section 4.10.9 [Points to Remember About getline], page 86),
many older awk implementations limit the number of pipelines that an awk program may

104 GAWK: Effective AWK Programming

have open to just one! In gawk, there is no such limit. gawk allows a program to open as
many pipelines as the underlying operating system permits.

(e . h
Piping into sh

A particularly powerful way to use redirection is to build command lines and pipe them
into the shell, sh. For example, suppose you have a list of files brought over from a system
where all the file names are stored in uppercase, and you wish to rename them to have
names in all lowercase. The following program is both simple and efficient:

{ printf("mv %s %s\n", $0, tolower($0)) | "sh" }

END { close("sh") }

The tolower () function returns its argument string with all uppercase characters con-
verted to lowercase (see Section 9.1.3 [String-Manipulation Functions|, page 187). The
program builds up a list of command lines, using the mv utility to rename the files. It then
sends the list to the shell for execution.

See Section 10.2.9 [Quoting Strings to Pass to the Shell], page 242, for a function that

can help in generating command lines to be fed to the shell.
S)

5.7 Special Files for Standard Preopened Data Streams

Running programs conventionally have three input and output streams already available to
them for reading and writing. These are known as the standard input, standard output,
and standard error output. These open streams (and any other open files or pipes) are
often referred to by the technical term file descriptors.

These streams are, by default, connected to your keyboard and screen, but they are
often redirected with the shell, via the ‘<’, ‘<<’ >’ >>’ *>&’ and ‘|’ operators. Standard
error is typically used for writing error messages; the reason there are two separate streams,
standard output and standard error, is so that they can be redirected separately.

In traditional implementations of awk, the only way to write an error message to standard
error in an awk program is as follows:

print "Serious error detected!" | "cat 1>&2"

This works by opening a pipeline to a shell command that can access the standard error
stream that it inherits from the awk process. This is far from elegant, and it also requires
a separate process. So people writing awk programs often don’t do this. Instead, they send
the error messages to the screen, like this:

print "Serious error detected!" > "/dev/tty"

(/dev/tty is a special file supplied by the operating system that is connected to your
keyboard and screen. It represents the “terminal,”! which on modern systems is a keyboard
and screen, not a serial console.) This generally has the same effect, but not always:
although the standard error stream is usually the screen, it can be redirected; when that
happens, writing to the screen is not correct. In fact, if awk is run from a background job,
it may not have a terminal at all. Then opening /dev/tty fails.

! The “tty” in /dev/tty stands for “Teletype,” a serial terminal.

Chapter 5: Printing Output 105

gawk, BWK awk, and mawk provide special file names for accessing the three standard
streams. If the file name matches one of these special names when gawk (or one of the
others) redirects input or output, then it directly uses the descriptor that the file name
stands for. These special file names work for all operating systems that gawk has been
ported to, not just those that are POSIX-compliant:

/dev/stdin
The standard input (file descriptor 0).

/dev/stdout
The standard output (file descriptor 1).

/dev/stderr
The standard error output (file descriptor 2).

With these facilities, the proper way to write an error message then becomes:

print "Serious error detected!" > "/dev/stderr"

Note the use of quotes around the file name. Like with any other redirection, the value
must be a string. It is a common error to omit the quotes, which leads to confusing results.

gawk does not treat these file names as special when in POSIX-compatibility mode.

However, because BWK awk supports them, gawk does support them even when invoked
with the --traditional option (see Section 2.2 [Command-Line Options|, page 31).

5.8 Special File names in gawk

Besides access to standard input, standard output, and standard error, gawk provides access
to any open file descriptor. Additionally, there are special file names reserved for TCP /IP
networking.

5.8.1 Accessing Other Open Files with gawk

Besides the /dev/stdin, /dev/stdout, and /dev/stderr special file names mentioned
earlier, gawk provides syntax for accessing any other inherited open file:

/dev/fd/N
The file associated with file descriptor N. Such a file must be opened by the
program initiating the awk execution (typically the shell). Unless special pains
are taken in the shell from which gawk is invoked, only descriptors 0, 1, and 2
are available.

The file names /dev/stdin, /dev/stdout, and /dev/stderr are essentially aliases for
/dev/£d/0, /dev/fd/1, and /dev/£d/2, respectively. However, those names are more self-
explanatory.

Note that using close() on a file name of the form "/dev/fd/N", for file descriptor
numbers above two, does actually close the given file descriptor.

5.8.2 Special Files for Network Communications

gawk programs can open a two-way TCP /IP connection, acting as either a client or a server.
This is done using a special file name of the form:

/net-type/protocol/local-port/remote-host/remote-port

106 GAWK: Effective AWK Programming

The net-type is one of ‘inet’, ‘inet4’, or ‘inet6’. The protocol is one of ‘tcp’ or ‘udp’,
and the other fields represent the other essential pieces of information for making a network-
ing connection. These file names are used with the ‘|&’ operator for communicating with a
coprocess (see Section 12.3 [Two-Way Communications with Another Process|, page 320).
This is an advanced feature, mentioned here only for completeness. Full discussion is delayed
until Section 12.4 [Using gawk for Network Programming], page 323.

5.8.3 Special File name Caveats
Here are some things to bear in mind when using the special file names that gawk provides:

e Recognition of the file names for the three standard preopened files is disabled only in
POSIX mode.

e Recognition of the other special file names is disabled if gawk is in compatibility mode
(either --traditional or --posix; see Section 2.2 [Command-Line Options|, page 31).

e gawk always interprets these special file names. For example, using ‘/dev/fd/4’ for
output actually writes on file descriptor 4, and not on a new file descriptor that is
dupQed from file descriptor 4. Most of the time this does not matter; however, it is
important to not close any of the files related to file descriptors 0, 1, and 2. Doing so
results in unpredictable behavior.

5.9 Closing Input and Output Redirections

If the same file name or the same shell command is used with getline more than once
during the execution of an awk program (see Section 4.10 [Explicit Input with getline],
page 81), the file is opened (or the command is executed) the first time only. At that time,
the first record of input is read from that file or command. The next time the same file or
command is used with getline, another record is read from it, and so on.

Similarly, when a file or pipe is opened for output, awk remembers the file name or com-
mand associated with it, and subsequent writes to the same file or command are appended
to the previous writes. The file or pipe stays open until awk exits.

This implies that special steps are necessary in order to read the same file again from the
beginning, or to rerun a shell command (rather than reading more output from the same
command). The close() function makes these things possible:

close(filename)
or:
close (command)

The argument filename or command can be any expression. Its value must ezactly match
the string that was used to open the file or start the command (spaces and other “irrelevant”
characters included). For example, if you open a pipe with this:

"sort -r names" | getline foo
then you must close it with this:
close("sort -r names")

Once this function call is executed, the next getline from that file or command, or the
next print or printf to that file or command, reopens the file or reruns the command.
Because the expression that you use to close a file or pipeline must exactly match the

Chapter 5: Printing Qutput 107

expression used to open the file or run the command, it is good practice to use a variable
to store the file name or command. The previous example becomes the following:

sortcom = "sort -r names"
sortcom | getline foo

close(sortcom)

This helps avoid hard-to-find typographical errors in your awk programs. Here are some of
the reasons for closing an output file:

e To write a file and read it back later on in the same awk program. Close the file after
writing it, then begin reading it with getline.

e To write numerous files, successively, in the same awk program. If the files aren’t closed,
eventually awk may exceed a system limit on the number of open files in one process.
It is best to close each one when the program has finished writing it.

e To make a command finish. When output is redirected through a pipe, the command
reading the pipe normally continues to try to read input as long as the pipe is open.
Often this means the command cannot really do its work until the pipe is closed. For
example, if output is redirected to the mail program, the message is not actually sent
until the pipe is closed.

e To run the same program a second time, with the same arguments. This is not the
same thing as giving more input to the first run!

For example, suppose a program pipes output to the mail program. If it outputs
several lines redirected to this pipe without closing it, they make a single message of
several lines. By contrast, if the program closes the pipe after each line of output, then
each line makes a separate message.

If you use more files than the system allows you to have open, gawk attempts to multiplex
the available open files among your data files. gawk’s ability to do this depends upon the
facilities of your operating system, so it may not always work. It is therefore both good
practice and good portability advice to always use close() on your files when you are done
with them. In fact, if you are using a lot of pipes, it is essential that you close commands
when done. For example, consider something like this:

{
command = ("grep " $1 " /some/file | my_prog -q " $3)
while ((command | getline) > 0) {
process output of command
}
need close(command) here
}

This example creates a new pipeline based on data in each record. Without the call to
close () indicated in the comment, awk creates child processes to run the commands, until
it eventually runs out of file descriptors for more pipelines.

108 GAWK: Effective AWK Programming

Even though each command has finished (as indicated by the end-of-file return status
from getline), the child process is not terminated;> more importantly, the file descriptor
for the pipe is not closed and released until close () is called or awk exits.

close() silently does nothing if given an argument that does not represent a file, pipe,
or coprocess that was opened with a redirection. In such a case, it returns a negative value,
indicating an error. In addition, gawk sets ERRNO to a string indicating the error.

Note also that ‘close (FILENAME)’ has no “magic” effects on the implicit loop that reads
through the files named on the command line. It is, more likely, a close of a file that was
never opened with a redirection, so awk silently does nothing, except return a negative
value.

When using the ‘| & operator to communicate with a coprocess, it is occasionally useful
to be able to close one end of the two-way pipe without closing the other. This is done
by supplying a second argument to close(). As in any other call to close(), the first
argument is the name of the command or special file used to start the coprocess. The
second argument should be a string, with either of the values "to" or "from". Case does
not matter. As this is an advanced feature, discussion is delayed until Section 12.3 [Two-
Way Communications with Another Process|, page 320, which describes it in more detail
and gives an example.

2 The technical terminology is rather morbid. The finished child is called a “zombie,” and cleaning up
after it is referred to as “reaping.”

Chapter 5: Printing Output 109

(7
Using close()’s Return Value

In many older versions of Unix awk, the close() function is actually a statement. It is
a syntax error to try and use the return value from close():

command = "..."
command | getline info
retval = close(command) # syntax error in many Unix awks

gawk treats close() as a function. The return value is —1 if the argument names
something that was never opened with a redirection, or if there is a system problem closing
the file or process. In these cases, gawk sets the predefined variable ERRNO to a string
describing the problem.

In gawk, starting with version 4.2, when closing a pipe or coprocess (input or output),
the return value is the exit status of the command, as described in Table 5.1.3 Otherwise, it
is the return value from the system’s close() or fclose() C functions when closing input
or output files, respectively. This value is zero if the close succeeds, or —1 if it fails.

Situation Return value from close()
Normal exit of command Command’s exit status

Death by signal of command 256 + number of murderous signal
Death by signal of command with 512 + number of murderous signal
core dump

Some kind of error -1

Table 5.1: Return values from close() of a pipe

The POSIX standard is very vague; it says that close() returns zero on success and
a nonzero value otherwise. In general, different implementations vary in what they report
when closing pipes; thus, the return value cannot be used portably. In POSIX mode (see

Section 2.2 [Command-Line Options], page 31), gawk just returns zero when closing a pipe.
N J

5.10 Enabling Nonfatal Output

This section describes a gawk-specific feature.

In standard awk, output with print or printf to a nonexistent file, or some other 1/O
error (such as filling up the disk) is a fatal error.

$ gawk ’BEGIN { print "hi" > "/no/such/file" }’
gawk: cmd. line:1: fatal: can’t redirect to ‘/no/such/file’ (No such file or di

gawk makes it possible to detect that an error has occurred, allowing you to possibly
recover from the error, or at least print an error message of your choosing before exiting.
You can do this in one of two ways:

e For all output files, by assigning any value to PROCINFO["NONFATAL"].

e On a per-file basis, by assigning any value to PROCINFO [filename, "NONFATAL"]. Here,
filename is the name of the file to which you wish output to be nonfatal.

3 Prior to version 4.2, the return value from closing a pipe or co-process was the full 16-bit exit value as
defined by the wait () system call.

110 GAWK: Effective AWK Programming

Once you have enabled nonfatal output, you must check ERRNO after every relevant print
or printf statement to see if something went wrong. It is also a good idea to initialize
ERRNO to zero before attempting the output. For example:

$ gawk ’

> BEGIN {

> PROCINFO["NONFATAL"] = 1

> ERRNO = 0

> print "hi" > "/no/such/file"

> if (ERRNO) {

> print ("Output failed:", ERRNO) > "/dev/stderr"
> exit 1

> }

> 3}

Output failed: No such file or directory

Here, gawk did not produce a fatal error; instead it let the awk program code detect the
problem and handle it.

This mechanism works also for standard output and standard error. For standard output,
you may use PROCINFO["-", "NONFATAL"] or PROCINFO["/dev/stdout", "NONFATAL"].
For standard error, use PROCINFO["/dev/stderr", "NONFATAL"].

When attempting to open a TCP/IP socket (see Section 12.4 [Using gawk for Network
Programming|, page 323), gawk tries multiple times. The GAWK_SOCK_RETRIES environment
variable (see Section 2.5.3 [Other Environment Variables|, page 40) allows you to override
gawk’s builtin default number of attempts. However, once nonfatal 1/O is enabled for a
given socket, gawk only retries once, relying on awk-level code to notice that there was a
problem.

5.11 Summary

e The print statement prints comma-separated expressions. Each expression is sepa-
rated by the value of OFS and terminated by the value of ORS. OFMT provides the
conversion format for numeric values for the print statement.

e The printf statement provides finer-grained control over output, with format-control
letters for different data types and various flags that modify the behavior of the format-
control letters.

e Output from both print and printf may be redirected to files, pipes, and coprocesses.

e gawk provides special file names for access to standard input, output, and error, and
for network communications.

e Use close() to close open file, pipe, and coprocess redirections. For coprocesses, it is
possible to close only one direction of the communications.

e Normally errors with print or printf are fatal. gawk lets you make output errors be
nonfatal either for all files or on a per-file basis. You must then check for errors after
every relevant output statement.

5.12 Exercises

1. Rewrite the program:

Chapter 5: Printing Output 111

awk ’BEGIN { print "Month Crates"

{ print $1, " ", $2 }’ inventory-shipped
from Section 5.3 [Output Separators], page 95, by using a new value of OFS.

2. Use the printf statement to line up the headings and table data for the
inventory-shipped example that was covered in Section 5.1 [The print Statement],
page 93.

3. What happens if you forget the double quotes when redirecting output, as follows:
BEGIN { print "Serious error detected!" > /dev/stderr }

Chapter 6: Expressions 113

6 Expressions

Expressions are the basic building blocks of awk patterns and actions. An expression eval-
uates to a value that you can print, test, or pass to a function. Additionally, an expression
can assign a new value to a variable or a field by using an assignment operator.

An expression can serve as a pattern or action statement on its own. Most other kinds
of statements contain one or more expressions that specify the data on which to operate.
As in other languages, expressions in awk can include variables, array references, constants,
and function calls, as well as combinations of these with various operators.

6.1 Constants, Variables, and Conversions

Expressions are built up from values and the operations performed upon them. This section
describes the elementary objects that provide the values used in expressions.

6.1.1 Constant Expressions

The simplest type of expression is the constant, which always has the same value. There
are three types of constants: numeric, string, and regular expression.

Each is used in the appropriate context when you need a data value that isn’t going to
change. Numeric constants can have different forms, but are internally stored in an identical
manner.

6.1.1.1 Numeric and String Constants

A numeric constant stands for a number. This number can be an integer, a decimal fraction,
or a number in scientific (exponential) notation.! Here are some examples of numeric
constants that all have the same value:

105
1.05e+2
1050e-1

A string constant consists of a sequence of characters enclosed in double quotation marks.
For example:

"parrot"
represents the string whose contents are ‘parrot’. Strings in gawk can be of any length,
and they can contain any of the possible eight-bit ASCII characters, including ASCII NUL

(character code zero). Other awk implementations may have difficulty with some character
codes.

6.1.1.2 Octal and Hexadecimal Numbers

In awk, all numbers are in decimal (i.e., base 10). Many other programming languages
allow you to specify numbers in other bases, often octal (base 8) and hexadecimal (base
16). In octal, the numbers go 0, 1, 2, 3, 4, 5, 6, 7, 10, 11, 12, and so on. Just as ‘11’ in
decimal is 1 times 10 plus 1, so ‘11’ in octal is 1 times 8 plus 1. This equals 9 in decimal.

I The internal representation of all numbers, including integers, uses double-precision floating-point num-
bers. On most modern systems, these are in IEEE 754 standard format. See Chapter 15 [Arithmetic
and Arbitrary-Precision Arithmetic with gawk], page 355, for much more information.

114 GAWK: Effective AWK Programming

In hexadecimal, there are 16 digits. Because the everyday decimal number system only
has ten digits (‘0'—9’), the letters ‘a’ through ‘f’ represent the rest. (Case in the letters is
usually irrelevant; hexadecimal ‘a’ and ‘A’ have the same value.) Thus, ‘11’ in hexadecimal
is 1 times 16 plus 1, which equals 17 in decimal.

Just by looking at plain ‘11’, you can’t tell what base it’s in. So, in C, C++, and other
languages derived from C, there is a special notation to signify the base. Octal numbers
start with a leading ‘0’, and hexadecimal numbers start with a leading ‘0Ox’ or ‘0X’:

11 Decimal value 11
011 Octal 11, decimal value 9
0x11 Hexadecimal 11, decimal value 17

This example shows the difference:
$ gawk ’BEGIN { printf "Jd, 4d, #d\n", 011, 11, 0Ox11 }’
4 9, 11, 17
Being able to use octal and hexadecimal constants in your programs is most useful
when working with data that cannot be represented conveniently as characters or as regular
numbers, such as binary data of various sorts.

gawk allows the use of octal and hexadecimal constants in your program text. However,
such numbers in the input data are not treated differently; doing so by default would break
old programs. (If you really need to do this, use the --non-decimal-data command-
line option; see Section 12.1 [Allowing Nondecimal Input Datal, page 313.) If you have
octal or hexadecimal data, you can use the strtonum() function (see Section 9.1.3 [String-
Manipulation Functions], page 187) to convert the data into a number. Most of the time,
you will want to use octal or hexadecimal constants when working with the built-in bit-
manipulation functions; see Section 9.1.6 [Bit-Manipulation Functions|, page 207, for more
information.

¢

Unlike in some early C implementations, ‘8" and ‘9’ are not valid in octal constants. For

example, gawk treats ‘018’ as decimal 18:
$ gawk ’BEGIN { print "021 is", 021 ; print 018 }’
-4 021 is 17
- 18

Octal and hexadecimal source code constants are a gawk extension. If gawk is in com-
patibility mode (see Section 2.2 [Command-Line Options|, page 31), they are not available.

-

A Constant’s Base Does Not Affect Its Value

Once a numeric constant has been converted internally into a number, gawk no longer
remembers what the original form of the constant was; the internal value is always used.
This has particular consequences for conversion of numbers to strings:

$ gawk ’BEGIN { printf "Ox11 is <J}s>\n", Ox11 }’

4 0x11 is <17>
_ J

6.1.1.3 Regular Expression Constants

A regexp constant is a regular expression description enclosed in slashes, such as
/"beginning and end$/. Most regexps used in awk programs are constant, but the ‘~” and

Chapter 6: Expressions 115

“17? matching operators can also match computed or dynamic regexps (which are typically
just ordinary strings or variables that contain a regexp, but could be more complex
expressions).

6.1.2 Using Regular Expression Constants

Regular expression constants consist of text describing a regular expression enclosed in
slashes (such as /the +answer/). This section describes how such constants work in POSIX
awk and gawk, and then goes on to describe strongly typed regexp constants, which are a
gawk extension.

6.1.2.1 Standard Regular Expression Constants

When used on the righthand side of the ‘™7 or ‘!~ operators, a regexp constant merely
stands for the regexp that is to be matched. However, regexp constants (such as /foo/)
may be used like simple expressions. When a regexp constant appears by itself, it has
the same meaning as if it appeared in a pattern (i.e., ‘($0 ~ /foo/)’). See Section 7.1.2
[Expressions as Patterns|, page 141. This means that the following two code segments:

if ($0 ~ /barfly/ || $0 ~ /camelot/)
print "found"

and:

if (/barfly/ || /camelot/)
print "found"

are exactly equivalent. One rather bizarre consequence of this rule is that the following
Boolean expression is valid, but does not do what its author probably intended:

Note that /foo/ is on the left of the ~
if (/foo/ ~ $1) print "found foo"

This code is “obviously” testing $1 for a match against the regexp /foo/. But in fact, the
expression ‘/foo/ ~ $1’ really means ‘($0 ~ /foo/) ~ $1’. In other words, first match the
input record against the regexp /foo/. The result is either zero or one, depending upon
the success or failure of the match. That result is then matched against the first field in
the record. Because it is unlikely that you would ever really want to make this kind of test,
gawk issues a warning when it sees this construct in a program. Another consequence of
this rule is that the assignment statement:

matches = /foo/

assigns either zero or one to the variable matches, depending upon the contents of the
current input record.

Constant regular expressions are also used as the first argument for the gensub(), sub(),
and gsub() functions, as the second argument of the match() function, and as the third
argument of the split () and patsplit() functions (see Section 9.1.3 [String-Manipulation
Functions|, page 187). Modern implementations of awk, including gawk, allow the third
argument, of split() to be a regexp constant, but some older implementations do not.

Because some built-in functions accept regexp constants as arguments, confusion can
arise when attempting to use regexp constants as arguments to user-defined functions (see
Section 9.2 [User-Defined Functions|, page 211). For example:

function mysub(pat, repl, str, global)

116 GAWK: Effective AWK Programming

{
if (global)
gsub(pat, repl, str)
else
sub(pat, repl, str)
return str
}
{
text = "hi! hi yourself!"
mysub(/hi/, "howdy", text, 1)
}

In this example, the programmer wants to pass a regexp constant to the user-defined
function mysub(), which in turn passes it on to either sub() or gsub(). However, what
really happens is that the pat parameter is assigned a value of either one or zero, depending
upon whether or not $0 matches /hi/. gawk issues a warning when it sees a regexp constant
used as a parameter to a user-defined function, because passing a truth value in this way is
probably not what was intended.

6.1.2.2 Strongly Typed Regexp Constants
This section describes a gawk-specific feature.

As we saw in the previous section, regexp constants (/.../) hold a strange position in
the awk language. In most contexts, they act like an expression: ‘$0 ~ /.../’. In other
contexts, they denote only a regexp to be matched. In no case are they really a “first class
citizen” of the language. That is, you cannot define a scalar variable whose type is “regexp”
in the same sense that you can define a variable to be a number or a string:

num = 42 Numeric variable
str = "hi" String variable
re = /foo/ Wrong! re is the result of $0 ~ /foo/

For a number of more advanced use cases, it would be nice to have regexp constants that
are strongly typed; in other words, that denote a regexp useful for matching, and not an
expression.

gawk provides this feature. A strongly typed regexp constant looks almost like a regular
regexp constant, except that it is preceded by an ‘@’ sign:

re = @/foo/ Regexp variable

Strongly typed regexp constants cannot be used everywhere that a regular regexp con-
stant can, because this would make the language even more confusing. Instead, you may
use them only in certain contexts:

e On the righthand side of the ‘*> and ‘!~ operators: ‘some_var ~ @/foo/’ (see
Section 3.1 [How to Use Regular Expressions|, page 47).

e In the case part of a switch statement (see Section 7.4.5 [The switch Statement],
page 151).

Chapter 6: Expressions 117

e As an argument to one of the built-in functions that accept regexp constants:
gensub(), gsub(), match(), patsplit(), split(), and sub() (see Section 9.1.3
[String-Manipulation Functions], page 187).

e As a parameter in a call to a user-defined function (see Section 9.2 [User-Defined
Functions|, page 211).

e On the righthand side of an assignment to a variable: ‘some_var = @/foo/’. In this
case, the type of some_var is regexp. Additionally, some_var can be used with ‘~’ and
‘17’ passed to one of the built-in functions listed above, or passed as a parameter to a
user-defined function.

You may use the typeof () built-in function (see Section 9.1.7 [Getting Type Informa-
tion], page 210) to determine if a variable or function parameter is a regexp variable.

The true power of this feature comes from the ability to create variables that have regexp
type. Such variables can be passed on to user-defined functions, without the confusing
aspects of computed regular expressions created from strings or string constants. They
may also be passed through indirect function calls (see Section 9.3 [Indirect Function Calls],
page 221) and on to the built-in functions that accept regexp constants.

When used in numeric conversions, strongly typed regexp variables convert to zero.
When used in string conversions, they convert to the string value of the original regexp
text.

6.1.3 Variables

Variables are ways of storing values at one point in your program for use later in another
part of your program. They can be manipulated entirely within the program text, and they
can also be assigned values on the awk command line.

6.1.3.1 Using Variables in a Program

Variables let you give names to values and refer to them later. Variables have already been
used in many of the examples. The name of a variable must be a sequence of letters, digits,
or underscores, and it may not begin with a digit. Here, a letter is any one of the 52
upper- and lowercase English letters. Other characters that may be defined as letters in
non-English locales are not valid in variable names. Case is significant in variable names; a
and A are distinct variables.

A variable name is a valid expression by itself; it represents the variable’s current value.
Variables are given new values with assignment operators, increment operators, and decre-
ment operators (see Section 6.2.3 [Assignment Expressions|, page 123). In addition, the
sub() and gsub() functions can change a variable’s value, and the match(), split(), and
patsplit () functions can change the contents of their array parameters (see Section 9.1.3
[String-Manipulation Functions], page 187).

A few variables have special built-in meanings, such as FS (the field separator) and NF
(the number of fields in the current input record). See Section 7.5 [Predefined Variables],
page 157, for a list of the predefined variables. These predefined variables can be used and
assigned just like all other variables, but their values are also used or changed automatically
by awk. All predefined variables’ names are entirely uppercase.

Variables in awk can be assigned either numeric or string values. The kind of value a
variable holds can change over the life of a program. By default, variables are initialized

118 GAWK: Effective AWK Programming

to the empty string, which is zero if converted to a number. There is no need to explicitly
initialize a variable in awk, which is what you would do in C and in most other traditional
languages.

6.1.3.2 Assigning Variables on the Command Line

Any awk variable can be set by including a variable assignment among the arguments on
the command line when awk is invoked (see Section 2.3 [Other Command-Line Arguments,
page 38). Such an assignment has the following form:

variable=text

With it, a variable is set either at the beginning of the awk run or in between input files.
When the assignment is preceded with the -v option, as in the following:

-v variable=text

the variable is set at the very beginning, even before the BEGIN rules execute. The -v
option and its assignment must precede all the file name arguments, as well as the program
text. (See Section 2.2 [Command-Line Options|, page 31, for more information about the
-v option.) Otherwise, the variable assignment is performed at a time determined by its
position among the input file arguments—after the processing of the preceding input file
argument. For example:

awk ’{ print $n }’ n=4 inventory-shipped n=2 mail-list
prints the value of field number n for all input records. Before the first file is read, the
command line sets the variable n equal to four. This causes the fourth field to be printed in
lines from inventory-shipped. After the first file has finished, but before the second file
is started, n is set to two, so that the second field is printed in lines from mail-list:

$ awk ’{ print $n }’ n=4 inventory-shipped n=2 mail-list

- 15

-4 24

- 555-5553
- 555-3412

Command-line arguments are made available for explicit examination by the awk pro-
gram in the ARGV array (see Section 7.5.3 [Using ARGC and ARGV|, page 166). awk processes
the values of command-line assignments for escape sequences (see Section 3.2 [Escape Se-
quences|, page 48).

6.1.4 Conversion of Strings and Numbers

Number-to-string and string-to-number conversion are generally straightforward. There can
be subtleties to be aware of; this section discusses this important facet of awk.

6.1.4.1 How awk Converts Between Strings and Numbers

Strings are converted to numbers and numbers are converted to strings, if the context of the
awk program demands it. For example, if the value of either foo or bar in the expression
‘foo + bar’ happens to be a string, it is converted to a number before the addition is
performed. If numeric values appear in string concatenation, they are converted to strings.
Consider the following:

Chapter 6: Expressions 119

two = 2; three = 3
print (two three) + 4
This prints the (numeric) value 27. The numeric values of the variables two and three are

converted to strings and concatenated together. The resulting string is converted back to
the number 23, to which 4 is then added.

If, for some reason, you need to force a number to be converted to a string, concatenate
that number with the empty string, "". To force a string to be converted to a number, add
zero to that string. A string is converted to a number by interpreting any numeric prefix
of the string as numerals: "2.5" converts to 2.5, "1e3" converts to 1,000, and "25fix" has
a numeric value of 25. Strings that can’t be interpreted as valid numbers convert to zero.

The exact manner in which numbers are converted into strings is controlled by the
awk predefined variable CONVFMT (see Section 7.5 [Predefined Variables|, page 157). Num-
bers are converted using the sprintf () function with CONVFMT as the format specifier (see
Section 9.1.3 [String-Manipulation Functions]|, page 187).

CONVFMT’s default value is "%.6g", which creates a value with at most six significant
digits. For some applications, you might want to change it to specify more precision. On
most modern machines, 17 digits is usually enough to capture a floating-point number’s
value exactly.?

Strange results can occur if you set CONVFMT to a string that doesn’t tell sprintf () how
to format floating-point numbers in a useful way. For example, if you forget the ‘%4’ in the
format, awk converts all numbers to the same constant string.

As a special case, if a number is an integer, then the result of converting it to a string is
always an integer, no matter what the value of CONVFMT may be. Given the following code
fragment:

CONVFMT = "%2.2f"

a =12
b=an""
b has the value "12", not "12.00".
(N

Pre-POSIX awk Used OFMT for String Conversion

Prior to the POSIX standard, awk used the value of OFMT for converting numbers to
strings. OFMT specifies the output format to use when printing numbers with print. CONVFMT
was introduced in order to separate the semantics of conversion from the semantics of
printing. Both CONVFMT and OFMT have the same default value: "%.6g". In the vast majority
of cases, old awk programs do not change their behavior. See Section 5.1 [The print

Statement], page 93, for more information on the print statement.
N J

6.1.4.2 Locales Can Influence Conversion

Where you are can matter when it comes to converting between numbers and strings. The
local character set and language—the locale—can affect numeric formats. In particular, for
awk programs, it affects the decimal point character and the thousands-separator character.
The "C" locale, and most English-language locales, use the period character (‘.’) as the

2 Pathological cases can require up to 752 digits (!), but we doubt that you need to worry about this.

120 GAWK: Effective AWK Programming

decimal point and don’t have a thousands separator. However, many (if not most) European

and non-English locales use the comma (‘,’) as the decimal point character. European
locales often use either a space or a period as the thousands separator, if they have one.

The POSIX standard says that awk always uses the period as the decimal point when
reading the awk program source code, and for command-line variable assignments (see
Section 2.3 [Other Command-Line Arguments|, page 38). However, when interpreting input
data, for print and printf output, and for number-to-string conversion, the local decimal
point character is used. In all cases, numbers in source code and in input data cannot
have a thousands separator. Here are some examples indicating the difference in behavior,
on a GNU /Linux system:

$ export POSIXLY_CORRECT=1 Force POSIX behavior
$ gawk ’BEGIN { printf "Jjg\n", 3.1415927 }’

- 3.14159

$ LC_ALL=en_DK.utf-8 gawk ’BEGIN { printf "J/g\n", 3.1415927 }’

- 3,14159

$ echo 4,321 | gawk ’{ print $1 + 1 }’

4 5

$ echo 4,321 | LC_ALL=en_DK.utf-8 gawk ’{ print $1 + 1 }’

-4 5,321

The en_DK.utf-8 locale is for English in Denmark, where the comma acts as the decimal
point separator. In the normal "C" locale, gawk treats ‘4,321’ as 4, while in the Danish
locale, it’s treated as the full number including the fractional part, 4.321.

Some earlier versions of gawk fully complied with this aspect of the standard. How-
ever, many users in non-English locales complained about this behavior, because their data
used a period as the decimal point, so the default behavior was restored to use a period as
the decimal point character. You can use the --use-lc-numeric option (see Section 2.2
[Command-Line Options|, page 31) to force gawk to use the locale’s decimal point charac-
ter. (gawk also uses the locale’s decimal point character when in POSIX mode, either via
--posix or the POSIXLY_CORRECT environment variable, as shown previously.)

Table 6.1 describes the cases in which the locale’s decimal point character is used and
when a period is used. Some of these features have not been described yet.

Feature Default --posix or --use-lc-numeric
g Use locale Use locale
hg Use period Use locale
Input Use period Use locale
strtonum() Use period Use locale

Table 6.1: Locale decimal point versus a period

Finally, modern-day formal standards and the IEEE standard floating-point representa-
tion can have an unusual but important effect on the way gawk converts some special string
values to numbers. The details are presented in Section 15.7 [Standards Versus Existing
Practice], page 366.

Chapter 6: Expressions 121

6.2 Operators: Doing Something with Values

This section introduces the operators that make use of the values provided by constants
and variables.

6.2.1 Arithmetic Operators

The awk language uses the common arithmetic operators when evaluating expressions. All
of these arithmetic operators follow normal precedence rules and work as you would expect
them to.

The following example uses a file named grades, which contains a list of student names
as well as three test scores per student (it’s a small class):

Pat 100 97 58
Sandy 84 72 93
Chris 72 92 89
This program takes the file grades and prints the average of the scores:
$ awk ’{ sum = $2 + $3 + $4 ; avg = sum / 3
> print $1, avg }’ grades
- Pat 85
- Sandy 83
- Chris 84.3333

The following list provides the arithmetic operators in awk, in order from the highest
precedence to the lowest:

x"y

X k% y Exponentiation; x raised to the y power. ‘2 ~ 3’ has the value eight; the char-
acter sequence ‘*x*’ is equivalent to ‘’. (c.e.)

-x Negation.

+x Unary plus; the expression is converted to a number.

xX*y Multiplication.

x/y Division; because all numbers in awk are floating-point numbers, the result is
not rounded to an integer—'3 / 4’ has the value 0.75. (It is a common mistake,
especially for C programmers, to forget that all numbers in awk are floating
point, and that division of integer-looking constants produces a real number,
not an integer.)

xhy Remainder; further discussion is provided in the text, just after this list.

x+y Addition.

X-y Subtraction.

Unary plus and minus have the same precedence, the multiplication operators all have
the same precedence, and addition and subtraction have the same precedence.

When computing the remainder of ‘x % y’, the quotient is rounded toward zero to an
integer and multiplied by y. This result is subtracted from x; this operation is sometimes
known as “trunc-mod.” The following relation always holds:

b *x int(a / b) + (a % b) == a

122 GAWK: Effective AWK Programming

One possibly undesirable effect of this definition of remainder is that ‘x % y’ is negative
if x is negative. Thus:

-17 % 8 = -1
In other awk implementations, the signedness of the remainder may be machine-
dependent.

NOTE: The POSIX standard only specifies the use of ‘~’ for exponentiation.
For maximum portability, do not use the ‘*x*’ operator.

6.2.2 String Concatenation

It seemed like a good idea at the time.
—DBrian Kernighan

There is only one string operation: concatenation. It does not have a specific operator
to represent it. Instead, concatenation is performed by writing expressions next to one
another, with no operator. For example:

$ awk ’{ print "Field number one: " $1 }’ mail-list
- Field number one: Amelia
- Field number one: Anthony

¢

Without the space in the string constant after the ‘:’, the line runs together. For

example:

$ awk ’{ print "Field number one:" $1 }’ mail-list
-| Field number one:Amelia
- Field number one:Anthony

Because string concatenation does not have an explicit operator, it is often necessary
to ensure that it happens at the right time by using parentheses to enclose the items to
concatenate. For example, you might expect that the following code fragment concatenates
file and name:

file "file"
name = "name"
print "something meaningful" > file name

This produces a syntax error with some versions of Unix awk.? It is necessary to use the
following:

print "something meaningful" > (file name)

Parentheses should be used around concatenation in all but the most common contexts,
such as on the righthand side of ‘=". Be careful about the kinds of expressions used in string
concatenation. In particular, the order of evaluation of expressions used for concatenation
is undefined in the awk language. Consider this example:

BEGIN {

a = "don’t"

print (a " " (a = "panic"))
}

31t happens that BWK awk, gawk, and mawk all “get it right,” but you should not rely on this.

Chapter 6: Expressions 123

It is not defined whether the second assignment to a happens before or after the value of a
is retrieved for producing the concatenated value. The result could be either ‘don’t panic’,
or ‘panic panic’.
The precedence of concatenation, when mixed with other operators, is often counter-
intuitive. Consider this example:
$ awk ’BEGIN { print -12 " " -24 }’
4 -12-24
This “obviously” is concatenating —12, a space, and —24. But where did the space dis-
appear to? The answer lies in the combination of operator precedences and awk’s automatic
conversion rules. To get the desired result, write the program this way:

$ awk ’BEGIN { print -12 " " (-24) }’
-4 -12 -24
This forces awk to treat the ‘=’ on the ‘=24’ as unary. Otherwise, it’s parsed as follows:
—12 (" " — 24)
= —12 (0 — 24)
= —12 (—24)
= —12-24

As mentioned earlier, when mixing concatenation with other operators, parenthesize.
Otherwise, you're never quite sure what you’ll get.

6.2.3 Assignment Expressions

An assignment is an expression that stores a (usually different) value into a variable. For
example, let’s assign the value one to the variable z:

z =1
After this expression is executed, the variable z has the value one. Whatever old value
z had before the assignment is forgotten.

Assignments can also store string values. For example, the following stores the value
"this food is good" in the variable message:

thing = "food"

predicate = "good"

message = "this " thing " is " predicate
This also illustrates string concatenation. The ‘=’ sign is called an assignment operator. It
is the simplest assignment operator because the value of the righthand operand is stored
unchanged. Most operators (addition, concatenation, and so on) have no effect except
to compute a value. If the value isn’t used, there’s no reason to use the operator. An
assignment operator is different; it does produce a value, but even if you ignore it, the
assignment still makes itself felt through the alteration of the variable. We call this a side
effect.

The lefthand operand of an assignment need not be a variable (see Section 6.1.3 [Vari-
ables|, page 117); it can also be a field (see Section 4.4 [Changing the Contents of a Field],
page 67) or an array element (see Chapter 8 [Arrays in awk|, page 169). These are all called
Ivalues, which means they can appear on the lefthand side of an assignment operator. The
righthand operand may be any expression; it produces the new value that the assignment
stores in the specified variable, field, or array element. (Such values are called rvalues.)

124 GAWK: Effective AWK Programming

It is important to note that variables do not have permanent types. A variable’s type
is simply the type of whatever value was last assigned to it. In the following program
fragment, the variable foo has a numeric value at first, and a string value later on:

foo =1
print foo
foo = "bar"
print foo

When the second assignment gives foo a string value, the fact that it previously had a
numeric value is forgotten.

String values that do not begin with a digit have a numeric value of zero. After executing
the following code, the value of foo is five:

foo = "a string"

foo = foo + 5

NOTE: Using a variable as a number and then later as a string can be confusing
and is poor programming style. The previous two examples illustrate how awk
works, not how you should write your programs!

An assignment is an expression, so it has a value—the same value that is assigned. Thus,
‘z =1’ is an expression with the value one. One consequence of this is that you can write
multiple assignments together, such as:

xX=y=2z=5
This example stores the value five in all three variables (x, y, and z). It does so because
the value of ‘z = 5’, which is five, is stored into y and then the value of ‘y = z = 5’ which is
five, is stored into x.

Assignments may be used anywhere an expression is called for. For example, it is valid
to write ‘x !'= (y = 1)’ to set y to one, and then test whether x equals one. But this style
tends to make programs hard to read; such nesting of assignments should be avoided, except
perhaps in a one-shot program.

Aside from ‘=’, there are several other assignment operators that do arithmetic with the
old value of the variable. For example, the operator ‘+=’ computes a new value by adding
the righthand value to the old value of the variable. Thus, the following assignment adds
five to the value of foo:

foo += 5
This is equivalent to the following:
foo = foo + 5
Use whichever makes the meaning of your program clearer.

There are situations where using ‘+=" (or any assignment operator) is not the same as
simply repeating the lefthand operand in the righthand expression. For example:

Thanks to Pat Rankin for this example
BEGIN {
fool[rand()] += 5
for (x in foo)
print x, foolx]

Chapter 6: Expressions 125

bar[rand()] = bar[rand()] + 5
for (x in bar)
print x, bar[x]

¥

The indices of bar are practically guaranteed to be different, because rand () returns dif-
ferent values each time it is called. (Arrays and the rand() function haven’t been covered
yet. See Chapter 8 [Arrays in awk|, page 169, and see Section 9.1.2 [Numeric Functions],
page 186, for more information.) This example illustrates an important fact about assign-
ment operators: the lefthand expression is only evaluated once.

It is up to the implementation as to which expression is evaluated first, the lefthand or
the righthand. Consider this example:

i=1
ali +=2] =1 + 1
The value of a[3] could be either two or four.

Table 6.2 lists the arithmetic assignment operators. In each case, the righthand operand
is an expression whose value is converted to a number.

Operator Effect

Ivalue += increment Add increment to the value of Ivalue.

Ivalue -= decrement Subtract decrement from the value of Ivalue.
Ivalue *= coefficient Multiply the value of Ivalue by coefficient.
Ivalue /= divisor Divide the value of Ivalue by divisor.

Ivalue %= modulus Set Ivalue to its remainder by modulus.
Ivalue ~= power Raise Ivalue to the power power.

Ivalue **= power Raise Ivalue to the power power. (c.e.)

Table 6.2: Arithmetic assignment operators

NOTE: Only the ‘"=’ operator is specified by POSIX. For maximum portability,
do not use the ‘*x=’ operator.

a N
Syntactic Ambiguities Between ‘/=" and Regular Expressions

There is a syntactic ambiguity between the /= assignment operator and regexp constants
whose first character is an ‘=". This is most notable in some commercial awk versions. For
example:

$ awk /==/ /dev/null
awk: syntax error at source line 1

context is
>>> /= <K

awk: bailing out at source line 1

A workaround is:
awk ’/[=]=/’ /dev/null

gawk does not have this problem; BWK awk and mawk also do not.
- J

126 GAWK: Effective AWK Programming

6.2.4 Increment and Decrement Operators

Increment and decrement operators increase or decrease the value of a variable by one. An
assignment operator can do the same thing, so the increment operators add no power to
the awk language; however, they are convenient abbreviations for very common operations.

The operator used for adding one is written ‘++’. It can be used to increment a variable
either before or after taking its value. To pre-increment a variable v, write ‘“++v’. This adds
one to the value of v—that new value is also the value of the expression. (The assignment
expression ‘v += 1’ is completely equivalent.) Writing the ‘++’ after the variable specifies
post-increment. This increments the variable value just the same; the difference is that the
value of the increment expression itself is the variable’s old value. Thus, if foo has the value
four, then the expression ‘foo++’ has the value four, but it changes the value of foo to five.
In other words, the operator returns the old value of the variable, but with the side effect
of incrementing it.

The post-increment ‘foo++’ is nearly the same as writing ‘(foo += 1) - 1’. It is not
perfectly equivalent because all numbers in awk are floating point—in floating point, ‘foo
+ 1 - 1’ does not necessarily equal foo. But the difference is minute as long as you stick to
numbers that are fairly small (less than 10'?).

Fields and array elements are incremented just like variables. (Use ‘¢(i++)’ when you
want to do a field reference and a variable increment at the same time. The parentheses
are necessary because of the precedence of the field reference operator ‘$’.)

The decrement operator ‘--" works just like ‘++’, except that it subtracts one instead

of adding it. As with ‘++’, it can be used before the lvalue to pre-decrement or after it to
post-decrement. Following is a summary of increment and decrement expressions:

++1value Increment Ivalue, returning the new value as the value of the expression.

lvalue++ Increment lvalue, returning the old value of Ivalue as the value of the expression.

--Ivalue Decrement Ivalue, returning the new value as the value of the expression. (This
expression is like ‘++1value’, but instead of adding, it subtracts.)

lvalue-- Decrement Ivalue, returning the old value of Ivalue as the value of the expres-
sion. (This expression is like ‘Ivalue++’, but instead of adding, it subtracts.)

Chapter 6: Expressions 127

a N
Operator Evaluation Order

Doctor, it hurts when I do this!
Then don’t do that!
—Groucho Marx

What happens for something like the following?

b=26

print b += b++
Or something even stranger?

b =26

b += ++b + b++

print b

In other words, when do the various side effects prescribed by the postfix operators

(‘b++7) take effect? When side effects happen is implementation-defined. In other words, it

is up to the particular version of awk. The result for the first example may be 12 or 13, and
for the second, it may be 22 or 23.

In short, doing things like this is not recommended and definitely not anything that you

can rely upon for portability. You should avoid such things in your own programs.
- v

6.3 Truth Values and Conditions

In certain contexts, expression values also serve as “truth values”; i.e., they determine what
should happen next as the program runs. This section describes how awk defines “true”
and “false” and how values are compared.

6.3.1 True and False in awk

Many programming languages have a special representation for the concepts of “true” and
“false.” Such languages usually use the special constants true and false, or perhaps their
uppercase equivalents. However, awk is different. It borrows a very simple concept of true
and false from C. In awk, any nonzero numeric value or any nonempty string value is true.
Any other value (zero or the null string, "") is false. The following program prints ‘A
strange truth value’ three times:

BEGIN {
if (3.1415927)
print "A strange truth value"
if ("Four Score And Seven Years Ago")
print "A strange truth value"
if (j = 57)
print "A strange truth value"

3

There is a surprising consequence of the “nonzero or non-null” rule: the string constant
"0" is actually true, because it is non-null. =
6.3.2 Variable Typing and Comparison Expressions

The Guide is definitive. Reality is frequently inaccurate.
—Douglas Adams, The Hitchhiker’s Guide to the Galaxy

128 GAWK: Effective AWK Programming

Unlike in other programming languages, in awk variables do not have a fixed type.
Instead, they can be either a number or a string, depending upon the value that is assigned
to them. We look now at how variables are typed, and how awk compares variables.

6.3.2.1 String Type versus Numeric Type

Scalar objects in awk (variables, array elements, and fields) are dynamically typed. This
means their type can change as the program runs, from untyped before any use,* to string
or number, and then from string to number or number to string, as the program progresses.
(gawk also provides regexp-typed scalars, but let’s ignore that for now; see Section 6.1.2.2
[Strongly Typed Regexp Constants|, page 116.)

You can’t do much with untyped variables, other than tell that they are untyped. The
following program tests a against "" and 0; the test succeeds when a has never been assigned
a value. It also uses the built-in typeof () function (not presented yet; see Section 9.1.7
[Getting Type Information], page 210) to show a’s type:

$ gawk ’BEGIN { print (a == "" && a == 0 ?

> "a is untyped" : "a has a type!") ; print typeof(a) }’
- a is untyped

- unassigned

A scalar has numeric type when assigned a numeric value, such as from a numeric
constant, or from another scalar with numeric type:

$ gawk ’BEGIN { a = 42 ; print typeof(a)
> b = a ; print typeof(b) }’

number

number

Similarly, a scalar has string type when assigned a string value, such as from a string
constant, or from another scalar with string type:

$ gawk ’BEGIN { a = "forty two" ; print typeof(a)
> b = a ; print typeof(b) }’

string

string

So far, this is all simple and straightforward. What happens, though, when awk has to
process data from a user? Let’s start with field data. What should the following command
produce as output?

echo hello | awk ’{ printf("%s %s < 42\n", $1,
($1 < 42 7 "is" : "is not")) }’
Since ‘hello’ is alphabetic data, awk can only do a string comparison. Internally, it converts
42 into "42" and compares the two string values "hello" and "42". Here’s the result:
$ echo hello | awk ’{ printf("J}s %s < 42\n", $1,
> ($1 < 42 ? "is" : "is not")) }’
- hello is not < 42

However, what happens when data from a user looks like a number? On the one hand,
in reality, the input data consists of characters, not binary numeric values. But, on the

4 gawk calls this unassigned, as the following example shows.

Chapter 6: Expressions 129

other hand, the data looks numeric, and awk really ought to treat it as such. And indeed,
it does:
$ echo 37 | awk ’{ printf("Js J%s < 42\n", $1,
> ($1 < 42 7 "ig" : "is not")) }’
- 37 is < 42
Here are the rules for when awk treats data as a number, and for when it treats data as
a string.
The POSIX standard uses the term numeric string for input data that looks numeric.

The ‘37’ in the previous example is a numeric string. So what is the type of a numeric
string? Answer: numeric.

The type of a variable is important because the types of two variables determine how
they are compared. Variable typing follows these definitions and rules:
e A numeric constant or the result of a numeric operation has the numeric attribute.
e A string constant or the result of a string operation has the string attribute.

e Fields, getline input, FILENAME, ARGV elements, ENVIRON elements, and the elements
of an array created by match(), split(), and patsplit() that are numeric strings
have the strnum attribute.® Otherwise, they have the string attribute. Uninitialized
variables also have the strnum attribute.

e Attributes propagate across assignments but are not changed by any use.

The last rule is particularly important. In the following program, a has numeric type,
even though it is later used in a string operation:

BEGIN {
a = 12.345
b =a " is a cute number"
print b

}

When two operands are compared, either string comparison or numeric comparison may
be used. This depends upon the attributes of the operands, according to the following
symmetric matrix:

STRING NUMERIC STRNUM

STRING string string string
NUMERIC string numeric numeric
STRNUM string numeric numeric

The basic idea is that user input that looks numeric—and only user input—should be
treated as numeric, even though it is actually made of characters and is therefore also a
string. Thus, for example, the string constant " +3.14", when it appears in program source
code, is a string—even though it looks numeric—and is never treated as a number for
comparison purposes.

In short, when one operand is a “pure” string, such as a string constant, then a string
comparison is performed. Otherwise, a numeric comparison is performed. (The primary

5 Thus, a POSIX numeric string and gawk’s strnum are the same thing.

130 GAWK: Effective AWK Programming

difference between a number and a strnum is that for strnums gawk preserves the original
string value that the scalar had when it came in.)

This point bears additional emphasis: Input that looks numeric is numeric. All other
input is treated as strings.

Thus, the six-character input string ¢ +3.14’ receives the strnum attribute. In contrast,
the eight characters " +3.14" appearing in program text comprise a string constant. The
following examples print ‘1’ when the comparison between the two different constants is
true, and ‘0’ otherwise:

$ echo ’ +3.14° | awk ’{ print($0 == " +3.14") }’ True
41
$ echo ’ +3.14° | awk ’{ print($0 == "+3.14") }’ False
4 0
$ echo ’ +3.14° | awk ’{ print($0 == "3.14") }’ False
4 0
$ echo ’ +3.14’ | awk ’{ print($0 == 3.14) }’ True
41
$ echo ’ +3.14° | awk ’{ print($1 == " +3.14") }’ False
40
$ echo ’ +3.14° | awk ’{ print($1 == "+3.14") }’ True
41
$ echo ’ +3.14° | awk ’{ print($1 == "3.14") }’ False
4 0
$ echo ’ +3.14° | awk ’{ print($1 == 3.14) }’ True
41

You can see the type of an input field (or other user input) using typeof ():

$ echo hello 37 | gawk ’{ print typeof($1), typeof($2) }’
- string strnum

6.3.2.2 Comparison Operators

Comparison expressions compare strings or numbers for relationships such as equality. They
are written using relational operators, which are a superset of those in C. Table 6.3 describes
them.

Expression Result

x<y True if x is less than y

X <=y True if x is less than or equal to y

x>y True if x is greater than y

X>=y True if x is greater than or equal to y

X ==y True if x is equal to y

x =y True if x is not equal to y

x "y True if the string x matches the regexp denoted by y

x 17y True if the string x does not match the regexp denoted by y
subscript in array True if the array array has an element with the subscript subscript

Table 6.3: Relational operators

Chapter 6: Expressions 131

Comparison expressions have the value one if true and zero if false. When comparing
operands of mixed types, numeric operands are converted to strings using the value of
CONVFMT (see Section 6.1.4 [Conversion of Strings and Numbers], page 118).

Strings are compared by comparing the first character of each, then the second character
of each, and so on. Thus, "10" is less than "9". If there are two strings where one is a
prefix of the other, the shorter string is less than the longer one. Thus, "abc" is less than
"abcd".

4)

It is very easy to accidentally mistype the ‘==’ operator and leave off one of the
characters. The result is still valid awk code, but the program does not do what is intended:

if (a = b) # oops! should be a ==

[

else

Unless b happens to be zero or the null string, the if part of the test always succeeds.
Because the operators are so similar, this kind of error is very difficult to spot when scanning
the source code.

The following list of expressions illustrates the kinds of comparisons awk performs, as
well as what the result of each comparison is:

1.5<=2.0
Numeric comparison (true)

n abC n >= n Xyz n
String comparison (false)

1.5 1= " 42

String comparison (true)
"1e2" < "3

String comparison (true)
a=2; b=
a == String comparison (true)

a=2;b="+2"
a== String comparison (false)
In this example:

$ echo 1e2 3 | awk ’{ print ($1 < $2) ? "true" : "false" }’
- false

the result is ‘false’ because both $1 and $2 are user input. They are numeric strings—
therefore both have the strnum attribute, dictating a numeric comparison. The purpose of
the comparison rules and the use of numeric strings is to attempt to produce the behavior
that is “least surprising,” while still “doing the right thing.”

String comparisons and regular expression comparisons are very different. For example:
X == ||fooll
has the value one, or is true if the variable x is precisely ‘foo’. By contrast:
x ~ /foo/

132 GAWK: Effective AWK Programming

has the value one if x contains ‘foo’, such as "Oh, what a fool am I!".

The righthand operand of the ‘~” and ‘!~ operators may be either a regexp constant
(/.../) or an ordinary expression. In the latter case, the value of the expression as a string
is used as a dynamic regexp (see Section 3.1 [How to Use Regular Expressions|, page 47;
also see Section 3.6 [Using Dynamic Regexps|, page 55).

A constant regular expression in slashes by itself is also an expression. /regexp/ is an
abbreviation for the following comparison expression:

$0 ~ /regexp/
One special place where /foo/ is not an abbreviation for ‘$0 ~ /foo/’ is when it is the

righthand operand of ‘~” or ‘!~’. See Section 6.1.2 [Using Regular Expression Constants],
page 115, where this is discussed in more detail.

6.3.2.3 String Comparison Based on Locale Collating Order

The POSIX standard used to say that all string comparisons are performed based on the
locale’s collating order. This is the order in which characters sort, as defined by the locale
(for more discussion, see Section 6.6 [Where You Are Makes a Difference], page 137). This
order is usually very different from the results obtained when doing straight byte-by-byte
comparison.®

Because this behavior differs considerably from existing practice, gawk only implemented
it when in POSIX mode (see Section 2.2 [Command-Line Options|, page 31). Here is an
example to illustrate the difference, in an en_US.UTF-8 locale:

$ gawk ’BEGIN { printf("ABC < abc = Js\n",

> ("ABC" < "abc" ? "TRUE" : "FALSE")) }’

- ABC < abc = TRUE

$ gawk --posix ’BEGIN { printf("ABC < abc = J}s\n",

> (IIABC“ < llabcll ? n TRUEII : IIFALSEII)) } J
- ABC < abc = FALSE

Fortunately, as of August 2016, comparison based on locale collating order is no longer
required for the == and != operators.” However, comparison based on locales is still required
for <, <=, >, and >=. POSIX thus recommends as follows:

Since the == operator checks whether strings are identical, not whether they
collate equally, applications needing to check whether strings collate equally
can use:

a<=b&& a>»o

As of version 4.2, gawk continues to use locale collating order for <, <=, > and >= only
in POSIX mode.

6.3.3 Boolean Expressions

A Boolean expression is a combination of comparison expressions or matching expressions,
using the Boolean operators “or” (‘| |”), “and” (‘&&’), and “not” (‘!’), along with parentheses
to control nesting. The truth value of the Boolean expression is computed by combining

6 Technically, string comparison is supposed to behave the same way as if the strings were compared with
the C strcoll() function.

" See the Austin Group website.

http://austingroupbugs.net/view.php?id=1070

Chapter 6: Expressions 133

the truth values of the component expressions. Boolean expressions are also referred to as
logical expressions. The terms are equivalent.

Boolean expressions can be used wherever comparison and matching expressions can be
used. They can be used in if, while, do, and for statements (see Section 7.4 [Control
Statements in Actions|, page 148). They have numeric values (one if true, zero if false)
that come into play if the result of the Boolean expression is stored in a variable or used in
arithmetic.

In addition, every Boolean expression is also a valid pattern, so you can use one as a
pattern to control the execution of rules. The Boolean operators are:

booleanl && boolean2
True if both booleanl and boolean2 are true. For example, the following state-
ment prints the current input record if it contains both ‘edu’ and ‘1i’:
if ($0 ~ /edu/ && $0 ~ /1i/) print
The subexpression boolean2 is evaluated only if booleanl is true. This can
make a difference when boolean2 contains expressions that have side effects. In

the case of ‘§0 ~ /foo/ && ($2 == bar++)’, the variable bar is not incremented
if there is no substring ‘foo’ in the record.

booleanl || boolean2
True if at least one of booleanl or boolean?2 is true. For example, the following
statement prints all records in the input that contain either ‘edu’ or ‘1i’:

if ($0 ~ /edu/ || $0 - /1i/) print
The subexpression boolean2 is evaluated only if booleanl is false. This can
make a difference when boolean2 contains expressions that have side effects.

(Thus, this test never really distinguishes records that contain both ‘edu’ and
‘1li’—as soon as ‘edu’ is matched, the full test succeeds.)

! boolean True if boolean is false. For example, the following program prints ‘no home!’
in the unusual event that the HOME environment variable is not defined:

BEGIN { if (! ("HOME" in ENVIRON))
print "no home!" }

(The in operator is described in Section 8.1.2 [Referring to an Array Element],
page 171.)

The ‘&4& and ‘||’ operators are called short-circuit operators because of the way they
work. Evaluation of the full expression is “short-circuited” if the result can be determined
partway through its evaluation.

Statements that end with ‘&&’ or ‘| |’ can be continued simply by putting a newline after
them. But you cannot put a newline in front of either of these operators without using
backslash continuation (see Section 1.6 [awk Statements Versus Lines|, page 28).

The actual value of an expression using the ‘!’ operator is either one or zero, depending
upon the truth value of the expression it is applied to. The ¢!’ operator is often useful for
changing the sense of a flag variable from false to true and back again. For example, the
following program is one way to print lines in between special bracketing lines:

$1 == "START" { interested = ! interested; next }
interested { print }

134 GAWK: Effective AWK Programming

$1 == "END" { interested = ! interested; next }

The variable interested, as with all awk variables, starts out initialized to zero, which is
also false. When a line is seen whose first field is ‘START’, the value of interested is toggled
to true, using ‘!’. The next rule prints lines as long as interested is true. When a line is
seen whose first field is ‘END’, interested is toggled back to false.®

Most commonly, the ‘!’ operator is used in the conditions of if and while statements,
where it often makes more sense to phrase the logic in the negative:

if (! some condition || some other condition) {
do whatever processing ...

}

NOTE: The next statement is discussed in Section 7.4.8 [The next Statement],
page 154. next tells awk to skip the rest of the rules, get the next record, and
start processing the rules over again at the top. The reason it’s there is to avoid
printing the bracketing ‘START’ and ‘END’ lines.

6.3.4 Conditional Expressions

A conditional expression is a special kind of expression that has three operands. It allows
you to use one expression’s value to select one of two other expressions. The conditional
expression in awk is the same as in the C language, as shown here:

selector 7 if-true-exp : if-false-exp

There are three subexpressions. The first, selector, is always computed first. If it is “true”
(not zero or not null), then if-true-exp is computed next, and its value becomes the value of
the whole expression. Otherwise, if-false-exp is computed next, and its value becomes the
value of the whole expression. For example, the following expression produces the absolute
value of x:

x> 07?7 x : -xX

Each time the conditional expression is computed, only one of if-true-exp and if-false-exp
is used; the other is ignored. This is important when the expressions have side effects. For
example, this conditional expression examines element i of either array a or array b, and
increments i:

x ==y 7 ali++] : bli++]

This is guaranteed to increment i exactly once, because each time only one of the two
increment expressions is executed and the other is not. See Chapter 8 [Arrays in awk],
page 169, for more information about arrays.

As a minor gawk extension, a statement that uses ‘?:’ can be continued simply by putting
a newline after either character. However, putting a newline in front of either character
does not work without using backslash continuation (see Section 1.6 [awk Statements Versus
Lines|, page 28). If -—posix is specified (see Section 2.2 [Command-Line Options]|, page 31),
this extension is disabled.

8 This program has a bug; it prints lines starting with ‘END’. How would you fix it?

Chapter 6: Expressions 135

6.4 Function Calls

A function is a name for a particular calculation. This enables you to ask for it by name at
any point in the program. For example, the function sqrt () computes the square root of
a number.

A fixed set of functions are built in, which means they are available in every awk program.
The sqrt () function is one of these. See Section 9.1 [Built-in Functions], page 185, for a
list of built-in functions and their descriptions. In addition, you can define functions for
use in your program. See Section 9.2 [User-Defined Functions], page 211, for instructions
on how to do this. Finally, gawk lets you write functions in C or C++ that may be called
from your program (see Chapter 16 [Writing Extensions for gawk|, page 369).

The way to use a function is with a function call expression, which consists of the
function name followed immediately by a list of arguments in parentheses. The arguments
are expressions that provide the raw materials for the function’s calculations. When there
is more than one argument, they are separated by commas. If there are no arguments, just
write ‘()7 after the function name. The following examples show function calls with and
without arguments:

sqrt(x"2 + y~2) one argument
atan2(y, x) two arquments
rand () no arguments

CAUTION: Do not put any space between the function name and the open-
ing parenthesis! A user-defined function name looks just like the name of a
variable—a space would make the expression look like concatenation of a vari-
able with an expression inside parentheses. With built-in functions, space before
the parenthesis is harmless, but it is best not to get into the habit of using space
to avoid mistakes with user-defined functions.

Each function expects a particular number of arguments. For example, the sqrt ()
function must be called with a single argument, the number of which to take the square
root:

sqrt (argument)

Some of the built-in functions have one or more optional arguments. If those arguments
are not supplied, the functions use a reasonable default value. See Section 9.1 [Built-in
Functions|, page 185, for full details. If arguments are omitted in calls to user-defined
functions, then those arguments are treated as local variables. Such local variables act like
the empty string if referenced where a string value is required, and like zero if referenced
where a numeric value is required (see Section 9.2 [User-Defined Functions], page 211).

As an advanced feature, gawk provides indirect function calls, which is a way to choose
the function to call at runtime, instead of when you write the source code to your program.
We defer discussion of this feature until later; see Section 9.3 [Indirect Function Calls],
page 221.

Like every other expression, the function call has a value, often called the return value,
which is computed by the function based on the arguments you give it. In this example, the
return value of ‘sqrt(argument)’ is the square root of argument. The following program
reads numbers, one number per line, and prints the square root of each one:

$ awk ’{ print "The square root of", $1, "is", sqrt($1) }’

136 GAWK: Effective AWK Programming

1

- The square root of 1 is 1

3

- The square root of 3 is 1.73205
5

- The square root of 5 is 2.23607
Ctrl-d

A function can also have side effects, such as assigning values to certain variables or doing
I/0. This program shows how the match() function (see Section 9.1.3 [String-Manipulation
Functions|, page 187) changes the variables RSTART and RLENGTH:

{
if (match($1, $2))
print RSTART, RLENGTH
else
print "no match"
}

Here is a sample run:

$ awk -f matchit.awk
aaccdd c+

-4 3 2

foo bar

-4 no match

abcdefg e

4 51

6.5 Operator Precedence (How Operators Nest)

Operator precedence determines how operators are grouped when different operators appear
close by in one expression. For example, ‘*’ has higher precedence than ‘+’; thus, ‘a + b *
¢’ means to multiply b and ¢, and then add a to the product (i.e., ‘a + (b * ¢)’).

The normal precedence of the operators can be overruled by using parentheses. Think of
the precedence rules as saying where the parentheses are assumed to be. In fact, it is wise
to always use parentheses whenever there is an unusual combination of operators, because
other people who read the program may not remember what the precedence is in this case.
Even experienced programmers occasionally forget the exact rules, which leads to mistakes.
Explicit parentheses help prevent any such mistakes.

When operators of equal precedence are used together, the leftmost operator groups
first, except for the assignment, conditional, and exponentiation operators, which group in
the opposite order. Thus, ‘a - b + ¢’ groups as ‘(a - b) + ¢’ and ‘a=b = c’ groups as ‘a =
(b=2c)’.

Normally the precedence of prefix unary operators does not matter, because there is only
one way to interpret them: innermost first. Thus, ‘$++i’ means ‘$ (++1)’ and ‘++$x’ means
‘++($x)’. However, when another operator follows the operand, then the precedence of the
unary operators can matter. ‘$x~2’ means ‘($x) ~2’, but ‘-x"2’ means ‘- (x~2)’, because ‘-’
has lower precedence than ‘~’, whereas ‘¢’ has higher precedence. Also, operators cannot be
combined in a way that violates the precedence rules; for example, ‘$$0++--"is not a valid

Chapter 6: Expressions 137

expression because the first ‘¢’ has higher precedence than the ‘++’; to avoid the problem
the expression can be rewritten as ‘$($0++)--".

This list presents awk’s operators, in order of highest to lowest precedence:

¢...)

* /%

+ -

Grouping,.

Field reference.

Increment, decrement.

Exponentiation. These operators group right to left.
Unary plus, minus, logical “not.”

Multiplication, division, remainder.

Addition, subtraction.

String concatenation

There is no special symbol for concatenation. The operands are simply written
side by side (see Section 6.2.2 [String Concatenation|, page 122).

<<<===1=>>=>>| |&

Relational and redirection. The relational operators and the redirections have
the same precedence level. Characters such as ‘>’ serve both as relationals and
as redirections; the context distinguishes between the two meanings.

Note that the I/O redirection operators in print and printf statements belong
to the statement level, not to expressions. The redirection does not produce an
expression that could be the operand of another operator. As a result, it does
not make sense to use a redirection operator near another operator of lower
precedence without parentheses. Such combinations (e.g., ‘print foo >a ? b
: ¢’) result in syntax errors. The correct way to write this statement is ‘print
foo>(a?b: c).

Matching, nonmatching.

in Array membership.

&& Logical “and.”

'l Logical “or.”

7 Conditional. This operator groups right to left.
= 4= —= %= [= = "= k%=

Assignment. These operators group right to left.

NOTE: The ‘1&’, ‘*%’, and ‘**=" operators are not specified by POSIX. For
maximum portability, do not use them.

