
OpenHCI
Open Host Controller Interface Specification

for USB

Compaq

Microsoft

National Semiconductor

09/14/99 2:33 PM
Release: 1.0a

OpenHCI - Open Host Controller Interface Specification for USB

ii

Adopter’s Agreement for
Open Host Controller Interface Reciprocal Covenant

READ THIS PRIOR TO IMPLEMENTATION OF THIS SPECIFICATION.
IMPLEMENTATION OF THIS SPECIFICATION SHALL CONSTITUTE YOUR
LEGALLY BINDING ACCEPTANCE OF THE TERMS OFFERED IN THIS PATENT
COVENANT AGREEMENT. IF AN ENTITY DOES NOT ACCEPT THE TERMS
OFFERED IN THIS PATENT COVENANT AGREEMENT, SUCH ENTITY IS NOT A
RECIPIENT OF THE COVENANT CONTAINED HEREIN AND SHOULD NOT
IMPLEMENT THE SPECIFICATION. THE PROMOTERS REQUEST THAT SUCH
ENTITY RETURN THE SPECIFICATION TO THE PROMOTERS.

This is a patent covenant agreement by parties wishing to adopt Open HCI.
As used in this Agreement:
• The ”Promoters” are the parties who have initially adopted Open HCI. A list of their

names is available upon request to the Open HCI Clerk; initially the Clerk is
Compaq Computer Corporation.

• “Adopter” is the entity that has accepted this Agreement.
• “Fellow Adopters” are the Promoters and any other entity which has accepted an

identical counterpart of this Agreement.
• “Affiliate” is an entity which directly or indirectly controls, is controlled by, or is

under common control with another entity, so long as such control exists. “Control”
means beneficial ownership of more than fifty percent of the voting stock or equity in
an entity.

• “Specification” means the document entitled “Open Host Controller Interface
Specification, revision 1.0,” authored and published by the Promoters and any
Updates identified as set out in Section 2.

1. Covenants
1.1. Grants of Covenants. The following covenant has been granted by the

Promoters to each other. Upon Adopter’s execution of this Agreement, it is
granted by Adopter to all Fellow Adopters, and the grants of all Fellow Adopters
shall extend to Adopter. In each case, the party (Promoter, Adopter, or Fellow
Adopter) granting the covenant is referred to as the “Grantor.”

OpenHCI - Open Host Controller Interface Specification for USB

iii

Subject to the other terms of this Agreement, Grantor, on behalf of itself and its
Affiliates, covenants not to sue or otherwise assert a claim against any Fellow Adopter
or its Affiliates, or its customers, subcontractors, resellers, or users, based upon the
manufacture, use, lease, sale or other transfer of any product that infringes a claim of a
patent held by Grantor, which claim is infringed by:

(i) the implementation or use of the methods, protocols, interfaces, or
interoperability criteria set out in the Specification, or
(ii) any apparatus required by the Specification which is required to implement
such methods, protocols, interfaces, or interoperability criteria;
where such infringement would not have occurred but for the implementation of
the Specification, and where such infringement either:
(a) could not have been avoided by another commercially reasonable
implementation of the Specification, or
(b) resulted from use of an example included in the Specification.
The foregoing covenant not to sue extends to any entity which is not a
Fellow Adopter only to the extent that such entity grants a reciprocal covenant,
either expressly or by implication through the non-assertion of such claims
against Grantor or a Fellow Adopter.

1.2. Acceptance of Covenants. Adopter hereby accepts the covenants granted by
the Fellow Adopters.

2. Open HCI Specification Administration, Access and Updates
2.1. Administration. The Promoters may designate a “Clerk” from time to time.

Initially, the Clerk will be Compaq Computer Corporation. The Clerk is
responsible for:
2.1.1. Maintaining current copies of the Specification and providing access to

such copies to the Fellow Adopters upon request.
2.2. Limits on Clerk. The Clerk is not an agent of the Promoters or Fellow Adopters.

The Promoters may designate a replacement Clerk at any time. The Clerk may
resign as Clerk at will.

2.3. Access. Fellow Adopters may purchase copies or download the Specification.
2.4. Updates. The Promoters may issue an update, revision, or extension of some or

all of the Specification (an “Update”) on or prior to June 1, 1997. Provided that
the Promoters have made the Specification generally available with the notation
“Implementation of this Specification is governed by the terms of the Open HCI
Covenant,” the covenants referenced in this Agreement shall extend to the
Update except as specifically provided below. Issuing such an Update shall
NOT terminate any right or obligation of Adopter under this Agreement, including
the covenants granted with respect to the earlier versions of the Specification.

OpenHCI - Open Host Controller Interface Specification for USB

iv

2.5. Objection and Withdrawal. Adopter (or a Fellow Adopter) may, within 60 days
after publication of an Update, terminate this Agreement with respect to such
Update and all further revisions of the Specification. Termination shall be made
by giving written notice to the Promoters. The effect of such termination will be
that the covenants granted shall continue to apply with respect to the
Specification and Updates adopted as of 60 days prior to the date of termination
shall continue in full force and shall extend to entities who become Adopters
even after such termination. No covenant shall be deemed granted or received
by such Adopter as to Updates adopted after the date of such withdrawal.

3. General
3.1. No Other Licenses. Adopter neither grants nor receives any license to or right to

use any trademark, tradename, copyright, or maskwork hereunder. Except for
the rights expressly provided by this Agreement, Adopter neither grants nor
receives, by implication, or estoppel, or otherwise, any rights under any patents
or other intellectual property rights.

3.2. Limited Effect. This Agreement shall not be construed to waive any Party’s
rights under law or any other agreement except as expressly set out here.

3.3. No Warranty. Adopter acknowledges that the Specification is provided “AS IS”
WITH NO WARRANTIES WHATSOEVER, WHETHER EXPRESS, IMPLIED OR
STATUTORY, INCLUDING, BUT NOT LIMITED TO ANY WARRANTY OF
MERCHANTABILITY, NONINFRINGEMENT, FITNESS FOR ANY PARTICULAR
PURPOSE, OR ANY WARRANTY OTHERWISE ARISING OUT OF ANY
PROPOSAL, SPECIFICATION, OR SAMPLE.

3.4. Damages. In no event will Promoters, Adopter or Fellow Adopter be liable to the
other for any loss of profits, loss of use, incidental, consequential, indirect, or
special damages arising out of this or any other Open HCI Covenant, whether or
not such party had advance notice of the possibility of such damages.

3.5. Governing Law. This Agreement shall be construed and controlled by the laws
of New York. Any litigation arising out of this Agreement shall take place in New
York, and all parties consent to jurisdiction of the State and Federal courts there.

3.6. Not Partners. Adopter understands that the Promoters are independent
companies and are not partners or joint venturers with each other. While the
Promoters may select an entity to handle certain administrative tasks for them,
no party is authorized to make any commitment on behalf of all or any of them.

3.7. Complete Agreement. Upon publication of the Specification by the Promoters,
this Agreement sets forth the entire understanding of the agreement between the
Adopters and the Promoters and supersedes all prior agreements and
understandings relating hereto. No modifications or additions to or deletions
from this Agreement shall be binding unless accepted in writing by an authorized
representative of all parties.

OpenHCI - Open Host Controller Interface Specification for USB

v

Compaq Computer
Corporation

John Rose
Senior Vice President
Commercial Desktop Division

Microsoft Corporation

By:__________________
Name
Title

National Semiconductor
Corporation

By:
Name
Title

Revision Table
Revision Number Revision Date Changes Made

1.0a 9/14/99 Added Appendix B, Legacy Support
Interface Specification

OpenHCI - Open Host Controller Interface Specification for USB

vi

TABLE OF CONTENTS

1. INTRODUCTION... 1

2. TERMS AND ABBREVIATIONS... 2

3. ARCHITECTURAL OVERVIEW.. 6

3.1 Introduction.. 6

3.2 Data Transfer Types.. 7

3.3 Host Controller Interface... 7
3.3.1 Communication Channels..7
3.3.2 Data Structures ...8

3.4 Host Controller Driver Responsibilities... 12
3.4.1 Host Controller Management ..12
3.4.2 Bandwidth Allocation..12
3.4.3 List Management ..13
3.4.4 Root Hub..13

3.5 Host Controller Responsibilities.. 13
3.5.1 USB States ...13
3.5.2 Frame management ...14
3.5.3 List Processing..14

4. DATA STRUCTURES... 15

4.1 Overview... 15

4.2 Endpoint Descriptor .. 16
4.2.1 Endpoint Descriptor Format..16
4.2.2 Endpoint Descriptor Field Definitions..17
4.2.3 Endpoint Descriptor Description ...18

4.3 Transfer Descriptors ... 19
4.3.1 General Transfer Descriptor ..19

4.3.1.1 General Transfer Descriptor Format ...20
4.3.1.2 General Transfer Descriptor Field Definitions ...20
4.3.1.3 General Transfer Descriptor Description...21

4.3.1.3.1 Buffer Address Determination ...21
4.3.1.3.2 Packet Size..21
4.3.1.3.3 Condition Codes..22
4.3.1.3.4 Sequence Bits..22
4.3.1.3.5 Transfer Completion..23
4.3.1.3.6 Transfer Errors..23

4.3.1.3.6.1 Transmission Errors..24
4.3.1.3.6.2 Sequence Errors ...24

OpenHCI - Open Host Controller Interface Specification for USB

vii

4.3.1.3.6.3 System Errors...25
4.3.1.3.7 Special Handling..25

4.3.1.3.7.1 NAK...25
4.3.1.3.7.2 Stall..25

4.3.2 Isochronous Transfer Descriptor ...25
4.3.2.1 Isochronous Transfer Descriptor Format ..25
4.3.2.2 Isochronous Transfer Descriptor Field Definitions ..26
4.3.2.3 Isochronous Transfer Descriptor Description..26

4.3.2.3.1 Buffer Addressing..27
4.3.2.3.2 Data Packet Size ...28
4.3.2.3.3 Status ..28
4.3.2.3.4 Transfer Completion..28
4.3.2.3.5 Transfer Errors..28

4.3.2.3.5.1 Transmission Errors..29
4.3.2.3.5.2 Sequence Errors ...29
4.3.2.3.5.3 Time Errors ..29
4.3.2.3.5.4 System Errors...30

4.3.2.3.6 Special Handling..31
4.3.2.3.6.1 NAK and STALL ...31

4.3.2.4 PacketStatusWord..31
4.3.2.4.1 Packet Status Word Field Definitions...31

4.3.3 Completion Codes...32
4.3.3.1 Condition Code Description ...33

4.4 Host Controller Communications Area.. 33
4.4.1 Host Controller Communications Area Format..34
4.4.2 Host Controller Communications Area Description ...34

4.4.2.1 HccaInterruptTable ..34
4.4.2.2 HccaFrameNumber ..35
4.4.2.3 HccaDoneHead ..35

4.5 Endpoint List Processing ... 36

4.6 Transfer Descriptor Queue Processing... 37

5. HOST CONTROLLER DRIVER.. 38

5.1 Host Controller Management.. 38
5.1.1 Initialization ..38

5.1.1.1 Load and Locate ..39
5.1.1.2 Verify Host Controller and Allocate Resources...39
5.1.1.3 Take Control of Host Controller...40

5.1.1.3.1 SMM Driver, Power-Up..40
5.1.1.3.2 BIOS Driver..40
5.1.1.3.3 OS Driver, SMM Active..41
5.1.1.3.4 OS Driver, BIOS Active..41
5.1.1.3.5 OS Driver, neither SMM nor BIOS ...41
5.1.1.3.6 SMM Driver, Re-Entry..42

OpenHCI - Open Host Controller Interface Specification for USB

viii

5.1.1.4 Setup Host Controller ..42
5.1.1.5 Begin Sending SOFs...42

5.1.2 Operational States...43
5.1.2.1 USBRESET ..43
5.1.2.2 USBOPERATIONAL ..43
5.1.2.3 USBSUSPEND ..43
5.1.2.4 USBRESUME ...44

5.2 Schedule... 44
5.2.1 Sample Host Controller Driver Definitions ..46
5.2.2 Miscellaneous Definitions..46
5.2.3 Host Controller Descriptors Definitions...47
5.2.4 Host Controller Driver Descriptor Definitions ...48
5.2.5 Host Controller Endpoints ..50
5.2.6 Host Controller Driver Internal Definitions..51
5.2.7 Endpoint Descriptor Lists ...54

5.2.7.1 Bulk and Control..54
5.2.7.1.1 Adding ..54
5.2.7.1.2 Removing..56
5.2.7.1.3 Pause...59

5.2.7.2 Interrupt...61
5.2.7.2.1 Polling Rate...64
5.2.7.2.2 Adding ..66
5.2.7.2.3 Removing..66
5.2.7.2.4 Pause...67

5.2.7.3 Isochronous ...67
5.2.7.3.1 Adding ..68
5.2.7.3.2 Removing..68
5.2.7.3.3 Pause...68

5.2.8 Transfer Descriptor Queues ..68
5.2.8.1 The NULL or Empty Queue...68
5.2.8.2 Adding to a Queue ...69
5.2.8.3 Removing from a Queue...73
5.2.8.4 Cancel..74

5.2.9 Done Queue..75
5.2.10 USB Bandwidth Allocation ...78

5.2.10.1 Scheduling Overrun Errors ...78
5.2.11 ControlBulkServiceRatio ..79

5.3 Host Controller Interrupt... 80

5.4 FrameInterval Counter... 85

5.5 Root Hub .. 86

OpenHCI - Open Host Controller Interface Specification for USB

ix

6. HOST CONTROLLER .. 87

6.1 Introduction.. 87

6.2 USB States ... 87
6.2.1 UsbOperational ...88
6.2.2 UsbReset ..89
6.2.3 UsbSuspend ..89
6.2.4 UsbResume...89

6.3 Frame Management ... 90
6.3.1 Frame Timing..90
6.3.2 StartOfFrame (SOF) Token Generation...91
6.3.3 HccaFrameNumber Update ...91

6.4 List Processing.. 92
6.4.1 Priority ...92

6.4.1.1 List Priority..93
6.4.1.1.1 Periodic Lists...93
6.4.1.1.2 Nonperiodic Lists ..93

6.4.1.2 Endpoint Descriptor Priority ..94
6.4.1.3 Transfer Descriptor Priority..95

6.4.2 List Service Flow ..95
6.4.2.1 List Enabled Check ..95
6.4.2.2 Locating Endpoint Descriptors ...97

6.4.3 Endpoint Descriptor Processing ..98
6.4.4 Transfer Descriptor Processing ...99

6.4.4.1 Isochronous Relative Frame Number Calculation..99
6.4.4.2 Packet Address and Size Calculation ..99
6.4.4.3 Packet Transfer Time Check...101
6.4.4.4 Largest Data Packet Counter Operation ...102
6.4.4.5 Status Writeback..102

6.4.4.5.1 General Transfer Descriptor Status Writeback ...102
6.4.4.5.2 Isochronous Transfer Descriptor Status Writeback103

6.4.4.6 Transfer Descriptor Retirement ..103
6.4.5 Done Queue..104

6.4.5.1 Done Queue Interrupt Counter...104

6.5 Interrupt Processing.. 105
6.5.1 SchedulingOverrun Event..105
6.5.2 WritebackDoneHead Event ...106
6.5.3 StartOfFrame Event ..106
6.5.4 ResumeDetected Event ...106
6.5.5 UnrecoverableError Event ..106
6.5.6 FrameNumberOverflow Event...106
6.5.7 RootHubStatusChange Event..107
6.5.8 OwnershipChange Event ...107

OpenHCI - Open Host Controller Interface Specification for USB

x

6.6 Root Hub .. 107

7. OPERATIONAL REGISTERS... 108

7.1 The Control and Status Partition.. 109
7.1.1 HcRevision Register..109
7.1.2 HcControl Register ...109
7.1.3 HcCommandStatus Register..112
7.1.4 HcInterruptStatus Register..113
7.1.5 HcInterruptEnable Register ..115
7.1.6 HcInterruptDisable Register ...116

7.2 Memory Pointer Partition .. 117
7.2.1 HcHCCA Register...117
7.2.2 HcPeriodCurrentED Register ...117
7.2.3 HcControlHeadED Register ...118
7.2.4 HcControlCurrentED Register..118
7.2.5 HcBulkHeadED Register ..119
7.2.6 HcBulkCurrentED Register...119
7.2.7 HcDoneHead Register ..120

7.3 Frame Counter Partition.. 120
7.3.1 HcFmInterval Register..120
7.3.2 HcFmRemaining Register ...121
7.3.3 HcFmNumber Register ...122
7.3.4 HcPeriodicStart Register ..122
7.3.5 HcLSThreshold Register ...123

7.4 Root Hub Partition... 123
7.4.1 HcRhDescriptorA Register..124
7.4.2 HcRhDescriptorB Register..125
7.4.3 HcRhStatus Register ...126
7.4.4 HcRhPortStatus[1:NDP] Register ...128

APPENDIX A—PCI INTERFACE.. 132

PCI CONFIGURATION ... 132

PCI Configuration Spaces for OpenHCI-compliant USB Host Controller......... 133
COMMAND Register...134
CLASS_CODE Register...134
BAR_OHCI Register..135

OpenHCI - Open Host Controller Interface Specification for USB

xi

APPENDIX B—LEGACY SUPPORT INTERFACE SPECIFICATION 136

OVERVIEW... 136

OPERATIONAL THEORY .. 137

Keyboard/Mouse Input .. 137

Keyboard Output ... 138

Emulation Interrupts.. 138
Mixed Environment ...139
Gate A20 Sequence ...139

SYSTEM REQUIREMENTS.. 140

Host Controller Mapping... 140

SMI Signaling ... 141

Intercept Port 60h and 64h Accesses .. 141

Interrupts.. 141

Run-time Memory .. 141

PROGRAMMING INTERFACE... 142

Modifications to existing registers .. 142
HcRevision Register ..142

Legacy Support Registers .. 142
HceInput Register..143
HceOutput Register ...143
HceStatus Register...144
HceControl Register ..145

IMPLEMENTATION NOTES... 146

Emulation Interrupt Decode.. 146

A20 Gate ... 146

OpenHCI - Open Host Controller Interface Specification for USB

xii

 LIST OF FIGURES
Figure 3-1: USB Focus Areas...6
Figure 3-2: Communication Channels ...8
Figure 3-3: Typical List Structure..9
Figure 3-4: Interrupt ED Structure ...10
Figure 3-5: Sample Interrupt Endpoint Schedule...11
Figure 3-6: Frame Bandwidth Allocation ...12

Figure 4-1: Endpoint Descriptor ..16
Figure 4-2: General TD Format ...20
Figure 4-3: Isochronous TD Format ..25
Figure 4-4: Packet Status Word Format...31
Figure 4-5: Host Controller Communications Area Format ..34

Figure 5-1: The OpenHCI Host Controller...39
Figure 5-2: USB Schedule ...45
Figure 5-3: Removing an Endpoint Descriptor ...56
Figure 5-4: Structure of Interrupt Lists ...61
Figure 5-5: Runtime Structure of Interrupt Lists ..62
Figure 5-6: An Empty Transfer Descriptor Queue..68
Figure 5-7: Adding a Transfer Descriptor to a Queue...69
Figure 5-8: Host Controller Removes a Transfer Descriptor from a Queue73

Figure 6-1: USB States...88
Figure 6-2: Timing for SOF Token Generation on USB..91
Figure 6-3: List Priority within a USB Frame...92
Figure 6-4: Control Bulk Service Ratio of 4:1..93
Figure 6-5: List Service Flow ..96
Figure 6-6: Endpoint Descriptor Service Flow ...98
Figure 6-7: Transfer Descriptor Service Flow ..100

OpenHCI - Open Host Controller Interface Specification for USB

xiii

Figure 7-1: HcRevision Register ..109
Figure 7-2: HcControl Register ...109
Figure 7-3: HcCommandStatus Register ..112
Figure 7-4: HcInterruptStatus Register ..114
Figure 7-5: HcInterruptEnable Register ..115
Figure 7-6: HcInterruptDisable Register ...116
Figure 7-7: HcHCCA Register ...117
Figure 7-8: HcPeriodCurrentED Register..117
Figure 7-9: HcControlHeadED Register..118
Figure 7-10: HcControlCurrentED Register ..118
Figure 7-11: HcBulkHeadED Register...119
Figure 7-12: HcBulkCurrentED Register ...119
Figure 7-13: HcDoneHead Register...120
Figure 7-14: HcFmInterval Register ..120
Figure 7-15: HcFmRemaining Register..121
Figure 7-16: HcFmNumber Register ..122
Figure 7-17: HcPeriodicStart Register...122
Figure 7-18: HcLSThreshold Register..123
Figure 7-19: HcRhDescriptorA Register ..124
Figure 7-20: HcRhDescriptorB Register ..125
Figure 7-21: HcRhStatus Register..126
Figure 7-22: HcRhPortStatus Register...128

Figure B-1: HcRevision Register ..142

OpenHCI - Open Host Controller Interface Specification for USB

xiv

LIST OF TABLES
Table 4-1: Field Definitions for Endpoint Descriptor..17
Table 4-2: Field Definitions for General TD...20
Table 4-3: Field Definitions for Isochronous TD..26
Table 4-4: Example Calculation of R and Host Controller Action...27
Table 4-5: Example of Time Overrun...30
Table 4-6: Field Definitions for Packet Status Word ..31
Table 4-7: Completion Codes ..32

Table 5-1: LIST_ENTRY..46
Table 5-2: HCD_ENDPOINT_DESCRIPTOR..48
Table 5-3: HCD_TRANSFER_DESCRIPTOR..49
Table 5-4: HCD_ENDPOINT ...50
Table 5-5: USBD_REQUEST ...51
Table 5-6: HCD_ED_LIST ...52
Table 5-7: HCD_DEVICE_DATA ..53

Table 7-1: Host Controller Operational Registers...108

Table B-1: HcRevision Register Fields...142
Table B-2: Legacy Support Registers ..142
Table B-3: Emulated Registers ..143
Table B-4: HceInput Registers...143
Table B-5: HceOutput Registers ..143
Table B-6: HceStatus Register...144
Table B-7: HceControl Register ..145

OpenHCI - Open Host Controller Interface Specification for USB

1

1. INTRODUCTION
The Open Host Controller Interface (OpenHCI) Specification for the Universal Serial Bus is a
register-level description of a Host Controller for the Universal Serial Bus (USB) which in turn is
described by the Universal Serial Bus Specification, soon to be released by Intel Corporation.
The purpose of OpenHCI is to accelerate the acceptance of USB in the marketplace by promoting
the use of a common industry software/hardware interface. OpenHCI allows multiple Host
Controller vendors to design and sell Host Controllers with a common software interface, freeing
them from the burden of writing and distributing software drivers. The design goal has been to
balance the complexity of the hardware and software so that OpenHCI is more than the simplest
possible Host Controller for USB yet not the most complex possible.

The target audience for this specification are hardware designers, system vendors, and software
designers. The reader should be familiar with the Universal Serial Bus Specification, Version
1.0, which is included by reference. In the chapters that follow, the Host Controller is described
from various viewpoints; as a result, some information is repeated with the details of the current
viewpoint being highlighted and explained. It is hoped that this method of presentation will give
the reader a deeper and less ambiguous understanding of the specification.

The following descriptions summarize the organization of this specification:

• Chapter 2 provides a glossary of terms and abbreviations used within the specification.

• Chapter 3 gives an overview of the architecture of the Host Controller.

• Chapter 4 defines the data structures that reside in the host system memory and are used
by the Host Controller.

• Chapter 5 describes how a software driver manages the Host Controller and its data
structures.

• Chapter 6 describes the Host Controller hardware.

• Chapter 7 details the registers within the Host Controller that are visible to the software.

OpenHCI - Open Host Controller Interface Specification for USB

2

2. TERMS AND ABBREVIATIONS

Bit Stuffing Insertion of a “0” bit into a data stream to cause an electrical
transition on the data wires allowing a PLL to remain locked.

Buffer Storage used to compensate for a difference in data rates or time
of occurrence of events, when transmitting data from one
device to another.

Command A request made to a Universal Serial Bus (USB) device.

Cyclic Redundancy
Check (CRC)

A check performed on data to see if an error has occurred in
transmitting, reading, or writing the data. The result of a
CRC is typically stored or transmitted with the checked data.
The stored or transmitted result is compared to a CRC
calculated for the data to determine if an error has occurred.

Device A logical or physical entity that performs one or more functions.
The actual entity described depends on the context of the
reference. At the lowest level, device may refer to a single
hardware component, as in a memory device. At a higher
level, it may refer to a collection of hardware components
that perform a particular function, such as a Universal Serial
Bus (USB) interface device. At an even higher level, device
may refer to the function performed by an entity attached to
the USB; for example, a data/FAX modem device. Devices
may be physical, electrical, addressable, and logical. When
used as a nonspecific reference, a USB device is either a hub
or a function.

Device Address The address of a device on Universal Serial Bus (USB). The
Device Address is the Default Address when the USB device
is first powered or reset. Hubs and functions are assigned a
unique Device Address by USB configuration software.

Driver When referring to hardware, an I/O pad that drives an external
load. When referring to software, a program responsible for
interfacing to a hardware device; that is, a device driver.

ED See Endpoint Descriptor.

OpenHCI - Open Host Controller Interface Specification for USB

3

End of Frame
(EOF)

The end of a USB defined frame. There are several different
stages of EOF present in a frame.

Endpoint Address The combination of a Device Address and an Endpoint Number
on a Universal Serial Bus device.

Endpoint
Descriptor (ED)

A memory structure which describes information necessary for
the Host Controller to communicate (via Transfer
Descriptors) with a device Endpoint. An Endpoint Descriptor
includes a Transfer Descriptor pointer.

Endpoint Number A unique pipe endpoint on a Universal Serial Bus device.

EOF See End of Frame.

Frame A frame begins with a Start of Frame (SOF) token and is 1.0 ms
±0.25% in length.

Function A Universal Serial Bus device that provides a capability to the
host. For example, an ISDN connection, a digital
microphone, or speakers.

Handshake Packet Packet which acknowledges or rejects a specific condition.

HC See Host Controller.

HCCA See Host Controller Communication Area

HCD See Host Controller Driver.

HCDI See Host Controller Driver Interface.

HCI See Host Controller Interface.

Host Controller
(HC)

Hardware device which interfaces to the Host Controller Driver
(HCD) and the Universal Serial Bus (USB). The interface to
the HCD is defined by the OpenHCI Host Controller
Interface. The Host Controller processes data lists
constructed by the HCD for data transmission over the USB.
The Host Controller contains the Root Hub as well.

OpenHCI - Open Host Controller Interface Specification for USB

4

Host Controller
Communication
Area (HCCA)

A structure in shared main memory established by the Host
Controller Driver (HCD). This structure is used for
communication between the HCD and the Host Controller.
The HCD maintains a pointer to this structure in the Host
Controller.

Host Controller
Driver (HCD)

Software driver which interfaces to the Universal Serial Bus
Driver and the Host Controller. The interface to the Host
Controller is defined by the OpenHCI Host Controller
Interface.

Host Controller
Driver Interface
(HCDI)

Software interface between the Universal Serial Bus Driver and
the Host Controller Driver.

Host Controller
Interface (HCI)

Interface between the Host Controller Driver and the Host
Controller.

Hub A Universal Serial Bus device that provides additional
connections to the Universal Serial Bus.

Interrupt Request
(IRQ)

A hardware signal that allows a device to request attention from
a host. The host typically invokes an interrupt service routine
to handle the condition which caused the request.

IRQ See Interrupt Request.

Isochronous Data A continuous stream of data delivered at a steady rate.

LSb Least Significant Bit.

LSB Least Significant Byte.

MSb Most Significant Bit.

MSB Most Significant Byte.

OpenHCI The Open Host Controller Interface definition. This interface
describes the requirements for a Host Controller and a Host
Controller driver for the operation of a Universal Serial Bus.

Packet A bundle of data organized for transmission.

OpenHCI - Open Host Controller Interface Specification for USB

5

Peripheral
Component
Interconnect (PCI)

A 32- or 64-bit, processor-independent, expansion bus used on
personal computers.