6.6 Where You Are Makes a Difference

Modern systems support the notion of locales: a way to tell the system about the local
character set and language. The ISO C standard defines a default "C" locale, which is an
environment that is typical of what many C programmers are used to.

138 GAWK: Effective AWK Programming

Once upon a time, the locale setting used to affect regexp matching, but this is no longer
true (see Section A.8 [Regexp Ranges and Locales: A Long Sad Story], page 445).

Locales can affect record splitting. For the normal case of ‘RS = "\n"’, the locale is
largely irrelevant. For other single-character record separators, setting ‘LC_ALL=C’ in the
environment will give you much better performance when reading records. Otherwise, gawk

has to make several function calls, per input character, to find the record terminator.

Locales can affect how dates and times are formatted (see Section 9.1.5 [Time Functions],
page 202). For example, a common way to abbreviate the date September 4, 2015, in the
United States is “9/4/15.” In many countries in Europe, however, it is abbreviated “4.9.15.”
Thus, the ‘%x’ specification in a "US" locale might produce ‘9/4/15’, while in a "EUROPE"
locale, it might produce ‘4.9.15’.

According to POSIX, string comparison is also affected by locales (similar to regular
expressions). The details are presented in Section 6.3.2.3 [String Comparison Based on
Locale Collating Order|, page 132.

Finally, the locale affects the value of the decimal point character used when gawk parses
input data. This is discussed in detail in Section 6.1.4 [Conversion of Strings and Numbers],
page 118.

6.7 Summary

e Expressions are the basic elements of computation in programs. They are built from
constants, variables, function calls, and combinations of the various kinds of values
with operators.

e awk supplies three kinds of constants: numeric, string, and regexp. gawk lets you
specify numeric constants in octal and hexadecimal (bases 8 and 16) as well as decimal
(base 10). In certain contexts, a standalone regexp constant such as /foo/ has the
same meaning as ‘$0 ~ /foo/’.

e Variables hold values between uses in computations. A number of built-in variables
provide information to your awk program, and a number of others let you control how
awk behaves.

e Numbers are automatically converted to strings, and strings to numbers, as needed by
awk. Numeric values are converted as if they were formatted with sprintf () using the
format in CONVFMT. Locales can influence the conversions.

e awk provides the usual arithmetic operators (addition, subtraction, multiplication, di-
vision, modulus), and unary plus and minus. It also provides comparison operators,
Boolean operators, an array membership testing operator, and regexp matching oper-
ators. String concatenation is accomplished by placing two expressions next to each
other; there is no explicit operator. The three-operand ‘?:’ operator provides an “if-
else” test within expressions.

e Assignment operators provide convenient shorthands for common arithmetic opera-
tions.

e In awk, a value is considered to be true if it is nonzero or non-null. Otherwise, the
value is false.

e A variable’s type is set upon each assignment and may change over its lifetime. The
type determines how it behaves in comparisons (string or numeric).

Chapter 6: Expressions 139

e Function calls return a value that may be used as part of a larger expression. Expres-
sions used to pass parameter values are fully evaluated before the function is called. awk
provides built-in and user-defined functions; this is described in Chapter 9 [Functions],
page 185.

e Operator precedence specifies the order in which operations are performed, unless ex-

plicitly overridden by parentheses. awk’s operator precedence is compatible with that
of C.

e Locales can affect the format of data as output by an awk program, and occasionally
the format for data read as input.

Chapter 7: Patterns, Actions, and Variables 141

7 Patterns, Actions, and Variables

As you have already seen, each awk statement consists of a pattern with an associated
action. This chapter describes how you build patterns and actions, what kinds of things
you can do within actions, and awk’s predefined variables.

The pattern—action rules and the statements available for use within actions form the
core of awk programming. In a sense, everything covered up to here has been the foundation
that programs are built on top of. Now it’s time to start building something useful.

7.1 Pattern Elements

Patterns in awk control the execution of rules—a rule is executed when its pattern matches
the current input record. The following is a summary of the types of awk patterns:

/regular expression/
A regular expression. It matches when the text of the input record fits the
regular expression. (See Chapter 3 [Regular Expressions|, page 47.)

expression
A single expression. It matches when its value is nonzero (if a number) or
non-null (if a string). (See Section 7.1.2 [Expressions as Patterns|, page 141.)

begpat, endpat
A pair of patterns separated by a comma, specifying a range of records. The
range includes both the initial record that matches begpat and the final record
that matches endpat. (See Section 7.1.3 [Specifying Record Ranges with Pat-
terns|, page 143.)

BEGIN

END Special patterns for you to supply startup or cleanup actions for your awk
program. (See Section 7.1.4 [The BEGIN and END Special Patterns|, page 144.)

BEGINFILE

ENDFILE Special patterns for you to supply startup or cleanup actions to be done on a
per-file basis. (See Section 7.1.5 [The BEGINFILE and ENDFILE Special Patterns],
page 145.)

empty The empty pattern matches every input record. (See Section 7.1.6 [The Empty
Pattern], page 146.)

7.1.1 Regular Expressions as Patterns

Regular expressions are one of the first kinds of patterns presented in this book. This kind
of pattern is simply a regexp constant in the pattern part of a rule. Its meaning is ‘$0 ~
/pattern/’. The pattern matches when the input record matches the regexp. For example:

/fool|bar|baz/ { buzzwords++ }
END { print buzzwords, "buzzwords seen" }
7.1.2 Expressions as Patterns

Any awk expression is valid as an awk pattern. The pattern matches if the expression’s
value is nonzero (if a number) or non-null (if a string). The expression is reevaluated each

142 GAWK: Effective AWK Programming

time the rule is tested against a new input record. If the expression uses fields such as $1,
the value depends directly on the new input record’s text; otherwise, it depends on only
what has happened so far in the execution of the awk program.

Comparison expressions, using the comparison operators described in Section 6.3.2 [Vari-
able Typing and Comparison Expressions|, page 127, are a very common kind of pattern.
Regexp matching and nonmatching are also very common expressions. The left operand
of the *~7 and ‘!~ operators is a string. The right operand is either a constant regular
expression enclosed in slashes (/regexp/), or any expression whose string value is used as
a dynamic regular expression (see Section 3.6 [Using Dynamic Regexps|, page 55). The
following example prints the second field of each input record whose first field is precisely
‘1i’:

$ awk ’$1 == "1i" { print $2 }’ mail-list

(There is no output, because there is no person with the exact name ‘1i’.) Contrast this
with the following regular expression match, which accepts any record with a first field that
contains ‘1i’:

$ awk ’$1 ~ /1i/ { print $2 }’ mail-list
-+ 555-5553
- 555-6699

A regexp constant as a pattern is also a special case of an expression pattern. The
expression /1i/ has the value one if ‘1i’ appears in the current input record. Thus, as a
pattern, /1i/ matches any record containing ‘1i’.

Boolean expressions are also commonly used as patterns. Whether the pattern matches
an input record depends on whether its subexpressions match. For example, the following
command prints all the records in mail-1ist that contain both ‘edu’ and ‘1i’:

$ awk ’/edu/ && /1i/’ mail-list
- Samuel 555-3430 samuel .lanceolis@shu.edu A

The following command prints all records in mail-1list that contain either ‘edu’ or ‘1i’
(or both, of course):

$ awk ’/edu/ || /1i/’ mail-list

- Amelia 555-5553 amelia.zodiacusque@gmail.com F
- Broderick 555-0542 broderick.aliquotiens@yahoo.com R
-1 Fabius 555-1234 fabius.undevicesimus@ucb.edu F
- Julie 555-6699 julie.perscrutabor@skeeve.com F
- Samuel 555-3430 samuel.lanceolis@shu.edu A
- Jean-Paul 555-2127 jeanpaul.campanorum@nyu.edu R

The following command prints all records in mail-list that do not contain the string
‘1i%:
$ awk ’! /1i/’ mail-list
- Anthony 555-3412 anthony.asserturo@hotmail.com
-1 Becky 555-7685 becky.algebrarum@gmail.com
- Bill 555-1675 bill.drowning@hotmail.com
- Camilla 555-2912 camilla.infusarum@skynet.be
- Fabius 555-1234 fabius.undevicesimus@ucb.edu
- Martin 555-6480 martin.codicibus@hotmail.com

s B= v R i i =

Chapter 7: Patterns, Actions, and Variables 143

- Jean-Paul 555-2127 jeanpaul.campanorum@nyu.edu R

The subexpressions of a Boolean operator in a pattern can be constant regular expres-
sions, comparisons, or any other awk expressions. Range patterns are not expressions, so
they cannot appear inside Boolean patterns. Likewise, the special patterns BEGIN, END,
BEGINFILE, and ENDFILE, which never match any input record, are not expressions and
cannot appear inside Boolean patterns.

The precedence of the different operators that can appear in patterns is described in
Section 6.5 [Operator Precedence (How Operators Nest)], page 136.

7.1.3 Specifying Record Ranges with Patterns

A range pattern is made of two patterns separated by a comma, in the form ‘begpat,
endpat’. It is used to match ranges of consecutive input records. The first pattern, begpat,
controls where the range begins, while endpat controls where the pattern ends. For example,
the following:

awk ’$1 == "on", $1 == "off"’ myfile
prints every record in myfile between ‘on’/‘off’ pairs, inclusive.

A range pattern starts out by matching begpat against every input record. When a
record matches begpat, the range pattern is turned on, and the range pattern matches this
record as well. As long as the range pattern stays turned on, it automatically matches every
input record read. The range pattern also matches endpat against every input record; when
this succeeds, the range pattern is turned off again for the following record. Then the range
pattern goes back to checking begpat against each record.

The record that turns on the range pattern and the one that turns it off both match the
range pattern. If you don’t want to operate on these records, you can write if statements
in the rule’s action to distinguish them from the records you are interested in.

It is possible for a pattern to be turned on and off by the same record. If the record
satisfies both conditions, then the action is executed for just that record. For example,
suppose there is text between two identical markers (e.g., the ‘%’ symbol), each on its own
line, that should be ignored. A first attempt would be to combine a range pattern that
describes the delimited text with the next statement (not discussed yet, see Section 7.4.8
[The next Statement|, page 154). This causes awk to skip any further processing of the
current record and start over again with the next input record. Such a program looks like
this:

/7687, /7 h$/ { next }

{ print }

This program fails because the range pattern is both turned on and turned off by the first
line, which just has a ‘%’ on it. To accomplish this task, write the program in the following
manner, using a flag:

/"%$/ { skip = ! skip; next }

skip == 1 { next } # skip lines with ‘skip’ set

In a range pattern, the comma (‘,”) has the lowest precedence of all the operators (i.e.,

it is evaluated last). Thus, the following program attempts to combine a range pattern with
another, simpler test:

echo Yes | awk ’/1/,/2/ || /Yes/’

144 GAWK: Effective AWK Programming

The intent of this program is ‘(/1/,/2/) || /Yes/’. However, awk interprets this as
‘/1/, (/2/ || /Yes/)’. This cannot be changed or worked around; range patterns do not
combine with other patterns:

$ echo Yes | gawk ’(/1/,/2/) || /Yes/’
gawk: cmd. line:1: (/1/,/2/) || /Yes/
gawk: cmd. line:1: " syntax error

As a minor point of interest, although it is poor style, POSIX allows you to put a newline
after the comma in a range pattern.

7.1.4 The BEGIN and END Special Patterns

All the patterns described so far are for matching input records. The BEGIN and END special
patterns are different. They supply startup and cleanup actions for awk programs. BEGIN
and END rules must have actions; there is no default action for these rules because there is
no current record when they run. BEGIN and END rules are often referred to as “BEGIN and
END blocks” by longtime awk programmers.

7.1.4.1 Startup and Cleanup Actions

A BEGIN rule is executed once only, before the first input record is read. Likewise, an END
rule is executed once only, after all the input is read. For example:

$ awk ’

> BEGIN { print "Analysis of \"1i\"" }

> /1i/ { ++n }

> END { print "\"1i\" appears in", n, "records." }’ mail-list
- Analysis of "1i"

- "1i" appears in 4 records.

This program finds the number of records in the input file mail-1ist that contain the
string ‘1i’. The BEGIN rule prints a title for the report. There is no need to use the BEGIN
rule to initialize the counter n to zero, as awk does this automatically (see Section 6.1.3
[Variables|, page 117). The second rule increments the variable n every time a record
containing the pattern ‘1i’ is read. The END rule prints the value of n at the end of the run.

The special patterns BEGIN and END cannot be used in ranges or with Boolean operators
(indeed, they cannot be used with any operators). An awk program may have multiple
BEGIN and/or END rules. They are executed in the order in which they appear: all the
BEGIN rules at startup and all the END rules at termination. BEGIN and END rules may
be intermixed with other rules. This feature was added in the 1987 version of awk and is
included in the POSIX standard. The original (1978) version of awk required the BEGIN
rule to be placed at the beginning of the program, the END rule to be placed at the end,
and only allowed one of each. This is no longer required, but it is a good idea to follow this
template in terms of program organization and readability.

Multiple BEGIN and END rules are useful for writing library functions, because each library
file can have its own BEGIN and/or END rule to do its own initialization and/or cleanup. The
order in which library functions are named on the command line controls the order in which
their BEGIN and END rules are executed. Therefore, you have to be careful when writing
such rules in library files so that the order in which they are executed doesn’t matter.
See Section 2.2 [Command-Line Options|, page 31, for more information on using library

Chapter 7: Patterns, Actions, and Variables 145

functions. See Chapter 10 [A Library of awk Functions|, page 231, for a number of useful
library functions.

If an awk program has only BEGIN rules and no other rules, then the program exits after
the BEGIN rules are run.! However, if an END rule exists, then the input is read, even if
there are no other rules in the program. This is necessary in case the END rule checks the
FNR and NR variables.

7.1.4.2 Input/Output from BEGIN and END Rules

There are several (sometimes subtle) points to be aware of when doing I/O from a BEGIN
or END rule. The first has to do with the value of $0 in a BEGIN rule. Because BEGIN rules
are executed before any input is read, there simply is no input record, and therefore no
fields, when executing BEGIN rules. References to $0 and the fields yield a null string or
zero, depending upon the context. One way to give $0 a real value is to execute a getline
command without a variable (see Section 4.10 [Explicit Input with getline|, page 81).
Another way is simply to assign a value to $0.

The second point is similar to the first, but from the other direction. Traditionally, due
largely to implementation issues, $0 and NF were undefined inside an END rule. The POSIX
standard specifies that NF is available in an END rule. It contains the number of fields from
the last input record. Most probably due to an oversight, the standard does not say that $0
is also preserved, although logically one would think that it should be. In fact, all of BWK
awk, mawk, and gawk preserve the value of $0 for use in END rules. Be aware, however, that
some other implementations and many older versions of Unix awk do not.

The third point follows from the first two. The meaning of ‘print’ inside a BEGIN or END
rule is the same as always: ‘print $0°. If $0 is the null string, then this prints an empty
record. Many longtime awk programmers use an unadorned ‘print’ in BEGIN and END rules,
to mean ‘print ""’, relying on $0 being null. Although one might generally get away with
this in BEGIN rules, it is a very bad idea in END rules, at least in gawk. It is also poor style,
because if an empty line is needed in the output, the program should print one explicitly.

Finally, the next and nextfile statements are not allowed in a BEGIN rule, because
the implicit read-a-record-and-match-against-the-rules loop has not started yet. Similarly,
those statements are not valid in an END rule, because all the input has been read. (See
Section 7.4.8 [The next Statement|, page 154, and see Section 7.4.9 [The nextfile State-
ment|, page 155.)

7.1.5 The BEGINFILE and ENDFILE Special Patterns

This section describes a gawk-specific feature.

Two special kinds of rule, BEGINFILE and ENDFILE, give you “hooks” into gawk’s
command-line file processing loop. As with the BEGIN and END rules (see the previous
section), all BEGINFILE rules in a program are merged, in the order they are read by gawk,
and all ENDFILE rules are merged as well.

The body of the BEGINFILE rules is executed just before gawk reads the first record from
a file. FILENAME is set to the name of the current file, and FNR is set to zero.

! The original version of awk kept reading and ignoring input until the end of the file was seen.

146 GAWK: Effective AWK Programming

The BEGINFILE rule provides you the opportunity to accomplish two tasks that would
otherwise be difficult or impossible to perform:

e You can test if the file is readable. Normally, it is a fatal error if a file named on the
command line cannot be opened for reading. However, you can bypass the fatal error
and move on to the next file on the command line.

You do this by checking if the ERRNO variable is not the empty string; if so, then gawk
was not able to open the file. In this case, your program can execute the nextfile
statement (see Section 7.4.9 [The nextfile Statement|, page 155). This causes gawk
to skip the file entirely. Otherwise, gawk exits with the usual fatal error.

e If you have written extensions that modify the record handling (by inserting an “input
parser”; see Section 16.4.5.4 [Customized Input Parsers|, page 382), you can invoke
them at this point, before gawk has started processing the file. (This is a very advanced
feature, currently used only by the gawkextlib project.)

The ENDFILE rule is called when gawk has finished processing the last record in an input
file. For the last input file, it will be called before any END rules. The ENDFILE rule is
executed even for empty input files.

Normally, when an error occurs when reading input in the normal input-processing loop,
the error is fatal. However, if an ENDFILE rule is present, the error becomes non-fatal, and
instead ERRNO is set. This makes it possible to catch and process I/O errors at the level of
the awk program.

The next statement (see Section 7.4.8 [The next Statement], page 154) is not allowed
inside either a BEGINFILE or an ENDFILE rule. The nextfile statement is allowed only
inside a BEGINFILE rule, not inside an ENDFILE rule.

The getline statement (see Section 4.10 [Explicit Input with getline|, page 81) is re-
stricted inside both BEGINFILE and ENDFILE: only redirected forms of getline are allowed.

BEGINFILE and ENDFILE are gawk extensions. In most other awk implementations, or if
gawk is in compatibility mode (see Section 2.2 [Command-Line Options|, page 31), they are
not special.

7.1.6 The Empty Pattern

An empty (i.e., nonexistent) pattern is considered to match every input record. For example,
the program:

awk ’{ print $1 }’ mail-list
prints the first field of every record.

7.2 Using Shell Variables in Programs

awk programs are often used as components in larger programs written in shell. For example,
it is very common to use a shell variable to hold a pattern that the awk program searches
for. There are two ways to get the value of the shell variable into the body of the awk
program.

A common method is to use shell quoting to substitute the variable’s value into the
program inside the script. For example, consider the following program:

printf "Enter search pattern: "

https://sourceforge.net/projects/gawkextlib

Chapter 7: Patterns, Actions, and Variables 147

read pattern
awk "/$pattern/ "’{ nmatches++ }
END { print nmatches, "found" }’ /path/to/data

The awk program consists of two pieces of quoted text that are concatenated together to
form the program. The first part is double-quoted, which allows substitution of the pattern
shell variable inside the quotes. The second part is single-quoted.

Variable substitution via quoting works, but can potentially be messy. It requires a good
understanding of the shell’s quoting rules (see Section 1.1.6 [Shell Quoting Issues|, page 21),
and it’s often difficult to correctly match up the quotes when reading the program.

A better method is to use awk’s variable assignment feature (see Section 6.1.3.2 [Assigning
Variables on the Command Line], page 118) to assign the shell variable’s value to an awk
variable. Then use dynamic regexps to match the pattern (see Section 3.6 [Using Dynamic
Regexps|, page 55). The following shows how to redo the previous example using this
technique:

printf "Enter search pattern: "
read pattern
awk -v pat="$pattern" ’$0 ~ pat { nmatches++ }
END { print nmatches, "found" }’ /path/to/data

Now, the awk program is just one single-quoted string. The assignment ‘-v

pat="$pattern"’ still requires double quotes, in case there is whitespace in the value
of $pattern. The awk variable pat could be named pattern too, but that would be
more confusing. Using a variable also provides more flexibility, as the variable can be
used anywhere inside the program—for printing, as an array subscript, or for any other
use—without requiring the quoting tricks at every point in the program.

7.3 Actions

An awk program or script consists of a series of rules and function definitions interspersed.
(Functions are described later. See Section 9.2 [User-Defined Functions|, page 211.) A rule
contains a pattern and an action, either of which (but not both) may be omitted. The
purpose of the action is to tell awk what to do once a match for the pattern is found. Thus,
in outline, an awk program generally looks like this:

[pattern] { action }
pattern [{ action }]

function name(args) { ... }

An action consists of one or more awk statements, enclosed in braces (‘{...}’). Each
statement specifies one thing to do. The statements are separated by newlines or semicolons.
The braces around an action must be used even if the action contains only one statement,
or if it contains no statements at all. However, if you omit the action entirely, omit the
braces as well. An omitted action is equivalent to ‘{ print $0 }':

/foo/ { % match foo, do nothing — emply action
/foo/ match foo, print the record — omitted action

The following types of statements are supported in awk:

148 GAWK: Effective AWK Programming

Expressions
Call functions or assign values to variables (see Chapter 6 [Expressions],
page 113). Executing this kind of statement simply computes the value
of the expression. This is useful when the expression has side effects (see
Section 6.2.3 [Assignment Expressions|, page 123).

Control statements
Specify the control flow of awk programs. The awk language gives you C-like
constructs (if, for, while, and do) as well as a few special ones (see Section 7.4
[Control Statements in Actions|, page 148).

Compound statements
Enclose one or more statements in braces. A compound statement is used in
order to put several statements together in the body of an if, while, do, or
for statement.

Input statements
Use the getline command (see Section 4.10 [Explicit Input with getline],
page 81). Also supplied in awk are the next statement (see Section 7.4.8 [The
next Statement|, page 154) and the nextfile statement (see Section 7.4.9 [The
nextfile Statement|, page 155).

Output statements
Such as print and printf. See Chapter 5 [Printing Output|, page 93.

Deletion statements
For deleting array elements. See Section 8.4 [The delete Statement], page 178.

7.4 Control Statements in Actions

Control statements, such as if, while, and so on, control the flow of execution in awk
programs. Most of awk’s control statements are patterned after similar statements in C.

All the control statements start with special keywords, such as if and while, to dis-
tinguish them from simple expressions. Many control statements contain other statements.
For example, the if statement contains another statement that may or may not be exe-
cuted. The contained statement is called the body. To include more than one statement in
the body, group them into a single compound statement with braces, separating them with
newlines or semicolons.

7.4.1 The if-else Statement

The if-else statement is awk’s decision-making statement. It looks like this:
if (condition) then-body [else else-body]

The condition is an expression that controls what the rest of the statement does. If the
condition is true, then-body is executed; otherwise, else-body is executed. The else part
of the statement is optional. The condition is considered false if its value is zero or the null
string; otherwise, the condition is true. Refer to the following:
if (x % 2==20)
print "x is even"
else

Chapter 7: Patterns, Actions, and Variables 149

print "x is odd"

In this example, if the expression ‘x % 2 == 0’ is true (i.e., if the value of x is evenly
divisible by two), then the first print statement is executed; otherwise, the second print
statement is executed. If the else keyword appears on the same line as then-body and
then-body is not a compound statement (i.e., not surrounded by braces), then a semicolon
must separate then-body from the else. To illustrate this, the previous example can be
rewritten as:

if (x % 2 == 0) print "x is even"; else
print "x is odd"

If the ‘;’ is left out, awk can’t interpret the statement and it produces a syntax error. Don’t
actually write programs this way, because a human reader might fail to see the else if it is
not the first thing on its line.

7.4.2 The while Statement

In programming, a loop is a part of a program that can be executed two or more times in
succession. The while statement is the simplest looping statement in awk. It repeatedly
executes a statement as long as a condition is true. For example:

while (condition)
body

body is a statement called the body of the loop, and condition is an expression that controls
how long the loop keeps running. The first thing the while statement does is test the
condition. If the condition is true, it executes the statement body. After body has been
executed, condition is tested again, and if it is still true, body executes again. This process
repeats until the condition is no longer true. If the condition is initially false, the body
of the loop never executes and awk continues with the statement following the loop. This
example prints the first three fields of each record, one per line:

awk ’
{
i=1
while (i <= 3) {
print $i
i++
}

}’ inventory-shipped

The body of this loop is a compound statement enclosed in braces, containing two state-
ments. The loop works in the following manner: first, the value of i is set to one. Then,
the while statement tests whether i is less than or equal to three. This is true when i
equals one, so the ith field is printed. Then the ‘i++’ increments the value of i and the
loop repeats. The loop terminates when i reaches four.

A newline is not required between the condition and the body; however, using one makes
the program clearer unless the body is a compound statement or else is very simple. The
newline after the open brace that begins the compound statement is not required either,
but the program is harder to read without it.

150 GAWK: Effective AWK Programming

7.4.3 The do-while Statement

The do loop is a variation of the while looping statement. The do loop executes the body
once and then repeats the body as long as the condition is true. It looks like this:

do
body
while (condition)

Even if the condition is false at the start, the body executes at least once (and only
once, unless executing body makes condition true). Contrast this with the corresponding
while statement:

while (condition)
body

This statement does not execute the body even once if the condition is false to begin with.
The following is an example of a do statement:

{
i=1
do {
print $0
i++
} while (i <= 10)
}

This program prints each input record 10 times. However, it isn’t a very realistic example,
because in this case an ordinary while would do just as well. This situation reflects actual
experience; only occasionally is there a real use for a do statement.

7.4.4 The for Statement

The for statement makes it more convenient to count iterations of a loop. The general
form of the for statement looks like this:

for (initialization; condition; increment)
body

The initialization, condition, and increment parts are arbitrary awk expressions, and body
stands for any awk statement.

The for statement starts by executing initialization. Then, as long as the condition
is true, it repeatedly executes body and then increment. Typically, initialization sets a
variable to either zero or one, increment adds one to it, and condition compares it against
the desired number of iterations. For example:

awk ’

{
for (i = 1; i <= 3; i++)
print $i
}’ inventory-shipped
This prints the first three fields of each input record, with one field per line.
It isn’t possible to set more than one variable in the initialization part without using
a multiple assignment statement such as ‘x =y = 0’. This makes sense only if all the ini-

Chapter 7: Patterns, Actions, and Variables 151

tial values are equal. (But it is possible to initialize additional variables by writing their
assignments as separate statements preceding the for loop.)

The same is true of the increment part. Incrementing additional variables requires
separate statements at the end of the loop. The C compound expression, using C’s comma
operator, is useful in this context, but it is not supported in awk.

Most often, increment is an increment expression, as in the previous example. But this
is not required; it can be any expression whatsoever. For example, the following statement
prints all the powers of two between 1 and 100:

for (i = 1; i <= 100; i *= 2)
print i
If there is nothing to be done, any of the three expressions in the parentheses following
the for keyword may be omitted. Thus, ‘for (; x > 0;)’ is equivalent to ‘while (x > 0)’.
If the condition is omitted, it is treated as true, effectively yielding an infinite loop (i.e., a
loop that never terminates).

In most cases, a for loop is an abbreviation for a while loop, as shown here:
initialization
while (condition) {
body
increment

¥

The only exception is when the continue statement (see Section 7.4.7 [The continue
Statement]|, page 153) is used inside the loop. Changing a for statement to a while
statement in this way can change the effect of the continue statement inside the loop.

The awk language has a for statement in addition to a while statement because a for
loop is often both less work to type and more natural to think of. Counting the number
of iterations is very common in loops. It can be easier to think of this counting as part of
looping rather than as something to do inside the loop.

There is an alternative version of the for loop, for iterating over all the indices of an
array:
for (i in array)
do something with arrayl[il

See Section 8.1.5 [Scanning All Elements of an Array], page 173, for more information on
this version of the for loop.

7.4.5 The switch Statement

This section describes a gawk-specific feature. If gawk is in compatibility mode (see
Section 2.2 [Command-Line Options|, page 31), it is not available.

The switch statement allows the evaluation of an expression and the execution of state-
ments based on a case match. Case statements are checked for a match in the order they
are defined. If no suitable case is found, the default section is executed, if supplied.

Each case contains a single constant, be it numeric, string, or regexp. The switch
expression is evaluated, and then each case’s constant is compared against the result in
turn. The type of constant determines the comparison: numeric or string do the usual

152 GAWK: Effective AWK Programming

comparisons. A regexp constant does a regular expression match against the string value
of the original expression. The general form of the switch statement looks like this:

switch (expression) {
case value or regular expression:
case-body
default:
default-body
}
Control flow in the switch statement works as it does in C. Once a match to a given
case is made, the case statement bodies execute until a break, continue, next, nextfile,
or exit is encountered, or the end of the switch statement itself. For example:

while ((c = getopt(ARGC, ARGV, "aksx")) != -1) {
switch (c) {
case "a":

report size of all files
all_files = TRUE;
break

case "k":
BLOCK_SIZE = 1024 # 1K block size
break

case "s":
do sums only
sum_only = TRUE
break

case "x":
don’t cross filesystems
fts_flags = or(fts_flags, FTS_XDEV)
break

case "7":

default:
usage ()
break

¥

Note that if none of the statements specified here halt execution of a matched case
statement, execution falls through to the next case until execution halts. In this example,
the case for "7" falls through to the default case, which is to call a function named
usage (). (The getopt () function being called here is described in Section 10.4 [Processing
Command-Line Options], page 248.)

7.4.6 The break Statement

The break statement jumps out of the innermost for, while, or do loop that encloses it.
The following example finds the smallest divisor of any integer, and also identifies prime
numbers:

find smallest divisor of num

{

Chapter 7: Patterns, Actions, and Variables 153

num = $1
for (divisor = 2; divisor * divisor <= num; divisor++) {
if (num % divisor == 0)
break
}
if (num % divisor == 0)
printf "Smallest divisor of %d is %d\n", num, divisor
else

printf "%d is prime\n", num
}

When the remainder is zero in the first if statement, awk immediately breaks out of the
containing for loop. This means that awk proceeds immediately to the statement following
the loop and continues processing. (This is very different from the exit statement, which
stops the entire awk program. See Section 7.4.10 [The exit Statement|, page 156.)

The following program illustrates how the condition of a for or while statement could
be replaced with a break inside an if:

find smallest divisor of num

{
num = $1
for (divisor = 2; ; divisor++) {
if (num % divisor == 0) {
printf "Smallest divisor of %d is %d\n", num, divisor
break
}
if (divisor * divisor > num) {
printf "%d is prime\n", num
break
}
}
}

The break statement is also used to break out of the switch statement. This is discussed
in Section 7.4.5 [The switch Statement|, page 151.

The break statement has no meaning when used outside the body of a loop or switch.
However, although it was never documented, historical implementations of awk treated the
break statement outside of a loop as if it were a next statement (see Section 7.4.8 [The
next Statement|, page 154). Recent versions of BWK awk no longer allow this usage, nor
does gawk.

7.4.7 The continue Statement

Similar to break, the continue statement is used only inside for, while, and do loops.
It skips over the rest of the loop body, causing the next cycle around the loop to begin
immediately. Contrast this with break, which jumps out of the loop altogether.

The continue statement in a for loop directs awk to skip the rest of the body of the loop
and resume execution with the increment-expression of the for statement. The following
program illustrates this fact:

A=

154 GAWK: Effective AWK Programming

BEGIN {
for (x = 0; x <= 20; x++) {
if (x == 5)
continue
printf "%d ", x
}
print ""
}

This program prints all the numbers from 0 to 20—except for 5, for which the printf is
skipped. Because the increment ‘x++’ is not skipped, x does not remain stuck at 5. Contrast
the for loop from the previous example with the following while loop:

BEGIN {
x =0
while (x <= 20) {
if (x == 5)
continue
printf "%d ", x
x++
}
print ""
}

This program loops forever once x reaches 5, because the increment (‘x++’) is never reached.

The continue statement has no special meaning with respect to the switch statement,
nor does it have any meaning when used outside the body of a loop. Historical versions
of awk treated a continue statement outside a loop the same way they treated a break
statement outside a loop: as if it were a next statement (see Section 7.4.8 [The next
Statement]|, page 154). Recent versions of BWK awk no longer work this way, nor does
gawk.

7.4.8 The next Statement

The next statement forces awk to immediately stop processing the current record and go
on to the next record. This means that no further rules are executed for the current record,
and the rest of the current rule’s action isn’t executed.

Contrast this with the effect of the getline function (see Section 4.10 [Explicit Input
with getline|, page 81). That also causes awk to read the next record immediately, but it
does not alter the flow of control in any way (i.e., the rest of the current action executes
with a new input record).

At the highest level, awk program execution is a loop that reads an input record and
then tests each rule’s pattern against it. If you think of this loop as a for statement whose
body contains the rules, then the next statement is analogous to a continue statement. It
skips to the end of the body of this implicit loop and executes the increment (which reads
another record).

For example, suppose an awk program works only on records with four fields, and it
shouldn’t fail when given bad input. To avoid complicating the rest of the program, write
a “weed out” rule near the beginning, in the following manner:

Chapter 7: Patterns, Actions, and Variables 155

NF != 4 {
printf("%s:%d: skipped: NF != 4\n", FILENAME, FNR) > "/dev/stderr"
next

}

Because of the next statement, the program’s subsequent rules won’t see the bad record.
The error message is redirected to the standard error output stream, as error messages
should be. For more detail, see Section 5.8 [Special File names in gawk|, page 105.

If the next statement causes the end of the input to be reached, then the code in any
END rules is executed. See Section 7.1.4 [The BEGIN and END Special Patterns|, page 144.

The next statement is not allowed inside BEGINFILE and ENDFILE rules. See Section 7.1.5
[The BEGINFILE and ENDFILE Special Patterns|, page 145.

According to the POSIX standard, the behavior is undefined if the next statement is used
in a BEGIN or END rule. gawk treats it as a syntax error. Although POSIX does not disallow
it, most other awk implementations don’t allow the next statement inside function bodies
(see Section 9.2 [User-Defined Functions|, page 211). Just as with any other next statement,
a next statement inside a function body reads the next record and starts processing it with
the first rule in the program.

7.4.9 The nextfile Statement

The nextfile statement is similar to the next statement. However, instead of abandoning
processing of the current record, the nextfile statement instructs awk to stop processing
the current data file.

Upon execution of the nextfile statement, FILENAME is updated to the name of the
next data file listed on the command line, FNR is reset to one, and processing starts over
with the first rule in the program. If the nextfile statement causes the end of the input
to be reached, then the code in any END rules is executed. An exception to this is when
nextfile is invoked during execution of any statement in an END rule; in this case, it causes
the program to stop immediately. See Section 7.1.4 [The BEGIN and END Special Patterns]
page 144.

9

The nextfile statement is useful when there are many data files to process but it isn’t
necessary to process every record in every file. Without nextfile, in order to move on to
the next data file, a program would have to continue scanning the unwanted records. The
nextfile statement accomplishes this much more efficiently.

In gawk, execution of nextfile causes additional things to happen: any ENDFILE rules
are executed if gawk is not currently in an END or BEGINFILE rule, ARGIND is incremented,
and any BEGINFILE rules are executed. (ARGIND hasn’t been introduced yet. See Section 7.5
[Predefined Variables|, page 157.)

With gawk, nextfile is useful inside a BEGINFILE rule to skip over a file that would
otherwise cause gawk to exit with a fatal error. In this case, ENDFILE rules are not executed.
See Section 7.1.5 [The BEGINFILE and ENDFILE Special Patterns], page 145.

Although it might seem that ‘close(FILENAME)’ would accomplish the same as
nextfile, this isn’t true. close() is reserved for closing files, pipes, and coprocesses that
are opened with redirections. It is not related to the main processing that awk does with
the files listed in ARGV.

156 GAWK: Effective AWK Programming

NOTE: For many years, nextfile was a common extension. In September
2012, it was accepted for inclusion into the POSIX standard. See the Austin
Group website.

The current version of BWK awk and mawk also support nextfile. However, they
don’t allow the nextfile statement inside function bodies (see Section 9.2 [User-Defined
Functions], page 211). gawk does; a nextfile inside a function body reads the first record
from the next file and starts processing it with the first rule in the program, just as any
other nextfile statement.

7.4.10 The exit Statement

The exit statement causes awk to immediately stop executing the current rule and to stop
processing input; any remaining input is ignored. The exit statement is written as follows:

exit [return code]

When an exit statement is executed from a BEGIN rule, the program stops processing
everything immediately. No input records are read. However, if an END rule is present, as
part of executing the exit statement, the END rule is executed (see Section 7.1.4 [The BEGIN
and END Special Patterns|, page 144). If exit is used in the body of an END rule, it causes
the program to stop immediately.

An exit statement that is not part of a BEGIN or END rule stops the execution of any
further automatic rules for the current record, skips reading any remaining input records,
and executes the END rule if there is one. gawk also skips any ENDFILE rules; they do not
execute.

In such a case, if you don’t want the END rule to do its job, set a variable to a nonzero
value before the exit statement and check that variable in the END rule. See Section 10.2.2
[Assertions|, page 234, for an example that does this.

If an argument is supplied to exit, its value is used as the exit status code for the awk
process. If no argument is supplied, exit causes awk to return a “success” status. In the
case where an argument is supplied to a first exit statement, and then exit is called a
second time from an END rule with no argument, awk uses the previously supplied exit value.

See Section 2.6 [gawk’s Exit Status], page 42, for more information.

For example, suppose an error condition occurs that is difficult or impossible to handle.
Conventionally, programs report this by exiting with a nonzero status. An awk program
can do this using an exit statement with a nonzero argument, as shown in the following
example:

BEGIN {
if (("date" | getline date_now) <= 0) {
print "Can’t get system date" > "/dev/stderr"
exit 1
}
print "current date is", date_now
close("date")
}
NOTE: For full portability, exit values should be between zero and 126, inclu-
sive. Negative values, and values of 127 or greater, may not produce consistent
results across different operating systems.

http://austingroupbugs.net/view.php?id=607
http://austingroupbugs.net/view.php?id=607

Chapter 7: Patterns, Actions, and Variables 157

7.5 Predefined Variables

Most awk variables are available to use for your own purposes; they never change unless
your program assigns values to them, and they never affect anything unless your program
examines them. However, a few variables in awk have special built-in meanings. awk
examines some of these automatically, so that they enable you to tell awk how to do certain
things. Others are set automatically by awk, so that they carry information from the internal
workings of awk to your program.

This section documents all of gawk’s predefined variables, most of which are also docu-
mented in the chapters describing their areas of activity.

7.5.1 Built-in Variables That Control awk

The following is an alphabetical list of variables that you can change to control how awk
does certain things.

The variables that are specific to gawk are marked with a pound sign (‘#’). These
variables are gawk extensions. In other awk implementations or if gawk is in compatibility
mode (see Section 2.2 [Command-Line Options|, page 31), they are not special. (Any
exceptions are noted in the description of each variable.)

BINMODE # On non-POSIX systems, this variable specifies use of binary mode for all 1/0.
Numeric values of one, two, or three specify that input files, output files, or
all files, respectively, should use binary I/O. A numeric value less than zero
is treated as zero, and a numeric value greater than three is treated as three.
Alternatively, string values of "r" or "w" specify that input files and output files,
respectively, should use binary I/O. A string value of "rw" or "wr" indicates
that all files should use binary I/O. Any other string value is treated the same as
"rw", but causes gawk to generate a warning message. BINMODE is described in
more detail in Section B.3.1.3 [Using gawk on PC Operating Systems|, page 458.
mawk (see Section B.5 [Other Freely Available awk Implementations], page 465)
also supports this variable, but only using numeric values.

CONVFMT A string that controls the conversion of numbers to strings (see Section 6.1.4
[Conversion of Strings and Numbers|, page 118). It works by being passed, in
effect, as the first argument to the sprintf () function (see Section 9.1.3 [String-
Manipulation Functions|, page 187). Its default value is "%.6g". CONVFMT was
introduced by the POSIX standard.

FIELDWIDTHS #
A space-separated list of columns that tells gawk how to split input with fixed
columnar boundaries. Starting in version 4.2, each field width may optionally
be preceded by a colon-separated value specifying the number of characters to
skip before the field starts. Assigning a value to FIELDWIDTHS overrides the use
of FS and FPAT for field splitting. See Section 4.6 [Reading Fixed-Width Data],
page 74, for more information.

FPAT # A regular expression (as a string) that tells gawk to create the fields based on
text that matches the regular expression. Assigning a value to FPAT overrides
the use of FS and FIELDWIDTHS for field splitting. See Section 4.7 [Defining
Fields by Content|, page 77, for more information.

158 GAWK: Effective AWK Programming

FS

The input field separator (see Section 4.5 [Specifying How Fields Are Separated],
page 69). The value is a single-character string or a multicharacter regular
expression that matches the separations between fields in an input record. If
the value is the null string (""), then each character in the record becomes a
separate field. (This behavior is a gawk extension. POSIX awk does not specify
the behavior when FS is the null string. Nonetheless, some other versions of
awk also treat "" specially.)

The default value is " ", a string consisting of a single space. As a special
exception, this value means that any sequence of spaces, TABs, and/or newlines
is a single separator. It also causes spaces, TABs, and newlines at the beginning
and end of a record to be ignored.

You can set the value of FS on the command line using the -F option:
awk -F, ’program’ input-files
If gawk is using FIELDWIDTHS or FPAT for field splitting, assigning a value to FS

causes gawk to return to the normal, FS-based field splitting. An easy way to
do this is to simply say ‘FS = FS’, perhaps with an explanatory comment.

IGNORECASE #

LINT #

OFMT

0FS

If IGNORECASE is nonzero or non-null, then all string comparisons and all reg-
ular expression matching are case-independent. This applies to regexp match-
ing with ““” and ‘!~’, the gensub(), gsub(), index(), match(), patsplit(),
split (), and sub() functions, record termination with RS, and field splitting
with FS and FPAT. However, the value of IGNORECASE does not affect array
subscripting and it does not affect field splitting when using a single-character
field separator. See Section 3.8 [Case Sensitivity in Matching], page 58.

When this variable is true (nonzero or non-null), gawk behaves as if the --1int
command-line option is in effect (see Section 2.2 [Command-Line Options],
page 31). With a value of "fatal", lint warnings become fatal errors. With
a value of "invalid", only warnings about things that are actually invalid are
issued. (This is not fully implemented yet.) Any other true value prints nonfatal
warnings. Assigning a false value to LINT turns off the lint warnings.

This variable is a gawk extension. It is not special in other awk implementations.
Unlike with the other special variables, changing LINT does affect the production
of lint warnings, even if gawk is in compatibility mode. Much as the --1int
and --traditional options independently control different aspects of gawk’s
behavior, the control of lint warnings during program execution is independent
of the flavor of awk being executed.

A string that controls conversion of numbers to strings (see Section 6.1.4 [Con-
version of Strings and Numbers|, page 118) for printing with the print state-
ment. It works by being passed as the first argument to the sprintf () function
(see Section 9.1.3 [String-Manipulation Functions], page 187). Its default value
is "%.6g". Earlier versions of awk used OFMT to specify the format for converting
numbers to strings in general expressions; this is now done by CONVFMT.

The output field separator (see Section 5.3 [Output Separators|, page 95). It
is output between the fields printed by a print statement. Its default value is
" " a string consisting of a single space.

Chapter 7: Patterns, Actions, and Variables 159

ORS The output record separator. It is output at the end of every print statement.
Its default value is "\n", the newline character. (See Section 5.3 [Output Sep-
arators], page 95.)

PREC # The working precision of arbitrary-precision floating-point numbers, 53 bits by
default (see Section 15.4.4 [Setting the Precision], page 362).

ROUNDMODE #
The rounding mode to use for arbitrary-precision arithmetic on numbers, by
default "N" (roundTiesToEven in the IEEE 754 standard; see Section 15.4.5
[Setting the Rounding Mode]|, page 363).

RS The input record separator. Its default value is a string containing a single
newline character, which means that an input record consists of a single line of
text. It can also be the null string, in which case records are separated by runs
of blank lines. If it is a regexp, records are separated by matches of the regexp
in the input text. (See Section 4.1 [How Input Is Split into Records|, page 61.)

The ability for RS to be a regular expression is a gawk extension. In most
other awk implementations, or if gawk is in compatibility mode (see Section 2.2
[Command-Line Options|, page 31), just the first character of RS’s value is used.

SUBSEP The subscript separator. It has the default value of "\034" and is used to sep-
arate the parts of the indices of a multidimensional array. Thus, the expression
‘foo["A", "B"]’ really accesses foo["A\034B"] (see Section 8.5 [Multidimen-
sional Arrays|, page 179).

TEXTDOMAIN #
Used for internationalization of programs at the awk level. It sets the default
text domain for specially marked string constants in the source text, as well
as for the dcgettext (), decngettext (), and bindtextdomain() functions (see
Chapter 13 [Internationalization with gawk|, page 329). The default value of
TEXTDOMAIN is "messages".

7.5.2 Built-in Variables That Convey Information

The following is an alphabetical list of variables that awk sets automatically on certain
occasions in order to provide information to your program.

The variables that are specific to gawk are marked with a pound sign (‘#’). These
variables are gawk extensions. In other awk implementations or if gawk is in compatibility
mode (see Section 2.2 [Command-Line Options|, page 31), they are not special:

ARGC, ARGV

The command-line arguments available to awk programs are stored in an ar-
ray called ARGV. ARGC is the number of command-line arguments present. See
Section 2.3 [Other Command-Line Arguments|, page 38. Unlike most awk ar-
rays, ARGV is indexed from 0 to ARGC — 1. In the following example:

$ awk ’BEGIN {

> for (i = 0; i < ARGC; i++)

> print ARGV[i]

> }’ inventory-shipped mail-list

160 GAWK: Effective AWK Programming

ARGIND #

ENVIRON

- awk

- inventory-shipped

- mail-list
ARGV [0] contains ‘awk’, ARGV[1] contains ‘inventory-shipped’, and ARGV [2]
contains ‘mail-1ist’. The value of ARGC is three, one more than the index of
the last element in ARGV, because the elements are numbered from zero.

The names ARGC and ARGV, as well as the convention of indexing the array
from 0 to ARGC — 1, are derived from the C language’s method of accessing
command-line arguments.

The value of ARGV[0] can vary from system to system. Also, you should note
that the program text is not included in ARGV, nor are any of awk’s command-
line options. See Section 7.5.3 [Using ARGC and ARGV], page 166, for information
about how awk uses these variables.

The index in ARGV of the current file being processed. Every time gawk opens
a new data file for processing, it sets ARGIND to the index in ARGV of the file
name. When gawk is processing the input files, ‘FILENAME == ARGV [ARGIND]’
is always true.

This variable is useful in file processing; it allows you to tell how far along you
are in the list of data files as well as to distinguish between successive instances
of the same file name on the command line.

While you can change the value of ARGIND within your awk program, gawk
automatically sets it to a new value when it opens the next file.

An associative array containing the values of the environment. The array in-
dices are the environment variable names; the elements are the values of the
particular environment variables. For example, ENVIRON["HOME"] might be
/home/arnold.

For POSIX awk, changing this array does not affect the environment passed on
to any programs that awk may spawn via redirection or the system() function.

However, beginning with version 4.2, if not in POSIX compatibility mode, gawk
does update its own environment when ENVIRON is changed, thus changing
the environment seen by programs that it creates. You should therefore be
especially careful if you modify ENVIRON ["PATH"], which is the search path for
finding executable programs.

This can also affect the running gawk program, since some of the built-in func-
tions may pay attention to certain environment variables. The most notable
instance of this is mktime() (see Section 9.1.5 [Time Functions], page 202),
which pays attention the value of the TZ environment variable on many sys-
tems.

Some operating systems may not have environment variables. On such
systems, the ENVIRON array is empty (except for ENVIRON["AWKPATH"] and
ENVIRON ["AWKLIBPATH"]; see Section 2.5.1 [The AWKPATH Environment
Variable|, page 39, and see Section 2.5.2 [The AWKLIBPATH Environment
Variable], page 40).

ERRNO #

FILENAME

FNR

NF

FUNCTAB #

NR

Chapter 7: Patterns, Actions, and Variables 161

If a system error occurs during a redirection for getline, during a read for
getline, or during a close() operation, then ERRNO contains a string describ-
ing the error.

In addition, gawk clears ERRNO before opening each command-line input file.
This enables checking if the file is readable inside a BEGINFILE pattern (see
Section 7.1.5 [The BEGINFILE and ENDFILE Special Patterns|, page 145).

Otherwise, ERRNO works similarly to the C variable errno. Except for the case
just mentioned, gawk never clears it (sets it to zero or ""). Thus, you should
only expect its value to be meaningful when an 1/O operation returns a failure
value, such as getline returning —1. You are, of course, free to clear it yourself
before doing an 1/O operation.

If the value of ERRNO corresponds to a system error in the C errno variable,
then PROCINFO["errno"] will be set to the value of errno. For non-system
errors, PROCINFO["errno"] will be zero.

The name of the current input file. When no data files are listed on the com-
mand line, awk reads from the standard input and FILENAME is set to "-".
FILENAME changes each time a new file is read (see Chapter 4 [Reading Input
Files], page 61). Inside a BEGIN rule, the value of FILENAME is "", because there
are no input files being processed yet.? Note, though, that using getline (see
Section 4.10 [Explicit Input with getline], page 81) inside a BEGIN rule can
give FILENAME a value.

The current record number in the current file. awk increments FNR each time it
reads a new record (see Section 4.1 [How Input Is Split into Records], page 61).
awk resets FNR to zero each time it starts a new input file.

The number of fields in the current input record. NF is set each time a new
record is read, when a new field is created, or when $0 changes (see Section 4.2
[Examining Fields|, page 65).

Unlike most of the variables described in this subsection, assigning a value to NF
has the potential to affect awk’s internal workings. In particular, assignments
to NF can be used to create fields in or remove fields from the current record.
See Section 4.4 [Changing the Contents of a Field|, page 67.

An array whose indices and corresponding values are the names of all the built-
in, user-defined, and extension functions in the program.

NOTE: Attempting to use the delete statement with the FUNCTAB
array causes a fatal error. Any attempt to assign to an element of
FUNCTAB also causes a fatal error.

The number of input records awk has processed since the beginning of the
program’s execution (see Section 4.1 [How Input Is Split into Records], page 61).
awk increments NR each time it reads a new record.

2 Some early implementations of Unix awk initialized FILENAME to "-", even if there were data files to be
processed. This behavior was incorrect and should not be relied upon in your programs.

162 GAWK: Effective AWK Programming

PROCINFO #
The elements of this array provide access to information about the running awk
program. The following elements (listed alphabetically) are guaranteed to be
available:

PROCINFO["argv"]
The PROCINFO["argv"] array contains all of the command-line
arguments (after glob expansion and redirection processing on
platforms where that must be done manually by the program)
with subscripts ranging from 0 through argc — 1. For example,
PROCINFO["argv"] [0] will contain the name by which gawk was
invoked. Here is an example of how this feature may be used:

gawk ’
BEGIN {
for (i = 0; i < length(PROCINFO["argv"]); i++)
print i, PROCINFO["argv"][i]
}J

Please note that this differs from the standard ARGV array which
does not include command-line arguments that have already been
processed by gawk (see Section 7.5.3 [Using ARGC and ARGV|,
page 166).

PROCINFO["egid"]
The value of the getegid() system call.

PROCINFO["errno"]
The value of the C errno variable when ERRNO is set to the associ-
ated error message.

PROCINFO["euid"]
The value of the geteuid() system call.

PROCINFO["FS"]
This is "FS" if field splitting with FS is in effect, "FIELDWIDTHS" if
field splitting with FIELDWIDTHS is in effect, "FPAT" if field match-
ing with FPAT is in effect, or "API" if field splitting is controlled by
an API input parser.

PROCINFO["gid"]
The value of the getgid () system call.

PROCINFO(["identifiers"]
A subarray, indexed by the names of all identifiers used in the text
of the awk program. An identifier is simply the name of a variable
(be it scalar or array), built-in function, user-defined function, or
extension function. For each identifier, the value of the element is
one of the following:

"array" The identifier is an array.

"builtin"
The identifier is a built-in function.

Chapter 7: Patterns, Actions, and Variables 163

"extension"
The identifier is an extension function loaded via @load
or —-1.

"scalar" The identifier is a scalar.

"untyped"
The identifier is untyped (could be used as a scalar or
an array; gawk doesn’t know yet).

"user" The identifier is a user-defined function.

The values indicate what gawk knows about the identifiers after it
has finished parsing the program; they are not updated while the
program runs.

PROCINFO["pgrpid"]
The process group ID of the current process.

PROCINFO["pid"]
The process ID of the current process.

PROCINFO["ppid"]
The parent process ID of the current process.

PROCINFO["strftime"]
The default time format string for strftime(). Assigning a new
value to this element changes the default. See Section 9.1.5 [Time
Functions], page 202.

PROCINFO["uid"]
The value of the getuid() system call.

PROCINFO["version"]
The version of gawk.

The following additional elements in the array are available to provide in-
formation about the MPFR and GMP libraries if your version of gawk sup-
ports arbitrary-precision arithmetic (see Chapter 15 [Arithmetic and Arbitrary-
Precision Arithmetic with gawk], page 355):

PROCINFO["gmp_version"]
The version of the GNU MP library.

PROCINFO["mpfr_version"]
The version of the GNU MPFR library.

PROCINFO["prec_max"]
The maximum precision supported by MPFR.

PROCINFO["prec_min"]
The minimum precision required by MPFR.

The following additional elements in the array are available to provide informa-
tion about the version of the extension API, if your version of gawk supports

164 GAWK: Effective AWK Programming

dynamic loading of extension functions (see Chapter 16 [Writing Extensions for
gawk]|, page 369):

PROCINFO["api_major"]
The major version of the extension API.

PROCINFO["api_minor"]
The minor version of the extension API.

On some systems, there may be elements in the array, "groupl" through
"groupN" for some N. N is the number of supplementary groups that the
process has. Use the in operator to test for these elements (see Section 8.1.2
[Referring to an Array Element], page 171).

The following elements allow you to change gawk’s behavior:

PROCINFO["NONFATAL"]
If this element exists, then I/O errors for all output redirections
become nonfatal. See Section 5.10 [Enabling Nonfatal Output],
page 109.

PROCINFO["output_name", "NONFATAL"]
Make output errors for output_name be nonfatal. See Section 5.10
[Enabling Nonfatal Output], page 109.

PROCINFO["command", "pty"]
For two-way communication to command, use a pseudo-tty instead
of setting up a two-way pipe. See Section 12.3 [Two-Way Commu-
nications with Another Process|, page 320, for more information.

PROCINFO["input_name", "READ_TIMEQUT"]
Set a timeout for reading from input redirection input_name. See
Section 4.11 [Reading Input with a Timeout], page 88, for more
information.

PROCINFO["input_name", "RETRY"]

If an I/O error that may be retried occurs when reading data from
input_name, and this array entry exists, then getline returns —2
instead of following the default behavior of returning —1 and config-
uring input_name to return no further data. An1/O error that may
be retried is one where errno has the value EAGAIN, EWOULDBLOCK,
EINTR, or ETIMEDOUT. This may be useful in conjunction with
PROCINFO["input_name", "READ_TIMEQUT"] or situations where a
file descriptor has been configured to behave in a non-blocking fash-
ion. See Section 4.12 [Retrying Reads After Certain Input Errors],
page 89, for more information.

PROCINFO["sorted_in"]
If this element exists in PROCINFO, its value controls the order in
which array indices will be processed by ‘for (indx in array)’
loops. This is an advanced feature, so we defer the full description
until later; see Section 8.1.5 [Scanning All Elements of an Array],
page 173.

RLENGTH

RSTART

RT #

SYMTAB #

Chapter 7: Patterns, Actions, and Variables 165

The length of the substring matched by the match() function (see Section 9.1.3
[String-Manipulation Functions], page 187). RLENGTH is set by invoking the
match() function. Its value is the length of the matched string, or —1 if no
match is found.

The start index in characters of the substring that is matched by the match()
function (see Section 9.1.3 [String-Manipulation Functions|, page 187). RSTART
is set by invoking the match() function. Its value is the position of the string
where the matched substring starts, or zero if no match was found.

The input text that matched the text denoted by RS, the record separator. It
is set every time a record is read.

An array whose indices are the names of all defined global variables and arrays in
the program. SYMTAB makes gawk’s symbol table visible to the awk programmer.
It is built as gawk parses the program and is complete before the program starts
to run.
The array may be used for indirect access to read or write the value of a variable:
foo =5
SYMTAB["foo"] = 4
print foo # prints 4

The isarray() function (see Section 9.1.7 [Getting Type Information],
page 210) may be used to test if an element in SYMTAB is an array. Also, you
may not use the delete statement with the SYMTAB array.

You may use an index for SYMTAB that is not a predefined identifier:

SYMTAB["xxx"] = 5
print SYMTAB["xxx"]

This works as expected: in this case SYMTAB acts just like a regular array. The
only difference is that you can’t then delete SYMTAB["xxx"].

The SYMTAB array is more interesting than it looks. Andrew Schorr points out
that it effectively gives awk data pointers. Consider his example:

Indirect multiply of any variable by amount, return result

function multiply(variable, amount)

{
return SYMTAB[variable] *= amount
}
You would use it like this:
BEGIN {
answer = 10.5
multiply("answer", 4)
print "The answer is", answer
}

When run, this produces:

$ gawk -f answer.awk
-4 The answer is 42

166 GAWK: Effective AWK Programming

NOTE: In order to avoid severe time-travel paradoxes,® neither
FUNCTAB nor SYMTAB is available as an element within the SYMTAB
array.

a N
Changing NR and FNR

awk increments NR and FNR each time it reads a record, instead of setting them to the
absolute value of the number of records read. This means that a program can change these
variables and their new values are incremented for each record. The following example
shows this:

$ echo 1

> 2

> 3

> 4’ | awk °NR == 2 { NR = 17 }
> { print NR }’

[EY

7
8
- 19

Before FNR was added to the awk language (see Section A.1 [Major Changes Between V7 and
SVR3.1], page 433), many awk programs used this feature to track the number of records

in a file by resetting NR to zero when FILENAME changed.
- /)

J R B
=

7.5.3 Using ARGC and ARGV

Section 7.5.2 [Built-in Variables That Convey Information], page 159, presented the follow-
ing program describing the information contained in ARGC and ARGV:

$ awk ’BEGIN {

> for (i = 0; i < ARGC; i++)

> print ARGV[i]

> }’ inventory-shipped mail-list
- awk

- inventory-shipped

- mail-list
In this example, ARGV[0] contains ‘awk’, ARGV[1] contains ‘inventory-shipped’, and
ARGV[2] contains ‘mail-list’. Notice that the awk program is not entered in ARGV. The
other command-line options, with their arguments, are also not entered. This includes
variable assignments done with the -v option (see Section 2.2 [Command-Line Options],
page 31). Normal variable assignments on the command line are treated as arguments and
do show up in the ARGV array. Given the following program in a file named showargs.awk:

BEGIN {
printf "A=}d, B=J)d\n", A, B
for (i = 0; i < ARGC; i++)
printf "\tARGV[%d] = %s\n", i, ARGV[i]
}

3 Not to mention difficult implementation issues.

Chapter 7: Patterns, Actions, and Variables 167

END { printf "A=Jd, B=Jd\n", A, B }
Running it produces the following:
$ awk -v A=1 -f showargs.awk B=2 /dev/null

- A=1, B=0

- ARGV[0] = awk

. ARGV[1] = B=2

o ARGV[2] = /dev/null
- A=1, B=2

A program can alter ARGC and the elements of ARGV. Each time awk reaches the end of
an input file, it uses the next element of ARGV as the name of the next input file. By storing
a different string there, a program can change which files are read. Use "-" to represent
the standard input. Storing additional elements and incrementing ARGC causes additional
files to be read.

If the value of ARGC is decreased, that eliminates input files from the end of the list. By
recording the old value of ARGC elsewhere, a program can treat the eliminated arguments
as something other than file names.

To eliminate a file from the middle of the list, store the null string ("") into ARGV in
place of the file’s name. As a special feature, awk ignores file names that have been replaced
with the null string. Another option is to use the delete statement to remove elements
from ARGV (see Section 8.4 [The delete Statement|, page 178).

All of these actions are typically done in the BEGIN rule, before actual processing of
the input begins. See Section 11.2.4 [Splitting a Large File into Pieces], page 276, and see
Section 11.2.5 [Duplicating Output into Multiple Files|, page 277, for examples of each way
of removing elements from ARGV.

To actually get options into an awk program, end the awk options with -- and then
supply the awk program’s options, in the following manner:

awk -f myprog.awk -- -v -q filel file2 ...

The following fragment processes ARGV in order to examine, and then remove, the pre-
viously mentioned command-line options:

BEGIN {
for (i = 1; i < ARGC; i++) {
if (ARGV[i] == "-v")
verbose = 1
else if (ARGV[i] == "-q")
debug = 1
else if (ARGV[i] = /~-./) {
e = sprintf("%s: unrecognized option -- Y%c",
ARGV[0], substr(ARGV[i], 2, 1))
print e > "/dev/stderr"
} else
break
delete ARGV[i]
}

168 GAWK: Effective AWK Programming

Ending the awk options with -- isn’t necessary in gawk. Unless --posix has been
specified, gawk silently puts any unrecognized options into ARGV for the awk program to
deal with. As soon as it sees an unknown option, gawk stops looking for other options that
it might otherwise recognize. The previous command line with gawk would be:

gawk -f myprog.awk -q -v filel file2 ...

Because -q is not a valid gawk option, it and the following -v are passed on to the awk
program. (See Section 10.4 [Processing Command-Line Options], page 248, for an awk
library function that parses command-line options.)

When designing your program, you should choose options that don’t conflict with gawk’s,
because it will process any options that it accepts before passing the rest of the command line
on to your program. Using ‘#!’ with the -E option may help (see Section 1.1.4 [Executable
awk Programs|, page 19, and see Section 2.2 [Command-Line Options|, page 31).

7.6 Summary

e Pattern—action pairs make up the basic elements of an awk program. Patterns are
either normal expressions, range expressions, or regexp constants; one of the special
keywords BEGIN, END, BEGINFILE, or ENDFILE; or empty. The action executes if the
current record matches the pattern. Empty (missing) patterns match all records.

e I/O from BEGIN and END rules has certain constraints. This is also true, only more
so, for BEGINFILE and ENDFILE rules. The latter two give you “hooks” into gawk’s file
processing, allowing you to recover from a file that otherwise would cause a fatal error
(such as a file that cannot be opened).

e Shell variables can be used in awk programs by careful use of shell quoting. It is easier
to pass a shell variable into awk by using the -v option and an awk variable.

e Actions consist of statements enclosed in curly braces. Statements are built up from
expressions, control statements, compound statements, input and output statements,
and deletion statements.

e The control statements in awk are if-else, while, for, and do-while. gawk adds the
switch statement. There are two flavors of for statement: one for performing general
looping, and the other for iterating through an array.

e break and continue let you exit early or start the next iteration of a loop (or get out
of a switch).

e next and nextfile let you read the next record and start over at the top of your
program or skip to the next input file and start over, respectively.

e The exit statement terminates your program. When executed from an action (or
function body), it transfers control to the END statements. From an END statement
body, it exits immediately. You may pass an optional numeric value to be used as
awk’s exit status.

e Some predefined variables provide control over awk, mainly for I/O. Other variables
convey information from awk to your program.

e ARGC and ARGV make the command-line arguments available to your program. Manip-
ulating them from a BEGIN rule lets you control how awk will process the provided data
files.

Chapter 8: Arrays in awk 169

8 Arrays in awk

An array is a table of values called elements. The elements of an array are distinguished
by their indices. Indices may be either numbers or strings.

This chapter describes how arrays work in awk, how to use array elements, how to scan
through every element in an array, and how to remove array elements. It also describes
how awk simulates multidimensional arrays, as well as some of the less obvious points about
array usage. The chapter moves on to discuss gawk’s facility for sorting arrays, and ends
with a brief description of gawk’s ability to support true arrays of arrays.

8.1 The Basics of Arrays

This section presents the basics: working with elements in arrays one at a time, and travers-
ing all of the elements in an array.

8.1.1 Introduction to Arrays

Doing linear scans over an associative array is like trying to club someone to
death with a loaded Uzi.
—Larry Wall

The awk language provides one-dimensional arrays for storing groups of related strings
or numbers. Every awk array must have a name. Array names have the same syntax as
variable names; any valid variable name would also be a valid array name. But one name
cannot be used in both ways (as an array and as a variable) in the same awk program.

Arrays in awk superficially resemble arrays in other programming languages, but there
are fundamental differences. In awk, it isn’t necessary to specify the size of an array before
starting to use it. Additionally, any number or string, not just consecutive integers, may
be used as an array index.

In most other languages, arrays must be declared before use, including a specification of
how many elements or components they contain. In such languages, the declaration causes
a contiguous block of memory to be allocated for that many elements. Usually, an index
in the array must be a nonnegative integer. For example, the index zero specifies the first
element in the array, which is actually stored at the beginning of the block of memory. Index
one specifies the second element, which is stored in memory right after the first element,
and so on. It is impossible to add more elements to the array, because it has room only
for as many elements as given in the declaration. (Some languages allow arbitrary starting
and ending indices—e.g., ‘15 .. 27’—but the size of the array is still fixed when the array
is declared.)

A contiguous array of four elements might look like Figure 8.1, conceptually, if the
element values are eight, "foo", "", and 30.

170 GAWK: Effective AWK Programming

8 "foo" " 30 Value

0 1 2 3 Index

Figure 8.1: A contiguous array

Only the values are stored; the indices are implicit from the order of the values. Here, eight
is the value at index zero, because eight appears in the position with zero elements before
it.

Arrays in awk are different—they are associative. This means that each array is a
collection of pairs—an index and its corresponding array element value:

Index Value
3 30

1 n foo n
0 8

2 nn

The pairs are shown in jumbled order because their order is irrelevant.!

One advantage of associative arrays is that new pairs can be added at any time. For
example, suppose a tenth element is added to the array whose value is "number ten". The

result is:

Index Value

10 "number ten"
3 30

1 "foo"

0 8

2 nn

Now the array is sparse, which just means some indices are missing. It has elements 0-3
and 10, but doesn’t have elements 4, 5, 6, 7, 8, or 9.

Another consequence of associative arrays is that the indices don’t have to be nonnegative

integers. Any number, or even a string, can be an index. For example, the following is an
array that translates words from English to French:

Index Value
lldogll n Chienll
llcatll llchatll
"One“ Ilunll

1 "unll

1 The ordering will vary among awk implementations, which typically use hash tables to store array
elements and values.

Chapter 8: Arrays in awk 171

Here we decided to translate the number one in both spelled-out and numeric form—thus
illustrating that a single array can have both numbers and strings as indices. (In fact, array
subscripts are always strings. There are some subtleties to how numbers work when used as
array subscripts; this is discussed in more detail in Section 8.2 [Using Numbers to Subscript
Arrays|, page 177.) Here, the number 1 isn’t double-quoted, because awk automatically
converts it to a string.

The value of IGNORECASE has no effect upon array subscripting. The identical string value
used to store an array element must be used to retrieve it. When awk creates an array (e.g.,
with the split() built-in function), that array’s indices are consecutive integers starting
at one. (See Section 9.1.3 [String-Manipulation Functions|, page 187.)

awk’s arrays are efficient—the time to access an element is independent of the number
of elements in the array.

8.1.2 Referring to an Array Element

The principal way to use an array is to refer to one of its elements. An array reference is
an expression as follows:

array[index-expression]

Here, array is the name of an array. The expression index-expression is the index of the
desired element of the array.

The value of the array reference is the current value of that array element. For example,
foo[4.3] is an expression referencing the element of array foo at index ‘4.3’

A reference to an array element that has no recorded value yields a value of "", the null
string. This includes elements that have not been assigned any value as well as elements
that have been deleted (see Section 8.4 [The delete Statement|, page 178).

NOTE: A reference to an element that does not exist automatically creates
that array element, with the null string as its value. (In some cases, this is
unfortunate, because it might waste memory inside awk.)

Novice awk programmers often make the mistake of checking if an element exists
by checking if the value is empty:

Check if "foo" exists in a: Incorrect!
if (a[“foo"] 1= nn)

This is incorrect for two reasons. First, it creates a["foo"] if it didn’t exist
before! Second, it is valid (if a bit unusual) to set an array element equal to
the empty string.
To determine whether an element exists in an array at a certain index, use the following
expression:

indx in array

This expression tests whether the particular index indx exists, without the side effect
of creating that element if it is not present. The expression has the value one (true) if
array[indx] exists and zero (false) if it does not exist. (We use indx here, because ‘index’
is the name of a built-in function.) For example, this statement tests whether the array
frequencies contains the index ‘2”:

if (2 in frequencies)
print "Subscript 2 is present."

172 GAWK: Effective AWK Programming

Note that this is not a test of whether the array frequencies contains an element whose
value is two. There is no way to do that except to scan all the elements. Also, this does
not create frequencies[2], while the following (incorrect) alternative does:

if (frequencies[2] !'= "")
print "Subscript 2 is present."

8.1.3 Assigning Array Elements

Array elements can be assigned values just like awk variables:
array[index-expression] = value

array is the name of an array. The expression index-expression is the index of the element
of the array that is assigned a value. The expression value is the value to assign to that
element of the array.

8.1.4 Basic Array Example

The following program takes a list of lines, each beginning with a line number, and prints
them out in order of line number. The line numbers are not in order when they are first
read—instead, they are scrambled. This program sorts the lines by making an array using
the line numbers as subscripts. The program then prints out the lines in sorted order of
their numbers. It is a very simple program and gets confused upon encountering repeated
numbers, gaps, or lines that don’t begin with a number:

{
if ($1 > max)
max = $1
arr[$1] = $0
}
END {
for (x = 1; x <= max; x++)
print arr[x]
}

The first rule keeps track of the largest line number seen so far; it also stores each line
into the array arr, at an index that is the line’s number. The second rule runs after all the
input has been read, to print out all the lines. When this program is run with the following
input:

5 I am the Five man
2 Who are you? The new number two!
4 . And four on the floor
1 Who is number one?
3 I three you.
Its output is:
1 Who is number one?
2 Who are you? The new number two!
3 I three you.
4 . . . And four on the floor
5 I am the Five man

Chapter 8: Arrays in awk 173

If a line number is repeated, the last line with a given number overrides the others. Gaps
in the line numbers can be handled with an easy improvement to the program’s END rule,
as follows:

END {
for (x = 1; x <= max; x++)
if (x in arr)
print arr[x]

}

8.1.5 Scanning All Elements of an Array

In programs that use arrays, it is often necessary to use a loop that executes once for each
element of an array. In other languages, where arrays are contiguous and indices are limited
to nonnegative integers, this is easy: all the valid indices can be found by counting from
the lowest index up to the highest. This technique won’t do the job in awk, because any
number or string can be an array index. So awk has a special kind of for statement for
scanning an array:

for (var in array)
body

This loop executes body once for each index in array that the program has previously used,
with the variable var set to that index.

The following program uses this form of the for statement. The first rule scans the
input records and notes which words appear (at least once) in the input, by storing a one
into the array used with the word as the index. The second rule scans the elements of
used to find all the distinct words that appear in the input. It prints each word that is
more than 10 characters long and also prints the number of such words. See Section 9.1.3
[String-Manipulation Functions], page 187, for more information on the built-in function
length().

Record a 1 for each word that is used at least once
{
for (i = 1; i <= NF; i++)
used[$i] =1

Find number of distinct words more than 10 characters long
END {
for (x in used) {
if (length(x) > 10) {
++num_long_words
print x

}

print num_long_words, "words longer than 10 characters"

}

See Section 11.3.5 [Generating Word-Usage Counts|, page 292, for a more detailed example
of this type.

174 GAWK: Effective AWK Programming

The order in which elements of the array are accessed by this statement is determined
by the internal arrangement of the array elements within awk and in standard awk cannot
be controlled or changed. This can lead to problems if new elements are added to array by
statements in the loop body; it is not predictable whether the for loop will reach them.
Similarly, changing var inside the loop may produce strange results. It is best to avoid such
things.

As a point of information, gawk sets up the list of elements to be iterated over before the
loop starts, and does not change it. But not all awk versions do so. Consider this program,
named loopcheck.awk:

BEGIN {
a["here"] = "here"
a["is"] = "is"
a["a"] = "a"
a[llloopll] = llloopll
for (i in a) {
j++
aljl = j
print i

}
Here is what happens when run with gawk (and mawk):

$ gawk -f loopcheck.awk
-1 here
-1 loop
-4 a
4 is
Contrast this to BWK awk:
$ nawk -f loopcheck.awk
- loop
here
is
a

4
4
4
41

8.1.6 Using Predefined Array Scanning Orders with gawk

This subsection describes a feature that is specific to gawk.

By default, when a for loop traverses an array, the order is undefined, meaning that
the awk implementation determines the order in which the array is traversed. This order
is usually based on the internal implementation of arrays and will vary from one version of
awk to the next.

Often, though, you may wish to do something simple, such as “traverse the array by
comparing the indices in ascending order,” or “traverse the array by comparing the values
in descending order.” gawk provides two mechanisms that give you this control:

e Set PROCINFO["sorted_in"] to one of a set of predefined values. We describe this
now.

Chapter 8: Arrays in awk 175

e Set PROCINFO["sorted_in"] to the name of a user-defined function to use for com-
parison of array elements. This advanced feature is described later in Section 12.2
[Controlling Array Traversal and Array Sorting], page 314.

The following special values for PROCINFO["sorted_in"] are available:

"Qunsorted"
Array elements are processed in arbitrary order, which is the default awk be-
havior.

"@ind_str_asc"
Order by indices in ascending order compared as strings; this is the most basic
sort. (Internally, array indices are always strings, so with ‘a[2%5] = 1’ the index
is "10" rather than numeric 10.)

"@ind_num_asc"
Order by indices in ascending order but force them to be treated as numbers
in the process. Any index with a non-numeric value will end up positioned as
if it were zero.

"@val_type_asc"
Order by element values in ascending order (rather than by indices). Ordering
is by the type assigned to the element (see Section 6.3.2 [Variable Typing and
Comparison Expressions|, page 127). All numeric values come before all string
values, which in turn come before all subarrays. (Subarrays have not been
described yet; see Section 8.6 [Arrays of Arrays|, page 181.)

"@val_str_asc"
Order by element values in ascending order (rather than by indices). Scalar
values are compared as strings. Subarrays, if present, come out last.

"@val_num_asc"
Order by element values in ascending order (rather than by indices). Scalar
values are compared as numbers. Subarrays, if present, come out last. When
numeric values are equal, the string values are used to provide an ordering:
this guarantees consistent results across different versions of the C gsort()
function,? which gawk uses internally to perform the sorting.

"@ind_str_desc"
Like "@ind_str_asc", but the string indices are ordered from high to low.

"@ind_num_desc"
Like "@ind_num_asc", but the numeric indices are ordered from high to low.

"@val_type_desc"
Like "@val_type_asc", but the element values, based on type, are ordered from
high to low. Subarrays, if present, come out first.

"@val_str_desc"
Like "@val_str_asc", but the element values, treated as strings, are ordered
from high to low. Subarrays, if present, come out first.

2 When two clements compare as equal, the C gsort () function does not guarantee that they will maintain
their original relative order after sorting. Using the string value to provide a unique ordering when the
numeric values are equal ensures that gawk behaves consistently across different environments.

176 GAWK: Effective AWK Programming

"@val_num_desc"
Like "@val_num_asc", but the element values, treated as numbers, are ordered
from high to low. Subarrays, if present, come out first.

The array traversal order is determined before the for loop starts to run. Changing
PROCINFO["sorted_in"] in the loop body does not affect the loop. For example:

$ gawk ’

> BEGIN {

> al4] = 4

> al3] =3

> for (i in a)

> print i, a[i]
> }°

-1 4 4

4 33

$ gawk ’

> BEGIN {

> PROCINFO["sorted_in"] = "@ind_str_asc"
> al4] = 4

> al3] = 3

> for (i in a)

> print i, a[i]
> }°

4 33

- 44

When sorting an array by element values, if a value happens to be a subarray then it is
considered to be greater than any string or numeric value, regardless of what the subarray
itself contains, and all subarrays are treated as being equal to each other. Their order
relative to each other is determined by their index strings.

Here are some additional things to bear in mind about sorted array traversal:

e The value of PROCINFO["sorted_in"] is global. That is, it affects all array traversal
for loops. If you need to change it within your own code, you should see if it’s defined
and save and restore the value:

if ("sorted_in" in PROCINFQO) {
save_sorted = PROCINFO["sorted_in"]
PROCINFO["sorted_in"] = "@val_str_desc" # or whatever
}

if (save_sorted)
PROCINFO["sorted_in"] = save_sorted

e As already mentioned, the default array traversal order is represented by
"Qunsorted". You can also get the default behavior by assigning the null string
to PROCINFO["sorted_in"] or by just deleting the "sorted_in" element from the
PROCINFQO array with the delete statement. (The delete statement hasn’t been
described yet; see Section 8.4 [The delete Statement|, page 178.)

Chapter 8: Arrays in awk 177

In addition, gawk provides built-in functions for sorting arrays; see Section 12.2.2 [Sorting
Array Values and Indices with gawk], page 318.

8.2 Using Numbers to Subscript Arrays

An important aspect to remember about arrays is that array subscripts are always strings.
When a numeric value is used as a subscript, it is converted to a string value before being
used for subscripting (see Section 6.1.4 [Conversion of Strings and Numbers|, page 118).
This means that the value of the predefined variable CONVFMT can affect how your program
accesses elements of an array. For example:

xyz = 12.153
data[xyz] = 1
CONVFMT = "%2.2f"
if (xyz in data)
printf "%s is in data\n", xyz
else
printf "%s is not in data\n", xyz

This prints ‘12.15 is not in data’. The first statement gives xyz a numeric value. As-
signing to datalxyz] subscripts data with the string value "12.153" (using the default
conversion value of CONVFMT, "%.6g"). Thus, the array element data["12.153"] is as-
signed the value one. The program then changes the value of CONVFMT. The test ‘(xyz in
data)’ generates a new string value from xyz—this time "12.15"—because the value of
CONVFMT only allows two significant digits. This test fails, because "12.15" is different from
"12.153".

According to the rules for conversions (see Section 6.1.4 [Conversion of Strings and
Numbers|, page 118), integer values always convert to strings as integers, no matter what
the value of CONVFMT may happen to be. So the usual case of the following works:

for (i = 1; i <= maxsub; i++)
do something with array[i]

The “integer values always convert to strings as integers” rule has an additional con-
sequence for array indexing. Octal and hexadecimal constants (see Section 6.1.1.2 [Octal
and Hexadecimal Numbers|, page 113) are converted internally into numbers, and their
original form is forgotten. This means, for example, that array[17], array[021], and
array [0x11] all refer to the same element!

As with many things in awk, the majority of the time things work as you would expect
them to. But it is useful to have a precise knowledge of the actual rules, as they can
sometimes have a subtle effect on your programs.

8.3 Using Uninitialized Variables as Subscripts

Suppose it’s necessary to write a program to print the input data in reverse order. A
reasonable attempt to do so (with some test data) might look like this:

$ echo ’line 1

> line 2

> line 3’ | awk ’{ 1[lines] = $0; ++lines }
> END {

178 GAWK: Effective AWK Programming

> for (i = lines - 1; i >= 0; i--)
> print 1[i]

>}

- line 3

- line 2

Unfortunately, the very first line of input data did not appear in the output!

Upon first glance, we would think that this program should have worked. The variable
lines is uninitialized, and uninitialized variables have the numeric value zero. So, awk
should have printed the value of 1[0].

The issue here is that subscripts for awk arrays are always strings. Uninitialized variables,
when used as strings, have the value "", not zero. Thus, ‘1ine 1’ ends up stored in 1[""].
The following version of the program works correctly:

{ 1[lines++] = $0 }
END {
for (i = lines - 1; i >= 0; i--)
print 1[i]
}

Here, the ‘“++ forces lines to be numeric, thus making the “old value” numeric zero.
This is then converted to "0" as the array subscript.

Even though it is somewhat unusual, the null string ("") is a valid array subscript.
gawk warns about the use of the null string as a subscript if --1int is provided on the
command line (see Section 2.2 [Command-Line Options]|, page 31).

8.4 The delete Statement

To remove an individual element of an array, use the delete statement:
delete arrayl[index-expression]

Once an array element has been deleted, any value the element once had is no longer
available. It is as if the element had never been referred to or been given a value. The
following is an example of deleting elements in an array:

for (i in frequencies)
delete frequencies[i]

This example removes all the elements from the array frequencies. Once an element is
deleted, a subsequent for statement to scan the array does not report that element and
using the in operator to check for the presence of that element returns zero (i.e., false):

delete fool[4]
if (4 in foo)
print "This will never be printed"

It is important to note that deleting an element is not the same as assigning it a null
value (the empty string, ""). For example:

foo [4] = nn
if (4 in foo)
print "This is printed, even though foo[4] is empty"

Chapter 8: Arrays in awk 179

It is not an error to delete an element that does not exist. However, if —-1int is
provided on the command line (see Section 2.2 [Command-Line Options|, page 31), gawk
issues a warning message when an element that is not in the array is deleted.

All the elements of an array may be deleted with a single statement by leaving off the
subscript in the delete statement, as follows:

delete array

Using this version of the delete statement is about three times more efficient than the
equivalent loop that deletes each element one at a time.
This form of the delete statement is also supported by BWK awk and mawk, as well as
by a number of other implementations.
NOTE: For many years, using delete without a subscript was a common exten-
sion. In September 2012, it was accepted for inclusion into the POSIX standard.
See the Austin Group website.

The following statement provides a portable but nonobvious way to clear out an array:3
split("", array)
The split() function (see Section 9.1.3 [String-Manipulation Functions|, page 187)

clears out the target array first. This call asks it to split apart the null string. Because
there is no data to split out, the function simply clears the array and then returns.

CAUTION: Deleting all the elements from an array does not change its type;
you cannot clear an array and then use the array’s name as a scalar (i.e., a
regular variable). For example, the following does not work:

a[1] = 3
delete a
a=3

8.5 Multidimensional Arrays

A multidimensional array is an array in which an element is identified by a sequence of
indices instead of a single index. For example, a two-dimensional array requires two in-
dices. The usual way (in many languages, including awk) to refer to an element of a
two-dimensional array named grid is with grid[x,y].

Multidimensional arrays are supported in awk through concatenation of indices into one
string. awk converts the indices into strings (see Section 6.1.4 [Conversion of Strings and
Numbers|, page 118) and concatenates them together, with a separator between them. This
creates a single string that describes the values of the separate indices. The combined string
is used as a single index into an ordinary, one-dimensional array. The separator used is the
value of the built-in variable SUBSEP.

For example, suppose we evaluate the expression ‘foo[5,12] = "value"’ when the value
of SUBSEP is "@". The numbers 5 and 12 are converted to strings and concatenated with an
‘@’ between them, yielding "5@12"; thus, the array element foo["5@12"] is set to "value".

Once the element’s value is stored, awk has no record of whether it was stored with a sin-
gle index or a sequence of indices. The two expressions ‘foo[5,12] " and ‘foo[5 SUBSEP 12]°
are always equivalent.

3 Thanks to Michael Brennan for pointing this out.

http://austingroupbugs.net/view.php?id=544

180 GAWK: Effective AWK Programming

The default value of SUBSEP is the string "\034", which contains a nonprinting character
that is unlikely to appear in an awk program or in most input data. The usefulness of
choosing an unlikely character comes from the fact that index values that contain a string
matching SUBSEP can lead to combined strings that are ambiguous. Suppose that SUBSEP
is "@"; then ‘foo["a@b", "c"]’ and ‘foo["a", "b@c"]’ are indistinguishable because both
are actually stored as ‘foo["a@b@c"]’.

To test whether a particular index sequence exists in a multidimensional array, use the
same operator (in) that is used for single-dimensional arrays. Write the whole sequence of
indices in parentheses, separated by commas, as the left operand:

if ((subscriptl, subscript2, ...) in array)

Here is an example that treats its input as a two-dimensional array of fields; it rotates
this array 90 degrees clockwise and prints the result. It assumes that all lines have the same
number of elements:

{
if (max_nf < NF)
max_nf = NF
max_nr = NR
for (x = 1; x <= NF; x++)
vector[x, NR] = $x
}
END {
for (x = 1; x <= max_nf; x++) {
for (y = max_nr; y >= 1; --y)
printf("%s ", vector[x, yl)
printf ("\n")
}
}

When given the input:

123456
234561
345612
456123

the program produces the following output:

W N~ OO
N = O O b W
= O O N
O O W -

Chapter 8: Arrays in awk 181

8.5.1 Scanning Multidimensional Arrays

There is no special for statement for scanning a “multidimensional” array. There cannot
be one, because, in truth, awk does not have multidimensional arrays or elements—there is
only a multidimensional way of accessing an array.

However, if your program has an array that is always accessed as multidimensional, you
can get the effect of scanning it by combining the scanning for statement (see Section 8.1.5
[Scanning All Elements of an Array], page 173) with the built-in split() function (see
Section 9.1.3 [String-Manipulation Functions|, page 187). It works in the following manner:

for (combined in array) {
split(combined, separate, SUBSEP)

}

This sets the variable combined to each concatenated combined index in the array, and
splits it into the individual indices by breaking it apart where the value of SUBSEP appears.
The individual indices then become the elements of the array separate.

Thus, if a value is previously stored in array[1, "foo"], then an element with index
"1\034foo" exists in array. (Recall that the default value of SUBSEP is the character with
code 034.) Sooner or later, the for statement finds that index and does an iteration with
the variable combined set to "1\034foo". Then the split() function is called as follows:

split("1\034foo", separate, "\034")

The result is to set separate[1] to "1" and separate[2] to "foo". Presto! The original
sequence of separate indices is recovered.

8.6 Arrays of Arrays

gawk goes beyond standard awk’s multidimensional array access and provides true arrays
of arrays. Elements of a subarray are referred to by their own indices enclosed in square
brackets, just like the elements of the main array. For example, the following creates a
two-element subarray at index 1 of the main array a:

al1]1[1] 1

al11[2] = 2

This simulates a true two-dimensional array. Each subarray element can contain another
subarray as a value, which in turn can hold other arrays as well. In this way, you can create
arrays of three or more dimensions. The indices can be any awk expressions, including
scalars separated by commas (i.e., a regular awk simulated multidimensional subscript). So
the following is valid in gawk:

al1]1[3][1, "name"] = "barney"

Each subarray and the main array can be of different length. In fact, the elements of an
array or its subarray do not all have to have the same type. This means that the main array
and any of its subarrays can be nonrectangular, or jagged in structure. You can assign a
scalar value to the index 4 of the main array a, even though a[1] is itself an array and not
a scalar:

al[4] = "An element in a jagged array"

The terms dimension, row, and column are meaningless when applied to such an array,
but we will use “dimension” henceforth to imply the maximum number of indices needed

182 GAWK: Effective AWK Programming

to refer to an existing element. The type of any element that has already been assigned
cannot be changed by assigning a value of a different type. You have to first delete the
current element, which effectively makes gawk forget about the element at that index:

delete a[4]
al4]1[5]1[6][7] = "An element in a four-dimensional array"

This removes the scalar value from index 4 and then inserts a three-level nested subarray
containing a scalar. You can also delete an entire subarray or subarray of subarrays:

delete al[4][5]
al[4][5] = "An element in subarray al4]"

But recall that you can not delete the main array a and then use it as a scalar.

The built-in functions that take array arguments can also be used with subarrays. For
example, the following code fragment uses length() (see Section 9.1.3 [String-Manipulation
Functions|, page 187) to determine the number of elements in the main array a and its
subarrays:

print length(a), length(all1]), length(a[1][3])
This results in the following output for our main array a:

2, 3, 1
The ‘subscript in array’ expression (see Section 8.1.2 [Referring to an Array Element],
page 171) works similarly for both regular awk-style arrays and arrays of arrays. For exam-
ple, the tests ‘1 in a’, ‘3 in a[1]’, and ‘(1, "name") in a[1] [3]’ all evaluate to one (true)
for our array a.

The ‘for (item in array)’ statement (see Section 8.1.5 [Scanning All Elements of an
Array], page 173) can be nested to scan all the elements of an array of arrays if it is
rectangular in structure. In order to print the contents (scalar values) of a two-dimensional
array of arrays (i.e., in which each first-level element is itself an array, not necessarily of the
same length), you could use the following code:

for (i in array)
for (j in array[il)
print arrayl[il [j]
The isarray() function (see Section 9.1.7 [Getting Type Information], page 210) lets
you test if an array element is itself an array:

for (i in array) {
if (isarray(array[i]) {
for (j in arrayl[i]) {
print arrayl[i] [j]
}
}
else
print arrayl[i]
}
If the structure of a jagged array of arrays is known in advance, you can often devise
workarounds using control statements. For example, the following code prints the elements
of our main array a:

for (i in a) {

Chapter 8: Arrays in awk 183

for (j in alil) {
if (j == 3) {
for (k in alil[j1)
print alil [j] [k]
} else
print ali] [j]

¥

See Section 10.7 [Traversing Arrays of Arrays|, page 261, for a user-defined function that
“walks” an arbitrarily dimensioned array of arrays.

Recall that a reference to an uninitialized array element yields a value of "", the null
string. This has one important implication when you intend to use a subarray as an argu-
ment to a function, as illustrated by the following example:

$ gawk ’BEGIN { split("a b ¢ d", b[1]); print b[1][1] }’
gawk: cmd. line:1: fatal: split: second argument is not an array

The way to work around this is to first force b[1] to be an array by creating an arbitrary
index:

$ gawk °BEGIN { b[1][1] = ""; split("a b ¢ d", b[1]); print b[1][1] }’
-4 a

8.7 Summary

e Standard awk provides one-dimensional associative arrays (arrays indexed by string
values). All arrays are associative; numeric indices are converted automatically to
strings.

e Array elements are referenced as array[indx]. Referencing an element creates it if it
did not exist previously.

e The proper way to see if an array has an element with a given index is to use the in
operator: ‘indx in array’.

e Use ‘for (indx in array) ...’ to scan through all the individual elements of an array.
In the body of the loop, indx takes on the value of each element’s index in turn.

e The order in which a ‘for (indx in array)’ loop traverses an array is undefined in
POSIX awk and varies among implementations. gawk lets you control the order by
assigning special predefined values to PROCINFO["sorted_in"].

e Use ‘delete arrayl[indx]’ to delete an individual element. To delete all of the elements
in an array, use ‘delete array’. This latter feature has been a common extension for
many years and is now standard, but may not be supported by all commercial versions
of awk.

e Standard awk simulates multidimensional arrays by separating subscript values with
commas. The values are concatenated into a single string, separated by the value of
SUBSEP. The fact that such a subscript was created in this way is not retained; thus,
changing SUBSEP may have unexpected consequences. You can use ‘(subl, sub2, ...)
in array’ to see if such a multidimensional subscript exists in array.

184 GAWK: Effective AWK Programming

e gawk provides true arrays of arrays. You use a separate set of square brackets for each
dimension in such an array: datal[row] [col], for example. Array elements may thus
be either scalar values (number or string) or other arrays.

e Use the isarray () built-in function to determine if an array element is itself a subarray.

Chapter 9: Functions 185

9 Functions

This chapter describes awk’s built-in functions, which fall into three categories: numeric,
string, and 1/0. gawk provides additional groups of functions to work with values that rep-
resent time, do bit manipulation, sort arrays, provide type information, and internationalize
and localize programs.

Besides the built-in functions, awk has provisions for writing new functions that the rest
of a program can use. The second half of this chapter describes these user-defined functions.
Finally, we explore indirect function calls, a gawk-specific extension that lets you determine
at runtime what function is to be called.

9.1 Built-in Functions

Built-in functions are always available for your awk program to call. This section defines
all the built-in functions in awk; some of these are mentioned in other sections but are
summarized here for your convenience.

9.1.1 Calling Built-in Functions

To call one of awk’s built-in functions, write the name of the function followed by arguments
in parentheses. For example, ‘atan2(y + z, 1)’ is a call to the function atan2() and has
two arguments.

Whitespace is ignored between the built-in function name and the opening parenthesis,
but nonetheless it is good practice to avoid using whitespace there. User-defined functions
do not permit whitespace in this way, and it is easier to avoid mistakes by following a simple
convention that always works—no whitespace after a function name.

Each built-in function accepts a certain number of arguments. In some cases, arguments
can be omitted. The defaults for omitted arguments vary from function to function and are
described under the individual functions. In some awk implementations, extra arguments
given to built-in functions are ignored. However, in gawk, it is a fatal error to give extra
arguments to a built-in function.

When a function is called, expressions that create the function’s actual parameters are
evaluated completely before the call is performed. For example, in the following code
fragment:

i=4

j = sqrt(i++)
the variable i is incremented to the value five before sqrt () is called with a value of four
for its actual parameter. The order of evaluation of the expressions used for the function’s
parameters is undefined. Thus, avoid writing programs that assume that parameters are
evaluated from left to right or from right to left. For example:

i=5

j = atan2(++i, i *= 2)

If the order of evaluation is left to right, then i first becomes six, and then 12, and
atan2() is called with the two arguments six and 12. But if the order of evaluation is right

to left, i first becomes 10, then 11, and atan2() is called with the two arguments 11 and
10.

186 GAWK: Effective AWK Programming

9.1.2 Numeric Functions

The following list describes all of the built-in functions that work with numbers. Optional
parameters are enclosed in square brackets ([|):

atan2(y, x)

cos(x)

exp (x)

int(x)

log(x)

rand ()

Return the arctangent of y / x in radians. You can use ‘pi = atan2(0, -1)’ to
retrieve the value of 7.

Return the cosine of x, with x in radians.

~

Return the exponential of x (e ~ x) or report an error if x is out of range. The
range of values x can have depends on your machine’s floating-point represen-
tation.

Return the nearest integer to x, located between x and zero and truncated
toward zero. For example, int(3) is 3, int(3.9) is 3, int(-3.9) is —3, and
int (-3) is —3 as well.

Return the natural logarithm of x, if x is positive; otherwise, return NaN (“not
a number”) on IEEE 754 systems. Additionally, gawk prints a warning message
when x is negative.

Return a random number. The values of rand() are uniformly distributed
between zero and one. The value could be zero but is never one.!

Often random integers are needed instead. Following is a user-defined function
that can be used to obtain a random nonnegative integer less than n:

function randint(n)
{

return int(n * rand())

3

The multiplication produces a random number greater than or equal to zero
and less than n. Using int (), this result is made into an integer between zero
and n — 1, inclusive.

The following example uses a similar function to produce random integers be-
tween one and n. This program prints a new random number for each input
record:

Function to roll a simulated die.
function roll(n) { return 1 + int(rand() * n) }

Roll 3 six-sided dice and
print total number of points.
{
printf ("%d points\n", roll(6) + roll(6) + roll(6))
}

1 The C version of rand() on many Unix systems is known to produce fairly poor sequences of random
numbers. However, nothing requires that an awk implementation use the C rand() to implement the
awk version of rand (). In fact, gawk uses the BSD random() function, which is considerably better than
rand (), to produce random numbers.

Chapter 9: Functions 187

CAUTION: In most awk implementations, including gawk, rand ()
starts generating numbers from the same starting number, or seed,
each time you run awk.? Thus, a program generates the same results
each time you run it. The numbers are random within one awk run
but predictable from run to run. This is convenient for debugging,
but if you want a program to do different things each time it is
used, you must change the seed to a value that is different in each
run. To do this, use srand ().

sin(x) Return the sine of x, with x in radians.

sqrt (x) Return the positive square root of x. gawk prints a warning message if x is
negative. Thus, sqrt(4) is 2.

srand ([x])
Set the starting point, or seed, for generating random numbers to the value x.

Each seed value leads to a particular sequence of random numbers.® Thus, if
the seed is set to the same value a second time, the same sequence of random
numbers is produced again.

CAUTION: Different awk implementations use different random-
number generators internally. Don’t expect the same awk program
to produce the same series of random numbers when executed by
different versions of awk.

If the argument x is omitted, as in ‘srand()’, then the current date and time
of day are used for a seed. This is the way to get random numbers that are
truly unpredictable.

The return value of srand() is the previous seed. This makes it easy to keep
track of the seeds in case you need to consistently reproduce sequences of ran-
dom numbers.

POSIX does not specify the initial seed; it differs among awk implementations.

9.1.3 String-Manipulation Functions
The functions in this section look at or change the text of one or more strings.

gawk understands locales (see Section 6.6 [Where You Are Makes a Difference], page 137)
and does all string processing in terms of characters, not bytes. This distinction is partic-
ularly important to understand for locales where one character may be represented by
multiple bytes. Thus, for example, length() returns the number of characters in a string,
and not the number of bytes used to represent those characters. Similarly, index() works
with character indices, and not byte indices.

CAUTION: A number of functions deal with indices into strings. For these
functions, the first character of a string is at position (index) one. This is
different from C and the languages descended from it, where the first character

2 mawk uses a different seed each time.

3 Computer-generated random numbers really are not truly random. They are technically known as
pseudorandom. This means that although the numbers in a sequence appear to be random, you can in
fact generate the same sequence of random numbers over and over again.

188 GAWK: Effective AWK Programming

is at position zero. You need to remember this when doing index calculations,
particularly if you are used to C.

In the following list, optional parameters are enclosed in square brackets ([|). Several
functions perform string substitution; the full discussion is provided in the description of the
sub () function, which comes toward the end, because the list is presented alphabetically.

Those functions that are specific to gawk are marked with a pound sign (‘#’). They are
not available in compatibility mode (see Section 2.2 [Command-Line Options|, page 31):

asort (source [, dest [, how | |) #
asorti(source [, dest [, how |]) #
These two functions are similar in behavior, so they are described together.

NOTE: The following description ignores the third argument, how,
as it requires understanding features that we have not discussed
yet. Thus, the discussion here is a deliberate simplification. (We
do provide all the details later on; see Section 12.2.2 [Sorting Array
Values and Indices with gawk|, page 318, for the full story.)

Both functions return the number of elements in the array source. For asort (),
gawk sorts the values of source and replaces the indices of the sorted values of
source with sequential integers starting with one. If the optional array dest is
specified, then source is duplicated into dest. dest is then sorted, leaving the
indices of source unchanged.

When comparing strings, IGNORECASE affects the sorting (see Section 12.2.2
[Sorting Array Values and Indices with gawk]|, page 318). If the source array
contains subarrays as values (see Section 8.6 [Arrays of Arrays|, page 181), they
will come last, after all scalar values. Subarrays are not recursively sorted.

For example, if the contents of a are as follows:

a["last"] = "de"
a["first"] = "sac"
a["middle"] = "cul"

A call to asort():
asort(a)

results in the following contents of a:

al1] = "cul"
al[2] = "de"
a[3] = "sac"

The asorti() function works similarly to asort(); however, the indices are
sorted, instead of the values. Thus, in the previous example, starting with the
same initial set of indices and values in a, calling ‘asorti(a)’ would yield:

al[1] = "first"
al[2] = "last"
al[3] "middle"

gensub (regexp, replacement, how [, target|) #
Search the target string target for matches of the regular expression regexp. If
how is a string beginning with ‘g’ or ‘G’ (short for “global”), then replace all

Chapter 9: Functions 189

matches of regexp with replacement. Otherwise, how is treated as a number
indicating which match of regexp to replace. If no target is supplied, use $0. It
returns the modified string as the result of the function and the original target
string is not changed.

gensub() is a general substitution function. Its purpose is to provide more
features than the standard sub() and gsub() functions.

gensub() provides an additional feature that is not available in sub() or
gsub(): the ability to specify components of a regexp in the replacement text.
This is done by using parentheses in the regexp to mark the components and
then specifying ‘\N’ in the replacement text, where N is a digit from 1 to 9. For

example:
$ gawk °’
> BEGIN {
> a = "abc def"
> b = gensub(/(.+) (.+)/, "\\2 \\1", "g", a)
> print b
> }°
- def abc

As with sub (), you must type two backslashes in order to get one into the string.
In the replacement text, the sequence ‘\0’ represents the entire matched text,
as does the character ‘&’.

The following example shows how you can use the third argument to control
which match of the regexp should be changed:

$ echo a bcabc|

> gawk ’{ print gensub(/a/, "AA", 2) }’

4+ abcAAbec
In this case, $0 is the default target string. gensub() returns the new string as
its result, which is passed directly to print for printing.

If the how argument is a string that does not begin with ‘g’ or ‘G’, or if it is a
number that is less than or equal to zero, only one substitution is performed.
If how is zero, gawk issues a warning message.

If regexp does not match target, gensub()’s return value is the original un-
changed value of target.

gsub(regexp, replacement [, target|)
Search target for all of the longest, leftmost, nonoverlapping matching sub-
strings it can find and replace them with replacement. The ‘g’ in gsub() stands
for “global,” which means replace everywhere. For example:
{ gsub(/Britain/, "United Kingdom"); print }

replaces all occurrences of the string ‘Britain’ with ‘United Kingdom’ for all
input records.

The gsub () function returns the number of substitutions made. If the variable
to search and alter (target) is omitted, then the entire input record ($0) is used.
Asin sub(), the characters ‘&’ and ‘\’ are special, and the third argument must
be assignable.

190 GAWK: Effective AWK Programming

index(in, find)
Search the string in for the first occurrence of the string find, and return the
position in characters where that occurrence begins in the string in. Consider
the following example:
$ awk °BEGIN { print index("peanut", "an") }’
4 3

If find is not found, index () returns zero.

With BWK awk and gawk, it is a fatal error to use a regexp constant for
find. Other implementations allow it, simply treating the regexp constant as
an expression meaning ‘$0 ~ /regexp/’.
length([string])

Return the number of characters in string. If string is a number, the length
of the digit string representing that number is returned. For example,
length("abcde") is five. By contrast, length(15 * 35) works out to three.
In this example, 15 - 35 = 525, and 525 is then converted to the string "525",
which has three characters.

If no argument is supplied, length() returns the length of $0.

NOTE: In older versions of awk, the length() function could be

called without any parentheses. Doing so is considered poor prac-

tice, although the 2008 POSIX standard explicitly allows it, to sup-

port historical practice. For programs to be maximally portable,

always supply the parentheses.
If length() is called with a variable that has not been used, gawk forces the
variable to be a scalar. Other implementations of awk leave the variable without
a type. Consider:

$ gawk ’BEGIN { print length(x) ; x[1] =1 }’

4 0

gawk: fatal: attempt to use scalar ‘x’ as array

$ nawk ’BEGIN { print length(x) ; x[1] =1 }’

40
If —-1int has been specified on the command line, gawk issues a warning about
this.
With gawk and several other awk implementations, when given an array argu-
ment, the length () function returns the number of elements in the array. (c.e.)
This is less useful than it might seem at first, as the array is not guaranteed to be
indexed from one to the number of elements in it. If ——1int is provided on the
command line (see Section 2.2 [Command-Line Options|, page 31), gawk warns
that passing an array argument is not portable. If ——posix is supplied, using
an array argument is a fatal error (see Chapter 8 [Arrays in awk]|, page 169).

match(string, regexp [, arrayl)
Search string for the longest, leftmost substring matched by the regular expres-
sion regexp and return the character position (index) at which that substring
begins (one, if it starts at the beginning of string). If no match is found, return
Z€ro.

Chapter 9: Functions 191

The regexp argument may be either a regexp constant (/.../) or a string
constant ("..."). In the latter case, the string is treated as a regexp to be
matched. See Section 3.6 [Using Dynamic Regexps|, page 55, for a discussion
of the difference between the two forms, and the implications for writing your
program correctly.

The order of the first two arguments is the opposite of most other string func-
tions that work with regular expressions, such as sub() and gsub(). It might
help to remember that for match (), the order is the same as for the ‘=’ operator:
‘string ~ regexp’.

The match() function sets the predefined variable RSTART to the index. It also
sets the predefined variable RLENGTH to the length in characters of the matched
substring. If no match is found, RSTART is set to zero, and RLENGTH to —1.

For example:

{

if ($1 == "FIND")

regex = $2
else {
where = match($0, regex)
if (where != 0)
print "Match of", regex, "found at", where, "in", $0
}

}

This program looks for lines that match the regular expression stored in the
variable regex. This regular expression can be changed. If the first word on a
line is ‘FIND’, regex is changed to be the second word on that line. Therefore,
if given:

FIND ru+n

My program runs

but not very quickly

FIND Melvin

JF+KM

This line is property of Reality Engineering Co.

Melvin was here.

awk prints:

Match of ru+n found at 12 in My program runs
Match of Melvin found at 1 in Melvin was here.

If array is present, it is cleared, and then the zeroth element of array is set to
the entire portion of string matched by regexp. If regexp contains parentheses,
the integer-indexed elements of array are set to contain the portion of string
matching the corresponding parenthesized subexpression. For example:

$ echo foooobazbarrrrr |

> gawk ’{ match($0, /(fo+).+(bar*)/, arr)
> print arr([1], arr[2] }’

-4 foooo barrrrr

192 GAWK: Effective AWK Programming

In addition, multidimensional subscripts are available providing the start index
and length of each matched subexpression:

$ echo foooobazbarrrrr |

> gawk ’{ match($0, /(fo+).+(bar*)/, arr)

> print arr([1], arr[2]

> print arr[1, "start"], arr[1, "length"]
> print arr[2, "start"], arr[2, "length"]
> }°

-4 foooo barrrrr

415

4 97

There may not be subscripts for the start and index for every parenthesized
subexpression, because they may not all have matched text; thus, they should
be tested for with the in operator (see Section 8.1.2 [Referring to an Array
Element|, page 171).

The array argument to match() is a gawk extension. In compatibility mode
(see Section 2.2 [Command-Line Options|, page 31), using a third argument is
a fatal error.

patsplit(string, array [, fieldpat [, seps|]) #

Divide string into pieces (or “fields”) defined by fieldpat and store the pieces
in array and the separator strings in the seps array. The first piece is stored
in array[1], the second piece in array[2], and so forth. The third argument,
fieldpat, is a regexp describing the fields in string (just as FPAT is a regexp
describing the fields in input records). It may be either a regexp constant or
a string. If fieldpat is omitted, the value of FPAT is used. patsplit() returns
the number of elements created. seps[i] is the possibly null separator string
after array[i]. The possibly null leading separator will be in seps[0]. So a
non-null string with n fields will have n+1 separators. A null string will not
have neither fields nor separators.

The patsplit() function splits strings into pieces in a manner similar to the
way input lines are split into fields using FPAT (see Section 4.7 [Defining Fields
by Content], page 77).

Before splitting the string, patsplit () deletes any previously existing elements
in the arrays array and seps.

split(string, array [, fieldsep [, seps] |)

Divide string into pieces separated by fieldsep and store the pieces in array and
the separator strings in the seps array. The first piece is stored in array[1],
the second piece in array[2], and so forth. The string value of the third
argument, fieldsep, is a regexp describing where to split string (much as FS can
be a regexp describing where to split input records). If fieldsep is omitted, the
value of FS is used. split() returns the number of elements created. seps is
a gawk extension, with seps[i] being the separator string between array[i]
and array[i+1]. If fieldsep is a single space, then any leading whitespace goes
into seps[0] and any trailing whitespace goes into seps[n], where n is the
return value of split() (i.e., the number of elements in array).

Chapter 9: Functions 193

The split() function splits strings into pieces in a manner similar to the way
input lines are split into fields. For example:
split("cul-de-sac", a, "-", seps)

i

splits the string "cul-de-sac" into three fields using ‘-’ as the separator. It

sets the contents of the array a as follows:

al1] = "cul"
a[2] = lldell
a[3] = "sac"

and sets the contents of the array seps as follows:

seps[1] = "-"
seps[2] = "-"

The value returned by this call to split() is three.

As with input field-splitting, when the value of fieldsep is " ", leading and
trailing whitespace is ignored in values assigned to the elements of array but
not in seps, and the elements are separated by runs of whitespace. Also, as
with input field splitting, if fieldsep is the null string, each individual character
in the string is split into its own array element. (c.e.)

Note, however, that RS has no effect on the way split() works. Even though
‘RS = ""’ causes the newline character to also be an input field separator, this
does not affect how split () splits strings.

Modern implementations of awk, including gawk, allow the third argument to
be a regexp constant (/.../) as well as a string. The POSIX standard allows
this as well. See Section 3.6 [Using Dynamic Regexps|, page 55, for a discussion
of the difference between using a string constant or a regexp constant, and the
implications for writing your program correctly.

Before splitting the string, split () deletes any previously existing elements in
the arrays array and seps.

If string is null, the array has no elements. (So this is a portable way to delete
an entire array with one statement. See Section 8.4 [The delete Statement],
page 178.)

If string does not match fieldsep at all (but is not null), array has one element
only. The value of that element is the original string.

In POSIX mode (see Section 2.2 [Command-Line Options|, page 31), the fourth
argument is not allowed.

sprintf (format, expressioni, ...)
Return (without printing) the string that printf would have printed out with
the same arguments (see Section 5.5 [Using printf Statements for Fancier
Printing], page 96). For example:

pival = sprintf("pi = %.2f (approx.)", 22/7)
assigns the string ‘pi = 3.14 (approx.)’ to the variable pival.
strtonum(str) #

Examine str and return its numeric value. If str begins with a leading ‘0’,
strtonum() assumes that str is an octal number. If str begins with a lead-

194 GAWK: Effective AWK Programming

ing ‘0x’ or ‘0X’, strtonum() assumes that str is a hexadecimal number. For

example:
$ echo 0x11 |
> gawk ’{ printf "Jd\n", strtonum($1) }’
- 17

Using the strtonum() function is not the same as adding zero to a string value;
the automatic coercion of strings to numbers works only for decimal data, not
for octal or hexadecimal.*

Note also that strtonum() uses the current locale’s decimal point for recogniz-
ing numbers (see Section 6.6 [Where You Are Makes a Difference], page 137).

sub(regexp, replacement [, target])
Search target, which is treated as a string, for the leftmost, longest substring
matched by the regular expression regexp. Modify the entire string by replacing
the matched text with replacement. The modified string becomes the new value
of target. Return the number of substitutions made (zero or one).

The regexp argument may be either a regexp constant (/.../) or a string
constant ("..."). In the latter case, the string is treated as a regexp to be
matched. See Section 3.6 [Using Dynamic Regexps], page 55, for a discussion
of the difference between the two forms, and the implications for writing your
program correctly.

This function is peculiar because target is not simply used to compute a value,
and not just any expression will do—it must be a variable, field, or array element
so that sub() can store a modified value there. If this argument is omitted,
then the default is to use and alter $0.°> For example:

str = "water, water, everywhere"

sub(/at/, "ith", str)
sets str to ‘wither, water, everywhere’, by replacing the leftmost longest
occurrence of ‘at’ with ‘ith’.

If the special character ‘&’ appears in replacement, it stands for the precise
substring that was matched by regexp. (If the regexp can match more than one
string, then this precise substring may vary.) For example:

{ sub(/candidate/, "& and his wife"); print }
changes the first occurrence of ‘candidate’ to ‘candidate and his wife’ on
each input line. Here is another example:

$ awk ’BEGIN {

> str = "daabaaa"

> sub(/a+/, "C&C", str)
> print str

>}

4 Unless you use the --non-decimal-data option, which isn’t recommended. See Section 12.1 [Allowing
Nondecimal Input Data], page 313, for more information.

5 Note that this means that the record will first be regencrated using the value of OFS if any fields have
been changed, and that the fields will be updated after the substitution, even if the operation is a “no-op”
such as ‘sub(/~/, "") .

Chapter 9: Functions 195

-1 dCaaCbaaa

This shows how ‘&’ can represent a nonconstant string and also illustrates the
“leftmost, longest” rule in regexp matching (see Section 3.5 [How Much Text
Matches?], page 55).

The effect of this special character (‘&’) can be turned off by putting a backslash
before it in the string. As usual, to insert one backslash in the string, you must
write two backslashes. Therefore, write ‘\\&’ in a string constant to include a
literal ‘&’ in the replacement. For example, the following shows how to replace
the first ‘|’ on each line with an ‘&’

{ sub(/\I/, "\\&"); print }

As mentioned, the third argument to sub() must be a variable, field, or array
element. Some versions of awk allow the third argument to be an expression
that is not an lvalue. In such a case, sub() still searches for the pattern and
returns zero or one, but the result of the substitution (if any) is thrown away
because there is no place to put it. Such versions of awk accept expressions like
the following:

sub(/USA/, "United States", "the USA and Canada")

For historical compatibility, gawk accepts such erroneous code. However, using
any other nonchangeable object as the third parameter causes a fatal error and
your program will not run.

Finally, if the regexp is not a regexp constant, it is converted into a string, and
then the value of that string is treated as the regexp to match.

substr(string, start [, length |)
Return a length-character-long substring of string, starting at character number
start. The first character of a string is character number one.® For example,
substr("washington", 5, 3) returns "ing".

If length is not present, substr () returns the whole suffix of string that begins
at character number start. For example, substr("washington", 5) returns
"ington". The whole suffix is also returned if length is greater than the number
of characters remaining in the string, counting from character start.

If start is less than one, substr() treats it as if it was one. (POSIX doesn’t
specify what to do in this case: BWK awk acts this way, and therefore gawk does
too.) If start is greater than the number of characters in the string, substr ()
returns the null string. Similarly, if length is present but less than or equal to
zero, the null string is returned.

The string returned by substr () cannot be assigned. Thus, it is a mistake to
attempt to change a portion of a string, as shown in the following example:

string = "abcdef"
try to get "abCDEf", won’t work
substr(string, 3, 3) = "CDE"
It is also a mistake to use substr() as the third argument of sub() or gsub():

gsub(/xyz/, "pdq", substr($0, 5, 20)) # WRONG

6 This is different from C and C++, in which the first character is number zero.

196 GAWK: Effective AWK Programming

(Some commercial versions of awk treat substr() as assignable, but doing so
is not portable.)

If you need to replace bits and pieces of a string, combine substr () with string
concatenation, in the following manner:

"abcdef"

string

string = substr(string, 1, 2) "CDE" substr(string, 6)
tolower (string)
Return a copy of string, with each uppercase character in the string replaced
with its corresponding lowercase character. Nonalphabetic characters are left
unchanged. For example, tolower ("MiXeD cAsE 123") returns "mixed case
123".

toupper (string)
Return a copy of string, with each lowercase character in the string replaced
with its corresponding uppercase character. Nonalphabetic characters are left
unchanged. For example, toupper ("MiXeD cAsE 123") returns "MIXED CASE
123",

Matching the Null String
In awk, the ‘*’ operator can match the null string. This is particularly important for the
sub(), gsub(), and gensub() functions. For example:
$ echo abc | awk ’{ gsub(/m*/, "X"); print }’
- XaXbXcX

Although this makes a certain amount of sense, it can be surprising.
- J

9.1.3.1 More about ‘\’ and ‘&’ with sub(), gsub(), and gensub()

CAUTION: This subsubsection has been reported to cause headaches. You
might want to skip it upon first reading.

When using sub(), gsub(), or gensub(), and trying to get literal backslashes and
ampersands into the replacement text, you need to remember that there are several levels
of escape processing going on.

First, there is the lexical level, which is when awk reads your program and builds an
internal copy of it to execute. Then there is the runtime level, which is when awk actually
scans the replacement string to determine what to generate.

At both levels, awk looks for a defined set of characters that can come after a backslash.
At the lexical level, it looks for the escape sequences listed in Section 3.2 [Escape Sequences],
page 48. Thus, for every ‘\’ that awk processes at the runtime level, you must type two
backslashes at the lexical level. When a character that is not valid for an escape sequence
follows the ‘\’, BWK awk and gawk both simply remove the initial ‘\’ and put the next
character into the string. Thus, for example, "a\gb" is treated as "agb".

At the runtime level, the various functions handle sequences of ‘\” and ‘&’ differently. The
situation is (sadly) somewhat complex. Historically, the sub() and gsub() functions treated
the two-character sequence ‘\&’ specially; this sequence was replaced in the generated text

Chapter 9: Functions 197

with a single ‘&’. Any other ‘\’ within the replacement string that did not precede an ‘&’
was passed through unchanged. This is illustrated in Table 9.1.

You type sub() sees sub() generates
\& & The matched text
\\& \& A literal ‘&’
\\\& \& A literal ‘&’
A& \\& A literal ‘\&
A& \\& A literal ‘\&’
AN\ \\\& A literal ‘\\&’
\\q \q A literal ‘\q’

Table 9.1: Historical escape sequence processing for sub() and gsub()

This table shows the lexical-level processing, where an odd number of backslashes becomes
an even number at the runtime level, as well as the runtime processing done by sub(). (For
the sake of simplicity, the rest of the following tables only show the case of even numbers
of backslashes entered at the lexical level.)

The problem with the historical approach is that there is no way to get a literal ‘\’
followed by the matched text.

Several editions of the POSIX standard attempted to fix this problem but weren’t suc-
cessful. The details are irrelevant at this point in time.

At one point, the gawk maintainer submitted proposed text for a revised standard that
reverts to rules that correspond more closely to the original existing practice. The proposed
rules have special cases that make it possible to produce a ‘\’ preceding the matched text.
This is shown in Table 9.2.

You type sub() sees sub() generates
M\\\\& \\\& A literal ‘\&’
\\\\& \\& A literal ‘\’, followed by the matched text
\\& \& A literal ‘&’
\\q \g A literal ‘\q’
ARRNN \\ \\

Table 9.2: gawk rules for sub() and backslash

In a nutshell, at the runtime level, there are now three special sequences of characters
("\\\&’, \\&’, and ‘\&’) whereas historically there was only one. However, as in the historical
case, any ‘\’ that is not part of one of these three sequences is not special and appears in
the output literally.

gawk 3.0 and 3.1 follow these rules for sub() and gsub(). The POSIX standard took
much longer to be revised than was expected. In addition, the gawk maintainer’s proposal

198 GAWK: Effective AWK Programming

was lost during the standardization process. The final rules are somewhat simpler. The
results are similar except for one case.

The POSIX rules state that ‘\&’ in the replacement string produces a literal ‘&’, ‘\\’
produces a literal ‘\’, and ‘\’ followed by anything else is not special; the ‘\’ is placed
straight into the output. These rules are presented in Table 9.3.

You type sub() sees sub() generates
\M\\\\\& \\\& A literal ‘\&’
\\\\& \\& A literal ‘\’, followed by the matched text
\\& \& A literal ‘&’
\\q \q A literal ‘\q’
ARRNN \\ \

Table 9.3: POSIX rules for sub() and gsub()

The only case where the difference is noticeable is the last one: ‘\\\\’ is seen as ‘\\’ and
produces ‘\’ instead of ‘\\’.

Starting with version 3.1.4, gawk followed the POSIX rules when --posix was specified
(see Section 2.2 [Command-Line Options|, page 31). Otherwise, it continued to follow the
proposed rules, as that had been its behavior for many years.

When version 4.0.0 was released, the gawk maintainer made the POSIX rules the default,
breaking well over a decade’s worth of backward compatibility.” Needless to say, this was
a bad idea, and as of version 4.0.1, gawk resumed its historical behavior, and only follows
the POSIX rules when --posix is given.

The rules for gensub() are considerably simpler. At the runtime level, whenever gawk
sees a ‘\’, if the following character is a digit, then the text that matched the corresponding
parenthesized subexpression is placed in the generated output. Otherwise, no matter what
character follows the ‘\’, it appears in the generated text and the ‘\’ does not, as shown in
Table 9.4.

You type gensub() sees gensub() generates
& & The matched text
\\& \& A literal ‘&’
ARRNN \\ A literal ‘\’
\\\\& \\& A literal ‘\’, then the matched text
\M\\\\\& \\\& A literal ‘\&’
\\q \q A literal ‘q’

Table 9.4: Escape sequence processing for gensub ()

" This was rather naive of him, despite there being a note in this section indicating that the next major
version would move to the POSIX rules.

Chapter 9: Functions 199

Because of the complexity of the lexical- and runtime-level processing and the special
cases for sub() and gsub(), we recommend the use of gawk and gensub() when you have
to do substitutions.

9.1.4 Input/Output Functions

The following functions relate to input/output (I/O). Optional parameters are enclosed in
square brackets ([|):

close(filename [, how])
Close the file filename for input or output. Alternatively, the argument may be
a shell command that was used for creating a coprocess, or for redirecting to
or from a pipe; then the coprocess or pipe is closed. See Section 5.9 [Closing
Input and Output Redirections|, page 106, for more information.

When closing a coprocess, it is occasionally useful to first close one end of the
two-way pipe and then to close the other. This is done by providing a second
argument to close(). This second argument (how) should be one of the two
string values "to" or "from", indicating which end of the pipe to close. Case in
the string does not matter. See Section 12.3 [Two-Way Communications with
Another Process|, page 320, which discusses this feature in more detail and
gives an example.

Note that the second argument to close () is a gawk extension; it is not available
in compatibility mode (see Section 2.2 [Command-Line Options|, page 31).

fflush([filename])
Flush any buffered output associated with filename, which is either a file opened
for writing or a shell command for redirecting output to a pipe or coprocess.

Many utility programs buffer their output (i.e., they save information to write
to a disk file or the screen in memory until there is enough for it to be worthwhile
to send the data to the output device). This is often more efficient than writing
every little bit of information as soon as it is ready. However, sometimes it is
necessary to force a program to flush its buffers (i.e., write the information to
its destination, even if a buffer is not full). This is the purpose of the fflush()
function—gawk also buffers its output, and the £flush() function forces gawk
to flush its buffers.

Brian Kernighan added fflush() to his awk in April 1992. For two decades, it
was a common extension. In December 2012, it was accepted for inclusion into
the POSIX standard. See the Austin Group website.

POSIX standardizes £flush() as follows: if there is no argument, or if the
argument is the null string (""), then awk flushes the buffers for all open output
files and pipes.

NOTE: Prior to version 4.0.2, gawk would flush only the standard
output if there was no argument, and flush all output files and pipes
if the argument was the null string. This was changed in order
to be compatible with Brian Kernighan’s awk, in the hope that
standardizing this feature in POSIX would then be easier (which
indeed proved to be the case).

http://austingroupbugs.net/view.php?id=634

200 GAWK: Effective AWK Programming

With gawk, you can use ‘fflush("/dev/stdout")’ if you wish to
flush only the standard output.

fflush () returns zero if the buffer is successfully flushed; otherwise, it returns
a nonzero value. (gawk returns —1.) In the case where all buffers are flushed,
the return value is zero only if all buffers were flushed successfully. Otherwise,
it is —1, and gawk warns about the problem filename.

gawk also issues a warning message if you attempt to flush a file or pipe that
was opened for reading (such as with getline), or if filename is not an open
file, pipe, or coprocess. In such a case, fflush() returns —1, as well.

(. . . . R
Interactive Versus Noninteractive Buffering

As a side point, buffering issues can be even more confusing if your program is
interactive (i.e., communicating with a user sitting at a keyboard).®

Interactive programs generally line buffer their output (i.e., they write out every
line). Noninteractive programs wait until they have a full buffer, which may be
many lines of output. Here is an example of the difference:

$ awk ’{ print $1 + $2 3}’
11

-4 2

2 3

-4 b

Ctrli-d

Each line of output is printed immediately. Compare that behavior with this
example:

$ awk ’{ print $1 + $2 }’ | cat
11

2 3

Ctrl-d

-4 2

-1 5

Here, no output is printed until after the Ctrl-d is typed, because it is all

buffered and sent down the pipe to cat in one shot.
N

system(command)
Execute the operating system command command and then return to the awk
program. Return command’s exit status (see further on).
For example, if the following fragment of code is put in your awk program:

END {
system("date | mail -s ’awk run done’ root")
}
the system administrator is sent mail when the awk program finishes processing
input and begins its end-of-input processing.

8 A program is interactive if the standard output is connected to a terminal device. On modern systems,
this means your keyboard and screen.

Chapter 9: Functions 201

Note that redirecting print or printf into a pipe is often enough to accomplish
your task. If you need to run many commands, it is more efficient to simply
print them down a pipeline to the shell:

while (more stuff to do)
print command | "/bin/sh"
close("/bin/sh")

However, if your awk program is interactive, system() is useful for running large
self-contained programs, such as a shell or an editor. Some operating systems
cannot implement the system() function. system() causes a fatal error if it is
not supported.

NOTE: When --sandbox is specified, the system() function is dis-
abled (see Section 2.2 [Command-Line Options|, page 31).

On POSIX systems, a command’s exit status is a 16-bit number. The exit
value passed to the C exit () function is held in the high-order eight bits. The
low-order bits indicate if the process was killed by a signal (bit 7) and if so, the
guilty signal number (bits 0-6).

Traditionally, awk’s system () function has simply returned the exit status value
divided by 256. In the normal case this gives the exit status but in the case of
death-by-signal it yields a fractional floating-point value.® POSIX states that
awk’s system() should return the full 16-bit value.

gawk steers a middle ground. The return values are summarized in Table 9.5.

Situation Return value from system()
--traditional C system()’s value divided by 256
--posix C system()’s value

Normal exit of command Command’s exit status

Death by signal of command 256 + number of murderous signal
Death by signal of command with 512 + number of murderous signal
core dump

Some kind of error -1

Table 9.5: Return values from system()

9 In private
a mistake.

correspondence, Dr. Kernighan has indicated to me that the way this was done was probably

202 GAWK: Effective AWK Programming

(M
Controlling Output Buffering with system()

The fflush() function provides explicit control over output buffering for individual
files and pipes. However, its use is not portable to many older awk implementations. An
alternative method to flush output buffers is to call system() with a null string as its
argument:

system("") # flush output

gawk treats this use of the system() function as a special case and is smart enough not
to run a shell (or other command interpreter) with the empty command. Therefore, with
gawk, this idiom is not only useful, it is also efficient. Although this method should work
with other awk implementations, it does not necessarily avoid starting an unnecessary shell.
(Other implementations may only flush the buffer associated with the standard output and
not necessarily all buffered output.)

If you think about what a programmer expects, it makes sense that system() should
flush any pending output. The following program:

BEGIN {
print "first print"
system("echo system echo")
print "second print"

¥
must print:
first print
system echo
second print
and not:
system echo
first print
second print

If awk did not flush its buffers before calling system(), you would see the latter (unde-

sirable) output.
N J

9.1.5 Time Functions

awk programs are commonly used to process log files containing timestamp information,
indicating when a particular log record was written. Many programs log their timestamps
in the form returned by the time() system call, which is the number of seconds since a
particular epoch. On POSIX-compliant systems, it is the number of seconds since 1970-
01-01 00:00:00 UTC, not counting leap seconds.'® All known POSIX-compliant systems
support timestamps from 0 through 23! — 1, which is sufficient to represent times through
2038-01-19 03:14:07 UTC. Many systems support a wider range of timestamps, including
negative timestamps that represent times before the epoch.

In order to make it easier to process such log files and to produce useful reports, gawk
provides the following functions for working with timestamps. They are gawk extensions;

10 gee [Glossary], page 485, especially the entries “Epoch” and “UTC.”

Chapter 9: Functions 203

they are not specified in the POSIX standard.'! However, recent versions of mawk (see
Section B.5 [Other Freely Available awk Implementations|, page 465) also support these
functions. Optional parameters are enclosed in square brackets ([|):

mktime (datespec [, utc-flag|)

Turn datespec into a timestamp in the same form as is returned by systime().
It is similar to the function of the same name in ISO C. The argument, datespec,
is a string of the form "YYYY MM DD HH MM SS [DST]". The string consists of six
or seven numbers representing, respectively, the full year including century, the
month from 1 to 12, the day of the month from 1 to 31, the hour of the day from
0 to 23, the minute from 0 to 59, the second from 0 to 60,'? and an optional
daylight-savings flag.

The values of these numbers need not be within the ranges specified; for exam-
ple, an hour of —1 means 1 hour before midnight. The origin-zero Gregorian
calendar is assumed, with year 0 preceding year 1 and year —1 preceding year
0. If utc-flag is present and is either nonzero or non-null, the time is assumed
to be in the UTC time zone; otherwise, the time is assumed to be in the local
time zone. If the DST daylight-savings flag is positive, the time is assumed
to be daylight savings time; if zero, the time is assumed to be standard time;
and if negative (the default), mktime () attempts to determine whether daylight
savings time is in effect for the specified time.

If datespec does not contain enough elements or if the resulting time is out of
range, mktime () returns —1.

strftime ([format [, timestamp [, utc-flag]]])

systime ()

Format the time specified by timestamp based on the contents of the format
string and return the result. It is similar to the function of the same name
in ISO C. If utc-flag is present and is either nonzero or non-null, the value is
formatted as UTC (Coordinated Universal Time, formerly GMT or Greenwich
Mean Time). Otherwise, the value is formatted for the local time zone. The
timestamp is in the same format as the value returned by the systime () func-
tion. If no timestamp argument is supplied, gawk uses the current time of day
as the timestamp. Without a format argument, strftime() uses the value of
PROCINFO["strftime"] as the format string (see Section 7.5 [Predefined Vari-
ables|, page 157). The default string value is "%a %b %e %H:%M:%S %Z %Y". This
format string produces output that is equivalent to that of the date utility.
You can assign a new value to PROCINFO["strftime"] to change the default
format; see the following list for the various format directives.

Return the current time as the number of seconds since the system epoch. On
POSIX systems, this is the number of seconds since 1970-01-01 00:00:00 UTC,
not counting leap seconds. It may be a different number on other systems.

The systime() function allows you to compare a timestamp from a log file with the
current time of day. In particular, it is easy to determine how long ago a particular record

1 The GNU date utility can also do many of the things described here. Its use may be preferable for
simple time-related operations in shell scripts.

12 Occasionally there are minutes in a year with a leap second, which is why the seconds can go up to 60.

204 GAWK: Effective AWK Programming

was logged. It also allows you to produce log records using the “seconds since the epoch”
format.

The mktime () function allows you to convert a textual representation of a date and time
into a timestamp. This makes it easy to do before/after comparisons of dates and times,
particularly when dealing with date and time data coming from an external source, such as
a log file.

The strftime () function allows you to easily turn a timestamp into human-readable
information. It is similar in nature to the sprintf () function (see Section 9.1.3 [String-
Manipulation Functions|, page 187), in that it copies nonformat specification characters
verbatim to the returned string, while substituting date and time values for format specifi-
cations in the format string.

strftime () is guaranteed by the 1999 ISO C standard!® to support the following date
format specifications:

%ha The locale’s abbreviated weekday name.

%A The locale’s full weekday name.

yAS) The locale’s abbreviated month name.

%B The locale’s full month name.

he The locale’s “appropriate” date and time representation. (This is ‘%A %B %d %T
%Y’ in the "C" locale.)

yA® The century part of the current year. This is the year divided by 100 and
truncated to the next lower integer.

%d The day of the month as a decimal number (01-31).

%D Equivalent to specifying ‘%m/%d/%hy’ .

he The day of the month, padded with a space if it is only one digit.

yAY Equivalent to specifying ‘%Y-%m-%d’. This is the ISO 8601 date format.

hg The year modulo 100 of the ISO 8601 week number, as a decimal number (00—

99). For example, January 1, 2012, is in week 53 of 2011. Thus, the year
of its ISO 8601 week number is 2011, even though its year is 2012. Similarly,
December 31, 2012, is in week 1 of 2013. Thus, the year of its ISO week number
is 2013, even though its year is 2012.

WG The full year of the ISO week number, as a decimal number.
%h Equivalent to ‘%b’.

%H The hour (24-hour clock) as a decimal number (00-23).

hI The hour (12-hour clock) as a decimal number (01-12).

% The day of the year as a decimal number (001-366).

Jim The month as a decimal number (01-12).

M The minute as a decimal number (00-59).

13 Unfortunately, not every system’s strftime () necessarily supports all of the conversions listed here.

Chapter 9: Functions 205

%n A newline character (ASCII LF).

hp The locale’s equivalent of the AM/PM designations associated with a 12-hour
clock.

hr The locale’s 12-hour clock time. (This is ‘4I:%M:%S %p’ in the "C" locale.)

%R Equivalent to specifying ‘%H: %M.

%S The second as a decimal number (00-60).

ht A TAB character.

T Equivalent to specifying ‘%H:%M:%S’.

fu The weekday as a decimal number (1-7). Monday is day one.

YAV The week number of the year (with the first Sunday as the first day of week

one) as a decimal number (00-53).

AU The week number of the year (with the first Monday as the first day of week one)
as a decimal number (01-53). The method for determining the week number is
as specified by ISO 8601. (To wit: if the week containing January 1 has four
or more days in the new year, then it is week one; otherwise it is the last week
[52 or 53] of the previous year and the next week is week one.)

hw The weekday as a decimal number (0-6). Sunday is day zero.

YAl The week number of the year (with the first Monday as the first day of week
one) as a decimal number (00-53).

hx The locale’s “appropriate” date representation. (This is ‘%A %B %d %Y’ in the
"C" locale.)

"X The locale’s “appropriate” time representation. (This is ‘%T" in the "C" locale.)

hy The year modulo 100 as a decimal number (00-99).

wY The full year as a decimal number (e.g., 2015).

hz The time zone offset in a ‘+HHMM’ format (e.g., the format necessary to produce

RFC 822/RFC 1036 date headers).

hZ The time zone name or abbreviation; no characters if no time zone is deter-
minable.

%Ec %EC %Ex %EX %Ey %EY %04 %0e %0H

%0I %0m %0M %08 %0u %0U %0V %0w %0W %0y
“Alternative representations” for the specifications that use only the second
letter (‘%c’, “%C’, and so on).!* (These facilitate compliance with the POSIX
date utility.)