Phase A token, data, or handshake packet; a transaction has three
phases.

Polling Asking multiple devices, one at a time, if they have any data to
transmit.

Polling Interval The period between consecutive requests for data input to a
Universal Serial Bus Endpoint.

POR See Power-On Reset.

Port Point of access to or from a system or circuit. For Universal
Serial Bus, the point where a Universal Serial Bus device is
attached.

Power-On Reset
(POR)

Restoring a storage device, register or memory to a
predetermined state when power is applied.

Queue A linked list of Transfer Descriptors.

Root Hub A Universal Serial Bus hub attached directly to the Host
Controller.

Start of Frame
(SOF)

Start of Frame (SOF). The beginning of a USB-defined frame.
The SOF is the first transaction in each frame. SOF allows
endpoints to identify the start of frame and synchronize
internal endpoint clocks to the host.

TD See Transfer Descriptor.

Time-out The detection of a lack of bus activity for some predetermined
interval.

Transfer Descriptor
(TD)

A memory structure which describes information necessary for
the Host Controller to transfer a block of data to or from a
device Endpoint.

Universal Serial Bus
(USB)

A collection of Universal Serial Bus devices including the
software and hardware that allow connections between
functions and the host.

OpenHCI - Open Host Controller Interface Specification for USB

6

3. ARCHITECTURAL OVERVIEW

3.1 Introduction
Figure 3-1 shows four main focus areas of a Universal Serial Bus (USB) system. These areas are
the Client Software/USB Driver, Host Controller Driver (HCD), Host Controller (HC), and USB
Device. The Client Software/USB Device and Host Controller Driver are implemented in
software. The Host Controller and USB Device are implemented in hardware. OpenHCI specifies
the interface between the Host Controller Driver and the Host Controller and the fundamental
operation of each.

Software

Hardware

Host Controller

Client Software
USB Driver

Host Controller Driver

USB Device

Scope of
OpenHCI

Figure 3-1: USB Focus Areas

The Host Controller Driver and Host Controller work in tandem to transfer data between client
software and a USB device. Data is translated from shared-memory data structures at the client
software end to USB signal protocols at the USB device end, and vice-versa.

OpenHCI - Open Host Controller Interface Specification for USB

7

3.2 Data Transfer Types
There are four data transfer types defined in USB. Each type is optimized to match the service
requirements between the client software and the USB device. The four types are:

• Interrupt Transfers - Small data transfers used to communicate information from the USB
device to the client software. The Host Controller Driver polls the USB device by issuing
tokens to the device at a periodic interval sufficient for the requirements of the device.

• Isochronous Transfers - Periodic data transfers with a constant data rate. Data transfers are
correlated in time between the sender and receiver.

• Control Transfers - Nonperiodic data transfers used to communicate
configuration/command/status type information between client software and the USB device.

• Bulk Transfers - Nonperiodic data transfers used to communicate large amounts of
information between client software and the USB device.

In OpenHCI the data transfer types are classified into two categories: periodic and nonperiodic.
Periodic transfers are interrupt and isochronous since they are scheduled to run at periodic
intervals. Nonperiodic transfers are control and bulk since they are not scheduled to run at any
specific time, but rather on a time-available basis.

3.3 Host Controller Interface
3.3.1 Communication Channels

There are two communication channels between the Host Controller and the Host Controller
Driver. The first channel uses a set of operational registers located on the HC. The Host
Controller is the target for all communication on this channel. The operational registers contain
control, status, and list pointer registers. Within the operational register set is a pointer to a
location in shared memory named the Host Controller Communications Area (HCCA). The
HCCA is the second communication channel. The Host Controller is the master for all
communication on this channel. The HCCA contains the head pointers to the interrupt Endpoint
Descriptor lists, the head pointer to the done queue, and status information associated with start-
of-frame processing.

OpenHCI - Open Host Controller Interface Specification for USB

8

Operational
Registers

Mode

Host Controller
Commications Area

HCCA

Status

Event

Frame Int

Control

Interrupt 0

Interrupt 1

Interrupt 31

. . .
Interrupt 2

Done

. . .

. . .

Bulk

Ratio

Shared RAM

OpenHCI

Device Enumeration

Device Register
in memory space

Figure 3-2: Communication Channels

3.3.2 Data Structures
The basic building blocks for communication across the interface are the Endpoint Descriptor
(ED) and Transfer Descriptor (TD).

The Host Controller Driver assigns an Endpoint Descriptor to each endpoint in the system. The
Endpoint Descriptor contains the information necessary for the Host Controller to communicate
with the endpoint. The fields include the maximum packet size, the endpoint address, the speed
of the endpoint, and the direction of data flow. Endpoint Descriptors are linked in a list.

A queue of Transfer Descriptors is linked to the Endpoint Descriptor for the specific endpoint.
The Transfer Descriptor contains the information necessary to describe the data packets to be
transferred. The fields include data toggle information, shared memory buffer location, and
completion status codes. Each Transfer Descriptor contains information that describes one or
more data packets. The data buffer for each Transfer Descriptor ranges in size from 0 to 8192
bytes with a maximum of one physical page crossing. Transfer Descriptors are linked in a queue:
the first one queued is the first one processed.

OpenHCI - Open Host Controller Interface Specification for USB

9

Each data transfer type has its own linked list of Endpoint Descriptors to be processed. Figure 3-
3, Typical List Structure, is a representation of the data structure relationships.

Head Ptr ED

TD

ED ED ED

TD TD TD

TDTD

TD

Figure 3-3: Typical List Structure

The head pointers to the bulk and control Endpoint Descriptor lists are maintained within the
operational registers in the HC. The Host Controller Driver initializes these pointers prior to the
Host Controller gaining access to them. Should these pointers need to be updated, the Host
Controller Driver may need to halt the Host Controller from processing the specific list, update
the pointer, then re-enable the HC.

The head pointers to the interrupt Endpoint Descriptor lists are maintained within the HCCA.
There is no separate head pointer for isochronous transfers. The first isochronous Endpoint
Descriptor simply links to the last interrupt Endpoint Descriptor. There are 32 interrupt head
pointers. The head pointer used for a particular frame is determined by using the last 5 bits of the
Frame Counter as an offset into the interrupt array within the HCCA.

OpenHCI - Open Host Controller Interface Specification for USB

10

The interrupt Endpoint Descriptors are organized into a tree structure with the head pointers
being the leaf nodes. The desired polling rate of an Interrupt Endpoint is achieved by scheduling
the Endpoint Descriptor at the appropriate depth in the tree. The higher the polling rate, the
closer to the root of the tree the Endpoint Descriptor will be placed since multiple lists will
converge on it. Figure 3-4 illustrates the structure for Interrupt Endpoints. The Interrupt
Endpoint Descriptor Placeholder indicates where zero or more Endpoint Descriptors may be
enqueued. The numbers on the left are the index into the HCCA interrupt head pointer array.

0

17

8

1

2

3

4

5

6

7

9

10

11

12

13

14

15

16

24

20

28

18

26

22

30

25

21

29

19

27

23

31

32 16 8 4 2 1

Interrupt
Endpoint
Descriptor
Placeholder

Interrupt
Head
Pointers

Endpoint Poll Interval (ms)

Figure 3-4: Interrupt ED Structure

OpenHCI - Open Host Controller Interface Specification for USB

11

Figure 3-5 is a sample Interrupt Endpoint schedule. The schedule shows two Endpoint
Descriptors at a 1-ms poll interval, two Endpoint Descriptors at a 2-ms poll interval, one
Endpoint at a 4-ms poll interval, two Endpoint Descriptors at an-8 ms poll interval, two Endpoint
Descriptors at a 16-ms poll interval, and two Endpoint Descriptors at a 32-ms poll interval. Note
that in this example unused Interrupt Endpoint Placeholders are bypassed and the link is
connected to the next available Endpoint in the hierarchy.

0

17

8

1

2

3

4

5

6

7

9

10

11

12

13

14

15

16

24

20

28

18

26

22

30

25

21

29

19

27

23

31

32 16 8 4 2 1

Endpoint Poll Interval (ms)

Interrupt
Head
Pointers

Interrupt
Endpoint
Descriptor

Figure 3-5: Sample Interrupt Endpoint Schedule

OpenHCI - Open Host Controller Interface Specification for USB

12

3.4 Host Controller Driver Responsibilities
This section summarizes the Host Controller Driver (HCD) responsibilities.

3.4.1 Host Controller Management
The Host Controller Driver manages the operation of the Host Controller (HC). It does so by
communicating directly to the operational registers in the Host Controller and establishing the
interrupt Endpoint Descriptor list head pointers in the HCCA.

The Host Controller Driver maintains the state of the HC, list processing pointers, list processing
enables, and interrupt enables.

3.4.2 Bandwidth Allocation
All access to the USB is scheduled by the Host Controller Driver. The Host Controller Driver
allocates a portion of the available bandwidth to each periodic endpoint. If sufficient bandwidth is
not available, a newly-connected periodic endpoint will be denied access to the bus.

A portion of the bandwidth is reserved for nonperiodic transfers. This ensures that some amount
of bulk and control transfers will occur in each frame period. The frame period is defined for
USB to be 1.0 ms.

The bandwidth allocation policy for OpenHCI is shown in Figure 3-6. Each frame begins with the
Host Controller sending the Start of Frame (SOF) synchronization packet to the USB bus. This is
followed by the Host Controller servicing nonperiodic transfers until the frame interval counter
reaches the value set by the Host Controller Driver, indicating that the Host Controller should
begin servicing periodic transfers. After the periodic transfers complete, any remaining time in the
frame is consumed by servicing nonperiodic transfers once more.

1.0 ms

SOF NP Periodic NP

Time

Figure 3-6: Frame Bandwidth Allocation

OpenHCI - Open Host Controller Interface Specification for USB

13

3.4.3 List Management
The transport mechanism for USB data packets is via Transfer Descriptor queues linked to
Endpoint Descriptor lists. The Host Controller Driver creates these data structures then passes
control to the Host Controller for processing.

The Host Controller Driver is responsible for enqueuing and dequeuing Endpoint Descriptors.
Enqueuing is done by adding the Endpoint Descriptor to the tail of the appropriate list. This may
occur simultaneously with the Host Controller processing the list without requiring any lock
mechanism. Before dequeuing an Endpoint Descriptor, the Host Controller Driver may disable
the Host Controller from processing the entire Endpoint Descriptor list of the data type being
removed to ensure that the Host Controller is not accessing the Endpoint Descriptor.

The Host Controller Driver is also responsible for enqueuing Transfer Descriptors to the
appropriate Endpoint Descriptor. Enqueuing is done by adding the Transfer Descriptor to the tail
of the appropriate queue. This may occur simultaneously to the Host Controller processing the
queue without requiring any lock mechanism. Under normal operation, the Host Controller
dequeues the Transfer Descriptor. However, the Host Controller Driver dequeues the Transfer
Descriptor when the Transfer Descriptor is being canceled due to a request from the client
software or certain error conditions. In this instance, the Endpoint Descriptor is disabled prior to
the Transfer Descriptor being dequeued.

3.4.4 Root Hub
The Root Hub is integrated into the HC. The internal registers of the Root Hub are exposed to
the Host Controller Driver which is responsible for providing the proper hub-class protocol with
the USB Driver and proper control of the Root Hub.

3.5 Host Controller Responsibilities
This section summarizes the Host Controller (HC) responsibilities.

3.5.1 USB States
There are four USB states defined in OpenHCI: UsbOperational, UsbReset, UsbSuspend, and
UsbResume. The Host Controller puts the USB bus in the proper operating mode for each state.

OpenHCI - Open Host Controller Interface Specification for USB

14

3.5.2 Frame management
The Host Controller keeps track of the current frame counter and the frame period. At the
beginning of each frame, the Host Controller generates the Start of Frame (SOF) packet on the
USB bus and updates the frame count value in system memory. The Host Controller also
determines if enough time remains in the frame to send the next data packet.

3.5.3 List Processing
The Host Controller operates on the Endpoint Descriptors and Transfer Descriptors enqueued by
the Host Controller Driver.

For interrupt and isochronous transfers, the Host Controller begins at the Interrupt Endpoint
Descriptor head pointer for the current frame. The list is traversed sequentially until one packet
transfer from the first Transfer Descriptor of all interrupt and isochronous Endpoint Descriptors
scheduled in the current frame is attempted.

For bulk and control transfers, the Host Controller begins in the respective list where it last left
off. When the Host Controller reaches the end of a list, it loads the value from the head pointer
and continues processing. The Host Controller processes n control transfers to 1 bulk transfer
where the value of n is set by the Host Controller Driver.

When a Transfer Descriptor completes, either successfully or due to an error condition, the Host
Controller moves it to the Done Queue. Enqueuing on the Done Queue occurs by placing the
most recently completed Transfer Descriptor at the head of the queue. The Done Queue is
transferred periodically from the Host Controller to the Host Controller Driver via the HCCA.

OpenHCI - Open Host Controller Interface Specification for USB

15

4. DATA STRUCTURES
4.1 Overview

USB does not provide a mechanism for attached devices to arbitrate for use of the bus. As a
consequence, arbitration for use of the interface is ‘predictive’ with the Host Controller (HC) and
Host Controller Driver (HCD) software assigned the responsibility of providing service to devices
when it is predicted that a device will need it. USB by necessity supports a number of different
communications models between software and Endpoints (Bulk, Control, Interrupt, and
Isochronous). Usage of the bus varies widely among these service classes, making the task of the
host fairly challenging. The approach used by OpenHCI is to have two levels of arbitration to
select among the endpoints. The first level of arbitration is at the list level. Each endpoint type
needing service is in a list of a corresponding type (e.g., Isochronous Endpoints are in the
isochronous list) and the Host Controller selects which list to service. Within a list, endpoints are
given equal priority ensuring that all endpoints of a certain type have more-or-less equal service
opportunities.

The list priorities are modified at periodic intervals as endpoints are serviced. In each frame, an
interval of time is reserved for processing items in the control and bulk lists. This interval is at the
beginning of each frame. The Host Controller Driver limits this time by setting HcPeriodicStart
with a bit time in a frame after which periodic transfers (interrupt and isochronous) have priority
for use of the bus. During periodic list processing, the interrupt list specific to the current frame
is serviced before the isochronous list. When processing of the periodic lists is complete,
processing of the control and bulk lists can resume.

An Endpoint Descriptor (ED) contains information about an endpoint that is used by the Host
Controller to manage access to the endpoint. The endpoint’s address, transfer speed, and
maximum data packet size are typical parameters which are kept in the ED. Additionally, the ED
is used as an anchor for a queue of Transfer Descriptors. A Transfer Descriptor (TD) is attached
to an ED define a memory buffer to/from which data is to be transferred for the endpoint. When
the Host Controller accesses an ED and finds a valid TD address, the Host Controller completes a
single transaction with the endpoint identified in the ED from/to the memory address indicated by
the TD.

When all of the data defined by a TD has been transferred, the TD is unlinked from its ED and
linked to the done queue. The Host Controller Driver then processes the done queue and
provides completion information to the software that originated the transfer request.

OpenHCI - Open Host Controller Interface Specification for USB

16

Details of the memory data structures that are processed by the Host Controller in support of the
mechanisms described above are provided in the remainder of this chapter. Since the structures
defined are all in system memory, the Host Controller Driver has full read-write access to all
portions of the structures. The fields in the structures that are modified by the Host Controller
are noted in the field descriptions. Fields that are indicated as being written by the Host
Controller may not be modified by system software when the structure containing that field is on a
queue or list that is being processed by the HC. No hardware interlocks are used to provide
exclusion.

4.2 Endpoint Descriptor
An Endpoint Descriptor (ED) is a 16-byte, memory resident structure that must be aligned to a
16-byte boundary. The Host Controller traverses lists of EDs and if there are TDs linked to an
ED, the Host Controller performs the indicated transfer.

4.2.1 Endpoint Descriptor Format
3 2 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0
1 6 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

Dword 0 — MPS F K S D EN FA
Dword 1 TD Queue Tail Pointer (TailP) —
Dword 2 TD Queue Head Pointer (HeadP) 0 C H
Dword 3 Next Endpoint Descriptor (NextED) —

Figure 4-1: Endpoint Descriptor

Notes:
1. Fields containing ‘—’ are not interpreted or modified by the Host Controller and are available

for use by the Host Controller Driver for any purpose.
2. Fields containing ‘0’ must be written to 0 by the Host Controller Driver before queued for

Host Controller processing. If Host Controller has write access to the field, it will always
write the field to 0.

OpenHCI - Open Host Controller Interface Specification for USB

17

4.2.2 Endpoint Descriptor Field Definitions

Table 4-1: Field Definitions for Endpoint Descriptor

Name
HC

Access Description
FA R FunctionAddress

This is the USB address of the function containing the endpoint that this ED
controls

EN R EndpointNumber
This is the USB address of the endpoint within the function

D R Direction
This 2-bit field indicates the direction of data flow (IN or OUT.) If neither IN nor
OUT is specified, then the direction is determined from the PID field of the TD.
The encoding of the bits of this field are:

Code Direction
00b Get direction From TD
01b OUT
10b IN
11b Get direction From TD

S R Speed
Indicates the speed of the endpoint: full-speed (S = 0) or low-speed (S = 1.)

K R sKip
When this bit is set, the HC continues on to the next ED on the list without
attempting access to the TD queue or issuing any USB token for the endpoint

F R Format
This bit indicates the format of the TDs linked to this ED. If this is a Control,
Bulk, or Interrupt Endpoint, then F = 0, indicating that the General TD format is
used. If this is an Isochronous Endpoint, then F = 1, indicating that the
Isochronous TD format is used.

MPS R MaximumPacketSize
This field indicates the maximum number of bytes that can be sent to or received
from the endpoint in a single data packet

TailP R TDQueueTailPointer
If TailP and HeadP are the same, then the list contains no TD that the HC can
process. If TailP and HeadP are different, then the list contains a TD to be
processed.

H R/W Halted
This bit is set by the HC to indicate that processing of the TD queue on the
endpoint is halted, usually due to an error in processing a TD.

C R/W toggleCarry
This bit is the data toggle carry bit. Whenever a TD is retired, this bit is written to
contain the last data toggle value (LSb of data Toggle field) from the retired TD.
This field is not used for Isochronous Endpoints

HeadP R/W TDQueueHeadPointer
Points to the next TD to be processed for this endpoint.

NextED R NextED
If nonzero, then this entry points to the next ED on the list

OpenHCI - Open Host Controller Interface Specification for USB

18

4.2.3 Endpoint Descriptor Description
Endpoint Descriptors (ED) are linked in lists that are processed by the HC. An ED is linked to a
next ED when the NextED field is nonzero.

When the Host Controller accesses an ED, it checks the sKip and the Halted bits to determine if
any further processing of the ED is allowed. If either bit is set, then the Host Controller advances
to the next ED on the list. If neither the sKip nor the Halted bit is set, then the Host Controller
compares HeadP to TailP. If they are not the same, then the TD pointed to by HeadP defines a
buffer to/from which the Host Controller will transfer a data packet.

This linking convention assumes that the Host Controller Driver queues to the ‘tail’ of the TD
queue. It does this by linking a new TD to the TD pointed to by TailP and then updating TailP
to point to the TD just added.

When processing of a TD is complete, the Host Controller ‘retires’ the TD by unlinking it from
the ED and linking it to the Done Queue. When a TD is unlinked, NextTD of the TD is copied to
HeadP of the ED.

The sKip bit is set and cleared by the Host Controller Driver when it wants the Host Controller to
skip processing of the endpoint. This may be necessary when the Host Controller Driver must
modify the value of HeadP and the overhead of removing the ED from its list is prohibitive.

The Halted bit is set by the Host Controller when it encounters an error in processing a TD.
When the TD in error is moved to the Done Queue, the Host Controller updates HeadP and sets
the Halted bit, causing the Host Controller to skip the ED until Halted is cleared. The Host
Controller Driver clears the Halted bit when the error condition has been corrected and transfers
to/from the endpoint should resume. The Host Controller Driver should not write to
HeadP/toggleCarry/Halted unless Halted is set, sKip is set, or the ED has been removed from
the list.

When TDs are queued to an ED, the Host Controller processes the TDs asynchronously with
respect to processing by the host processor. Therefore, if the Host Controller Driver needs to
alter the TD queue other than appending to the queue, it must stop the Host Controller from
processing the TD queue for the endpoint so that changes can be made. The nominal mechanisms
for stopping TD processing are for the Host Controller Driver to remove the ED from the list or
to set the sKip bit in the ED.

When the D field of an ED is 10b (IN), the Host Controller may issue an IN token to the specified
endpoint after it determines that HeadP and TailP are not the same. This indicates that a buffer
exists for the data and that input of the endpoint data may occur in parallel with the HC’s access
of the TD which defines the memory buffer.

OpenHCI - Open Host Controller Interface Specification for USB

19

Since an ED must be aligned to a 16-byte boundary, the Host Controller only uses the upper 28
bits of Dword3 as a pointer to the next ED. TailP and HeadP point to TDs which may be either
16- or 32-byte aligned. The Host Controller uses only the upper 28 bits of Dword1 and Dword2
to point to a 16-byte aligned TD (F = 0). If HeadP and TailP point to a TD that must be 32-byte
aligned (F = 1), then bit 4 of these Dwords must be 0.

4.3 Transfer Descriptors
A Transfer Descriptor (TD) is a system memory data structure that is used by the Host Controller
to define a buffer of data that will be moved to or from an endpoint. TDs come in two types:
general and isochronous. The General TD is used for Interrupt, Control, and Bulk Endpoints and
an Isochronous TD is used to deal with the unique requirements of isochronous transfers. Two
TD types are supported because the nature of isochronous transfers does not lend itself to the
standard DMA buffer format and the packetizing of the buffer required for isochronous transfers
is too restrictive for general transfer types.

Both the General TD and the Isochronous TD provide a means of specifying a buffer that is from
0 to 8,192 bytes long. Additionally, the data buffer described in a single TD can span up to two
physically disjoint pages. Although the scatter/gather capabilities of a single TD are limited, it
eliminates most of the problems associated with forcing buffers to be physically contiguous
including the possibility of superfluous data movements.

Transfer Descriptors are linked to queues attached to EDs. The ED provides the endpoint
address to/from which the TD data is to be transferred. The Host Controller Driver adds to the
queue and the Host Controller removes from the queue. When the Host Controller removes a TD
from a queue, it links the TD to the Done Queue. When a TD is unlinked from the ED and linked
to the Done Queue, it is said to be ‘retired’. A TD may be retired due to normal completion or
because of an error condition. When the TD is retired, a condition code value is written in the TD
which allows the Host Controller Driver to determine the reason it was retired.

Details of TD processing are dependent on the type of TD and are discussed in Sections 4.3.1
through 4.3.3.1.

4.3.1 General Transfer Descriptor
Transfers for control, bulk, and interrupt all use the same format for their Transfer Descriptor
(TD). This General TD is a 16-byte, host memory structure that must be aligned to a 16-byte
boundary.

OpenHCI - Open Host Controller Interface Specification for USB

20

4.3.1.1 General Transfer Descriptor Format
3 2 2 2 2 2 2 2 2 1 1 0 0
1 8 7 6 5 4 3 1 0 9 8 3 0

Dword 0 CC EC T DI DP R —
Dword 1 Current Buffer Pointer (CBP)
Dword 2 Next TD (NextTD) 0
Dword 3 Buffer End (BE)

Figure 4-2: General TD Format

Note: In Dword0, there are fields that are read/write by the HC. The unused portion of this
Dword (indicated by ‘—’) must either not be written by Host Controller or must be read,
and then written back unmodified. The Host Controller Driver should not modify any
portion of the TD while it is accessible to the HC.

4.3.1.2 General Transfer Descriptor Field Definitions

Table 4-2: Field Definitions for General TD

Name
HC

Access Description
R R bufferRounding

If this bit is 0, then the last data packet to a TD from an endpoint must
exactly fill the defined data buffer. If the bit is 1, then the last data
packet may be smaller than the defined buffer without causing an error
condition on the TD.

DP R Direction/PID
This 2-bit field indicates the direction of data flow and the PID to be used
for the token. This field is only relevant to the HC if the D field in the ED
was set to 00b or 11b indicating that the PID determination is deferred to
the TD. The encoding of the bits within the byte for this field are:

PID Data
Code Type Direction
00b SETUP to endpoint
01b OUT to endpoint
10b IN from endpoint
11b Reserved

DI R DelayInterrupt
This field contains the interrupt delay count for this TD. When a TD is
complete the HC may wait for DelayInterrupt frames before generating
an interrupt. If DelayInterrupt is 111b, then there is no interrupt
associated with completion of this TD.

OpenHCI - Open Host Controller Interface Specification for USB

21

Table 4-2: Field Definitions for General TD

Name
HC

Access Description
T R/W DataToggle

This 2-bit field is used to generate/compare the data PID value (DATA0
or DATA1). It is updated after each successful transmission/reception of
a data packet. The MSb of this field is ‘0’ when the data toggle value is
acquired from the toggleCarry field in the ED and ‘1’ when the data
toggle value is taken from the LSb of this field.

EC R/W ErrorCount
For each transmission error, this value is incremented. If ErrorCount is
2 and another error occurs, the error type is recorded in the
ConditionCode field and placed on the done queue. When a
transaction completes without error, ErrorCount is reset to 0.

CC R/W ConditionCode
This field contains the status of the last attempted transaction. (See
Section 0.)

CBP R/W CurrentBufferPointer
Contains the physical address of the next memory location that will be
accessed for transfer to/from the endpoint. A value of 0 indicates a zero-
length data packet or that all bytes have been transferred.

NextTD R/W NextTD
This entry points to the next TD on the list of TDs linked to this endpoint

BE R BufferEnd
Contains physical address of the last byte in the buffer for this TD

4.3.1.3 General Transfer Descriptor Description

4.3.1.3.1 Buffer Address Determination

The CurrentBufferPointer value in the General TD is the address of the data buffer that will be
used for a data packet transfer to/from the endpoint addressed by the ED. When the transfer is
completed without an error of any kind, the Host Controller advances the value of
CurrentBufferPointer by the number of bytes transferred

If during the data transfer the buffer address contained in the HC’s working copy of
CurrentBufferPointer crosses a 4K boundary, the upper 20 bits of Buffer End are copied to the
working value of CurrentBufferPointer causing the next buffer address to be the 0th byte in the
same 4K page that contains the last byte of the buffer (the 4K boundary crossing may occur
within a data packet transfer.)

4.3.1.3.2 Packet Size

For writes from the Host Controller to an endpoint (OUT and SETUP), the size of the data
packet that is sent to an endpoint is always the smaller of MaximumPacketSize and the
remaining data in the buffer. For reads from the endpoint to the Host Controller (IN), the size of
the data packet is determined by the endpoint.

OpenHCI - Open Host Controller Interface Specification for USB

22

4.3.1.3.3 Condition Codes

The ConditionCode field of a General TD is updated after every attempted transaction, whether
successful or not. If the transaction was successful, then the ConditionCode field is set to
NOERROR. Otherwise, it is set according to the error type.

4.3.1.3.4 Sequence Bits

The USB protocol uses data PID sequencing to ensure that data packets are received in the
correct order. The sequencing requires that the data transmitter continue to send the same data
packet with the same data PID (either DATA0 or DATA1) until it has determined that the data
packet has been successfully received and accepted. Reception and acceptance are indicated
when the transmitter receives an ACK handshake after sending a data packet. In order to ensure
that data packets are not lost, the Host Controller and the endpoint must start and stay in data
toggle synchronization.

Data toggle synchronization is first established at endpoint initialization with the nominal value for
the first packet to/from an endpoint using DATA0. On each successive successful packet
transmission/reception, the data toggle changes.

The data toggle is maintained within a General TD simply by alternating the LSb of the
dataToggle field. When the data toggle value must be carried between two General TDs, the
toggleCarry bit in the ED is used to propagate the correct value to the next General TD.

When the MSb of the dataToggle field is 0, that means that the value of the data toggle is
obtained from the toggleCarry bit in the ED and the LSb of the dataToggle field is ignored.
When the MSb of the dataToggle field is 1, then the LSb of the dataToggle field contains the
value that is to be used for the data toggle.