Dot A literal “%’.

4 1f you don’t understand any of this, don’t worry about it; these facilities are meant to make it easier to
“internationalize” programs. Other internationalization features are described in Chapter 13 [Interna-
tionalization with gawk], page 329.

206 GAWK: Effective AWK Programming

If a conversion specifier is not one of those just listed, the behavior is undefined.'®

For systems that are not yet fully standards-compliant, gawk supplies a copy
of strftime() from the GNU C Library. It supports all of the just-listed format
specifications. If that version is used to compile gawk (see Appendix B [Installing gawk],
page 451), then the following additional format specifications are available:

hk The hour (24-hour clock) as a decimal number (0-23). Single-digit numbers are
padded with a space.

1 The hour (12-hour clock) as a decimal number (1-12). Single-digit numbers are
padded with a space.

%s The time as a decimal timestamp in seconds since the epoch.

Additionally, the alternative representations are recognized but their normal represen-
tations are used.

The following example is an awk implementation of the POSIX date utility. Normally,
the date utility prints the current date and time of day in a well-known format. However,
if you provide an argument to it that begins with a ‘+’, date copies nonformat specifier
characters to the standard output and interprets the current time according to the format
specifiers in the string. For example:

$ date ’+Today is %A, /B %d, %Y.’
- Today is Monday, September 22, 2014.

Here is the gawk version of the date utility. It has a shell “wrapper” to handle the —u
option, which requires that date run as if the time zone is set to UTC:

#! /bin/sh
#
date --- approximate the POSIX ’date’ command

case $1 in

-u) TZ=UTCO # use UTC
export TZ
shift ;;

esac

gawk ’BEGIN <
format = PROCINFO["strftime"]
exitval = 0

if (ARGC > 2)
exitval =1
else if (ARGC == 2) {
format = ARGV[1]
if (format ~ /~\+/)
format = substr(format, 2) # remove leading +

15 This is because ISO C leaves the behavior of the C version of strftime() undefined and gawk uses the
system’s version of strftime() if it’s there. Typically, the conversion specifier either does not appear in
the returned string or appears literally.

Chapter 9: Functions 207

}
print strftime(format)
exit exitval

}7 n$©||
9.1.6 Bit-Manipulation Functions

I can explain it for you, but I can’t understand it for you.
—Anonymous
Many languages provide the ability to perform bitwise operations on two integer num-
bers. In other words, the operation is performed on each successive pair of bits in the

operands. Three common operations are bitwise AND, OR, and XOR. The operations are
described in Table 9.6.

Bit operator

AND OR XOR

Operands | 0 | 1 | 0 [1 | 0|1
0 0o 0[O0 1|0 1

1 o 1|1 1|1 0

Table 9.6: Bitwise operations

As you can see, the result of an AND operation is 1 only when both bits are 1. The
result of an OR operation is 1 if either bit is 1. The result of an XOR operation is 1 if
either bit is 1, but not both. The next operation is the complement; the complement of 1
is 0 and the complement of 0 is 1. Thus, this operation “flips” all the bits of a given value.

Finally, two other common operations are to shift the bits left or right. For example,
if you have a bit string ‘10111001’ and you shift it right by three bits, you end up with
‘00010111".16 If you start over again with ‘10111001’ and shift it left by three bits, you end
up with ‘11001000°. The following list describes gawk’s built-in functions that implement
the bitwise operations. Optional parameters are enclosed in square brackets ([]):

and(vi, v2 [, ...1)
Return the bitwise AND of the arguments. There must be at least two.

compl(val)
Return the bitwise complement of val.

1shift(val, count)
Return the value of val, shifted left by count bits.

or(vi, v2 [, ...1)
Return the bitwise OR of the arguments. There must be at least two.

rshift(val, count)
Return the value of val, shifted right by count bits.

xor(vl, v2 [, ...])
Return the bitwise XOR of the arguments. There must be at least two.

16 This example shows that zeros come in on the left side. For gawk, this is always true, but in some
languages, it’s possible to have the left side fill with ones.

208 GAWK: Effective AWK Programming

CAUTION: Beginning with gawk version 4.2, negative operands are not allowed
for any of these functions. A negative operand produces a fatal error. See the
sidebar “Beware The Smoke and Mirrors!” for more information as to why.

Here is a user-defined function (see Section 9.2 [User-Defined Functions|, page 211) that
illustrates the use of these functions:

bits2str --- turn a byte into readable ones and zeros
function bits2str(bits, data, mask)
{

if (bits == 0)
return "O"

mask = 1
for (; bits != 0; bits = rshift(bits, 1))
data = (and(bits, mask) 7 "1" : "O") data

while ((length(data) % 8) != 0)
data = "0" data

return data

}
BEGIN {
printf "123 = %s\n", bits2str(123)
printf "0123 = %s\n", bits2str(0123)
printf "0x99 = %s\n", bits2str(0x99)
comp = compl(0x99)
printf "compl(0x99) = %#x = Ys\n", comp, bits2str(comp)
shift = 1shift(0x99, 2)
printf "lshift(0x99, 2) = %#x = Js\n", shift, bits2str(shift)
shift = rshift(0x99, 2)
printf "rshift(0x99, 2) = %#x = Ys\n", shift, bits2str(shift)
}

This program produces the following output when run:

$ gawk -f testbits.awk

123 = 01111011

0123 = 01010011

0x99 = 10011001

compl (0x99) = Ox3fffffffffff66 = 001101
1shift(0x99, 2) = 0x264 = 0000001001100100

rshift(0x99, 2) 0x26 = 00100110

I) I I

The bits2str() function turns a binary number into a string. Initializing mask to one
creates a binary value where the rightmost bit is set to one. Using this mask, the function
repeatedly checks the rightmost bit. ANDing the mask with the value indicates whether
the rightmost bit is one or not. If so, a "1" is concatenated onto the front of the string.

Chapter 9: Functions 209

Otherwise, a "0" is added. The value is then shifted right by one bit and the loop continues
until there are no more one bits.

If the initial value is zero, it returns a simple "0". Otherwise, at the end, it pads the value
with zeros to represent multiples of 8-bit quantities. This is typical in modern computers.

The main code in the BEGIN rule shows the difference between the decimal and octal val-
ues for the same numbers (see Section 6.1.1.2 [Octal and Hexadecimal Numbers|, page 113),
and then demonstrates the results of the compl (), 1shift (), and rshift () functions.

a N
Beware The Smoke and Mirrors!

It other languages, bitwise operations are performed on integer values, not floating-point
values. As a general statement, such operations work best when performed on unsigned
integers.

gawk attempts to treat the arguments to the bitwise functions as unsigned integers. For
this reason, negative arguments produce a fatal error.

In normal operation, for all of these functions, first the double-precision floating-point
value is converted to the widest C unsigned integer type, then the bitwise operation is
performed. If the result cannot be represented exactly as a C double, leading nonzero bits
are removed one by one until it can be represented exactly. The result is then converted
back into a C double.!”

However, when using arbitrary precision arithmetic with the -M option (see Chapter 15
[Arithmetic and Arbitrary-Precision Arithmetic with gawk|, page 355), the results may
differ. This is particularly noticeable with the compl() function:

$ gawk ’BEGIN { print compl(42) }’
- 9007199254740949
$ gawk -M ’BEGIN { print compl(42) }’
- -43
What’s going on becomes clear when printing the results in hexadecimal:

$ gawk °BEGIN { printf "J#x\n", compl(42) }’

-+ Ox1fffffffffffdsb

$ gawk -M ’BEGIN { printf "J#x\n", compl(42) }’
-+ Oxffffffffffffffdb

When using the -M option, under the hood, gawk uses GNU MP arbitrary precision
integers which have at least 64 bits of precision. When not using -M, gawk stores integral
values in regular double-precision floating point, which only maintain 53 bits of precision.
Furthermore, the GNU MP library treats (or at least seems to treat) the leading bit as a
sign bit; thus the result with -M in this case is a negative number.

In short, using gawk for any but the simplest kind of bitwise operations is probably a

bad idea; caveat emptor!
N J

17 1f you don’t understand this paragraph, the upshot is that gawk can only store a particular range of
integer values; numbers outside that range are reduced to fit within the range.

210 GAWK: Effective AWK Programming

9.1.7 Getting Type Information

gawk provides two functions that let you distinguish the type of a variable. This is necessary
for writing code that traverses every element of an array of arrays (see Section 8.6 [Arrays
of Arrays|, page 181), and in other contexts.

isarray(x)
Return a true value if x is an array. Otherwise, return false.

typeof (x)
Return one of the following strings, depending upon the type of x:

"array" = x is an array.

"regexp" x is a strongly typed regexp (see Section 6.1.2.2 [Strongly Typed
Regexp Constants], page 116).

"number" x is a number.
"string" x is a string.

"strnum" x is a number that started life as user input, such as a field or the
result of calling split(). (I.e., x has the strnum attribute; see
Section 6.3.2.1 [String Type versus Numeric Type|, page 128.)

"unassigned"
x is a scalar variable that has not been assigned a value yet. For
example:
BEGIN {
creates a[l] but it has no assigned value
al1]
print typeof(all]) # unassigned
}
"untyped"

x has not yet been used yet at all; it can become a scalar or an
array. The typing could even conceivably differ from run to run of
the same program! For example:
BEGIN {
print "initially, typeof(v) = ", typeof (v)

if ("FOO" in ENVIRON)
make_scalar (v)
else

make_array (v)

print "typeof (v) =", typeof(v)
}

function make_scalar(p, {1=p1}

function make_array(p) { pl[1] =1}

Chapter 9: Functions 211

isarray() is meant for use in two circumstances. The first is when traversing a mul-
tidimensional array: you can test if an element is itself an array or not. The second is
inside the body of a user-defined function (not discussed yet; see Section 9.2 [User-Defined
Functions|, page 211), to test if a parameter is an array or not.

NOTE: Using isarray() at the global level to test variables makes no sense.
Because you are the one writing the program, you are supposed to know if your
variables are arrays or not. And in fact, due to the way gawk works, if you pass
the name of a variable that has not been previously used to isarray(), gawk
ends up turning it into a scalar.

The typeof () function is general; it allows you to determine if a variable or function
parameter is a scalar, an array, or a strongly typed regexp.

9.1.8 String-Translation Functions

gawk provides facilities for internationalizing awk programs. These include the functions
described in the following list. The descriptions here are purposely brief. See Chapter 13
[Internationalization with gawk]|, page 329, for the full story. Optional parameters are

enclosed in square brackets ([]):

bindtextdomain(directory [, domain])
Set the directory in which gawk will look for message translation files, in case
they will not or cannot be placed in the “standard” locations (e.g., during
testing). It returns the directory in which domain is “bound.”

The default domain is the value of TEXTDOMAIN. If directory is the null string
(""), then bindtextdomain () returns the current binding for the given domain.

dcgettext (string [, domain [, category]])
Return the translation of string in text domain domain for locale category
category. The default value for domain is the current value of TEXTDOMAIN.
The default value for category is "LC_MESSAGES".

dcngettext (stringl, string2, number [, domain [, category] |)
Return the plural form used for number of the translation of stringl and string2
in text domain domain for locale category category. stringl is the English
singular variant of a message, and string2 is the English plural variant of the
same message. The default value for domain is the current value of TEXTDOMAIN.
The default value for category is "LC_MESSAGES".

9.2 User-Defined Functions

Complicated awk programs can often be simplified by defining your own functions. User-
defined functions can be called just like built-in ones (see Section 6.4 [Function Calls]
page 135), but it is up to you to define them (i.e., to tell awk what they should do).

)

9.2.1 Function Definition Syntax
It’s entirely fair to say that the awk syntax for local variable definitions is ap-
pallingly awful.
—Brian Kernighan

212 GAWK: Effective AWK Programming

Definitions of functions can appear anywhere between the rules of an awk program.
Thus, the general form of an awk program is extended to include sequences of rules and
user-defined function definitions. There is no need to put the definition of a function before
all uses of the function. This is because awk reads the entire program before starting to
execute any of it.

The definition of a function named name looks like this:
function name ([parameter-list])

{
body-of-function

}
Here, name is the name of the function to define. A valid function name is like a valid
variable name: a sequence of letters, digits, and underscores that doesn’t start with a digit.
Here too, only the 52 upper- and lowercase English letters may be used in a function name.
Within a single awk program, any particular name can only be used as a variable, array, or
function.

parameter-list is an optional list of the function’s arguments and local variable names,
separated by commas. When the function is called, the argument names are used to hold
the argument values given in the call.

A function cannot have two parameters with the same name, nor may it have a parameter
with the same name as the function itself.

CAUTION: According to the POSIX standard, function parameters cannot
have the same name as one of the special predefined variables (see Section 7.5
[Predefined Variables|, page 157), nor may a function parameter have the same
name as another function.

Not all versions of awk enforce these restrictions. gawk always enforces the first
restriction. With --posix (see Section 2.2 [Command-Line Options], page 31),
it also enforces the second restriction.

Local variables act like the empty string if referenced where a string value is required, and
like zero if referenced where a numeric value is required. This is the same as the behavior
of regular variables that have never been assigned a value. (There is more to understand
about local variables; see Section 9.2.5 [Functions and Their Effects on Variable Typing],
page 220.)

The body-of-function consists of awk statements. It is the most important part of the
definition, because it says what the function should actually do. The argument names exist
to give the body a way to talk about the arguments; local variables exist to give the body
places to keep temporary values.

Argument names are not distinguished syntactically from local variable names. Instead,
the number of arguments supplied when the function is called determines how many argu-
ment variables there are. Thus, if three argument values are given, the first three names in
parameter-list are arguments and the rest are local variables.

It follows that if the number of arguments is not the same in all calls to the function,
some of the names in parameter-list may be arguments on some occasions and local variables
on others. Another way to think of this is that omitted arguments default to the null string.

Usually when you write a function, you know how many names you intend to use for
arguments and how many you intend to use as local variables. It is conventional to place

Chapter 9: Functions 213

some extra space between the arguments and the local variables, in order to document how
your function is supposed to be used.

During execution of the function body, the arguments and local variable values hide, or
shadow, any variables of the same names used in the rest of the program. The shadowed
variables are not accessible in the function definition, because there is no way to name them
while their names have been taken away for the arguments and local variables. All other
variables used in the awk program can be referenced or set normally in the function’s body.

The arguments and local variables last only as long as the function body is executing.
Once the body finishes, you can once again access the variables that were shadowed while
the function was running.

The function body can contain expressions that call functions. They can even call this
function, either directly or by way of another function. When this happens, we say the
function is recursive. The act of a function calling itself is called recursion.

All the built-in functions return a value to their caller. User-defined functions can do so
also, using the return statement, which is described in detail in Section 9.2.4 [The return
Statement]|, page 219. Many of the subsequent examples in this section use the return
statement.

In many awk implementations, including gawk, the keyword function may be abbre-
viated func. (c.e.) However, POSIX only specifies the use of the keyword function.
This actually has some practical implications. If gawk is in POSIX-compatibility mode
(see Section 2.2 [Command-Line Options|, page 31), then the following statement does not
define a function:

func foo() { a = sqrt($1) ; print a }
Instead, it defines a rule that, for each record, concatenates the value of the variable ‘func’
with the return value of the function ‘foo’. If the resulting string is non-null, the action
is executed. This is probably not what is desired. (awk accepts this input as syntactically
valid, because functions may be used before they are defined in awk programs.'®)

To ensure that your awk programs are portable, always use the keyword function when
defining a function.

9.2.2 Function Definition Examples
Here is an example of a user-defined function, called myprint (), that takes a number and
prints it in a specific format:

function myprint (num)
{

printf "%6.3g\n", num
}

To illustrate, here is an awk rule that uses our myprint () function:
$3 > 0 { myprint($3)

This program prints, in our special format, all the third fields that contain a positive number
in our input. Therefore, when given the following input:

1.2 3.4 5.6 7.8

18 This program won’t actually run, because foo() is undefined.

214 GAWK: Effective AWK Programming

9.10 11.12 -13.14 15.16
17.18 19.20 21.22 23.24

this program, using our function to format the results, prints:

5.6
21.2

This function deletes all the elements in an array (recall that the extra whitespace
signifies the start of the local variable list):

function delarray(a, i)
{
for (i in a)
delete alil
}

When working with arrays, it is often necessary to delete all the elements in an array and
start over with a new list of elements (see Section 8.4 [The delete Statement|, page 178).
Instead of having to repeat this loop everywhere that you need to clear out an array,
your program can just call delarray(). (This guarantees portability. The use of ‘delete
array’ to delete the contents of an entire array is a relatively recent! addition to the POSIX
standard.)

The following is an example of a recursive function. It takes a string as an input pa-
rameter and returns the string in reverse order. Recursive functions must always have a
test that stops the recursion. In this case, the recursion terminates when the input string
is already empty:

function rev(str)

{
if (str == "")
return ""
return (rev(substr(str, 2)) substr(str, 1, 1))
}

If this function is in a file named rev.awk, it can be tested this way:

$ echo "Don’t Panic!" |

> gawk -e ’{ print rev($0) }’ -f rev.awk

- !cinaP t’noD

The C ctime() function takes a timestamp and returns it as a string, formatted in

a well-known fashion. The following example uses the built-in strftime() function (see
Section 9.1.5 [Time Functions]|, page 202) to create an awk version of ctime():

ctime.awk

#

awk version of C ctime(3) function

function ctime(ts, format)

{
format = "%a %b %e SH:UM:%S %Z %Y"

19 Late in 2012.

Chapter 9: Functions 215

if (ts == 0)
ts = systime() # use current time as default
return strftime(format, ts)

}

You might think that ctime() could use PROCINFO["strftime"] for its format string.
That would be a mistake, because ctime () is supposed to return the time formatted in a
standard fashion, and user-level code could have changed PROCINFO["strftime"].

9.2.3 Calling User-Defined Functions

Calling a function means causing the function to run and do its job. A function call is an
expression and its value is the value returned by the function.

9.2.3.1 Writing a Function Call

A function call consists of the function name followed by the arguments in parentheses. awk
expressions are what you write in the call for the arguments. Each time the call is executed,
these expressions are evaluated, and the values become the actual arguments. For example,
here is a call to foo() with three arguments (the first being a string concatenation):

foo(x y, "lose", 4 * z)

CAUTION: Whitespace characters (spaces and TABs) are not allowed between
the function name and the opening parenthesis of the argument list. If you
write whitespace by mistake, awk might think that you mean to concatenate a
variable with an expression in parentheses. However, it notices that you used
a function name and not a variable name, and reports an error.

9.2.3.2 Controlling Variable Scope

Unlike in many languages, there is no way to make a variable local to a { ... } block in
awk, but you can make a variable local to a function. It is good practice to do so whenever
a variable is needed only in that function.

To make a variable local to a function, simply declare the variable as an argument after
the actual function arguments (see Section 9.2.1 [Function Definition Syntax|, page 211).
Look at the following example, where variable i is a global variable used by both functions
foo() and bar():

function bar()

{
for (i = 0; 1 < 3; i++)
print "bar’s i=" i
b
function foo(j)
{
i=j+1
print "foo’s i=" 1
bar ()

print "foo’s i=" 1

216 GAWK: Effective AWK Programming

+
BEGIN {
i=10
print "top’s i=" 1
foo(0)
print "top’s i=" i
3

Running this script produces the following, because the i in functions foo () and bar ()
and at the top level refer to the same variable instance:
top’s i=10
foo’s i=1
bar’s 0
2

bar’s 1
bar’s i=
foo’s i=3
top’s 1=3

i
i
i
i

If you want i to be local to both foo() and bar (), do as follows (the extra space before
i is a coding convention to indicate that i is a local variable, not an argument):

function bar(i)
{
for (i = 0; 1 < 3; i++)
print "bar’s i=" i

function foo(j, i)
{
i=j+1
print "foo’s i=" 1
bar ()
print "foo’s i=" 1

BEGIN {
i=10
print "top’s i=" i
foo(0)
print "top’s i="1i
}

Running the corrected script produces the following:
top’s 1
foo’s i=1
bar’s i=0
bar’s i=1
bar’s i=2

foo’s i=1
top’s i=10

Chapter 9: Functions 217

Besides scalar values (strings and numbers), you may also have local arrays. By using
a parameter name as an array, awk treats it as an array, and it is local to the function. In
addition, recursive calls create new arrays. Consider this example:

function some_func(pl, a)
{
if (pl++ > 3)
return
alp1] = p1
some_func(pl)
printf ("At level %d, index %d %s found in a\n",
pl, (pt - 1), (p1 - 1) in a 7 "is" : "is not")
printf ("At level %d, index %d %s found in a\n",
pl, pl, pl in a ? "is" : "is not")
pr int nn
}
BEGIN {
some_func(1)
}

When run, this program produces the following output:

At level 4, index
At level 4, index

At level 3, index
At level 3, index

At level 2, index
At level 2, index

3 is
4 is

1 is
2 is

not found in a
found in a

not found in a
found in a

not found in a
found in a

9.2.3.3 Passing Function Arguments by Value Or by Reference

In awk, when you declare a function, there is no way to declare explicitly whether the
arguments are passed by value or by reference.

Instead, the passing convention is determined at runtime when the function is called,
according to the following rule: if the argument is an array variable, then it is passed by
reference. Otherwise, the argument is passed by value.

Passing an argument by value means that when a function is called, it is given a copy of
the value of this argument. The caller may use a variable as the expression for the argument,
but the called function does not know this—it only knows what value the argument had.
For example, if you write the following code:

foo = "bar"

218 GAWK: Effective AWK Programming

z = myfunc(foo)

then you should not think of the argument to myfunc () as being “the variable foo.” Instead,
think of the argument as the string value "bar". If the function myfunc() alters the values
of its local variables, this has no effect on any other variables. Thus, if myfunc() does this:

function myfunc(str)

{
print str
str = "zzz"
print str
b

to change its first argument variable str, it does not change the value of foo in the caller.
The role of foo in calling myfunc() ended when its value ("bar") was computed. If str
also exists outside of myfunc (), the function body cannot alter this outer value, because it
is shadowed during the execution of myfunc () and cannot be seen or changed from there.

However, when arrays are the parameters to functions, they are not copied. Instead, the
array itself is made available for direct manipulation by the function. This is usually termed
call by reference. Changes made to an array parameter inside the body of a function are
visible outside that function.

NOTE: Changing an array parameter inside a function can be very dangerous
if you do not watch what you are doing. For example:

function changeit(array, ind, nvalue)

{
array[ind] = nvalue

}
BEGIN {

al1] = 1; a[2] = 2; a[3] =3

changeit(a, 2, "two")

printf "al[1] = %s, al2] = %s, al3] = %s\n",

al1], al2], al3]

}

prints ‘al[1] =1, a[2] = two, a[3] = 3’, because changeit () stores "two" in
the second element of a.

Some awk implementations allow you to call a function that has not been defined. They
only report a problem at runtime, when the program actually tries to call the function. For
example:

BEGIN {
if (0)
foo()
else
bar ()
}
function bar() { ... }
note that ‘foo’ is not defined

Chapter 9: Functions 219

Because the ‘if’ statement will never be true, it is not really a problem that foo() has not
been defined. Usually, though, it is a problem if a program calls an undefined function.

If --1int is specified (see Section 2.2 [Command-Line Options], page 31), gawk reports
calls to undefined functions.

Some awk implementations generate a runtime error if you use either the next statement
or the nextfile statement (see Section 7.4.8 [The next Statement], page 154, and see
Section 7.4.9 [The nextfile Statement], page 155) inside a user-defined function. gawk
does not have this limitation.

9.2.4 The return Statement

As seen in several earlier examples, the body of a user-defined function can contain a return
statement. This statement returns control to the calling part of the awk program. It can
also be used to return a value for use in the rest of the awk program. It looks like this:

return [expression]

The expression part is optional. Due most likely to an oversight, POSIX does not define
what the return value is if you omit the expression. Technically speaking, this makes the
returned value undefined, and therefore, unpredictable. In practice, though, all versions of
awk simply return the null string, which acts like zero if used in a numeric context.

A return statement without an expression is assumed at the end of every function
definition. So, if control reaches the end of the function body, then technically the function
returns an unpredictable value. In practice, it returns the empty string. awk does not warn
you if you use the return value of such a function.

Sometimes, you want to write a function for what it does, not for what it returns. Such
a function corresponds to a void function in C, C++, or Java, or to a procedure in Ada.
Thus, it may be appropriate to not return any value; simply bear in mind that you should
not be using the return value of such a function.

The following is an example of a user-defined function that returns a value for the largest
number among the elements of an array:

function maxelt(vec, i, ret)
{
for (i in vec) {
if (ret == "" || vec[i] > ret)
ret = vec[i]
}
return ret

}

You call maxelt() with one argument, which is an array name. The local variables i and
ret are not intended to be arguments; there is nothing to stop you from passing more than
one argument to maxelt() but the results would be strange. The extra space before i in
the function parameter list indicates that i and ret are local variables. You should follow
this convention when defining functions.

The following program uses the maxelt() function. It loads an array, calls maxelt (),
and then reports the maximum number in that array:

function maxelt(vec, i, ret)

220 GAWK: Effective AWK Programming

{
for (i in vec) {
if (ret == "" || vec[i] > ret)
ret = vec[i]
}
return ret
}
Load all fields of each record into nums.
{
for(i = 1; i <= NF; i++)
nums [NR, i] = $i
}
END {
print maxelt(nums)
}

Given the following input:

15238 16
44 3 5 2 8 26
256 291 1396 2962 100
-6 467 998 1101
99385 11 0 225

the program reports (predictably) that 99,385 is the largest value in the array.

9.2.5 Functions and Their Effects on Variable Typing

awk is a very fluid language. It is possible that awk can’t tell if an identifier represents a
scalar variable or an array until runtime. Here is an annotated sample program:

function foo(a)

{
al[1l]l] = 1 # parameter is an array
}
BEGIN {
b=1
foo(b) # invalid: fatal type mismatch
foo(x) # x uninitialized, becomes an array dynamically
x =1 # now not allowed, runtime error
}

In this example, the first call to foo() generates a fatal error, so awk will not report the
second error. If you comment out that call, though, then awk does report the second error.

Usually, such things aren’t a big issue, but it’s worth being aware of them.

Chapter 9: Functions 221

9.3 Indirect Function Calls

This section describes an advanced, gawk-specific extension.

Often, you may wish to defer the choice of function to call until runtime. For example,
you may have different kinds of records, each of which should be processed differently.

Normally, you would have to use a series of if-else statements to decide which function
to call. By using indirect function calls, you can specify the name of the function to call as
a string variable, and then call the function. Let’s look at an example.

Suppose you have a file with your test scores for the classes you are taking, and you wish
to get the sum and the average of your test scores. The first field is the class name. The
following fields are the functions to call to process the data, up to a “marker” field ‘data:’.
Following the marker, to the end of the record, are the various numeric test scores.

Here is the initial file:

Biology_101 sum average data: 87.0 92.4 78.5 94.9
Chemistry_305 sum average data: 75.2 98.3 94.7 88.2
English_401 sum average data: 100.0 95.6 87.1 93.4

To process the data, you might write initially:

{
class = $1
for (i = 2; $i !'= "data:"; i++) {
if ($i == "sum"
sum() # processes the whole record
else if ($i == "average")
average ()
and so on
X
}

This style of programming works, but can be awkward. With indirect function calls, you
tell gawk to use the wvalue of a variable as the name of the function to call.

The syntax is similar to that of a regular function call: an identifier immediately followed
by an opening parenthesis, any arguments, and then a closing parenthesis, with the addition
of a leading ‘@ character:

the_func = "sum"
result = @the_func() # calls the sum() function

Here is a full program that processes the previously shown data, using indirect function

calls:

indirectcall.awk --- Demonstrate indirect function calls
average —--- return the average of the values in fields $first - $last

function average(first, last, sum, 1)
{
sum = O;
for (i = first; i <= last; i++)
sum += $i

222 GAWK: Effective AWK Programming

return sum / (last - first + 1)

}
sum ——-- return the sum of the values in fields $first - $last
function sum(first, last, ret, i)
{

ret = 0;

for (i = first; i <= last; i++)

ret += $i

return ret

}

These two functions expect to work on fields; thus, the parameters first and last
indicate where in the fields to start and end. Otherwise, they perform the expected com-
putations and are not unusual:

For each record, print the class name and the requested statistics

{

}

class_name = $1

gsub(/_/, " ", class_name) # Replace _ with spaces

find start
for (i = 1; i <= NF; i++) {

if ($i == "data:") {
start = 1 + 1
break

}

}

printf ("%s:\n", class_name)
for (i = 2; $i !'= "data:"; i++) {

the_function = $i

printf ("\tYs: <%s>\n", $i, O@the_function(start, NF) "")
}

pr lnt nn

This is the main processing for each record. It prints the class name (with underscores
replaced with spaces). It then finds the start of the actual data, saving it in start. The
last part of the code loops through each function name (from $2 up to the marker, ‘data:’),
calling the function named by the field. The indirect function call itself occurs as a param-
eter in the call to printf. (The printf format string uses ‘%s’ as the format specifier so
that we can use functions that return strings, as well as numbers. Note that the result from
the indirect call is concatenated with the empty string, in order to force it to be a string

value.)

Here is the result of running the program:

Chapter 9: Functions 223

$ gawk -f indirectcall.awk class_datal
- Biology 101:

sum: <352.8>

average: <88.2>

Chemistry 305:
sum: <356.4>
average: <89.1>

English 401:
sum: <376.1>
average: <94.025>

N e e

The ability to use indirect function calls is more powerful than you may think at first.
The C and C++ languages provide “function pointers,” which are a mechanism for calling a
function chosen at runtime. One of the most well-known uses of this ability is the C gsort ()
function, which sorts an array using the famous “quicksort” algorithm (see the Wikipedia
article for more information). To use this function, you supply a pointer to a comparison
function. This mechanism allows you to sort arbitrary data in an arbitrary fashion.

We can do something similar using gawk, like this:

quicksort.awk —--- Quicksort algorithm, with user-supplied

comparison function

quicksort --—- C.A.R. Hoare’s quicksort algorithm. See Wikipedia
or almost any algorithms or computer science text.
function quicksort(data, left, right, less_than, i, last)

{

if (left >= right) # do nothing if array contains fewer
return # than two elements

quicksort_swap(data, left, int((left + right) / 2))
last = left
for (i = left + 1; i <= right; i++)

if (@less_than(datal[i], datal[left]))

quicksort_swap(data, ++last, i)

quicksort_swap(data, left, last)
quicksort(data, left, last - 1, less_than)
quicksort(data, last + 1, right, less_than)

b

quicksort_swap --- helper function for quicksort, should really be inline
function quicksort_swap(data, i, j, temp)

{

temp = datali]
datali] = datalj]

https://en.wikipedia.org/wiki/Quicksort
https://en.wikipedia.org/wiki/Quicksort

224 GAWK: Effective AWK Programming

datal[j] = temp
}

The quicksort() function receives the data array, the starting and ending indices to
sort (left and right), and the name of a function that performs a “less than” comparison.
It then implements the quicksort algorithm.

To make use of the sorting function, we return to our previous example. The first thing
to do is write some comparison functions:

num_1t --- do a numeric less than comparison

function num_1t(left, right)

{
return ((left + 0) < (right + 0))
b
num_ge -—— do a numeric greater than or equal to comparison

function num_ge(left, right)
{

return ((left + 0) >= (right + 0))
}

The num_ge () function is needed to perform a descending sort; when used to perform a
“less than” test, it actually does the opposite (greater than or equal to), which yields data
sorted in descending order.

Next comes a sorting function. It is parameterized with the starting and ending
field numbers and the comparison function. It builds an array with the data and calls
quicksort () appropriately, and then formats the results as a single string:

do_sort --- sort the data according to ‘compare’

and return it as a string

function do_sort(first, last, compare, data, i, retval)
{

delete data

for (i = 1; first <= last; first++) {
datal[i] = $first
i++

3

quicksort(data, 1, i-1, compare)
retval = datal1]
for (i = 2; i in data; i++)

retval = retval " " datali]

return retval

Chapter 9: Functions 225

Finally, the two sorting functions call do_sort (), passing in the names of the two com-
parison functions:

sort --- sort the data in ascending order and return it as a string

function sort(first, last)

{
return do_sort(first, last, "num_1t")
X
rsort --- sort the data in descending order and return it as a string

function rsort(first, last)
{
return do_sort(first, last, "num_ge")

}

Here is an extended version of the data file:

Biology_101 sum average sort rsort data: 87.0 92.4 78.5 94.9
Chemistry_305 sum average sort rsort data: 75.2 98.3 94.7 88.2
English_401 sum average sort rsort data: 100.0 95.6 87.1 93.4

Finally, here are the results when the enhanced program is run:

$ gawk -f quicksort.awk -f indirectcall.awk class_data2
- Biology 101:

sum: <352.8>

average: <88.2>

sort: <78.5 87.0 92.4 94.9>

rsort: <94.9 92.4 87.0 78.5>

Chemistry 305:
sum: <356.4>
average: <89.1>
sort: <75.2 88.2 94.7 98.3>
rsort: <98.3 94.7 88.2 75.2>

English 401:
sum: <376.1>
average: <94.025>
sort: <87.1 93.4 95.6 100.0>
rsort: <100.0 95.6 93.4 87.1>

e

Another example where indirect functions calls are useful can be found in processing
arrays. This is described in Section 10.7 [Traversing Arrays of Arrays|, page 261.

Remember that you must supply a leading ‘@ in front of an indirect function call.

Starting with version 4.1.2 of gawk, indirect function calls may also be used with built-
in functions and with extension functions (see Chapter 16 [Writing Extensions for gawk],
page 369). There are some limitations when calling built-in functions indirectly, as follows.

226 GAWK: Effective AWK Programming

You cannot pass a regular expression constant to a built-in function through an indirect
function call.?® This applies to the sub(), gsub(), gensub(), match(), split() and
patsplit () functions.

If calling sub() or gsub(), you may only pass two arguments, since those functions are
unusual in that they update their third argument. This means that $0 will be updated.

gawk does its best to make indirect function calls efficient. For example, in the following

case:

for (i = 1; i <= n; i++)
@the_func()

gawk looks up the actual function to call only once.

9.4 Summary

awk provides built-in functions and lets you define your own functions.

POSIX awk provides three kinds of built-in functions: numeric, string, and I/0. gawk
provides functions that sort arrays, work with values representing time, do bit manip-
ulation, determine variable type (array versus scalar), and internationalize and localize
programs. gawk also provides several extensions to some of standard functions, typi-
cally in the form of additional arguments.

Functions accept zero or more arguments and return a value. The expressions that
provide the argument values are completely evaluated before the function is called.
Order of evaluation is not defined. The return value can be ignored.

The handling of backslash in sub() and gsub () is not simple. It is more straightforward
in gawk’s gensub() function, but that function still requires care in its use.

User-defined functions provide important capabilities but come with some syntactic
inelegancies. In a function call, there cannot be any space between the function name
and the opening left parenthesis of the argument list. Also, there is no provision for
local variables, so the convention is to add extra parameters, and to separate them
visually from the real parameters by extra whitespace.

User-defined functions may call other user-defined (and built-in) functions and may call
themselves recursively. Function parameters “hide” any global variables of the same
names. You cannot use the name of a reserved variable (such as ARGC) as the name of
a parameter in user-defined functions.

Scalar values are passed to user-defined functions by value. Array parameters are
passed by reference; any changes made by the function to array parameters are thus
visible after the function has returned.

Use the return statement to return from a user-defined function. An optional expres-
sion becomes the function’s return value. Only scalar values may be returned by a
function.

If a variable that has never been used is passed to a user-defined function, how that
function treats the variable can set its nature: either scalar or array.

20

This may change in a future version; recheck the documentation that comes with your version of gawk
to see if it has.

Chapter 9: Functions 227

e gawk provides indirect function calls using a special syntax. By setting a variable to
the name of a function, you can determine at runtime what function will be called at
that point in the program. This is equivalent to function pointers in C and C++.

Part II:
Problem Solving with awk

Chapter 10: A Library of awk Functions 231

10 A Library of awk Functions

Section 9.2 [User-Defined Functions|, page 211, describes how to write your own awk func-
tions. Writing functions is important, because it allows you to encapsulate algorithms and
program tasks in a single place. It simplifies programming, making program development
more manageable and making programs more readable.

In their seminal 1976 book, Software Tools,! Brian Kernighan and P.J. Plauger wrote:

Good Programming is not learned from generalities, but by seeing how signifi-
cant programs can be made clean, easy to read, easy to maintain and modify,
human-engineered, efficient and reliable, by the application of common sense
and good programming practices. Careful study and imitation of good pro-
grams leads to better writing.

In fact, they felt this idea was so important that they placed this statement on the cover
of their book. Because we believe strongly that their statement is correct, this chapter and
Chapter 11 [Practical awk Programs], page 265, provide a good-sized body of code for you
to read and, we hope, to learn from.

This chapter presents a library of useful awk functions. Many of the sample programs
presented later in this book use these functions. The functions are presented here in a
progression from simple to complex.

Section 11.3.7 [Extracting Programs from Texinfo Source Files|, page 295, presents a
program that you can use to extract the source code for these example library functions
and programs from the Texinfo source for this book. (This has already been done as part
of the gawk distribution.)

If you have written one or more useful, general-purpose awk functions and would like
to contribute them to the awk user community, see [How to Contribute|, page 11, for more
information.

The programs in this chapter and in Chapter 11 [Practical awk Programs|, page 265,
freely use gawk-specific features. Rewriting these programs for different implementations of
awk is pretty straightforward:

e Diagnostic error messages are sent to /dev/stderr. Use ‘| "cat 1>&2"’ instead of ‘>
"/dev/stderr"’ if your system does not have a /dev/stderr, or if you cannot use
gawk.

e A number of programs use nextfile (see Section 7.4.9 [The nextfile Statement],
page 155) to skip any remaining input in the input file.

e Finally, some of the programs choose to ignore upper- and lowercase distinctions in
their input. They do so by assigning one to IGNORECASE. You can achieve almost the
same effect? by adding the following rule to the beginning of the program:

ignore case

{ $0 = tolower($0) }
Also, verify that all regexp and string constants used in comparisons use only lowercase
letters.

1 Sadly, over 35 years later, many of the lessons taught by this book have yet to be learned by a vast
number of practicing programmers.

2 The effects are not identical. Output of the transformed record will be in all lowercase, while IGNORECASE
preserves the original contents of the input record.

232 GAWK: Effective AWK Programming

10.1 Naming Library Function Global Variables

Due to the way the awk language evolved, variables are either global (usable by the en-
tire program) or local (usable just by a specific function). There is no intermediate state
analogous to static variables in C.

Library functions often need to have global variables that they can use to preserve state
information between calls to the function—for example, getopt()’s variable _opti (see
Section 10.4 [Processing Command-Line Options], page 248). Such variables are called
private, as the only functions that need to use them are the ones in the library.

When writing a library function, you should try to choose names for your private vari-
ables that will not conflict with any variables used by either another library function or a
user’s main program. For example, a name like i or j is not a good choice, because user
programs often use variable names like these for their own purposes.

The example programs shown in this chapter all start the names of their private variables
with an underscore (‘_’). Users generally don’t use leading underscores in their variable

names, so this convention immediately decreases the chances that the variable names will
be accidentally shared with the user’s program.

In addition, several of the library functions use a prefix that helps indicate what function
or set of functions use the variables—for example, _pw_byname() in the user database
routines (see Section 10.5 [Reading the User Database|, page 253). This convention is
recommended, as it even further decreases the chance of inadvertent conflict among variable
names. Note that this convention is used equally well for variable names and for private
function names.?

As a final note on variable naming, if a function makes global variables available for use
by a main program, it is a good convention to start those variables’ names with a capital
letter—for example, getopt ()’s Opterr and Optind variables (see Section 10.4 [Processing
Command-Line Options|, page 248). The leading capital letter indicates that it is global,
while the fact that the variable name is not all capital letters indicates that the variable is
not one of awk’s predefined variables, such as FS.

It is also important that all variables in library functions that do not need to save state
are, in fact, declared local.* If this is not done, the variables could accidentally be used in
the user’s program, leading to bugs that are very difficult to track down:

function 1ib_func(x, vy, 11, 12)
{

some_var should be local but by oversight is not
use variable some_var

}

A different convention, common in the Tcl community, is to use a single associative
array to hold the values needed by the library function(s), or “package.” This significantly

3 Although all the library routines could have been rewritten to use this convention, this was not done,
in order to show how our own awk programming style has evolved and to provide some basis for this
discussion.

4 gawk’s ——dump-variables command-line option is useful for verifying this.

Chapter 10: A Library of awk Functions 233

decreases the number of actual global names in use. For example, the functions described
in Section 10.5 [Reading the User Database], page 253, might have used array elements
PW_data["inited"], PW_data["total"], PW_data["count"], and PW_data["awklib"],
instead of _pw_inited, _pw_awklib, _pw_total, and _pw_count.

The conventions presented in this section are exactly that: conventions. You are not
required to write your programs this way—we merely recommend that you do so.

10.2 General Programming
This section presents a number of functions that are of general programming use.

10.2.1 Converting Strings to Numbers

The strtonum() function (see Section 9.1.3 [String-Manipulation Functions|, page 187) is
a gawk extension. The following function provides an implementation for other versions of
awk:

mystrtonum --- convert string to number
function mystrtonum(str, ret, n, i, k, c)
{
if (str = /70[0-7]1%8$/) {
octal
n = length(str)
ret = 0

for (i = 1; i <= n; i++) {
c = substr(str, i, 1)
index() returns 0 if c not in string,
includes c == "0O"
k = index("1234567", c)

ret = ret * 8 + k
}
} else if (str ~ /7O0[xX][[:xdigit:1]1+$/) {
hexadecimal
str = substr(str, 3) # lop off leading Ox
n = length(str)
ret = 0
for (i = 1; i <= n; i++) {

c = substr(str, i, 1)

c = tolower(c)

index() returns 0 if c not in string,
includes c == "0"

k = index("123456789abcdef", c)

ret = ret * 16 + k
}
} else if (str ~ \

/= [-+17([0-91+([.]1 [0-9]*([Ee] [0-9]+)7) 7| ([.]1[0-9]+([Ee] [-+]7[0-91+)7))$/) {

234 GAWK: Effective AWK Programming

decimal number, possibly floating point
ret = str + 0

} else
ret = "NOT-A-NUMBER"

return ret

}

BEGIN { # gawk test harmess
al1] = "25"

a[2] = ".31"

a[3] = "0123"

a[4] = "OxdeadBEEF"

a[b] = "123.45"

al[6] = "1.e3"

af[7] = "1.32"

a[8] = "1.32E2"

#

for (i = 1; i in a; i++)

print al[il, strtonum(ali]), mystrtonum(al[il)
}

The function first looks for C-style octal numbers (base 8). If the input string matches a
regular expression describing octal numbers, then mystrtonum() loops through each char-
acter in the string. It sets k to the index in "1234567" of the current octal digit. The return
value will either be the same number as the digit, or zero if the character is not there, which
will be true for a ‘0’. This is safe, because the regexp test in the if ensures that only octal
values are converted.

Similar logic applies to the code that checks for and converts a hexadecimal value, which
starts with ‘0x’ or ‘0X’. The use of tolower() simplifies the computation for finding the
correct numeric value for each hexadecimal digit.

Finally, if the string matches the (rather complicated) regexp for a regular decimal integer
or floating-point number, the computation ‘ret = str + 0’ lets awk convert the value to a
number.

A commented-out test program is included, so that the function can be tested with gawk
and the results compared to the built-in strtonum() function.

10.2.2 Assertions

When writing large programs, it is often useful to know that a condition or set of conditions
is true. Before proceeding with a particular computation, you make a statement about what
you believe to be the case. Such a statement is known as an assertion. The C language
provides an <assert.h> header file and corresponding assert () macro that a programmer
can use to make assertions. If an assertion fails, the assert() macro arranges to print a
diagnostic message describing the condition that should have been true but was not, and
then it kills the program. In C, using assert () looks this:

#include <assert.h>

Chapter 10: A Library of awk Functions 235

int myfunc(int a, double b)

{
assert(a <=5 && b >= 17.1);

}
If the assertion fails, the program prints a message similar to this:
prog.c:5: assertion failed: a <= 5 && b >= 17.1

The C language makes it possible to turn the condition into a string for use in printing
the diagnostic message. This is not possible in awk, so this assert () function also requires
a string version of the condition that is being tested. Following is the function:

assert -—- assert that a condition is true. Otherwise, exit.

function assert(condition, string)

{
if (! condition) {
printf("%s:%d: assertion failed: %s\n",
FILENAME, FNR, string) > "/dev/stderr"
_assert_exit = 1
exit 1
}
}
END {
if (_assert_exit)
exit 1
}

The assert () function tests the condition parameter. If it is false, it prints a message
to standard error, using the string parameter to describe the failed condition. It then sets
the variable _assert_exit to one and executes the exit statement. The exit statement
jumps to the END rule. If the END rule finds _assert_exit to be true, it exits immediately.

The purpose of the test in the END rule is to keep any other END rules from running.
When an assertion fails, the program should exit immediately. If no assertions fail, then
_assert_exit is still false when the END rule is run normally, and the rest of the program’s
END rules execute. For all of this to work correctly, assert.awk must be the first source file
read by awk. The function can be used in a program in the following way:

function myfunc(a, b)

{
assert(a <= 5 && b >= 17.1, "a <= 5 & b >= 17.1")

}
If the assertion fails, you see a message similar to the following;:
mydata:1357: assertion failed: a <=5 && b >= 17.1

There is a small problem with this version of assert(). An END rule is automatically
added to the program calling assert(). Normally, if a program consists of just a BEGIN
rule, the input files and/or standard input are not read. However, now that the program has

236 GAWK: Effective AWK Programming

an END rule, awk attempts to read the input data files or standard input (see Section 7.1.4.1
[Startup and Cleanup Actions|, page 144), most likely causing the program to hang as it
waits for input.

There is a simple workaround to this: make sure that such a BEGIN rule always ends
with an exit statement.

10.2.3 Rounding Numbers

The way printf and sprintf() (see Section 5.5 [Using printf Statements for Fancier
Printing], page 96) perform rounding often depends upon the system’s C sprintf () sub-
routine. On many machines, sprintf () rounding is unbiased, which means it doesn’t
always round a trailing .5 up, contrary to naive expectations. In unbiased rounding, .5
rounds to even, rather than always up, so 1.5 rounds to 2 but 4.5 rounds to 4. This means
that if you are using a format that does rounding (e.g., "%.0f"), you should check what
your system does. The following function does traditional rounding; it might be useful if

your awk’s printf does unbiased rounding:
round.awk --- do normal rounding

function round(x, ival, aval, fraction)

{
ival = int(x) # integer part, int() truncates
see if fractional part
if (ival == x) # no fraction
return ival # ensure no decimals
if (x < 0) {
aval = -x # absolute value
ival = int(aval)
fraction = aval - ival
if (fraction >= .5)
return int(x) - 1 # -2.5 --> -3
else
return int(x) # -2.3 -——> -2
} else {
fraction = x - ival
if (fraction >= .5)
return ival + 1
else
return ival
}
}

test harmess
{ print $0, round($0) }

Chapter 10: A Library of awk Functions 237

10.2.4 The CIliff Random Number Generator

The Cliff random number generator is a very simple random number generator that “passes
the noise sphere test for randomness by showing no structure.” It is easily programmed, in
less than 10 lines of awk code:

cliff_rand.awk -—- generate Cliff random numbers
BEGIN { _cliff_seed = 0.1 }

function cliff_rand()

{
_cliff_seed = (100 * log(_cliff_seed)) 7% 1
if (_cliff_seed < 0)
_cliff_seed = - _cliff_seed
return _cliff_seed
}

This algorithm requires an initial “seed” of 0.1. Each new value uses the current seed
as input for the calculation. If the built-in rand() function (see Section 9.1.2 [Numeric
Functions|, page 186) isn’t random enough, you might try using this function instead.

10.2.5 Translating Between Characters and Numbers

One commercial implementation of awk supplies a built-in function, ord(), which takes a
character and returns the numeric value for that character in the machine’s character set.
If the string passed to ord() has more than one character, only the first one is used.

The inverse of this function is chr() (from the function of the same name in Pascal),
which takes a number and returns the corresponding character. Both functions are written
very nicely in awk; there is no real reason to build them into the awk interpreter:

ord.awk —--- do ord and chr

Global identifiers:
ord: numerical values indexed by characters

_ord_init: function to initialize _ord_

BEGIN { _ord_init() }

function _ord_init(low, high, i, t)
{
low = sprintf("Jc", 7) # BEL is ascii 7
if (low == "\a") { # regular ascii
low = 0
high = 127
} else if (sprintf("’%c", 128 + 7) == "\a") {
ascii, mark parity
low = 128
high = 255

} else { # ebcdic(!)

http://mathworld.wolfram.com/CliffRandomNumberGenerator.html

238 GAWK: Effective AWK Programming

low = 0
high = 255
}

for (i = low; i <= high; i++) {
t = sprintf("%c", i)
ord[t] =1

by

Some explanation of the numbers used by _ord_init () is worthwhile. The most promi-
nent character set in use today is ASCIL® Although an 8-bit byte can hold 256 distinct
values (from 0 to 255), ASCII only defines characters that use the values from 0 to 127.5 In
the now distant past, at least one minicomputer manufacturer used ASCII, but with mark
parity, meaning that the leftmost bit in the byte is always 1. This means that on those
systems, characters have numeric values from 128 to 255. Finally, large mainframe systems
use the EBCDIC character set, which uses all 256 values. There are other character sets in
use on some older systems, but they are not really worth worrying about:

function ord(str, c)

{
only first character is of interest
c = substr(str, 1, 1)
return _ord_[c]

+

function chr(c)

{
force c to be numeric by adding O
return sprintf("%c", c + 0)

b

test code
BEGIN {
for (;;) {

printf ("enter a character: ")

if (getline var <= 0)

break

printf ("ord(%s) = %d\n", var, ord(var))
+

#

An obvious improvement to these functions is to move the code for the _ord_init func-
tion into the body of the BEGIN rule. It was written this way initially for ease of development.

5 This is changing; many systems use Unicode, a very large character set that includes ASCII as a subset.
On systems with full Unicode support, a character can occupy up to 32 bits, making simple tests such
as used here prohibitively expensive.

6 ASCII has been extended in many countries to use the values from 128 to 255 for country-specific
characters. If your system uses these extensions, you can simplify _ord_init() to loop from 0 to 255.

Chapter 10: A Library of awk Functions 239

There is a “test program” in a BEGIN rule, to test the function. It is commented out for
production use.

10.2.6 Merging an Array into a String

When doing string processing, it is often useful to be able to join all the strings in an array
into one long string. The following function, join(), accomplishes this task. It is used later
in several of the application programs (see Chapter 11 [Practical awk Programs|, page 265).

Good function design is important; this function needs to be general, but it should also
have a reasonable default behavior. It is called with an array as well as the beginning
and ending indices of the elements in the array to be merged. This assumes that the array
indices are numeric—a reasonable assumption, as the array was likely created with split ()
(see Section 9.1.3 [String-Manipulation Functions|, page 187):

join.awk --- join an array into a string
function join(array, start, end, sep, result, i)
{
if (sep == "")
sep = non
else if (sep == SUBSEP) # magic value
sep = nn

result = array[start]

for (i start + 1; i <= end; i++)
result = result sep arrayl[i]

return result

}

An optional additional argument is the separator to use when joining the strings back
together. If the caller supplies a nonempty value, join() uses it; if it is not supplied, it has
a null value. In this case, join() uses a single space as a default separator for the strings.
If the value is equal to SUBSEP, then join() joins the strings with no separator between
them. SUBSEP serves as a “magic” value to indicate that there should be no separation
between the component strings.”

10.2.7 Managing the Time of Day

The systime() and strftime() functions described in Section 9.1.5 [Time Functions],
page 202, provide the minimum functionality necessary for dealing with the time of day
in human-readable form. Although strftime() is extensive, the control formats are not
necessarily easy to remember or intuitively obvious when reading a program.

The following function, getlocaltime(), populates a user-supplied array with prefor-
matted time information. It returns a string with the current time formatted in the same
way as the date utility:

getlocaltime.awk --- get the time of day in a usable format

Returns a string in the format of output of date(l)

" It would be nice if awk had an assignment operator for concatenation. The lack of an explicit operator
for concatenation makes string operations more difficult than they really need to be.

240 GAWK: Effective AWK Programming

Populates the array argument time with individual values:
time["second"] -- seconds (0 - 59)

time["minute"] -- minutes (0 - 59)

time ["hour"] -- hours (0 - 23)

time["althour"] -- hours (0 - 12)

time ["monthday"] -- day of month (1 - 31)

time ["month"] -- month of year (1 - 12)

time ["monthname"] -- name of the month

time ["shortmonth"] -- short name of the month

time["year"] -- year modulo 100 (0 - 99)

time["fullyear"] -— full year

time ["weekday"] -- day of week (Sunday = 0)

time["altweekday"] -- day of week (Monday = 0)

time ["dayname"] -- name of weekday

time["shortdayname"] -- short name of weekday

time["yearday"] -- day of year (0 - 365)

time["timezone"] -- abbreviation of timezone name
time ["ampm"] -— AM or PM designation

time ["weeknum"] -- week number, Sunday first day
time["altweeknum"] —-- week number, Monday first day
function getlocaltime(time, ret, now, i)

{

get time once, avoids unnecessary system calls
now = systime()

return date(l)-style output
ret = strftime("%a %b %e %H:%M:%S %Z %Y", now)

clear out target array
delete time

fill in values, force numeric values to be
numeric by adding O

time["second"] = strftime("%S", now) + O
time["minute"] = strftime("%M", now) + O
time["hour"] = strftime("%H", now) + O
time["althour"] = strftime("%I", now) + O
time ["monthday"] = strftime("%d", now) + O
time ["month"] = strftime("%m", now) + O
time ["monthname"] = strftime("%B", now)

time["shortmonth"] = strftime("%b", now)

time["year"] = strftime("%y", now) + O
time["fullyear"] = strftime("%Y", now) + O
time ["weekday"] = strftime("%w", now) + O
time["altweekday"] = strftime("%u", now) + 0

time ["dayname"] = strftime("%A", now)

by

Chapter 10: A Library of awk Functions 241

time["shortdayname"] = strftime("%a", now)

time["yearday"] = strftime("%j", now) + O
time["timezone"] = strftime("%Z", now)
time ["ampm"] = strftime("%p", now)
time ["weeknum"] = strftime("%U", now) + O
time["altweeknum"] = strftime("%W", now) + O

return ret

The string indices are easier to use and read than the various formats required by
strftime (). The alarm program presented in Section 11.3.2 [An Alarm Clock Program)],
page 286, uses this function. A more general design for the getlocaltime() function would
have allowed the user to supply an optional timestamp value to use instead of the current

time.

10.2.8 Reading a Whole File at Once

Often, it is convenient to have the entire contents of a file available in memory as a single
string. A straightforward but naive way to do that might be as follows:

function readfilel(file, tmp, contents)

{

¥

if ((getline tmp < file) < 0)
return

contents = tmp RT
while ((getline tmp < file) > 0)
contents = contents tmp RT

close(file)
return contents

This function reads from file one record at a time, building up the full contents of the
file in the local variable contents. It works, but is not necessarily efficient.

The following function, based on a suggestion by Denis Shirokov, reads the entire con-
tents of the named file in one shot:

readfile.awk —--- read an entire file at once
function readfile(file, tmp, save_rs)
{

save_rs = RS

RS = "~g"

getline tmp < file
close(file)

RS = save_rs

return tmp

242 GAWK: Effective AWK Programming

It works by setting RS to ‘"$’, a regular expression that will never match if the file has
contents. gawk reads data from the file into tmp, attempting to match RS. The match fails
after each read, but fails quickly, such that gawk fills tmp with the entire contents of the
file. (See Section 4.1 [How Input Is Split into Records], page 61, for information on RT and
RS.)

In the case that file is empty, the return value is the null string. Thus, calling code
may use something like:

contents = readfile("/some/path")
if (length(contents) == 0)
file was empty ...

This tests the result to see if it is empty or not. An equivalent test would be ‘contents

== nn

See Section 16.7.10 [Reading an Entire File|, page 426, for an extension function that
also reads an entire file into memory.

10.2.9 Quoting Strings to Pass to the Shell
Michael Brennan offers the following programming pattern, which he uses frequently:
#! /bin/sh

awkp="’

)

input_program | awk "$awkp" | /bin/sh
For example, a program of his named flac-edit has this form:
$ flac-edit -song="Whoope! That’s Great" file.flac
It generates the following output, which is to be piped to the shell (/bin/sh):
chmod +w file.flac
metaflac --remove-tag=TITLE file.flac
LANG=en_US.88591 metaflac --set-tag=TITLE=’Whoope! That’"’"’s Great’ file.flac
chmod -w file.flac

Note the need for shell quoting. The function shell_quote() does it. SINGLE is the
one-character string "’" and QSINGLE is the three-character string "\"’\"":

shell_quote --- quote an argument for passing to the shell

function shell_quote(s, # parameter
SINGLE, QSINGLE, i, X, n, ret) # locals
{
if (S J— ||||)
return u\n\n "

SINGLE = "\x27" # single quote
QSINGLE = "\"\x27\""
n = split(s, X, SINGLE)

Chapter 10: A Library of awk Functions 243

ret = SINGLE X[1] SINGLE
for (i = 2; i <= n; i++)
ret = ret QSINGLE SINGLE X[i] SINGLE

return ret

10.3 Data file Management

This section presents functions that are useful for managing command-line data files.

10.3.1 Noting Data file Boundaries

The BEGIN and END rules are each executed exactly once, at the beginning and end of
your awk program, respectively (see Section 7.1.4 [The BEGIN and END Special Patterns],
page 144). We (the gawk authors) once had a user who mistakenly thought that the BEGIN
rules were executed at the beginning of each data file and the END rules were executed at
the end of each data file.

When informed that this was not the case, the user requested that we add new special
patterns to gawk, named BEGIN_FILE and END_FILE, that would have the desired behavior.
He even supplied us the code to do so.

Adding these special patterns to gawk wasn’t necessary; the job can be done cleanly
in awk itself, as illustrated by the following library program. It arranges to call two user-
supplied functions, beginfile() and endfile(), at the beginning and end of each data
file. Besides solving the problem in only nine(!) lines of code, it does so portably; this works
with any implementation of awk:

transfile.awk
Give the user a hook for filename transitions

The user must supply functions beginfile() and endfile()
that each take the name of the file being started or
finished, respectively.

FILENAME !'= _oldfilename {
if (_oldfilename != "")
endfile(_oldfilename)
_oldfilename = FILENAME
beginfile (FILENAME)

END { endfile(FILENAME) }

This file must be loaded before the user’s “main” program, so that the rule it supplies
is executed first.

This rule relies on awk’s FILENAME variable, which automatically changes for each new
data file. The current file name is saved in a private variable, _oldfilename. If FILENAME

244 GAWK: Effective AWK Programming

does not equal _oldfilename, then a new data file is being processed and it is necessary to
call endfile() for the old file. Because endfile() should only be called if a file has been
processed, the program first checks to make sure that _oldfilename is not the null string.
The program then assigns the current file name to _oldfilename and calls beginfile()
for the file. Because, like all awk variables, _oldfilename is initialized to the null string,
this rule executes correctly even for the first data file.

The program also supplies an END rule to do the final processing for the last file. Because
this END rule comes before any END rules supplied in the “main” program, endfile () is called
first. Once again, the value of multiple BEGIN and END rules should be clear.

If the same data file occurs twice in a row on the command line, then endfile() and
beginfile() are not executed at the end of the first pass and at the beginning of the second
pass. The following version solves the problem:

ftrans.awk --- handle datafile transitions
#
user supplies beginfile() and endfile() functions

FNR == 1 {
if (_filename_ != "")
endfile(_filename_)
filename = FILENAME
beginfile (FILENAME)

END { endfile(_filename_) }

Section 11.2.7 [Counting Things|, page 283, shows how this library function can be used
and how it simplifies writing the main program.

(N
So Why Does gawk Have BEGINFILE and ENDFILE?

You are probably wondering, if beginfile() and endfile() functions can do the job,
why does gawk have BEGINFILE and ENDFILE patterns?

Good question. Normally, if awk cannot open a file, this causes an immediate fatal error.
In this case, there is no way for a user-defined function to deal with the problem, as the
mechanism for calling it relies on the file being open and at the first record. Thus, the
main reason for BEGINFILE is to give you a “hook” to catch files that cannot be processed.
ENDFILE exists for symmetry, and because it provides an easy way to do per-file cleanup
processing. For more information, refer to Section 7.1.5 [The BEGINFILE and ENDFILE

Special Patterns|, page 145.
N J

10.3.2 Rereading the Current File

Another request for a new built-in function was for a function that would make it possible
to reread the current file. The requesting user didn’t want to have to use getline (see
Section 4.10 [Explicit Input with getline], page 81) inside a loop.

However, as long as you are not in the END rule, it is quite easy to arrange to immediately
close the current input file and then start over with it from the top. For lack of a better
name, we’ll call the function rewind ():

Chapter 10: A Library of awk Functions

rewind.awk --- rewind the current file and start over
function rewind(i)
{

}

shift remaining arguments up
for (i = ARGC; i > ARGIND; i--)
ARGV[i] = ARGV[i-1]

make sure gawk knows to keep going
ARGC++

make current file next to get dome
ARGV [ARGIND+1] = FILENAME

do it
nextfile

245

The rewind() function relies on the ARGIND variable (see Section 7.5.2 [Built-in Vari-
ables That Convey Information], page 159), which is specific to gawk. It also relies on the
nextfile keyword (see Section 7.4.9 [The nextfile Statement], page 155). Because of this,
you should not call it from an ENDFILE rule. (This isn’t necessary anyway, because gawk
goes to the next file as soon as an ENDFILE rule finishes!)

You need to be careful calling rewind(). You can end up causing infinite recursion if
you don’t pay attention. Here is an example use:

$ cat data
-4 a
=1 b
-4 c
-4 d
- e

$ cat test.awk

_|

FNR == 3 && ! rewound {
rewound = 1
rewind ()

{ print FILENAME, FNR, $0 }

gawk -f rewind.awk -f test.awk data

data 1 a
data 2 b
data 1 a
data 2 b
data 3 ¢
data 4 d

246 GAWK: Effective AWK Programming

- data 5 e

10.3.3 Checking for Readable Data files

Normally, if you give awk a data file that isn’t readable, it stops with a fatal error. There
are times when you might want to just ignore such files and keep going.® You can do this
by prepending the following program to your awk program:

readable.awk --- library file to skip over unreadable files

BEGIN {
for (i = 1; i < ARGC; i++) {

if (ARGVI[i] ~ /" [a-zA-Z_]1[a-zA-Z0-9_]*=.%x/ \
|| ARGV[i] == "-" || ARGV[i] == "/dev/stdin")
continue # assignment or standard input

else if ((getline junk < ARGV[i]) < 0) # unreadable
delete ARGV[i]

else
close(ARGV[i])

¥

This works, because the getline won’t be fatal. Removing the element from ARGV with
delete skips the file (because it’s no longer in the list). See also Section 7.5.3 [Using ARGC
and ARGV], page 166.

Because awk variable names only allow the English letters, the regular expression
check purposely does not use character classes such as ‘[:alpha:]’ and ‘[:alnum:]’ (see
Section 3.4 [Using Bracket Expressions|, page 53).

10.3.4 Checking for Zero-Length Files

All known awk implementations silently skip over zero-length files. This is a by-product
of awk’s implicit read-a-record-and-match-against-the-rules loop: when awk tries to read a
record from an empty file, it immediately receives an end-of-file indication, closes the file,
and proceeds on to the next command-line data file, without executing any user-level awk
program code.

Using gawk’s ARGIND variable (see Section 7.5 [Predefined Variables|, page 157), it is
possible to detect when an empty data file has been skipped. Similar to the library file
presented in Section 10.3.1 [Noting Data file Boundaries|, page 243, the following library
file calls a function named zerofile() that the user must provide. The arguments passed
are the file name and the position in ARGV where it was found:

zerofile.awk --- library file to process empty input files
BEGIN { Argind = 0 }

ARGIND > Argind + 1 {

8 The BEGINFILE special pattern (see Section 7.1.5 [The BEGINFILE and ENDFILE Special Patterns],
page 145) provides an alternative mechanism for dealing with files that can’t be opened. However, the
code here provides a portable solution.

Chapter 10: A Library of awk Functions 247

for (Argind++; Argind < ARGIND; Argind++)
zerofile (ARGV[Argind], Argind)

ARGIND !'= Argind { Argind = ARGIND }

END {
if (ARGIND > Argind)
for (Argind++; Argind <= ARGIND; Argind++)
zerofile (ARGV[Argind], Argind)
b

The user-level variable Argind allows the awk program to track its progress through
ARGV. Whenever the program detects that ARGIND is greater than ‘Argind + 1’; it means
that one or more empty files were skipped. The action then calls zerofile () for each such
file, incrementing Argind along the way.

The ‘Argind != ARGIND’ rule simply keeps Argind up to date in the normal case.

Finally, the END rule catches the case of any empty files at the end of the command-line
arguments. Note that the test in the condition of the for loop uses the ‘<=’ operator, not
4<?‘

10.3.5 Treating Assignments as File names

Occasionally, you might not want awk to process command-line variable assignments (see
Section 6.1.3.2 [Assigning Variables on the Command Line], page 118). In particular, if you
have a file name that contains an ‘=’ character, awk treats the file name as an assignment
and does not process it.

Some users have suggested an additional command-line option for gawk to disable
command-line assignments. However, some simple programming with a library file does
the trick:

noassign.awk --- library file to avoid the need for a
special option that disables command-line assignments

function disable_assigns(argc, argv, i)
{
for (i = 1; i < argc; i++)
if (argv[i] ~ /" [a-zA-Z_][a-zA-Z0-9_]*=.%/)
argv[i] = ("./" argv[i])

}
BEGIN {
if (No_command_assign)
disable_assigns (ARGC, ARGV)
}

You then run your program this way:

awk -v No_command_assign=1 -f noassign.awk -f yourprog.awk *

248 GAWK: Effective AWK Programming

The function works by looping through the arguments. It prepends ./’ to any argument
that matches the form of a variable assignment, turning that argument into a file name.

The use of No_command_assign allows you to disable command-line assignments at in-
vocation time, by giving the variable a true value. When not set, it is initially zero (i.e.,
false), so the command-line arguments are left alone.

10.4 Processing Command-Line Options

Most utilities on POSIX-compatible systems take options on the command line that can
be used to change the way a program behaves. awk is an example of such a program (see
Section 2.2 [Command-Line Options|, page 31). Often, options take arguments (i.e., data
that the program needs to correctly obey the command-line option). For example, awk’s -F
option requires a string to use as the field separator. The first occurrence on the command
line of either —- or a string that does not begin with ‘-’ ends the options.

Modern Unix systems provide a C function named getopt () for processing command-
line arguments. The programmer provides a string describing the one-letter options. If
an option requires an argument, it is followed in the string with a colon. getopt() is
also passed the count and values of the command-line arguments and is called in a loop.
getopt () processes the command-line arguments for option letters. Each time around the
loop, it returns a single character representing the next option letter that it finds, or ‘7’ if
it finds an invalid option. When it returns —1, there are no options left on the command
line.

When using getopt (), options that do not take arguments can be grouped together.
Furthermore, options that take arguments require that the argument be present. The
argument can immediately follow the option letter, or it can be a separate command-line
argument.

Given a hypothetical program that takes three command-line options, -a, -b, and -c,
where -b requires an argument, all of the following are valid ways of invoking the program:

prog -a -b foo -c datal data2 data3
prog -ac -bfoo -- datal data2 data3
prog -acbfoo datal data2 data3

Notice that when the argument is grouped with its option, the rest of the argument is
considered to be the option’s argument. In this example, ~acbfoo indicates that all of the
-a, -b, and -c options were supplied, and that ‘foo’ is the argument to the -b option.

getopt () provides four external variables that the programmer can use:

optind The index in the argument value array (argv) where the first nonoption
command-line argument can be found.

optarg The string value of the argument to an option.

opterr Usually getopt () prints an error message when it finds an invalid option. Set-
ting opterr to zero disables this feature. (An application might want to print
its own error message.)

optopt The letter representing the command-line option.

Chapter 10: A Library of awk Functions 249

The following C fragment shows how getopt () might process command-line arguments
for awk:
int
main(int argc, char *argv[])

{

/* print our own message */
opterr = 0;
while ((c = getopt(argc, argv, "v:f:F:W:")) != -1) {
switch (c) {
case f’: /x file x/
break;
case ’F’: /* field separator */
break;
case ’v’: /* variable assignment */
break;
case ’‘W’: /* extension */
break;
case ’77:
default:

usage () ;
break;

3

As a side point, gawk actually uses the GNU getopt_long() function to process both
normal and GNU-style long options (see Section 2.2 [Command-Line Options|, page 31).

The abstraction provided by getopt () is very useful and is quite handy in awk programs
as well. Following is an awk version of getopt (). This function highlights one of the greatest
weaknesses in awk, which is that it is very poor at manipulating single characters. Repeated
calls to substr () are necessary for accessing individual characters (see Section 9.1.3 [String-
Manipulation Functions|, page 187).°

The discussion that follows walks through the code a bit at a time:

getopt.awk --- Do C library getopt(3) function in awk

External variables:
Optind -- index in ARGV of first nonoption argument
Optarg —- string value of argument to current option

9 This function was written before gawk acquired the ability to split strings into single characters using ""
as the separator. We have left it alone, as using substr () is more portable.

250 GAWK: Effective AWK Programming

Opterr -- if nonzero, print our own diagnostic

Optopt —— current option letter

Returns:

-1 at end of optioms

et for unrecognized option

<c> a character representing the current option

Private Data:
_opti -- index in multiflag option, e.g., -abc

The function starts out with comments presenting a list of the global variables it uses,
what the return values are, what they mean, and any global variables that are “private” to
this library function. Such documentation is essential for any program, and particularly for
library functions.

The getopt () function first checks that it was indeed called with a string of options (the
options parameter). If options has a zero length, getopt () immediately returns —1:

function getopt(argc, argv, options, thisopt, i)
{
if (length(options) == 0) # no options given
return -1

if (argv[Optind] == "--") { # all done
Optind++
_opti =0
return -1

} else if (argv([Optind] !~ /"-[":[:space:11/) {
_opti =0
return -1

}
The next thing to check for is the end of the options. A -- ends the command-line
options, as does any command-line argument that does not begin with a ‘~’. Optind is used

to step through the array of command-line arguments; it retains its value across calls to
getopt (), because it is a global variable.

The regular expression that is used, /~-[": [:space:]/, checks for a ‘=’ followed by
anything that is not whitespace and not a colon. If the current command-line argument
does not match this pattern, it is not an option, and it ends option processing. Continuing
on:

if (_opti == 0)

_opti 2
thisopt = substr(argv[Optind], _opti, 1)
Optopt = thisopt
i = index(options, thisopt)
if (1 ==0) {

if (Opterr)

printf ("%c -- invalid option\n", thisopt) > "/dev/stderr"

Chapter 10: A Library of awk Functions 251

if (_opti >= length(argv([Optind])) {
Optind++
_opti =0

} else
_opti++

return "7?7"

}

The _opti wvariable tracks the position in the current command-line argument
(argv[Optind]). If multiple options are grouped together with one ‘-’ (e.g., —abx), it is
necessary to return them to the user one at a time.

If _opti is equal to zero, it is set to two, which is the index in the string of the next
character to look at (we skip the ‘-’ which is at position one). The variable thisopt holds
the character, obtained with substr (). It is saved in Optopt for the main program to use.

If thisopt is not in the options string, then it is an invalid option. If Opterr is nonzero,
getopt () prints an error message on the standard error that is similar to the message from
the C version of getopt ().

Because the option is invalid, it is necessary to skip it and move on to the next option
character. If _opti is greater than or equal to the length of the current command-line
argument, it is necessary to move on to the next argument, so Optind is incremented and
_opti is reset to zero. Otherwise, Optind is left alone and _opti is merely incremented.

In any case, because the option is invalid, getopt () returns "?". The main program can
examine Optopt if it needs to know what the invalid option letter actually is. Continuing
on:

if (substr(optiomns, i + 1, 1) == ":") {
get option argument
if (length(substr(argv[Optind], _opti + 1)) > 0)
Optarg = substr(argv[Optind], _opti + 1)

else
Optarg = argv[++0ptind]
_opti =0
} else
Optarg = ""

If the option requires an argument, the option letter is followed by a colon in the
options string. If there are remaining characters in the current command-line argument
(argv[Optind]), then the rest of that string is assigned to Optarg. Otherwise, the next
command-line argument is used (‘-xF00’ versus ‘-x FO0’). In either case, _opti is reset
to zero, because there are no more characters left to examine in the current command-line
argument. Continuing:

if (_opti == 0 || _opti >= length(argv[Optind])) {
Optind++
_opti =0

} else
_opti++

return thisopt

252 GAWK: Effective AWK Programming

Finally, if _opti is either zero or greater than the length of the current command-
line argument, it means this element in argv is through being processed, so Optind is
incremented to point to the next element in argv. If neither condition is true, then only
_opti is incremented, so that the next option letter can be processed on the next call to
getopt ().

The BEGIN rule initializes both Opterr and Optind to one. Opterr is set to one, because
the default behavior is for getopt() to print a diagnostic message upon seeing an invalid

option. Optind is set to one, because there’s no reason to look at the program name, which
is in ARGV [0]:

BEGIN {
Opterr = 1 # default is to diagnose
Optind = 1 # skip ARGV[0]

test program
if (_getopt_test)
while ((_go_c
printf("c

~

getopt (ARGC, ARGV, "ab:cd")) !'= -1)
<Jc>, Optarg = <¥s>\n",
_go_c, Optarg)
printf ("non-option arguments:\n")
for (; Optind < ARGC; Optind++)
printf ("\tARGV[%d] = <Js>\n",
Optind, ARGV[Optind])

¥

The rest of the BEGIN rule is a simple test program. Here are the results of two sample
runs of the test program:
$ awk -f getopt.awk -v _getopt_test=1 -- -a -cbARG bax -x
-1 ¢ = <a>, Optarg = <>

- ¢ = <c>, Optarg = <>

- ¢ = , Optarg = <ARG>

-| non-option arguments:

- ARGV[3] = <bax>

- ARGV [4] = <-x>

$ awk -f getopt.awk -v _getopt_test=1 -- -a -x -- xyz abc

- ¢ = <a>, Optarg = <>
x -- invalid option
- ¢ = <?>, Optarg = <>
- non-option arguments:
o ARGV[4] = <xyz>
- ARGV[5] = <abc>
In both runs, the first —- terminates the arguments to awk, so that it does not try to
interpret the -a, etc., as its own options.

NOTE: After getopt() is through, user-level code must clear out all the el-
ements of ARGV from 1 to Optind, so that awk does not try to process the
command-line options as file names.

Chapter 10: A Library of awk Functions 253

Using ‘#!” with the -E option may help avoid conflicts between your program’s op-
tions and gawk’s options, as -E causes gawk to abandon processing of further options (see
Section 1.1.4 [Executable awk Programs|, page 19, and see Section 2.2 [Command-Line
Options|, page 31).

Several of the sample programs presented in Chapter 11 [Practical awk Programs,
page 265, use getopt () to process their arguments.

10.5 Reading the User Database

The PROCINFO array (see Section 7.5 [Predefined Variables|, page 157) provides access to
the current user’s real and effective user and group ID numbers, and, if available, the
user’s supplementary group set. However, because these are numbers, they do not provide
very useful information to the average user. There needs to be some way to find the user
information associated with the user and group ID numbers. This section presents a suite
of functions for retrieving information from the user database. See Section 10.6 [Reading
the Group Database], page 257, for a similar suite that retrieves information from the group
database.

The POSIX standard does not define the file where user information is kept. Instead, it
provides the <pwd.h> header file and several C language subroutines for obtaining user in-
formation. The primary function is getpwent (), for “get password entry.” The “password”
comes from the original user database file, /etc/passwd, which stores user information
along with the encrypted passwords (hence the name).

Although an awk program could simply read /etc/passwd directly, this file may not
contain complete information about the system’s set of users.!® To be sure you are able
to produce a readable and complete version of the user database, it is necessary to write a
small C program that calls getpwent (). getpwent() is defined as returning a pointer to
a struct passwd. Each time it is called, it returns the next entry in the database. When
there are no more entries, it returns NULL, the null pointer. When this happens, the C
program should call endpwent () to close the database. Following is pwcat, a C program
that “cats” the password database:

/*

* pwcat.c
*

* Generate a printable version of the password database.
*/

#include <stdio.h>

#include <pwd.h>

int
main(int argc, char **argv)
{

struct passwd *p;

while ((p = getpwent()) != NULL)

10 14 is often the case that password information is stored in a network database.

254 GAWK: Effective AWK Programming

}

printf ("%s:%s:%1d:%1d:%s:%s:%s\n",
p->pw_name, p->pw_passwd, (long) p->pw_uid,
(long) p->pw_gid, p->pw_gecos, p->pw_dir, p->pw_shell);

endpwent () ;
return O;

If you don’t understand C, don’t worry about it. The output from pwcat is the user
database, in the traditional /etc/passwd format of colon-separated fields. The fields are:

Login name

The user’s login name.

Encrypted password

User-1D

The user’s encrypted password. This may not be available on some systems.

The user’s numeric user ID number. (On some systems, it’s a C long, and not
an int. Thus, we cast it to long for all cases.)

Group-ID The user’s numeric group ID number. (Similar comments about long versus

int apply here.)

Full name The user’s full name, and perhaps other information associated with the user.

Home directory

The user’s login (or “home”) directory (familiar to shell programmers as $HOME).

Login shell

The program that is run when the user logs in. This is usually a shell, such as
Bash.

A few lines representative of pwcat’s output are as follows:

$ pwcat

_|

I I

root:x:0:1:0perator:/:/bin/sh

nobody:*:65534:65534::/:

daemon:*:1:1::/:

sys:*:2:2::/:/bin/csh

bin:*:3:3::/bin:

arnold:xyzzy:2076:10:Arnold Robbins:/home/arnold:/bin/sh
miriam:yxaay:112:10:Miriam Robbins:/home/miriam:/bin/sh
andy:abcca2:113:10:Andy Jacobs:/home/andy:/bin/sh

With that introduction, following is a group of functions for getting user information.
There are several functions here, corresponding to the C functions of the same names:

passwd.awk --- access password file information

BEGIN {

tailor this to suit your system
_pw_awklib = "/usr/local/libexec/awk/"

Chapter 10: A Library of awk Functions 255

function _pw_init(oldfs, oldrs, olddolO, pwcat, using_fw, using_fpat)
{
if (_pw_inited)
return

oldfs = FS

oldrs = RS

0lddol0 = $0

using_fw = (PROCINFO["FS"] == "FIELDWIDTHS")
using_fpat = (PROCINFO["FS"] == "FPAT")

FS = ":"

RS = "\n"

pwcat = _pw_awklib "pwcat"
while ((pwcat | getline) > 0) {
_pw_byname [$1] = $0
_pw_byuid[$3] = $0
_pw_bycount [++_pw_total] = $0
}
close(pwcat)
_pw_count = 0
_pw_inited =1
FS = oldfs
if (using_fw)
FIELDWIDTHS = FIELDWIDTHS
else if (using_fpat)
FPAT = FPAT
oldrs
0lddol0

RS
$0

}

The BEGIN rule sets a private variable to the directory where pwcat is stored.
Because it is used to help out an awk library routine, we have chosen to put it in
/usr/local/libexec/awk; however, you might want it to be in a different directory on
your system.

The function _pw_init () fills three copies of the user information into three associative
arrays. The arrays are indexed by username (_pw_byname), by user ID number (_pw_byuid),
and by order of occurrence (_pw_bycount). The variable _pw_inited is used for efficiency,
as _pw_init () needs to be called only once.

Because this function uses getline to read information from pwcat, it first saves the
values of FS, RS, and $0. It notes in the variable using_fw whether field splitting with
FIELDWIDTHS is in effect or not. Doing so is necessary, as these functions could be called
from anywhere within a user’s program, and the user may have his or her own way of
splitting records and fields. This makes it possible to restore the correct field-splitting
mechanism later. The test can only be true for gawk. It is false if using FS or FPAT, or on
some other awk implementation.

256 GAWK: Effective AWK Programming

The code that checks for using FPAT, using using_fpat and PROCINFO["FS"], is similar.

The main part of the function uses a loop to read database lines, split the lines into
fields, and then store the lines into each array as necessary. When the loop is done,
_pw_init () cleans up by closing the pipeline, setting _pw_inited to one, and restoring
FS (and FIELDWIDTHS or FPAT if necessary), RS, and $0. The use of _pw_count is explained
shortly.

The getpwnam() function takes a username as a string argument. If that user is in the
database, it returns the appropriate line. Otherwise, it relies on the array reference to a
nonexistent element to create the element with the null string as its value:

function getpwnam(name)
{
_pw_init ()
return _pw_byname [name]

¥

Similarly, the getpwuid() function takes a user ID number argument. If that user
number is in the database, it returns the appropriate line. Otherwise, it returns the null
string:

function getpwuid(uid)
{

_pw_init)

return _pw_byuid[uid]
}

The getpwent () function simply steps through the database, one entry at a time. It
uses _pw_count to track its current position in the _pw_bycount array:

function getpwent()

{
_pw_init ()
if (_pw_count < _pw_total)
return _pw_bycount [++_pw_count]
return ""
}

The endpwent() function resets _pw_count to zero, so that subsequent calls to
getpwent () start over again:

function endpwent ()
{
_pw_count = 0

¥

A conscious design decision in this suite is that each subroutine calls _pw_init() to
initialize the database arrays. The overhead of running a separate process to generate the
user database, and the I/O to scan it, are only incurred if the user’s main program actually
calls one of these functions. If this library file is loaded along with a user’s program, but none
of the routines are ever called, then there is no extra runtime overhead. (The alternative is
move the body of _pw_init () into a BEGIN rule, which always runs pwcat. This simplifies
the code but runs an extra process that may never be needed.)

Chapter 10: A Library of awk Functions 257

In turn, calling _pw_init () is not too expensive, because the _pw_inited variable keeps
the program from reading the data more than once. If you are worried about squeezing
every last cycle out of your awk program, the check of _pw_inited could be moved out of
_pw_init () and duplicated in all the other functions. In practice, this is not necessary, as
most awk programs are I/O-bound, and such a change would clutter up the code.

The id program in Section 11.2.3 [Printing Out User Information|, page 274, uses these
functions.

10.6 Reading the Group Database

Much of the discussion presented in Section 10.5 [Reading the User Database|, page 253,
applies to the group database as well. Although there has traditionally been a well-known
file (/etc/group) in a well-known format, the POSIX standard only provides a set of C
library routines (<grp.h> and getgrent ()) for accessing the information. Even though this
file may exist, it may not have complete information. Therefore, as with the user database,
it is necessary to have a small C program that generates the group database as its output.
grcat, a C program that “cats” the group database, is as follows:

/*

* grcat.c
*

* Generate a printable version of the group database.
*/

#include <stdio.h>

#include <grp.h>

int
main(int argc, char **argv)
{
struct group *g;
int i;
while ((g = getgrent()) !'= NULL) {
printf("%s:%s:%1d:", g->gr_name, g->gr_passwd,
(long) g->gr_gid);
for (i = 0; g->gr_mem[i] != NULL; i++) {
printf("%s", g->gr_mem[i]);
if (g->gr_mem[i+1] != NULL)
putchar(’,’);
}
putchar(’\n’);
}
endgrent () ;
return O;
}

Each line in the group database represents one group. The fields are separated with
colons and represent the following information:

258 GAWK: Effective AWK Programming

Group Name
The group’s name.

Group Password
The group’s encrypted password. In practice, this field is never used; it is
usually empty or set to ‘*’.

Group ID Number
The group’s numeric group ID number; the association of name to number must
be unique within the file. (On some systems it’s a C long, and not an int.
Thus, we cast it to long for all cases.)

Group Member List
A comma-separated list of usernames. These users are members of the group.
Modern Unix systems allow users to be members of several groups simultane-
ously. If your system does, then there are elements "group1" through "grouph"
in PROCINFO for those group ID numbers. (Note that PROCINFO is a gawk ex-
tension; see Section 7.5 [Predefined Variables|, page 157.)

Here is what running grcat might produce:

$ grcat

wheel:*:0:arnold
nogroup:*:65534:

daemon:*:1:

kmem: *:2:
staff:*:10:arnold,miriam,andy
other:*:20:

I A I

Here are the functions for obtaining information from the group database. There are
several, modeled after the C library functions of the same names:

group.awk --- functions for dealing with the group file

BEGIN {
Change to suit your system
_gr_awklib = "/usr/local/libexec/awk/"

}
function _gr_init(oldfs, oldrs, o0lddolO, grcat,
using fw, using fpat, n, a, i)

{

if (_gr_inited)

return

oldfs = FS

oldrs = RS

0lddol0 = $0

using_fw = (PROCINFO["FS"] == "FIELDWIDTHS")

using fpat = (PROCINFO["FS"] == "FPAT")

Chapter 10: A Library of awk Functions 259

Fg§ = n.n
RS = "\1’1"

grcat = _gr_awklib "grcat"
while ((grcat | getline) > 0) {
if ($1 in _gr_byname)
_gr_byname[$1] = _gr_byname[$1] "," $4
else
_gr_byname[$1] = $0
if ($3 in _gr_bygid)
_gr_bygid[$3] = _gr_bygid[$3] "," $4
else
_gr_bygid[$3] = $0

n = split($4, a, "[\tl*,[\tIx")
for (i = 1; i <= n; i++)
if (ali]l in _gr_groupsbyuser)
_gr_groupsbyuser[a[il] = _gr_groupsbyuser([a[i]l] " " $1
else
_gr_groupsbyuser[a[il] = $1

_gr_bycount [++_gr_count] = $0
}
close(grcat)
_gr_count = 0
_gr_inited++
FS = oldfs
if (using_fw)
FIELDWIDTHS = FIELDWIDTHS
else if (using_fpat)
FPAT = FPAT
RS = oldrs
$0 = olddolO
}

The BEGIN rule sets a private variable to the directory where grcat is stored.
Because it is used to help out an awk library routine, we have chosen to put it in
/usr/local/libexec/awk. You might want it to be in a different directory on your
system.

These routines follow the same general outline as the user database routines (see
Section 10.5 [Reading the User Database|, page 253). The _gr_inited variable is used to
ensure that the database is scanned no more than once. The _gr_init() function first
saves FS, RS, and $0, and then sets FS and RS to the correct values for scanning the group
information. It also takes care to note whether FIELDWIDTHS or FPAT is being used, and to
restore the appropriate field-splitting mechanism.

The group information is stored in several associative arrays. The arrays are indexed
by group name (_gr_byname), by group ID number (_gr_bygid), and by position

260 GAWK: Effective AWK Programming

in the database (_gr_bycount). There is an additional array indexed by username
(_gr_groupsbyuser), which is a space-separated list of groups to which each user belongs.

Unlike in the user database, it is possible to have multiple records in the database for
the same group. This is common when a group has a large number of members. A pair of
such entries might look like the following;:

tvpeople:*:101: johnny, jay,arsenio
tvpeople:*:101:david,conan,tom, joan

For this reason, _gr_init () looks to see if a group name or group ID number is already
seen. If so, the usernames are simply concatenated onto the previous list of users.!!

Finally, _gr_init () closes the pipeline to grcat, restores FS (and FIELDWIDTHS or FPAT,
if necessary), RS, and $0, initializes _gr_count to zero (it is used later), and makes _gr_
inited nonzero.

The getgrnam() function takes a group name as its argument, and if that group exists,
it is returned. Otherwise, it relies on the array reference to a nonexistent element to create
the element with the null string as its value:

function getgrnam(group)
{
_gr_init Q)
return _gr_byname[group]
}
The getgrgid() function is similar; it takes a numeric group ID and looks up the
information associated with that group ID:
function getgrgid(gid)
{
_gr_init ()
return _gr_bygid[gid]
}
The getgruser() function does not have a C counterpart. It takes a username and
returns the list of groups that have the user as a member:

function getgruser(user)
{
_gr_init ()
return _gr_groupsbyuser [user]

}

The getgrent () function steps through the database one entry at a time. It uses _gr_
count to track its position in the list:

function getgrent()
{
_gr_init ()
if (++_gr_count in _gr_bycount)
return _gr_bycount[_gr_count]
return ""

' There is a subtle problem with the code just presented. Suppose that the first time there were no names.
This code adds the names with a leading comma. It also doesn’t check that there is a $4.

Chapter 10: A Library of awk Functions 261

}

The endgrent () function resets _gr_count to zero so that getgrent () can start over
again:
function endgrent()
{
_gr_count = 0

}

As with the user database routines, each function calls _gr_init() to initialize the
arrays. Doing so only incurs the extra overhead of running grcat if these functions are
used (as opposed to moving the body of _gr_init() into a BEGIN rule).

Most of the work is in scanning the database and building the various associative arrays.
The functions that the user calls are themselves very simple, relying on awk’s associative
arrays to do work.

The id program in Section 11.2.3 [Printing Out User Information], page 274, uses these
functions.

10.7 Traversing Arrays of Arrays

Section 8.6 [Arrays of Arrays|, page 181, described how gawk provides arrays of arrays. In
particular, any element of an array may be either a scalar or another array. The isarray()
function (see Section 9.1.7 [Getting Type Information], page 210) lets you distinguish an
array from a scalar. The following function, walk_array(), recursively traverses an array,
printing the element indices and values. You call it with the array and a string representing
the name of the array:

function walk_array(arr, name, i)
{
for (i in arr) {
if (isarray(arr([i]))
walk_array(arr[i], (name "[" i "]"))
else
printf ("%s[%s] = %s\n", name, i, arr[i])

}

It works by looping over each element of the array. If any given element is itself an array,
the function calls itself recursively, passing the subarray and a new string representing the
current index. Otherwise, the function simply prints the element’s name, index, and value.
Here is a main program to demonstrate:

BEGIN {
al1] = 1
al2][1] = 21
al[2][2] = 22
al3] =3

al4][1]1[1] = 411
al4][2] = 42

262 GAWK: Effective AWK Programming

walk_array(a, "a")
}

When run, the program produces the following output:

$ gawk -f walk_array.awk

-4 af1] =1

- al2][1] = 21

- al2][2] = 22

- a[3] =3

4 al41[1]1[1] = 411
- al4][2] = 42

The function just presented simply prints the name and value of each scalar array ele-
ment. However, it is easy to generalize it, by passing in the name of a function to call when
walking an array. The modified function looks like this:

function process_array(arr, name, process, do_arrays, i, new_name)
{
for (i in arr) {
new_name = (name "[" i "]1")
if (isarray(arr[il)) {
if (do_arrays)
@process (new_name, arr[i])
process_array(arr[i], new_name, process, do_arrays)
} else
@process(new_name, arr[i])

}

The arguments are as follows:
arr The array.
name The name of the array (a string).
process The name of the function to call.

do_arrays
If this is true, the function can handle elements that are subarrays.

If subarrays are to be processed, that is done before walking them further.

When run with the following scaffolding, the function produces the same results as does
the earlier version of walk_array():

BEGIN {
al1l] = 1
al2][1] = 21
al[2][2] = 22
al3] = 3
al41[1]1[1] = 411
al4]1[2] = 42

process_array(a, "a", "do_print", 0)

Chapter 10: A Library of awk Functions 263

}
function do_print(name, element)
{
printf "%s = %s\n", name, element
}

10.8 Summary

e Reading programs is an excellent way to learn Good Programming. The functions and
programs provided in this chapter and the next are intended to serve that purpose.

e When writing general-purpose library functions, put some thought into how to name
any global variables so that they won’t conflict with variables from a user’s program.

e The functions presented here fit into the following categories:

General problems
Number-to-string conversion, testing assertions, rounding, random number
generation, converting characters to numbers, joining strings, getting easily
usable time-of-day information, and reading a whole file in one shot

Managing data files
Noting data file boundaries, rereading the current file, checking for readable
files, checking for zero-length files, and treating assignments as file names

Processing command-line options
An awk version of the standard C getopt () function

Reading the user and group databases
Two sets of routines that parallel the C library versions

Traversing arrays of arrays
Two functions that traverse an array of arrays to any depth

10.9 Exercises

1. In Section 10.3.4 [Checking for Zero-Length Files|, page 246, we presented the
zerofile.awk program, which made use of gawk’s ARGIND variable. Can this problem
be solved without relying on ARGIND? If so, how?

2. As a related challenge, revise that code to handle the case where an intervening value
in ARGV is a variable assignment.

Chapter 11: Practical awk Programs 265

11 Practical awk Programs

Chapter 10 [A Library of awk Functions|, page 231, presents the idea that reading programs
in a language contributes to learning that language. This chapter continues that theme, pre-
senting a potpourri of awk programs for your reading enjoyment. There are three sections.
The first describes how to run the programs presented in this chapter.

The second presents awk versions of several common POSIX utilities. These are programs
that you are hopefully already familiar with, and therefore whose problems are understood.
By reimplementing these programs in awk, you can focus on the awk-related aspects of
solving the programming problems.

The third is a grab bag of interesting programs. These solve a number of different
data-manipulation and management problems. Many of the programs are short, which
emphasizes awk’s ability to do a lot in just a few lines of code.

Many of these programs use library functions presented in Chapter 10 [A Library of awk
Functions], page 231.

11.1 Running the Example Programs

To run a given program, you would typically do something like this:

awk -f program -- options files
Here, program is the name of the awk program (such as cut . awk), options are any command-
line options for the program that start with a ‘~’, and files are the actual data files.

If your system supports the ‘#!’ executable interpreter mechanism (see Section 1.1.4
[Executable awk Programs]|, page 19), you can instead run your program directly:

cut.awk -c1-8 myfiles > results
If your awk is not gawk, you may instead need to use this:

cut.awk -- -c1-8 myfiles > results

11.2 Reinventing Wheels for Fun and Profit

This section presents a number of POSIX utilities implemented in awk. Reinventing these
programs in awk is often enjoyable, because the algorithms can be very clearly expressed,
and the code is usually very concise and simple. This is true because awk does so much for
you.

It should be noted that these programs are not necessarily intended to replace the in-
stalled versions on your system. Nor may all of these programs be fully compliant with
the most recent POSIX standard. This is not a problem; their purpose is to illustrate awk
language programming for “real-world” tasks.

The programs are presented in alphabetical order.

11.2.1 Cutting Out Fields and Columns

The cut utility selects, or “cuts,” characters or fields from its standard input and sends
them to its standard output. Fields are separated by TABs by default, but you may supply
a command-line option to change the field delimiter (i.e., the field-separator character).
cut’s definition of fields is less general than awk’s.

266 GAWK: Effective AWK Programming

A common use of cut might be to pull out just the login names of logged-on users from
the output of who. For example, the following pipeline generates a sorted, unique list of the
logged-on users:

who | cut -c1-8 | sort | uniq

The options for cut are:

-c list Use list as the list of characters to cut out. Items within the list may be
separated by commas, and ranges of characters can be separated with dashes.
The list ‘1-8,15,22-35’ specifies characters 1 through 8, 15, and 22 through
35.

-f list Use list as the list of fields to cut out.
-d delim Use delim as the field-separator character instead of the TAB character.
-s Suppress printing of lines that do not contain the field delimiter.

The awk implementation of cut uses the getopt() library function (see Section 10.4
[Processing Command-Line Options], page 248) and the join() library function (see
Section 10.2.6 [Merging an Array into a String], page 239).

The program begins with a comment describing the options, the library functions needed,
and a usage() function that prints out a usage message and exits. usage() is called if
invalid arguments are supplied:

cut.awk -—-- implement cut in awk

Options:

-f list Cut fields

-d c Field delimiter character

-c list Cut characters

#

-s Suppress lines without the delimiter
#

Requires getopt() and join() library functions

function usage()

{
print("usage: cut [-f list] [-d c] [-s] [files...]") > "/dev/stderr"
print("usage: cut [-c list] [files...]") > "/dev/stderr"
exit 1

}

Next comes a BEGIN rule that parses the command-line options. It sets FS to a single
TAB character, because that is cut’s default field separator. The rule then sets the output
field separator to be the same as the input field separator. A loop using getopt() steps
through the command-line options. Exactly one of the variables by_fields or by_chars is
set to true, to indicate that processing should be done by fields or by characters, respectively.
When cutting by characters, the output field separator is set to the null string:

BEGIN {
FS = "\t" # default

Chapter 11: Practical awk Programs

0OFS = FS
while ((c = getopt(ARGC, ARGV, "sf:c:d:")) != -1) {
if (c == "f") {

by_fields =1
fieldlist = Optarg

} else if (¢ == "c") {
by_chars =1
fieldlist = Optarg
QOFs = "

} else if (c == "d") {

if (length(Optarg) > 1) {
printf("cut: using first character of ¥%s" \
" for delimiter\n", Optarg) > "/dev/stderr"
Optarg = substr(Optarg, 1, 1)
}
fs = FS = Optarg
OFS = FS
if (FS=="") # defeat awk semantics
FS - u[]n
} else if (c == "s"
suppress = 1
else
usage ()

Clear out options
for (i = 1; i < Optind; i++)
ARGV[i] = "

if (by_fields && by_chars)
usage ()

if (by_fields == 0 && by_chars == 0)
by_fields =1 # default

267

The code must take special care when the field delimiter is a space. Using a single space
(" ™) for the value of FS is incorrect—awk would separate fields with runs of spaces, TABs,
and/or newlines, and we want them to be separated with individual spaces. To this end,
we save the original space character in the variable fs for later use; after setting FS to " [
1" we can’t use it directly to see if the field delimiter character is in the string.

Also remember that after getopt () is through (as described in Section 10.4 [Processing
Command-Line Options|, page 248), we have to clear out all the elements of ARGV from 1
to Optind, so that awk does not try to process the command-line options as file names.

After dealing with the command-line options, the program verifies that the options make
sense. Only one or the other of -c and -f should be used, and both require a field list.
Then the program calls either set_fieldlist() or set_charlist() to pull apart the list
of fields or characters:

268 GAWK: Effective AWK Programming

if (fieldlist == "") {
print "cut: needs list for -c or -f" > "/dev/stderr"
exit 1

}

if (by_fields)
set_fieldlist()
else
set_charlist()
}

set_fieldlist () splits the field list apart at the commas into an array. Then, for each

element of the array, it looks to see if the element is actually a range, and if so, splits it
apart. The function checks the range to make sure that the first number is smaller than the
second. Each number in the list is added to the flist array, which simply lists the fields
that will be printed. Normal field splitting is used. The program lets awk handle the job of
doing the field splitting:

function set_fieldlist(n, m, i, j, k, £, g

{

B
]

split(fieldlist, £, ",")
j=1 # index in flist
for (i = 1; i <= n; i++) {
if (index(f[i]l, "-") != 0) { # a range
m = split(£[i], g, "-")
if (m !'=2 || gl1] >= gl[2]) {
printf("cut: bad field list: Y%s\n",
f[i]) > "/dev/stderr"
exit 1
}
for (k = gl[1]; k <= gl2]; k++)
flist[j++] = k
} else
flist[j++] = £[i]
}
nfields = j - 1
}

The set_charlist () function is more complicated than set_fieldlist(). The idea
here is to use gawk’s FIELDWIDTHS variable (see Section 4.6 [Reading Fixed-Width Datal,
page 74), which describes constant-width input. When using a character list, that is exactly
what we have.

Setting up FIELDWIDTHS is more complicated than simply listing the fields that need to
be printed. We have to keep track of the fields to print and also the intervening characters
that have to be skipped. For example, suppose you wanted characters 1 through 8, 15, and
22 through 35. You would use ‘-c 1-8,15,22-35". The necessary value for FIELDWIDTHS
is "8 6 16 14". This yields five fields, and the fields to print are $1, $3, and $5. The
intermediate fields are filler, which is stuff in between the desired data. flist lists the
fields to print, and t tracks the complete field list, including filler fields:

Chapter 11: Practical awk Programs 269

function set_charlist(field, i, j, f, g, n, m, t,
filler, last, len)
{
field = 1 # count total fields
n = split(fieldlist, £, ",")
j=1 # index in flist
for (i = 1; i <= n; i++) {
if (index(f[i], "-") != 0) { # range
m = split(£[il, g, "-")
if (m !'=2 || gl1] >= g[2]) {
printf("cut: bad character list: %s\n",
f[i]) > "/dev/stderr"
exit 1
}
len = gl[2] - gl1] + 1
if (gl[1] > 1) # compute length of filler
filler = g[1] - last - 1
else
filler = 0
if (filler)
t[field++] = filler
t[field++] = len # length of field
last = g[2]
flist[j++] = field - 1
} else {
if (£[i] > 1
filler = f[i] - last - 1
else
filler = 0
if (filler)
t[field++] = filler
t[field++] =1
last = f[i]
flist[j++] = field - 1
}
}
FIELDWIDTHS = join(t, 1, field - 1)
nfields = j - 1
}

Next is the rule that processes the data. If the —s option is given, then suppress is true.
The first if statement makes sure that the input record does have the field separator. If
cut is processing fields, suppress is true, and the field separator character is not in the
record, then the record is skipped.

If the record is valid, then gawk has split the data into fields, either using the character
in FS or using fixed-length fields and FIELDWIDTHS. The loop goes through the list of fields

270 GAWK: Effective AWK Programming

that should be printed. The corresponding field is printed if it contains data. If the next
field also has data, then the separator character is written out between the fields:

{
if (by_fields && suppress && index($0, fs) == 0)
next
for (i = 1; i <= nfields; i++) {
if ($£flist[i] t= "") {
printf "%s", $flist[i]
if (i < nfields && $flist[i+1] !'="")
printf "¥%s", OFS
}
}
prlnt nn
}

This version of cut relies on gawk’s FIELDWIDTHS variable to do the character-based cut-
ting. It is possible in other awk implementations to use substr() (see Section 9.1.3 [String-
Manipulation Functions|, page 187), but it is also extremely painful. The FIELDWIDTHS
variable supplies an elegant solution to the problem of picking the input line apart by
characters.

11.2.2 Searching for Regular Expressions in Files

The egrep utility searches files for patterns. It uses regular expressions that are almost
identical to those available in awk (see Chapter 3 [Regular Expressions|, page 47). You
invoke it as follows:

egrep [options| ’pattern’ files . ..

The pattern is a regular expression. In typical usage, the regular expression is quoted
to prevent the shell from expanding any of the special characters as file name wildcards.
Normally, egrep prints the lines that matched. If multiple file names are provided on the
command line, each output line is preceded by the name of the file and a colon.

The options to egrep are as follows:

-c Print out a count of the lines that matched the pattern, instead of the lines
themselves.
-s Be silent. No output is produced and the exit value indicates whether the

pattern was matched.

-v Invert the sense of the test. egrep prints the lines that do not match the pattern
and exits successfully if the pattern is not matched.

-i Ignore case distinctions in both the pattern and the input data.
-1 Only print (list) the names of the files that matched, not the lines that matched.
—-e pattern

Use pattern as the regexp to match. The purpose of the —e option is to allow
patterns that start with a ‘-,

Chapter 11: Practical awk Programs 271

This version uses the getopt () library function (see Section 10.4 [Processing Command-
Line Options|, page 248) and the file transition library program (see Section 10.3.1 [Noting
Data file Boundaries|, page 243).

The program begins with a descriptive comment and then a BEGIN rule that processes
the command-line arguments with getopt (). The -i (ignore case) option is particularly
easy with gawk; we just use the IGNORECASE predefined variable (see Section 7.5 [Predefined

Variables|, page 157):

egrep.awk —--—-
#
Options:

simulate egrep in awk

-C count of lines
-s silent - use exit value
-V invert test, success if no match

-1 print filenames only
-e argument is pattern

#
#
#
#
-1 ignore case
#
#
#
#

Requires getopt and file transition library functions

BEGIN {
while ((c =

getopt (ARGC, ARGV, "ce:svil")) != -1) {

if (¢ == "c")
count_only++

else if

(C - "S")

no_print++

else if

(c == "y")

invert++

else if

(C - "i")

IGNORECASE = 1

else if

(C R lllll)

filenames_only++

else if

(c == "e")

pattern = Optarg

else

usage ()

}

Next comes the code that handles the egrep-specific behavior. If no pattern is supplied
with -e, the first nonoption on the command line is used. The awk command-line arguments
up to ARGV [Optind] are cleared, so that awk won’t try to process them as files. If no files
are specified, the standard input is used, and if multiple files are specified, we make sure to
note this so that the file names can precede the matched lines in the output:

if (pattern
pattern

for (1 = 1;
ARGV [i]

— ||)
= ARGV [Optind++]
i < Optind; i++)

nn

272 GAWK: Effective AWK Programming

if (Optind >= ARGC) {
ARGV[1] = "-"
ARGC = 2

} else if (ARGC - Optind > 1)
do_filenames++

if (IGNORECASE)
pattern = tolower(pattern)
b

The last two lines are commented out, as they are not needed in gawk. They should be
uncommented if you have to use another version of awk.

The next set of lines should be uncommented if you are not using gawk. This rule
translates all the characters in the input line into lowercase if the -i option is specified.!
The rule is commented out as it is not necessary with gawk:

#{

if (IGNORECASE)

$0 = tolower($0)
#}

The beginfile() function is called by the rule in ftrans.awk when each new file is
processed. In this case, it is very simple; all it does is initialize a variable fcount to
zero. fcount tracks how many lines in the current file matched the pattern. Naming the
parameter junk shows we know that beginfile() is called with a parameter, but that
we’re not interested in its value:

function beginfile(junk)

{

fcount = 0

}

The endfile() function is called after each file has been processed. It affects the output
only when the user wants a count of the number of lines that matched. no_print is true
only if the exit status is desired. count_only is true if line counts are desired. egrep
therefore only prints line counts if printing and counting are enabled. The output format
must be adjusted depending upon the number of files to process. Finally, fcount is added
to total, so that we know the total number of lines that matched the pattern:

function endfile(file)
{
if (! no_print && count_only) {
if (do_filenames)
print file ":" fcount
else
print fcount

total += fcount

I 1t also introduces a subtle bug; if a match happens, we output the translated line, not the original.

Chapter 11: Practical awk Programs 273

}

The BEGINFILE and ENDFILE special patterns (see Section 7.1.5 [The BEGINFILE and
ENDFILE Special Patterns], page 145) could be used, but then the program would be
gawk-specific. Additionally, this example was written before gawk acquired BEGINFILE and
ENDFILE.

The following rule does most of the work of matching lines. The variable matches is
true if the line matched the pattern. If the user wants lines that did not match, the sense
of matches is inverted using the ‘!’ operator. fcount is incremented with the value of
matches, which is either one or zero, depending upon a successful or unsuccessful match.
If the line does not match, the next statement just moves on to the next record.

A number of additional tests are made, but they are only done if we are not counting
lines. First, if the user only wants the exit status (no_print is true), then it is enough to
know that one line in this file matched, and we can skip on to the next file with nextfile.
Similarly, if we are only printing file names, we can print the file name, and then skip to the
next file with nextfile. Finally, each line is printed, with a leading file name and colon if
necessary:

{
matches = ($0 ~ pattern)
if (invert)
matches = ! matches
fcount += matches # 1 o0or O
if (! matches)
next
if (! count_only) {
if (no_print)
nextfile
if (filenames_only) {
print FILENAME
nextfile
}
if (do_filenames)
print FILENAME ":" $0
else
print
}
}

The END rule takes care of producing the correct exit status. If there are no matches,
the exit status is one; otherwise, it is zero:

END {
exit (total == 0)

274 GAWK: Effective AWK Programming

}
The usage () function prints a usage message in case of invalid options, and then exits:

function usage()

{
print("Usage: egrep [-csvil] [-e pat] [files ...]") > "/dev/stderr"
print ("\n\tegrep [-csvil] pat [files ...]") > "/dev/stderr"
exit 1

}

11.2.3 Printing Out User Information

The id utility lists a user’s real and effective user ID numbers, real and effective group ID
numbers, and the user’s group set, if any. id only prints the effective user ID and group ID
if they are different from the real ones. If possible, id also supplies the corresponding user
and group names. The output might look like this:

$ id

- uid=1000(arnold) gid=1000(arnold) groups=1000(arnold),4(adm),7(1lp),27(sudo)

This information is part of what is provided by gawk’s PROCINFO array (see Section 7.5

[Predefined Variables|, page 157). However, the id utility provides a more palatable output
than just individual numbers.

Here is a simple version of id written in awk. It uses the user database library functions
(see Section 10.5 [Reading the User Database|, page 253) and the group database library
functions (see Section 10.6 [Reading the Group Database], page 257) from Chapter 10 [A
Library of awk Functions|, page 231.

The program is fairly straightforward. All the work is done in the BEGIN rule. The user
and group ID numbers are obtained from PROCINFO. The code is repetitive. The entry in
the user database for the real user ID number is split into parts at the ‘:’. The name is the
first field. Similar code is used for the effective user ID number and the group numbers:

+*

id.awk —-—- implement id in awk

Requires user and group library functions
output is:
uid=12(foo) euid=34(bar) gid=3(baz) \
egid=5(blat) groups=9(nine),2(two),1(one)

H OHF H H R

BEGIN {
uid = PROCINFO["uid"]
euid = PROCINFO["euid"]
gid = PROCINFO["gid"]
egid = PROCINFO["egid"]

printf ("uid=%d", uid)
pw = getpwuid(uid)
pr_first_field(pw)

if (euid !'= uid) {

Chapter 11: Practical awk Programs 275

printf (" euid=%d", euid)
pw = getpwuid(euid)
pr_first_field(pw)

}

printf (" gid=%d", gid)
pw = getgrgid(gid)
pr_first_field(pw)

if (egid != gid) {
printf (" egid=%d", egid)
pvw = getgrgid(egid)
pr_first_field(pw)

}

for (1 = 1; ("group" i) in PROCINFO; i++) {
if (1 == 1)
printf (" groups=")
group = PROCINFO["group" i]
printf ("%d", group)
pw = getgrgid(group)
pr_first_field(pw)
if (("group" (i+1)) in PROCINFO)

printf(",")
}
print ""
}
function pr_first_field(str, a)
{
if (str !'= "") {
split(str, a, ":")
printf (" (%s)", alll)
}
}

The test in the for loop is worth noting. Any supplementary groups in the PROCINFO
array have the indices "group1" through "groupN" for some N (i.e., the total number of
supplementary groups). However, we don’t know in advance how many of these groups
there are.

This loop works by starting at one, concatenating the value with "group", and then using
in to see if that value is in the array (see Section 8.1.2 [Referring to an Array Element],
page 171). Eventually, i is incremented past the last group in the array and the loop exits.

The loop is also correct if there are no supplementary groups; then the condition is false
the first time it’s tested, and the loop body never executes.

276 GAWK: Effective AWK Programming

The pr_first_field() function simply isolates out some code that is used repeatedly,
making the whole program shorter and cleaner. In particular, moving the check for the
empty string into this function saves several lines of code.

11.2.4 Splitting a Large File into Pieces
The split program splits large text files into smaller pieces. Usage is as follows:?
split [-count] [file| [prefix]

By default, the output files are named xaa, xab, and so on. Each file has 1,000 lines
in it, with the likely exception of the last file. To change the number of lines in each file,
supply a number on the command line preceded with a minus sign (e.g., ‘~500 for files with
500 lines in them instead of 1,000). To change the names of the output files to something
like myfileaa, myfileab, and so on, supply an additional argument that specifies the file
name prefix.

Here is a version of split in awk. It uses the ord() and chr() functions presented in
Section 10.2.5 [Translating Between Characters and Numbers|, page 237.

The program first sets its defaults, and then tests to make sure there are not too many
arguments. It then looks at each argument in turn. The first argument could be a minus
sign followed by a number. If it is, this happens to look like a negative number, so it is
made positive, and that is the count of lines. The data file name is skipped over and the
final argument is used as the prefix for the output file names:

split.awk --- do split in awk

#

Requires ord() and chr() library functions
usage: split [-count] [file] [outname]

BEGIN {
outfile = "x" # default
count = 1000
if (ARGC > 4)
usage ()

i=1
if (i in ARGV && ARGV[i] ~ /~-[[:digit:]11+3$/) {
count = -ARGV[i]
ARGV[i] = ""
i++
b
test argv in case reading from stdin instead of file
if (i in ARGV)
i++ # skip datafile name
if (i in ARGV) {
outfile = ARGV [i]
ARGV[i] = ""

2 This is the traditional usage. The POSIX usage is different, but not relevant for what the program aims
to demonstrate.

Chapter 11: Practical awk Programs 277

sl = 82 = "a"
out = (outfile sl s2)
}

The next rule does most of the work. tcount (temporary count) tracks how many lines
have been printed to the output file so far. If it is greater than count, it is time to close
the current file and start a new one. s1 and s2 track the current suffixes for the file name.
If they are both ‘z’, the file is just too big. Otherwise, s1 moves to the next letter in the
alphabet and s2 starts over again at ‘a’:

{
if (++tcount > count) {
close(out)
if (82 == "z") {
if (s1 == "z") {
printf("split: %s is too large to split\n",
FILENAME) > "/dev/stderr"
exit 1
}
sl = chr(ord(sl) + 1)
S2 = "all
}
else
s2 = chr(ord(s2) + 1)
out = (outfile sl s2)
tcount = 1
}
print > out
}

The usage () function simply prints an error message and exits:

function usage()

{
print ("usage: split [-num] [file] [outname]") > "/dev/stderr"
exit 1

}

This program is a bit sloppy; it relies on awk to automatically close the last file instead
of doing it in an END rule. It also assumes that letters are contiguous in the character set,
which isn’t true for EBCDIC systems.

11.2.5 Duplicating Output into Multiple Files

The tee program is known as a “pipe fitting.” tee copies its standard input to its standard
output and also duplicates it to the files named on the command line. Its usage is as follows

tee [-a] file . ..

The -a option tells tee to append to the named files, instead of truncating them and
starting over.

278 GAWK: Effective AWK Programming

The BEGIN rule first makes a copy of all the command-line arguments into an array
named copy. ARGV[0] is not needed, so it is not copied. tee cannot use ARGV directly,
because awk attempts to process each file name in ARGV as input data.

If the first argument is -a, then the flag variable append is set to true, and both ARGV [1]
and copy[1] are deleted. If ARGC is less than two, then no file names were supplied and
tee prints a usage message and exits. Finally, awk is forced to read the standard input by
setting ARGV[1] to "-" and ARGC to two:

tee.awk --- tee in awk

#

Copy standard input to all named output files.
Append content if -a option is supplied.

#
BEGIN {
for (i = 1; i < ARGC; i++)
copy[i]l = ARGV[i]
if (ARGV[1] == "-a") {
append = 1
delete ARGV[1]
delete copyl[1]
ARGC--
}
if (ARGC < 2) {
print "usage: tee [-a] file ..." > "/dev/stderr"
exit 1
}
ARGV[1] = "-"
ARGC = 2
}

The following single rule does all the work. Because there is no pattern, it is executed
for each line of input. The body of the rule simply prints the line into each file on the
command line, and then to the standard output:

{

moving the if outside the loop makes it run faster
if (append)
for (i in copy)
print >> copyl[il
else
for (i in copy)
print > copyl[il
print
3

It is also possible to write the loop this way:

for (i in copy)
if (append)

Chapter 11: Practical awk Programs 279

print >> copyl[il]
else
print > copylil
This is more concise, but it is also less efficient. The ‘if’ is tested for each record and for
each output file. By duplicating the loop body, the ‘if’ is only tested once for each input
record. If there are N input records and M output files, the first method only executes N
‘if’ statements, while the second executes N*M ‘if’ statements.

Finally, the END rule cleans up by closing all the output files:

END {
for (i in copy)
close(copyl[il)
}

11.2.6 Printing Nonduplicated Lines of Text

The uniq utility reads sorted lines of data on its standard input, and by default removes
duplicate lines. In other words, it only prints unique lines—hence the name. uniq has a
number of options. The usage is as follows:

uniq [-udc [-n]] [+n] [inputfile [outputfile]]

The options for uniq are:

-d Print only repeated (duplicated) lines.
-u Print only nonrepeated (unique) lines.
-c Count lines. This option overrides -d and -u. Both repeated and nonrepeated

lines are counted.

-n Skip n fields before comparing lines. The definition of fields is similar to awk’s
default: nonwhitespace characters separated by runs of spaces and/or TABs.

+n Skip n characters before comparing lines. Any fields specified with ‘-n’ are
skipped first.

inputfile
Data is read from the input file named on the command line, instead of from
the standard input.

outputfile
The generated output is sent to the named output file, instead of to the standard
output.

Normally uniq behaves as if both the -d and -u options are provided.

uniq uses the getopt () library function (see Section 10.4 [Processing Command-Line
Options|, page 248) and the join() library function (see Section 10.2.6 [Merging an Array
into a String], page 239).

The program begins with a usage () function and then a brief outline of the options and
their meanings in comments. The BEGIN rule deals with the command-line arguments and
options. It uses a trick to get getopt () to handle options of the form ‘-25’ treating such
an option as the option letter ‘2’ with an argument of ‘5’. If indeed two or more digits
are supplied (Optarg looks like a number), Optarg is concatenated with the option digit

280 GAWK: Effective AWK Programming

and then the result is added to zero to make it into a number. If there is only one digit in
the option, then Optarg is not needed. In this case, Optind must be decremented so that
getopt () processes it next time. This code is admittedly a bit tricky.

If no options are supplied, then the default is taken, to print both repeated and nonre-
peated lines. The output file, if provided, is assigned to outputfile. Early on, outputfile
is initialized to the standard output, /dev/stdout:

uniq.awk --- do uniq in awk
#
Requires getopt() and join() library functions

function usage()

{
print("Usage: uniq [-udc [-n]] [+n] [in [out 11") > "/dev/stderr"
exit 1
b
-c count lines. overrides -d and -u
-d only repeated lines
-u only nonrepeated lines
-n skip n fields
+n skip n characters, skip fields first
BEGIN {
count =1

outputfile = "/dev/stdout"
opts = "udc0:1:2:3:4:5:6:7:8:9:"

while ((c = getopt(ARGC, ARGV, opts)) != -1) {
lf (C py— "ull)
non_repeated_only++
else if (c == "d")
repeated_only++
else if (c == "c")

do_count++
else if (index("0123456789", c) != 0) {
getopt() requires args to options
this messes us up for things like -5
if (Optarg = /" [[:digit:]11+$/)

fcount = (c Optarg) + 0
else {
fcount = ¢ + 0
Optind--
}
} else
usage ()

Chapter 11: Practical awk Programs 281

if (ARGV[Optind] ~ /~\+[[:digit:11+$/) {
charcount = substr (ARGV[Optind], 2) + O
Optind++

}

for (i = 1; i < Optind; i++)
ARGV[i] = ""

if (repeated_only == 0 && non_repeated_only == 0)
repeated_only = non_repeated_only = 1

if (ARGC - Optind == 2) {
outputfile = ARGV[ARGC - 1]
ARGV[ARGC - 1] = "n

}

The following function, are_equal (), compares the current line, $0, to the previous line,
last. It handles skipping fields and characters. If no field count and no character count
are specified, are_equal () returns one or zero depending upon the result of a simple string
comparison of last and $0.

Otherwise, things get more complicated. If fields have to be skipped, each line is broken
into an array using split() (see Section 9.1.3 [String-Manipulation Functions|, page 187);
the desired fields are then joined back into a line using join(). The joined lines are stored
in clast and cline. If no fields are skipped, clast and cline are set to last and $0,
respectively. Finally, if characters are skipped, substr() is used to strip off the leading
charcount characters in clast and cline. The two strings are then compared and are_
equal () returns the result:

function are_equal(n, m, clast, cline, alast, aline)

{
if (fcount == 0 && charcount == 0)
return (last == $0)

if (fcount > 0) {

n = split(last, alast)

m = split($0, aline)

clast = join(alast, fcount+l, n)

cline = join(aline, fcount+1l, m)
} else {

clast = last

cline = $0
}

if (charcount) {
clast = substr(clast, charcount + 1)
cline = substr(cline, charcount + 1)

282 GAWK: Effective AWK Programming

return (clast == cline)
}

The following two rules are the body of the program. The first one is executed only for
the very first line of data. It sets last equal to $0, so that subsequent lines of text have
something to be compared to.

The second rule does the work. The variable equal is one or zero, depending upon the
results of are_equal ()’s comparison. If uniq is counting repeated lines, and the lines are
equal, then it increments the count variable. Otherwise, it prints the line and resets count,
because the two lines are not equal.

If uniq is not counting, and if the lines are equal, count is incremented. Nothing is
printed, as the point is to remove duplicates. Otherwise, if uniq is counting repeated lines
and more than one line is seen, or if uniq is counting nonrepeated lines and only one line
is seen, then the line is printed, and count is reset.

Finally, similar logic is used in the END rule to print the final line of input data:
NR == 1 {
last = $0
next

equal = are_equal()

if (do_count) { # overrides -d and -u

if (equal)
count++

else {
printf ("%4d %s\n", count, last) > outputfile
last = $0
count = 1 # reset

}

next

3

if (equal)
count++
else {
if ((repeated_only && count > 1) ||
(non_repeated_only && count == 1))
print last > outputfile
last = $0
count = 1

END {
if (do_count)

Chapter 11: Practical awk Programs 283

printf ("%4d %s\n", count, last) > outputfile
else if ((repeated_only && count > 1) ||
(non_repeated_only && count == 1))
print last > outputfile
close(outputfile)

}
11.2.7 Counting Things

The wc (word count) utility counts lines, words, and characters in one or more input files.
Its usage is as follows:

we [-lwc] [files . . .]

If no files are specified on the command line, wc reads its standard input. If there are
multiple files, it also prints total counts for all the files. The options and their meanings
are as follows:

-1 Count only lines.

-w Count only words. A “word” is a contiguous sequence of nonwhitespace char-
acters, separated by spaces and/or TABs. Luckily, this is the normal way awk
separates fields in its input data.

-c Count only characters.

Implementing wc in awk is particularly elegant, because awk does a lot of the work for
us; it splits lines into words (i.e., fields) and counts them, it counts lines (i.e., records), and
it can easily tell us how long a line is.

This program uses the getopt() library function (see Section 10.4 [Processing
Command-Line Options|, page 248) and the file-transition functions (see Section 10.3.1
[Noting Data file Boundaries|, page 243).

This version has one notable difference from traditional versions of wc: it always prints
the counts in the order lines, words, and characters. Traditional versions note the order of
the -1, -w, and -c options on the command line, and print the counts in that order.

The BEGIN rule does the argument processing. The variable print_total is true if more
than one file is named on the command line:

wc.awk -—- count lines, words, characters

Options:

-1 only count lines

-W only count words

-C only count characters

#

Default is to count lines, words, characters

#

Requires getopt() and file transition library functions

BEGIN {
let getopt() print a message about
invalid options. we ignore them

284 GAWK: Effective AWK Programming

while ((c = getopt(ARGC, ARGV, "lwc")) != -1) {
if (c == "1")
do_lines =1
else if (¢ == "w")
do_words = 1
else if (¢ == "c")
do_chars =1
}
for (1 = 1; i < Optind; i++)

ARGV[i] = ""

if no optiomns, do all
if (! do_lines && ! do_words && ! do_chars)
do_lines = do_words = do_chars =1

print_total = (ARGC - i > 1)
}

The beginfile() function is simple; it just resets the counts of lines, words, and char-
acters to zero, and saves the current file name in fname:

function beginfile(file)
{

lines = words = chars = 0
fname FILENAME

¥

The endfile() function adds the current file’s numbers to the running totals of lines,
words, and characters. It then prints out those numbers for the file that was just read. It
relies on beginfile() to reset the numbers for the following data file:

function endfile(file)
{
tlines += lines
twords += words
tchars += chars
if (do_lines)
printf "\t%d", lines
if (do_words)
printf "\t%d", words
if (do_chars)
printf "\t%d", chars
printf "\t%s\n", fname
}

There is one rule that is executed for each line. It adds the length of the record, plus
one, to chars.®> Adding one plus the record length is needed because the newline character
separating records (the value of RS) is not part of the record itself, and thus not included

3 Because gawk understands multibyte locales, this code counts characters, not bytes.

Chapter 11: Practical awk Programs 285

in its length. Next, lines is incremented for each line read, and words is incremented by
the value of NF, which is the number of “words” on this line:

do per line

{
chars += length($0) + 1 # get newline
lines++
words += NF
}
Finally, the END rule simply prints the totals for all the files:
END {
if (print_total) {
if (do_lines)
printf "\t%d", tlines
if (do_words)
printf "\t%d", twords
if (do_chars)
printf "\t%d", tchars
print "\ttotal"
}
}

11.3 A Grab Bag of awk Programs

This section is a large “grab bag” of miscellaneous programs. We hope you find them both
interesting and enjoyable.

11.3.1 Finding Duplicated Words in a Document

A common error when writing large amounts of prose is to accidentally duplicate words.
Typically you will see this in text as something like “the the program does the following. . .”
When the text is online, often the duplicated words occur at the end of one line and the
the beginning of another, making them very difficult to spot.

This program, dupword. awk, scans through a file one line at a time and looks for adjacent
occurrences of the same word. It also saves the last word on a line (in the variable prev)
for comparison with the first word on the next line.

The first two statements make sure that the line is all lowercase, so that, for example,
“The” and “the” compare equal to each other. The next statement replaces nonalphanu-
meric and nonwhitespace characters with spaces, so that punctuation does not affect the
comparison either. The characters are replaced with spaces so that formatting controls
don’t create nonsense words (e.g., the Texinfo ‘@code{NF}’ becomes ‘codeNF’ if punctua-
tion is simply deleted). The record is then resplit into fields, yielding just the actual words
on the line, and ensuring that there are no empty fields.

If there are no fields left after removing all the punctuation, the current record is skipped.
Otherwise, the program loops through each word, comparing it to the previous one:

dupword.awk --- find duplicate words in text

{

286 GAWK: Effective AWK Programming

$0 = tolower ($0)

gsub(/["[:alnum:] [:blank:1]1/, " ");
$0 = $0 # re-split
if (NF == 0)
next
if ($1 == prev)

printf("%s:%d: duplicate %s\n",
FILENAME, FNR, $1)
for (i = 2; i <= NF; i++)
if ($1 == $(i-1))
printf ("%s:%d: duplicate %s\n",
FILENAME, FNR, $i)
prev = $NF
}

11.3.2 An Alarm Clock Program

Nothing cures insomnia like a ringing alarm clock.
—Arnold Robbins

Sleep is for web developers.
—FErik Quanstrom

The following program is a simple “alarm clock” program. You give it a time of day and
an optional message. At the specified time, it prints the message on the standard output.
In addition, you can give it the number of times to repeat the message as well as a delay
between repetitions.

This program uses the getlocaltime() function from Section 10.2.7 [Managing the
Time of Day], page 239.

All the work is done in the BEGIN rule. The first part is argument checking and setting
of defaults: the delay, the count, and the message to print. If the user supplied a message
without the ASCII BEL character (known as the “alert” character, "\a"), then it is added
to the message. (On many systems, printing the ASCII BEL generates an audible alert.
Thus, when the alarm goes off, the system calls attention to itself in case the user is not
looking at the computer.) Just for a change, this program uses a switch statement (see
Section 7.4.5 [The switch Statement], page 151), but the processing could be done with a
series of if-else statements instead. Here is the program:

alarm.awk --- set an alarm

#

Requires getlocaltime() library function

usage: alarm time ["message" [count [delay]]]

BEGIN {
Initial argument sanity checking
usagel = "usage: alarm time [’message’ [count [delay]]l]"
usage2 = sprintf("\t(%s) time ::= hh:mm", ARGV[1])

if (ARGC < 2) {
print usagel > "/dev/stderr"

Chapter 11: Practical awk Programs 287

print usage2 > "/dev/stderr"
exit 1
}
switch (ARGC) {
case b5:
delay = ARGV[4] + O
fall through
case 4:
count = ARGV[3] + O
fall through
case 3:
message = ARGV[2]
break
default:
if (ARGV[1] !~ /[[:digit:1]17[[:digit:]1]1:[[:digit:11{2}/) {
print usagel > "/dev/stderr"
print usage2 > "/dev/stderr"
exit 1
}

break

set defaults for once we reach the desired time
if (delay == 0)

delay = 180 # 3 minutes
if (count == 0)

count = 5
if (message == "")

message = sprintf("\alt is now %s!\a", ARGV[1])
else if (index(message, "\a") == 0)

message = "\a" message "\a"

The next section of code turns the alarm time into hours and minutes, converts it (if
necessary) to a 24-hour clock, and then turns that time into a count of the seconds since
midnight. Next it turns the current time into a count of seconds since midnight. The
difference between the two is how long to wait before setting off the alarm:

split up alarm time

split (ARGV[1], atime, ":")

hour = atime[1] + O # force numeric
minute = atime[2] + O # force numeric

get current broken down time
getlocaltime (now)

1f time given is 12-hour hours and it’s after that
hour, e.g., ‘alarm 5:30° at 9 a.m. means 5:30 p.m.,
then add 12 to real hour

288 GAWK: Effective AWK Programming

if (hour < 12 && now["hour"] > hour)
hour += 12

set target time in seconds since midnight
target = (hour * 60 * 60) + (minute * 60)

get current time in seconds since midnight
current = (now["hour"] * 60 * 60) + \
(now["minute"] * 60) + now["second"]

how long to sleep for

naptime = target - current

if (naptime <= 0) {
print "alarm: time is in the past!" > "/dev/stderr"
exit 1

}

Finally, the program uses the system() function (see Section 9.1.4 [Input/Output Func-
tions|, page 199) to call the sleep utility. The sleep utility simply pauses for the given
number of seconds. If the exit status is not zero, the program assumes that sleep was
interrupted and exits. If sleep exited with an OK status (zero), then the program prints
the message in a loop, again using sleep to delay for however many seconds are necessary:

zzzzzz..... go away if interrupted
if (system(sprintf("sleep %d", naptime)) != 0)
exit 1

time to notify!
command = sprintf("sleep %d", delay)
for (i = 1; i <= count; i++) {
print message
if sleep command interrupted, go away
if (system(command) != 0)
break

exit O

}
11.3.3 Transliterating Characters

The system tr utility transliterates characters. For example, it is often used to map upper-
case letters into lowercase for further processing:
generate data | tr ’A-Z’ ’a-z’ | process data ...

tr requires two lists of characters.* When processing the input, the first character in
the first list is replaced with the first character in the second list, the second character in

4 On some older systems, including Solaris, the system version of tr may require that the lists be written as
range expressions enclosed in square brackets (‘[a-z]’) and quoted, to prevent the shell from attempting
a file name expansion. This is not a feature.

Chapter 11: Practical awk Programs 289

the first list is replaced with the second character in the second list, and so on. If there are
more characters in the “from” list than in the “to” list, the last character of the “to” list is
used for the remaining characters in the “from” list.

Once upon a time, a user proposed adding a transliteration function to gawk. The
following program was written to prove that character transliteration could be done with
a user-level function. This program is not as complete as the system tr utility, but it does
most of the job.

The translate program was written long before gawk acquired the ability to split each
character in a string into separate array elements. Thus, it makes repeated use of the
substr(), index (), and gsub() built-in functions (see Section 9.1.3 [String-Manipulation
Functions|, page 187). There are two functions. The first, stranslate(), takes three
arguments:

from A list of characters from which to translate
to A list of characters to which to translate
target The string on which to do the translation

Associative arrays make the translation part fairly easy. t_ar holds the “to” characters,
indexed by the “from” characters. Then a simple loop goes through from, one character at
a time. For each character in from, if the character appears in target, it is replaced with
the corresponding to character.

The translate() function calls stranslate(), using $0 as the target. The main pro-
gram sets two global variables, FROM and T0, from the command line, and then changes
ARGV so that awk reads from the standard input.

Finally, the processing rule simply calls translate() for each record:

translate.awk -—-- do tr-like stuff

Bugs: does not handle things like tr A-Z a-z; it has

to be spelled out. However, if ‘to’ is shorter than ‘from’,
the last character in ‘to’ is used for the rest of ‘from’.

function stranslate(from, to, target, 1f, 1t, ltarget, t_ar, i, c,
result)
{
1f = length(from)
1t = length(to)

ltarget = length(target)
for (i = 1; i <= 1t; i++)
t_ar[substr(from, i, 1)] = substr(to, i, 1)
if (1t < 1f)
for (; i <= 1f; i++)
t_ar[substr(from, i, 1)] = substr(to, 1lt, 1)
for (i = 1; i <= ltarget; i++) {
¢ = substr(target, i, 1)
if (c in t_ar)
c = t_arl[c]
result = result c

290 GAWK: Effective AWK Programming

}
return result
}
function translate(from, to)
{
return $0 = stranslate(from, to, $0)
}

main program
BEGIN {
if (ARGC < 3) {
print "usage: translate from to" > "/dev/stderr"
exit
}
FROM = ARGV[1]
TO = ARGV[2]
ARGC = 2
ARGV[1] = "-"

translate(FROM, TO)
print
}

It is possible to do character transliteration in a user-level function, but it is not neces-
sarily efficient, and we (the gawk developers) started to consider adding a built-in function.
However, shortly after writing this program, we learned that Brian Kernighan had added
the toupper () and tolower () functions to his awk (see Section 9.1.3 [String-Manipulation
Functions|, page 187). These functions handle the vast majority of the cases where charac-
ter transliteration is necessary, and so we chose to simply add those functions to gawk as
well and then leave well enough alone.