For bulk and interrupt endpoints, most General TDs are queued with dataToggle = 00b. This
allows the data toggle to be carried across multiple TDs with the ED containing the value to be
used for the first data packet in each transfer. After the first data packet is successfully
transferred, the MSb of dataToggle is set to indicate that, for the remainder of the transfer, the
dataToggle field will determine the data toggle and the LSb will be set to indicate the next toggle
value. When the General TD is retired and HeadP in the ED is updated, the toggleCarry bit in
the ED is written to indicate the data toggle value that will be used on the next packet for the
endpoint.

OpenHCI - Open Host Controller Interface Specification for USB

23

For control endpoints, the convention is that the Setup packet will always use a data PID of
DATA0, the first data packet will use a data PID of DATA1, and the Status packet will use a data
PID of DATA1. Since this sequence does not rely on any previous data toggle history, the Setup,
data, and status packets should be queued with the MSb of the dataToggle field = 1 and the LSb
of each TD set appropriately (Setup = 0; Status = 1; and first data, if any, = 1.) Although the
Host Controller updates the toggleCarry bit in the ED whenever a General TD is retired, the data
toggle is determined solely by the General TD.

The data toggle field of a General TD is advanced after every successful data packet transaction
with the endpoint, including the last. As long as an ACK is sent (IN) or received (OUT or Setup),
the data toggle will advance, even if other error conditions are encountered.

4.3.1.3.5 Transfer Completion

A transfer is completed when the Host Controller successfully transfers, to or from an endpoint,
the byte pointed to by BufferEnd. Upon successful completion, the Host Controller sets
CurrentBufferPointer to zero, sets ConditionCode to NOERROR, and retires the General TD to
the Done Queue.

The transfer may also complete when a data packet from an endpoint does not fill the buffer and is
less than Maximum Packet Size bytes in length. In this case, CurrentBufferPointer is updated
to point to the memory byte immediately after the last byte written to memory. Then, if the
bufferRounding bit in the General TD is set, then this condition is treated as a normal
completion and the Host Controller sets the ConditionCode field to NOERROR and retires the
General TD to the Done Queue. If the bufferRounding bit in the General TD is not set, then this
condition is treated as an error and the Host Controller sets the ConditionCode field to
DATAUNDERRUN and the Halted bit of the ED is set as the General TD is retired.

4.3.1.3.6 Transfer Errors

There are several types of transfer errors that must be handled by the HC. They fall into the
following categories:
• transmission
• sequence
• system

Transmission errors are errors that occur in communicating information over the USB wires and
manifest themselves as CRC errors, BITSTUFFING errors, DEVICENOTRESPONDING errors.
Sequence errors occur when the number of data bytes received does not match the number of
bytes expected from an endpoint. System errors occur when the Host Controller has a problem
resulting from the HC’s system environment that cannot otherwise be attributed to USB.

OpenHCI - Open Host Controller Interface Specification for USB

24

4.3.1.3.6.1 Transmission Errors

For errors in this category, USB defines a policy that allows the transaction to be retried for up to
three times before the transfer is failed and returned to the client. The Host Controller supports
this policy with the ErrorCount field. This field is initialized to 0 by the Host Controller Driver
when the General TD is queued. This field is updated after each transaction attempt. If there is
no transmission error, the field is written to 0. If, however, there is a transmission error, the field
is incremented. If the ErrorCount field reaches 2 (10b) and another transmission error occurs
(the third error in a row), the TD is retired to the Done Queue and the endpoint is halted.

Data toggle mismatches on input data are counted as transmission errors. The cause of a data
toggle mismatch is either failure of the endpoint to receive an ACK or a broken device. Data
received when the data toggle mismatches is discarded and never written to host memory.

An error in the PID check field is counted as a transmission error and is reported with a
ConditionCode of PIDCHECKFAILURE.

4.3.1.3.6.2 Sequence Errors

Sequence errors occur only on reads from an endpoint to the Host Controller (IN). Sequence
errors are not checked unless the data packet is received without a transmission error. There are
two types of sequence errors: data overrun and data underrun. When either of these error
conditions is encountered, the ConditionCode field is set accordingly, the General TD is retired,
and the endpoint is halted.

A data overrun error occurs when the number of bytes received from an endpoint exceeds either
Maximum Packet Size or the number of bytes remaining in a General TD’s buffer. In the case of
an overrun condition, the Host Controller writes to memory all of the data received up to the
point where the data overrun condition was created. When the General TD is retired,
CurrentBufferPointer points to the start of the data packet in error; however, all of the data
bytes are valid and the data toggle will have advanced.

The second type of sequence error, data underrun, occurs when the number of data bytes received
from an endpoint is less than allowed. Even though a General TD is always retired when the
number of bytes received from an endpoint is less than Maximum Packet Size, it does not always
create an error condition. If the amount of received data fills the buffer exactly (last byte of a data
packet written to BufferEnd), then a normal completion condition exists regardless of the size of
the data packet. The General TD is retired with a ConditionCode of NOERROR and the endpoint
is not halted. If the data packet does not fill the buffer exactly, the bufferRounding bit
determines how the General TD will be retired. If the bufferRounding bit is not set, then the
underrun is treated as an error condition. The ConditionCode field is set to DATAUNDERRUN,
the General TD retired, and the endpoint is halted. If the bufferRounding field is set, then the
General TD is retired without error. This condition is differentiated from a buffer-filled
completion condition by CurrentBufferPointer not being zero when the General TD is retired.

OpenHCI - Open Host Controller Interface Specification for USB

25

4.3.1.3.6.3 System Errors

For General TDs, system error sources are limited. In particular, an OpenHCI Host Controller
will never have an overrun or underrun of its internal buffering for a General TD. An OpenHCI
Host Controller is not allowed to issue an IN to an endpoint unless there is sufficient buffer space
within the Host Controller to accept a data packet of Maximum Packet Size from the endpoint
(64 bytes for a General TD) without having to access system memory. Similarly, the Host
Controller is not allowed to issue an OUT or SETUP token unless it has pre-fetched to an internal
buffer all the data that is sent to the endpoint in the data phase.

4.3.1.3.7 Special Handling

4.3.1.3.7.1 NAK

When an endpoint returns a NAK handshake, all General TD fields remain the same after the
transaction as they were when the transaction began. The Host Controller makes no changes.

4.3.1.3.7.2 Stall

If an endpoint returns a STALL PID, the Host Controller retires the General TD with the
ConditionCode set to STALL and halts the endpoint. The CurrentBufferPointer, ErrorCount,
and dataToggle fields retain the values that they had at the start of the transaction.

4.3.2 Isochronous Transfer Descriptor
An Isochronous TD is used exclusively for isochronous endpoints. All TDs linked to an ED with
F = 1 must use this format. This 32-byte structure must be aligned to a 32-byte boundary in
system memory.

4.3.2.1 Isochronous Transfer Descriptor Format
3 2 2 2 2 2 2 2 1 1 1 1 0 0 0
1 8 7 6 4 3 1 0 6 5 2 1 5 4 0

Dword 0 CC – FC DI — SF
Dword 1 Buffer Page 0 (BP0) —
Dword 2 NextTD 0
Dword 3 Buffer End (BE)
Dword 4 Offset1/PSW1 Offset0/PSW0
Dword 5 Offset3/PSW3 Offset2/PSW2
Dword 6 Offset5/PSW5 Offset4/PSW4
Dword 7 Offset7/PSW7 Offset6/PSW6

Figure 4-3: Isochronous TD Format

OpenHCI - Open Host Controller Interface Specification for USB

26

4.3.2.2 Isochronous Transfer Descriptor Field Definitions

Table 4-3: Field Definitions for Isochronous TD

Name
HC

Access Description
SF R StartingFrame

This field contains the low order 16 bits of the frame number in which the
first data packet of the Isochronous TD is to be sent.

DI R DelayInterrupt
This field contains the interrupt delay for this Isochronous TD.

FC R FrameCount
Number of data packets (frames) of data described by this Isochronous
TD. FrameCount = 0 implies 1 data packet and FrameCount = 7
implies 8.

CC R/W ConditionCode
This field contains the completion code when the Isochronous TD is
moved to the Done Queue (see Section 0.)

BP0 R BufferPage0
The physical page number of the first byte of the data buffer used by this
Isochronous TD

NextTD R/W NextTD
This entry points to the next Isochronous TD on the queue of Isochronous
TDs linked to an ED

BE R BufferEnd
Contains the physical address of the last byte in the buffer.

OffsetN R Offset
Used to determine size and starting address of an isochronous data
packet.

PSWN W PacketStatusWord
Contains completion code and, if applicable, size received for an
isochronous data packet (details in Section 4.3.2.4.)

4.3.2.3 Isochronous Transfer Descriptor Description

An Isochronous Transfer Descriptor (TD) describes the data packets that are sent to or received
from an isochronous endpoint. The data packets in an Isochronous TD have a time component
associated with them such that a data packet is transferred only in the specific frame to which it
has been assigned. An Isochronous TD may contain buffers for 1 to 8 consecutive frames of data
(FrameCount+1) with the first (0th) data packet of an Isochronous TD sent in the frame for
which the low 16 bits of HcFmNumber match the StartingFrame field of the Isochronous TD.
The Host Controller does an unsigned subtraction of StartingFrame from the 16 bits of
HcFmNumber to arrive at a signed value for a relative frame number (frame R). If the relative
frame number is negative, then the current frame is earlier than the 0th frame of the Isochronous
TD and the Host Controller advances to the next ED. If the relative frame number is greater than
FrameCount, then the Isochronous TD has expired and a error condition exists (details for
dealing with this error are described in a later section). If the relative frame number is between 0
and FrameCount, then the Host Controller issues a token to the endpoint and attempts a data
transfer using the buffer described by the Isochronous TD.

OpenHCI - Open Host Controller Interface Specification for USB

27

When the last data packet of an Isochronous TD is transferred, the Isochronous TD is retired to
the Done Queue.

Table 4-4: Example Calculation of R and Host Controller Action

HcFmNumber ITD.Frame R ITD.FC HC Action
0xFFFC 0xFFFE 0xFFFE (-2) 3 Do nothing
0xFFFD 0xFFFE 0xFFFF (-1) 3 Do nothing
0xFFFE 0xFFFE 0x0000 3 Send data packet 0
0xFFFF 0xFFFE 0x0001 3 Send data packet 1
0x0000 0xFFFE 0x0002 3 Send data packet 2
0x0001 0xFFFE 0x0003 3 Send data packet 3 and retire

Isochronous TD

4.3.2.3.1 Buffer Addressing

The buffer address for an isochronous data packet is determined by using the relative frame
number R to pick an Offset or pair of Offsets from the Isochronous TD. These values are used to
determine the starting and ending physical address of the buffer for the data packet. Offset[R]
determines the starting address. The low order 12 bits of the Offset are the offset within a 4K
physical page of the start of the buffer. Bit 12 of offset R then selects the upper 20 bits of the
physical address as either BufferPage0 when bit 12 = 0 or the upper 20 bits of BufferEnd when
bit 12 = 1.

If the data packet is not the last in an Isochronous TD (R not equal to FrameCount), then the
ending address of the buffer is found by using Offset[R+1] - 1. This value is then used to create a
physical address in the same manner as the Offset[R] was used to create the starting physical
address (e.g., use bit 12 as page selector and low order 12 bits as page offset). If, however, the
data packet is the last in an Isochronous TD (R = FrameCount), then the value of BufferEnd is
the address of the last byte in the buffer.

During a data packet transfer, the buffer address may cross a 4K boundary. If this should occur,
the HC, as it does with General TDs, uses the upper 20 bits of the computed data packet buffer
end address as the physical address of the next page. This allows scatter/gather of the data within
a isochronous data packet.

If the Host Controller supports checking of the Offsets, if either Offset[R] or Offset[R+1]does
not have a ConditionCode of NOT ACCESSED or if the Offset[R+1] is not greater than or equal
to Offset[R], then an Unrecoverable Error is indicated.

OpenHCI - Open Host Controller Interface Specification for USB

28

4.3.2.3.2 Data Packet Size

The size of the data packet that is to be sent or expected to be received is determined by the
computed address values and not by MaximumPacketSize in the ED. A check that the buffer
described by the Offsets is less than or equal to MaximumPacketSize is not required.

If Offset[R] and Offset[R+1] are the same, then a zero-length packet is indicated. For a zero-
length OUT packet, the Host Controller issues a token and sends a zero length data packet. For a
zero-length IN packet, the Host Controller issues a token and accepts a zero-length data packet
from the endpoint.

4.3.2.3.3 Status

After each data packet transfer, the Rth Offset is replaced with a value that indicates the status of
the data packet transfer. The upper 4 bits of the value are the ConditionCode for the transfer
and the lower 12 bits represent the size of the transfer. Together, these two fields constitute the
Packet Status Word (PacketStatusWord).

After a data packet is transferred, the Host Controller sets both fields of the PacketStatusWord.
For an OUT, in the absence of transfer errors, the size field is set to 0. For an IN, the size field
indicates the actual number of bytes written to memory. In the absence of errors, this is also the
number of bytes received from the endpoint.

4.3.2.3.4 Transfer Completion

An Isochronous TD is completed when all FrameCount+1 data packets have been transferred.
In the frame when R = FrameCount, after the data transaction is complete and the Offset R
updated, the ConditionCode of the Isochronous TD is set to NOERROR and the Isochronous TD
is retired to the Done Queue.

4.3.2.3.5 Transfer Errors

Transfer errors for isochronous errors fall into four categories:
• transmission
• sequence
• time
• system

OpenHCI - Open Host Controller Interface Specification for USB

29

4.3.2.3.5.1 Transmission Errors

Since there is no handshake for isochronous transfers, the Host Controller can detect transmission
errors for transfers only from an endpoint to the host (IN). The error may be either a CRC error,
a BITSTUFFING error, or a DEVICENOTRESPONDING error. If any of these errors occurs during the
transfer, the ConditionCode of PacketStatusWord[R] is set accordingly and the size field
reflects the number of bytes received (up to the size of the buffer defined for the frame) and
placed in the memory buffer. For a bit stuffing error, the Host Controller writes up only to the
last byte received before the bit stuffing error is detected.

If a transmission error is detected along with a sequence or system error, the transmission error is
the one that is reported in the ConditionCode.

A PID check error in the PID from an endpoint is reported with a ConditionCode of
PIDCHECKFAILURE.

4.3.2.3.5.2 Sequence Errors

A sequence error occurs when the endpoint sends more or less data than is expected and a
transmission error is not present. If the endpoint sends more data than will fit in the specified
buffer, the ConditionCode for the PacketStatusWord is set to DATAOVERRUN and the size field
is set to the size of the buffer. The Host Controller writes the received data to memory up to the
limit of the buffer defined for the frame. If the endpoint sends less data than defined by the buffer,
the ConditionCode for the PacketStatusWord is set to DATAUNDERRUN.

4.3.2.3.5.3 Time Errors

Each packet has a specific frame in which it is to be transferred. It is possible that the Host
Controller cannot start or complete the transfer in the specified frame. There are two
manifestations of this type of error: skipped packets and late retirement of an Isochronous TD.

Skipped packets occur if the Host Controller does not process an Isochronous TD in a frame for
which the Isochronous TD has data. A skipped packet is indicated when an
Offset/PacketStatusWord is set to NOT ACCESSED after the Isochronous TD is retired. This
indicates that the Host Controller did not process the Isochronous TD for the frame and therefore
did not change the Offset to a PacketStatusWord.

When the Host Controller skips the last packet of the Isochronous TD, a more significant error
occurs. Since the Isochronous TD was not processed in the frame in which it should have been
retired, the Isochronous TD remains on its ED’s queue. When the Host Controller processes the
Isochronous TD in a latter frame, it finds that the time for expiration of the Isochronous TD has
passed. In such cases, the Host Controller sets the ConditionCode for the Isochronous TD to
DATAOVERRUN and retires the Isochronous TD (it does not, however, set the Halted bit in the
ED). The Host Controller then accesses the next Isochronous TD for the same ED and processes
it.

OpenHCI - Open Host Controller Interface Specification for USB

30

Note: Setting DATAOVERRUN in the ConditionCode for the Isochronous TD rather than the
PacketStatusWord indicates a time overrun. The same code in a PacketStatusWord
will indicate a true data buffer overrun.

Table 4-5: Example of Time Overrun

HcFmNumber ITD.Frame R ITD.FC HC Action
0xFFFC 0xFFFE 0xFFFE (-2) 3 Do nothing

0xFFFD 0xFFFE 0xFFFF (-1) 3 Do nothing
0xFFFE 0xFFFE 0x0000 3 Send data packet 0

Host Controller does not process Isochronous TD for three frames due to schedule overrun, then...
0x0002 0xFFFE 0x0004 3 Retire Isochronous TD with

DATAOVERRUN in ITD.CC

4.3.2.3.5.4 System Errors

The most probable source of system errors for isochronous transfers is underrun or
overflow/overrun of the HC’s internal data buffers. An Isochronous TD is allowed to specify a
single data packet of up to 1023 bytes. It is not expected that Host Controller implementations
will contain sufficient internal buffering for the largest possible isochronous packet. Therefore,
there is a possibility that the system will not provide timely access to the system bus to allow the
Host Controller to keep up with the USB data rate in all cases. This can cause the HC’s internal
buffer to overflow with data from an endpoint or to underrun and have no data to send to an
endpoint when it is required. Buffer overrun happens only on IN endpoints and underrun happens
only on OUT endpoints.

When an underrun occurs, the Host Controller sets the ConditionCode of the data packet’s
PacketStatusWord to BUFFERUNDERRUN and the size field is set to zero.

Note: This underrun condition is signaled on USB by the Host Controller forcing a bit-stuffing
violation with the recommendation that the bit stuff violation last 16 bit times (i.e., 16 bit
times without a transition on the bus).

When an overrun condition occurs, the Host Controller sets the ConditionCode of the data
packet’s PacketStatusWord to BUFFEROVERRUN and writes the size field to indicate the last
byte successfully received from the endpoint before the overrun condition occurred. All data
received from the endpoint before the overrun condition occurred are stored in system memory.
If, after detecting an overrun, the Host Controller detects a transmission error, then the
transmission error is recorded in the PacketStatusWord instead of the overrun error.

OpenHCI - Open Host Controller Interface Specification for USB

31

4.3.2.3.6 Special Handling

4.3.2.3.6.1 NAK and STALL

NAK and STALL are not nominally supported by the isochronous protocol. If an isochronous
endpoint returns either of these handshake packets during the data phase of an IN, the Host
Controller writes the ConditionCode of the frames PacketStatusWord to STALL and sets the
data size to 0. The Isochronous TD is not retired early and the endpoint is not halted.

4.3.2.4 PacketStatusWord

1 1 1 1 0
5 2 1 0 0

CC 0 SIZE

Figure 4-4: PacketStatusWord Format

4.3.2.4.1 Packet Status Word Field Definitions

Table 4-6: Field Definitions for Packet Status Word

Name R/W Description
SIZE W Size of Packet

On an IN transfer, this 11-bit field is written to contain the number of bytes
received from the endpoint. On an OUT, this field is written to 0.

CC W Condition Code
Used both to indicate completion status and the format of the word. When
the Condition Code indicates NOT ACCESSED, the data is in Offset format.
Otherwise, the SIZE field contains a value that is appropriate to the direction
of data flow and the completion status.

OpenHCI - Open Host Controller Interface Specification for USB

32

4.3.3 Completion Codes

Table 4-7: Completion Codes

Code Meaning Description
0000 NOERROR General TD or isochronous data packet processing

completed with no detected errors
0001 CRC Last data packet from endpoint contained a CRC error.
0010 BITSTUFFING Last data packet from endpoint contained a bit stuffing

violation
0011 DATATOGGLEMISMATCH Last packet from endpoint had data toggle PID that did

not match the expected value.
0100 STALL TD was moved to the Done Queue because the endpoint

returned a STALL PID
0101 DEVICENOTRESPONDING Device did not respond to token (IN) or did not provide a

handshake (OUT)
0110 PIDCHECKFAILURE Check bits on PID from endpoint failed on data PID (IN)

or handshake (OUT)
0111 UNEXPECTEDPID Receive PID was not valid when encountered or PID

value is not defined.
1000 DATAOVERRUN The amount of data returned by the endpoint exceeded

either the size of the maximum data packet allowed from
the endpoint (found in MaximumPacketSize field of ED)
or the remaining buffer size.

1001 DATAUNDERRUN The endpoint returned less than MaximumPacketSize
and that amount was not sufficient to fill the specified
buffer

1010 reserved
1011 reserved
1100 BUFFEROVERRUN During an IN, HC received data from endpoint faster than

it could be written to system memory
1101 BUFFERUNDERRUN During an OUT, HC could not retrieve data from system

memory fast enough to keep up with data USB data rate.
111x NOT ACCESSED This code is set by software before the TD is placed on a

list to be processed by the HC.

OpenHCI - Open Host Controller Interface Specification for USB

33

4.3.3.1 Condition Code Description

For General TDs, the condition codes in ConditionCode have meaning to software only if the
General TD is on the Done Queue. For CRC, BITSTUFFING, and DEVICENOTRESPONDING errors,
the General TD is not moved to the Done Queue unless errors are encountered in three successive
accesses of the device (error does not have to be the same in all three attempts.) For STALL,
DATAOVERRUN, or DATAUNDERRUN, the General TD is moved to the done queue on the first
occurrence of the error. BUFFEROVERRUN or BUFFERUNDERRUN are not used for General TDs.

When a General TD is moved to the done queue with the ConditionCode set to other than
NOERROR, the Halted bit in the ED for the endpoint is set to halt processing of General TDs for
the endpoint until software clears the error condition.

For an Isochronous TD, condition codes appear in two places: in ConditionCode of Dword0 and
in each of the Offset/PacketStatusWords. For each data packet processed, the Host Controller
converts OffsetR into PSWR by setting the ConditionCode field. All condition codes are valid
for a PacketStatusWord. The ConditionCode in Dword0 of the Isochronous TD is
set when the TD is moved to the done queue. The Isochronous TD can be moved to the done
queue when the last data packet is transferred (in which case the ConditionCode will be
NOERROR) or due to the frame for the last data packet having passed (in which case the
ConditionCode will be DATAOVERRUN.) In no case does the Host Controller set the Halted bit
in the ED for an Isochronous TD. An Isochronous TD with a NOERROR ConditionCode may
contain PacketStatusWords with ConditionCodes other than NOERROR.

4.4 Host Controller Communications Area
The Host Controller Communications Area (HCCA) is a 256-byte structure of system memory
that is used by system software to send and receive specific control and status information to and
from the HC. This structure must be located on a 256-byte boundary. System software must
write the address of this structure in HcHCCA in the HC. This structure allows the software to
direct the HC’s functions without having to read from the Host Controller except in unusual
circumstances (e.g., error conditions). Normal interaction with the Host Controller can be
accomplished by reading values from this structure that were written by the Host Controller and
by writing to the HC’s operation registers.

Note: It is expected that writes to the Host Controller will be posted and have minimal impact
on CPU performance.

OpenHCI - Open Host Controller Interface Specification for USB

34

4.4.1 Host Controller Communications Area Format

Offset
Size

(bytes) Name R/W Description
0 128 HccaInterrruptTable R These 32 Dwords are pointers to interrupt EDs.

 0x80 2 HccaFrameNumber W Contains the current frame number. This value
is updated by the HC before it begins
processing the periodic lists for the frame.

0x82 2 HccaPad1 W When the HC updates HccaFrameNumber, it
sets this word to 0.

 0x84 4 HccaDoneHead W When the HC reaches the end of a frame and
its deferred interrupt register is 0, it writes the
current value of its HcDoneHead to this
location and generates an interrupt if interrupts
are enabled. This location is not written by the
HC again until software clears the WD bit in
the HcInterruptStatus register.
The LSb of this entry is set to 1 to indicate
whether an unmasked HcInterruptStatus was
set when HccaDoneHead was written.

 0x88 116 reserved R/W Reserved for use by HC

Figure 4-5: Host Controller Communications Area Format

4.4.2 Host Controller Communications Area Description

4.4.2.1 HccaInterruptTable

HccaInterruptTable is a 32-entry table with each entry being a Dword. The table entries are
pointers to an Interrupt List each of which is a list of EDs. Each ED then points to a queue of
TDs for that endpoint. HccaInterruptTable is accessed once per frame by the HC. The low
order 5 bits of the current frame number is used as an index into the table.

An ED for an interrupt endpoint may appear on multiple Interrupt Lists. The more lists in which
an ED is linked, the greater its polling rate. An ED that is in only one list has a polling rate of
once every 32 ms. An ED that is on 2 lists has a polling rate of once every 16 ms. If an ED is
linked into all 32 lists, then it has a polling rate of once per 1 ms or every frame. This list
structure allows uniform polling only at intervals of 1, 2, 4, 8, 16, and 32 ms.

A grouping of EDs with the same polling rate that occurs in the same frame is a sublist. The
number of sublists at each polling rate is the same as the polling rate. For example,
there can be two sublists with polling rates of 2 ms with each list being processed on alternate
frames.

The last entry in each of the 32 interrupt lists must point to the isochronous list.

OpenHCI - Open Host Controller Interface Specification for USB

35

4.4.2.2 HccaFrameNumber

This 16-bit value is updated by the Host Controller on each frame. This value is written with the
StartingFrame field of HcFmNumber after the Host Controller has sent an SOF and before the
Host Controller reads an ED for processing in the new frame. The Host Controller transfers no
data on USB between the time it sends an SOF and the time it updates this memory location.

4.4.2.3 HccaDoneHead

When a TD is complete (with or without an error) it is unlinked from the queue that it is on and
linked to the Done Queue. The Host Controller maintains a physical pointer to the last TD that
was placed on the done queue (HcDoneHead.) When a TD is put on the done queue, the value in
HcDoneHead is written to NextTD of the just completed TD and HcDoneHead is changed to
contain the address of the TD just competed. This causes TDs to be linked at the head of the
done queue. Linking at the head of the queue allows the hardware to maintain only one pointer
for the Done Queue and also allows the linking to the Done Queue to be done at the same time as
the ConditionCode update in a completed TD saving a memory access (i.e., the same write that
updates the ConditionCode of a TD can be extended to cause the NextTD value of the TD to
point to the TD that was previously at the head of the Done Queue.)

Periodically, the Host Controller writes the current value of its HcDoneHead register into a
memory location (HccaDoneHead) so that host software can process completed TDs.
Nominally, HcDoneHead is written to memory at the beginning of a frame when the deferred
interrupt count is zero. After HcDoneHead is written to HccaDoneHead, the Host Controller
sets HcDoneHead to 0 and sets the WD bit in the HcInterruptStatus register. The Host
Controller can begin to build a new Done Queue immediately after writing to HccaDoneHead
but it cannot write the new list to memory until the Host Controller Driver has cleared the WD
bit. This protocol provides an interlocked exchange of the Done Queue.

The LSb of this value is used to inform the Host Controller Driver that an interrupt condition
exists for both the done list and for another event recorded in the HcInterruptStatus register. On
an interrupt from the HC, the Host Controller Driver checks the HccaDoneHead Value. If this
value is 0, then the interrupt was caused by other than the HccaDoneHead update and the
HcInterruptStatus register needs to be accessed to determine that exact interrupt cause. If
HccaDoneHead is nonzero, then a done list update interrupt is indicated and if the LSb of the
Dword is nonzero, then an additional interrupt event is indicated and HcInterruptStatus should be
checked to determine its cause.

OpenHCI - Open Host Controller Interface Specification for USB

36

4.5 Endpoint List Processing
The Host Controller schedules transfers to endpoints on USB based on the structure of the four
endpoint lists: bulk, control, interrupt, and isochronous. For bulk and control, the Host
Controller maintains a software- accessible pointer to the head of the list. For interrupt, 32 list
heads are kept in memory with a list selected each frame. The isochronous list is linked to the end
of all of the interrupt lists. In addition to the head pointers, the Host Controller maintains three
software-accessible pointers to the current ED for control, bulk, and an additional pointer that is
used for both periodic lists (interrupt and isochronous.)

The Host Controller selects a list to process based on a priority algorithm. At the beginning of
each frame, processing of the control and bulk list has priority until the HcFmRemaining counts
down to the value in HcPeriodicStart. At that point, processing of the periodic lists has priority
over control/bulk processing until either periodic list processing is complete or the frame time
expires.

While control and bulk have priority, the Host Controller alternates processing of EDs on each of
the lists. The setting of the Control Bulk Ratio field in HcControl determines the ratio of the
number of control to bulk transactions that will be attempted. If CB is set to 00b, then the Host
Controller allows one bulk transaction for each control transaction. If CB = 11b, then the Host
Controller allows one bulk transition after every 4 control transactions. If either the control or
bulk lists is empty, then 100% of the control/bulk time is allocated to the list that is not empty.

The control and bulk lists are considered empty if either no EDs are linked to the list (the head
pointer in the Host Controller contains a zero) or if all the TD queues of the EDs on the list are
empty. To detect this empty condition, the Host Controller maintains two bits: control-filled (CF)
and bulk-filled (BF) in the HcCommandStatus register. When the Host Controller starts
processing at the head of the control or bulk list, it clears the corresponding filled bit. When the
Host Controller finds an ED in the control or bulk list with a TD to be processed, it sets the
corresponding filled bit. When the Host Controller reaches the end of the list, it checks the filled
bit. If it is zero, then the list is empty and processing of the list stops. When the Host Controller
Driver makes an addition to either the control or bulk lists, it must write to the corresponding
filled bit to ensure that the Host Controller continues to process the list.

OpenHCI - Open Host Controller Interface Specification for USB

37

4.6 Transfer Descriptor Queue Processing
For a transfer to or from an endpoint to occur, a TD must be linked to the queue associated with
the ED. HeadP and TailP in an ED define the TD queue. If HeadP and TailP are not the same,
then HeadP is a pointer to the TD that will be processed when the Host Controller reaches the
ED.

Software queues to the list by using the value of TailP to obtain the physical address of the last
TD queued to the ED. Since the TD pointed to by TailP is not accessed by the HC, the Host
Controller Driver can initialize that TD and link at least one other to it without creating a
coherency or synchronization problem. After the new TDs are linked, TailP is updated,
extending the list of TDs that can be accessed and processed by the HC, with TailP again
pointing to a TD that can be initialized by software. Software may not alter in any way any of the
TDs it has queued prior to the one pointed to by TailP until the Host Controller completes
processing of the TD or the Host Controller Driver ensures that queue processing for the ED has
been halted.

When the Host Controller finishes processing a TD, it copies the NextTD value from the just
completed TD into HeadP of the ED. For a General TD, the Host Controller also sets the toggle
Carry bit to the value of the last used data toggle for the endpoint and sets the Halted bit to 0 if
the TD completed without error or to 1 if an error occurred.

OpenHCI - Open Host Controller Interface Specification for USB

38

5. HOST CONTROLLER DRIVER
This section covers details of how the Host Controller Driver (HCD) interacts with the Host
Controller Interface. Where necessary, this section goes into how the Host Controller Driver may
be implemented in order to provide a clear understanding of how the software is intended to
interact with the OpenHCI.

The provided sample code is intended to illustrate the interaction between the software and the
hardware and is not intended to be a complete driver implementation. Note that many
simplifying assumptions have been made and many items that do not add to the reader’s
understanding of the interaction between the software and the hardware are omitted. Two of the
assumptions used for the samples are that the code is for a uniprocessor machine and that all the
samples are run with the interrupts disabled.

The Host Controller Driver is responsible for a per-Host Controller set of data called device data.

5.1 Host Controller Management
The Host Controller (HC) is first managed through a set of Operational Registers. These registers
exist in the Host Controller and are accessed using memory references via a noncached virtual
pointer. All Host Controller Operational Registers start with the prefix Hc. Refer to Section 7,
Operational Registers, for a complete definition of all the Hc registers. The HcHCCA is filled in
by software and points the Host Controller at the block of shared RAM called the Host Controller
Communication Area (HCCA). All fields within the HCCA start with the prefix Hcca. Refer to
Section 4.4, Host Controller Communications Area , for a complete definition of all the Hccas.

5.1.1 Initialization
There are a number of steps necessary for an OS to bring its Host Controller Driver to an
operational state:

• Load Host Controller Driver and locate the HC
• Verify the HC and allocate system resources
• Take control of HC (support for an optional System Management Mode driver)
• Set up HC registers and HC Communications Area
• Begin sending SOF tokens on the USB

Note: Due to some devices on the USB that may take a long time to reset, it is desirable that the
Host Controller Driver startup process not transition to the USBRESET state if at all
possible. The description of driver and controller initialization in following sections takes
this into account.

OpenHCI - Open Host Controller Interface Specification for USB

39

Operational
Registers

Mode

Host Controller
Commications Area

HCCA

Status

Event

Frame Int

Control

Interrupt 0

Interrupt 1

Interrupt 31

. . .
Interrupt 2

Done

. . .

. . .

Bulk

Ratio

Shared RAM

OpenHCI

Device Enumeration

Device Register
in memory space

Figure 5-1: The OpenHCI Host Controller

5.1.1.1 Load and Locate

When the Host Controller Driver first loads, it locates the Host Controller and its operational
registers through a process of Device Enumeration that is specific to both the operating system
environment and the host bus on which the Host Controller resides.

5.1.1.2 Verify Host Controller and Allocate Resources

The Host Controller Driver checks the Revision field in the HcRevision register to verify the
HC’s interface is compatible with the Host Controller Driver. When checking the Revision, the
Host Controller Driver must mask the rest of the bits in the HcRevision register as they are used
to specify which optional features that are supported by the HC. The Host Controller Driver
then allocates and initializes any Host Controller structures, including the HCCA block, and
operating system structures it needs. Upon success, the Host Controller Driver retains the
noncached virtual address of the operation register block in its device data.

OpenHCI - Open Host Controller Interface Specification for USB

40

5.1.1.3 Take Control of Host Controller

OpenHCI allows for optional support of legacy devices through the use of System Management
Mode software and System Management Interrupt hardware. In order to provide for this, a
mechanism is defined to allow control of the Host Controller to be passed between the SMM
driver and an OS driver; both of these drivers may properly be called an Host Controller Driver,
but only one is active at any given time. Only the active Host Controller Driver is allowed to
write to Host Controller registers or manipulate lists and queues, with the exception of writing the
OwnershipChangeRequest bit to the HcCommandStatus register (only an OS driver does this).
There is also another interesting case where the system vendor chooses not to emulate legacy
devices but does wish to support USB devices in firmware (BIOS); in this case, System
Management Mode is not used. The following cases are discussed separately in following
sections:

• Initialization of an SMM driver after a cold power-up
• Initialization of a BIOS driver
• Initialization of an OS driver when an SMM driver is active
• Initialization of an OS driver when a BIOS driver is active
• Initialization of an OS driver when neither an SMM nor a BIOS driver is active
• Re-initialization of an SMM driver (control returned by an OS driver)

5.1.1.3.1 SMM Driver, Power-Up

The SMM driver gains control of the processor before any other driver; this means that the Host
Controller will be in the state that it enters after a hardware reset (USBRESET). The SMM driver
must set the InterruptRouting bit in the HcControl register. This causes all Host Controller
interrupts to be routed to the SMI. Since the SMM driver is system-specific, if it has knowledge
of proper settings for system-specific fields in the Host Controller registers, it should set those to
their proper values at this time. These fields include: RemoteWakeupConnected in the
HcControl register, FrameInterval and FSLargestDataPacket in the HcFmInterval register,
PowerSwitchingMode and OverCurrentProtection in the HcRhDescriptorA register, and
PowerOnToPowerGoodTime and RemovableDevice in the HcRhDescriptorB register. The
driver should then wait at least the minimum time specified in the USB Specification for assertion
of reset on the USB before it proceeds to the setup of the HC.

5.1.1.3.2 BIOS Driver

The BIOS driver is not expected to exist if there is an SMM driver (on a system with an SMM
driver, the BIOS is expected to communicate its needs to the SMM driver in a system-specific
manner). The BIOS driver gains control of the processor before any other driver, but the Host
Controller may not be in the USBRESET state because this may be a warm boot. For the purpose
of OpenHCI, a cold boot is defined as one in which the HostControllerFunctionalState in the
HcControl register is found to be USBRESET.

OpenHCI - Open Host Controller Interface Specification for USB

41

On a cold boot, the BIOS driver should use the system-specific knowledge it has to initialize the
system-specific fields in the Host Controller registers. These fields include:
RemoteWakeupConnected in the HcControl register, FrameInterval and
FSLargestDataPacket in the HcFmInterval register, PowerSwitchingMode and
OverCurrentProtection in the HcRhDescriptorA register, and PowerOnToPowerGoodTime
and RemovableDevice in the HcRhDescriptorB register. The driver should then wait at least the
minimum time specified in the USB Specification for assertion of reset on the USB before it
proceeds to the setup of the HC.

On a warm boot, if the HostControllerFunctionalState is USBOPERATIONAL, then the BIOS
driver should proceed directly to the setup of the HC. Otherwise, the BIOS driver should set the
HostControllerFunctionalState to USBRESUME and wait the minimum time specified in the
USB Specification for assertion of resume on the USB before it proceeds to the setup of the HC.

5.1.1.3.3 OS Driver, SMM Active

The OS driver knows that the SMM driver is active because the InterruptRouting bit is set in
the HcControl register. The OS driver writes a one to the OwnershipChangeRequest bit in the
HcCommandStatus; then it monitors the InterruptRouting bit to determine when the ownership
change has taken effect. The SMM driver receives an Ownership Change interrupt; this causes
the SMM driver to deconfigure all the devices it has configured on the USB, clear all interrupt
masks, and disable all list processing. Finally, the SMM driver clears the InterruptRouting bit
and returns control to the OS. Once the InterruptRouting bit is cleared, the OS driver may
proceed to the setup of the HC.

5.1.1.3.4 OS Driver, BIOS Active

By examining the contents of the HcControl register, the OS driver knows there is an active
BIOS driver if the InterruptRouting bit is not set and the HostControllerFunctionalState is
not USBRESET. If the HostControllerFunctionalState is USBOPERATIONAL, then the OS driver
should proceed directly to the setup of the HC. Otherwise, the OS driver should set the
HostControllerFunctionalState to USBRESUME and wait the minimum time specified in the
USB Specification for assertion of resume on the USB before it proceeds to the setup of the HC.

5.1.1.3.5 OS Driver, neither SMM nor BIOS

By examining the contents of the HcControl register, the OS driver knows that there is neither an
SMM driver nor a BIOS driver if the InterruptRouting bit is not set and the
HostControllerFunctionalState is USBRESET. The driver should then wait at least the minimum
time specified in the USB Specification for assertion of reset on the USB before it proceeds to the
setup of the Host Controller.

OpenHCI - Open Host Controller Interface Specification for USB

42

5.1.1.3.6 SMM Driver, Re-Entry

Occasionally, to provide compatibility with older applications, an OS may decide to return control
of the Host Controller to the SMM driver. The OS driver should deconfigure all the devices on
the USB, clear all interrupt masks, and disable all list processing. The OS driver should then
write a one to the OwnershipChangeRequest bit in the HcCommandStatus register; this causes
an Ownership Change interrupt using SMI. Upon servicing this interrupt, The SMM driver sets
the InterruptRouting bit in the HcControl register and proceeds to the setup of the Host
Controller.

5.1.1.4 Setup Host Controller

The Host Controller Driver should now save the contents of the HcFmInterval register and then
issue a software reset by writing a one to the HostControllerReset bit in the HcCommandStatus
register. After the software reset is complete (a maximum of 10 µs), the Host Controller Driver
should restore the value of the HcFmInterval register. The Host Controller is now in the
USPSUSPEND state; it must not stay in this state more than 2 ms or the USBRESUME state will
need to be entered for the minimum time specified in the USB Specification for the assertion of
resume on the USB.

The Host Controller Driver should perform the following initializations:
• Initialize the device data HCCA block to match the current device data state; i.e., all

virtual queues are run and constructed into physical queues on the HCCA block and
other fields initialized accordingly.

• Initialize the Operational Registers to match the current device data state; i.e., all
virtual queues are run and constructed into physical queues for HcControlHeadED
and HcBulkHeadED

• Set the HcHCCA to the physical address of the HCCA block.
• Set HcInterruptEnable to have all interrupt enabled except SOF detect.
• Set HcControl to have “all queues on”.
• Set HcPeriodicStart to a value that is 90% of the value in FrameInterval field of the

HcFmInterval register.

5.1.1.5 Begin Sending SOFs

The HCD then begins to send SOF tokens on the USB by writing to the HcControl register with
the HostControllerFunctionalState set to USBOPERATIONAL and the appropriate enable bits set.
The Host Controller begins sending SOF tokens within one ms (if the HCD needs to know when
the SOFs it may unmask the StartOfFrame interrupt).

OpenHCI - Open Host Controller Interface Specification for USB

43

5.1.2 Operational States
The operational states of the Host Controller are defined by their effect on the USB:

• USBOPERATIONAL

• USBRESET

• USBRESUME

• USBSUSPEND

5.1.2.1 USBRESET

When the Host Controller enters this state, most of the operational registers are ignored by the
Host Controller and need not contain any meaningful values; however, the contents of the
registers (except Root Hub registers) are preserved by the HC. The obvious exception is that the
Host Controller uses the HcControl register which contains the HostControllerFunctionalState.
While in this state, the Root Hub is being reset, which causes the Root Hub’s downstream ports
to be reset and possibly powered off. This state must be maintained for the minimum time
specified in the USB Specification for the assertion of reset on the USB. Only the following
interrupts are possible while the Host Controller is in the USBRESET state: OwnershipChange.

5.1.2.2 USBOPERATIONAL

This is the normal state of the HC. In this state, the Host Controller is generating SOF tokens on
the USB and processing the various lists that are enabled in the HcControl register. This allows
the clients of the Host Controller Driver, USBD and above, to communicate with devices on the
USB. The Host Controller generates the first SOF token within one ms of the time that the
USBOPERATIONAL state is entered (if the Host Controller Driver wants to know when this occurs,
it may enable the StartOfFrame interrupt). All interrupts are possible in the USBOPERATIONAL

state, except ResumeDetected.

5.1.2.3 USBSUSPEND

In this state, the Host Controller is not generating SOF tokens on the USB; nor is it processing
any lists that may be enabled in the HcControl register. In fact, the Host Controller ignores most
of the operational registers which need not contain any meaningful values; however, the Host
Controller does preserve their values. While in this state, the Host Controller monitors the USB
for resume signaling, and if detected, changes the state to USBRESUME. Because of this, there is a
restriction on how the Host Controller Driver may modify the contents of HcControl while in the
USBSUSPEND state: Host Controller Driver may only write to HcControl with the
HostControllerFunctionalState field set to either USBRESET or USBRESUME (see exception).

OpenHCI - Open Host Controller Interface Specification for USB

44

After a certain length of time without SOF tokens, devices on the USB enter the suspend state.
Normally, the Host Controller Driver must ensure that the Host Controller stays in this state for at
least 5 ms and then exits this state to either the USBRESUME or the USBRESET state. An exception
is when this state is entered due to a software reset and the previous state was not USBSUSPEND,
in which case, if the Host Controller remains in the USBSUSPEND state for less than 1 ms, it may
exit directly to USBOPERATIONAL (the timing of less than 1 ms ensures that no device on USB
attempts to initiate resume signaling and thus the Host Controller does not attempt to modify
HcControl). The only interrupts possible in the USBSUSPEND state are ResumeDetected (the
Host Controller will have changed the HostControllerFunctionalState to the USBRESUME state)
and OwnershipChange.

5.1.2.4 USBRESUME

While the Host Controller is in the USBRESUME state, it is asserting resume signaling on the USB;
as a result, no tokens are generated and the Host Controller does not process any lists that may be
enabled in the HcControl register. In fact, most of the operational registers are ignored and need
not contain any meaningful values; however, the Host Controller does preserve their values. This
state must be maintained for the minimum time specified in the USB Specification for the
assertion of resume on the USB. The only interrupt possible in the USBRESUME state is
OwnershipChange.

5.2 Schedule
The fundamental way work is accomplished on USB by the Host Controller is via lists of
Endpoint Descriptors which in turn each have a queue of Transfer Descriptors. While the Host
Controller is in the USBOPERATIONAL state, it runs the different Endpoint Descriptor lists as setup
in list head registers of the operational registers. As the Host Controller processes each Endpoint
Descriptor, it performs work on the first enqueued Transfer Descriptor for that Endpoint
Descriptor. The Transfer Descriptor is (potentially) updated to reflect the work which was done,
and the Host Controller moves on to the next Endpoint Descriptor. At some point, the work
required by a Transfer Descriptor is completed by the HC, and the Transfer Descriptor is put onto
the Done Queue and returned to the Host Controller Driver.

The Endpoint Descriptor lists are therefore the USB schedule of work to be performed by the
Host Controller while the Transfer Descriptors are the work to be performed as defined by the
Endpoint Descriptor schedule.

OpenHCI - Open Host Controller Interface Specification for USB

45

Endpoint descriptor list

Transfer descriptor queues

Endpoint descriptor list

Endpoint descriptor list

Process schedule

Figure 5-2: USB Schedule

The Host Controller is required to perform some periodic processing every USB frame. In other
words, the Host Controller needs to process the current interrupt schedule and the isochronous
schedule every frame. In addition, in order to meet the guidelines outlined in the USB
Specification, the Host Controller must ensure that some portion of the frame is used to move the
outstanding control and bulk transfers. When a new frame starts, the Host Controller processes
control and bulk Endpoint Descriptors until the Remaining field of the HcFmRemaining register
is less than or equal to the Start field of the HcPeriodicStart register. It then runs a periodic
Endpoint Descriptor list by using the lower five bits of the current frame number as an index into
HccaInterruptTable. Once this is complete, the Host Controller has fulfilled its obligated frame
processing; it then fills the remaining frame time by processing the control and bulk Endpoint
Descriptor lists. Therefore, for time scheduled events on USB, Host Controller Driver utilizes the
various interrupt Endpoint Descriptor lists and other USB work is scheduled into either the
control or bulk Endpoint Descriptor lists.

Note that the USB Specification also requires that control transfers must be favored over bulk
transfers. This is accomplished by setting the ControlBulkServiceRatio field of the HcControl
register to indicate the number of control transfers processed for each bulk transfer processed.
The control and bulk Endpoint Descriptor lists are two separate lists which are each processed in
a round robin fashion where n control Endpoint Descriptors are processed for every 1 bulk
Endpoint Descriptor.

It is the responsibility of the Host Controller Driver to ensure that it does not schedule more
periodic work then can fit in a frame. However, some PCs have latency issues that may cause
USB bus bandwidth scheduling problems in some rare cases. If the Host Controller cannot
complete its obligated frame processing before end of frame, the Host Controller increments
ErrorFrameCounter in HcCommandStatus, which causes the Schedule Overrun interrupt status
to be set. If this is unmasked, then an interrupt will occur.

OpenHCI - Open Host Controller Interface Specification for USB

46

5.2.1 Sample Host Controller Driver Definitions
The Host Controller definitions for an Endpoint Descriptor and Transfer Descriptors do not
define fields for software usage. Such fields are HCD-implementation-dependent and do not have
any bearing on OpenHCI itself. However, in order to explain how HCD is to utilize the
OpenHCI, some sample definitions are provided in Section 5.2.2.

Since the provided definitions are samples only, they do not take into account the alignment
requirements of the HC-defined structures; any actual implementation of a HCD must deal with
these alignment issues.

5.2.2 Miscellaneous Definitions
//
// Doubly linked list
//
typedef struct _LIST_ENTRY {

struct _LIST_ENTRY *Flink;
struct _LIST_ENTRY *Blink;

} LIST_ENTRY, *PLIST_ENTRY;

Table 5-1: LIST_ENTRY

Field Description
Flink Virtual forward pointer to next structure
Blink Virtual back pointer to previous structure

typedef volatile ULONG *PVULONG;

OpenHCI - Open Host Controller Interface Specification for USB

47

5.2.3 Host Controller Descriptors Definitions
The following definitions are the C equivalents to “Endpoint Descriptors” and “Transfer
Descriptors”.

//
// Host Controller Endpoint Descriptor, refer to Section 4.2, Endpoint Descriptor
//
typedef struct _HC_ENDPOINT_DESCRIPTOR {

HC_ENDPOINT_CONTROL Control; // dword 0
volatile ULONG TailP; //physical pointer to HC_TRANSFER_DESCRIPTOR
volatile ULONG HeadP; //flags + phys ptr to HC_TRANSFER_DESCRIPTOR
volatile ULONG NextED; //phys ptr to HC_ENDPOINT_DESCRIPTOR

} HC_ENDPOINT_DESCRIPTOR, *PHC_ENDPOINT_DESCRIPTOR;

#define HcEDHeadP_HALT 0x00000001 //hardware stopped bit
#define HcEDHeadP_CARRY0x00000002 //hardware toggle carry bit

//
// Host Controller Transfer Descriptor, refer to Section 4.3, Transfer Descriptors
//
typedef struct _HC_TRANSFER_DESCRIPTOR {

HC_TRANSFER_CONTROL Control; // dword 0
PVOID CBP;
volatile ULONG *NextTD; // phys ptr to HC_TRANSFER_DESCRIPTOR
PVOID BE;

} HC_TRANSFER_DESCRIPTOR, *PHC_TRANSFER_DESCRIPTOR;

OpenHCI - Open Host Controller Interface Specification for USB

48

5.2.4 Host Controller Driver Descriptor Definitions
For each Host Controller descriptor, the Host Controller Driver has data items which Host
Controller Driver needs for its own housekeeping. In these sample definitions, this is done by
defining a structure which contains the Host Controller Driver fields, then incorporating the Host
Controller structure.

//
// HCD Endpoint Descriptor
//
typedef struct _HCD_ENDPOINT_DESCRIPTOR {

UCHAR ListIndex;
UCHAR PausedFlag;
UCHAR Reserved[2];
ULONG PhysicalAddress;
LIST_ENTRY Link;
PHCD_ENDPOINT Endpoint;
ULONG ReclamationFrame;
LIST_ENTRY PausedLink;
HC_ENDPOINT_DESCRIPTOR HcED;

} HCD_ENDPOINT_DESCRIPTOR, *PHCD_ENDPOINT_DESCRIPTOR;

Table 5-2: HCD_ENDPOINT_DESCRIPTOR

Field Description
ListIndex Index into device data EdList. This is the identifier of which list

this ED is inserted.
PausedFlag Nonzero if ED is queued on PausedEDRestart list

PhysicalAddress Physical address of HcED
Link A doubly-linked list. While the ED is on a HC list, this link is

used to shadow the hardware list to some level. As an ED is
being removed from a HC list, this link is used to move the
HCD_ENDPOINT_DESCRIPTOR through various states finally
ending on the free list.

Endpoint HCD’s endpoint structure for this ED
ReclamationFrame Used during the removal process of an ED from an HC list to

track what time an ED can safely be considered freed from the
HC. Used for running reclamation only.

PausedLink A doubly-linked list. While the ED is paused and awaiting restart
this link is used.

HcED HC Endpoint Descriptor

OpenHCI - Open Host Controller Interface Specification for USB

49

//
// HCD Transfer Descriptor
//
typedef struct _HCD_TRANSFER_DESCRIPTOR {

UCHAR TDStatus;
BOOLEAN CancelPending;
ULONG PhysicalAddress;
struct _HCD_TRANSFER_DESCRIPTOR *NextHcdTD;
LIST_ENTRY RequestList
PUSBD_REQUEST UsbdRequest;
PHCD_ENDPOINT Endpoint;
ULONG TransferCount;
HC_TRANSFER_DESCRIPTOR HcTD;

} HCD_TRANSFER_DESCRIPTOR, *PHCD_TRANSFER_DESCRIPTOR;

Table 5-3: HCD_TRANSFER_DESCRIPTOR

Field Description
TDStatus Status of this TD, includes PENDING, COMPLETED, CANCELED, and

NOTFILLED (indicates the dummy TD at the end of the endpoint’s
queue; no other fields are valid).

CancelPending True if the UsbdRequest has been canceled and this TD is
waiting for cleanup.

PhysicalAddress Physical address of HcTD
NextHcdTD Virtual pointer to next HCD_TRANSFER_DESCRIPTOR on the

endpoint’s queue.
RequestList Links to other HCD_TRANSFER_DESCRIPTORs associated

with the same UsbdRequest.
UsbdRequest Pointer to the transfer request at the USBDI for which the

transfer was created.
Endpoint Pointer to the endpoint to which the transfer is queued.

TransferCount Total number of bytes queued for this transfer.

OpenHCI - Open Host Controller Interface Specification for USB

50

5.2.5 Host Controller Endpoints
Endpoint Descriptors are the structures which appear in lists that the Host Controller processes.
Above that Host Controller Driver and USBD submit transfer requests to “endpoints”. An
endpoint structure is maintained until the connection to the endpoint is close, while an Endpoint
Descriptor is maintained only while there is scheduled transfers to the endpoint. USBD
coordinates the creation and deletion of endpoint structures and provides memory within each
endpoint structure for Host Controller Driver to maintain is state. In this example, the HCD-
specific area of an endpoint structure would be defined as:

typedef struct _HCD_ENDPOINT {
UCHAR Type;
UCHAR ListIndex;
UCHAR Reserved[2];
PHCD_DEVICE_DATA DeviceData;
HC_ENDPOINT_CONTROL Control;
PHCD_ENDPOINT_DESCRIPTOR HcdED;
PHCD_TRANSFER_DESCRIPTOR HcdHeadP;
PHCD_TRANSFER_DESCRIPTOR HcdTailP;
ULONG Rate;
ULONG Bandwidth;
ULONG MaxPacket;

} HCD_ENDPOINT, *PHCD_ENDPOINT;

Table 5-4: HCD_ENDPOINT

Field Description
Type Isochronous, Interrupt, Control, Bulk

ListIndex Index into device data EdList. This is the identifier of which list
ED for this endpoint are to be inserted.

DeviceData Pointer to corresponding device data for the HC to which the
endpoint is connected.

Control PID, direction, etc.
HcdED Current endpoint descriptor which is scheduled.

HcdHeadP This is a virtual pointer to the first TD on this endpoint’s queue
HcdTailP This is a virtual pointer to the last TD on this endpoint’s queue,

unless it is in the process of being filled in this is a dummy
structure.

Rate This is the requested polling rate for an interrupt endpoint, the
actual rate used is indicated by ListIndex.

Bandwidth For isochronous or interrupt endpoints, this value represents the
amount of bandwidth which is required for the endpoint when it’s
opened. For control or bulk endpoints, this value represents the
maximum packet size to be transferred to or from the endpoint in
any one packet.

MaxPacket Maximum packet size for this endpoint.

OpenHCI - Open Host Controller Interface Specification for USB

51

5.2.6 Host Controller Driver Internal Definitions
The following definitions describe information internal to the Host Controller Driver and the
Universal Serial Bus Driver; they are samples only and not representations of what must be
present within the Host Controller Driver. No attempt is made to be complete; sufficient
information is supplied only to give a background for the code samples in later sections.

//
// USBD Request
//
typedef struct _USBD_REQUEST {

PCHAR Buffer;
ULONG BufferLength;
ULONG XferInfo;
ULONG MaxIntDelay;
BOOLEAN ShortXferOk;
UCHAR Setup[8];
ULONG Status;
LIST_ENTRY HcdList;

} USBD_REQUEST, *PUSBD_REQUEST;

Table 5-5: USBD_REQUEST

Field Description
Buffer Pointer to data to be transferred

BufferLength Length of data buffer in bytes
XferInfo Direction (In/Out) for control and bulk

MaxIntDelay Maximum allowable delay from completion to completion notification to USBD
ShortXferOk Transfer of less than BufferLength is to be treated as an error unless this is TRUE

Setup Data for setup packet (control endpoints only)
Status Completion status from HCD to USBD
HcdList List of all HCD_TRANSFER_DESCRIPTORs in use for this request

//
// Each Host Controller Endpoint Descriptor is also doubly linked into a list tracked by HCD.
// Each ED queue is managed via an HCD_ED_LIST
//
typedef struct _HCD_ED_LIST {

LIST_ENTRY Head;
PULONG PhysicalHead;
USHORT Bandwidth;
UCHAR Next;
UCHAR Reserved;

} HCD_ED_LIST, *PHCD_ED_LIST;

OpenHCI - Open Host Controller Interface Specification for USB

52

Table 5-6: HCD_ED_LIST

Field Description
Head Head of an HCD_ENDPOINT_DESCRIPTOR list

PhysicalHead Address of location to put the physical head pointer when it
changes

Bandwidth Allocated bandwidth on this timeslice. Bandwidth is allocated on
a per HCD_ENDPOINT basis, so this value may exceed the
bandwidth scheduled in the ED list.