An obvious improvement to this program would be to set up the t_ar array only once,
in a BEGIN rule. However, this assumes that the “from” and “to” lists will never change
throughout the lifetime of the program.

Another obvious improvement is to enable the use of ranges, such as ‘a-z’, as allowed
by the tr utility. Look at the code for cut.awk (see Section 11.2.1 [Cutting Out Fields and
Columns]|, page 265) for inspiration.

11.3.4 Printing Mailing Labels

Here is a “real-world”® program. This script reads lists of names and addresses and generates
mailing labels. Each page of labels has 20 labels on it, two across and 10 down. The
addresses are guaranteed to be no more than five lines of data. Each address is separated
from the next by a blank line.

5 “Real world” is defined as “a program actually used to get something done.”

Chapter 11: Practical awk Programs 291

The basic idea is to read 20 labels’ worth of data. Each line of each label is stored in
the 1ine array. The single rule takes care of filling the line array and printing the page
when 20 labels have been read.

The BEGIN rule simply sets RS to the empty string, so that awk splits records at blank
lines (see Section 4.1 [How Input Is Split into Records], page 61). It sets MAXLINES to 100,
because 100 is the maximum number of lines on the page (20 -5 = 100).

Most of the work is done in the printpage() function. The label lines are stored
sequentially in the line array. But they have to print horizontally: 1line[1] next to
line[6], 1ine[2] next to 1line[7], and so on. Two loops accomplish this. The outer loop,
controlled by i, steps through every 10 lines of data; this is each row of labels. The inner
loop, controlled by j, goes through the lines within the row. As j goes from 0 to 4, ‘i+j’
is the jth line in the row, and ‘i+j+5’ is the entry next to it. The output ends up looking
something like this:

line 1 line 6
line 2 line 7
line 3 line 8
line 4 line 9
line 5 line 10

The printf format string ‘%-41s’ left-aligns the data and prints it within a fixed-width
field.

As a final note, an extra blank line is printed at lines 21 and 61, to keep the output
lined up on the labels. This is dependent on the particular brand of labels in use when the
program was written. You will also note that there are two blank lines at the top and two
blank lines at the bottom.

The END rule arranges to flush the final page of labels; there may not have been an even
multiple of 20 labels in the data:

labels.awk --- print mailing labels

Each label is 5 lines of data that may have blank lines.
The label sheets have 2 blank lines at the top and 2 at
the bottom.

BEGIN {RS = "" ; MAXLINES = 100 }
function printpage(i, j)
{
if (Nlines <= 0)
return
printf "\n\n" # header

for (i = 1; i <= Nlines; i += 10) {
if (i == 21 || 1 == 61)
print nn

292 GAWK: Effective AWK Programming

for (j =0; j <5; j++) {
if (i + j > MAXLINES)

break
printf " %-41s %s\n", line[i+j], line[i+j+5]
}
print ""
}
printf "\n\n" # footer

delete line

}
main rule
{
if (Count >= 20) {
printpage ()
Count = 0
Nlines = 0
}
n = split($0, a, "\n")
for (i = 1; i <= n; i++)
line[++Nlines] = ali]
for (; i <= 5; i++)
line[++Nlines] = ""
Count++
}
END {
printpage ()
}

11.3.5 Generating Word-Usage Counts

When working with large amounts of text, it can be interesting to know how often different
words appear. For example, an author may overuse certain words, in which case he or she
might wish to find synonyms to substitute for words that appear too often. This subsection

develops a program for counting words and presenting the frequency information in a useful
format.

At first glance, a program like this would seem to do the job:
wordfreq-first-try.awk -—— print list of word frequencies
{

for (i = 1; i <= NF; i++)
freq[$il++

Chapter 11: Practical awk Programs 293

END {
for (word in freq)
printf "%s\t%d\n", word, freql[word]
}

The program relies on awk’s default field-splitting mechanism to break each line up into
“words” and uses an associative array named freq, indexed by each word, to count the
number of times the word occurs. In the END rule, it prints the counts.

This program has several problems that prevent it from being useful on real text files:

e The awk language considers upper- and lowercase characters to be distinct. Therefore,
“bartender” and “Bartender” are not treated as the same word. This is undesirable,
because words are capitalized if they begin sentences in normal text, and a frequency
analyzer should not be sensitive to capitalization.

e Words are detected using the awk convention that fields are separated just by white-
space. Other characters in the input (except newlines) don’t have any special meaning
to awk. This means that punctuation characters count as part of words.

e The output does not come out in any useful order. You’re more likely to be interested in
which words occur most frequently or in having an alphabetized table of how frequently
each word occurs.

The first problem can be solved by using tolower () to remove case distinctions. The
second problem can be solved by using gsub() to remove punctuation characters. Finally,
we solve the third problem by using the system sort utility to process the output of the
awk script. Here is the new version of the program:

wordfreq.awk ——— print list of word frequencies

{
$0 = tolower ($0) # remove case distinctions
remove punctuation
gsub(/["[:alnum:]_[:blank:]1]1/, "", $0)
for (i = 1; i <= NF; i++)

freq[$i]++
}
END {
for (word in freq)
printf "%s\t%d\n", word, freql[word]
}

The regexp /[~ [:alnum:]_[:blank:]]/ might have been written /[[:punct:1]/, but
then underscores would also be removed, and we want to keep them.

Assuming we have saved this program in a file named wordfreq.awk, and that the data
is in filel, the following pipeline:

awk -f wordfreq.awk filel | sort -k 2nr
produces a table of the words appearing in filel in order of decreasing frequency.

The awk program suitably massages the data and produces a word frequency table, which
is not ordered. The awk script’s output is then sorted by the sort utility and printed on
the screen.

294 GAWK: Effective AWK Programming

The options given to sort specify a sort that uses the second field of each input line
(skipping one field), that the sort keys should be treated as numeric quantities (otherwise
‘15’ would come before ‘5’), and that the sorting should be done in descending (reverse)
order.

The sort could even be done from within the program, by changing the END action to:

END {
sort = "sort -k 2nr"
for (word in freq)
printf "%s\t%d\n", word, freqlword] | sort
close(sort)

3

This way of sorting must be used on systems that do not have true pipes at the command-
line (or batch-file) level. See the general operating system documentation for more infor-
mation on how to use the sort program.

11.3.6 Removing Duplicates from Unsorted Text

The uniq program (see Section 11.2.6 [Printing Nonduplicated Lines of Text|, page 279)
removes duplicate lines from sorted data.

Suppose, however, you need to remove duplicate lines from a data file but that you want
to preserve the order the lines are in. A good example of this might be a shell history file.
The history file keeps a copy of all the commands you have entered, and it is not unusual
to repeat a command several times in a row. Occasionally you might want to compact
the history by removing duplicate entries. Yet it is desirable to maintain the order of the
original commands.

This simple program does the job. It uses two arrays. The data array is indexed by
the text of each line. For each line, data[$0] is incremented. If a particular line has not
been seen before, then data[$0] is zero. In this case, the text of the line is stored in
lines[count]. Each element of lines is a unique command, and the indices of lines
indicate the order in which those lines are encountered. The END rule simply prints out the
lines, in order:

histsort.awk —--- compact a shell history file
Thanks to Byron Rakitzis for the general idea

{
if (data[$0]++ == 0)
lines[++count] = $0
}
END {
for (i = 1; i <= count; i++)
print lines[il
}

This program also provides a foundation for generating other useful information. For
example, using the following print statement in the END rule indicates how often a particular
command is used:

Chapter 11: Practical awk Programs 295

print data[lines[i]], lines[il

This works because data[$0] is incremented each time a line is seen.

11.3.7 Extracting Programs from Texinfo Source Files

Both this chapter and the previous chapter (Chapter 10 [A Library of awk Functions],
page 231) present a large number of awk programs. If you want to experiment with these
programs, it is tedious to type them in by hand. Here we present a program that can extract
parts of a Texinfo input file into separate files.

This book is written in Texinfo, the GNU Project’s document formatting language. A
single Texinfo source file can be used to produce both printed documentation, with TEX,
and online documentation. (Texinfo is fully documented in the book Texinfo—The GNU
Documentation Format, available from the Free Software Foundation, and also available
online.)

For our purposes, it is enough to know three things about Texinfo input files:

e The “at” symbol (‘@) is special in Texinfo, much as the backslash (‘\’) is in C or awk.
Literal ‘@’ symbols are represented in Texinfo source files as ‘@@’.

e Comments start with either ‘@c’ or ‘@comment’. The file-extraction program works by
using special comments that start at the beginning of a line.

e Lines containing ‘@group’ and ‘@end group’ commands bracket example text that
should not be split across a page boundary. (Unfortunately, TEX isn’t always smart
enough to do things exactly right, so we have to give it some help.)

The following program, extract.awk, reads through a Texinfo source file and does two
things, based on the special comments. Upon seeing ‘@c system ...’, it runs a com-
mand, by extracting the command text from the control line and passing it on to the
system() function (see Section 9.1.4 [Input/Output Functions|, page 199). Upon seeing
‘@c file filename’, each subsequent line is sent to the file filename, until ‘@c endfile’
is encountered. The rules in extract.awk match either ‘@c’ or ‘@comment’ by letting the
‘omment’ part be optional. Lines containing ‘@group’ and ‘@end group’ are simply removed.
extract.awk uses the join() library function (see Section 10.2.6 [Merging an Array into
a String|, page 239).

The example programs in the online Texinfo source for GAWK: Effective AWK Pro-
gramming (gawktexi.in) have all been bracketed inside ‘file’ and ‘endfile’ lines. The
gawk distribution uses a copy of extract.awk to extract the sample programs and install
many of them in a standard directory where gawk can find them. The Texinfo file looks
something like this:

This program has a @code{BEGIN} rule
that prints a nice message:

Q@example

Oc file examples/messages.awk
BEGIN ©{ print "Don’t panic!" @}
Q@c endfile

@end example

https://www.gnu.org/software/texinfo/
https://www.gnu.org/software/texinfo/manual/texinfo/

296 GAWK: Effective AWK Programming

It also prints some final advice:

Q@example

Oc file examples/messages.awk

END @{ print "Always avoid bored archaeologists!" @}
Q@c endfile

Q@end example

extract.awk begins by setting IGNORECASE to one, so that mixed upper- and lowercase
letters in the directives won’t matter.

The first rule handles calling system(), checking that a command is given (NF is at least
three) and also checking that the command exits with a zero exit status, signifying OK:

extract.awk -—- extract files and run programs from Texinfo files
BEGIN { IGNORECASE =1 }

/"@c(omment)?[\t]l+system/ {
if (NF < 3) {

e = ("extract: " FILENAME ":" FNR)
e = (e ": badly formed ‘system’ line")
print e > "/dev/stderr"
next
}
$1 = nn
$2 = v

stat = system($0)

if (stat !'= 0) {
e = ("extract: " FILENAME ":" FNR)
e = (e ": warning: system returned " stat)
print e > "/dev/stderr"

}
The variable e is used so that the rule fits nicely on the page.

The second rule handles moving data into files. It verifies that a file name is given in the
directive. If the file named is not the current file, then the current file is closed. Keeping
the current file open until a new file is encountered allows the use of the ‘>’ redirection for
printing the contents, keeping open-file management simple.

The for loop does the work. It reads lines using getline (see Section 4.10 [Explicit
Input with getline], page 81). For an unexpected end-of-file, it calls the unexpected_eof ()
function. If the line is an “endfile” line, then it breaks out of the loop. If the line is an
‘@group’ or ‘@end group’ line, then it ignores it and goes on to the next line. Similarly,
comments within examples are also ignored.

Most of the work is in the following few lines. If the line has no ‘@’ symbols, the program
can print it directly. Otherwise, each leading ‘@ must be stripped off. To remove the ‘@’

Chapter 11: Practical awk Programs 297

symbols, the line is split into separate elements of the array a, using the split() function
(see Section 9.1.3 [String-Manipulation Functions], page 187). The ‘@ symbol is used as the
separator character. Each element of a that is empty indicates two successive ‘@’ symbols
in the original line. For each two empty elements (‘@@" in the original file), we have to add

a single ‘@’ symbol back in.

When the processing of the array is finished, join() is called with the value of SUBSEP
(see Section 8.5 [Multidimensional Arrays|, page 179), to rejoin the pieces back into a single
line. That line is then printed to the output file:

/"@c(omment)?[\t]l+file/ {
if (NF '= 3) {
e = ("extract: " FILENAME ":" FNR ": badly formed ‘file’ line")
print e > "/dev/stderr"
next
}
if ($3 '= curfile) {
if (curfile != "")
close(curfile)
curfile = $3

for (;;) {
if ((getline line) <= 0)
unexpected_eof ()
if (line ~ /~@c(omment)?[\t]+endfile/)
break
else if (line ~ /~@(end[\t]l+)7?group/)
continue
else if (line ~ /~@c(omment+)?[\t]+/)
continue
if (index(line, "@") == 0) {
print line > curfile
continue
}
n = split(line, a, "@")
if a[1] == "", means leading Q,
don’t add one back in.
for (i = 2; i <= n; i++) {
if (ali] == "") { # was an @@
a[i] = "@"
if (ali+1] == "")
i++
}
}
print join(a, 1, n, SUBSEP) > curfile

298 GAWK: Effective AWK Programming

An important thing to note is the use of the >’ redirection. Output done with >’
only opens the file once; it stays open and subsequent output is appended to the file (see
Section 5.6 [Redirecting Output of print and printf]|, page 101). This makes it easy to
mix program text and explanatory prose for the same sample source file (as has been done
here!) without any hassle. The file is only closed when a new data file name is encountered
or at the end of the input file.

Finally, the function unexpected_eof () prints an appropriate error message and then
exits. The END rule handles the final cleanup, closing the open file:

function unexpected_eof ()

{
printf("extract: Y%s:%d: unexpected EOF or error\n",
FILENAME, FNR) > "/dev/stderr"
exit 1
}
END {
if (curfile)
close(curfile)
}

11.3.8 A Simple Stream Editor

The sed utility is a stream editor, a program that reads a stream of data, makes changes
to it, and passes it on. It is often used to make global changes to a large file or to a stream
of data generated by a pipeline of commands. Although sed is a complicated program in
its own right, its most common use is to perform global substitutions in the middle of a
pipeline:

commandl < orig.data | sed ’s/old/new/g’ | command2 > result

Here, ‘s/0ld/new/g’ tells sed to look for the regexp ‘o1ld’ on each input line and globally
replace it with the text ‘new’ (i.e., all the occurrences on a line). This is similar to awk’s
gsub() function (see Section 9.1.3 [String-Manipulation Functions|, page 187).

The following program, awksed.awk, accepts at least two command-line arguments: the
pattern to look for and the text to replace it with. Any additional arguments are treated
as data file names to process. If none are provided, the standard input is used:

awksed.awk --- do s/foo/bar/g using just print
Thanks to Michael Brennan for the idea

function usage()

{
print "usage: awksed pat repl [files...]" > "/dev/stderr"
exit 1

}

BEGIN {

validate arguments
if (ARGC < 3)

Chapter 11: Practical awk Programs 299

usage ()

RS = ARGV[1]
ORS = ARGV[2]

don’t use arguments as files
ARGV[1] = ARGV[2] = ""

}
look ma, no hands!
{
if (RT == "")
printf "%s", $0
else
print
}

The program relies on gawk’s ability to have RS be a regexp, as well as on the setting of
RT to the actual text that terminates the record (see Section 4.1 [How Input Is Split into
Records], page 61).

The idea is to have RS be the pattern to look for. gawk automatically sets $0 to the text
between matches of the pattern. This is text that we want to keep, unmodified. Then, by
setting ORS to the replacement text, a simple print statement outputs the text we want to
keep, followed by the replacement text.

There is one wrinkle to this scheme, which is what to do if the last record doesn’t end
with text that matches RS. Using a print statement unconditionally prints the replacement
text, which is not correct. However, if the file did not end in text that matches RS, RT is
set to the null string. In this case, we can print $0 using printf (see Section 5.5 [Using
printf Statements for Fancier Printing], page 96).

The BEGIN rule handles the setup, checking for the right number of arguments and calling
usage () if there is a problem. Then it sets RS and ORS from the command-line arguments
and sets ARGV[1] and ARGV [2] to the null string, so that they are not treated as file names
(see Section 7.5.3 [Using ARGC and ARGV], page 166).

The usage () function prints an error message and exits. Finally, the single rule handles
the printing scheme outlined earlier, using print or printf as appropriate, depending upon
the value of RT.

11.3.9 An Easy Way to Use Library Functions

In Section 2.7 [Including Other Files into Your Program|, page 42, we saw how gawk provides
a built-in file-inclusion capability. However, this is a gawk extension. This section provides
the motivation for making file inclusion available for standard awk, and shows how to do it
using a combination of shell and awk programming.

Using library functions in awk can be very beneficial. It encourages code reuse and the
writing of general functions. Programs are smaller and therefore clearer. However, using
library functions is only easy when writing awk programs; it is painful when running them,
requiring multiple —-f options. If gawk is unavailable, then so too is the AWKPATH environ-
ment variable and the ability to put awk functions into a library directory (see Section 2.2

300 GAWK: Effective AWK Programming

[Command-Line Options], page 31). It would be nice to be able to write programs in the
following manner:

library functions
@include getopt.awk
@include join.awk

main program
BEGIN {
while ((c = getopt(ARGC, ARGV, "a:b:cde")) != -1)

}

The following program, igawk.sh, provides this service. It simulates gawk’s searching
of the AWKPATH variable and also allows nested includes (i.e., a file that is included with
@include can contain further @include statements). igawk makes an effort to only include
files once, so that nested includes don’t accidentally include a library function twice.

igawk should behave just like gawk externally. This means it should accept all of gawk’s
command-line arguments, including the ability to have multiple source files specified via -
and the ability to mix command-line and library source files.

The program is written using the POSIX Shell (sh) command language.® It works as
follows:

1. Loop through the arguments, saving anything that doesn’t represent awk source code
for later, when the expanded program is run.

2. For any arguments that do represent awk text, put the arguments into a shell variable
that will be expanded. There are two cases:

a. Literal text, provided with —e or ——source. This text is just appended directly.

b. Source file names, provided with -f. We use a neat trick and append ‘@include
filename’ to the shell variable’s contents. Because the file-inclusion program works
the way gawk does, this gets the text of the file included in the program at the
correct point.

3. Run an awk program (naturally) over the shell variable’s contents to expand @include
statements. The expanded program is placed in a second shell variable.

4. Run the expanded program with gawk and any other original command-line arguments
that the user supplied (such as the data file names).

This program uses shell variables extensively: for storing command-line arguments and
the text of the awk program that will expand the user’s program, for the user’s original
program, and for the expanded program. Doing so removes some potential problems that
might arise were we to use temporary files instead, at the cost of making the script somewhat
more complicated.

The initial part of the program turns on shell tracing if the first argument is ‘debug’.

6 Fully explaining the sh language is beyond the scope of this book. We provide some minimal explanations,
but see a good shell programming book if you wish to understand things in more depth.

Chapter 11: Practical awk Programs 301

The next part loops through all the command-line arguments. There are several cases
of interest:

- This ends the arguments to igawk. Anything else should be passed on to the
user’s awk program without being evaluated.

-W This indicates that the next option is specific to gawk. To make argument
processing easier, the -W is appended to the front of the remaining arguments
and the loop continues. (This is an sh programming trick. Don’t worry about
it if you are not familiar with sh.)

-v, -F These are saved and passed on to gawk.

-f, —-file, --file=, -Wfile=
The file name is appended to the shell variable program with an @include
statement. The expr utility is used to remove the leading option part of the
argument (e.g., ‘-—file="). (Typical sh usage would be to use the echo and sed
utilities to do this work. Unfortunately, some versions of echo evaluate escape
sequences in their arguments, possibly mangling the program text. Using expr
avoids this problem.)

--source, —-source=, -Wsource=
The source text is appended to program.

--version, -Wversion
igawk prints its version number, runs ‘gawk --version’ to get the gawk version
information, and then exits.

If none of the -f, --file, -Wfile, -—source, or ~-Wsource arguments are supplied, then
the first nonoption argument should be the awk program. If there are no command-line
arguments left, igawk prints an error message and exits. Otherwise, the first argument
is appended to program. In any case, after the arguments have been processed, the shell
variable program contains the complete text of the original awk program.

The program is as follows:

#! /bin/sh
igawk --- like gawk but do @include processing

if ["$1" = debug]
then

set -x

shift
fi

A literal newline, so that program text is formatted correctly

n=’
)

Initialize variables to empty
program=
opts=

302 GAWK: Effective AWK Programming

while [$# -ne 0] # loop over arguments

do

case $1 in

--) shift
break ;;
-W) shift
The ${x7’message here’} construct prints a
diagnostic if $x is the null string
set -- -W"${@?’missing operand’}"
continue ;;
-[vF]) opts="$opts $1 ’${27’missing operand’}’"
shift ;;
-[vF]l*) opts="$opts ’$1°" ;;
-f) program="$program$n@include ${27’missing operand’}"
shift ;;
—-fx*) f=$(expr "$1" : *-f\(.*\)’)
program="$program$n@include $f" ;;
-[W-1file=x%)
f=$(expr "$1" : -.file=\(.*\)’)
program="$program$n@include $f" ;;
-[w-1file)

program="$program$n@include ${27’missing operand’}"
shift ;;

- [W-]source=x)

t=$(expr "$1" : ’-.source=\(.*\)’)
program="$program$n$t" ;;

- [W-]source)

program="$program$n${27 ’missing operand’}"
shift ;;

-[W-]version)

echo igawk: version 3.0 1>&2
gawk --version
exit 0 ;;

-[W-1*) opts="$opts ’$1°" ;;

Chapter 11: Practical awk Programs 303

*) break ;;
esac
shift

done

if [-z "$program"]

then
program=${17’missing program’}
shift

fi

At this point, ‘program’ has the program.

The awk program to process @include directives is stored in the shell variable expand_
prog. Doing this keeps the shell script readable. The awk program reads through the user’s
program, one line at a time, using getline (see Section 4.10 [Explicit Input with getline],
page 81). The input file names and @include statements are managed using a stack. As
each @include is encountered, the current file name is “pushed” onto the stack and the file
named in the @include directive becomes the current file name. As each file is finished, the
stack is “popped,” and the previous input file becomes the current input file again. The
process is started by making the original file the first one on the stack.

The pathto() function does the work of finding the full path to a file. It simulates
gawk’s behavior when searching the AWKPATH environment variable (see Section 2.5.1 [The
AWKPATH Environment Variable|, page 39). If a file name has a ‘/’ in it, no path search is
done. Similarly, if the file name is "-", then that string is used as-is. Otherwise, the file
name is concatenated with the name of each directory in the path, and an attempt is made
to open the generated file name. The only way to test if a file can be read in awk is to go
ahead and try to read it with getline; this is what pathto() does.” If the file can be read,

it is closed and the file name is returned:
expand_prog=’

function pathto(file, i, t, junk)

{
if (index(file, "/") '= 0)
return file

if (file == "-")
return file

for (i = 1; i <= ndirs; i++) {
t = (pathlist[i] "/" file)

" On some very old versions of awk, the test ‘getline junk < t’ can loop forever if the file exists but is
empty.

304 GAWK: Effective AWK Programming

if ((getline junk < t) > 0) {

found it
close(t)
return t
}
}
return ""

¥

The main program is contained inside one BEGIN rule. The first thing it does is set up

]

the pathlist array that pathto() uses. After splitting the path on ‘:’, null elements are

replaced with ".", which represents the current directory:
BEGIN {

path = ENVIRON["AWKPATH"]
ndirs = split(path, pathlist, ":")
for (i = 1; i <= ndirs; i++) {

if (pathlist[i] == "")

pathlist[i] = "."

}

The stack is initialized with ARGV[1], which will be "/dev/stdin". The main loop
comes next. Input lines are read in succession. Lines that do not start with @include are
printed verbatim. If the line does start with @include, the file name is in $2. pathto() is
called to generate the full path. If it cannot, then the program prints an error message and
continues.

The next thing to check is if the file is included already. The processed array is indexed
by the full file name of each included file and it tracks this information for us. If the file is
seen again, a warning message is printed. Otherwise, the new file name is pushed onto the
stack and processing continues.

Finally, when getline encounters the end of the input file, the file is closed and the
stack is popped. When stackptr is less than zero, the program is done:

stackptr = 0
input [stackptr] = ARGV[1] # ARGV[1] is first file

for (; stackptr >= 0; stackptr—-) {
while ((getline < input[stackptr]) > 0) {

if (tolower($1) != "@include") {
print
continue

}

fpath = pathto($2)

if (fpath == "") {
printf ("igawk: %s:%d: cannot find %s\n",

input [stackptr], FNR, $2) > "/dev/stderr"

continue

}

if (! (fpath in processed)) {

Chapter 11: Practical awk Programs 305

processed[fpath] = input[stackptr]
input [++stackptr] = fpath # push onto stack
} else
print $2, "included in", input[stackptr],
"already included in",
processed[fpath] > "/dev/stderr"

}
close(input [stackptr])
}

}> # close quote ends ‘expand_prog’ variable
processed_program=$(gawk -- "$expand_prog" /dev/stdin << EOF
$program
EQF
)

The shell construct ‘command << marker’ is called a here document. Everything in the
shell script up to the marker is fed to command as input. The shell processes the contents
of the here document for variable and command substitution (and possibly other things as
well, depending upon the shell).

The shell construct ‘$(...)" is called command substitution. The output of the com-
mand inside the parentheses is substituted into the command line. Because the result is
used in a variable assignment, it is saved as a single string, even if the results contain
whitespace.

The expanded program is saved in the variable processed_program. It’s done in these
steps:

1. Run gawk with the @include-processing program (the value of the expand_prog shell
variable) reading standard input.

2. Standard input is the contents of the user’s program, from the shell variable program.
Feed its contents to gawk via a here document.

3. Save the results of this processing in the shell variable processed_program by using
command substitution.
The last step is to call gawk with the expanded program, along with the original options
and command-line arguments that the user supplied:
eval gawk $opts -- ’"$processed_program"’ ’"$@"’
The eval command is a shell construct that reruns the shell’s parsing process. This
keeps things properly quoted.
This version of igawk represents the fifth version of this program. There are four key
simplifications that make the program work better:
e Using @include even for the files named with -f makes building the initial collected
awk program much simpler; all the @include processing can be done once.
e Not trying to save the line read with getline in the pathto() function when testing
for the file’s accessibility for use with the main program simplifies things considerably.
e Using a getline loop in the BEGIN rule does it all in one place. It is not necessary to
call out to a separate loop for processing nested @include statements.

306 GAWK: Effective AWK Programming

e Instead of saving the expanded program in a temporary file, putting it in a shell variable
avoids some potential security problems. This has the disadvantage that the script relies
upon more features of the sh language, making it harder to follow for those who aren’t
familiar with sh.

Also, this program illustrates that it is often worthwhile to combine sh and awk pro-
gramming together. You can usually accomplish quite a lot, without having to resort to
low-level programming in C or C++, and it is frequently easier to do certain kinds of string
and argument manipulation using the shell than it is in awk.

Finally, igawk shows that it is not always necessary to add new features to a program;
they can often be layered on top.®

11.3.10 Finding Anagrams from a Dictionary

An interesting programming challenge is to search for anagrams in a word list (such as
/usr/share/dict/words on many GNU/Linux systems). One word is an anagram of an-
other if both words contain the same letters (e.g., “babbling” and “blabbing”).

Column 2, Problem C, of Jon Bentley’s Programming Pearls, Second Edition, presents
an elegant algorithm. The idea is to give words that are anagrams a common signature,
sort all the words together by their signatures, and then print them. Dr. Bentley observes
that taking the letters in each word and sorting them produces those common signatures.

The following program uses arrays of arrays to bring together words with the same
signature and array sorting to print the words in sorted order:

anagram.awk —-—— An implementation of the anagram-finding algorithm

from Jon Bentley’s "Programming Pearls," 2nd edition.
Addison Wesley, 2000, ISBN 0-201-65788-0.

Column 2, Problem C, section 2.8, pp 18-20.

/’s$/ { next } # Skip possessives

The program starts with a header, and then a rule to skip possessives in the dictionary
file. The next rule builds up the data structure. The first dimension of the array is indexed
by the signature; the second dimension is the word itself:

{
key = word2key($1) # Build signature
datalkey]l [$1] = $1 # Store word with signature
}

The word2key () function creates the signature. It splits the word apart into individual
letters, sorts the letters, and then joins them back together:

word2key --- split word apart into letters, sort, and join back together
function word2key(word, a, i, n, result)
{

n = split(word, a, "")
asort(a)

8 gawk does @include processing itself in order to support the use of awk programs as Web CGI scripts.

Chapter 11: Practical awk Programs 307

for (i = 1; i <= n; i++)
result = result ali]

return result
}

Finally, the END rule traverses the array and prints out the anagram lists. It sends
the output to the system sort command because otherwise the anagrams would appear in
arbitrary order:

END {
sort = "sort"
for (key in data) {
Sort words with same key
nwords = asorti(datalkey], words)
if (nwords == 1)
continue

And print. Minor glitch: trailing space at end of each line
for (j = 1; j <= nwords; j++)
printf("%s ", words[jl) | sort
print "" | sort
}

close(sort)
}

Here is some partial output when the program is run:

$ gawk -f anagram.awk /usr/share/dict/words | grep ’"b’

babbled blabbed

babbler blabber brabble
babblers blabbers brabbles
babbling blabbing

babbly blabby

babel bable

babels beslab

babery yabber

11.3.11 And Now for Something Completely Different

The following program was written by Davide Brini and is published on his website. It serves
as his signature in the Usenet group comp.lang.awk. He supplies the following copyright
terms:

Copyright (©) 2008 Davide Brini

Copying and distribution of the code published in this page, with or without

modification, are permitted in any medium without royalty provided the copy-

right notice and this notice are preserved.

Here is the program:

http://backreference.org/2011/02/03/obfuscated-awk/

308 GAWK: Effective AWK Programming

awk ’BEGIN{Q="~"~"~";o="=="=="==" o+=40;x=0""0;while (X++<=x+0+0) c=c"%c";
printf c, (x-0)*(x-0) ,x*(x-0)-0,x*(x-0)+x-0-0,+x* (x-0) -x+0,X* (0*0+0) +x-0,
X* (X-x)-o*0, (x+X) *o*o+0,x* (X-x) -0-0,x-0+ (0+0o+X+x) * (0+0) , X*X-X* (x-0) -x+0,
0+X* (o*x (0+0)+0) , +x+0+X*0,x* (x-0) , (0+X+x) *o*0- (x-0-0) ,0+(X-x) * (X+0) ,x-0}’

We leave it to you to determine what the program does. (If you are truly desperate to

understand it, see Chris Johansen’s explanation, which is embedded in the Texinfo source
file for this book.)

11.4 Summary

The programs provided in this chapter continue on the theme that reading programs
is an excellent way to learn Good Programming.

Using ‘#!” to make awk programs directly runnable makes them easier to use. Other-
wise, invoke the program using ‘awk -f ...’

Reimplementing standard POSIX programs in awk is a pleasant exercise; awk’s expres-
sive power lets you write such programs in relatively few lines of code, yet they are
functionally complete and usable.

One of standard awk’s weaknesses is working with individual characters. The ability
to use split() with the empty string as the separator can considerably simplify such
tasks.

The examples here demonstrate the usefulness of the library functions from Chapter 10
[A Library of awk Functions], page 231, for a number of real (if small) programs.

Besides reinventing POSIX wheels, other programs solved a selection of interesting
problems, such as finding duplicate words in text, printing mailing labels, and finding
anagrams.

11.5 Exercises

1.

4.

o

Rewrite cut . awk (see Section 11.2.1 [Cutting Out Fields and Columns|, page 265) using
split() with "" as the separator.

In Section 11.2.2 [Searching for Regular Expressions in Files], page 270, we mentioned
that ‘egrep -i’ could be simulated in versions of awk without IGNORECASE by using
tolower () on the line and the pattern. In a footnote there, we also mentioned that
this solution has a bug: the translated line is output, and not the original one. Fix this
problem.

The POSIX version of id takes options that control which information is printed.
Modify the awk version (see Section 11.2.3 [Printing Out User Information|, page 274)
to accept the same arguments and perform in the same way.

The split.awk program (see Section 11.2.4 [Splitting a Large File into Pieces],
page 276) assumes that letters are contiguous in the character set, which isn’t true for
EBCDIC systems. Fix this problem. (Hint: Consider a different way to work through
the alphabet, without relying on ord() and chr().)

In uniq.awk (see Section 11.2.6 [Printing Nonduplicated Lines of Text], page 279, the
logic for choosing which lines to print represents a state machine, which is “a device
that can be in one of a set number of stable conditions depending on its previous

10.
11.

12.

Chapter 11: Practical awk Programs 309

condition and on the present values of its inputs.”® Brian Kernighan suggests that “an
alternative approach to state machines is to just read the input into an array, then use
indexing. It’s almost always easier code, and for most inputs where you would use this,
just as fast.” Rewrite the logic to follow this suggestion.

Why can’t the wc.awk program (see Section 11.2.7 [Counting Things|, page 283) just
use the value of FNR in endfile()? Hint: Examine the code in Section 10.3.1 [Noting
Data file Boundaries|, page 243.

Manipulation of individual characters in the translate program (see Section 11.3.3
[Transliterating Characters|, page 288) is painful using standard awk functions. Given
that gawk can split strings into individual characters using "" as the separator, how
might you use this feature to simplify the program?

The extract.awk program (see Section 11.3.7 [Extracting Programs from Texinfo
Source Files|, page 295) was written before gawk had the gensub() function. Use
it to simplify the code.

Compare the performance of the awksed.awk program (see Section 11.3.8 [A Simple
Stream Editor], page 298) with the more straightforward:

BEGIN {
pat = ARGV[1]
repl = ARGV[2]
ARGV[1] = ARGV[2] = "

{ gsub(pat, repl); print }
What are the advantages and disadvantages of awksed.awk versus the real sed utility?

In Section 11.3.9 [An Easy Way to Use Library Functions|, page 299, we mentioned that
not trying to save the line read with getline in the pathto() function when testing
for the file’s accessibility for use with the main program simplifies things considerably.
What problem does this engender though?

As an additional example of the idea that it is not always necessary to add new features
to a program, consider the idea of having two files in a directory in the search path:

default.awk
This file contains a set of default library functions, such as getopt () and
assert ().

site.awk This file contains library functions that are specific to a site or installation;
i.e., locally developed functions. Having a separate file allows default.awk
to change with new gawk releases, without requiring the system adminis-
trator to update it each time by adding the local functions.

One user suggested that gawk be modified to automatically read these files upon
startup. Instead, it would be very simple to modify igawk to do this. Since igawk
can process nested @include directives, default.awk could simply contain @include
statements for the desired library functions. Make this change.

9 This is the definition returned from entering define: state machine into Google.

310 GAWK: Effective AWK Programming

13. Modify anagram.awk (see Section 11.3.10 [Finding Anagrams from a Dictionary],
page 306), to avoid the use of the external sort utility.

Part 111:
Moving Beyond Standard awk with gawk

Chapter 12: Advanced Features of gawk 313

12 Advanced Features of gawk

Write documentation as if whoever reads it is a violent psychopath who knows
where you live.
—Steve English, as quoted by Peter Langston

This chapter discusses advanced features in gawk. It’s a bit of a “grab bag” of items
that are otherwise unrelated to each other. First, we look at a command-line option that
allows gawk to recognize nondecimal numbers in input data, not just in awk programs. Then,
gawk’s special features for sorting arrays are presented. Next, two-way [/O, discussed briefly
in earlier parts of this book, is described in full detail, along with the basics of TCP/IP
networking. Finally, we see how gawk can profile an awk program, making it possible to
tune it for performance.

Additional advanced features are discussed in separate chapters of their own:

e Chapter 13 [Internationalization with gawk], page 329, discusses how to internationalize
your awk programs, so that they can speak multiple national languages.

e Chapter 14 [Debugging awk Programs]|, page 339, describes gawk’s built-in command-
line debugger for debugging awk programs.

e Chapter 15 [Arithmetic and Arbitrary-Precision Arithmetic with gawk], page 355, de-
scribes how you can use gawk to perform arbitrary-precision arithmetic.

e Chapter 16 [Writing Extensions for gawk]|, page 369, discusses the ability to dynamically
add new built-in functions to gawk.

12.1 Allowing Nondecimal Input Data

If you run gawk with the ~-non-decimal-data option, you can have nondecimal values in
your input data:

$ echo 0123 123 0x123 |
> gawk --non-decimal-data ’{ printf "Jd, %d, #d\n", $1, $2, $3 }’
-4 83, 123, 291
For this feature to work, write your program so that gawk treats your data as numeric:

$ echo 0123 123 0x123 | gawk ’{ print $1, $2, $3 }’
-4 0123 123 0x123

The print statement treats its expressions as strings. Although the fields can act as num-
bers when necessary, they are still strings, so print does not try to treat them numerically.
You need to add zero to a field to force it to be treated as a number. For example:

$ echo 0123 123 0x123 | gawk --non-decimal-data ’

> { print $1, $2, $3

> print $1 + 0, $2 + 0, $3 + 0 }’

4 0123 123 0x123

4 83 123 291

Because it is common to have decimal data with leading zeros, and because using this

facility could lead to surprising results, the default is to leave it disabled. If you want it,
you must explicitly request it.

CAUTION: Use of this option is not recommended. It can break old programs

very badly. Instead, use the strtonum() function to convert your data (see

314 GAWK: Effective AWK Programming

Section 9.1.3 [String-Manipulation Functions], page 187). This makes your
programs easier to write and easier to read, and leads to less surprising results.

This option may disappear in a future version of gawk.

12.2 Controlling Array Traversal and Array Sorting

gawk lets you control the order in which a ‘for (indx in array)’ loop traverses an array.

In addition, two built-in functions, asort () and asorti(), let you sort arrays based on
the array values and indices, respectively. These two functions also provide control over the
sorting criteria used to order the elements during sorting.

12.2.1 Controlling Array Traversal

By default, the order in which a ‘for (indx in array)’ loop scans an array is not defined;
it is generally based upon the internal implementation of arrays inside awk.

Often, though, it is desirable to be able to loop over the elements in a particular order
that you, the programmer, choose. gawk lets you do this.

Section 8.1.6 [Using Predefined Array Scanning Orders with gawk|, page 174, describes
how you can assign special, predefined values to PROCINFO["sorted_in"] in order to control
the order in which gawk traverses an array during a for loop.

In addition, the value of PROCINFO["sorted_in"] can be a function name.! This lets you
traverse an array based on any custom criterion. The array elements are ordered according
to the return value of this function. The comparison function should be defined with at
least four arguments:

function comp_func(il, v1, i2, v2)

{
compare elements 1 and 2 in some fashion
return < 0; 0; or > 0

}

Here, i1 and i2 are the indices, and vl and v2 are the corresponding values of the
two elements being compared. Either v1 or v2, or both, can be arrays if the array being
traversed contains subarrays as values. (See Section 8.6 [Arrays of Arrays|, page 181, for
more information about subarrays.) The three possible return values are interpreted as
follows:

comp_func(il, vi, i2, v2) <0
Index i1 comes before index i2 during loop traversal.

comp_func(il, vi, i2, v2) ==
Indices i1 and i2 come together, but the relative order with respect to each
other is undefined.

comp_func(il, vi, i2, v2) >0
Index i1 comes after index i2 during loop traversal.

Our first comparison function can be used to scan an array in numerical order of the
indices:

function cmp_num_idx(il, vi, i2, v2)

I Thisis why the predefined sorting orders start with an ‘@’ character, which cannot be part of an identifier.

Chapter 12: Advanced Features of gawk 315

numerical index comparison, ascending order
return (il - i2)

¥

Our second function traverses an array based on the string order of the element values
rather than by indices:

function cmp_str_val(il, vi, i2, v2)
{
string value comparison, ascending order
vi=v1 ""
v2 = vy2 ""
if (vl < v2)
return -1
return (vl != v2)

¥

The third comparison function makes all numbers, and numeric strings without any
leading or trailing spaces, come out first during loop traversal:

function cmp_num_str_val(il, v1, i2, v2, nl, n2)
{
numbers before string value comparison, ascending order
nl =vl +0
n2 =v2 + 0
if (n1 == v1)
return (n2 == v2) ? (n1 - n2) : -1
else if (n2 == v2)
return 1
return (vl < v2) 7 -1 : (vl !'= v2)

¥

Here is a main program to demonstrate how gawk behaves using each of the previous
functions:

BEGIN {
data["one"] = 10
data["two"] = 20
data[10] = "one"
data[100] = 100
data[20] = "two"

f[1] = "cmp_num_idx"
f[2] = "cmp_str_val"
f[3] = "cmp_num_str_val"

for (i = 1; i <= 3; i++) {
printf ("Sort function: %s\n", f[i])
PROCINFO["sorted_in"] = f[il
for (j in data)
printf ("\tdatal%s] = %s\n", j, dataljl)

316 GAWK: Effective AWK Programming

print nn

¥

Here are the results when the program is run:

$ gawk -f compdemo.awk
-1 Sort function: cmp_num_idx

datal[two] = 20
datalone] = 10
data[10] = one
data[20] = two
data[100] = 100
Sort function: cmp_str_val
datalone] = 10
data[100] = 100
datal[two] = 20

data[10] = one
data[20] = two

datalone] = 10
datal[two] = 20
datal[100] = 100
data[10] = one
data[20] = two

e e

Sort by numeric index

Both strings are numerically zero

Sort by element values as strings

String 100 is less than string 20

Sort function: cmp_num_str_val Sort all numeric values before all strings

Consider sorting the entries of a GNU/Linux system password file according to login
name. The following program sorts records by a specific field position and can be used for

this purpose:

passwd-sort.awk --- simple program to sort by field position
field position is specified by the global variable POS

function cmp_field(il, vi, i2, v2)

comparison by value, as string, and ascending order

{
return v1[P0S] < v2[P0S] ? -1 :
}
{
for (i = 1; i <= NF; i++)
a[NR][i] = 81
}
END {

(vi[P0OS] != v2[P0S])

PROCINFO["sorted_in"] = "cmp_field"

if (POS < 1 || POS > NF)
POS =1

Chapter 12: Advanced Features of gawk 317

for (i in a) {
for (j = 1; j <= NF; j++)
printf ("%s%c", alil[jl, j < NF ? ":" : "")
print ""

}

The first field in each entry of the password file is the user’s login name, and the fields
are separated by colons. Each record defines a subarray, with each field as an element in
the subarray. Running the program produces the following output:

$ gawk -v POS=1 -F: -f sort.awk /etc/passwd

- adm:x:3:4:adm:/var/adm:/sbin/nologin

-+ apache:x:48:48:Apache:/var/www:/sbin/nologin
- avahi:x:70:70:Avahi daemon:/:/sbin/nologin

The comparison should normally always return the same value when given a specific
pair of array elements as its arguments. If inconsistent results are returned, then the order
is undefined. This behavior can be exploited to introduce random order into otherwise
seemingly ordered data:

function cmp_randomize(il, v1, i2, v2)

{
random order (caution: this may never terminate!)
return (2 - 4 * rand())

}

As already mentioned, the order of the indices is arbitrary if two elements compare equal.
This is usually not a problem, but letting the tied elements come out in arbitrary order
can be an issue, especially when comparing item values. The partial ordering of the equal
elements may change the next time the array is traversed, if other elements are added to or
removed from the array. One way to resolve ties when comparing elements with otherwise
equal values is to include the indices in the comparison rules. Note that doing this may make
the loop traversal less efficient, so consider it only if necessary. The following comparison
functions force a deterministic order, and are based on the fact that the (string) indices of
two elements are never equal:

function cmp_numeric(il, vi, i2, v2)
{

numerical value (and index) comparison, descending order
return (vl !'= v2) 7 (v2 - v1) : (i2 - il)

function cmp_string(il, vi, i2, v2)

{
string value (and index) comparison, descending order
vl = vl il
v2 = v2 12

return (v1 > v2) ? -1 : (vl !'= v2)

318 GAWK: Effective AWK Programming

A custom comparison function can often simplify ordered loop traversal, and the sky is
really the limit when it comes to designing such a function.

When string comparisons are made during a sort, either for element values where one
or both aren’t numbers, or for element indices handled as strings, the value of IGNORECASE
(see Section 7.5 [Predefined Variables|, page 157) controls whether the comparisons treat
corresponding upper- and lowercase letters as equivalent or distinct.

Another point to keep in mind is that in the case of subarrays, the element values can
themselves be arrays; a production comparison function should use the isarray() function
(see Section 9.1.7 [Getting Type Information]|, page 210) to check for this, and choose a
defined sorting order for subarrays.

All sorting based on PROCINFO["sorted_in"] is disabled in POSIX mode, because the
PROCINFO array is not special in that case.

As a side note, sorting the array indices before traversing the array has been reported to
add a 15% to 20% overhead to the execution time of awk programs. For this reason, sorted
array traversal is not the default.

12.2.2 Sorting Array Values and Indices with gawk

In most awk implementations, sorting an array requires writing a sort () function. This can
be educational for exploring different sorting algorithms, but usually that’s not the point of
the program. gawk provides the built-in asort () and asorti() functions (see Section 9.1.3
[String-Manipulation Functions|, page 187) for sorting arrays. For example:

populate the array data
n = asort(data)
for (i = 1; i <= n; i++)
do something with datali]

After the call to asort (), the array data is indexed from 1 to some number n, the total
number of elements in data. (This count is asort()’s return value.) data[1] < data[2]
< datal[3], and so on. The default comparison is based on the type of the elements (see
Section 6.3.2 [Variable Typing and Comparison Expressions|, page 127). All numeric values
come before all string values, which in turn come before all subarrays.

An important side effect of calling asort () is that the array’s original indices are irre-
vocably lost. As this isn’t always desirable, asort () accepts a second argument:

populate the array source
n = asort(source, dest)
for (i = 1; i <= n; i++)
do something with dest[i]
In this case, gawk copies the source array into the dest array and then sorts dest,
destroying its indices. However, the source array is not affected.

Often, what’s needed is to sort on the values of the indices instead of the values of the
elements. To do that, use the asorti() function. The interface and behavior are identical

to that of asort (), except that the index values are used for sorting and become the values
of the result array:

{ source[$0] = some_func($0) }

Chapter 12: Advanced Features of gawk 319

END {
n = asorti(source, dest)
for (i = 1; i <= n; i++) {
Work with sorted indices directly:
do something with dest[il]

Access original array via sorted indices:
do something with source[dest[i]]

}

So far, so good. Now it starts to get interesting. Both asort() and asorti() accept
a third string argument to control comparison of array elements. When we introduced
asort () and asorti() in Section 9.1.3 [String-Manipulation Functions|, page 187, we ig-
nored this third argument; however, now is the time to describe how this argument affects
these two functions.

Basically, the third argument specifies how the array is to be sorted. There are two
possibilities. As with PROCINFO["sorted_in"], this argument may be one of the predefined
names that gawk provides (see Section 8.1.6 [Using Predefined Array Scanning Orders with
gawk|, page 174), or it may be the name of a user-defined function (see Section 12.2.1
[Controlling Array Traversal], page 314).

In the latter case, the function can compare elements in any way it chooses, taking into
account just the indices, just the values, or both. This is extremely powerful.

Once the array is sorted, asort() takes the walues in their final order and uses them
to fill in the result array, whereas asorti() takes the indices in their final order and uses
them to fill in the result array.

NOTE: Copying array indices and elements isn’t expensive in terms of mem-
ory. Internally, gawk maintains reference counts to data. For example, when
asort () copies the first array to the second one, there is only one copy of the
original array elements’ data, even though both arrays use the values.

Because IGNORECASE affects string comparisons, the value of IGNORECASE also affects
sorting for both asort () and asorti(). Note also that the locale’s sorting order does not
come into play; comparisons are based on character values only.?

The following example demonstrates the use of a comparison function with asort().
The comparison function, case_fold_compare (), maps both values to lowercase in order
to compare them ignoring case.

case_fold_compare --- compare as strings, ignoring case
function case_fold_compare(il, vi1, i2, v2, 1, r)
{

1 = tolower(vl)

r = tolower(v2)

2 This is true because locale-based comparison occurs only when in POSIX-compatibility mode, and be-
cause asort () and asorti() are gawk extensions, they are not available in that case.

320 GAWK: Effective AWK Programming

if (1 < 1)
return -1
else if (1 == r)
return O

else
return 1

}
And here is the test program for it:

Test program

BEGIN {
Letters = "abcdefghijklmnopqrstuvwxyz" \
"ABCDEFGHIJKLMNOPQRSTUVWXYZ"
split(Letters, data, "")

asort(data, result, "case_fold_compare")

j = length(result)
for (i = 1; i <= j; i++) {
printf ("%s", resultl[i])
if (1 % (j/2) == 0)
printf ("\n")
else
printf(" ")

}
When run, we get the following:

$ gawk -f case_fold_compare.awk
4 AaBbcCDdeEFfgGHRhiIJjkKI1ILMMD
4 nNOopPQQgqrRSstTulUVvwWXxyYz2Z

12.3 Two-Way Communications with Another Process

It is often useful to be able to send data to a separate program for processing and then read

the result. This can always be done with temporary files:

Write the data for processing
tempfile = ("mydata." PROCINFO["pid"])
while (not done with data)

print data | ("subprogram > " tempfile)
close("subprogram > " tempfile)

Read the results, remove tempfile when done

while ((getline newdata < tempfile) > 0)
process newdata appropriately

close(tempfile)

system("rm " tempfile)

Chapter 12: Advanced Features of gawk 321

This works, but not elegantly. Among other things, it requires that the program be run in
a directory that cannot be shared among users; for example, /tmp will not do, as another
user might happen to be using a temporary file with the same name.?

However, with gawk, it is possible to open a two-way pipe to another process. The second
process is termed a coprocess, as it runs in parallel with gawk. The two-way connection is
created using the ‘|& operator (borrowed from the Korn shell, ksh):*

do {
print data |& "subprogram"
"subprogram" |& getline results
} while (data left to process)
close("subprogram")

The first time an I/O operation is executed using the ‘|&’ operator, gawk creates a two-
way pipeline to a child process that runs the other program. Output created with print
or printf is written to the program’s standard input, and output from the program’s
standard output can be read by the gawk program using getline. As is the case with
processes started by ‘|’, the subprogram can be any program, or pipeline of programs, that
can be started by the shell.

There are some cautionary items to be aware of:

e As the code inside gawk currently stands, the coprocess’s standard error goes to the
same place that the parent gawk’s standard error goes. It is not possible to read the
child’s standard error separately.

e /0O buffering may be a problem. gawk automatically flushes all output down the pipe
to the coprocess. However, if the coprocess does not flush its output, gawk may hang
when doing a getline in order to read the coprocess’s results. This could lead to a
situation known as deadlock, where each process is waiting for the other one to do
something.

It is possible to close just one end of the two-way pipe to a coprocess, by supplying a
second argument to the close() function of either "to" or "from" (see Section 5.9 [Closing
Input and Output Redirections|, page 106). These strings tell gawk to close the end of the
pipe that sends data to the coprocess or the end that reads from it, respectively.

This is particularly necessary in order to use the system sort utility as part of a co-
process; sort must read all of its input data before it can produce any output. The sort
program does not receive an end-of-file indication until gawk closes the write end of the
pipe.

When you have finished writing data to the sort utility, you can close the "to" end of
the pipe, and then start reading sorted data via getline. For example:

BEGIN {
command = "LC_ALL=C sort"
n = split("abcdefghijklmnopqrstuvwxyz", a, "")

for (i =n; i > 0; i--)

3 Michael Brennan suggests the use of rand() to generate unique file names. This is a valid point;
nevertheless, temporary files remain more difficult to use than two-way pipes.

4 This is very different from the same operator in the C shell and in Bash.

322 GAWK: Effective AWK Programming

print ali] |& command
close(command, "to")

while ((command |& getline line) > 0)
print "got", line
close(command)

}

This program writes the letters of the alphabet in reverse order, one per line, down the
two-way pipe to sort. It then closes the write end of the pipe, so that sort receives an
end-of-file indication. This causes sort to sort the data and write the sorted data back to
the gawk program. Once all of the data has been read, gawk terminates the coprocess and
exits.

As a side note, the assignment ‘LC_ALL=C’ in the sort command ensures traditional Unix
(ASCII) sorting from sort. This is not strictly necessary here, but it’s good to know how
to do this.

Be careful when closing the "from" end of a two-way pipe; in this case gawk waits for
the child process to exit, which may cause your program to hang. (Thus, this particular
feature is of much less use in practice than being able to close the "to" end.)

CAUTION: Normally, it is a fatal error to write to the "to" end of a two-way
pipe which has been closed, and it is also a fatal error to read from the "from"
end of a two-way pipe that has been closed.

You may set PROCINFO [" command", "NONFATAL"] to make such operations be-
come nonfatal. If you do so, you then need to check ERRNO after each print,
printf, or getline. See Section 5.10 [Enabling Nonfatal Output], page 109,
for more information.

You may also use pseudo-ttys (ptys) for two-way communication instead of pipes, if your
system supports them. This is done on a per-command basis, by setting a special element
in the PROCINFO array (see Section 7.5.2 [Built-in Variables That Convey Information],
page 159), like so:

command = "sort -nr" # command, save in convenience variable
PROCINFO[command, "pty"] = 1 # update PROCINFO
print ... |& command # start two-way pipe

If your system does not have ptys, or if all the system’s ptys are in use, gawk automatically
falls back to using regular pipes.

Using ptys usually avoids the buffer deadlock issues described earlier, at some loss in
performance. This is because the tty driver buffers and sends data line-by-line. On systems
with the stdbuf (part of the GNU Coreutils package), you can use that program instead of
ptys.

Note also that ptys are not fully transparent. Certain binary control codes, such Ctrl-d
for end-of-file, are interpreted by the tty driver and not passed through.

CAUTION: Finally, coprocesses open up the possibility of deadlock between
gawk and the program running in the coprocess. This can occur if you send
“too much” data to the coprocess before reading any back; each process is

https://www.gnu.org/software/coreutils/coreutils.html

Chapter 12: Advanced Features of gawk 323

blocked writing data with noone available to read what they’ve already written.
There is no workaround for deadlock; careful programming and knowledge of
the behavior of the coprocess are required.

12.4 Using gawk for Network Programming

EMRED:
A host is a host from coast to coast,
and nobody talks to a host that’s close,
unless the host that isn’t close

1s busy, hung, or dead.
—Mike O’Brien (aka Mr. Protocol)

In addition to being able to open a two-way pipeline to a coprocess on the same system
(see Section 12.3 [Two-Way Communications with Another Process|, page 320), it is possible
to make a two-way connection to another process on another system across an IP network
connection.

You can think of this as just a very long two-way pipeline to a coprocess. The way gawk
decides that you want to use TCP/IP networking is by recognizing special file names that
begin with one of ‘/inet/’, ‘/inet4/’, or ‘/inet6/’.

The full syntax of the special file name is /net-type/protocol/local-port/remote-
host/remote-port. The components are:

net-type Specifies the kind of Internet connection to make. Use ‘/inet4/’ to force IPv4,
and ‘/inet6/’ to force IPv6. Plain ‘/inet/’ (which used to be the only option)
uses the system default, most likely IPv4.

protocol The protocol to use over IP. This must be either ‘tcp’, or ‘udp’, for a TCP or
UDP IP connection, respectively. TCP should be used for most applications.

local-port The local TCP or UDP port number to use. Use a port number of ‘0’ when
you want the system to pick a port. This is what you should do when writing
a TCP or UDP client. You may also use a well-known service name, such as
‘smtp’ or ‘http’, in which case gawk attempts to determine the predefined port
number using the C getaddrinfo() function.

remote-host
The TP address or fully qualified domain name of the Internet host to which
you want to connect.

remote-port
The TCP or UDP port number to use on the given remote-host. Again, use ‘0’
if you don’t care, or else a well-known service name.

NOTE: Failure in opening a two-way socket will result in a nonfatal error be-

ing returned to the calling code. The value of ERRNO indicates the error (see

Section 7.5.2 [Built-in Variables That Convey Information]|, page 159).
Consider the following very simple example:

BEGIN {
Service = "/inet/tcp/0/localhost/daytime"

324 GAWK: Effective AWK Programming

Service |& getline
print $0
close(Service)

¥

This program reads the current date and time from the local system’s TCP daytime
server. It then prints the results and closes the connection.

Because this topic is extensive, the use of gawk for TCP /IP programming is documented
separately. See TCP/IP Internetworking with gawk, which comes as part of the gawk
distribution, for a much more complete introduction and discussion, as well as extensive
examples.

NOTE: gawk can only open direct sockets. There is currently no way to access
services available over Secure Socket Layer (SSL); this includes any web service
whose URL starts with ‘https://’.

12.5 Profiling Your awk Programs

You may produce execution traces of your awk programs. This is done by passing the option
—--profile to gawk. When gawk has finished running, it creates a profile of your program
in a file named awkprof .out. Because it is profiling, it also executes up to 45% slower than
gawk normally does.

As shown in the following example, the ——profile option can be used to change the
name of the file where gawk will write the profile:

gawk —--profile=myprog.prof -f myprog.awk datal data2
In the preceding example, gawk places the profile in myprog. prof instead of in awkprof . out.

Here is a sample session showing a simple awk program, its input data, and the results
from running gawk with the ——profile option. First, the awk program:

BEGIN { print "First BEGIN rule" }
END { print "First END rule" }
/foo/ {

print "matched /foo/, gosh"
for (i = 1; i <= 3; i++)

sing()
3
{
if (/foo/)
print "if is true"
else
print "else is true"
+

BEGIN { print "Second BEGIN rule" }

https://www.gnu.org/software/gawk/manual/gawkinet/

Chapter 12: Advanced Features of gawk 325

END { print "Second END rule" }

function sing(dummy)
{

print "I gotta be me!"
}

Following is the input data:
foo
bar
baz
foo
junk
Here is the awkprof.out that results from running the gawk profiler on this program
and data (this example also illustrates that awk programmers sometimes get up very early
in the morning to work):

gawk profile, created Mon Sep 29 05:16:21 2014

BEGIN rule(s)

BEGIN {
1 print "First BEGIN rule"

X

BEGIN {
1 print "Second BEGIN rule"

b

Rule(s)
5 /foo/ { # 2
2 print "matched /foo/, gosh"
6 for (i = 1; i <= 3; i++) {
6 sing()

b

b
5 {
5 if (/foo/) { # 2
2 print "if is true"
3 } else {
3 print "else is true"

X
}

END rule(s)

326 GAWK: Effective AWK Programming

END {

1 print "First END rule"
b
END {

1 print "Second END rule"
b

Functions, listed alphabetically

6 function sing(dummy)
{
6 print "I gotta be me!"

}

This example illustrates many of the basic features of profiling output. They are as

follows:

The program is printed in the order BEGIN rules, BEGINFILE rules, pattern—action rules,
ENDFILE rules, END rules, and functions, listed alphabetically. Multiple BEGIN and END
rules retain their separate identities, as do multiple BEGINFILE and ENDFILE rules.

Pattern—action rules have two counts. The first count, to the left of the rule, shows
how many times the rule’s pattern was tested. The second count, to the right of the
rule’s opening left brace in a comment, shows how many times the rule’s action was
erecuted. The difference between the two indicates how many times the rule’s pattern
evaluated to false.

Similarly, the count for an if-else statement shows how many times the condition was
tested. To the right of the opening left brace for the if’s body is a count showing how
many times the condition was true. The count for the else indicates how many times
the test failed.

The count for a loop header (such as for or while) shows how many times the loop test
was executed. (Because of this, you can’t just look at the count on the first statement
in a rule to determine how many times the rule was executed. If the first statement is
a loop, the count is misleading.)

For user-defined functions, the count next to the function keyword indicates how
many times the function was called. The counts next to the statements in the body
show how many times those statements were executed.

The layout uses “K&R” style with TABs. Braces are used everywhere, even when the
body of an if, else, or loop is only a single statement.

Parentheses are used only where needed, as indicated by the structure of the program
and the precedence rules. For example, ‘(3 + 5) * 4’ means add three and five, then
multiply the total by four. However, ‘3 + 5 * 4’ has no parentheses, and means ‘3 + (5
* 4),

Parentheses are used around the arguments to print and printf only when the print
or printf statement is followed by a redirection. Similarly, if the target of a redirection
isn’t a scalar, it gets parenthesized.

Chapter 12: Advanced Features of gawk 327

e gawk supplies leading comments in front of the BEGIN and END rules, the BEGINFILE
and ENDFILE rules, the pattern—action rules, and the functions.

The profiled version of your program may not look exactly like what you typed when you
wrote it. This is because gawk creates the profiled version by “pretty-printing” its internal
representation of the program. The advantage to this is that gawk can produce a standard
representation. Also, things such as:

/foo/
come out as:
/foo/ {
print $0
}

which is correct, but possibly unexpected.

Besides creating profiles when a program has completed, gawk can produce a profile
while it is running. This is useful if your awk program goes into an infinite loop and you
want to see what has been executed. To use this feature, run gawk with the --profile
option in the background:

$ gawk --profile -f myprog &

[1] 13992
The shell prints a job number and process ID number; in this case, 13992. Use the kill
command to send the USR1 signal to gawk:

$ kill -USR1 13992

As usual, the profiled version of the program is written to awkprof.out, or to a different
file if one was specified with the —-profile option.

Along with the regular profile, as shown earlier, the profile file includes a trace of any
active functions:

Function Call Stack:

3. baz
2. bar
1. foo
-—- main —-

You may send gawk the USR1 signal as many times as you like. Each time, the profile
and function call trace are appended to the output profile file.

If you use the HUP signal instead of the USR1 signal, gawk produces the profile and the
function call trace and then exits.

When gawk runs on MS-Windows systems, it uses the INT and QUIT signals for producing
the profile, and in the case of the INT signal, gawk exits. This is because these systems don’t
support the kill command, so the only signals you can deliver to a program are those
generated by the keyboard. The INT signal is generated by the Ctrl-c or Ctrl1-BREAK key,
while the QUIT signal is generated by the Ctrl-\ key.

Finally, gawk also accepts another option, —-pretty-print. When called this way, gawk
“pretty-prints” the program into awkprof .out, without any execution counts.

328 GAWK: Effective AWK Programming

NOTE: Once upon a time, the —-pretty-print option would also run your
program. This is is no longer the case.

There is a significant difference between the output created when profiling, and that
created when pretty-printing. Pretty-printed output preserves the original comments that
were in the program, although their placement may not correspond exactly to their original
locations in the source code.?

However, as a deliberate design decision, profiling output omits the original program’s
comments. This allows you to focus on the execution count data and helps you avoid the
temptation to use the profiler for pretty-printing.

Additionally, pretty-printed output does not have the leading indentation that the pro-
filing output does. This makes it easy to pretty-print your code once development is com-
pleted, and then use the result as the final version of your program.

Because the internal representation of your program is formatted to recreate an awk
program, profiling and pretty-printing automatically disable gawk’s default optimizations.

Pretty printing also preserves the original format of numeric constants; if you used an
octal or hexadecimal value in your source code, it will appear that way in the output.

12.6 Summary

e The --non-decimal-data option causes gawk to treat octal- and hexadecimal-looking
input data as octal and hexadecimal. This option should be used with caution or not
at all; use of strtonum() is preferable. Note that this option may disappear in a future
version of gawk.

e You can take over complete control of sorting in ‘for (indx in array)’ array traversal
by setting PROCINFO["sorted_in"] to the name of a user-defined function that does
the comparison of array elements based on index and value.

e Similarly, you can supply the name of a user-defined comparison function as the third
argument to either asort () or asorti() to control how those functions sort arrays. Or
you may provide one of the predefined control strings that work for PROCINFO["sorted_
in"].

e You can use the ‘|& operator to create a two-way pipe to a coprocess. You read
from the coprocess with getline and write to it with print or printf. Use close()
to close off the coprocess completely, or optionally, close off one side of the two-way
communications.

e By using special file names with the ‘| &’ operator, you can open a TCP/IP (or UDP/IP)
connection to remote hosts on the Internet. gawk supports both IPv4 and IPv6.

e You can generate statement count profiles of your program. This can help you deter-
mine which parts of your program may be taking the most time and let you tune them
more easily. Sending the USR1 signal while profiling causes gawk to dump the profile
and keep going, including a function call stack.

e You can also just “pretty-print” the program.

5 gawk does the best it can to preserve the distinction between comments at the end of a statement and
comments on lines by themselves. Due to implementation constraints, it does not always do so correctly,
particularly for switch statements. The gawk maintainers hope to improve this in a subsequent release.

Chapter 13: Internationalization with gawk 329

13 Internationalization with gawk

Once upon a time, computer makers wrote software that worked only in English. Even-
tually, hardware and software vendors noticed that if their systems worked in the native
languages of non-English-speaking countries, they were able to sell more systems. As a
result, internationalization and localization of programs and software systems became a
common practice.

For many years, the ability to provide internationalization was largely restricted to
programs written in C and C++. This chapter describes the underlying library gawk uses
for internationalization, as well as how gawk makes internationalization features available at
the awk program level. Having internationalization available at the awk level gives software
developers additional flexibility—they are no longer forced to write in C or C++ when
internationalization is a requirement.

13.1 Internationalization and Localization

Internationalization means writing (or modifying) a program once, in such a way that it
can use multiple languages without requiring further source code changes. Localization
means providing the data necessary for an internationalized program to work in a partic-
ular language. Most typically, these terms refer to features such as the language used for
printing error messages, the language used to read responses, and information related to
how numerical and monetary values are printed and read.

13.2 GNU gettext

gawk uses GNU gettext to provide its internationalization features. The facilities in GNU
gettext focus on messages: strings printed by a program, either directly or via formatting
with printf or sprintf().!

When using GNU gettext, each application has its own text domain. This is a unique
name, such as ‘kpilot’ or ‘gawk’, that identifies the application. A complete application
may have multiple components—programs written in C or C++, as well as scripts written
in sh or awk. All of the components use the same text domain.