Next Index to the next HCD_ED_LIST for this timeslice

//
// The different ED lists are as follows.
//
#define ED_INTERRUPT_1ms 0
#define ED_INTERRUPT_2ms 1
#define ED_INTERRUPT_4ms 3
#define ED_INTERRUPT_8ms 7
#define ED_INTERRUPT_16ms 15
#define ED_INTERRUPT_32ms 31
#define ED_CONTROL 63
#define ED_BULK 64
#define ED_ISOCHRONOUS 0 // same as 1ms interrupt queue
#define NO_ED_LISTS 65
#define ED_EOF 0xff

//
// HCD Device Data
//
typedef struct _HCD_DEVICE_DATA {

PHC_OPERATIONAL_REGISTER HC;
PHCCA_BLOCK HCCA;
LIST_ENTRY Endpoints;
LIST_ENTRY FreeED;
LIST_ENTRY FreeTD;
LIST_ENTRY StalledEDReclamation;
LIST_ENTRY RunningEDReclamation;
LIST_ENTRY PausedEDRestart;
HCD_ED_LIST EdList[NO_ED_LIST];
ULONG FrameHighPart;
ULONG AvailableBandwidth;
ULONG MaxBandwidthInUse;
ULONG SOCount;
ULONG SOStallFrame;
ULONG SOLimitFrame;
BOOLEAN SOLimitHit;
BOOLEAN SOStallHit;

} HCD_DEVICE_DATA, *PHCD_DEVICE_DATA;

OpenHCI - Open Host Controller Interface Specification for USB

53

Table 5-7: HCD_DEVICE_DATA

Field Description
HC Pointer to the HC operational registers. See Section 7

HCCA Pointer to the shared memory HCCA block. See Section
4.4

Endpoints List of connected HCD_ENDPOINT structures in FIFO
order.

FreeED List of free HCD_ENDPOINT_DESCRIPTOR structures.
FreeTD List of free HCD_TRANSFER_DESCRIPTOR structures.

StalledEDRaclamation List of HCD_ENDPOINT_DESCRIPTORs which are to be
freed once HC list processing is suspend

RunningEDReclamation List of HCD_ENDPOINT_DESCRIPTORs which are to be
freed based on their ReclamationFrame.

PausedEDRestart List of HCD_ENDPOINT_DESCRIPTORs which are to be
restarted after canceled
HCD_TRANSFER_DESCRIPTORs are removed.

EdList Active HCD_ENDPOINT_DESCRIPTOR lists. This list
represents:

1 list for isochronous and 1ms interrupt polling
2 interrupt lists for polling at 2 ms each
4 interrupt lists for polling at 4 ms each
8 interrupt lists for polling at 8 ms each
1
6

interrupt lists for polling at 16 ms each

3
2

interrupt lists for polling at 32 ms each

1 list for control
1 list for bulk

65 total ED lists
FrameHighPart Upper bits of 32-bit frame number

Available-Bandwidth Bandwidth supported by this HC
MaxBandwidth-InUse Maximum bandwidth which is currently allocated in any

given scheduling timeslice
SOCount Schedule Overrun count

SOStallFrame Schedule Overrun for Stall count starts at this frame
SOLimitFrame Schedule Overrun for bandwidth limit adjust starts at this

frame
SOLimitHit Schedule Overrun for a limit condition was hit
SOStallHit Schedule Overrun for a stall condition was hit

OpenHCI - Open Host Controller Interface Specification for USB

54

5.2.7 Endpoint Descriptor Lists
The following sections describe Host Controller Driver handling of Endpoint Descriptors. In all
cases, Host Controller Driver is responsible for the insertion and removal of all Endpoint
Descriptors in the various Host Controller Endpoint Descriptor lists. Each subsection will outline
how this is done for the various Host Controller endpoint lists.

The EdList array in the Host Controller Driver device data structure is initialized at Host
Controller Driver initialization such that all Head fields are properly initialized to be NULL lists
and each PhysicalHead field contains the address to where the physical head pointer of the each
list is maintained. This would be the address of either a
HCD_ENDPOINT_DESCRIPTOR.HcED.NextED field, HccaInterruptTable[n], the
HcControlHeadED register, or the HcBulkHeadED register.

5.2.7.1 Bulk and Control

The Host Controller has a list head for both bulk and control transfers. Each Endpoint Descriptor
list is a separate list, but its maintenance semantics are the same for Host Controller Driver.

The ED_CONTROL and ED_BULK entries of the EdList array are assumed to be initialized at
Host Controller Driver initialization time such that the list Head field is initialized to a null list and
the PhysicalHead field contains the address of the proper list head operational register.

5.2.7.1.1 Adding

When an Endpoint Descriptor is scheduled to either control or bulk, it is done by inserting a
HCD_ENDPOINT_DESCRIPTOR into the proper HCD_ED_LIST.Head and then linking the
HCD_ENDPOINT_DESCRIPTOR.HcEd into HCD_ED_LIST.PhysicalHead.

VOID
InsertEDForEndpoint (

IN PHCD_ENDPOINT Endpoint
)

{
PHCD_DEVICE_DATA DeviceData;
PHCD_ED_LIST List;
PHCD_ENDPOINT_DESCRIPTOR ED, TailED;

DeviceData = Endpoint->DeviceData;
List = &DeviceData->EdList[Endpoint->ListIndex];

OpenHCI - Open Host Controller Interface Specification for USB

55

//
// Initialize an endpoint descriptor for this endpoint
//
ED = AllocateEndpointDescriptor(DeviceData);
ED->Endpoint = Endpoint;
ED->ListIndex = Endpoint->ListIndex;
ED->PhysicalAddress = PhysicalAddressOf(&ED->HcED);
ED->HcED.Control = Endpoint->Control;
Endpoint->HcdHeadP = AllocateTransferDescriptor(DeviceData);
ED->HcED.HeadP = PhysicalAddressOf(&Endpoint->HcdHeadP->HcTD);
Endpoint->HcdHeadP->PhysicalAddress = ED->HcED.TailP = ED->HcED.HeadP;
Endpoint->HcdED = ED;
ED->HcdHeadP->UsbdRequest = NULL;

//
// Link endpoint descriptor into HCD tracking queue
//
if (Endpoint->Type != Isochronous || IsListEmpty(&List->Head))) {

//
// Link ED into head of ED list
//

InsertHeadList (&List->Head, &ED->Link);
ED->HcED.NextED = *List->PhysicalHead;
*List->PhysicalHead = ED->PhysicalAddress;

} else {
//
// Link ED into tail of ED list
//
TailED = CONTAINING_RECORD (

List->Head.Blink,
HCD_ENDPOINT_DESCRIPTOR,
Link);

InsertTailList (&List->Head, &Endpoint->Link);
ED->NextED = 0;
TailED->NextED = ED->PhysicalAddress;

}
}

Note: The above function is written in a generic manner since other endpoint types will also use
it as their fundamental way to enqueue an Endpoint Descriptor.

OpenHCI - Open Host Controller Interface Specification for USB

56

5.2.7.1.2 Removing

An Endpoint Descriptor is removed from a control or bulk list when the pipe on the endpoint is
closed. Removing an Endpoint Descriptor involves correctly modifying the physical pointers
being processed by the Host Controller to point around the Endpoint Descriptor being removed.
This is accomplished by utilizing the virtual doubly-linked list which Host Controller Driver
maintains for Endpoint Descriptors in its HCD_ENDPOINT_DESCRIPTOR structure.

ED ED ED

Figure 5-3: Removing an Endpoint Descriptor

As soon as the Endpoint Descriptor is removed from the physical list, it is freed from its
corresponding endpoint structure. However, the actual memory for the Endpoint Descriptor
cannot be reclaimed until it is known that the Host Controller is no longer referencing the
Endpoint Descriptor. After the Endpoint Descriptor is removed from the list, it must be flushed
from the Host Controller. The manner in which this is accomplished varies depending the type of
list being modified.

For control and bulk, the flush is done by clearing the appropriate bit in HcControl to halt the
Host Controller from processing either the control or bulk list on the next frame. Once the next
frame has started, the HcControlCurrentED or HcBulkCurrentED register should be adjusted so
that it does not point to the Endpoint Descriptor being removed (for simplicity you may just write
a zero to the register); the Endpoint Descriptor is now free and Host Controller Driver
immediately sets the appropriate bit in HcControl to continue the list processing.

VOID
RemoveED (

IN PHCD_ENDPOINT Endpoint,
IN BOOLEAN FreeED
)

{
PHCD_DEVICE_DATA DeviceData;
PHCD_ED_LIST List;
PHCD_ENDPOINT_DESCRIPTOR ED, PeviousED;
ULONG ListDisable;

DeviceData = Endpoint->DeviceData;
List = &DeviceData->EdList[Endpoint->ListIndex];
ED = Endpoint->HcdED;

OpenHCI - Open Host Controller Interface Specification for USB

57

//
// Prevent Host Controller from processing this ED
//
ED->HcED.Control.sKip = TRUE;

//
// Unlink the ED from the physical ED list
//
if (ED->Link.Blink == &List->Head) {

//
// Remove ED from head
//
*List->PhysicalHead = ED->HcED.NextED;
PreviousED = NULL;

} else {
//
// Remove ED from list
//
PreviousED = CONTAINING_RECORD (

ED->Link.Blink,
HCD_ENDPOINT,
Link);

PreviousED->HcED.NextED = ED->HcED.NextED;
}

//
// Unlink ED from HCD list
//
RemoveEntryList (&ED->Link);

//
// If freeing the endpoint, remove the descriptor
//
if (FreeED) { // TD queue must already be empty

Endpoint->HcdED = NULL;
ED->Endpoint = NULL;

}

OpenHCI - Open Host Controller Interface Specification for USB

58

//
// Check to see if interrupt processing is required to free the ED
//
switch (Endpoint->Type) {

case Control:
ListDisable = ~ControlListEnable;
break;

case Bulk:
ListDisable = ~BulkListEnable;
break;

default:
DeviceData->EDList[Endpoint->ListIndex].Bandwidth -= Endpoint->Bandwidth;
DeviceData->MaxBandwidthInUse = CheckBandwidth(DeviceData,

ED_INTERRUPT_32ms,
&ListDisable);

ListDisable = 0;
}

ED->ListIndex = ED_EOF; // ED is not on a list now

//
// Set ED for reclamation
//
DeviceData->HC->HcInterruptStatus = HC_INT_SOF;// clear SOF interrupt pending
if (ListDisable) {

DeviceData->HC->HcControl &= ListDisable;
ED->ReclaimationFrame = Get32BitFrameNumber(DeviceData) + 1;
InsertTailList (&DeviceData->StalledEDReclamation, &ED->Link);
DeviceData->HC-> HcInterruptEnable = HC_INT_SOF;// interrupt on next SOF

} else {
ED->ReclaimationFrame = Get32BitFrameNumber(DeviceData) + 1;
InsertTailList (&DeviceData->RunningEDReclamation, &ED->Link);

}
}

By disabling the list processing in the HcControl register, the Host Controller disables processing
of the list by the next EOF. Unmasking the SOF interrupt generates an interrupt status which
signifies list processing has now been disabled. During the response to this interrupt event, the
Host Controller Driver reclaims the Endpoint Descriptor. See Section 5.3 for more information
on Host Controller Driver interrupt processing.

OpenHCI - Open Host Controller Interface Specification for USB

59

5.2.7.1.3 Pause

When a Transfer Descriptor is retired with an error or when the upper layers of software desire to
cancel a transfer request, all Transfer Descriptors associated with the same request must be
removed from the queue of transfers on the endpoint. To do this, processing of the endpoint by
the Host Controller must be paused before the Host Controller Driver can remove or otherwise
alter the Transfer Descriptors on the endpoint’s queue. There are two ways that this is
accomplished, depending on the reason for pausing the endpoint:

• When the Host Controller retires a Transfer Descriptor with an error, it automatically pauses
processing for that endpoint by setting the Halt bit in
HC_ENDPOINT_DESCRIPTOR.HeadP.

• When the upper layers of software initiate a cancel of a request, Host Controller Driver must
set the HC_ENDPOINT_DESCRIPTOR.Control.sKip bit and then ensure that the Host
Controller is not processing that endpoint. After setting the bit, Host Controller Driver must
wait for the next frame before the endpoint is paused.

VOID
PauseED(

IN PCHD_ENDPOINT Endpoint
)

{
PHCD_DEVICE_DATA DeviceData;
PHCD_ENDPOINT_DESCRIPTOR ED;

DeviceData = Endpoint->DeviceData;
ED = Endpoint->HcdED;

ED->HcED.Control.sKip = TRUE;
if (ED->PausedFlag)

return; // already awaiting pause processing
if (!(ED->HcED.HeadP & HcEDHeadP_HALT)) {

//
// Endpoint is active in Host Controller, wait for SOF before processing the endpoint.
//
ED->PausedFlag = TRUE;
DeviceData->HC->HcInterruptStatus = HC_INT_SOF;// clear SOF interrupt pending
ED->ReclaimationFrame = Get32BitFrameNumber(DeviceData) + 1;
InsertTailList (&DeviceData->PausedEDRestart, &ED->PausedLink);
DeviceData->HC-> HcInterruptEnable = HC_INT_SOF;// interrupt on next SOF
return;

}

OpenHCI - Open Host Controller Interface Specification for USB

60

//
// Endpoint already paused, do processing now
//
ProcessPausedED(ED);

}

VOID
ProcessPausedED (

PHCD_ENDPOINT_DESCRIPTOR ED
)

{
PHCD_ENDPOINT endpoint;
PUSBD_REQUEST request;
PHCD_TRANSFER_DESCRIPTOR td, last = NULL, *previous;
BOOLEAN B4Head = TRUE;

endpoint = ED->Endpoint;
if (endpoint == NULL)

return;

td = endpoint->HcdHeadP;
previous = &endpoint->HcdHeadP;
while (td != endpoint->HcdTailP) {

if ((ED->HcED.HeadP & ~0xF) == td->PhysicalAddress)
B4Head = FALSE;

if (ED->ListIndex == ED_EOF || td->CancelPending) {// cancel TD
request = td->UsbdRequest;
RemoveListEntry(&td->RequestList);
if (IsListEmpty(&request->HcdList) {

request->Status = USBD_CANCELED;
CompleteUsbdRequest(request);

}
*previous = td->NextHcdTD; // point around TD
if (last != NULL)

last->HcED.NextTD = td->HcED.NextTD;
if (B4Head) // TD on delayed Done List

td->Status = TD_CANCELED;
else

FreeTransferDescriptor(td);
} else { // don’t cancel TD

previous = &td->NextHcdTD;
if (!B4Head)

last = td;
}
td = *previous;

}

ED->HcED.HeadP = endpoint->HcdHeadP->PhysicalAddress | (ED->HcED.HeadP &
HcEDHeadP_CARRY);

ED->HcED.Control.sKip = FALSE;
}

OpenHCI - Open Host Controller Interface Specification for USB

61

5.2.7.2 Interrupt

The Host Controller processes one interrupt Endpoint Descriptor list every frame. The lower five
bits of the current frame number is used as an index into an array of 32 interrupt Endpoint
Descriptor lists found in the HCCA. This means each list is revisited once every 32 ms. Host
Controller Driver utilizes the Host Controller algorithm to provide flexible interrupt transfer
scheduling. Host Controller Driver sets up the interrupt lists to visit any given Endpoint
Descriptor in as many interrupt lists as necessary to provide the interrupt granularity required for
that endpoint. For example, Figure 5-4 shows the 32 interrupts lists, with 63 Endpoint
Descriptors where 1 Endpoint Descriptor is visited every frame, 2 Endpoint Descriptors are
visited once every 2 frames, until finally 32 different Endpoint Descriptors are visited once every
32 frames.

1 endpoint descriptor for 1ms scheduling
2 endpoint descriptors for 2ms scheduling
4 endpoint descriptors for 4ms scheduling
8 endpoint descriptors for 8ms scheduling

16 endpoint descriptors for 16ms scheduling
32 interrupt head pointers in HCCA for 32ms
 scheduling

Figure 5-4: Structure of Interrupt Lists

An important point of this list structure is that an endpoint may be pointed to by more than one
preceding endpoint. In the sample Endpoint Descriptor definition, Endpoint Descriptors are
tracked by Host Controller Driver with a doubly-linked list which has only one back pointer. This
is implemented by building the interrupt Endpoint Descriptor list shown in Figure 5-4 at Host
Controller Driver initialization time with disabled Endpoint Descriptors. These disabled
descriptors are used to populate the tree and are static. This implementation is used here to
simplify the sample code; it is possible to implement the interrupt lists without the statically
disabled Endpoint Descriptors if the Host Controller Driver maintains multiple backward links for
each Endpoint Descriptor. As illustrated in Figure 5-5, this gives Host Controller Driver 63
different scheduling lists into which it can schedule active Endpoint Descriptors. And since the
disabled Endpoint Descriptors are static, Host Controller Driver can maintain this with a doubly-
linked list.

OpenHCI - Open Host Controller Interface Specification for USB

62

32ms 16ms 8ms 4ms 2ms 1ms

- statically disable endpoint
 descriptor
- active endpoint descriptor

00
10
08
18
04
14
0C
1C
02
12
0A
1A
06
16
0E
1E
01
11
09
19
05
15
0D
1D
03
13
0B
1B
07
17
0F
1F

H
C

C
A

 Interrupt L
ist

Figure 5-5: Runtime Structure of Interrupt Lists

OpenHCI - Open Host Controller Interface Specification for USB

63

The head of each scheduling list is either the static entry for that list or one of the 32 list heads in
the HCCA area. This initialization is accomplished as follows:

VOID
InitailizeInterruptLists (

IN PHCD_DEVICE_DATA DeviceData
)

{
PHC_ENDPOINT_DESCRIPTOR ED, StaticED[ED_INTERRUPT_32ms];
ULONG i, j, k;
static UCHAR Balance[16] =

{0x0, 0x8, 0x4, 0xC, 0x2, 0xA, 0x6, 0xE, 0x1, 0x9, 0x5, 0xD, 0x3, 0xB, 0x7, 0xF};

//
// Allocate satirically disabled EDs, and set head pointers for scheduling lists
//
for (i=0; i < ED_INTERRUPT_32ms; i+) {

ED = AllocateEndpointDescriptor (DeviceData);
ED->PhysicalAddress = PhysicalAddressOf(&ED->HcED);
DeviceData->EDList[i].PhysicalHead = &ED->HcED.NextED;
ED->HcED.Control |= sKip; // mark ED as disabled
InitializeListHead (&DeviceData->EDList[i].Head);
StaticED[i] = ED;
if (i > 0) {

DeviceData->EDList[i].Next = (i-1)/2;
ED->HcED.NextED = StaticED[(i-1)/2]->PhysicalAddress;

} else {
DeviceData->EDList[i].Next = ED_EOF;
ED->HcEd.NextED = 0;

}
}

//
// Set head pointers for 32ms scheduling lists which start from HCCA
//
for (i=0, j=ED_INTERRUPT_32ms, i<32; i++, j++) {

DeviceData->EDList[j].PhysicalHead = &DeviceData->HCCA->InterruptList[i];
InitializeListHead (&DeviceData->EDList[j].Head);
k = Balance[i & 0xF] + ED_INTERRUPT_16ms;
DeviceData->EDList[j].Next = k;
DeviceData->HCCA->InterruptList[i] = StaticED[k]->PhysicalAddress;

}
}

OpenHCI - Open Host Controller Interface Specification for USB

64

5.2.7.2.1 Polling Rate

Interrupt Endpoint Descriptors have a minimum rate for which they need to be scheduled. When
this information is provided to Host Controller Driver, it determines the closest power of 2 rate
below the endpoints requirement and determines which scheduling queue for that rate has the
smallest committed bandwidth. The endpoint is then assigned to that scheduling list.

USB_STATUS
OpenPipe (

IN PHCD_ENDPOINT Endpoint
)

{
ULONG WhichList, junk;
PHCD_DEVICE_DATA DeviceData;

DeviceData = Endpoint->DeviceData;

//
// Determine the scheduling period.
//
WhichList = ED_INTERRUPT_32ms;
while (WhichList >= Endpoint->Rate && (WhichList >>= 1))

continue;

//
// Commit this endpoints bandwidth to the proper scheduling slot
//
if (WhichList == ED_ISOCHRONOUS) {

DeviceData->EDList[ED_ISOCHRONOUS].Bandwidth += Endpoint->Bandwidth;
DeviceData->MaxBandwidthInUse += Endpoint->Bandwidth;

} else {
//
// Determine which scheduling list has the least bandwidth
//
CheckBandwidth(DeviceData, WhichList, &WhichList);
DeviceData->EDList[WhichList].Bandwidth += Endpoint->Bandwidth;

//
// Recalculate the max bandwidth which is in use. This allows 1ms (isoc) pipe opens to
// occur with few calculation
//
DeviceData->MaxBandwidthInUse =

CheckBandwidth(DeviceData, ED_INTERRUPT_32ms, &junk);
}

OpenHCI - Open Host Controller Interface Specification for USB

65

//
// Verify the new max has not overcomitted the USB
//
if (DeviceData->MaxBandwidthInUse > DeviceData->AvailableBandwidth) {

//
// Too much, back this bandwidth out and fail the request
//
DeviceData->EDList[WhichList].Bandwidth -= Endpoint->Bandwidth;
DeviceData->MaxBandwidthInUse =

CheckBandwidth(DeviceData, ED_INTERRUPT_32ms, &junk);
return CAN_NOT_COMMIT_BANDWIDTH;

}

//
// Assign endpoint to list and open pipe
//
Endpoint->ListIndex = WhichList;

//
// Add to Host Controller schedule processing
//
InsertEDForEndpoint (Endpoint);

}

ULONG
CheckBandwidth (

IN PHCD_DEVICE_DATA DeviceData,
IN ULONG List,
IN PULONG BestList
)

/*++
This routine scans all the scheduling lists of frequency determined by the base List passed in and returns the
worst bandwidth found (i.e., max in use by any given scheduling list) and the list which had the least
bandwidth in use.

List - must be a base scheduling list. I.e., it must be one of ED_INTERRUPT_1ms, ED_INTERRUPT_2ms,
ED_INTERRUPT_4ms, ..., ED_INTERRUPT_32ms.

All lists of the appropriate frequency are checked
--*/
{

ULONG LastList, Index;
ULONG BestBandwidth, WorstBandwidth;

WorstBandwidth = 0;
BestBandwidth = ~0;

OpenHCI - Open Host Controller Interface Specification for USB

66

for (LastList = List + List; List <= LastList; List ++) {

//
// Sum bandwidth in use in this scheduling time
//
Bandwidth = 0;
for (Index=List; Index != ED_EOF; Index = DeviceData->EDList[Index].Next) {

Bandwidth += DeviceData->EDList[index].Bandwidth;
}

//
// Remember best and worst
//
if (Bandwidth < BestBandwidth) {

BestBandwidth = Bandwidth;
*BestList = List;

}

if (Bandwidth > WorstBandwidth) {
WorstBandwidth = Bandwidth;

}
}

return WorstBandwidth;
}

5.2.7.2.2 Adding

Like control, bulk, and isochronous, interrupt Endpoint Descriptors are added to the Host
Controller list for processing when the pipe on the endpoint is opened. This needs to be done
after the polling policy and bandwidth for the interrupt endpoint has been set. See the same
sample code in Section 5.2.7.1.1.

5.2.7.2.3 Removing

Since the Host Controller is obligated to process the periodic endpoint list for any given timeslice,
removal of an interrupt Endpoint Descriptor from the schedule can be accomplished without
interrupting the HC. The Endpoint Descriptor is removed from its corresponding endpoint list
much the same way a bulk or control Endpoint Descriptor is removed, except that the processing
of the endpoint list is not stalled. Instead, the Endpoint Descriptor is put off the
RunningEDReclamation list and is reclaimed at some frame number in the future. For “freeing” of
an endpoint, its Endpoint Descriptor is not reclaimed at a specific time, just whenever the next
Host Controller interrupt processing occurs. For other operations which required an interrupt
Endpoint Descriptor to be removed, like canceling of a transfer descriptor, an interrupt is forced
at next SOF to ensure timely cleanup.

OpenHCI - Open Host Controller Interface Specification for USB

67

VOID
UnscheduleIsochronousOrInterruptEndpoint (

IN PHCD_ENDPOINT Endpoint,
IN BOOLEAN FreeED,
IN BOOLEAN EndpointProcessingRequired
)

{
PHCD_DEVICE_DATA DeviceData;
DeviceData = Endpoint->DeviceData;

RemoveED(Endpoint, FreeED); // see sample code in Section 5.2.7.1.2.

if (EndpointProcessingRequired) {
DeviceData->HC-> HcInterruptEnable = HC_INT_SOF;// interrupt on next SOF

}
}

During response to an interrupt event, Host Controller Driver would reclaim the available running
Endpoint Descriptor list. See Section 5.3 for more information on Host Controller Driver
interrupt processing.

5.2.7.2.4 Pause

Like control, bulk, and isochronous, when an interrupt Transfer Descriptor is retired with an error
or when the upper layers of software desire to cancel a transfer request, all Transfer Descriptors
associated with the same request must be removed from the queue of transfers on the endpoint.
To do this, processing of the endpoint by the Host Controller must be paused before the Host
Controller Driver can remove or otherwise alter the Transfer Descriptors on the endpoint’s queue.
See Section 5.2.7.1.3 for a complete description.

5.2.7.3 Isochronous

Endpoint Descriptor management treats Isochronous Endpoint Descriptors just like 1-ms
interrupt endpoints descriptors, except that they are added to the tail of the 1-ms interrupt list.
This keeps the 1-ms scheduling list sorted such that 1-ms interrupt polling Endpoint Descriptors
are listed before scheduled Isochronous Endpoint Descriptors. An isochronous endpoint could be
setup by:

Status = SetEndpointPolicies (
Endpoint,
Isochronous, // Type
1, // Rate is 1ms
Bandwidth // BandwidthRequired

);

OpenHCI - Open Host Controller Interface Specification for USB

68

5.2.7.3.1 Adding

Like control, bulk, and interrupt, Isochronous Endpoint Descriptors are added to the Host
Controller list for processing when the endpoint pipe is opened. This needs to be done after the
bandwidth for the isochronous endpoint has been committed for the endpoint. See code samples
in Sections 5.2.7.1.1 and 5.2.7.2.1.

5.2.7.3.2 Removing

Isochronous Endpoint Descriptors are removed the same way as interrupt Endpoint Descriptors
are removed. See Section 5.2.7.2.3.

5.2.7.3.3 Pause

Unlike control, bulk, and interrupt, Isochronous Transfer Descriptors are never retired with an
error. However, similar to control, bulk, and interrupt, when the upper layers of software desire
to cancel an isochronous transfer request, all Transfer Descriptors associated with the same
request must be removed from the queue of transfers on the endpoint. To do this, processing of
the endpoint by the Host Controller must be paused before the Host Controller Driver can remove
or otherwise alter the Transfer Descriptors on the endpoint’s queue. See Section 5.2.7.1.3 for a
complete description.

5.2.8 Transfer Descriptor Queues

5.2.8.1 The NULL or Empty Queue

The NULL queue is setup by giving a Head pointer and a Tail pointer the same valid value. This
means that an empty queue has an allocated entry structure appropriate for that queue type
waiting to be filled in. This entry is a place holder.

ED

TailP

NextTD
TD

HCD ED

HCD TD #1

To be
filled in

Figure 5-6: An Empty Transfer Descriptor Queue

OpenHCI - Open Host Controller Interface Specification for USB

69

5.2.8.2 Adding to a Queue

Additions into transfer queues are always done by copying the new entry information to the entry
at the tail of the queue and then appending a new tail entry to the queue. This is accomplished
by:

1. Copying the new information to the entry pointed to by TailP
2. Setting the NextTD pointer in the current tail entry to a new place holder
3. Advancing the TailP pointer to the new place holder
4. Writing to the ControlListFilled or BulkListFilled bit in HcCommandStatus if the

insert was to a queue on the Control list or Bulk list.

ED

TailP

NextTD

TD

HCD ED

HCD TD #1

Now
filled in

HCD TD #2

To be
filled in

TD

1
2

3

Figure 5-7: Adding a Transfer Descriptor to a Queue

A limitation of this implementation is that there is always an unused entry at the tail of a queue.
For queued requests, the Host Controller Driver needs to translate the USBD-passed entries into
the native OpenHCI Transfer Descriptor entries which contain a back pointer to their
corresponding USBD request.

OpenHCI - Open Host Controller Interface Specification for USB

70

The following code sample shows how the Host Controller Driver may convert USBD requests
into General Transfer Descriptors (the process for Isochronous Transfer Descriptors is similar,
but left as an exercise to the reader).

BOOLEAN
QueueGeneralRequest (

IN PHCD_ENDPOINT endpoint;
IN USBD_REQUEST request;
)

{
PHCD_DEVICE_DATA DeviceData;
PHCD_ENDPOINT_DESCRIPTOR ED;
PHCD_TRANSFER_DESCRIPTOR TD, LastTD = NULL;
ULONG RemainingLength, count;
PCHAR CurrentBufferPointer;

DeviceData = endpoint->DeviceData;
ED = endpoint->HcdED;
if (ED == NULL || ED->ListIndex == ED_EOF)

return(FALSE); // endpoint has been removed from schedule.

FirstTD = TD = endpoint->HcdHeadP;

request->Status = USBD_NOT_DONE;
RemainingLength = request->BufferLength;
request->BufferLength = 0; // report back bytes transferred so far
CurrentBufferPointer = request->Buffer;
InitializeListHead(&request->HcdList);

if (endpoint->Type == Control) {
//
// Setup a TD for setup packet
//
InsertTailList(&request->HcdList, &TD->RequestList);
TD->UsbdRequest = request;
TD->Endpoint = endpoint;
TD->CancelPending = FALSE;
TD->HcTD.CBP = PhysicalAddressOf(&request->setup[0]);
TD->HcTD.BE = PhysicalAddressOf(&request->setup[7]);
TD->TransferCount = 0;
TD->HcTD.Control.DP = request->SETUP;
TD->HcTD.Control.Toggle = 2;
TD->HcTD.Control.R = TRUE;
TD->HcTD.Control.IntD = 7; // specify no interrupt
TD->HcTD.Control.CC = NotAccessed;
TD->NextHcdTD = AllocateTransferDescriptor(DeviceData);
TD->NextHcdTD->PhysicalAddress = TD->HcTd.NextTD =

PhysicalAddressOf(&TD->NextHcdTD->HcTD);
LastTD = TD;
TD = TD->NextHcdTD;

}

OpenHCI - Open Host Controller Interface Specification for USB

71

//
// Setup TD(s) for data packets
//
while (RemainingLength || (LastTD == NULL)) {

InsertTailList(&request->HcdList, &TD->RequestList);
TD->UsbdRequest = request;
TD->Endpoint = endpoint;
TD->CancelPending = FALSE;
if (RemainingLength) {

TD->HcTD.CBP = PhysicalAddressOf(CurrentBufferPointer);
count = 0x00002000 - (TD->HcTD.CBP & 0x00000FFF);
if (count < RemainingLength) {

count -= count % endpoint->MaxPacket;
} else {

count = RemainingLength;
}
CurrentBufferPointer += count - 1;
TD->HcTD.BE = PhysicalAddressOf(CurrentBufferPointer++);

} else {
TD->HcTD.CBP = TD->HcTD.BE = count = 0;

}
TD->TransferCount = count;
TD->HcTD.Control.DP = request->XferInfo;
if (endpoint->Type == Control) {

TD->HcTD.Control.Toggle = 3;
} else {

TD->HcTD.Control.Toggle = 0;
}
if (RemainingLength -= count && !request->ShortXferOk) {

TD->HcTD.Control.R = TRUE;
} else {

TD->HcTD.Control.R = FALSE;
}
TD->HcTD.Control.IntD = 7; // specify no interrupt
TD->HcTD.Control.CC = NotAccessed;
TD->NextHcdTD = AllocateTransferDescriptor(DeviceData);
TD->NextHcdTD->PhysicalAddress = TD->HcTd.NextTD =

PhysicalAddressOf(&TD->NextHcdTD->HcTD);
LastTD = TD;
TD = TD->NextHcdTD;

}

OpenHCI - Open Host Controller Interface Specification for USB

72

if (endpoint->Type == Control) {
//
// Setup TD for status phase
//
InsertTailList(&request->HcdList, &TD->RequestList);
TD->Endpoint = endpoint;
TD->UsbdRequest = request;
TD->CancelPending = FALSE;
TD->HcTD.CBP = 0;
TD->HcTD.BE = 0;
TD->TransferCount = 0;
if (XferInfo == IN) {

TD->HcTD.Control.DP = OUT;
} else {

TD->HcTD.ControlDP = IN:
}
TD->HcTD.Control.Toggle = 3;
TD->HcTD.Control.R = FALSE;
TD->HcTD.Control.IntD = 7; // specify no interrupt
TD->HcTD.Control.CC = NotAccessed;
TD->NextHcdTD = AllocateTransferDescriptor(DeviceData);
TD->NextHcdTD->PhysicalAddress = TD->HcTd.NextTD =

PhysicalAddressOf(&TD->NextHcdTD->HcTD);
LastTD = TD;
TD = TD->NextHcdTD;

}

//
// Setup interrupt delay
//
LastTD->HcTD.Control.IntD = min(6, request->MaxIntDelay);

//
// Set new TailP in ED
//
TD->UsbdRequest = NULL;
endpoint->HcdTailP = TD;
ED->HcED.TailP = TD->PhysicalAddress;

switch (endpoint->Type) {
case Control:

DeviceData->HC->HcCommandStatus = ControlListFilled;
break;

case Bulk:
DeviceData->HC->HcCommandStatus = BulkListFilled;

}
return(TRUE);

}

OpenHCI - Open Host Controller Interface Specification for USB

73

5.2.8.3 Removing from a Queue

Entries are typically removed from queues by the Host Controller upon completion of the
Transfer Descriptor. At this point, the Host Controller adds the Transfer Descriptor to the Done
Queue. When the Host Controller completes the Transfer Descriptor, it performs these steps:

1. Updates the NextTD pointer in the Endpoint Descriptor with the value from the
NextTD in the Transfer Descriptor just completed.

2. Copies the value in HcDoneHead to the NextTD pointer in the completed Transfer
Descriptor.

3. Places a pointer to the completed Transfer Descriptor into HcDoneHead.

ED

TailP

NextTD

TD

HCD ED

HCD TD #1

Now
complete

HCD TD #2

To be
filled in

TD

TD

HCD TD #n

Now
complete

 NULL
HcDoneHead

2
3

1

Figure 5-8: Host Controller Removes a Transfer Descriptor from a Queue

Note that in the normal case, the Host Controller Driver does not in any way alter a Transfer
Descriptor between the time TailP is moved to point beyond it until the Host Controller returns
the Transfer Descriptor for Done processing. If the driver needs to modify a Transfer Descriptor
once it has been given to the HC, it must use the cancel procedure described in the next section.

OpenHCI - Open Host Controller Interface Specification for USB

74

5.2.8.4 Cancel

In order to cancel Transfer Descriptors that have been passed to the Host Controller for
processing (i.e., Transfer Descriptors on a queue prior to TailP), the driver must first ensure that
the queue is not being processed by the HC. If a Transfer Descriptor was completed with an
error, then the Host Controller will have stopped processing the queue as indicated by the H bit in
the Endpoint Descriptor; otherwise, the driver must stop the processing of the queue by setting
the sKip bit in the Endpoint Descriptor and waiting for the next SOF. (It is necessary to wait for
the next SOF after setting the sKip bit because it is possible that the Host Controller is currently
in the process of servicing the endpoint.) Once the queue is stopped, then the driver may alter or
remove any of the Transfer Descriptors in the queue as well as update the NextTD and TailP
pointers in the Endpoint Descriptor. When the driver has finished updating the queue, it re-
enables processing of the queue by clearing both the Halt and sKip bits in the Endpoint
Descriptor.

BOOLEAN
CancelRequest (

IN PUSBD_REQUEST request,
)

{
PHCD_TRANSFER_DESCRIPTOR TD;
PHCD_ENDPOINT endpoint

//
// If request status is ‘not done’ set status to ‘canceling’
//
if (request->Status != UDBD_NOT_DONE)

return FALSE; // cannot cancel a completed request
request->Status = USBD_CANCELING;

TD = CONTAINING_RECORD(
request->HcdList.FLink,
HCD_TRANSFER_DESCRIPTOR,
RequestList);

while (TRUE) {
TD->CancelPending = TRUE;
if (TD->RequestList.FLink == request->HcdList.BLink)

break;
TD = CONTAINING_RECORD(

TD->RequestList.FLink,
HCD_TRANSFER_DESCRIPTOR,
RequestList);

}

endpoint = TD->Endpoint;
PauseED(endpoint); // stop endpoint, schedule cleanup (see Section 5.2.7.1.3)
return TRUE;

}

OpenHCI - Open Host Controller Interface Specification for USB

75

5.2.9 Done Queue
The Done Queue is built by the Host Controller as each Transfer Descriptor is completed. The
Host Controller later passes the queue to the Host Controller Driver through the HCCA. The
Host Controller Driver must reverse the order of the queue as it converts the physical addresses in
the queue to virtual addresses that can be used by software. Once the queue is reversed, it can be
processed in the order that the Transfer Descriptors were completed. This processing must
account for Transfer Descriptors that have been completed normally as well as those that are
completed with errors. Some of the Transfer Descriptors completed with Data Underrun errors
are not considered as errors by the upper layers of the USB software and must be handled by
Host Controller Driver. Additionally, the Host Controller Driver must allow for the possibility
that the Transfer Descriptor only accounts for a portion of the original transfer request from the
USB Driver.

VOID
ProcessDoneQueue (

ULONG physHcTD// HccaDoneHead
)

{
PHCD_TRANSFER_DESCRIPTOR TD, tn, TDlist = NULL;
PUSBD_REQUEST Request;
PHCD_ENDPOINT Endpoint;

//
// Reverse the queue passed from controller while virtualizing addresses.
// NOTE: The following code assumes that a ULONG and a pointer are the same size
//
if (physHcTD == 0)

return;
do {

TD = CONTAINING_RECORD(
VirtualAddressOf(physHcTD),
HCD_TRANSFER_DESCRIPTOR,
HcTD);

physHcTD = TD->HcTD.NextTD;
TD->HcTD.NextTD = (ULONG) TDlist;
TDlist = TD;

} while (physHcTD);

//
// Process list that is now reordered to completion order
//
while (TDlist != NULL) {

TD = TDlist;
TDlist = (PHCD_TRANSFER_DESCRIPTOR) (TD->HcTD.NextTD);
if (TD->Status == TD_CANCELED) {

FreeTransferDescriptor(TD);
continue;

OpenHCI - Open Host Controller Interface Specification for USB

76

}
Request = TD->UsbdRequest;
Endpoint = TD->Endpoint;
if (Endpoint->Type != Isochronous) {

if (TD->HcTD.CBP) {
TD->TransferCount -=

(((TD->HcTD.BE ^ TD->HcTD.CBP) & 0xFFFFF000) ? 0x00001000 : 0) +
(TD->HcTD.BE & 0x00000FFF) - (TD->HcTD.CBP & 0x00000FFF) + 1;

}
if (TD->HcTD.Control.DP != Setup) {

Request->BufferLength += TD->TransferCount;
}
if (TD->HcTD.Control.CC == NoError) {

//
// TD completed without error, remove it from USBD_REQUEST list,
// if USBD_REQUEST list is now empty, then complete the request.
//
Endpoint->HcdHeadP = TD->NextHcdTD;
RemoveListEntry(&TD->RequestList);
FreeTransferDescriptor(TD);
if (IsListEmpty(&Request->HcdList)) {

if (Request->Status != USBD_CANCELING)
Request->Status = USBD_NORMAL_COMPLETION;

else
Request->Status = USBD_CANCELED;

CompleteUsbdRequest(Request);
}

} else {
//
// TD completed with an error, remove it and other TDs for same request,
// set appropriate status in USBD_REQUEST and then complete it. There
// are two special cases: 1) error is DataUnderun on Bulk or Interrupt and
// ShortXferOk is true; for this do not report error to USBD and restart
// endpoint. 2) error is DataUnderrun on Control and ShortXferOk is true;
// for this the final status TD for the Request should not be canceled, the
// Request should not be completed, and the endpoint should be restarted.
// NOTE: The endpoint has been halted by the controller
//

for (tn = Endpoint->HcdHeadP;
tn != Endpoint->HcdTailP;
tn = tn->NextHcdTD) {

if (Request != tn->UsbdRequest ||
(TD->HcTD.Control.CC == DataUnderrun &&

Request->ShortXferOk &&
Request->Status != USBD_CANCELING &&
TD->HcTD.Control.DP != tn->HcTD.Control.DP))

break;

OpenHCI - Open Host Controller Interface Specification for USB

77

}
Endpoint->HcdHeadP = tn;
Endpoint->HcdED->HcED.HeadP = tn->PhysicalAddress |

(Endpoint->HcED->HcED.HeadP &
(HcEDHeadP_HALT | HcEDHeadP_CARRY));

while ((tn = CONTAINING_RECORD(
RemoveListHead(&Request->HcdList),
HCD_TRANSFER_DESCRIPTOR,
RequestList)) != NULL) {

if (tn != TD && tn != Endpoint->HcdHeadP)
FreeTransferDescriptor(tn);

}
if (Endpoint->HcdHeadP->UsbdRequest == Request) {

InsertTailList(&Request->HcdList,
&Endpoint->HcdHeadP->RequestList);

Endpoint->HcdED->HcED.HeadP &= ~HcEDHeadP_HALT;
} else {

if (Request->ShortXferOk && (TD->HcTD.Control.CC == DataUnderrun)) {
if (Request->Status != USBD_CANCELING)

Request->Status = USBD_NORMAL_COMPLETION;
else

Request->Status = USBD_CANCELED;
Endpoint->HcdED->HcED.HeadP &= ~HcEDHeadP_HALT;

} else if (Request->Status != USBD_CANCELING) {
Request->Status = USBD_CC_Table[TD->HcTD.Control.CC];

} else {
Request->Status = USBD_CANCELED;

}
CompleteUsbdRequest(Request);

}
FreeTransferDescriptor(TD);

}
} else {

//
// Code for Isochronous is left as an exercise to the reader
//

}
}

}

OpenHCI - Open Host Controller Interface Specification for USB

78

5.2.10 USB Bandwidth Allocation
The Host Controller Driver initializes a value in its device data which reflects the total bandwidth
available which can be committed on the USB for periodic events. This would be the maximum
amount of any USB frame which can be consumed by interrupt and isochronous packets. When a
pipe on an endpoint is opened for usage, its bandwidth is allocated. The bandwidth used by an
interrupt or isochronous endpoint must therefore be set before the pipe is opened and any
transfers are performed. All transfers performed on the pipe must not exceed the bandwidth
which has been set. This is part of the USBDI interface and the Host Controller Driver does not
need to verify this. The Host Controller Driver tracks all allocated bandwidth for every periodic
scheduling list it can schedule into. When a pipe needs to allocate bandwidth, the Host Controller
Driver first checks to make sure that such an allocation would not exceed the maximum allowed
allocations by checking the schedule lists of the deepest depth (i.e., the 32-ms schedules). If no
32-ms schedule will overflow, the Host Controller Driver determines which of the scheduling lists
(of those that are valid for the allocation request) has the least currently allocated bandwidth. The
bandwidth is committed and the Endpoint Descriptor is assigned to that scheduling slot.

Isochronous bandwidth allocations are the same as interrupt bandwidth allocation of a frequency
of 1ms.

See Section 5.2.7.2.1 on interrupt polling rate for related information.

5.2.10.1 Scheduling Overrun Errors

SchedulingOverrun errors occur when the Host Controller is not able to complete all the
interrupt and isochronous transfers prior to the end of the frame. Since the Host Controller
Driver does not allow the USB frames to be overcommitted, the cause of SchedulingOverrun
errors is the inability of the Host Controller to gain timely access to the host bus. This is normally
a transient condition that can be ignored because the transfers most likely to be missed are the
isochronous transfers at the end of the periodic list; since isochronous is not a guaranteed delivery
stream, the listener must be able to deal with missing data. However, it is possible that due to a
particular system configuration, the condition may persist for long periods of time. If
SchedulingOverrun errors occur in 100 consecutive frames, it is recommended that the Host
Controller Driver reduce the committed bandwidth on the bus and make a note of the new
available bandwidth, preferably in a place where the information can persist between OS boots.

OpenHCI - Open Host Controller Interface Specification for USB

79

Normally the Host Controller can recover from SchedulingOverrun errors (see Section
4.3.2.3.5.3, Time Errors). However, if SchedulingOverrun errors persist for 32759 consecutive
frames, then stale Isochronous Transfer Descriptors in the periodic list can look like Isochronous
Transfer Descriptors that are scheduled for later delivery (this may not appear serious, but
transmitting an isochronous packet in any but its assigned frame can cause serious problems, not
to mention that any packet status words that may have been written may be mistaken by the Host
Controller as buffer offsets, causing even more problems). Therefore, it is necessary that the Host
Controller Driver clear the IsochronousEnable bit in the HcControl register when it detects that
this situation is about to occur. This said, it must be noted that it is nearly impossible for this
situation to occur because the Host Controller Driver should have attempted to reduce the
committed bandwidth 327 times, to no avail.

Since it is possible that the same host bus situation that prevents the Host Controller from
completing its schedule can cause the host processor to stall and thus miss a SchedulingOverrun
interrupt, the Host Controller provides the ErrorFrameCount in the HcCommandStatus register
to assist the Host Controller Driver in keeping track of the number of consecutive
SchedulingOverrun errors.

5.2.11 ControlBulkServiceRatio
The USB Specification requires that control transfers be given preference over bulk transfers.
The OpenHCI Host Controller achieves this with the ControlBulkServiceRatio field in the
HcControl register. Host Controller Driver merely sets this field to the number of control
endpoints that should be serviced for each bulk endpoint that is serviced. For the purposes of the
ControlBulkServiceRatio Endpoint Descriptors that have either the sKip or Halt bits set or
have HeadP equal to TailP are not counted.

OpenHCI - Open Host Controller Interface Specification for USB

80

5.3 Host Controller Interrupt
When the Host Controller needs attention it requests a processor interrupt. The following sample
code for HCD’s interrupt service routine primarily shows the normal case for the
USBOPERATIONAL state.

BOOLEAN
HcdInterruptService(

IN HCD_DEVICE_DATA DeviceData
)

{
// define some variables
ULONG ContextInfo, Temp, Temp2, Frame;

//
// Is this our interrupt?
//
if (DeviceData->HCCA->HccaDoneHead != 0) {

ContextInfo = WritebackDoneHead; // note interrupt processing required
if (DeviceData->HCCA->DoneHead & 1) {

ContextInfo |= DeviceData->HC->HcInterruptStatus &
DeviceData->HC->HcInterruptEnable;

}
} else {

ContextInfo = DeviceData->HC->HcInterruptStatus &
DeviceData->HC->HcInterruptEnable;

if (ContextInfo == 0)
return FALSE; // not my interrupt

}

//
// It is our interrupt, prevent HC from doing it to us again until we are finished
//
DeviceData->HC->HcInterruptDisable = MasterInterruptEnable;

if (ContextInfo & UnrecoverableError) {
//
// The controller is hung, maybe resetting it can get it going again. But that code is left as an exercise to
// the reader.
//

}

OpenHCI - Open Host Controller Interface Specification for USB

81

if (ContextInfo & (SchedulingOverrun | WritebackDoneHead | StartOfFrame | FrameNumberOverflow))
ContextInfo |= MasterInterruptEnable; // flag for end of frame type interrupts

//
// Check for Schedule Overrun
//
if (ContextInfo & SchedulingOverrun) {

Frame = Get32BitFrameNumber(DeviceData);
Temp2 = DeviceData->HC->HcCommandStatus & EFC_Mask;
Temp = Temp2 - (DeviceData->SOCount & EFC_Mask);
Temp = (((Temp >> EFC_Position) - 1) % EFC_Size) + 1;// number of bad frames since last error
if (!(DeviceData->SOCount & SOC_Mask) || // start a new count?

((DeviceData->SOCount & SOC_Mask) + DeviceData->SOStallFrame + Temp) != Frame) {
DeviceData->SOLimitFrame = DeviceData->SOStallFrame = Frame - Temp;
DeviceData->SOCount = Temp | Temp2;

} else { // got a running count
DeviceData->SOCount = (DeviceData->SOCount + Temp) & SOC_Mask | Temp2;
while (Frame - DeviceData->SOLimitFrame >= 100) {

DeviceData->SOLimitHit++;
DeviceData->SOLimitFrame += 100;

}
if (Frame - DeviceData->SOStallFrame >= 32740) {

DeviceData->HC->HcControl &= ~IsochronousEnable;// stop isochronous transfers
DeviceData->SOStallHit = TRUE;
DeviceData->SOCount = Temp2; // clear error counter

}
}
DeviceData->HC->HcInterruptStatus = SchedulingOverrun;// acknowledge interrupt
ContextInfo &= ~SchedulingOverrun;

} else { // no schedule overrun, check for good frame.
if (ContextInfo & MasterInterruptEnable)

DeviceData->SOCount &= EFC_MASK;// clear counter
}

//
// Check for Frame Number Overflow
// Note: the formula below prevents a debugger break from making the 32-bit frame number run backward.
//
if (ContextInfo & FrameNumberOverflow) {

DeviceData->FrameHighPart += 0x10000 -
((DeviceData->HCCA->HccaFrameNumber ^ DeviceData->FrameHighPart) & 0x8000);

DeviceData->HC->HcInterruptStatus = FrameNumberOverflow;// acknowledge interrupt
ContextInfo &= ~FrameNumberOverflow;

}

//
// Processor interrupts could be enabled here and the interrupt dismissed at the interrupt
// controller, but for simplicity this code won’t.
//

OpenHCI - Open Host Controller Interface Specification for USB

82

if (ContextInfo & ResumeDetected) {
//
// Resume has been requested by a device on USB. HCD must wait 20ms then put controller in the
// UsbOperational state. This code is left as an exercise to the reader.
//
ContextInfo &= ~ResumeDetected;
DeviceData->HC->HcInterruptStatus = ResumeDetected;

}
//
// Process the Done Queue
//
if (ContextInfo & WritebackDoneHead) {

ProcessDoneQueue(DeviceData ->HccaDoneHead);
//
// Done Queue processing complete, notify controller
//
DeviceData->HCCA->HccaDoneHead = 0;
DeviceData->HC->HcInterruptStatus = WritebackDoneHead;
ContextInfo &= ~WritebackDoneHead;

}

//
// Process Root Hub changes
//
if (ContextInfo & RootHubStatusChange) {

//
// EmulateRootHubInterruptXfer will complete a HCD_TRANSFER_DESCRIPTOR which
// we then pass to ProcessDoneQueue to emulate an HC completion
//
ProcessDoneQueue(EmulateRootHubInterruptXfer(DeviceData)->PhysicalAddress);
//
// leave RootHubStatusChange set in ContextInfo so that it will be masked off (it won’t be unmasked
// again until another TD is queued for the emulated endpoint)
//

}

if (ContextInfo & OwnershipChange) {
//
// Only SMM drivers need implement this. See Sections 5.1.1.3.3 and 5.1.1.3.6 for descriptions of what
// the code here must do.
//

}

//
// Any interrupts left should just be masked out. (This is normal processing for StartOfFrame and
// RootHubStatusChange)
//
if (ContextInfo & ~MasterInterruptEnable) // any unprocessed interrupts?

DeviceData->HC->HcInterruptDisable = ContextInfo;// yes, mask them

OpenHCI - Open Host Controller Interface Specification for USB

83

//
// We’ve completed the actual service of the HC interrupts, now we must deal with the effects
//

//
// Check for Scheduling Overrun limit
//
if (DeviceData->SOLimitHit) {

do {
PHCD_ENDPOINT_DESCRIPTOR ED;
if (IsListEmpty(EDList[ED_ISOCHRONOUS].Head))

break; // Isochronous List is empty
ED = CONTAINING_RECORD(

EDList[ED_ISOCHRONOUS].Head.Blink,
HCD_ENDPOINT_DESCRIPTOR,
Link);

if (ED->Endpoint->Type != Isochronous)
break; // Only 1ms Interrupts left on list

DeviceData->AvailableBandwidth = DeviceData->MaxBandwidthInUse - 64;
//
// It is recommended that the above bandwidth be saved in non-volatile memory for future use.
//
RemoveED(ED->Endpoint);

} while (--DeviceData->SOLimitHit);
DeviceData->SOLimitHit = 0;

}

//
// look for things on the PausedEDRestart list
//
Frame = Get32BitFrameNumber(DeviceData);
while (!IsListEmpty(&DeviceData->PausedEDRestart) {

PHCD_ENDPOINT_DESCRIPTOR ED;

ED = CONTAINING_RECORD(DeviceData->PausedEDRestart.FLink,
HCD_ENDPOINT_DESCRIPTOR,
PausedLink);

if ((LONG)(ED->ReclaimationFrame - Frame) > 0)
break;

RemoveListEntry(&ED->PausedLink);
ED->PausedFlag = FALSE;
ProcessPausedED(ED);

}

OpenHCI - Open Host Controller Interface Specification for USB

84

//
// look for things on the StalledEDReclamation list
//
if (ContextInfo & MasterInterruptEnable && !IsListEmpty(&DeviceData->StalledEDReclamation) {

Temp = DeviceData->HC->HcControlCurrentED;
Temp2 = DeviceData->HC->HcBulkCurrentED;
while (!IsListEmpty(&DeviceData->StalledEDReclamation) {

PHCD_ENDPOINT_DESCRIPTOR ED;

ED = CONTAINING_RECORD(DeviceData->StalledEDReclamation.FLink,
HCD_ENDPOINT_DESCRIPTOR,
Link);

RemoveListEntry(&ED->Link);
if (ED->PhysicalAddress == Temp)

DeviceData->HC->HcControlCurrentED = Temp = ED->HcED.NextED;
else if (ED->PhysicalAddress == Temp2)

DeviceData->HC->HcBulkCurrentED = Temp2 = ED->HcED.NextED;
if (ED->Endpoint != NULL) {

ProcessPausedED(ED); // cancel any outstanding TDs
} else {

FreeEndpointDescriptor(ED);
}

}
DeviceData->HC->HcControl |= ControlListEnable | BulkListEnable;// restart queues

}

//
// look for things on the RunningEDReclamation list
//
Frame = Get32BitFrameNumber(DeviceData);
while (!IsListEmpty(&DeviceData->RunningEDReclamation) {

PHCD_ENDPOINT_DESCRIPTOR ED;

ED = CONTAINING_RECORD(DeviceData->RunningEDReclamation.FLink,
HCD_ENDPOINT_DESCRIPTOR,
Link);

if ((LONG)(ED->ReclaimationFrame - Frame) > 0)
break;

RemoveListEntry(&ED->Link);
if (ED->Endpoint != NULL)

ProcessPausedED(ED); // cancel any outstanding TDs
else

FreeEndpointDescriptor(ED);
}

//
// If processor interrupts were enabled earlier then they must be disabled here before we re-enable
// the interrupts at the controller.
//
DeviceData->HC->HcInterruptEnable = MasterInterruptEnable;
return TRUE;

}

OpenHCI - Open Host Controller Interface Specification for USB

85

5.4 FrameInterval Counter
The HcFmInterval register is used to control the length of USB frames. The proper value for this
register, the one that generates SOF tokens at a rate within the limits specified by the USB
Specification, is set by system firmware if it is different from the HcFmInterval register’s reset
value; therefore, the Host Controller Driver should save this value when entered in order to be
able to restore the proper value after resets.