To make the discussion concrete, assume we’re writing an application named guide.
Internationalization consists of the following steps, in this order:

1. The programmer reviews the source for all of guide’s components and marks each
string that is a candidate for translation. For example, "‘-F’: option required" is
a good candidate for translation. A table with strings of option names is not (e.g.,
gawk’s ——profile option should remain the same, no matter what the local language).

2. The programmer indicates the application’s text domain ("guide") to the gettext
library, by calling the textdomain() function.

3. Messages from the application are extracted from the source code and collected into a
portable object template file (guide.pot), which lists the strings and their translations.
The translations are initially empty. The original (usually English) messages serve as
the key for lookup of the translations.

1 For some operating systems, the gawk port doesn’t support GNU gettext. Therefore, these features are
not available if you are using one of those operating systems. Sorry.

330 GAWK: Effective AWK Programming

4. For each language with a translator, guide.pot is copied to a portable object file
(.po) and translations are created and shipped with the application. For example,
there might be a fr.po for a French translation.

5. Each language’s .po file is converted into a binary message object (.gmo) file. A
message object file contains the original messages and their translations in a binary
format that allows fast lookup of translations at runtime.

6. When guide is built and installed, the binary translation files are installed in a standard
place.

7. For testing and development, it is possible to tell gettext to use .gmo files in a different
directory than the standard one by using the bindtextdomain() function.

8. At runtime, guide looks up each string via a call to gettext (). The returned string
is the translated string if available, or the original string if not.

9. If necessary, it is possible to access messages from a different text domain than the one
belonging to the application, without having to switch the application’s default text
domain back and forth.

In C (or C++), the string marking and dynamic translation lookup are accomplished by
wrapping each string in a call to gettext():

printf ("%s", gettext("Don’t Panic!\n"));

The tools that extract messages from source code pull out all strings enclosed in calls to
gettext ().

The GNU gettext developers, recognizing that typing ‘gettext(...)’ over and over
again is both painful and ugly to look at, use the macro ‘_’ (an underscore) to make things
easier:

/* In the standard header file: */
#define _(str) gettext(str)

/* In the program text: */

printf("%s", _("Don’t Panic!\n"));
This reduces the typing overhead to just three extra characters per string and is considerably
easier to read as well.

There are locale categories for different types of locale-related information. The defined
locale categories that gettext knows about are:

LC_MESSAGES
Text messages. This is the default category for gettext operations, but it is
possible to supply a different one explicitly, if necessary. (It is almost never
necessary to supply a different category.)

LC_COLLATE
Text-collation information (i.e., how different characters and/or groups of char-
acters sort in a given language).

LC_CTYPE Character-type information (alphabetic, digit, upper- or lowercase, and so on)
as well as character encoding. This information is accessed via the POSIX
character classes in regular expressions, such as /[[:alnum:]]/ (see Section 3.4
[Using Bracket Expressions], page 53).

Chapter 13: Internationalization with gawk 331

LC_MONETARY
Monetary information, such as the currency symbol, and whether the symbol
goes before or after a number.

LC_NUMERIC
Numeric information, such as which characters to use for the decimal point and
the thousands separator.?

LC_TIME Time- and date-related information, such as 12- or 24-hour clock, month printed
before or after the day in a date, local month abbreviations, and so on.

LC_ALL All of the above. (Not too useful in the context of gettext.)

NOTE: As described in Section 6.6 [Where You Are Makes a Difference],

page 137, environment variables with the same name as the locale categories

(LC_CTYPE, LC_ALL, etc.) influence gawk’s behavior (and that of other

utilities).

Normally, these variables also affect how the gettext library finds translations.

However, the LANGUAGE environment variable overrides the LC_xxx variables.

Many GNU/Linux systems may define this variable without your knowledge,

causing gawk to not find the correct translations. If this happens to you, look to

see if LANGUAGE is defined, and if so, use the shell’s unset command to remove

it.

For testing translations of gawk itself, you can set the GAWK_LOCALE_DIR environment

variable. See the documentation for the C bindtextdomain() function and also see
Section 2.5.3 [Other Environment Variables|, page 40.

13.3 Internationalizing awk Programs
gawk provides the following variables for internationalization:

TEXTDOMAIN
This variable indicates the application’s text domain. For compatibility with
GNU gettext, the default value is "messages".

_"your message here"
String constants marked with a leading underscore are candidates for transla-
tion at runtime. String constants without a leading underscore are not trans-
lated.

gawk provides the following functions for internationalization:

dcgettext(string [, domain [, categoryl])
Return the translation of string in text domain domain for locale category
category. The default value for domain is the current value of TEXTDOMAIN.
The default value for category is "LC_MESSAGES".

If you supply a value for category, it must be a string equal to one of the known
locale categories described in the previous section. You must also supply a text
domain. Use TEXTDOMAIN if you want to use the current domain.

2 Americans use a comma every three decimal places and a period for the decimal point, while many
Europeans do exactly the opposite: 1,234.56 versus 1.234,56.

332 GAWK: Effective AWK Programming

CAUTION: The order of arguments to the awk version of the
dcgettext () function is purposely different from the order for the
C version. The awk version’s order was chosen to be simple and to
allow for reasonable awk-style default arguments.

dcngettext(stringl, string2, number [, domain [, categoryll])

Return the plural form used for number of the translation of stringl and string2
in text domain domain for locale category category. stringl is the English
singular variant of a message, and string2 is the English plural variant of the
same message. The default value for domain is the current value of TEXTDOMAIN.
The default value for category is "LC_MESSAGES".

The same remarks about argument order as for the dcgettext () function apply.

bindtextdomain(directory [, domain 1)

1.

Change the directory in which gettext looks for .gmo files, in case they will
not or cannot be placed in the standard locations (e.g., during testing). Return
the directory in which domain is “bound.”

The default domain is the value of TEXTDOMAIN. If directory is the null string
(""), then bindtextdomain () returns the current binding for the given domain.

To use these facilities in your awk program, follow these steps:

Set the variable TEXTDOMAIN to the text domain of your program. This is best done
in a BEGIN rule (see Section 7.1.4 [The BEGIN and END Special Patterns|, page 144), or
it can also be done via the -v command-line option (see Section 2.2 [Command-Line
Options|, page 31):
BEGIN {
TEXTDOMAIN = "guide"

¥

Mark all translatable strings with a leading underscore (
adjacent to the opening quote of the string. For example:

(3

) character. It must be

print _"hello, world"
x = _"you goofed"
printf (_"Number of users is %d\n", nusers)
If you are creating strings dynamically, you can still translate them, using the
dcgettext () built-in function:?
if (groggy)
message
else
message = dcgettext("enjoying %d customers\n", "adminprog")
printf (message, ncustomers)

dcgettext ("%d customers disturbing me\n", "adminprog")

Here, the call to dcgettext () supplies a different text domain ("adminprog") in which
to find the message, but it uses the default "LC_MESSAGES" category.

The previous example only works if ncustomers is greater than one. This example
would be better done with dengettext ():

3 Thanks to Bruno Haible for this example.

Chapter 13: Internationalization with gawk 333

if (groggy)
message = dcngettext(")d customer disturbing me\n",
"%d customers disturbing me\n",
ncustomers, "adminprog")

else
message = dcngettext("enjoying %d customer\n",
"enjoying ’%d customers\n",
ncustomers, "adminprog")
printf (message, ncustomers)

4. During development, you might want to put the .gmo file in a private directory for
testing. This is done with the bindtextdomain() built-in function:

BEGIN {
TEXTDOMAIN = "guide" # our text domain
if (Testing) {
where to find our files
bindtextdomain("testdir")
joe is in charge of adminprog
bindtextdomain("../joe/testdir", "adminprog")

}

See Section 13.5 [A Simple Internationalization Example], page 336, for an example
program showing the steps to create and use translations from awk.

13.4 Translating awk Programs

Once a program’s translatable strings have been marked, they must be extracted to create
the initial .pot file. As part of translation, it is often helpful to rearrange the order in
which arguments to printf are output.

gawk’s ——gen-pot command-line option extracts the messages and is discussed next.
After that, printf’s ability to rearrange the order for printf arguments at runtime is
covered.

13.4.1 Extracting Marked Strings

Once your awk program is working, and all the strings have been marked and you've set
(and perhaps bound) the text domain, it is time to produce translations. First, use the
--gen-pot command-line option to create the initial .pot file:
gawk --gen-pot -f guide.awk > guide.pot

When run with --gen-pot, gawk does not execute your program. Instead, it parses it
as usual and prints all marked strings to standard output in the format of a GNU gettext
Portable Object file. Also included in the output are any constant strings that appear as the
first argument to dcgettext () or as the first and second argument to dengettext ().* You
should distribute the generated .pot file with your awk program; translators will eventually
use it to provide you translations that you can also then distribute. See Section 13.5 [A

4 The xgettext utility that comes with GNU gettext can handle .awk files.

334 GAWK: Effective AWK Programming

Simple Internationalization Example], page 336, for the full list of steps to go through to
create and test translations for guide.

13.4.2 Rearranging printf Arguments

Format strings for printf and sprintf() (see Section 5.5 [Using printf Statements for
Fancier Printing], page 96) present a special problem for translation. Consider the follow-
ing:®
printf(_"String ‘s’ has Jd characters\n",
string, length(string)))
A possible German translation for this might be:
"%d Zeichen lang ist die Zeichenkette ‘Ys’\n"

The problem should be obvious: the order of the format specifications is different from
the original! Even though gettext () can return the translated string at runtime, it cannot
change the argument order in the call to printf.

To solve this problem, printf format specifiers may have an additional optional element,
which we call a positional specifier. For example:

"%2$d Zeichen lang ist die Zeichenkette ‘%1$s’\n"

Here, the positional specifier consists of an integer count, which indicates which argument
to use, and a ‘$’. Counts are one-based, and the format string itself is not included. Thus, in
the following example, ‘string’ is the first argument and ‘length(string)’ is the second:

$ gawk ’BEGIN {

> string = "Don\47t Panic"

> printf "7%2$d characters live in \"71$s\"\n",
> string, length(string)
>}’

- 11 characters live in "Don’t Panic"

If present, positional specifiers come first in the format specification, before the flags,
the field width, and/or the precision.

Positional specifiers can be used with the dynamic field width and precision capability:

$ gawk ’BEGIN {
> printf("7%*.*s\n", 10, 20, "hello")
> printf("%3%$*2$.x18s\n", 20, 10, "hello")

> }
= hello
= hello

NOTE: When using ‘*’ with a positional specifier, the ‘*’ comes first, then the
integer position, and then the ‘$’. This is somewhat counterintuitive.

gawk does not allow you to mix regular format specifiers and those with positional
specifiers in the same string;:

$ gawk ’BEGIN { printf "Jd 73%$s\n", 1, 2, "hi" }’

gawk: cmd. line:1: fatal: must use ‘count$’ on all formats or none

5 This example is borrowed from the GNU gettext manual.

Chapter 13: Internationalization with gawk 335

NOTE: There are some pathological cases that gawk may fail to diagnose. In
such cases, the output may not be what you expect. It’s still a bad idea to try
mixing them, even if gawk doesn’t detect it.

Although positional specifiers can be used directly in awk programs, their primary pur-
pose is to help in producing correct translations of format strings into languages different
from the one in which the program is first written.

13.4.3 awk Portability Issues

gawk’s internationalization features were purposely chosen to have as little impact as pos-
sible on the portability of awk programs that use them to other versions of awk. Consider
this program:
BEGIN {
TEXTDOMAIN = "guide"
if (Test_Guide) # set with -v
bindtextdomain("/test/guide/messages")
print _"don’t panic!"
}
As written, it won’t work on other versions of awk. However, it is actually almost portable,
requiring very little change:
e Assignments to TEXTDOMAIN won’t have any effect, because TEXTDOMAIN is not special
in other awk implementations.

e Non-GNU versions of awk treat marked strings as the concatenation of a variable named
_ with the string following it.5 Typically, the variable _ has the null string ("") as its
value, leaving the original string constant as the result.

e By defining “dummy” functions to replace dcgettext(), dcngettext(), and
bindtextdomain(), the awk program can be made to run, but all the messages are
output in the original language. For example:

function bindtextdomain(dir, domain)

{

return dir
3
function dcgettext(string, domain, category)
{

return string
3
function dcngettext(stringl, string2, number, domain, category)
{

return (number == 1 ? stringl : string2)
¥

e The use of positional specifications in printf or sprintf () is not portable. To support
gettext () at the C level, many systems’ C versions of sprintf () do support positional

6 This is good fodder for an “Obfuscated awk” contest.

336 GAWK: Effective AWK Programming

specifiers. But it works only if enough arguments are supplied in the function call.
Many versions of awk pass printf formats and arguments unchanged to the underlying
C library version of sprintf (), but only one format and argument at a time. What
happens if a positional specification is used is anybody’s guess. However, because the
positional specifications are primarily for use in translated format strings, and because
non-GNU awks never retrieve the translated string, this should not be a problem in
practice.

13.5 A Simple Internationalization Example

Now let’s look at a step-by-step example of how to internationalize and localize a simple
awk program, using guide.awk as our original source:

BEGIN {
TEXTDOMAIN = "guide"
bindtextdomain(".") # for testing
print _"Don’t Panic"
print _"The Answer Is", 42
print "Pardon me, Zaphod who?"

}
Run ‘gawk --gen-pot’ to create the .pot file:

$ gawk --gen-pot -f guide.awk > guide.pot
This produces:

#: guide.awk:4
msgid "Don’t Panic"
msgstr ""

#: guide.awk:5
msgid "The Answer Is"
msgstr ""

This original portable object template file is saved and reused for each language into
which the application is translated. The msgid is the original string and the msgstr is the
translation.

NOTE: Strings not marked with a leading underscore do not appear in the
guide.pot file.

Next, the messages must be translated. Here is a translation to a hypothetical dialect
of English, called “Mellow”:”
$ cp guide.pot guide-mellow.po
Add translations to guide-mellow.po ...

Following are the translations:

#: guide.awk:4
msgid "Don’t Panic"
msgstr "Hey man, relax!"

7 Perhaps it would be better if it were called “Hippy.” Ah, well.

Chapter 13: Internationalization with gawk 337

#: guide.awk:5
msgid "The Answer Is"
msgstr "Like, the scoop is"

The next step is to make the directory to hold the binary message object file and then to
create the guide.mo file. We pretend that our file is to be used in the en_US.UTF-8 locale,
because we have to use a locale name known to the C gettext routines. The directory
layout shown here is standard for GNU gettext on GNU/Linux systems. Other versions
of gettext may use a different layout:

$ mkdir en_US.UTF-8 en_US.UTF-8/LC_MESSAGES

The msgfmt utility does the conversion from human-readable . po file to machine-readable
.mo file. By default, msgfmt creates a file named messages. This file must be renamed and
placed in the proper directory (using the -o option) so that gawk can find it:

$ msgfmt guide-mellow.po -o en_US.UTF-8/LC_MESSAGES/guide.mo
Finally, we run the program to test it:

$ gawk -f guide.awk

-| Hey man, relax!

- Like, the scoop is 42
- Pardon me, Zaphod who?

If the three replacement functions for dcgettext(), dcngettext(), and
bindtextdomain() (see Section 13.4.3 [awk Portability Issues|, page 335) are in a file
named 1ibintl.awk, then we can run guide.awk unchanged as follows:

$ gawk --posix -f guide.awk -f libintl.awk
- Don’t Panic

- The Answer Is 42

- Pardon me, Zaphod who?

13.6 gawk Can Speak Your Language

gawk itself has been internationalized using the GNU gettext package. (GNU gettext
is described in complete detail in GNU gettext utilities.) As of this writing, the latest
version of GNU gettext is version 0.19.4.

If a translation of gawk’s messages exists, then gawk produces usage messages, warnings,
and fatal errors in the local language.

13.7 Summary

e Internationalization means writing a program such that it can use multiple languages
without requiring source code changes. Localization means providing the data neces-
sary for an internationalized program to work in a particular language.

e gawk uses GNU gettext to let you internationalize and localize awk programs. A
program’s text domain identifies the program for grouping all messages and other data
together.

https://www.gnu.org/software/gettext/manual/
ftp://ftp.gnu.org/gnu/gettext/gettext-0.19.4.tar.gz

338

GAWK: Effective AWK Programming

You mark a program’s strings for translation by preceding them with an underscore.
Once that is done, the strings are extracted into a .pot file. This file is copied for
each language into a .po file, and the .po files are compiled into .gmo files for use at
runtime.

You can use positional specifications with sprintf() and printf to rearrange the
placement of argument values in formatted strings and output. This is useful for the
translation of format control strings.

The internationalization features have been designed so that they can be easily worked
around in a standard awk.

gawk itself has been internationalized and ships with a number of translations for its
messages.

Chapter 14: Debugging awk Programs 339

14 Debugging awk Programs

It would be nice if computer programs worked perfectly the first time they were run, but
in real life, this rarely happens for programs of any complexity. Thus, most programming
languages have facilities available for “debugging” programs, and now awk is no exception.

The gawk debugger is purposely modeled after the GNU Debugger (GDB) command-
line debugger. If you are familiar with GDB, learning how to use gawk for debugging your
program is easy.

14.1 Introduction to the gawk Debugger

This section introduces debugging in general and begins the discussion of debugging in
gawk.

14.1.1 Debugging in General

(If you have used debuggers in other languages, you may want to skip ahead to Section 14.1.3
[awk Debugging], page 340.)

Of course, a debugging program cannot remove bugs for you, because it has no way
of knowing what you or your users consider a “bug” versus a “feature.” (Sometimes, we
humans have a hard time with this ourselves.) In that case, what can you expect from such
a tool? The answer to that depends on the language being debugged, but in general, you
can expect at least the following:

e The ability to watch a program execute its instructions one by one, giving you, the
programmer, the opportunity to think about what is happening on a time scale of
seconds, minutes, or hours, rather than the nanosecond time scale at which the code
usually runs.

e The opportunity to not only passively observe the operation of your program, but to
control it and try different paths of execution, without having to change your source
files.

e The chance to see the values of data in the program at any point in execution, and also
to change that data on the fly, to see how that affects what happens afterward. (This
often includes the ability to look at internal data structures besides the variables you
actually defined in your code.)

e The ability to obtain additional information about your program’s state or even its
internal structure.

All of these tools provide a great amount of help in using your own skills and under-
standing of the goals of your program to find where it is going wrong (or, for that matter,
to better comprehend a perfectly functional program that you or someone else wrote).

14.1.2 Debugging Concepts

Before diving in to the details, we need to introduce several important concepts that apply
to just about all debuggers. The following list defines terms used throughout the rest of
this chapter:

Stack frame
Programs generally call functions during the course of their execution. One
function can call another, or a function can call itself (recursion). You can

https://www.gnu.org/software/gdb/

340 GAWK: Effective AWK Programming

view the chain of called functions (main program calls A, which calls B, which
calls C), as a stack of executing functions: the currently running function is the
topmost one on the stack, and when it finishes (returns), the next one down
then becomes the active function. Such a stack is termed a call stack.

For each function on the call stack, the system maintains a data area that
contains the function’s parameters, local variables, and return value, as well as
any other “bookkeeping” information needed to manage the call stack. This
data area is termed a stack frame.

gawk also follows this model, and gives you access to the call stack and to each
stack frame. You can see the call stack, as well as from where each function on
the stack was invoked. Commands that print the call stack print information
about each stack frame (as detailed later on).

Breakpoint
During debugging, you often wish to let the program run until it reaches a
certain point, and then continue execution from there one statement (or in-
struction) at a time. The way to do this is to set a breakpoint within the
program. A breakpoint is where the execution of the program should break off
(stop), so that you can take over control of the program’s execution. You can
add and remove as many breakpoints as you like.

Watchpoint

A watchpoint is similar to a breakpoint. The difference is that breakpoints are
oriented around the code: stop when a certain point in the code is reached.
A watchpoint, however, specifies that program execution should stop when a
data value is changed. This is useful, as sometimes it happens that a variable
receives an erroneous value, and it’s hard to track down where this happens
just by looking at the code. By using a watchpoint, you can stop whenever a
variable is assigned to, and usually find the errant code quite quickly.

14.1.3 awk Debugging

Debugging an awk program has some specific aspects that are not shared with programs
written in other languages.

First of all, the fact that awk programs usually take input line by line from a file or files
and operate on those lines using specific rules makes it especially useful to organize viewing
the execution of the program in terms of these rules. As we will see, each awk rule is treated
almost like a function call, with its own specific block of instructions.

In addition, because awk is by design a very concise language, it is easy to lose sight
of everything that is going on “inside” each line of awk code. The debugger provides the
opportunity to look at the individual primitive instructions carried out by the higher-level
awk commands.

14.2 Sample gawk Debugging Session

In order to illustrate the use of gawk as a debugger, let’s look at a sample debugging session.
We will use the awk implementation of the POSIX uniq command described earlier (see
Section 11.2.6 [Printing Nonduplicated Lines of Text|, page 279) as our example.

Chapter 14: Debugging awk Programs 341

14.2.1 How to Start the Debugger

Starting the debugger is almost exactly like running gawk normally, except you have to pass
an additional option, -—debug, or the corresponding short option, -D. The file(s) containing
the program and any supporting code are given on the command line as arguments to one
or more -f options. (gawk is not designed to debug command-line programs, only programs
contained in files.) In our case, we invoke the debugger like this:
$ gawk -D -f getopt.awk -f join.awk -f uniq.awk -1 inputfile

where both getopt.awk and uniq.awk are in $AWKPATH. (Experienced users of GDB or
similar debuggers should note that this syntax is slightly different from what you are used
to. With the gawk debugger, you give the arguments for running the program in the
command line to the debugger rather than as part of the run command at the debugger
prompt.) The -1 is an option to uniq.awk.

Instead of immediately running the program on inputfile, as gawk would ordinarily
do, the debugger merely loads all the program source files, compiles them internally, and
then gives us a prompt:

gawk>

from which we can issue commands to the debugger. At this point, no code has been
executed.

14.2.2 Finding the Bug

Let’s say that we are having a problem using (a faulty version of) uniq.awk in the “field-
skipping” mode, and it doesn’t seem to be catching lines which should be identical when
skipping the first field, such as:

awk is a wonderful program!
gawk is a wonderful program!

This could happen if we were thinking (C-like) of the fields in a record as being numbered
in a zero-based fashion, so instead of the lines:

clast = join(alast, fcount+1l, n)
cline join(aline, fcount+1l, m)

we wrote:

clast = join(alast, fcount, n)
cline = join(aline, fcount, m)

The first thing we usually want to do when trying to investigate a problem like this is
to put a breakpoint in the program so that we can watch it at work and catch what it is
doing wrong. A reasonable spot for a breakpoint in uniq.awk is at the beginning of the
function are_equal (), which compares the current line with the previous one. To set the
breakpoint, use the b (breakpoint) command:

gawk> b are_equal
4 Breakpoint 1 set at file ‘awklib/eg/prog/uniq.awk’, line 63

The debugger tells us the file and line number where the breakpoint is. Now type ‘r’ or
‘run’ and the program runs until it hits the breakpoint for the first time:

gawk> r
- Starting program:

342 GAWK: Effective AWK Programming

- Stopping in Rule ...

- Breakpoint 1, are_equal(n, m, clast, cline, alast, aline)
at ‘awklib/eg/prog/uniq.awk’:63

- 63 if (fcount == 0 && charcount == 0)

gawk>

Now we can look at what’s going on inside our program. First of all, let’s see how we
got to where we are. At the prompt, we type ‘bt’ (short for “backtrace”), and the debugger
responds with a listing of the current stack frames:

gawk> bt

- #0 are_equal(n, m, clast, cline, alast, aline)
at ‘awklib/eg/prog/uniq.awk’:68

- #1 in main() at ‘awklib/eg/prog/uniq.awk’:88

This tells us that are_equal () was called by the main program at line 88 of uniq.awk.
(This is not a big surprise, because this is the only call to are_equal() in the program,
but in more complex programs, knowing who called a function and with what parameters
can be the key to finding the source of the problem.)

Now that we're in are_equal(), we can start looking at the values of some variables.
Let’s say we type ‘pn’ (p is short for “print”). We would expect to see the value of n, a
parameter to are_equal (). Actually, the debugger gives us:

gawk> p n

- n = untyped variable
In this case, n is an uninitialized local variable, because the function was called without
arguments (see Section 6.4 [Function Calls|, page 135).

A more useful variable to display might be the current record:
gawk> p $0
4 $0 = "gawk is a wonderful program!"
This might be a bit puzzling at first, as this is the second line of our test input. Let’s look
at NR:
gawk> p NR
4 NR = 2
So we can see that are_equal () was only called for the second record of the file. Of course,
this is because our program contains a rule for ‘NR == 1’:

NR == 1 {
last = $0
next

}

OK, let’s just check that that rule worked correctly:

gawk> p last
- last = "awk is a wonderful program!"

Everything we have done so far has verified that the program has worked as planned, up
to and including the call to are_equal (), so the problem must be inside this function. To
investigate further, we must begin “stepping through” the lines of are_equal (). We start
by typing ‘n’ (for “next”):

gawk> n

Chapter 14: Debugging awk Programs 343

- 66 if (fcount > 0) {

This tells us that gawk is now ready to execute line 66, which decides whether to give
the lines the special “field-skipping” treatment indicated by the -1 command-line option.
(Notice that we skipped from where we were before, at line 63, to here, because the condition
in line 63, ‘if (fcount == 0 && charcount == 0)’, was false.)

Continuing to step, we now get to the splitting of the current and last records:

gawk> n

- 67 n = split(last, alast)
gawk> n

- 68 m = split($0, aline)

At this point, we should be curious to see what our records were split into, so we try to
look:

gawk> p n m alast aline
<+ n=25
-4 m = untyped variable
-1 alast = array, 5 elements
- aline = untyped variable
(The p command can take more than one argument, similar to awk’s print statement.)
This is kind of disappointing, though. All we found out is that there are five elements in
alast; m and aline don’t have values because we are at line 68 but haven’t executed it yet.
This information is useful enough (we now know that none of the words were accidentally
left out), but what if we want to see inside the array?
The first choice would be to use subscripts:

gawk> p alast[0]
- "O" not in array ‘alast’

Oops!
gawk> p alast[1]
- alast["1"] = "awk"

This would be kind of slow for a 100-member array, though, so gawk provides a shortcut
(reminiscent of another language not to be mentioned):

gawk> p Q@alast

- alast["1"] "awk"

-4 alast["2"] = "is"

-4 alast["3"] = "a"

- alast["4"] = "wonderful"
< alast["5"] = "program!"

It looks like we got this far OK. Let’s take another step or two:

gawk> n
- 69 clast = join(alast, fcount, n)
gawk> n
-4 70 cline = join(aline, fcount, m)

Well, here we are at our error (sorry to spoil the suspense). What we had in mind was
to join the fields starting from the second one to make the virtual record to compare, and
if the first field were numbered zero, this would work. Let’s look at what we’ve got:

344 GAWK: Effective AWK Programming

gawk> p cline clast
- cline = "gawk is a wonderful program!"
- clast = "awk is a wonderful program!"

Hey, those look pretty familiar! They’re just our original, unaltered input records. A
little thinking (the human brain is still the best debugging tool), and we realize that we
were off by one!

We get out of the debugger:

gawk> q

- The program is running. Exit anyway (y/n)? y
Then we get into an editor:

clast = join(alast, fcount+l, n)

cline = join(aline, fcount+1l, m)

and problem solved!

14.3 Main Debugger Commands

The gawk debugger command set can be divided into the following categories:

e Breakpoint control

e Execution control

e Viewing and changing data

e Working with the stack

e Getting information

e Miscellaneous

Each of these are discussed in the following subsections. In the following descriptions,

commands that may be abbreviated show the abbreviation on a second description line.
A debugger command name may also be truncated if that partial name is unambiguous.
The debugger has the built-in capability to automatically repeat the previous command

just by hitting Enter. This works for the commands 1ist, next, nexti, step, stepi, and
continue executed without any argument.

14.3.1 Control of Breakpoints

As we saw earlier, the first thing you probably want to do in a debugging session is to get
your breakpoints set up, because your program will otherwise just run as if it was not under
the debugger. The commands for controlling breakpoints are:

break [[filename:|n | function| ["expression"|

b [[filename:|n | function| ["expression"]
Without any argument, set a breakpoint at the next instruction to be executed
in the selected stack frame. Arguments can be one of the following:

n Set a breakpoint at line number n in the current source file.

filename: n
Set a breakpoint at line number n in source file filename.

function Set a breakpoint at entry to (the first instruction of) function
function.

Chapter 14: Debugging awk Programs 345

Each breakpoint is assigned a number that can be used to delete it from the
breakpoint list using the delete command.

With a breakpoint, you may also supply a condition. This is an awk expression
(enclosed in double quotes) that the debugger evaluates whenever the break-
point is reached. If the condition is true, then the debugger stops execution
and prompts for a command. Otherwise, it continues executing the program.

clear [[filename:|n | function]
Without any argument, delete any breakpoint at the next instruction to be
executed in the selected stack frame. If the program stops at a breakpoint,
this deletes that breakpoint so that the program does not stop at that location
again. Arguments can be one of the following:

n Delete breakpoint(s) set at line number n in the current source file.

filename: n
Delete breakpoint(s) set at line number n in source file filename.

function Delete breakpoint(s) set at entry to function function.

condition n "expression"
Add a condition to existing breakpoint or watchpoint n. The condition is an awk
expression enclosed in double quotes that the debugger evaluates whenever the
breakpoint or watchpoint is reached. If the condition is true, then the debugger
stops execution and prompts for a command. Otherwise, the debugger continues
executing the program. If the condition expression is not specified, any existing
condition is removed (i.e., the breakpoint or watchpoint is made unconditional).

delete [nl n2 ...] [n—m)]

d [nl n2 ...] [n—m]
Delete specified breakpoints or a range of breakpoints. Delete all defined break-
points if no argument is supplied.

disable [nl n2 ... | n—mnj
Disable specified breakpoints or a range of breakpoints. Without any argument,
disable all breakpoints.

enable [del | once] [nl n2 ...] [n—m)]

e [del | once] [nl n2 ...] [n—m)]
Enable specified breakpoints or a range of breakpoints. Without any argu-
ment, enable all breakpoints. Optionally, you can specify how to enable the
breakpoints:

del Enable the breakpoints temporarily, then delete each one when the
program stops at it.

once Enable the breakpoints temporarily, then disable each one when
the program stops at it.

ignore n count
Ignore breakpoint number n the next count times it is hit.

346 GAWK: Effective AWK Programming

tbreak [[filename:|n | function]

t [[filename:]n | function]
Set a temporary breakpoint (enabled for only one stop). The arguments are
the same as for break.

14.3.2 Control of Execution

Now that your breakpoints are ready, you can start running the program and observing its
behavior. There are more commands for controlling execution of the program than we saw
in our earlier example:

commands [1n]
silent

end Set a list of commands to be executed upon stopping at a breakpoint or watch-
point. n is the breakpoint or watchpoint number. Without a number, the last
one set is used. The actual commands follow, starting on the next line, and ter-
minated by the end command. If the command silent is in the list, the usual
messages about stopping at a breakpoint and the source line are not printed.
Any command in the list that resumes execution (e.g., continue) terminates
the list (an implicit end), and subsequent commands are ignored. For example:

gawk> commands
> silent

> printf "A silent breakpoint; i = jd\n", i
> info locals

> set 1 = 10

> continue

> end

gawk>

continue [count]
c [count] Resume program execution. If continued from a breakpoint and count is speci-
fied, ignore the breakpoint at that location the next count times before stopping.

finish Execute until the selected stack frame returns. Print the returned value.

next [count]
n [count] Continue execution to the next source line, stepping over function calls. The
argument count controls how many times to repeat the action, as in step.

nexti [count]
ni [count] Execute one (or count) instruction(s), stepping over function calls.

return [value]
Cancel execution of a function call. If value (either a string or a number) is
specified, it is used as the function’s return value. If used in a frame other
than the innermost one (the currently executing function; i.e., frame number
0), discard all inner frames in addition to the selected one, and the caller of
that frame becomes the innermost frame.

Chapter 14: Debugging awk Programs 347

run

r Start/restart execution of the program. When restarting, the debugger retains
the current breakpoints, watchpoints, command history, automatic display vari-
ables, and debugger options.

step [count]

s [count] Continue execution until control reaches a different source line in the current
stack frame, stepping inside any function called within the line. If the argument
count is supplied, steps that many times before stopping, unless it encounters
a breakpoint or watchpoint.

stepi [count]

si [count] Execute one (or count) instruction(s), stepping inside function calls. (For il-
lustration of what is meant by an “instruction” in gawk, see the output shown
under dump in Section 14.3.6 [Miscellaneous Commands|, page 351.)

until [[filename:|n | function]

u [[filename:|n | function]
Without any argument, continue execution until a line past the current line in
the current stack frame is reached. With an argument, continue execution until
the specified location is reached, or the current stack frame returns.

14.3.3 Viewing and Changing Data

The commands for viewing and changing variables inside of gawk are:

display [var | $n]
Add variable var (or field $n) to the display list. The value of the variable or
field is displayed each time the program stops. Each variable added to the list
is identified by a unique number:

gawk> display x
4 10: x =1

This displays the assigned item number, the variable name, and its current
value. If the display variable refers to a function parameter, it is silently deleted
from the list as soon as the execution reaches a context where no such variable
of the given name exists. Without argument, display displays the current
values of items on the list.

eval "awk statements"
Evaluate awk statements in the context of the running program. You can
do anything that an awk program would do: assign values to variables, call
functions, and so on.

eval param, ...

awk statements

end This form of eval is similar, but it allows you to define “local variables” that
exist in the context of the awk statements, instead of using variables or function
parameters defined by the program.

348 GAWK: Effective AWK Programming

print varl[, var2 ...]

p varl[, var2 ...]
Print the value of a gawk variable or field. Fields must be referenced by con-
stants:

gawk> print $3

This prints the third field in the input record (if the specified field does not exist,
it prints ‘Null field’). A variable can be an array element, with the subscripts
being constant string values. To print the contents of an array, prefix the name
of the array with the ‘@’ symbol:

gawk> print @a

This prints the indices and the corresponding values for all elements in the array
a.

printf format [, arg .. .|
Print formatted text. The format may include escape sequences, such as ‘\n’
(see Section 3.2 [Escape Sequences|, page 48). No newline is printed unless one
is specified.

set var=value
Assign a constant (number or string) value to an awk variable or field. String
values must be enclosed between double quotes ("...").

You can also set special awk variables, such as FS, NF, NR, and so on.

watch var | $n ["expression"]

w var | $n ["expression"|
Add variable var (or field $n) to the watch list. The debugger then stops
whenever the value of the variable or field changes. Each watched item is
assigned a number that can be used to delete it from the watch list using the
unwatch command.

With a watchpoint, you may also supply a condition. This is an awk expression
(enclosed in double quotes) that the debugger evaluates whenever the watch-
point is reached. If the condition is true, then the debugger stops execution and
prompts for a command. Otherwise, gawk continues executing the program.

undisplay [n]
Remove item number n (or all items, if no argument) from the automatic display
list.

unwatch [n]
Remove item number n (or all items, if no argument) from the watch list.

14.3.4 Working with the Stack

Whenever you run a program that contains any function calls, gawk maintains a stack of
all of the function calls leading up to where the program is right now. You can see how you
got to where you are, and also move around in the stack to see what the state of things was
in the functions that called the one you are in. The commands for doing this are:

Chapter 14: Debugging awk Programs 349

backtrace [count]

bt [count]

where [count]
Print a backtrace of all function calls (stack frames), or innermost count frames
if count > 0. Print the outermost count frames if count < 0. The backtrace
displays the name and arguments to each function, the source file name, and
the line number. The alias where for backtrace is provided for longtime GDB
users who may be used to that command.

down [count]
Move count (default 1) frames down the stack toward the innermost frame.
Then select and print the frame.

frame [n]

f [n] Select and print stack frame n. Frame 0 is the currently executing, or inner-
most, frame (function call); frame 1 is the frame that called the innermost one.
The highest-numbered frame is the one for the main program. The printed in-
formation consists of the frame number, function and argument names, source
file, and the source line.

up [count] Move count (default 1) frames up the stack toward the outermost frame. Then
select and print the frame.

14.3.5 Obtaining Information About the Program and the
Debugger State

Besides looking at the values of variables, there is often a need to get other sorts of infor-
mation about the state of your program and of the debugging environment itself. The gawk
debugger has one command that provides this information, appropriately called info. info
is used with one of a number of arguments that tell it exactly what you want to know:

info what

i what The value for what should be one of the following:
args List arguments of the selected frame.
break List all currently set breakpoints.

display List all items in the automatic display list.

frame Give a description of the selected stack frame.

functions
List all function definitions including source file names and line
numbers.

locals List local variables of the selected frame.

source Print the name of the current source file. Each time the program

stops, the current source file is the file containing the current
instruction. When the debugger first starts, the current source
file is the first file included via the -f option. The ‘list
filename:lineno’ command can be used at any time to change
the current source.

350 GAWK: Effective AWK Programming

sources List all program sources.

variables
List all global variables.

watch List all items in the watch list.

Additional commands give you control over the debugger, the ability to save the de-
bugger’s state, and the ability to run debugger commands from a file. The commands
are:

option [name[=valuel]

o [name[=value]]
Without an argument, display the available debugger options and their current
values. ‘option name’ shows the current value of the named option. ‘option
name=value’ assigns a new value to the named option. The available options
are:

history_size
Set the maximum number of lines to keep in the history file
./ .gawk_history. The default is 100.

listsize Specify the number of lines that 1ist prints. The default is 15.

outfile Send gawk output to a file; debugger output still goes to standard
output. An empty string ("") resets output to standard output.

prompt Change the debugger prompt. The default is ‘gawk> ’.

save_history [on | off]
Save command history to file ./.gawk_history. The default is on.

save_options [on | off]
Save current options to file ./.gawkrc upon exit. The default is
on. Options are read back into the next session upon startup.

trace [on | off]
Turn instruction tracing on or off. The default is off.

save filename
Save the commands from the current session to the given file name, so that
they can be replayed using the source command.

source filename

Run command(s) from a file; an error in any command does not terminate
execution of subsequent commands. Comments (lines starting with ‘#’) are
allowed in a command file. Empty lines are ignored; they do not repeat the
last command. You can’t restart the program by having more than one run
command in the file. Also, the list of commands may include additional source
commands; however, the gawk debugger will not source the same file more than
once in order to avoid infinite recursion.

In addition to, or instead of, the source command, you can use the -D file
or ——debug=file command-line options to execute commands from a file non-
interactively (see Section 2.2 [Command-Line Options|, page 31).

Chapter 14: Debugging awk Programs 351

14.3.6 Miscellaneous Commands

There are a few more commands that do not fit into the previous categories, as follows:

dump [filename]
Dump byte code of the program to standard output or to the file named in
filename. This prints a representation of the internal instructions that gawk
executes to implement the awk commands in a program. This can be very
enlightening, as the following partial dump of Davide Brini’s obfuscated code
(see Section 11.3.11 [And Now for Something Completely Different|, page 307)
demonstrates:

gawk> dump
BEGIN

:0xfcd340] Op_rule : [in_rule = BEGIN] [source_file = brini.awk]

:0xfcc240] Op_push_i : "~" [MALLOC|STRING|STRCUR]

:0xfcc2a0] Op_push_i : "~" [MALLOC|STRING|STRCUR]

:0xfcc280] Op_match :

:0xfccle0] Op_store_var : 0

:0xfcc2e0] Op_push_i : "==" [MALLOC|STRING|STRCUR]

:0xfcc340] Op_push_i : "==" [MALLOC|STRING|STRCUR]

:0xfcc320] Op_equal :

:0xfcc200] Op_store_var

:0xfcc380] Op_push

:0xfcc360] Op_plus_i

:0xfcc220] Op_push_lhs

:0xfcc300] Op_assign_plus

:0xfcc2c0] Op_pop :

:0xfcc400] Op_push : 0

1:0xfcc420] Op_push_i : "" [MALLOCI|STRING|STRCUR]
:0xfcc4a0] Op_no_op :

1:0xfcc480] Op_push : 0

:0xfcc4c0] Op_concat : [expr_count = 3] [concat_flag = 0]

:0xfcc3c0] Op_store_var S 4

:0xfcc440] Op_push_lhs : X [do_reference = true]

:0xfcc3a0] Op_postincrement

:0xfcc4e0] Op_push 4

:0xfcc540] Op_push)

:0xfcc500] Op_plus :

:0xfcc580] Op_push : o

:0xfcc560] Op_plus :

:0xfcc460] Op_leq :

:0xfccbc0] Op_jmp_false : [target_jmp = Oxfccbel]

1:0xfcc600] Op_push_i : "Y%c" [MALLOC|STRING|STRCUR]
:0xfcc660] Op_no_op :

1:0xfccb20] Op_assign_concat : ¢

:0xfcc620] Op_jmp : [target_jmp = Oxfcc440]

[MALLOC | NUMCUR | NUMBER]
[do_reference = true]

s
O OO0 o

[y

| B e IO s I e I s N e A e O e A e Y s IO e A s O e O e A s A e IO s AN e O e N e O e A e A s I e A e O e O e N e A e A s O s O e B e
=

e o

L 2:0xfccbal] Op_K_printf : [expr_count = 17] [redir_type = ""]
[:0xfcc140] Op_no_op :

[:0xfcclc0] Op_atexit

L :0xfcc640] Op_stop

[:0xfcc180] Op_no_op

[:0xfcd150] Op_after_beginfile

[:0xfcc160] Op_no_op

I O I Y Y

352 GAWK: Effective AWK Programming

=4 [:0xfccla0] Op_after_endfile
gawk>

exit Exit the debugger. See the entry for ‘quit’, later in this list.

help
h Print a list of all of the gawk debugger commands with a short summary of their
usage. ‘help command’ prints the information about the command command.

list [~ | + | n | filename:n | n-m | function]

1[-|+ | n| filename:n | n—m | function]
Print the specified lines (default 15) from the current source file or the file
named filename. The possible arguments to 1ist are as follows:

- (Minus) Print lines before the lines last printed.

+ Print lines after the lines last printed. 1ist without any argument
does the same thing.

n Print lines centered around line number n.
n-m Print lines from n to m.

filename:n
Print lines centered around line number n in source file filename.
This command may change the current source file.

function Print lines centered around the beginning of the function function.
This command may change the current source file.
quit
q Exit the debugger. Debugging is great fun, but sometimes we all have to tend
to other obligations in life, and sometimes we find the bug and are free to go on
to the next one! As we saw earlier, if you are running a program, the debugger
warns you when you type ‘q’ or ‘quit’, to make sure you really want to quit.

trace [on | off]
Turn on or off continuous printing of the instructions that are about to be
executed, along with the awk lines they implement. The default is off.

It is to be hoped that most of the “opcodes” in these instructions are fairly
self-explanatory, and using stepi and nexti while trace is on will make them
into familiar friends.

14.4 Readline Support

If gawk is compiled with the GNU Readline library, you can take advantage of that library’s
command completion and history expansion features. The following types of completion
are available:

Command completion
Command names.

Source file name completion
Source file names. Relevant commands are break, clear, list, tbreak, and
until.

http://cnswww.cns.cwru.edu/php/chet/readline/readline.html

Chapter 14: Debugging awk Programs 353

Argument completion
Non-numeric arguments to a command. Relevant commands are enable and
info.

Variable name completion
Global variable names, and function arguments in the current context if the
program is running. Relevant commands are display, print, set, and watch.

14.5 Limitations

We hope you find the gawk debugger useful and enjoyable to work with, but as with any
program, especially in its early releases, it still has some limitations. A few that it’s worth
being aware of are:

e At this point, the debugger does not give a detailed explanation of what you did wrong
when you type in something it doesn’t like. Rather, it just responds ‘syntax error’.
When you do figure out what your mistake was, though, you’ll feel like a real guru.

e If you perused the dump of opcodes in Section 14.3.6 [Miscellanecous Commands],
page 351, (or if you are already familiar with gawk internals), you will realize that
much of the internal manipulation of data in gawk, as in many interpreters, is done on
a stack. Op_push, Op_pop, and the like are the “bread and butter” of most gawk code.

Unfortunately, as of now, the gawk debugger does not allow you to examine the stack’s
contents. That is, the intermediate results of expression evaluation are on the stack,
but cannot be printed. Rather, only variables that are defined in the program can
be printed. Of course, a workaround for this is to use more explicit variables at the
debugging stage and then change back to obscure, perhaps more optimal code later.

e There is no way to look “inside” the process of compiling regular expressions to see
if you got it right. As an awk programmer, you are expected to know the meaning of
/["[:alnum:] [:blank:]]/.

e The gawk debugger is designed to be used by running a program (with all its parame-
ters) on the command line, as described in Section 14.2.1 [How to Start the Debugger],
page 341. There is no way (as of now) to attach or “break into” a running program.
This seems reasonable for a language that is used mainly for quickly executing, short
programs.

e The gawk debugger only accepts source code supplied with the -f option.

14.6 Summary

e Programs rarely work correctly the first time. Finding bugs is called debugging, and
a program that helps you find bugs is a debugger. gawk has a built-in debugger that
works very similarly to the GNU Debugger, GDB.

e Debuggers let you step through your program one statement at a time, examine and
change variable and array values, and do a number of other things that let you un-
derstand what your program is actually doing (as opposed to what it is supposed to
do).

e Like most debuggers, the gawk debugger works in terms of stack frames, and lets you
set both breakpoints (stop at a point in the code) and watchpoints (stop when a data
value changes).

354 GAWK: Effective AWK Programming

e The debugger command set is fairly complete, providing control over breakpoints, ex-
ecution, viewing and changing data, working with the stack, getting information, and
other tasks.

e If the GNU Readline library is available when gawk is compiled, it is used by the
debugger to provide command-line history and editing.

e Usually, the debugger does not not affect the program being debugged, but occasionally
it can.

Chapter 15: Arithmetic and Arbitrary-Precision Arithmetic with gawk 355

15 Arithmetic and Arbitrary-Precision Arithmetic
with gawk

This chapter introduces some basic concepts relating to how computers do arithmetic and
defines some important terms. It then proceeds to describe floating-point arithmetic, which
is what awk uses for all its computations, including a discussion of arbitrary-precision
floating-point arithmetic, which is a feature available only in gawk. It continues on to
present arbitrary-precision integers, and concludes with a description of some points where
gawk and the POSIX standard are not quite in agreement.

NOTE: Most users of gawk can safely skip this chapter. But if you want to do
scientific calculations with gawk, this is the place to be.

15.1 A General Description of Computer Arithmetic

Until now, we have worked with data as either numbers or strings. Ultimately, however,
computers represent everything in terms of binary digits, or bits. A decimal digit can take
on any of 10 values: zero through nine. A binary digit can take on any of two values, zero
or one. Using binary, computers (and computer software) can represent and manipulate
numerical and character data. In general, the more bits you can use to represent a particular
thing, the greater the range of possible values it can take on.

Modern computers support at least two, and often more, ways to do arithmetic. Each
kind of arithmetic uses a different representation (organization of the bits) for the numbers.
The kinds of arithmetic that interest us are:

Decimal arithmetic
This is the kind of arithmetic you learned in elementary school, using paper and
pencil (and/or a calculator). In theory, numbers can have an arbitrary number
of digits on either side (or both sides) of the decimal point, and the results of
a computation are always exact.

Some modern systems can do decimal arithmetic in hardware, but usually you
need a special software library to provide access to these instructions. There
are also libraries that do decimal arithmetic entirely in software.

Despite the fact that some users expect gawk to be performing decimal arith-
metic,! it does not do so.

Integer arithmetic
In school, integer values were referred to as “whole” numbers—that is, numbers
without any fractional part, such as 1, 42, or —17. The advantage to integer
numbers is that they represent values exactly. The disadvantage is that their
range is limited.

In computers, integer values come in two flavors: signed and unsigned. Signed
values may be negative or positive, whereas unsigned values are always greater
than or equal to zero.

In computer systems, integer arithmetic is exact, but the possible range of values
is limited. Integer arithmetic is generally faster than floating-point arithmetic.

1 We don’t know why they expect this, but they do.

356 GAWK: Effective AWK Programming

Floating-point arithmetic

Floating-point numbers represent what were called in school “real” numbers
(i.e., those that have a fractional part, such as 3.1415927). The advantage to
floating-point numbers is that they can represent a much larger range of values
than can integers. The disadvantage is that there are numbers that they cannot
represent exactly.

Modern systems support floating-point arithmetic in hardware, with a limited
range of values. There are software libraries that allow the use of arbitrary-
precision floating-point calculations.

POSIX awk uses double-precision floating-point numbers, which can hold more
digits than single-precision floating-point numbers. gawk has facilities for per-
forming arbitrary-precision floating-point arithmetic, which we describe in more
detail shortly.

Computers work with integer and floating-point values of different ranges. Integer values
are usually either 32 or 64 bits in size. Single-precision floating-point values occupy 32 bits,
whereas double-precision floating-point values occupy 64 bits. Floating-point values are
always signed. The possible ranges of values are shown in Table 15.1.

Numeric representation Minimum value Maximum value

32-bit signed integer —2,147,483,648 2,147,483,647

32-bit unsigned integer 0 4,294,967,295

64-bit signed integer —9,223,372,036,854,775,808 9,223,372,036,854,775,807
64-bit unsigned integer 0 18,446,744,073,709,551,615
Single-precision floating point 1.175494 3% 3.402823%

(approximate)

Double-precision floating point 2.22507473%8 1.7976933%8

(approximate)

Table 15.1: Value ranges for different numeric representations

15.2 Other Stuff to Know

The rest of this chapter uses a number of terms. Here are some informal definitions that
should help you work your way through the material here:

Accuracy

Error

Exponent

Inf

A floating-point calculation’s accuracy is how close it comes to the real (paper
and pencil) value.

The difference between what the result of a computation “should be” and what
it actually is. It is best to minimize error as much as possible.

The order of magnitude of a value; some number of bits in a floating-point value
store the exponent.

A special value representing infinity. Operations involving another number and
infinity produce infinity.

Chapter 15: Arithmetic and Arbitrary-Precision Arithmetic with gawk 357

NaN “Not a number.”? A special value that results from attempting a calculation
that has no answer as a real number. In such a case, programs can either
receive a floating-point exception, or get NaN back as the result. The IEEE 754
standard recommends that systems return NaN. Some examples:

sqrt(-1) This makes sense in the range of complex numbers, but not in the
range of real numbers, so the result is NaN.

log(-8) —8is out of the domain of log(), so the result is NaN.

Normalized
How the significand (see later in this list) is usually stored. The value is adjusted
so that the first bit is one, and then that leading one is assumed instead of
physically stored. This provides one extra bit of precision.

Precision The number of bits used to represent a floating-point number. The more bits,
the more digits you can represent. Binary and decimal precisions are related
approximately, according to the formula:

prec = 3.322 - dps

Here, prec denotes the binary precision (measured in bits) and dps (short for
decimal places) is the decimal digits.

Rounding mode
How numbers are rounded up or down when necessary. More details are pro-
vided later.

Significand
A floating-point value consists of the significand multiplied by 10 to the power
of the exponent. For example, in 1.2345e67, the significand is 1.2345.

Stability ~ From the Wikipedia article on numerical stability: “Calculations that can be
proven not to magnify approximation errors are called numerically stable.”

See the Wikipedia article on accuracy and precision for more information on some of
those terms.

On modern systems, floating-point hardware uses the representation and operations
defined by the IEEE 754 standard. Three of the standard IEEE 754 types are 32-bit
single precision, 64-bit double precision, and 128-bit quadruple precision. The standard
also specifies extended precision formats to allow greater precisions and larger exponent
ranges. (awk uses only the 64-bit double-precision format.)

Table 15.2 lists the precision and exponent field values for the basic IEEE 754 binary
formats.

2 Thanks to Michael Brennan for this description, which we have paraphrased, and for the examples.

https://en.wikipedia.org/wiki/Numerical_stability
https://en.wikipedia.org/wiki/Accuracy_and_precision

358 GAWK: Effective AWK Programming

Name Total bits Precision Minimum Maximum
exponent exponent
Single 32 24 —126 +127
Double 64 53 —1022 +1023
Quadruple 128 113 —16382 +16383

Table 15.2: Basic IEEE format values
NOTE: The precision numbers include the implied leading one that gives them
one extra bit of significand.

15.3 Arbitrary-Precision Arithmetic Features in gawk

By default, gawk uses the double-precision floating-point values supplied by the hardware
of the system it runs on. However, if it was compiled to do so, and the -M command-line
option is supplied, gawk uses the GNU MPFR and GNU MP (GMP) libraries for arbitrary-
precision arithmetic on numbers. You can see if MPFR support is available like so:

$ gawk --version
- GNU Awk 4.1.2, API: 1.1 (GNU MPFR 3.1.0-p3, GNU MP 5.0.2)
4 Copyright (C) 1989, 1991-2015 Free Software Foundation.

(You may see different version numbers than what’s shown here. That’s OK; what’s im-
portant is to see that GNU MPFR and GNU MP are listed in the output.)

Additionally, there are a few elements available in the PROCINFO array to provide in-
formation about the MPFR and GMP libraries (see Section 7.5.2 [Built-in Variables That
Convey Information], page 159).

The MPFR library provides precise control over precisions and rounding modes, and
gives correctly rounded, reproducible, platform-independent results. With the -M command-
line option, all floating-point arithmetic operators and numeric functions can yield results
to any desired precision level supported by MPFR.

Two predefined variables, PREC and ROUNDMODE, provide control over the working preci-
sion and the rounding mode. The precision and the rounding mode are set globally for every
operation to follow. See Section 15.4.4 [Setting the Precision], page 362, and Section 15.4.5
[Setting the Rounding Mode], page 363, for more information.

15.4 Floating-Point Arithmetic: Caveat Emptor!

Math class is tough!
—Teen Talk Barbie, July 1992
This section provides a high-level overview of the issues involved when doing lots of
floating-point arithmetic.® The discussion applies to both hardware and arbitrary-precision
floating-point arithmetic.

3 There is a very nice paper on floating-point arithmetic by David Goldberg, “What Every Computer
Scientist Should Know About Floating-Point Arithmetic,” ACM Computing Surveys 23, 1 (1991-03):
5-48. This is worth reading if you are interested in the details, but it does require a background in
computer science.

http://www.mpfr.org
https://gmplib.org
http://www.validlab.com/goldberg/paper.pdf

Chapter 15: Arithmetic and Arbitrary-Precision Arithmetic with gawk 359

CAUTION: The material here is purposely general. If you need to do serious
computer arithmetic, you should do some research first, and not rely just on
what we tell you.

15.4.1 Floating-Point Arithmetic Is Not Exact

Binary floating-point representations and arithmetic are inexact. Simple values like 0.1
cannot be precisely represented using binary floating-point numbers, and the limited pre-
cision of floating-point numbers means that slight changes in the order of operations or
the precision of intermediate storage can change the result. To make matters worse, with
arbitrary-precision floating-point arithmetic, you can set the precision before starting a
computation, but then you cannot be sure of the number of significant decimal places in
the final result.

15.4.1.1 Many Numbers Cannot Be Represented Exactly

So, before you start to write any code, you should think about what you really want and
what’s really happening. Consider the two numbers in the following example:

x = 0.875 #1/2 + 1/4 + 1/8
y = 0.425

Unlike the number in y, the number stored in x is exactly representable in binary because
it can be written as a finite sum of one or more fractions whose denominators are all powers
of two. When gawk reads a floating-point number from program source, it automatically
rounds that number to whatever precision your machine supports. If you try to print the
numeric content of a variable using an output format string of "%.17g", it may not produce
the same number as you assigned to it:

$ gawk ’BEGIN { x = 0.875; y = 0.425
> printf("70.17g, %0.17g\n", x, y) }’
- 0.875, 0.42499999999999999
Often the error is so small you do not even notice it, and if you do, you can always
specify how much precision you would like in your output. Usually this is a format string
like "%.15g", which, when used in the previous example, produces an output identical to
the input.

15.4.1.2 Be Careful Comparing Values

Because the underlying representation can be a little bit off from the exact value, comparing
floating-point values to see if they are exactly equal is generally a bad idea. Here is an
example where it does not work like you would expect:

$ gawk ’BEGIN { print (0.1 + 12.2 == 12.3) }’
-1 0

The general wisdom when comparing floating-point values is to see if they are within
some small range of each other (called a delta, or tolerance). You have to decide how small
a delta is important to you. Code to do this looks something like the following;:

delta = 0.00001 # for example
difference = abs(a) - abs(b) # subtract the two values
if (difference < delta)

all ok

360 GAWK: Effective AWK Programming

else
not ok

(We assume that you have a simple absolute value function named abs () defined elsewhere
in your program.)

15.4.1.3 Errors Accumulate

The loss of accuracy during a single computation with floating-point numbers usually isn’t
enough to worry about. However, if you compute a value that is the result of a sequence of
floating-point operations, the error can accumulate and greatly affect the computation itself.
Here is an attempt to compute the value of 7 using one of its many series representations:

BEGIN {

1.0 / sqrt(3.0)

n==~6

for (i = 1; i < 30; i++) {
n=mn* 2.0
x = (sqr(x * x + 1) - 1) / x
printf ("%.15f\n", n * x)

»
]

}

When run, the early errors propagate through later computations, causing the loop to
terminate prematurely after attempting to divide by zero:
$ gawk -f pi.awk
-4 3.215390309173475
- 3.159659942097510
- 3.146086215131467
- 3.142714599645573

-1 3.224515243534819
- 2.791117213058638
- 0.000000000000000
gawk: pi.awk:6: fatal: division by zero attempted

Here is an additional example where the inaccuracies in internal representations yield
an unexpected result:

$ gawk ’BEGIN {
> for (d = 1.1; d <= 1.5; d += 0.1) # loop five times (7)

> i++
> print 1
> }
- 4

15.4.2 Getting the Accuracy You Need

Can arbitrary-precision arithmetic give exact results? There are no easy answers. The
standard rules of algebra often do not apply when using floating-point arithmetic. Among
other things, the distributive and associative laws do not hold completely, and order of
operation may be important for your computation. Rounding error, cumulative precision
loss, and underflow are often troublesome.

Chapter 15: Arithmetic and Arbitrary-Precision Arithmetic with gawvk 361

When gawk tests the expressions ‘0.1 + 12.2” and ‘12.3’ for equality using the machine
double-precision arithmetic, it decides that they are not equal! (See Section 15.4.1.2 [Be
Careful Comparing Values], page 359.) You can get the result you want by increasing the
precision; 56 bits in this case does the job:

$ gawk -M -v PREC=56 ’BEGIN { print (0.1 + 12.2 == 12.3) }’
41

If adding more bits is good, perhaps adding even more bits of precision is better? Here
is what happens if we use an even larger value of PREC:

$ gawk -M -v PREC=201 ’BEGIN { print (0.1 + 12.2 == 12.3) }’
4 0

This is not a bug in gawk or in the MPFR library. It is easy to forget that the finite
number of bits used to store the value is often just an approximation after proper rounding.
The test for equality succeeds if and only if all bits in the two operands are exactly the
same. Because this is not necessarily true after floating-point computations with a particular
precision and effective rounding mode, a straight test for equality may not work. Instead,
compare the two numbers to see if they are within the desirable delta of each other.

In applications where 15 or fewer decimal places suffice, hardware double-precision arith-
metic can be adequate, and is usually much faster. But you need to keep in mind that every
floating-point operation can suffer a new rounding error with catastrophic consequences, as
illustrated by our earlier attempt to compute the value of w. Extra precision can greatly
enhance the stability and the accuracy of your computation in such cases.

Additionally, you should understand that repeated addition is not necessarily equivalent
to multiplication in floating-point arithmetic. In the example in Section 15.4.1.3 [Errors
Accumulate], page 360:

$ gawk ’BEGIN {
> for (d =1.1; d<=1.5; d += 0.1) # loop five times (7)

> i++
> print 1
>}
- 4

you may or may not succeed in getting the correct result by choosing an arbitrarily large
value for PREC. Reformulation of the problem at hand is often the correct approach in such
situations.

15.4.3 Try a Few Extra Bits of Precision and Rounding

Instead of arbitrary-precision floating-point arithmetic, often all you need is an adjustment
of your logic or a different order for the operations in your calculation. The stability and
the accuracy of the computation of 7 in the earlier example can be enhanced by using the
following simple algebraic transformation:

(sqre(x * x + 1) - 1) / x = x/ (sqrt(x * x + 1) + 1)
After making this change, the program converges to 7 in under 30 iterations:

$ gawk -f pi2.awk
< 3.215390309173473
4 3.159659942097501

362 GAWK: Effective AWK Programming

1
w

.146086215131436
.142714599645370
.141873049979825

1 1L
w w

w

-1 3.141592653589797
- 3.141592653589797

15.4.4 Setting the Precision

gawk uses a global working precision; it does not keep track of the precision or accuracy
of individual numbers. Performing an arithmetic operation or calling a built-in function
rounds the result to the current working precision. The default working precision is 53 bits,
which you can modify using the predefined variable PREC. You can also set the value to
one of the predefined case-insensitive strings shown in Table 15.3, to emulate an IEEE 754
binary format.

PREC IEEE 754 binary format

"half" 16-bit half-precision

"single" Basic 32-bit single precision
"double" Basic 64-bit double precision
"quad" Basic 128-bit quadruple precision
"oct" 256-bit octuple precision

Table 15.3: Predefined precision strings for PREC

The following example illustrates the effects of changing precision on arithmetic opera-
tions:

$ gawk -M -v PREC=100 ’BEGIN { x = 1.0e-400; print x + 0
> PREC = "double"; print x + 0 }’

-1 1e-400

40

CAUTION: Be wary of floating-point constants! When reading a floating-point
constant from program source code, gawk uses the default precision (that of a
C double), unless overridden by an assignment to the special variable PREC on
the command line, to store it internally as an MPFR number. Changing the
precision using PREC in the program text does mot change the precision of a
constant.

If you need to represent a floating-point constant at a higher precision than the
default and cannot use a command-line assignment to PREC, you should either
specify the constant as a string, or as a rational number, whenever possible.
The following example illustrates the differences among various ways to print a
floating-point constant:

$ gawk -M ’BEGIN { PREC = 113; printf("%0.25f\n", 0.1) }’
- 0.1000000000000000055511151

$ gawk -M -v PREC=113 ’BEGIN { printf("70.25f\n", 0.1) }’
- 0.1000000000000000000000000

$ gawk -M ’BEGIN { PREC = 113; printf("}0.25f\n", "0.1") }’

Chapter 15: Arithmetic and Arbitrary-Precision Arithmetic with gawk 363

- 0.1000000000000000000000000
$ gawk -M ’BEGIN { PREC = 113; printf("70.25f\n", 1/10) }’
- 0.1000000000000000000000000

15.4.5 Setting the Rounding Mode

The ROUNDMODE variable provides program-level control over the rounding mode. The cor-
respondence between ROUNDMODE and the IEEE rounding modes is shown in Table 15.4.

Rounding mode IEEE name ROUNDMODE
Round to nearest, ties to even roundTiesToEven "N" or "n"
Round toward positive infinity roundTowardPositive "g" or "u"
Round toward negative infinity roundTowardNegative "D" or "d"
Round toward zero roundTowardZero "Z" or "z"
Round to nearest, ties away from zero roundTiesToAway "A" or "a"

Table 15.4: gawk rounding modes

ROUNDMODE has the default value "N", which selects the IEEE 754 rounding mode
roundTiesToEven. In Table 15.4, the value "A" selects roundTiesToAway. This is only
available if your version of the MPFR library supports it; otherwise, setting ROUNDMODE to
"A" has no effect.

The default mode roundTiesToEven is the most preferred, but the least intuitive. This
method does the obvious thing for most values, by rounding them up or down to the nearest
digit. For example, rounding 1.132 to two digits yields 1.13, and rounding 1.157 yields 1.16.

However, when it comes to rounding a value that is exactly halfway between, things do
not work the way you probably learned in school. In this case, the number is rounded to
the nearest even digit. So rounding 0.125 to two digits rounds down to 0.12, but rounding
0.6875 to three digits rounds up to 0.688. You probably have already encountered this
rounding mode when using printf to format floating-point numbers. For example:

BEGIN {
x = -4.5
for (i = 1; i < 10; i++) {
x +=1.0
printf("%4.1f => %2.0f\n", x, x)
}
}
produces the following output when run on the author’s system:*
-3.56 => -4
-2.5 => -2
-1.5 => -2
-0.5 =>0
0.5=>0
1.5 => 2

4 Tt is possible for the output to be completely different if the C library in your system does not use the
IEEE 754 even-rounding rule to round halfway cases for printf.

364 GAWK: Effective AWK Programming

2.5 => 2
3.5 =>4
4.5 => 4
The theory behind roundTiesToEven is that it more or less evenly distributes upward
and downward rounds of exact halves, which might cause any accumulating round-off error
to cancel itself out. This is the default rounding mode for IEEE 754 computing functions
and operators.

The other rounding modes are rarely used. Rounding toward positive infinity
(roundTowardPositive) and toward negative infinity (roundTowardNegative) are often
used to implement interval arithmetic, where you adjust the rounding mode to calculate
upper and lower bounds for the range of output. The roundTowardZero mode can be used
for converting floating-point numbers to integers. The rounding mode roundTiesToAway
rounds the result to the nearest number and selects the number with the larger magnitude
if a tie occurs.

Some numerical analysts will tell you that your choice of rounding style has tremendous
impact on the final outcome, and advise you to wait until final output for any rounding.
Instead, you can often avoid round-off error problems by setting the precision initially to
some value sufficiently larger than the final desired precision, so that the accumulation
of round-off error does not influence the outcome. If you suspect that results from your
computation are sensitive to accumulation of round-off error, look for a significant difference
in output when you change the rounding mode to be sure.

15.5 Arbitrary-Precision Integer Arithmetic with gawk

When given the -M option, gawk performs all integer arithmetic using GMP arbitrary-
precision integers. Any number that looks like an integer in a source or data file is stored
as an arbitrary-precision integer. The size of the integer is limited only by the available
memory. For example, the following computes 5432, the result of which is beyond the limits
of ordinary hardware double-precision floating-point values:

$ gawk -M ’BEGIN {

> x =5747372

> print "number of digits =", length(x)

> print substr(x, 1, 20), "...", substr(x, length(x) - 19, 20)
>}

- number of digits = 183231

- 62060698786608744707 ... 92256259918212890625

If instead you were to compute the same value using arbitrary-precision floating-point
values, the precision needed for correct output (using the formula prec = 3.322 - dps) would
be 3.322 - 183231, or 608693.

The result from an arithmetic operation with an integer and a floating-point value is a
floating-point value with a precision equal to the working precision. The following program
calculates the eighth term in Sylvester’s sequence® using a recurrence:

$ gawk -M ’BEGIN {

5 Weisstein, Eric W. Sylvester’s Sequence. From MathWorld—A Wolfram Web Resource
(http://mathworld.wolfram.com/SylvestersSequence.html).

http://mathworld.wolfram.com/SylvestersSequence.html

Chapter 15: Arithmetic and Arbitrary-Precision Arithmetic with gawk 365

> s =2.0

> for (i = 1; i <= 7; i++)

> s =8 * (s -1) + 1

> print s

> 3}

- 113423713055421845118910464

The output differs from the actual number, 113,423,713,055,421,844,361,000,443, because

the default precision of 53 bits is not enough to represent the floating-point results exactly.
You can either increase the precision (100 bits is enough in this case), or replace the floating-
point constant ‘2.0’ with an integer, to perform all computations using integer arithmetic
to get the correct output.

Sometimes gawk must implicitly convert an arbitrary-precision integer into an arbitrary-
precision floating-point value. This is primarily because the MPFR library does not always
provide the relevant interface to process arbitrary-precision integers or mixed-mode numbers
as needed by an operation or function. In such a case, the precision is set to the minimum
value necessary for exact conversion, and the working precision is not used for this purpose.
If this is not what you need or want, you can employ a subterfuge and convert the integer
to floating point first, like this:

gawk -M ’BEGIN { n = 13; print (n + 0.0) % 2.0 }’
You can avoid this issue altogether by specifying the number as a floating-point value
to begin with:
gawk -M ’BEGIN { n = 13.0; print n % 2.0 }’
Note that for this particular example, it is likely best to just use the following:
gawk -M ’BEGIN { n = 13; print n % 2 }’
When dividing two arbitrary precision integers with either ‘/” or *%’, the result is typically

an arbitrary precision floating point value (unless the denominator evenly divides into the
numerator).

15.6 How To Check If MPFR Is Available

Occasionally, you might like to be able to check if gawk was invoked with the -M option,
enabling arbitrary-precision arithmetic. You can do so with the following function, con-
tributed by Andrew Schorr:

adequate_math_precision --- return true if we have enough bits

function adequate_math_precision(n)
{

return (1 !'= (1+(1/(2"(@-1)))))
}

Here is code that invokes the function in order to check if arbitrary-precision arithmetic
is available:

BEGIN {
How many bits of mantissa precision are required
for this program to function properly?
fpbits = 123

366 GAWK: Effective AWK Programming

We hope that we were invoked with MPFR enabled. If so, the

following statement should configure calculations to our desired
precision.

PREC = fpbits

if (! adequate_math_precision(fpbits)) {
print("Error: insufficient computation precision available.\n" \
"Try again with the -M argument?") > "/dev/stderr"
exit 1

15.7 Standards Versus Existing Practice

Historically, awk has converted any nonnumeric-looking string to the numeric value zero,
when required. Furthermore, the original definition of the language and the original POSIX
standards specified that awk only understands decimal numbers (base 10), and not octal
(base 8) or hexadecimal numbers (base 16).

Changes in the language of the 2001 and 2004 POSIX standards can be interpreted to
imply that awk should support additional features. These features are:

e Interpretation of floating-point data values specified in hexadecimal notation (e.g.,
OxDEADBEEF). (Note: data values, not source code constants.)

e Support for the special IEEE 754 floating-point values “not a number” (NaN), positive
infinity (“inf”), and negative infinity (“—inf”). In particular, the format for these
values is as specified by the ISO 1999 C standard, which ignores case and can allow
implementation-dependent additional characters after the ‘nan’ and allow either ‘inf’
or ‘infinity’.

The first problem is that both of these are clear changes to historical practice:

e The gawk maintainer feels that supporting hexadecimal floating-point values, in par-
ticular, is ugly, and was never intended by the original designers to be part of the
language.

e Allowing completely alphabetic strings to have valid numeric values is also a very severe
departure from historical practice.

The second problem is that the gawk maintainer feels that this interpretation of the
standard, which required a certain amount of “language lawyering” to arrive at in the first
place, was not even intended by the standard developers. In other words, “We see how you
got where you are, but we don’t think that that’s where you want to be.”

Recognizing these issues, but attempting to provide compatibility with the earlier ver-
sions of the standard, the 2008 POSIX standard added explicit wording to allow, but not
require, that awk support hexadecimal floating-point values and special values for “not a
number” and infinity.

Although the gawk maintainer continues to feel that providing those features is inad-
visable, nevertheless, on systems that support IEEE floating point, it seems reasonable to

Chapter 15: Arithmetic and Arbitrary-Precision Arithmetic with gawk 367

provide some way to support NaN and infinity values. The solution implemented in gawk
is as follows:

With the —-posix command-line option, gawk becomes “hands off.” String values are
passed directly to the system library’s strtod () function, and if it successfully returns
a numeric value, that is what’s used.® By definition, the results are not portable across
different systems. They are also a little surprising;:

$ echo nanny | gawk --posix ’{ print $1 + 0 }’

< nan

$ echo OxDeadBeef | gawk --posix ’{ print $1 + 0 }’
- 3735928559

Without --posix, gawk interprets the four string values ‘+inf’, ‘-inf’, ‘4man’, and
‘-nan’ specially, producing the corresponding special numeric values. The leading sign
acts a signal to gawk (and the user) that the value is really numeric. Hexadecimal
floating point is not supported (unless you also use —-non-decimal-data, which is not
recommended). For example:

$ echo nanny | gawk ’{ print $1 + 0 }’

40

$ echo +nan | gawk ’{ print $1 + 0 }’

- nan

$ echo OxDeadBeef | gawk ’{ print $1 + 0 }’
40

gawk ignores case in the four special values. Thus, ‘+nan’ and ‘+NaN’ are the same.

15.8 Summary

Most computer arithmetic is done using either integers or floating-point values. Stan-
dard awk uses double-precision floating-point values.

In the early 1990s Barbie mistakenly said, “Math class is tough!” Although math isn’t
tough, floating-point arithmetic isn’t the same as pencil-and-paper math, and care must
be taken:

— Not all numbers can be represented exactly.

— Comparing values should use a delta, instead of being done directly with ‘==" and

=)

— Errors accumulate.
— Operations are not always truly associative or distributive.
Increasing the accuracy can help, but it is not a panacea.

Often, increasing the accuracy and then rounding to the desired number of digits
produces reasonable results.

Use -M (or --bignum) to enable MPFR arithmetic. Use PREC to set the precision in
bits, and ROUNDMODE to set the IEEE 754 rounding mode.

With -M, gawk performs arbitrary-precision integer arithmetic using the GMP library.
This is faster and more space-efficient than using MPFR for the same calculations.

6 You asked for it, you got it.

368 GAWK: Effective AWK Programming

e There are several areas with respect to floating-point numbers where gawk disagrees
with the POSIX standard. It pays to be aware of them.

e Overall, there is no need to be unduly suspicious about the results from floating-point
arithmetic. The lesson to remember is that floating-point arithmetic is always more
complex than arithmetic using pencil and paper. In order to take advantage of the
power of floating-point arithmetic, you need to know its limitations and work within
them. For most casual use of floating-point arithmetic, you will often get the expected
result if you simply round the display of your final results to the correct number of
significant decimal digits.

e As general advice, avoid presenting numerical data in a manner that implies better
precision than is actually the case.

Chapter 16: Writing Extensions for gawk 369

16 Writing Extensions for gawk

It is possible to add new functions written in C or C++ to gawk using dynamically loaded
libraries. This facility is available on systems that support the C dlopen() and dlsym()
functions. This chapter describes how to create extensions using code written in C or C++.

If you don’t know anything about C programming, you can safely skip this chapter,
although you may wish to review the documentation on the extensions that come with
gawk (see Section 16.7 [The Sample Extensions in the gawk Distribution], page 418), and
the information on the gawkextlib project (see Section 16.8 [The gawkextlib Project]
page 427). The sample extensions are automatically built and installed when gawk is.

)

NOTE: When --sandbox is specified, extensions are disabled (see Section 2.2
[Command-Line Options|, page 31).

16.1 Introduction

An extension (sometimes called a plug-in) is a piece of external compiled code that gawk can
load at runtime to provide additional functionality, over and above the built-in capabilities
described in the rest of this book.

Extensions are useful because they allow you (of course) to extend gawk’s functionality.
For example, they can provide access to system calls (such as chdir () to change directory)
and to other C library routines that could be of use. As with most software, “the sky is
the limit”; if you can imagine something that you might want to do and can write in C or
C++, you can write an extension to do it!

Extensions are written in C or C++, using the application programming interface (APT)
defined for this purpose by the gawk developers. The rest of this chapter explains the facil-
ities that the API provides and how to use them, and presents a small example extension.
In addition, it documents the sample extensions included in the gawk distribution and de-
scribes the gawkextlib project. See Section C.5 [Extension API Design], page 475, for a
discussion of the extension mechanism goals and design.

16.2 Extension Licensing

Every dynamic extension must be distributed under a license that is compatible with the
GNU GPL (see [GNU General Public License|, page 497).

In order for the extension to tell gawk that it is properly licensed, the extension must
define the global symbol plugin_is_GPL_compatible. If this symbol does not exist, gawk
emits a fatal error and exits when it tries to load your extension.

The declared type of the symbol should be int. It does not need to be in any allo-
cated section, though. The code merely asserts that the symbol exists in the global scope.
Something like this is enough:

int plugin_is_GPL_compatible;

16.3 How It Works at a High Level

Communication between gawk and an extension is two-way. First, when an extension is
loaded, gawk passes it a pointer to a struct whose fields are function pointers. This is
shown in Figure 16.1.

370 GAWK: Effective AWK Programming

API
Struct
— dl_load(api_p, id);
gawk Main Program Address Space Extension

Figure 16.1: Loading the extension

The extension can call functions inside gawk through these function pointers, at runtime,
without needing (link-time) access to gawk’s symbols. One of these function pointers is to
a function for “registering” new functions. This is shown in Figure 16.2.

register_ext_func({ "chdir", do_chdir, 1 });

¢

A

Iy
i

5
It

,‘_Y

2,

gawk Main Program Address Space Extension

Figure 16.2: Registering a new function

In the other direction, the extension registers its new functions with gawk by passing
function pointers to the functions that provide the new feature (do_chdir (), for example).
gawk associates the function pointer with a name and can then call it, using a defined calling
convention. This is shown in Figure 16.3.

Chapter 16: Writing Extensions for gawk 371

BEGIN {
chdir ("/path") (*fnptr) (1) ;
}
.
3
ol
&5
.
5
gawk Main Program Address Space Extension

Figure 16.3: Calling the new function

The do_xxx() function, in turn, then uses the function pointers in the API struct to
do its work, such as updating variables or arrays, printing messages, setting ERRNO, and so
on.

Convenience macros make calling through the function pointers look like regular function
calls so that extension code is quite readable and understandable.

Although all of this sounds somewhat complicated, the result is that extension code
is quite straightforward to write and to read. You can see this in the sample extension
filefuncs.c (see Section 16.6 [Example: Some File Functions|, page 408) and also in the
testext.c code for testing the APIs.

Some other bits and pieces:

e The API provides access to gawk’s do_xxx values, reflecting command-line options, like
do_lint, do_profiling, and so on (see Section 16.4.13 [API Variables|, page 404).
These are informational: an extension cannot affect their values inside gawk. In addi-
tion, attempting to assign to them produces a compile-time error.

e The API also provides major and minor version numbers, so that an extension can
check if the gawk it is loaded with supports the facilities it was compiled with. (Version
mismatches “shouldn’t” happen, but we all know how that goes.) See Section 16.4.13.1
[API Version Constants and Variables|, page 405, for details.

16.4 API Description

C or C++ code for an extension must include the header file gawkapi.h, which declares the
functions and defines the data types used to communicate with gawk. This (rather large)
section describes the API in detail.

16.4.1 Introduction

Access to facilities within gawk is achieved by calling through function pointers passed into
your extension.

372 GAWK: Effective AWK Programming

API function pointers are provided for the following kinds of operations:
e Allocating, reallocating, and releasing memory.
e Registration functions. You may register:
— Extension functions
— Exit callbacks
— A version string
— Input parsers
— Qutput wrappers

— Two-way processors

All of these are discussed in detail later in this chapter.
e Printing fatal, warning, and “lint” warning messages.
e Updating ERRNQ, or unsetting it.
e Accessing parameters, including converting an undefined parameter into an array.
e Symbol table access: retrieving a global variable, creating one, or changing one.

e Creating and releasing cached values; this provides an efficient way to use values for
multiple variables and can be a big performance win.

e Manipulating arrays:
— Retrieving, adding, deleting, and modifying elements
— Getting the count of elements in an array
— Creating a new array
— Clearing an array
— Flattening an array for easy C-style looping over all its indices and elements

e Accessing and manipulating redirections.

Some points about using the API:

e The following types, macros, and/or functions are referenced in gawkapi.h. For correct
use, you must therefore include the corresponding standard header file before including

gawkapi.h:

C entity Header file

EOF <stdio.h>
Values for errno <errno.h>
FILE <stdio.h>
NULL <stddef.h>
memcpy () <string.h>
memset () <string.h>
size_t <sys/types.h>
struct stat <sys/stat.h>

Due to portability concerns, especially to systems that are not fully standards-
compliant, it is your responsibility to include the correct files in the correct way. This
requirement is necessary in order to keep gawkapi.h clean, instead of becoming a
portability hodge-podge as can be seen in some parts of the gawk source code.

Chapter 16: Writing Extensions for gawk 373

If your extension uses MPFR facilities, and you wish to receive such values from gawk
and/or pass such values to it, you must include the <mpfr.h> header before including
<gawkapi.h>.

The gawkapi.h file may be included more than once without ill effect. Doing so,
however, is poor coding practice.

Although the API only uses ISO C 90 features, there is an exception; the “constructor”
functions use the inline keyword. If your compiler does not support this keyword, you
should either place ‘-Dinline=’’" on your command line or use the GNU Autotools
and include a config.h file in your extensions.

All pointers filled in by gawk point to memory managed by gawk and should be treated
by the extension as read-only. Memory for all strings passed into gawk from the
extension must come from calling one of gawk_malloc(), gawk_calloc(), or gawk_
realloc(), and is managed by gawk from then on.

The API defines several simple structs that map values as seen from awk. A value can
be a double, a string, or an array (as in multidimensional arrays, or when creating a
new array).

String values maintain both pointer and length, because embedded NUL characters are
allowed.

NOTE: By intent, gawk maintains strings using the current multibyte en-
coding (as defined by LC_xxx environment variables) and not using wide
characters. This matches how gawk stores strings internally and also how
characters are likely to be input into and output from files.

NOTE: String values passed to an extension by gawk are always NUL-
terminated. Thus it is safe to pass such string values to standard library
and system routines. However, because gawk allows embedded NUL charac-
ters in string data, before using the data as a regular C string, you should
check that the length for that string passed to the extension matches the
return value of strlen() for it.

When retrieving a value (such as a parameter or that of a global variable or array
element), the extension requests a specific type (number, string, scalar, value cookie,
array, or “undefined”). When the request is “undefined,” the returned value will have
the real underlying type.

However, if the request and actual type don’t match, the access function returns “false”
and fills in the type of the actual value that is there, so that the extension can, e.g.,
print an error message (such as “scalar passed where array expected”).

You may call the API functions by using the function pointers directly, but the interface

is not so pretty. To make extension code look more like regular code, the gawkapi.h header
file defines several macros that you should use in your code. This section presents the
macros as if they were functions.

16.4.2 General-Purpose Data Types

I have a true love/hate relationship with unions.

—Arnold Robbins

That’s the thing about unions: the compiler will arrange things so they can
accommodate both love and hate.

374 GAWK: Effective AWK Programming

—Chet Ramey

The extension API defines a number of simple types and structures for general-purpose
use. Additional, more specialized, data structures are introduced in subsequent sections,
together with the functions that use them.

The general-purpose types and structures are as follows:

typedef void *awk_ext_id_t;
A value of this type is received from gawk when an extension is loaded. That
value must then be passed back to gawk as the first parameter of each API
function.

#define awk_const ...
This macro expands to ‘const’ when compiling an extension, and to nothing
when compiling gawk itself. This makes certain fields in the API data structures
unwritable from extension code, while allowing gawk to use them as it needs to.

typedef enum awk_bool {
awk_false =0,
awk_true
} awk_bool_t;
A simple Boolean type.

typedef struct awk_string {
char *str; /* data */
size_t len; /* length thereof, in chars */
} awk_string_t;
This represents a mutable string. gawk owns the memory pointed to if it sup-
plied the value. Otherwise, it takes ownership of the memory pointed to. Such
memory must come from calling one of the gawk_malloc(), gawk_calloc(),
or gawk_realloc() functions!

As mentioned earlier, strings are maintained using the current multibyte en-
coding.

typedef enum {

AWK_UNDEFINED,

AWK_NUMBER,

AWK_STRING,

AWK_REGEX,

AWK_STRNUM,

AWK_ARRAY,

AWK_SCALAR, /* opaque access to a variable */

AWK_VALUE_COOKIE /* for updating a previously created value */
} awk_valtype_t;

This enum indicates the type of a value. It is used in the following struct.

Chapter 16: Writing Extensions for gawk 375

typedef struct awk_value {
awk_valtype_t val_type;

union {
awk_string_ t S;
awknum_t n;
awk_array_t a;
awk_scalar_t scl;
awk_value_cookie_t vc;
}u;

} awk_value_t;
An “awk value.” The val_type member indicates what kind of value the union
holds, and each member is of the appropriate type.

#define str_value u.s
#define strnum_value str_value
#define regex_value str_value

#define num_value u.n.d
#define num_type u.n.type
#define num_ptr u.n.ptr
#define array_cookie u.a
#define scalar_cookie u.scl
#define value_cookie u.vc

Using these macros makes accessing the fields of the awk_value_t more read-

able.

typedef struct awk_number {
double d;
enum AWK_NUMBER_TYPE {
AWK_NUMBER_TYPE_DOUBLE,
AWK_NUMBER_TYPE_MPFR,
AWK_NUMBER_TYPE_MPZ
} type;
void *ptr;
} awk_number_t;
This represents a numeric value. Internally, gawk stores every number as either
a C double, a GMP integer, or an MPFR arbitrary-precision floating-point
value. In order to allow extensions to also support GMP and MPFR values,
numeric values are passed in this structure.

The double-precision d element is always populated in data received from gawk.
In addition, by examining the type member, an extension can determine if the
ptr member is either a GMP integer (type mpz_ptr), or an MPFR floating-
point value (type mpfr_ptr_t), and cast it appropriately.

typedef void *awk_scalar_t;
Scalars can be represented as an opaque type. These values are obtained from
gawk and then passed back into it. This is discussed in a general fashion in the
text following this list, and in more detail in Section 16.4.10.2 [Variable Access
and Update by Cookiel], page 391.

376 GAWK: Effective AWK Programming

typedef void *awk_value_cookie_t;
A “value cookie” is an opaque type representing a cached value. This is also
discussed in a general fashion in the text following this list, and in more detail
in Section 16.4.10.3 [Creating and Using Cached Values|, page 393.

Scalar values in awk are numbers, strings, strnums, or typed regexps. The awk_value_t
struct represents values. The val_type member indicates what is in the union.

Representing numbers is easy—the API uses a C double. Strings require more work.
Because gawk allows embedded NUL bytes in string values, a string must be represented as
a pair containing a data pointer and length. This is the awk_string_t type.

A strnum (numeric string) value is represented as a string and consists of user input
data that appears to be numeric. When an extension creates a strnum value, the result is a
string flagged as user input. Subsequent parsing by gawk then determines whether it looks
like a number and should be treated as a strnum, or as a regular string.

This is useful in cases where an extension function would like to do something com-
parable to the split() function which sets the strnum attribute on the array elements it
creates. For example, an extension that implements CSV splitting would want to use this
feature. This is also useful for a function that retrieves a data item from a database. The
PostgreSQL PQgetvalue () function, for example, returns a string that may be numeric or
textual depending on the contents.

Typed regexp values (see Section 6.1.2.2 [Strongly Typed Regexp Constants], page 116)
are not of much use to extension functions. Extension functions can tell that they’ve received
them, and create them for scalar values. Otherwise, they can examine the text of the regexp
through regex_value.str and regex_value.len.

Identifiers (i.e., the names of global variables) can be associated with either scalar values
or with arrays. In addition, gawk provides true arrays of arrays, where any given array
element can itself be an array. Discussion of arrays is delayed until Section 16.4.11 [Array
Manipulation|, page 395.

The various macros listed earlier make it easier to use the elements of the union as if
they were fields in a struct; this is a common coding practice in C. Such code is easier
to write and to read, but it remains your responsibility to make sure that the val_type
member correctly reflects the type of the value in the awk_value_t struct.

Conceptually, the first three members of the union (number, string, and array) are all
that is needed for working with awk values. However, because the API provides routines
for accessing and changing the value of a global scalar variable only by using the variable’s
name, there is a performance penalty: gawk must find the variable each time it is accessed
and changed. This turns out to be a real issue, not just a theoretical one.

Thus, if you know that your extension will spend considerable time reading and/or
changing the value of one or more scalar variables, you can obtain a scalar cookie! object
for that variable, and then use the cookie for getting the variable’s value or for changing
the variable’s value. The awk_scalar_t type holds a scalar cookie, and the scalar_cookie
macro provides access to the value of that type in the awk_value_t struct. Given a scalar

1 See the “cookie” entry in the Jargon file for a definition of cookie, and the “magic cookie” entry in the
Jargon file for a nice example. See also the entry for “Cookie” in the [Glossary], page 485.

http://catb.org/jargon/html/C/cookie.html
http://catb.org/jargon/html/M/magic-cookie.html
http://catb.org/jargon/html/M/magic-cookie.html

Chapter 16: Writing Extensions for gawk 377

cookie, gawk can directly retrieve or modify the value, as required, without having to find
it first.

The awk_value_cookie_t type and value_cookie macro are similar. If you know that
you wish to use the same numeric or string value for one or more variables, you can create
the value once, retaining a value cookie for it, and then pass in that value cookie whenever
you wish to set the value of a variable. This saves storage space within the running gawk
process and reduces the time needed to create the value.

16.4.3 Memory Allocation Functions and Convenience Macros

The API provides a number of memory allocation functions for allocating memory that can
be passed to gawk, as well as a number of convenience macros. This subsection presents
them all as function prototypes, in the way that extension code would use them:

void *gawk_malloc(size_t size);
Call the correct version of malloc() to allocate storage that may be passed to
gawk.

void *gawk_calloc(size_t nmemb, size_t size);
Call the correct version of calloc() to allocate storage that may be passed to
gawk.

void *gawk_realloc(void *ptr, size_t size);
Call the correct version of realloc() to allocate storage that may be passed
to gawk.

void gawk_free(void *ptr);
Call the correct version of free() to release storage that was allocated with
gawk_malloc(), gawk_calloc(), or gawk_realloc().

The API has to provide these functions because it is possible for an extension to be
compiled and linked against a different version of the C library than was used for the gawk
executable.? If gawk were to use its version of free() when the memory came from an
unrelated version of malloc (), unexpected behavior would likely result.

Three convenience macros may be used for allocating storage from gawk_malloc(),
gawk_calloc, and gawk_realloc(). If the allocation fails, they cause gawk to exit with a
fatal error message. They should be used as if they were procedure calls that do not return
a value:

#define emalloc(pointer, type, size, message) ...
The arguments to this macro are as follows:

pointer The pointer variable to point at the allocated storage.

type The type of the pointer variable. This is used to create a cast for
the call to gawk_malloc().

size The total number of bytes to be allocated.

message A message to be prefixed to the fatal error message. Typically this
is the name of the function using the macro.

2 This is more common on MS-Windows systems, but it can happen on Unix-like systems as well.

378 GAWK: Effective AWK Programming

For example, you might allocate a string value like so:

awk_value_t result;
char *message;
const char greet[] = "Don’t Panic!";

emalloc(message, char *, sizeof(greet), "myfunc");
strcpy (message, greet);
make_malloced_string(message, strlen(message), & result);

#define ezalloc(pointer, type, size, message) ...
This is like emalloc(), but it calls gawk_calloc() instead of gawk_malloc().
The arguments are the same as for the emalloc() macro, but this macro guar-
antees that the memory returned is initialized to zero.

#define erealloc(pointer, type, size, message) ...
This is like emalloc (), but it calls gawk_realloc() instead of gawk_malloc().
The arguments are the same as for the emalloc() macro.

Two additional functions allocate MPFR and GMP objects for use by extension functions
that need to create and then return such values:

void *get_mpfr_ptr();
Allocate and initialize an MPFR object and return a pointer to it. If the
allocation fails, gawk exits with a fatal “out of memory” error. If gawk was
compiled without MPFR support, calling this function causes a fatal error.

void *get_mpz_ptr();
Allocate and initialize a GMP object and return a pointer to it. If the allocation
fails, gawk exits with a fatal “out of memory” error. If gawk was compiled
without MPFR support, calling this function causes a fatal error.

Both of these functions return ‘void *’, since the gawkapi.h header file should not have
dependency upon <mpfr.h> (and <gmp.h>, which is included from <mpfr.h>). The actual
return values are of types mpfr_ptr and mpz_ptr respectively, and you should cast the
return values appropriately before assigning the results to variables of the correct types.

16.4.4 Constructor Functions

The API provides a number of constructor functions for creating string and numeric values,
as well as a number of convenience macros. This subsection presents them all as function
prototypes, in the way that extension code would use them:

static inline awk_value_t *

make_const_string(const char *string, size_t length, awk_value_t *result);
This function creates a string value in the awk_value_t variable pointed to by
result. It expects string to be a C string constant (or other string data),
and automatically creates a copy of the data for storage in result. It returns
result.

static inline awk_value_t *

make_malloced_string(const char *string, size_t length, awk_value_t *result);
This function creates a string value in the awk_value_t variable pointed to by
result. It expects string to be a ‘char *’ value pointing to data previously

Chapter 16: Writing Extensions for gawk 379

obtained from gawk_malloc(), gawk_calloc(), or gawk_realloc(). The idea
here is that the data is passed directly to gawk, which assumes responsibility
for it. It returns result.

static inline awk_value_t *

make_null_string(awk_value_t *result);
This specialized function creates a null string (the “undefined” value) in the
awk_value_t variable pointed to by result. It returns result.

static inline awk_value_t *

make_number (double num, awk_value_t *result);
This function simply creates a numeric value in the awk_value_t variable
pointed to by result.

static inline awk_value_t *

make_number_mpz(void *mpz, awk_value_t *result);
This function creates a GMP number value in result. The mpz must be from
a call to get_mpz_ptr() (and thus be of real underlying type mpz_ptr). gawk
takes ownership of this memory.

static inline awk_value_t *

make_number_mpfr(void *mpfr, awk_value_t *result);
This function creates an MPFR number value in result. The mpfr must be
from a call to get_mpfr_ptr(). (and thus be of real underlying type mpfr_ptr)
gawk takes ownership of this memory.

static inline awk_value_t *

make_const_user_input(const char *string, size_t length, awk_value_t

*result) ;
This function is identical to make_const_string(), but the string is flagged as
user input that should be treated as a strnum value if the contents of the string
are numeric.

static inline awk_value_t *

make_malloced_user_input(const char *string, size_t length, awk_value_t

*result) ;
This function is identical to make_malloced_string(), but the string is flagged
as user input that should be treated as a strnum value if the contents of the
string are numeric.

static inline awk_value_t *

make_const_regex(const char *string, size_t length, awk_value_t *result);
This function creates a strongly typed regexp value by allocating a copy of the
string. string is the regular expression of length len.

static inline awk_value_t *

make_malloced_regex(const char *string, size_t length, awk_value_t *result);
This function creates a strongly typed regexp value. string is the regular
expression of length len. It expects string to be a ‘char *’ value pointing
to data previously obtained from gawk_malloc(), gawk_calloc(), or gawk_
reallocQ).

380 GAWK: Effective AWK Programming

16.4.5 Registration Functions

This section describes the API functions for registering parts of your extension with gawk.

16.4.5.1 Registering An Extension Function

Extension functions are described by the following record:

typedef struct awk_ext_func {
const char *name;
awk_value_t *(xconst function) (int num_actual_args,
awk_value_t *result,
struct awk_ext_func *finfo);
const size_t max_expected_args;
const size_t min_required_args;
awk_bool_t suppress_lint;
void *data; /* opaque pointer to any extra state */
} awk_ext_func_t;

The fields are:

const char *name;
The name of the new function. awk-level code calls the function by this name.
This is a regular C string.

Function names must obey the rules for awk identifiers. That is, they must
begin with either an English letter or an underscore, which may be followed by
any number of letters, digits, and underscores. Letter case in function names
is significant.

awk_value_t *(*const function) (int num_actual_args,

awk_value_t *result,

struct awk_ext_func *finfo);
This is a pointer to the C function that provides the extension’s functional-
ity. The function must fill in *result with either a number, a string, or a
regexp. gawk takes ownership of any string memory. As mentioned earlier,
string memory must come from one of gawk_malloc(), gawk_calloc(), or
gawk_realloc().

The num_actual_args argument tells the C function how many actual param-
eters were passed from the calling awk code.

The finfo parameter is a pointer to the awk_ext_func_t for this function.
The called function may access data within it as desired, or not.

The function must return the value of result. This is for the convenience of
the calling code inside gawk.

const size_t max_expected_args;
This is the maximum number of arguments the function expects to receive. If
called with more arguments than this, and if lint checking has been enabled,
then gawk prints a warning message. For more information, see the entry for
suppress_lint, later in this list.

Chapter 16: Writing Extensions for gawk 381

const size_t min_required_args;
This is the minimum number of arguments the function expects to receive. If
called with fewer arguments, gawk prints a fatal error message and exits.

awk_bool_t suppress_lint;
This flag tells gawk not to print a lint message if lint checking has been enabled
and if more arguments were supplied in the call than expected. An extension
function can tell if gawk already printed at least one such message by checking
if ‘num_actual_args > finfo->max_expected_args’. If so, and the function
does not want more lint messages to be printed, it should set finfo->suppress_
lint to awk_true.

void *data;
This is an opaque pointer to any data that an extension function may wish
to have available when called. Passing the awk_ext_func_t structure to the
extension function, and having this pointer available in it enable writing a single
C or C++ function that implements multiple awk-level extension functions.

Once you have a record representing your extension function, you register it with gawk
using this API function:

awk_bool_t add_ext_func(const char *name_space, awk_ext_func_t *func);
This function returns true upon success, false otherwise. The name_space pa-
rameter is currently not used; you should pass in an empty string (""). The
func pointer is the address of a struct representing your function, as just
described.

gawk does not modify what func points to, but the extension function itself
receives this pointer and can modify what it points to, thus it is purposely not
declared to be const.

The combination of min_required_args, max_expected_args, and suppress_lint may
be confusing. Here is how you should set things up.

Any number of arguments is valid
Set min_required_args and max_expected_args to zero and set suppress_
lint to awk_true.

A minimum number of arguments is required, no limit on maximum number of arguments
Set min_required_args to the minimum required. Set max_expected_args to
zero and set suppress_lint to awk_true.

A minimum number of arguments is required, a maximum number is expected
Set min_required_args to the minimum required. Set max_expected_args to
the maximum expected. Set suppress_lint to awk_false.

A minimum number of arguments is required, and no more than a maximum is allowed
Set min_required_args to the minimum required. Set max_expected_args
to the maximum expected. Set suppress_lint to awk_false. In your exten-
sion function, check that num_actual_args does not exceed f->max_expected_
args. If it does, issue a fatal error message.

382 GAWK: Effective AWK Programming

16.4.5.2 Registering An Exit Callback Function

An exit callback function is a function that gawk calls before it exits. Such functions are
useful if you have general “cleanup” tasks that should be performed in your extension (such
as closing database connections or other resource deallocations). You can register such a
function with gawk using the following function:

void awk_atexit(void (*funcp) (void *data, int exit_status),
void *arg0);
The parameters are:

funcp A pointer to the function to be called before gawk exits. The data
parameter will be the original value of arg0. The exit_status
parameter is the exit status value that gawk intends to pass to the
exit () system call.

arg0 A pointer to private data that gawk saves in order to pass to the
function pointed to by funcp.

Exit callback functions are called in last-in, first-out (LIFO) order—that is, in the reverse
order in which they are registered with gawk.

16.4.5.3 Registering An Extension Version String

You can register a version string that indicates the name and version of your extension with
gawk, as follows:

void register_ext_version(const char *version) ;
Register the string pointed to by version with gawk. Note that gawk does not
copy the version string, so it should not be changed.

gawk prints all registered extension version strings when it is invoked with the --version
option.

16.4.5.4 Customized Input Parsers

By default, gawk reads text files as its input. It uses the value of RS to find the end of the
record, and then uses FS (or FIELDWIDTHS or FPAT) to split it into fields (see Chapter 4
[Reading Input Files|, page 61). Additionally, it sets the value of RT (see Section 7.5
[Predefined Variables|, page 157).

If you want, you can provide your own custom input parser. An input parser’s job is to
return a record to the gawk record-processing code, along with indicators for the value and
length of the data to be used for RT, if any.

To provide an input parser, you must first provide two functions (where XXX is a prefix
name for your extension):

awk_bool_t XXX_can_take_file(const awk_input_buf_t *iobuf);
This function examines the information available in iobuf (which we discuss
shortly). Based on the information there, it decides if the input parser should
be used for this file. If so, it should return true. Otherwise, it should return
false. It should not change any state (variable values, etc.) within gawk.

Chapter 16: Writing Extensions for gawk 383

awk_bool_t XXX_take_control_of (awk_input_buf_t *iobuf);
When gawk decides to hand control of the file over to the input parser, it calls
this function. This function in turn must fill in certain fields in the awk_input_
buf_t structure and ensure that certain conditions are true. It should then
return true. If an error of some kind occurs, it should not fill in any fields and
should return false; then gawk will not use the input parser. The details are
presented shortly.

Your extension should package these functions inside an awk_input_parser_t, which
looks like this:
typedef struct awk_input_parser {
const char *name; /* name of parser */
awk_bool_t (xcan_take_file) (const awk_input_buf_t *iobuf);
awk_bool_t (*take_control_of) (awk_input_buf_t *iobuf);
awk_const struct awk_input_parser *awk_const next; /* for gawk */
} awk_input_parser_t;

The fields are:

const char *name;
The name of the input parser. This is a regular C string.

awk_bool_t (*can_take_file) (const awk_input_buf_t *iobuf);
A pointer to your XXX_can_take_file() function.

awk_bool_t (*take_control_of) (awk_input_buf_t *iobuf);
A pointer to your XXX_take_control_of () function.

awk_const struct input_parser *awk_const next;
This is for use by gawk; therefore it is marked awk_const so that the extension
cannot modify it.
The steps are as follows:
1. Create a static awk_input_parser_t variable and initialize it appropriately
2. When your extension is loaded, register your input parser with gawk using the
register_input_parser() API function (described next).
An awk_input_buf_t looks like this:
typedef struct awk_input {

const char *name; /* filename */
int fd; /* file descriptor */
#define INVALID_HANDLE (-1)
void *opaque; /* private data for input parsers */

int (*get_record) (char **out, struct awk_input *iobuf,
int *errcode, char *x*xrt_start, size_t *rt_len,
const awk_fieldwidth_info_t **field_width);
ssize_t (*read_func) ();
void (*close_func) (struct awk_input *iobuf);
struct stat sbuf; /* stat buf */
} awk_input_buf_t;

384 GAWK: Effective AWK Programming

The fields can be divided into two categories: those for use (initially, at least) by XXX_
can_take_file(), and those for use by XXX_take_control_of (). The first group of fields
and their uses are as follows:

const char *name;
The name of the file.

int fd; A file descriptor for the file. If gawk was able to open the file, then £d will not
be equal to INVALID_HANDLE. Otherwise, it will.

struct stat sbuf;
If the file descriptor is valid, then gawk will have filled in this structure via a
call to the fstat () system call.

The XXX_can_take_file() function should examine these fields and decide if the input
parser should be used for the file. The decision can be made based upon gawk state (the
value of a variable defined previously by the extension and set by awk code), the name of
the file, whether or not the file descriptor is valid, the information in the struct stat, or
any combination of these factors.

Once XXX_can_take_file() has returned true, and gawk has decided to use your input
parser, it calls XXX_take_control_of (). That function then fills either the get_record
field or the read_func field in the awk_input_buf_t. It must also ensure that fd is not set
to INVALID_HANDLE. The following list describes the fields that may be filled by XXX_take_
control_of ():

void *opaque;
This is used to hold any state information needed by the input parser for this
file. It is “opaque” to gawk. The input parser is not required to use this pointer.

int (*get_record) (char *xout,

struct awk_input *iobuf,

int *errcode,

char **xrt_start,

size_t *rt_len,

const awk_fieldwidth_info_t **field_width) ;
This function pointer should point to a function that creates the input records.
Said function is the core of the input parser. Its behavior is described in the
text following this list.

ssize_t (*read_func) ();
This function pointer should point to a function that has the same behavior as
the standard POSIX read () system call. It is an alternative to the get_record
pointer. Its behavior is also described in the text following this list.

void (*close_func) (struct awk_input *iobuf) ;
This function pointer should point to a function that does the “teardown.” It
should release any resources allocated by XXX_take_control_of (). It may also
close the file. If it does so, it should set the fd field to INVALID_HANDLE.

If £d is still not INVALID_HANDLE after the call to this function, gawk calls the
regular close() system call.

Chapter 16: Writing Extensions for gawk 385

Having a “teardown” function is optional. If your input parser does not need
it, do not set this field. Then, gawk calls the regular close() system call on
the file descriptor, so it should be valid.

The XXX_get_record () function does the work of creating input records. The parame-
ters are as follows:

char **out
This is a pointer to a char * variable that is set to point to the record. gawk
makes its own copy of the data, so the extension must manage this storage.

struct awk_input *iobuf
This is the awk_input_buf_t for the file. The fields should be used for reading
data (fd) and for managing private state (opaque), if any.

int *errcode
If an error occurs, *errcode should be set to an appropriate code from
<errno.h>.

char **rt_start

size_t *rt_len
If the concept of a “record terminator” makes sense, then *rt_start should be
set to point to the data to be used for RT, and *rt_len should be set to the
length of the data. Otherwise, *rt_len should be set to zero. gawk makes its
own copy of this data, so the extension must manage this storage.

const awk_fieldwidth_info_t **field_width

If field_width is not NULL, then *field_width will be initialized to NULL, and
the function may set it to point to a structure supplying field width information
to override the default field parsing mechanism. Note that this structure will
not be copied by gawk; it must persist at least until the next call to get_record
or close_func. Note also that field_width is NULL when getline is assigning
the results to a variable, thus field parsing is not needed. If the parser does
set *field_width, then gawk uses this layout to parse the input record, and
the PROCINFO["FS"] value will be "API" while this record is active in $0. The
awk_fieldwidth_info_t data structure is described below.

The return value is the length of the buffer pointed to by *out, or EOF if end-of-file was
reached or an error occurred.

It is guaranteed that errcode is a valid pointer, so there is no need to test for a NULL
value. gawk sets *errcode to zero, so there is no need to set it unless an error occurs.

If an error does occur, the function should return EQF and set *errcode to a value greater
than zero. In that case, if *errcode does not equal zero, gawk automatically updates the
ERRNOQ variable based on the value of *errcode. (In general, setting ‘*errcode = errno’
should do the right thing.)

As an alternative to supplying a function that returns an input record, you may instead
supply a function that simply reads bytes, and let gawk parse the data into records. If you
do so, the data should be returned in the multibyte encoding of the current locale. Such
a function should follow the same behavior as the read() system call, and you fill in the
read_func pointer with its address in the awk_input_buf_t structure.

386 GAWK: Effective AWK Programming

By default, gawk sets the read_func pointer to point to the read () system call. So your
extension need not set this field explicitly.

NOTE: You must choose one method or the other: either a function that returns
a record, or one that returns raw data. In particular, if you supply a function
to get a record, gawk will call it, and will never call the raw read function.

gawk ships with a sample extension that reads directories, returning records for each
entry in a directory (see Section 16.7.6 [Reading Directories]|, page 424). You may wish to
use that code as a guide for writing your own input parser.

When writing an input parser, you should think about (and document) how it is expected
to interact with awk code. You may want it to always be called, and to take effect as
appropriate (as the readdir extension does). Or you may want it to take effect based upon
the value of an awk variable, as the XML extension from the gawkextlib project does (see
Section 16.8 [The gawkextlib Project], page 427). In the latter case, code in a BEGINFILE
rule can look at FILENAME and ERRNO to decide whether or not to activate an input parser
(see Section 7.1.5 [The BEGINFILE and ENDFILE Special Patterns], page 145).

You register your input parser with the following function:

void register_input_parser(awk_input_parser_t *input_parser);
Register the input parser pointed to by input_parser with gawk.

If you would like to override the default field parsing mechanism for a given record, then
you must populate an awk_fieldwidth_info_t structure, which looks like this:

typedef struct {

awk_bool_t use_chars; /* false ==> use bytes */
size_t nf; /* number of fields in record (NF) *x/
struct awk_field_info {
size_t skip; /* amount to skip before field starts
size_t len; /* length of field */
} fields[1]; /* actual dimension should be nf */

} awk_fieldwidth_info_t;
The fields are:

awk_bool_t use_chars;
Set this to awk_true if the field lengths are specified in terms of potentially
multi-byte characters, and set it to awk_false if the lengths are in terms of
bytes. Performance will be better if the values are supplied in terms of bytes.

size_t nf;
Set this to the number of fields in the input record, i.e. NF.

struct awk_field_info fields[nf];
This is a variable-length array whose actual dimension should be nf. For each
field, the skip element should be set to the number of characters or bytes, as
controlled by the use_chars flag, to skip before the start of this field. The len
element provides the length of the field. The values in £ields[0] provide the
information for $1, and so on through the fields[nf-1] element containing
the information for $NF.

*/

Chapter 16: Writing Extensions for gawk 387

A convenience macro awk_fieldwidth_info_size(numfields) is provided to calcu-
late the appropriate size of a variable-length awk_fieldwidth_info_t structure containing
numfields fields. This can be used as an argument to malloc() or in a union to allocate
space statically. Please refer to the readdir_test sample extension for an example.

16.4.5.5 Customized Output Wrappers

An output wrapper is the mirror image of an input parser. It allows an extension to take
over the output to a file opened with the >’ or *>>’ I/O redirection operators (see Section 5.6
[Redirecting Output of print and printf], page 101).
The output wrapper is very similar to the input parser structure:
typedef struct awk_output_wrapper {
const char #*name; /* name of the wrapper */
awk_bool_t (*can_take_file) (const awk_output_buf_t *outbuf);
awk_bool_t (xtake_control_of) (awk_output_buf_t *outbuf);
awk_const struct awk_output_wrapper *awk_const next; /* for gawk */
} awk_output_wrapper_t;
The members are as follows:

const char *name;
This is the name of the output wrapper.

awk_bool_t (*can_take_file) (const awk_output_buf_t *outbuf);
This points to a function that examines the information in the awk_output_
buf_t structure pointed to by outbuf. It should return true if the output
wrapper wants to take over the file, and false otherwise. It should not change
any state (variable values, etc.) within gawk.

awk_bool_t (*take_control_of) (awk_output_buf_t *outbuf) ;
The function pointed to by this field is called when gawk decides to let the output
wrapper take control of the file. It should fill in appropriate members of the
awk_output_buf_t structure, as described next, and return true if successful,
false otherwise.

awk_const struct output_wrapper *awk_const next;
This is for use by gawk; therefore it is marked awk_const so that the extension
cannot modify it.
The awk_output_buf_t structure looks like this:
typedef struct awk_output_buf {

const char *name; /* name of output file */

const char *mode; /* mode argument to fopen */

FILE *fp; /* stdio file pointer */

awk_bool_t redirected; /* true if a wrapper is active */
void *opaque; /* for use by output wrapper */

size_t (*gawk_fwrite) (const void *buf, size_t size, size_t count,
FILE *fp, void *opaque);

int (*gawk_fflush) (FILE *fp, void *opaque);

int (*gawk_ferror) (FILE *fp, void *opaque);

int (*gawk_fclose) (FILE *fp, void *opaque);

388 GAWK: Effective AWK Programming

} awk_output_buf_t;

Here too, your extension will define XXX_can_take_file() and XXX_take_control_
of () functions that examine and update data members in the awk_output_buf_t. The
data members are as follows:

const char *name;
The name of the output file.

const char *mode;
The mode string (as would be used in the second argument to fopen()) with
which the file was opened.

FILE *fp; The FILE pointer from <stdio.h>. gawk opens the file before attempting to
find an output wrapper.

awk_bool_t redirected;
This field must be set to true by the XXX_take_control_of () function.

void *opaque;
This pointer is opaque to gawk. The extension should use it to store a pointer
to any private data associated with the file.

size_t (xgawk_fwrite) (const void *buf, size_t size, size_t count,
FILE *fp, void *opaque) ;

int (xgawk_fflush) (FILE *fp, void *opaque) ;

int (*gawk_ferror) (FILE *fp, void *opaque) ;

int (*gawk_fclose) (FILE *fp, void *opaque) ;
These pointers should be set to point to functions that perform the equivalent
function as the <stdio.h> functions do, if appropriate. gawk uses these func-
tion pointers for all output. gawk initializes the pointers to point to internal
“pass-through” functions that just call the regular <stdio.h> functions, so an
extension only needs to redefine those functions that are appropriate for what
it does.

The XXX_can_take_file() function should make a decision based upon the name and
mode fields, and any additional state (such as awk variable values) that is appropriate.

When gawk calls XXX_take_control_of (), that function should fill in the other fields
as appropriate, except for £fp, which it should just use normally.

You register your output wrapper with the following function:

void register_output_wrapper(awk_output_wrapper_t *output_wrapper) ;
Register the output wrapper pointed to by output_wrapper with gawk.

16.4.5.6 Customized Two-way Processors

A two-way processor combines an input parser and an output wrapper for two-way 1/0O with
the ‘& operator (see Section 5.6 [Redirecting Output of print and printf], page 101).
It makes identical use of the awk_input_parser_t and awk_output_buf_t structures as
described earlier.

A two-way processor is represented by the following structure:

typedef struct awk_two_way_processor {

Chapter 16: Writing Extensions for gawk 389

const char *name; /* name of the two-way processor */
awk_bool_t (*can_take_two_way) (const char *name);
awk_bool_t (*take_control_of) (const char *name,
awk_input_buf_t *inbuf,
awk_output_buf_t *outbuf);
awk_const struct awk_two_way_processor *awk_const next; /* for gawk */
} awk_two_way_processor_t;

The fields are as follows:

const char *name;
The name of the two-way processor.

awk_bool_t (*can_take_two_way) (const char *name) ;
The function pointed to by this field should return true if it wants to take over
two-way 1/0O for this file name. It should not change any state (variable values,
etc.) within gawk.

awk_bool_t (*take_control_of) (const char *name,
awk_input_buf_t *inbuf,
awk_output_buf_t *outbuf);
The function pointed to by this field should fill in the awk_input_buf_t and
awk_output_buf_t structures pointed to by inbuf and outbuf, respectively.
These structures were described earlier.

awk_const struct two_way_processor *awk_const next;
This is for use by gawk; therefore it is marked awk_const so that the extension
cannot modify it.

As with the input parser and output processor, you provide “yes I can take this” and
“take over for this” functions, XXX_can_take_two_way() and XXX_take_control_of ().
You register your two-way processor with the following function:

void register_two_way_processor (awk_two_way_processor_t *two_way_processor);
Register the two-way processor pointed to by two_way_processor with gawk.

16.4.6 Printing Messages

You can print different kinds of warning messages from your extension, as described here.
Note that for these functions, you must pass in the extension ID received from gawk when
the extension was loaded:3

void fatal (awk_ext_id_t id, const char *format, ...);
Print a message and then cause gawk to exit immediately.

void nonfatal (awk_ext_id_t id, const char *format, ...);
Print a nonfatal error message.

void warning(awk_ext_id_t id, const char *format, ...);
Print a warning message.

3 Because the API uses only ISO C 90 features, it cannot make use of the ISO C 99 variadic macro feature
to hide that parameter. More’s the pity.

390 GAWK: Effective AWK Programming

void lintwarn(awk_ext_id_t id, const char *format, ...);
Print a “lint warning.” Normally this is the same as printing a warning message,
but if gawk was invoked with ‘--lint=fatal’, then lint warnings become fatal
error messages.

All of these functions are otherwise like the C printf () family of functions, where the
format parameter is a string with literal characters and formatting codes intermixed.

16.4.7 Updating ERRNO
The following functions allow you to update the ERRNO variable:

void update_ERRNO_int(int errno_val);
Set ERRNO to the string equivalent of the error code in errno_val. The value
should be one of the defined error codes in <errno.h>, and gawk turns it into
a (possibly translated) string using the C strerror () function.

void update_ERRNO_string(const char *string);
Set ERRNO directly to the string value of ERRNO. gawk makes a copy of the value
of string.

void unset_ERRNO(void) ;
Unset ERRNO.

16.4.8 Requesting Values

All of the functions that return values from gawk work in the same way. You pass in
an awk_valtype_t value to indicate what kind of value you expect. If the actual value
matches what you requested, the function returns true and fills in the awk_value_t result.
Otherwise, the function returns false, and the val_type member indicates the type of the
actual value. You may then print an error message or reissue the request for the actual
value type, as appropriate. This behavior is summarized in Table 16.1.

Type of Actual Value
String Strnum Number Regex Array Undefined

String String String String String false false
Strnum false Strnum Strnum false false false
Number Number Number Number false false false

Type Regex false false false Regex false false

Requested Array false false false false Array false
Scalar Scalar Scalar Scalar Scalar false false
Undefined String Strnum Number Regex Array Undefined
Value false false false false false false
cookie

Table 16.1: API value types returned

16.4.9 Accessing and Updating Parameters

Two functions give you access to the arguments (parameters) passed to your extension
function. They are:

Chapter 16: Writing Extensions for gawk 391

awk_bool_t get_argument(size_t count,

awk_valtype_t wanted,

awk_value_t *result);
Fill in the awk_value_t structure pointed to by result with the countth argu-
ment. Return true if the actual type matches wanted, and false otherwise. In
the latter case, result->val_type indicates the actual type (see Table 16.1).
Counts are zero-based—the first argument is numbered zero, the second one,
and so on. wanted indicates the type of value expected.

awk_bool_t set_argument(size_t count, awk_array_t array);
Convert a parameter that was undefined into an array; this provides call by
reference for arrays. Return false if count is too big, or if the argument’s type
is not undefined. See Section 16.4.11 [Array Manipulation], page 395, for more
information on creating arrays.

16.4.10 Symbol Table Access

Two sets of routines provide access to global variables, and one set allows you to create and
release cached values.

16.4.10.1 Variable Access and Update by Name

The following routines provide the ability to access and update global awk-level variables by
name. In compiler terminology, identifiers of different kinds are termed symbols, thus the
“sym” in the routines’ names. The data structure that stores information about symbols is
termed a symbol table. The functions are as follows:

awk_bool_t sym_lookup(const char *name,

awk_valtype_t wanted,

awk_value_t *result);
Fill in the awk_value_t structure pointed to by result with the value of the
variable named by the string name, which is a regular C string. wanted indicates
the type of value expected. Return true if the actual type matches wanted, and
false otherwise. In the latter case, result->val_type indicates the actual type
(see Table 16.1).

awk_bool_t sym_update(const char *name, awk_value_t *value);
Update the variable named by the string name, which is a regular C string.
The variable is added to gawk’s symbol table if it is not there. Return true if
everything worked, and false otherwise.

Changing types (scalar to array or vice versa) of an existing variable is not
allowed, nor may this routine be used to update an array. This routine cannot
be used to update any of the predefined variables (such as ARGC or NF).

An extension can look up the value of gawk’s special variables. However, with the
exception of the PROCINFO array, an extension cannot change any of those variables.

16.4.10.2 Variable Access and Update by Cookie

A scalar cookie is an opaque handle that provides access to a global variable or array. It is
an optimization that avoids looking up variables in gawk’s symbol table every time access

392 GAWK: Effective AWK Programming

is needed. This was discussed earlier, in Section 16.4.2 [General-Purpose Data Types],
page 373.

The following functions let you work with scalar cookies:

awk_bool_t sym_lookup_scalar(awk_scalar_t cookie,
awk_valtype_t wanted,
awk_value_t *result);
Retrieve the current value of a scalar cookie. Once you have obtained a scalar
cookie using sym_lookup(), you can use this function to get its value more
efficiently. Return false if the value cannot be retrieved.

awk_bool_t sym_update_scalar (awk_scalar_t cookie, awk_value_t *value);
Update the value associated with a scalar cookie. Return false if the new value
is not of type AWK_STRING, AWK_STRNUM, AWK_REGEX, or AWK_NUMBER. Here too,
the predefined variables may not be updated.

It is not obvious at first glance how to work with scalar cookies or what their raison
d’étre really is. In theory, the sym_lookup() and sym_update() routines are all you really
need to work with variables. For example, you might have code that looks up the value of
a variable, evaluates a condition, and then possibly changes the value of the variable based
on the result of that evaluation, like so:

/* do_magic --- do something really great */

static awk_value_t *
do_magic(int nargs, awk_value_t *result)

{
awk_value_t value;
if (sym_lookup("MAGIC_VAR", AWK_NUMBER, & value)
&& some_condition(value.num_value)) {
value.num_value += 42;
sym_update ("MAGIC_VAR", & value);
}
return make_number (0.0, result);
}

This code looks (and is) simple and straightforward. So what’s the problem?

Well, consider what happens if awk-level code associated with your extension calls the
magic() function (implemented in C by do_magic()), once per record, while processing
hundreds of thousands or millions of records. The MAGIC_VAR variable is looked up in the
symbol table once or twice per function call!

The symbol table lookup is really pure overhead; it is considerably more efficient to get
a cookie that represents the variable, and use that to get the variable’s value and update it
as needed.?

4 The difference is measurable and quite real. Trust us.

Chapter 16: Writing Extensions for gawk 393

Thus, the way to use cookies is as follows. First, install your extension’s variable in gawk’s
symbol table using sym_update (), as usual. Then get a scalar cookie for the variable using
sym_lookup():

static awk_scalar_t magic_var_cookie; /* cookie for MAGIC_VAR */

static void
my_extension_init ()

{

}

awk_value_t value;

/* install initial value */
sym_update ("MAGIC_VAR", make_number(42.0, & value));

/* get the cookie */
sym_lookup ("MAGIC_VAR", AWK_SCALAR, & value);

/* save the cookie */
magic_var_cookie = value.scalar_cookie;

Next, use the routines in this section for retrieving and updating the value through the
cookie. Thus, do_magic() now becomes something like this:

/*

do_magic --- do something really great */

static awk_value_t *
do_magic(int nargs, awk_value_t *result)

{

3

awk_value_t value;

if (sym_lookup_scalar(magic_var_cookie, AWK_NUMBER, & value)
&& some_condition(value.num_value)) {
value.num_value += 42;
sym_update_scalar(magic_var_cookie, & value);

return make_number (0.0, result);

NOTE: The previous code omitted error checking for presentation purposes.
Your extension code should be more robust and carefully check the return values
from the API functions.

16.4.10.3 Creating and Using Cached Values

The routines in this section allow you to create and release cached values. Like scalar
cookies, in theory, cached values are not necessary. You can create numbers and strings

394 GAWK: Effective AWK Programming

using the functions in Section 16.4.4 [Constructor Functions|, page 378. You can then assign
those values to variables using sym_update () or sym_update_scalar(), as you like.

However, you can understand the point of cached values if you remember that ev-
ery string value’s storage must come from gawk_malloc(), gawk_calloc(), or gawk_
realloc(). If you have 20 variables, all of which have the same string value, you must
create 20 identical copies of the string.’

It is clearly more efficient, if possible, to create a value once, and then tell gawk to reuse
the value for multiple variables. That is what the routines in this section let you do. The
functions are as follows:

awk_bool_t create_value(awk_value_t *value, awk_value_cookie_t *result);
Create a cached string or numeric value from value for efficient later assign-
ment. Only values of type AWK_NUMBER, AWK_REGEX, AWK_STRNUM, and AWK_
STRING are allowed. Any other type is rejected. AWK_UNDEFINED could be
allowed, but doing so would result in inferior performance.

awk_bool_t release_value(awk_value_cookie_t vc);
Release the memory associated with a value cookie obtained from create_
value().

You use value cookies in a fashion similar to the way you use scalar cookies. In the
extension initialization routine, you create the value cookie:

static awk_value_cookie_t answer_cookie; /* static value cookie */

static void
my_extension_init ()
{
awk_value_t value;
char *long_string;
size_t long_string_len;

/* code from earlier */

/* ... fill in long_string and long_string len ... */
make_malloced_string(long_string, long_string len, & value);
create_value(& value, & answer_cookie); /* create cookie */

}
Once the value is created, you can use it as the value of any number of variables:

static awk_value_t *
do_magic(int nargs, awk_value_t *result)
{

awk_value_t new_value;

/* as earlier */

5 Numeric values are clearly less problematic, requiring only a C double to store. But of course, GMP
and MPFR values do take up more memory.

Chapter 16: Writing Extensions for gawk 395

value.val_type = AWK_VALUE_COOKIE;
value.value_cookie = answer_cookie;
sym_update ("VAR1", & value);
sym_update ("VAR2", & value);

sym_update ("VAR100", & value);

by

Using value cookies in this way saves considerable storage, as all of VAR1 through VAR100
share the same value.

You might be wondering, “Is this sharing problematic? What happens if awk code assigns
a new value to VAR1; are all the others changed too?”

That’s a great question. The answer is that no, it’s not a problem. Internally, gawk
uses reference-counted strings. This means that many variables can share the same string
value, and gawk keeps track of the usage. When a variable’s value changes, gawk simply
decrements the reference count on the old value and updates the variable to use the new
value.

Finally, as part of your cleanup action (see Section 16.4.5.2 [Registering An Exit Callback
Function], page 382) you should release any cached values that you created, using release_
value().

16.4.11 Array Manipulation

The primary data structure® in awk is the associative array (see Chapter 8 [Arrays in awk],
page 169). Extensions need to be able to manipulate awk arrays. The API provides a
number of data structures for working with arrays, functions for working with individual
elements, and functions for working with arrays as a whole. This includes the ability to
“flatten” an array so that it is easy for C code to traverse every element in an array. The
array data structures integrate nicely with the data structures for values to make it easy to
both work with and create true arrays of arrays (see Section 16.4.2 [General-Purpose Data
Types|, page 373).

16.4.11.1 Array Data Types

The data types associated with arrays are as follows:

typedef void *awk_array_t;
If you request the value of an array variable, you get back an awk_array_t
value. This value is opaque’ to the extension; it uniquely identifies the array
but can only be used by passing it into API functions or receiving it from
API functions. This is very similar to way ‘FILE %’ values are used with the
<stdio.h> library routines.

6 OK, the only data structure.
" It is also a “cookie,” but the gawk developers did not wish to overuse this term.

396 GAWK: Effective AWK Programming

typedef struct awk_element {
/* convenience linked list pointer, not used by gawk */
struct awk_element *next;
enum {
AWK_ELEMENT_DEFAULT = 0, /* set by gawk */
AWK_ELEMENT_DELETE = 1 /* set by extension */
} flags;
awk_value_t index;
awk_value_t value;
} awk_element_t;
The awk_element_t is a “flattened” array element. awk produces an array of
these inside the awk_flat_array_t (see the next item). Individual elements
may be marked for deletion. New elements must be added individually, one at
a time, using the separate API for that purpose. The fields are as follows:

struct awk_element *next;
This pointer is for the convenience of extension writers. It allows
an extension to create a linked list of new elements that can then
be added to an array in a loop that traverses the list.

enum { ... } flags;
A set of flag values that convey information between the extension
and gawk. Currently there is only one: AWK_ELEMENT_DELETE. Set-
ting it causes gawk to delete the element from the original array
upon release of the flattened array.

index
value The index and value of the element, respectively. All memory
pointed to by index and value belongs to gawk.

typedef struct awk_flat_array {
awk_const void *awk_const opaquel; /* for use by gawk */
awk_const void *awk_const opaque?2; /* for use by gawk */
awk_const size_t count; /* how many elements */
awk_element_t elements[1]; /* will be extended */
} awk_flat_array_t;
This is a flattened array. When an extension gets one of these from gawk, the
elements array is of actual size count. The opaquel and opaque2 pointers are
for use by gawk; therefore they are marked awk_const so that the extension
cannot modify them.

16.4.11.2 Array Functions

The following functions relate to individual array elements:

awk_bool_t get_element_count(awk_array_t a_cookie, size_t *count) ;
For the array represented by a_cookie, place in *count the number of elements
it contains. A subarray counts as a single element. Return false if there is an
€rror.

Chapter 16: Writing Extensions for gawk 397

awk_bool_t get_array_element (awk_array_t a_cookie,

const awk_value_t *const index,

awk_valtype_t wanted,

awk_value_t *result);
For the array represented by a_cookie, return in *result the value of the
element whose index is index. wanted specifies the type of value you wish to
retrieve. Return false if wanted does not match the actual type or if index is
not in the array (see Table 16.1).

The value for index can be numeric, in which case gawk converts it to a string.
Using nonintegral values is possible, but requires that you understand how
such values are converted to strings (see Section 6.1.4 [Conversion of Strings
and Numbers|, page 118); thus, using integral values is safest.

As with all strings passed into gawk from an extension, the string value of
index must come from gawk_malloc(), gawk_calloc(), or gawk_realloc(),
and gawk releases the storage.

awk_bool_t set_array_element (awk_array_t a_cookie,
const awk_value_t *const index,
const awk_value_t *const value);
In the array represented by a_cookie, create or modify the element whose index
is given by index. The ARGV and ENVIRON arrays may not be changed, although
the PROCINFO array can be.

awk_bool_t set_array_element_by_elem(awk_array_t a_cookie,
awk_element_t element) ;
Like set_array_element (), but take the index and value from element. This
is a convenience macro.

awk_bool_t del_array_element (awk_array_t a_cookie,
const awk_value_t* const index) ;
Remove the element with the given index from the array represented by a_
cookie. Return true if the element was removed, or false if the element did not
exist in the array.

The following functions relate to arrays as a whole:

awk_array_t create_array(void) ;
Create a new array to which elements may be added. See Section 16.4.11.4
[How To Create and Populate Arrays|, page 401, for a discussion of how to
create a new array and add elements to it.

awk_bool_t clear_array(awk_array_t a_cookie);
Clear the array represented by a_cookie. Return false if there was some kind
of problem, true otherwise. The array remains an array, but after calling this
function, it has no elements. This is equivalent to using the delete statement
(see Section 8.4 [The delete Statement|, page 178).

398 GAWK: Effective AWK Programming

awk_bool_t flatten_array_typed(awk_array_t a_cookie,

awk_flat_array_t **data,

awk_valtype_t index_type,

awk_valtype_t value_type);
For the array represented by a_cookie, create an awk_flat_array_t structure
and fill it in with indices and values of the requested types. Set the pointer
whose address is passed as data to point to this structure. Return true upon
success, or false otherwise. See Section 16.4.11.3 [Working With All The Ele-
ments of an Array|, page 398, for a discussion of how to flatten an array and
work with it.

awk_bool_t flatten_array(awk_array_t a_cookie, awk_flat_array_t *xdata);

For the array represented by a_cookie, create an awk_flat_array_t structure
and fill it in with AWK_STRING indices and AWK_UNDEFINED values. This is su-
perseded by flatten_array_typed(). It is provided as a macro, and remains
for convenience and for source code compatibility with the previous version of

the APL.

awk_bool_t release_flattened_array(awk_array_t a_cookie,

awk_flat_array_t *data) ;
When done with a flattened array, release the storage using this function. You
must pass in both the original array cookie and the address of the created
awk_flat_array_t structure. The function returns true upon success, false
otherwise.

16.4.11.3 Working With All The Elements of an Array

To flatten an array is to create a structure that represents the full array in a fashion
that makes it easy for C code to traverse the entire array. Some of the code in
extension/testext.c does this, and also serves as a nice example showing how to use the

APIs.

We walk through that part of the code one step at a time. First, the gawk script that
drives the test extension:

@load "testext"
BEGIN {

¥

n = split("blacky rusty sophie raincloud lucky", pets)
printf ("pets has %d elements\n", length(pets))
ret = dump_array_and_delete("pets", "3")
printf ("dump_array_and_delete(pets) returned %d\n", ret)
if ("3" in pets)
printf ("dump_array_and_delete() did NOT remove index \"3\"!\n")
else
printf ("dump_array_and_delete() did remove index \"3\"!\n")
print ""

This code creates an array with split() (see Section 9.1.3 [String-Manipulation Functions],
page 187) and then calls dump_array_and_delete(). That function looks up the array
whose name is passed as the first argument, and deletes the element at the index passed in

Chapter 16: Writing Extensions for gawk 399

the second argument. The awk code then prints the return value and checks if the element
was indeed deleted. Here is the C code that implements dump_array_and_delete(). It
has been edited slightly for presentation.

The first part declares variables, sets up the default return value in result, and checks
that the function was called with the correct number of arguments:

static awk_value_t *
dump_array_and_delete(int nargs, awk_value_t *result)
{
awk_value_t value, value2, value3;
awk_flat_array_t *flat_array;
size_t count;
char *name;
int i;

assert(result != NULL);
make_number (0.0, result);

if (nargs != 2) {
printf ("dump_array_and_delete: nargs not right "
"(%d should be 2)\n", nargs);
goto out;

}

The function then proceeds in steps, as follows. First, retrieve the name of the array,
passed as the first argument, followed by the array itself. If either operation fails, print an
error message and return:

/* get argument named array as flat array and print it */
if (get_argument (0, AWK_STRING, & value)) {
name = value.str_value.str;
if (sym_lookup(name, AWK_ARRAY, & value2))
printf ("dump_array_and_delete: sym_lookup of Y%s passed\n",

name) ;
else {
printf ("dump_array_and_delete: sym_lookup of %s failed\n",
name) ;
goto out;
}
} else {
printf ("dump_array_and_delete: get_argument(0) failed\n");
goto out,;

}

For testing purposes and to make sure that the C code sees the same number of elements
as the awk code, the second step is to get the count of elements in the array and print it:

if (! get_element_count(value2.array_cookie, & count)) {
printf ("dump_array_and_delete: get_element_count failed\n");
goto out;

400 GAWK: Effective AWK Programming

}

printf ("dump_array_and_delete: incoming size is %lu\n",
(unsigned long) count);

The third step is to actually flatten the array, and then to double-check that the cou