The FrameInterval field in the HcFmInterval register may be adjusted by plus or minus one
count no more frequently than every six USB frames. This means it is necessary to know in
which frame a new FrameInterval takes effect. This can be accomplished by using the T bit in
the HcFmInterval and HcFmRemaining registers. When writing the HcFmInterval register, the
Host Controller Driver simply writes the T bit as the inverse of the T bit in the HcFmRemaining
register; when the next SOF occurs, both the T bit and the FrameInterval field will be copied to
the HcFmRemaining register.

When setting the HcFmInterval register, not only the FrameInterval field must be updated but
also the FSLargestDataPacket field must be set. This field initializes a counter within the Host
Controller that is used to determine if a transaction on USB can be completed before EOF
processing must start. It is a function of the new FrameInterval and is calculated by subtracting
from FrameInterval the maximum number of bit times for transaction overhead on USB and the
number of bit times needed for EOF processing, then multiplying the result by 6/7 to
account for the worst case bit stuffing overhead. The value of MAXIMUM_OVERHEAD below
is 210 bit times.

The sample code below has purposely not defined the value of HcFmInterval as a structure so
that the entire register can be updated in a single write operation. This is necessary to ensure that
all the fields within HcFmInterval are updated together for consistency.

ULONG
SetFrameInterval (

IN PHCD_DEVICE_DATA DeviceData,
IN BOOLEAN UpNotDown
)

{
ULONG FrameNumber, Interval;

OpenHCI - Open Host Controller Interface Specification for USB

86

Interval |= (DeviceData->HC->HcFmInterval & 0x00003FFF);
if (UpNotDown)

++Interval;
else

--Interval;
Interval |= (((Interval - MAXIMUM_OVERHEAD) * 6) / 7) << 16;
Interval |= 0x80000000 & (0x80000000 ^ (DeviceData->HC->HcFmRemaining));
FrameNumber = Get32BitFrameNumber(DeviceData);
DeviceData->HC->HcFmInterval = Interval;
if (0x80000000 & (DeviceData->HC->HcFmRemaining ^ Interval)) {

FrameNumber += 1);
} else {

FrameNumber = Get32BitFrameNumber(DeviceData);
}
return (FrameNumber); // return frame number new interval takes effect

}

ULONG
Get32BitFrameNumber(

HCD_DEVICE_DATA DeviceData
)

{
ULONG fm, hp;

//
// This code accounts for the fact that HccaFrameNumber is updated by the HC before the HCD gets an
// interrupt that will adjust FrameHighPart.
//
hp = DeviceData->FrameHighPart;
fm = DeviceData->HCCA->HccaFrameNumber;
return ((fm & 0x7FFF) | hp) + ((fm ^ hp) & 0x8000);

}

5.5 Root Hub
The Host Controller Driver is responsible for making all endpoints to the root hub appear as a
normal hub endpoint to USBD. This involves virtualizing the endpoint communications and ,as
necessary, maintaining the HcRtHubStatus register. After a transition out of the USBReset state,
the Host Controller Driver must make the root hub appear at the default address. See the USB
Specification for the details of the expected behavior of the root hub.

OpenHCI - Open Host Controller Interface Specification for USB

87

6. HOST CONTROLLER
6.1 Introduction

This chapter discusses the Host Controller. The Host Controller is the device which is located
between the USB bus and the Host Controller Driver in the OpenHCI architecture. The Host
Controller is charged with processing all of the Data Type lists built by the Host Controller
Driver. Additionally, the USB Root Hub is attached to the Host Controller.

This chapter is organized into the following sections:
• USB States This section discusses the Host Controller Operation with respect

to the possible USB Bus states.
• Frame Management This section discusses all aspects of managing the 1-ms USB

Frame.
• List Processing List Processing is the main function of the Host Controller. This

section describes the detailed processing of the HCD-built Data
Type lists.

• Interrupt Processing This section describes the interrupt events tracked by the Host
Controller and how the Host Controller provides interrupts for
those events.

• Root Hub This section describes the Root Hub support.

6.2 USB States
The Host Controller has four USB states visible to the Host Controller Driver via the Operational
Registers: USBOPERATIONAL, USBRESET, USBSUSPEND, and USBRESUME. These states define
the Host Controller responsibilities relating to USB signaling and bus states.

The USB states are reflected in the HostControllerFunctionalState field of the HcControl register.
The Host Controller Driver is permitted to perform only the USB state transitions shown in
Figure 6-1. The Host Controller may only perform a single state transition. During a remote
wakeup event, the Host Controller may transition from USBSUSPEND to USBRESUME.

OpenHCI - Open Host Controller Interface Specification for USB

88

USBOPERATIONAL

USBSUSPEND

USBRESETUSBRESUME

USBOPERATIONAL write

USBRESET write

Software Reset

USBSUSPEND write
USBRESET write

USBRESUME write
or

Remote Wakeup

Hardware Reset

USBOPERATIONAL write

USBRESET write

Figure 6-1: USB States

6.2.1 UsbOperational
When in the USBOPERATIONAL state, the Host Controller may process lists and will generate SOF
Tokens. The USBOPERATIONAL state may be entered from the USBRESUME or USBRESET states.
It may be exited to the USBRESET or USBSUSPEND states.

When transitioning from USBRESET or USBRESUME to USBOPERATIONAL, the Host Controller is
responsible for terminating the USB reset or resume signaling as defined in the USB Specification
prior to sending a token.

A transition to the USBOPERATIONAL state affects the frame management registers of the Host
Controller. Simultaneously with the Host Controller’s state transition to USBOPERATIONAL, the
FrameRemaining field of HcFmRemaining is loaded with the value of the FrameInterval field
in HcFmInterval. There is no SOF Token sent at this initial load of the FrameRemaining field.
The first SOF Token sent after entering the USBOPERATIONAL state is sent following next frame
boundary when FrameRemaining transitions from 0 to FrameInterval. The FrameNumber
field of HcFmNumber is incremented on a state transition to USBOPERATIONAL.

OpenHCI - Open Host Controller Interface Specification for USB

89

6.2.2 UsbReset
When in the USBRESET state, the Host Controller forces reset signaling on the bus. The Host
Controller’s list processing and SOF Token generation are disabled while in USBRESET. In
addition, the FrameNumber field of HcFmNumber does not increment while the Host Controller
is in the USBRESET state. The USBRESET state can be entered from any state at any time. The
Host Controller defaults to the USBRESET state following a hardware reset. The Host Controller
Driver is responsible for satisfying USB Reset signaling timing defined by the USB Specification.

6.2.3 UsbSuspend
The USBSUSPEND state defines the USB Suspend state. The Host Controller’s list processing and
SOF Token generation are disabled. However, the Host Controller’s remote wakeup logic must
monitor USB wakeup activity. The FrameNumber field of HcFmNumber does not increment
while the Host Controller is in the USBSUSPEND state.

USBSUSPEND is entered following a software reset or from the USBOPERATIONAL state on
command from the Host Controller Driver. While in USBSUSPEND, the Host Controller may force
a transition to the USBRESUME state due to a remote wakeup condition. This transition may
conflict with the Host Controller Driver initiating a transition to the USBRESET state. If this
situation occurs, the HCD-initiated transition to USBRESET has priority. The Host Controller
Driver must wait 5 ms after transitioning to USBSUSPEND before transitioning to the USBRESUME

state. Likewise, the Root Hub must wait 5 ms after the Host Controller enters USBSUSPEND

before generating a local wakeup event and forcing a transition to USBRESUME. Following a
software reset, the Host Controller Driver may cause a transition to USBOPERATIONAL if the
transition occurs no more than 1 ms from the transition into USBSUSPEND. If the 1-ms period is
violated, it is possible that devices on the bus will go into Suspend.

6.2.4 UsbResume
When in the USBRESUME state, the Host Controller forces resume signaling on the bus. While in
USBRESUME, the Root Hub is responsible for propagating the USB Resume signal to downstream
ports as specified in the USB Specification. The Host Controller's list processing and SOF Token
generation are disabled while in USBRESUME. In addition, the FrameNumber field of
HcFmNumber does not increment while the Host Controller is in the USBRESUME state.

USBRESUME is only entered from USBSUSPEND. The transition to USBRESUME can be initiated by
the Host Controller Driver or by a USB remote wakeup signaled by the Root Hub. The Host
Controller is responsible for resolving state transition conflicts between the hardware wakeup and
Host Controller Driver initiated state transitions. Legal state transitions from USBRESUME are to
USBRESET and to USBOPERATIONAL.

The Host Controller Driver is responsible for USB Resume signal timing as defined by the USB
Specification.

OpenHCI - Open Host Controller Interface Specification for USB

90

6.3 Frame Management
The Host Controller is responsible for managing all aspects of “framing” for the USB. These
responsibilities include the sending of SOF Tokens on the bus and communicating with the Host
Controller Driver on frame-specific information.

6.3.1 Frame Timing
The Host Controller uses three registers to perform the frame timing and information reporting
tasks of frame management. The 16-bit FrameNumber field of the HcFmNumber register is kept
by the Host Controller as a reference number for the current frame. This frame number is sent
over the USB as the Frame Number field in SOF Tokens and is reported by the Host Controller to
the HCCA for use by the Host Controller Driver. The FrameInterval field of the HcFmInterval
register and the FrameRemaining field of the HcFmRemaining register are used to define frame
boundaries.

The FrameInterval field stores the length of a USB frame in 12-MHz bit times. Specifically, the
FrameInterval field corresponds to (Frame Length - 1) bit times. FrameInterval is loaded with
a default value of 0x2EDF (11,999 decimal) at reset. This value produces a USB frame
consisting of exactly 12,000 bit times. The Host Controller Driver may vary the value of
FrameInterval at any time.

The FrameRemaining field functions as a 14-bit frame counter. When operating, the register
value decrements once per USB bit time. When FrameRemaining reaches a value of 0, it is
loaded with the value of the FrameInterval field at the next bit-time boundary. The frame
boundary is the bit boundary on which the value of FrameRemaining transitions from 0 to
FrameInterval (a J to K transition is seen on the USB at this boundary signifying the first bit of
the sync field of an SOF Token - see Section 6.3.2). In other words, the last bit time for a frame
is defined as the bit time in which the value of FrameRemaining is 0. The first bit time for a
frame is defined as the bit time in which the value of FrameRemaining is equal to
FrameInterval.

The HcFmNumber register holds the current frame number in the FrameNumber field. This field
is incremented by the Host Controller at each frame boundary. FrameNumber is incremented
when the FrameRemaining field transitions from 0 to FrameInterval. The FrameNumber field
may be used by the Host Controller Driver in the construction of a larger resolution frame
number. To aid the Host Controller Driver in this task, the Host Controller writes the
FrameNumber field to HccaFrameNumber immediately following the change in value of
FrameNumber at the beginning of the frame. Immediately following the completion of the write
of FrameNumber to HccaFrameNumber, the Host Controller sets the StartOfFrame bit in the
HcInterruptStatus register to signify a StartOfFrame interrupt event.

OpenHCI - Open Host Controller Interface Specification for USB

91

6.3.2 StartOfFrame (SOF) Token Generation
When in the USBOPERATIONAL state the Host Controller generates an SOF Token at the
beginning of each frame period. There are no SOF Tokens generated when the Host Controller is
in a state other than USBOPERATIONAL.

The Host Controller must be exact in its delivery of the SOF token to the USB. All OpenHCI
Host Controllers send the first bit of the SOF Token SYNC field during the first bit time of the
frame. The timing of the SOF Token on the bus is shown in Figure 6-2.

0x0001 0x0000 0x2EDF 0x2EDE

J
(IDLE)

K
(Sync[0])

J
(Sync[1])

FRAME Boundary

12 MHz Clock

HcFmRemain

USB Bus State

Figure 6-2: Timing for SOF Token Generation on USB

6.3.3 HccaFrameNumber Update

When in the USBOPERATIONAL state, the Host Controller writes the value of the FrameNumber
field in HcFmNumber to HccaFrameNumber following the increment of FrameNumber at each
frame boundary. This allows the Host Controller Driver to use the 16-bit value kept in hardware
to generate a software 32-bit frame number without requiring the Host Controller Driver to
access the Host Controller’s Operational Registers. The Host Controller Driver is notified of
HccaFrameNumber updates via an interrupt if the StartOfFrame interrupt event is enabled.

OpenHCI - Open Host Controller Interface Specification for USB

92

6.4 List Processing
6.4.1 Priority

USB does not provide a mechanism for attached devices to arbitrate for use of the bus. As a
consequence, arbitration for use of the interface is ‘predictive’ with the Host Controller and host
software assigned the responsibility of providing service to devices when it is predicted that a
device will need it. USB by necessity supports a number of different communications models
between software and Endpoints (Bulk, Control, Interrupt, and Isochronous). Usage of the bus
varies widely among these types of services making the task of the host fairly challenging. The
approach used by OpenHCI is to have two levels of arbitration to select among the endpoints.
The first level of arbitration is at the list level. Each endpoint type needing service is in a list of a
corresponding type (e.g., Bulk Endpoints are in the Bulk list) and the Host Controller selects
which list to service. Within a list, endpoints are given equal priority insuring that all endpoints of
a certain type have more-or-less equal service opportunities.

The list priorities are modified as endpoints are serviced and at periodic intervals. In each frame,
an interval of time is reserved for processing of items in the Control and Bulk lists. This interval
is at the beginning of each frame. The Host Controller Driver limits this time by writing
HcPeriodicStart with a bit time after which periodic transfers (Interrupt and Isochronous) have
priority for use of the bus. During periodic list processing, the Interrupt list specific to the current
frame is serviced before the Isochronous list. When processing of the periodic lists ends,
processing of the Control and Bulk lists resumes. Figure 6-3 shows the priority among periodic
lists and nonperiodic lists within a single frame.

FRAME Boundary

SOF Token
Non-periodic lists Interrupt List Non-periodic lists

Remaining > Start

Isochronous List

Periodic List Processing Started

FRAME Boundary

Remaining < Start

Remaining = Start

Periodic List Processing Complete

SECTION 2SECTION 1 SECTION 3

Remaining and Start are fields in the HcFmRemaining
and HcPeriodicStart Operational registers.

NOTE:

Figure 6-3: List Priority within a USB Frame

OpenHCI - Open Host Controller Interface Specification for USB

93

6.4.1.1 List Priority

As stated previously, the lists built up by the Host Controller Driver are classified as either
periodic or nonperiodic. The Interrupt list and the Ischronous list are periodic because the
endpoints on those lists require service at specific times in a deterministic manner. The Control
list and the Bulk list are nonperiodic because endpoints on those lists can tolerate latency and
expect service only on a time-available basis.

The Host Controller breaks the USB frame up into three distinct sections with regard to list
service as shown in Figure 6-3. Section 1 is devoted to the nonperiodic lists. This is followed by
Section 2, which is a section reserved for the periodic lists in which both the Interrupt list and the
Isochronous list are serviced to completion. Section 3 of the frame is again devoted to the
nonperiodic lists.

6.4.1.1.1 Periodic Lists

The list priority between the periodic lists is fixed with the Interrupt list having priority over the
Isochronous list. When servicing the periodic lists, the Host Controller is actually servicing a
single list, called the Periodic list, which contains both Interrupt Endpoint Descriptors and
Isochronous Endpoint Descriptors. The Host Controller Driver ensures that all Interrupt
Endpoint Descriptors are placed on the list in front of any Isochronous Endpoint Descriptors.

6.4.1.1.2 Nonperiodic Lists

The priority algorithm between the nonperiodic lists is more complicated than that of the periodic
lists. Control endpoints are given equal or more access to the bus in comparison with Bulk
Endpoints. More specifically, N Control Endpoints are given access to the bus for every 1 Bulk
Endpoint. This ratio of N:1 is termed the Control Bulk Service Ratio. The Host Controller
Driver has control over the Control Bulk Service Ratio via the ControlBulkServiceRatio field of
the HcControl Register. The range of possible Control Bulk Service Ratios is from 1:1 to 4:1.
An example of a 4:1 Control/Bulk Service Ratio is shown in Figure 6-4.

CTRL
ED

BULK
ED

CTRL
ED

CTRL
ED

CTRL
ED

Figure 6-4: Control Bulk Service Ratio of 4:1

OpenHCI - Open Host Controller Interface Specification for USB

94

The Host Controller enforces the Control Bulk Service Ratio regardless of the number of Control
and Bulk Endpoint Descriptors present on their respective lists. If there is only 1 Control
Endpoint Descriptor on the Control list and the Control Bulk Ratio is 4:1, that Control Endpoint
Descriptor is serviced 4 times before a Bulk ED is serviced. If there are no Endpoint Descriptors
on the Control list or the Bulk list when the Host Controller attempts to service that list, the Host
Controller will “skip” that list and immediately begin servicing the other nonperiodic list and
complete the required number of EDs. The Host Controller will continue to check the empty list
when ever the Control Bulk Service Ratio dictates, servicing any new Endpoint Descriptors
according to the Control Bulk Service Ratio.

The Control Bulk Service Ratio must be maintained across frame boundaries when the Host
Controller is in the USBOPERATIONAL state. That is, if the Host Controller has serviced 2 of 4
Control Endpoint Descriptors for a 4:1 ratio and the frame ends, the Host Controller must service
the remaining 2 Control Endpoint Descriptors before servicing a Bulk Endpoint Descriptor during
the next opportunity for Nonperiodic service in a subsequent frame.

When beginning service of the nonperiodic lists after transitioning into the USBOPERATIONAL

state, the Host Controller will service the required number of Control Endpoint Descriptors prior
to a Bulk Endpoint Descriptor.

For an Endpoint Descriptor to count toward the Service Ratio, a transaction must be initiated on
the USB for that endpoint. (The transaction need not be successful.) If no transaction is initiated,
the number of Endpoint Descriptors remaining before a switch to the other list is made is not
diminished. For example, if there are 3 Control Endpoint Descriptors left before a switch to the
Bulk list and the current Control Endpoint Descriptor is skipped (no token sent), there are still 3
Control Endpoint Descriptors left before a switch to the Bulk list is made.

6.4.1.2 Endpoint Descriptor Priority

Within a list, Endpoint Descriptors are serviced with a round robin priority scheme. The Host
Controller must initially begin service at the head of the list and service each Endpoint Descriptor
on the list sequentially. When the Host Controller reaches the end of the list, it reads the list’s
Head Pointer and starts again with the first Endpoint Descriptor on the list. Servicing an
Endpoint Descriptor is defined as making a single transaction attempt from the first Transfer
Descriptor in the queue. Once a transaction attempt is made, whether successful or not, and the
appropriate actions are taken to complete that transaction, the Host Controller will service the
next Endpoint Descriptor rather than make a second transaction attempt on the current Endpoint
Descriptor.

OpenHCI - Open Host Controller Interface Specification for USB

95

6.4.1.3 Transfer Descriptor Priority

The priority of Transfer Descriptors on a queue is first-come-first-serve. The Transfer
Descriptors the Host Controller services are always part of a queue attached to an Endpoint
Descriptor. The Host Controller services the first Transfer Descriptor on the queue which is
pointed to by the NextTransferDescriptor field of the Endpoint Descriptor. When that Transfer
Descriptor is retired, it is removed from the queue and the Transfer Descriptor linked with the
NextTransferDescriptor field of that Transfer Descriptor is moved to the front of the queue.
The retirement process for Transfer Descriptors is described in Section 6.4.4.6 and 4.3.1.6. As
mentioned previously, when the Host Controller services an Endpoint Descriptor, only a single
transaction attempt is made. The Host Controller moves on to the next Endpoint Descriptor after
the first transaction attempt rather than finishing the entire Transfer Descriptor of the current
Endpoint Descriptor.

6.4.2 List Service Flow
This section describes the actions required of the Host Controller during list processing. These
actions are taken after the Host Controller has determined which particular list is to be serviced.
The general list service flow is depicted in Figure 6-5.

6.4.2.1 List Enabled Check

The first action the Host Controller takes when processing a list is to check that the list is enabled.
Periodically, lists are disabled by the Host Controller Driver for the purpose of altering an
Endpoint Descriptor (or other reasons). If the list is enabled, the Host Controller may service the
list. If the list is disabled, the Host Controller skips that list and moves on to the next list. Lists
are enabled/disabled with the list enable bits of the HcControl register. When a list is disabled
during a frame, the Host Controller must not process the list beyond the next frame boundary.
However, when a list is enabled, it is immediately available for processing during the current
frame and the Host Controller need not wait for the next frame. In addition, when a list is enabled
after being previously disabled, the only piece of information the Host Controller may assume is
valid is the list’s “HeadED” pointer and, if a nonperiodic list, the list’s “CurrentED” pointer.

The IsochronousListEnable bit is used to disable processing of the Isochronous list which is
always at the tail of the periodic list. If the Host Controller finds an Isochronous Endpoint
Descriptor while servicing the Periodic list and the IsochronousListEnable bit is ‘0’, the Host
Controller stops processing the list.

OpenHCI - Open Host Controller Interface Specification for USB

96

SERVICE
LIST

Read
HEAD pointer

Hc____CurrentED
= 0?

NO

Peridoc List?YES
List

Enabled?

HEAD pointer
= 0?

Service Endpoint
Descriptor

BULK List?

CONTROL LIst?

NO

YES
Control/Bulk

Ratio Satisfied?
NO NextED = 0?

FINISHED

YES

YES

YES

NO

YES

____Filled = 1?
(Bulk or Control)

NO

YES

NO

Set
Hc____CurrentED =

Hc____HeadED
YES

NO

NO

FINISHED

FINISHED

NO

FINISHED

Set
____Filled = 0

Hc____CurrentED
= 0?

NO

YES

YES

ISOCHRONOUS
ED?

ISO List
Enabled?

YES

NO

NO

NO

ISOCHRONOUS
ED?

ISO List
Enabled?

YES

NO

YES

YES

Figure 6-5: List Service Flow

OpenHCI - Open Host Controller Interface Specification for USB

97

6.4.2.2 Locating Endpoint Descriptors

After determining a list is enabled, the Host Controller locates the first Endpoint Descriptor
requiring service. The first time the Host Controller services a list after entering the
USBOPERATIONAL state, it uses the list’s Head Pointer to locate the first Endpoint Descriptor on
the list. If the Head Pointer is ‘0’, there are no Endpoint Descriptors on the list and the Host
Controller proceeds to the next list.

The Host Controller always uses the Head Pointer to find the first Endpoint Descriptor when
servicing the Interrupt (periodic) list. All of the Interrupt Head Pointers are located in the
HccaInterruptTable (described in Section 4.4.2.1). The Host Controller makes a determination
of which Head Pointer to use by using the low order 5 bits of the FrameNumber field of
HcFmNumber as a Dword index into the table. An index value of ‘00000’ binary corresponds to
the Head Pointer (Dword) at offset ‘0x00.’ An index value of ‘11111’ binary corresponds to the
Head Pointer (Dword) at offset ‘0x7C.’

In the case of the nonperiodic lists, the operation is slightly different. Since the nonperiodic lists
are serviced on a time-available basis, the Host Controller may not be able to service an entire list
within a single frame. In order to satisfy the requirement of servicing Endpoint Descriptors in a
round-robin priority, the Host Controller maintains “CurrentED” pointers for each list (the
HcBulkCurrentED register and the HcControlCurrentED register). These pointers always point
to the next Endpoint Descriptor requiring service on their respective list. When servicing the
nonperiodic lists, the Host Controller checks the HcBulkCurrentED or HcControlCurrentED
register to see if there is a nonzero value. If the value of the “CurrentED” register contains a
nonzero pointer to an Endpoint Descriptor, the Host Controller attempts to process that Endpoint
Descriptor. If the “CurrentED” register contains a value of ‘0,’ the Host Controller has reached
the end of the list. At this point, the Host Controller checks the BulkListFilled bit or
ControlListFilled bit of the HcCommandStatus register. If the respective “Filled” bit is set to
‘1,’ there is at least one Endpoint Descriptor on the list which needs service. In this case, the
Host Controller will copy the value of HcControlHeadED or HcBulkHeadED into
HcControlCurrentED or HcBulkCurrentED respectively, clear the “Filled” bit to ‘0,’ and attempt
to process the Endpoint Descriptor now present in the “CurrentED” register. If the “Filled” bit is
a ‘0’ when checked, there are no Endpoint Descriptors on the list needing service and the Host
Controller moves on to the next list.

OpenHCI - Open Host Controller Interface Specification for USB

98

After servicing an Endpoint Descriptor, the Host Controller proceeds differently, depending on
the list type. If the current list is the periodic list, the Host Controller checks the
NextEndpointDescriptor pointer of the just completed Endpoint Descriptor. If nonzero, the
Host Controller continues processing with the next Endpoint Descriptor. If zero, the Host
Controller moves on to the nonperiodic lists. If the current list is the Bulk list, after servicing a
single Endpoint Descriptor the Host Controller moves on to the next list. If the current list is the
Control List, the Host Controller next action is dependent on whether or not the number of
Control Endpoint Descriptors dictated by the Control/Bulk Service Ratio have been serviced. If
the Control/Bulk Service Ratio has been satisfied, the Host Controller moves on to the next list;
otherwise, service of another Control Endpoint Descriptor is attempted.

6.4.3 Endpoint Descriptor Processing
During the processing of a list, the Host Controller is required to interpret and service the
Endpoint Descriptors present on that list. The flow for service of an Endpoint Descriptor is
shown in Figure 6-6.

SERVICE
ENDPOINT

DESCRIPTOR

Service
Transfer Descriptor

NextTD =
Tail Pointer?

HALT = 1
or

SKIP = 1?
NO

NO

FINISHED

YES

YES

Set
____Filled = 1

(Bulk or Control)
Periodic List?

YES

NO

Figure 6-6: Endpoint Descriptor Service Flow

OpenHCI - Open Host Controller Interface Specification for USB

99

When the Host Controller reads an Endpoint Descriptor, it first determines if the descriptor
should be skipped. If either the sKip bit or the Halt bit in the Endpoint Descriptor is a ‘1,’ the
Endpoint Descriptor is skipped and the Host Controller proceeds normally with the next Endpoint
Descriptor or the next list. If the Endpoint Descriptor is not skipped, the Host Controller
performs a check to determine if there is a Transfer Descriptor on the queue. If not, the Host
Controller proceeds to the next Endpoint Descriptor or the next list.

To determine if there is a Transfer Descriptor on the queue that can be processed, the Host
Controller compares the Endpoint Descriptor’s TailPointer and NextTransferDescriptor fields.
If the fields are different, there is a Transfer Descriptor available for processing. If they are equal,
there is not a valid Transfer Descriptor on the list. If a valid Transfer Descriptor is present on the
queue, the Host Controller attempts to service that Transfer Descriptor. Service of the Transfer
Descriptor involves making only a single transaction attempt.

6.4.4 Transfer Descriptor Processing
Transfer Descriptor processing is the fundamental operation performed by a Host Controller. The
service flow for servicing a Transfer Descriptor is shown in Figure 6-7. The rest of this section
describes the steps necessary for completing service of a Transfer Descriptor.

6.4.4.1 Isochronous Relative Frame Number Calculation

When processing an Isochronous Transfer Descriptor, the Host Controller must calculate the
relative frame number. This calculation determines which, if any, packet will be sent during the
current frame. This calculation is described in Section 4.3.2.1.

6.4.4.2 Packet Address and Size Calculation

When processing an Isochronous Transfer Descriptor, the relative frame number (R, calculated as
described in Section 4.3.2.1) is used to select two offset values, Offset[R] and Offset[R+1]. If R
is equal to the FrameCount field in the Transfer Descriptor, then Offset[R+1] is (BufferEnd+1).
Offset[R] is subtracted from Offset[R+1] to get the size of the data buffer which should not be
larger than MaximumPacketSize from the Endpoint Descriptor (this is not checked by the Host
Controller and transmission problems occur if software violates this restriction). The initial
address of the transfer is determined from Offset[R]. If bit 12 (the 13th LSb) of Offset[R] is 0,
then the initial buffer address resides in the physical memory page specified in BufferPage0 of the
Isochronous Transfer Descriptor. If bit 12 is 1, then the initial buffer address will reside in the
physical page indicated by the upper 20 bits of BufferEnd. When the upper 20 bits are selected,
the address is completed by using the low 12 bits of Offset[R] as the low 12 bits of the address. If
bit 12 of both Offset[R] and Offset[R+1] are the same, then the packet transfer will not cross a
page boundary. If they are different (only case is bit 12 of Offset[R] = 0 and bit 12 of Offset[R+1]
= 1), then the packet transfer will cross a page boundary.

OpenHCI - Open Host Controller Interface Specification for USB

100

SERVICE
TRANSFER

DESCRIPTOR

Calculate PACKET
Addr and Size

GTD

Perform SOF check Time available?

Execute USB
Transaction

YES

Execute USB
Transaction

Write PACKET
to memory

Status Writeback

TD Complete?

Retire TD

NO FINISHED

YES

NO

PID = OUT?
Read PACKET
from memory

Perform SOF checkYES

NO

Time available? YES

NO

Frame - Number
< 0?

Compare Number with
Frame in ED

Frame - Number
> N?

ITD

NO

NO
(Frame - Number
provides Offset)

YES
(Error)

YES
(Early)

Figure 6-7: Transfer Descriptor Service Flow

OpenHCI - Open Host Controller Interface Specification for USB

101

When the Host Controller fetches a General Transfer Descriptor, it gets the address of the next
memory location be accessed from CurrentBufferPointer. If CurrentBufferPointer is 0, then
the packet size will be zero, regardless of the setting of MaximumPacketSize in the Endpoint
Descriptor. As the data is transferred to/from the CurrentBufferPointer address, the
CurrentBufferPointer value might cross a page boundary. If it does, the upper 20 bits of
BufferEnd are substituted for the current upper 20 bits of CurrentBufferPointer. This page
boundary crossing may occur during a packet transfer (i.e., a single packet may cross a page
boundary.)

The maximum amount of data that will be sent to or accepted from the device is determined by
the smaller of MaximumPacketSize in the Endpoint Descriptor or by the remaining buffer size
(given by the General Transfer Descriptor). The remaining buffer size is found by subtracting the
CurrentBufferPointer from BufferEnd. The subtraction may be performed by using two 13-bit
terms A and B. The most significant bit of A is set to 0 if CurrentBufferPointer and BufferEnd
are identical in their most significant 20 bits (i.e., they indicate the same physical page in memory)
and set to 1 if they differ. The most significant bit of B is set to 0. The low order 12 bits of A and
B are the low order 12 bits of BufferEnd and CurrentBufferPointer respectively. To the
results of A - B add 1 to get the remaining space in the buffer.

6.4.4.3 Packet Transfer Time Check

Once the Host Controller determines a packet’s size, it must check to see if the packet
transmission can occur over the USB before the end of the frame. This is determined by
comparing the bit times remaining before the end of the frame with the bit time requirement of the
packet to be transmitted. If the bit time requirement of the packet is larger than the bit times
remaining in the frame, the transaction may not be initiated. This ensures that the Host Controller
will never be responsible for causing a babble condition on the bus. For full speed transactions,
the Host Controller uses the Largest Data Packet Counter to determine if a given packet can be
transferred.

For low speed transactions, regardless of the data size, the Host Controller compares the current
value of the FrameRemaining field of HcFmRemaining with the value of the LSThreshold field
of the HcLSThreshold register. If FrameRemaining is less than LSThreshold, the low speed
transaction is not started on the bus.

OpenHCI - Open Host Controller Interface Specification for USB

102

6.4.4.4 Largest Data Packet Counter Operation

At each frame boundary, the Largest Data Packet Counter is loaded with the value of the
FSLargestDataPacket field in HcFmInterval (at the same time FrameRemaining is loaded with
the value of FrameInterval). For every 7 bit times on the bus, the counter is decremented by 6
because the number of useful bits does not diminish at the same rate as bus bit times pass due to
bit stuffing. When the Host Controller loads a Transfer Descriptor, the worst case number of bit
times for the data transfer on the bus is known. This value is simply the byte count multiplied by
8, using the MaximumPacketSize byte count for reads (the transaction overhead and the frame
overhead are accounted for in the initial value of the counter). If the bit count required is greater
than the remaining bit count in the Largest Data Packet Counter, the transfer is not started. When
the transfer is not started, there is no status writeback to the Transfer Descriptor.

6.4.4.5 Status Writeback

At the completion of a transaction attempt, the Host Controller performs a status writeback to the
Transfer Descriptor. The information written back differs depending on what type of Transfer
Descriptor is being serviced.

6.4.4.5.1 General Transfer Descriptor Status Writeback

General Transfer Descriptors are updated after every attempted transaction. There are four fields
that require updating after a transaction attempt. They are the CompletionCode field, the
DataToggleControl field, the CurrentBufferPointer field, and occasionally the ErrorCount
field.

The DataToggleControl field must be updated to reflect the data toggle for the next transfer. If
the packet just transmitted completed successfully, the Host Controller sets the MSb and toggles
the LSb of DataToggleControl field to reflect a new value for the next packet. If the current
packet did not complete with a proper ACK or NAK, the field should not be changed.

The CurrentBufferPointer must be updated to reflect the amount of data transferred in the
current packet if the transmission ended with a proper ACK or an error. If the Host Controller
received an ACK or a NAK with an incorrect data toggle, the CurrentBufferPointer should not
be updated because the Host Controller is required to retry the current packet. If the
CurrentBufferPointer requires an update, the number of bytes transmitted in the packet should
be added to the current value of the CurrentBufferPointer field. If the packet crossed a page
boundary, the upper 20 bits of the CurrentBufferPointer should be updated with the upper 20
bits of the BufferEnd field to reflect the change in page base address. The lower 12 bits of the
CurrentBufferPointer will roll over correctly with a normal addition to reflect the new packet
address.

OpenHCI - Open Host Controller Interface Specification for USB

103

If there was an error in the packet transmission, the ErrorCount field must be incremented. If
the ErrorCount is 2 and another error occurs, the Transfer Descriptor is retired with the error
code reflected in the CompletionCode field.

The CompletionCode field of a General Transfer Descriptor is updated after every attempted
transaction whether successful or not. If the transaction was successful, the CompletionCode
field will be set to “No Error.” Otherwise, it will be set according to the error type.

When an endpoint returns a NAK handshake for a transmission, all General Transfer Descriptor
fields will be the same after the transaction as they were when the transaction began. The Host
Controller does not need to make any changes.

6.4.4.5.2 Isochronous Transfer Descriptor Status Writeback

The Host Controller updates the Offset[R] field after packet transmission using the Packet Status
Word. For an OUT packet, the Size field is set to 0 if there is no error. For an IN, the Size field
will reflect the actual number of bytes written to the memory buffer. Regardless of transfer
direction, the CompletionCode field is updated to reflect the outcome of the transmission.

6.4.4.6 Transfer Descriptor Retirement

When a transfer descriptor is complete (all data sent/received) or an error condition occurs, the
Transfer Descriptor must be retired. Several actions are required to retire a Transfer Descriptor.
The Host Controller must place the Transfer Descriptor on the Done Queue and update the value
of the Done Queue Interrupt Counter. In addition, the Host Controller must update the Endpoint
Descriptor to reflect the changes to the NextTransferDescriptor pointer, the DataToggleCarry
field, and potentially the Halt field.

To dequeue the Transfer Descriptor, the Host Controller copies the current Transfer Descriptor’s
NextTransferDescriptor field to the NextTransferDescriptor of the Endpoint Descriptor.

Following the dequeuing of the Transfer Descriptor from the Endpoint Descriptor Queue, the
Transfer Descriptor is enqueued to the Done Queue. To accomplish this, the Host Controller first
writes the value of the HcDoneHead to the NextTransferDescriptor field of the Transfer
Descriptor being enqueued. Second, the HcDoneHead is written with the address of the Transfer
Descriptor being enqueued.

The Host Controller must also update the DataToggleCarry field of the Endpoint Descriptor.
The DataToggleCarry field should reflect the last data toggle value from the retired Transfer
Descriptor. If the Transfer Descriptor is being retired because of an error, the Host Controller
must update the Halt bit of the Endpoint Descriptor.

OpenHCI - Open Host Controller Interface Specification for USB

104

To complete the Transfer Descriptor retirement, the Host Controller updates the Done Queue
Interrupt Counter. The InterruptDelay field of the Transfer Descriptor specifies the maximum
number of SOFs that may occur before the Host Controller writes the HcDoneHead to the HCCA
and generates an interrupt. If the value of the InterruptDelay field is 111b, the Host Controller
Driver does not require an interrupt for the Transfer Descriptor and the Done Queue Interrupt
Counter is left unchanged. If the value of the InterruptDelay field is not 111b, but is greater
than or equal to the current value of the Done Queue Interrupt Counter, the counter is also left
unchanged. In this case, another Transfer Descriptor already on the Done Queue requires an
interrupt earlier than the Transfer Descriptor being retired. If the value of the InterruptDelay
field is not 111b, but is less than the current value of the Done Queue Interrupt Counter, the
counter is loaded with the value of the InterruptDelay field. In this case, the Transfer Descriptor
being retired requires an interrupt earlier than all of the Transfer Descriptors currently on the
Done Queue. If the Transfer Descriptor is being retired with an error, then the Done Queue
Interrupt Counter is cleared as if the InterruptDelay field were zero.

6.4.5 Done Queue
Occasionally (as determined by the Done Queue Interrupt Counter), when the Done Queue
contains one or more Transfer Descriptors, the Host Controller writes the current value of
HcDoneHead into the HccaDoneHead immediately following a frame boundary and generates an
interrupt. These actions are taken so that the Host Controller Driver can complete the processing
of retired Transfer Descriptors. After the HcDoneHead value is written to the HCCA, the Host
Controller resets the value of HcDoneHead to ‘0’ and sets the WritebackDoneHead bit located
in the HcInterruptStatus register to ‘1.’ While the WritebackDoneHead bit is set, the Host
Controller may not write HcDoneHead to the HCCA. The WritebackDoneHead bit is cleared
by the Host Controller Driver when it is ready to receive another Done Queue from the Host
Controller.

6.4.5.1 Done Queue Interrupt Counter

The Host Controller maintains a 3-bit counter which is used to determine how often the
HcDoneHead register value must be written to HccaDoneHead. The counter is initialized with a
value of 111b at software reset, hardware reset, and when the Host Controller transitions to the
USBOPERATIONAL state.

The counter functions when the Host Controller is in the USBOPERATIONAL state by decrementing
at every frame boundary simultaneous with the incrementing of the FrameNumber field in
HcFmNumber if the current value of the counter is other than 111b or 0. If the current value of
the counter is 111b or 0, the counter is effectively disabled and does not decrement.

OpenHCI - Open Host Controller Interface Specification for USB

105

The Host Controller checks the value of the counter during the last bit time of every frame when
in the USBOPERATIONAL state. If the value of the counter is 0 at that time, the Host Controller
checks the current value of the WritebackDoneHead bit in HcInterruptStatus. If
WritebackDoneHead is ‘0,’ immediately following the frame boundary, the Host Controller
writes the HcDoneHead register value to HccaDoneHead, sets WritebackDoneHead to ‘1,’ and
resets the counter to 111b. If WritebackDoneHead is ‘1,’ the Host Controller takes no further
action until the end of the next frame when it performs the same checks again.

6.5 Interrupt Processing
Interrupts are the communication method for HC-initiated communication with the Host
Controller Driver. There are several events which may trigger an interrupt from the Host
Controller. Each specific event sets a specific bit in the HcInterruptStatus register. The Host
Controller requests an interrupt when all three of the following conditions are met:

• The MasterInterruptEnable bit in HcControl is set to ‘1’.
• A bit in HcInterruptStatus is set to ‘1’.
• The corresponding enable bit in HcInterruptEnable for the HcInterruptStatus bit is set

to ‘1’.

If the Host Controller supports an SMI pin, the interrupts caused by most events are routable,
based on the value of the InterruptRouting bit of the HcControl register, to either the INT pin
or the SMI pin. Enabled interrupt events causes an interrupt to be signaled on the INT pin when
the InterruptRouting bit is a ‘0’ and signaled on the SMI pin if the InterruptRouting bit is a
‘1.’ However, OpenHCI Host Controllers are not required to implement an SMI pin. If a Host
Controller does not implement an SMI pin and the InterruptRouting bit is a ‘1,’ interrupts are
not generated. The notable exception for interrupt routing is the OwnershipChange event
described in Section 6.5.8 which is always routed to the SMI pin.

Each of the following subsections describes a specific event, and therefore a specific bit,
represented in the HcInterruptStatus register.

6.5.1 SchedulingOverrun Event

When a scheduling overrun occurs, the Host Controller sets the SchedulingOverrun bit
following the completion of the next HccaFrameNumber update. A scheduling overrun occurs
when the Host Controller determines that the Periodic list for the current frame cannot be
completed before the end of the frame.

OpenHCI - Open Host Controller Interface Specification for USB

106

6.5.2 WritebackDoneHead Event

Periodically, the Host Controller is required to update HccaDoneHead with the value of the
HcDoneHead register (see Section 6.4.5). When the write of HcDoneHead to HccaDoneHead
completes, the Host Controller sets the WritebackDoneHead bit. The corresponding interrupt
(if enabled) will inform the Host Controller Driver that it must service the Done Queue.

6.5.3 StartOfFrame Event

When FrameRemaining is loaded with FrameInterval, the Host Controller sets the
StartOfFrame bit following completion of the next HccaFrameNumber update. This
corresponds to a frame boundary. The Host Controller Driver will normally disable this event,
enabling the event when it requires a deterministic interrupt at a frame boundary.

6.5.4 ResumeDetected Event
A resume detected event occurs when the Root Hub detects resume signaling on the USB bus.
The Host Controller will set the ResumeDetected bit when resume signaling is detected.

A ResumeDetected interrupt is only possible in the USBSUSPEND state. A resume event can be
either an upstream resume signal or a connect/disconnect detection at a port. The connect/
disconnect resume event is enabled by the RemoteWakeupEnable in the HcRhStatus register. If
a port is either in the progress of selectively resuming or has completed the selective resume and
set PortSuspendStatusChange when the Root Hub enters the USBSUSPEND state, the port
resume is cleared and the hub resume, ResumeDetected, is generated.

Note: A ResumeDetected interrupt corresponds to hardware initiated USBSUSPEND to
USBRESUME transition.

6.5.5 UnrecoverableError Event

The Host Controller sets the UnrecoverableError bit when it detects a system error not related
to USB or an error that cannot be reported in any other way.

6.5.6 FrameNumberOverflow Event

When the MSb (bit 15) of the FrameNumber field of HcFmNumber changes value, the
FrameNumberOverflow bit is set by the Host Controller following the next
HccaFrameNumber update. The event occurs on both the ‘1’ to ‘0’ or the ‘0’ to ‘1’ transition.
This event allows the Host Controller Driver to perform any necessary manipulation of its
software based frame number to ensure that number is correct.

OpenHCI - Open Host Controller Interface Specification for USB

107

6.5.7 RootHubStatusChange Event

The Host Controller sets the RootHubStatusChange bit whenever there is a change to any bit in
HcRhStatus or HcRhPortStatus. Any changes in these registers define a change in status that
must be communicated to the Host Controller Driver. Since OpenHCI provides a register-level
interface to the Root Hub, the need for Root Hub Transfer Descriptors is eliminated. This
provides for a more efficient Root Hub interface, but does not provide the Host Controller Driver
a good mechanism for polling the Root Hub on a periodic basis. To compensate for the lack of a
good polling mechanism, the Host Controller delivers an interrupt on every Root Hub status
change.

6.5.8 OwnershipChange Event

The OwnershipChange bit is set by the Host Controller when the Host Controller Driver sets the
OwnershipChangeRequest bit in the HcCommandStatus register. This ensures that an interrupt
is generated (unless it is masked) whenever ownership of the Host Controller is passed to and
from the operating system’s Host Controller Driver and any SMM-based Host Controller Driver
in the system. All interrupts resulting from an OwnershipChange event are not routable with the
InterruptRouting bit of the HcControl register and are delivered on the SMI pin only. If the
Host Controller does not implement an SMI pin, interrupts will not be generated at all on an
OwnershipChange event.

6.6 Root Hub
The Root Hub functional operation is defined by the USB Specification. The OpenHCI
Specification only defines a register-level interface which the HCD uses to emulate standard hub
endpoint communication. See chapter 7 for a description of the register interface definition.

The Root Hub USB reset and resume signaling are controlled by the
HostControllerFunctionalState bits. The HCD is responsible for all timing associated with these
operations. The port reset and resume signal timing is controlled by the hardware.

OpenHCI - Open Host Controller Interface Specification for USB

108

7. OPERATIONAL REGISTERS
The Host Controller (HC) contains a set of on-chip operational registers which are mapped into a
noncacheable portion of the system addressable space. These registers are used by the Host
Controller Driver (HCD). According to the function of these registers, they are divided into four
partitions, specifically for Control and Status, Memory Pointer, Frame Counter and Root Hub. All
of the registers should be read and written as Dwords.

Reserved bits may be allocated in future releases of this specification. To ensure interoperability,
the Host Controller Driver that does not use a reserved field should not assume that the reserved
field contains 0. Furthermore, the Host Controller Driver should always preserve the value(s) of
the reserved field. When a R/W register is modified, the Host Controller Driver should first read
the register, modify the bits desired, then write the register with the reserved bits still containing
the read value. Alternatively, the Host Controller Driver can maintain an in-memory copy of
previously written values that can be modified and then written to the Host Controller register.
When a write to set/clear register is written, bits written to reserved fields should be 0.

Table 7-1: Host Controller Operational Registers

Offset
3 0

1 0

0 HcRevision

4 HcControl

8 HcCommandStatus

C HcInterruptStatus

10 HcInterruptEnable

14 HcInterruptDisable

18 HcHCCA

1C HcPeriodCurrentED

20 HcControlHeadED

24 HcControlCurrentED

28 HcBulkHeadED

2C HcBulkCurrentED

30 HcDoneHead

34 HcFmInterval

38 HcFmRemaining

3C HcFmNumber

40 HcPeriodicStart

44 HcLSThreshold

48 HcRhDescriptorA

4C HcRhDescriptorB

OpenHCI - Open Host Controller Interface Specification for USB

109

Table 7-1: Host Controller Operational Registers

Offset
3 0

1 0

50 HcRhStatus

54 HcRhPortStatus[1]

... ...

54+4*NDP HcRhPortStatus[NDP]

7.1 The Control and Status Partition
7.1.1 HcRevision Register

3 0 0 0
1 8 7 0

reserved REV

Figure 7-1: HcRevision Register

Read/Write
Key Reset HCD HC Description

REV 10h R R Revision
This read-only field contains the BCD representation of the
version of the HCI specification that is implemented by this HC.
For example, a value of 11h corresponds to version 1.1. All of
the HC implementations that are compliant with this
specification will have a value of 10h.

7.1.2 HcControl Register
The HcControl register defines the operating modes for the Host Controller. Most of the fields in
this register are modified only by the Host Controller Driver, except
HostControllerFunctionalState and RemoteWakeupConnected.

3 1 1 0 0 0 0 0 0 0 0 0 0
1 1 0 9 8 7 6 5 4 3 2 1 0

reserved
R
W
E

R
W
C

I
R

H
C
F
S

B
L
E

C
L
E

I
E

P
L
E

C
B
S
R

 Figure 7-2: HcControl Register

OpenHCI - Open Host Controller Interface Specification for USB

110

Read/Write
Key Reset HCD HC Description

CBSR 00b R/W R ControlBulkServiceRatio
This specifies the service ratio between Control and Bulk EDs.
Before processing any of the nonperiodic lists, HC must compare
the ratio specified with its internal count on how many nonempty
Control EDs have been processed, in determining whether to
continue serving another Control ED or switching to Bulk EDs.
The internal count will be retained when crossing the frame
boundary. In case of reset, HCD is responsible for restoring this
value.

CBSR No. of Control EDs Over Bulk EDs Served
0 1 : 1
1 2 : 1
2 3 : 1
3 4 : 1

PLE 0b R/W R PeriodicListEnable
This bit is set to enable the processing of the periodic list in the
next Frame. If cleared by HCD, processing of the periodic list does
not occur after the next SOF. HC must check this bit before it
starts processing the list.

IE 0b R/W R IsochronousEnable
This bit is used by HCD to enable/disable processing of
isochronous EDs. While processing the periodic list in a Frame,
HC checks the status of this bit when it finds an Isochronous ED
(F=1). If set (enabled), HC continues processing the EDs. If
cleared (disabled), HC halts processing of the periodic list (which
now contains only isochronous EDs) and begins processing the
Bulk/Control lists. Setting this bit is guaranteed to take effect in
the next Frame (not the current Frame).

CLE 0b R/W R ControlListEnable
This bit is set to enable the processing of the Control list in the
next Frame. If cleared by HCD, processing of the Control list does
not occur after the next SOF. HC must check this bit whenever it
determines to process the list. When disabled, HCD may modify
the list. If HcControlCurrentED is pointing to an ED to be
removed, HCD must advance the pointer by updating
HcControlCurrentED before re-enabling processing of the list.

BLE 0b R/W R BulkListEnable
This bit is set to enable the processing of the Bulk list in the next
Frame. If cleared by HCD, processing of the Bulk list does not
occur after the next SOF. HC checks this bit whenever it
determines to process the list. When disabled, HCD may modify
the list. If HcBulkCurrentED is pointing to an ED to be removed,
HCD must advance the pointer by updating HcBulkCurrentED
before re-enabling processing of the list.

OpenHCI - Open Host Controller Interface Specification for USB

111

Read/Write
Key Reset HCD HC Description

HCFS 00b R/W R/W HostControllerFunctionalState for USB
00b: USBRESET

01b: USBRESUME

10b: USBOPERATIONAL

11b: USBSUSPEND

A transition to USBOPERATIONAL from another state causes SOF
generation to begin 1 ms later. HCD may determine whether HC
has begun sending SOFs by reading the StartofFrame field of
HcInterruptStatus.
This field may be changed by HC only when in the USBSUSPEND

state. HC may move from the USBSUSPEND state to the
USBRESUME state after detecting the resume signaling from a
downstream port.
HC enters USBSUSPEND after a software reset, whereas it enters
USBRESET after a hardware reset. The latter also resets the Root
Hub and asserts subsequent reset signaling to downstream ports.

IR 0b R/W R InterruptRouting
This bit determines the routing of interrupts generated by events
registered in HcInterruptStatus. If clear, all interrupts are routed to
the normal host bus interrupt mechanism. If set, interrupts are
routed to the System Management Interrupt. HCD clears this bit
upon a hardware reset, but it does not alter this bit upon a software
reset. HCD uses this bit as a tag to indicate the ownership of HC.

RWC 0b R/W R/W RemoteWakeupConnected
This bit indicates whether HC supports remote wakeup signaling.
If remote wakeup is supported and used by the system it is the
responsibility of system firmware to set this bit during POST. HC
clears the bit upon a hardware reset but does not alter it upon a
software reset. Remote wakeup signaling of the host system is
host-bus-specific and is not described in this specification.

RWE 0b R/W R RemoteWakeupEnable
This bit is used by HCD to enable or disable the remote wakeup
feature upon the detection of upstream resume signaling. When
this bit is set and the ResumeDetected bit in HcInterruptStatus is
set, a remote wakeup is signaled to the host system. Setting this
bit has no impact on the generation of hardware interrupt.

OpenHCI - Open Host Controller Interface Specification for USB

112

7.1.3 HcCommandStatus Register
The HcCommandStatus register is used by the Host Controller to receive commands issued by the
Host Controller Driver, as well as reflecting the current status of the Host Controller. To the
Host Controller Driver, it appears to be a "write to set" register. The Host Controller must
ensure that bits written as ‘1’ become set in the register while bits written as ‘0’ remain
unchanged in the register. The Host Controller Driver may issue multiple distinct commands to
the Host Controller without concern for corrupting previously issued commands. The Host
Controller Driver has normal read access to all bits.

The SchedulingOverrunCount field indicates the number of frames with which the Host
Controller has detected the scheduling overrun error. This occurs when the Periodic list does not
complete before EOF. When a scheduling overrun error is detected, the Host Controller
increments the counter and sets the SchedulingOverrun field in the HcInterruptStatus register.

3 1 1 1 1 0 0 0 0 0
1 8 7 6 5 4 3 2 1 0

reserved
S
O
C

reserved
O
C
R

B
L
F

C
L
F

H
C
R

 Figure 7-3: HcCommandStatus Register

Read/Write
Key Reset HCD HC Description

HCR 0b R/W R/W HostControllerReset
This bit is set by HCD to initiate a software reset of HC.
Regardless of the functional state of HC, it moves to the
USBSUSPEND state in which most of the operational registers are
reset except those stated otherwise; e.g., the InterruptRouting
field of HcControl, and no Host bus accesses are allowed. This
bit is cleared by HC upon the completion of the reset operation.
The reset operation must be completed within 10 µs. This bit,
when set, should not cause a reset to the Root Hub and no
subsequent reset signaling should be asserted to its
downstream ports.

CLF 0b R/W R/W ControlListFilled
This bit is used to indicate whether there are any TDs on the
Control list. It is set by HCD whenever it adds a TD to an ED in
the Control list.
When HC begins to process the head of the Control list, it
checks CLF. As long as ControlListFilled is 0, HC will not start
processing the Control list. If CF is 1, HC will start processing
the Control list and will set ControlListFilled to 0. If HC finds a
TD on the list, then HC will set ControlListFilled to 1 causing
the Control list processing to continue. If no TD is found on the
Control list, and if the HCD does not set ControlListFilled, then
ControlListFilled will still be 0 when HC completes processing
the Control list and Control list processing will stop.

OpenHCI - Open Host Controller Interface Specification for USB

113

Read/Write
Key Reset HCD HC Description

BLF 0b R/W R/W BulkListFilled
This bit is used to indicate whether there are any TDs on the
Bulk list. It is set by HCD whenever it adds a TD to an ED in
the Bulk list.
When HC begins to process the head of the Bulk list, it checks
BF. As long as BulkListFilled is 0, HC will not start processing
the Bulk list. If BulkListFilled is 1, HC will start processing the
Bulk list and will set BF to 0. If HC finds a TD on the list, then
HC will set BulkListFilled to 1 causing the Bulk list processing
to continue. If no TD is found on the Bulk list, and if HCD does
not set BulkListFilled, then BulkListFilled will still be 0 when
HC completes processing the Bulk list and Bulk list processing
will stop.

OCR 0b R/W R/W OwnershipChangeRequest
This bit is set by an OS HCD to request a change of control of
the HC. When set HC will set the OwnershipChange field in
HcInterruptStatus. After the changeover, this bit is cleared and
remains so until the next request from OS HCD.

SOC 00b R R/W SchedulingOverrunCount
These bits are incremented on each scheduling overrun error. It
is initialized to 00b and wraps around at 11b. This will be
incremented when a scheduling overrun is detected even if
SchedulingOverrun in HcInterruptStatus has already been set.
This is used by HCD to monitor any persistent scheduling
problems.

7.1.4 HcInterruptStatus Register
This register provides status on various events that cause hardware interrupts. When an event
occurs, Host Controller sets the corresponding bit in this register. When a bit becomes set, a
hardware interrupt is generated if the interrupt is enabled in the HcInterruptEnable register (see
Section 7.1.5) and the MasterInterruptEnable bit is set. The Host Controller Driver may clear
specific bits in this register by writing ‘1’ to bit positions to be cleared. The Host Controller
Driver may not set any of these bits. The Host Controller will never clear the bit.

OpenHCI - Open Host Controller Interface Specification for USB

114

3 3 2 0 0 0 0 0 0 0 0
1 0 9 7 6 5 4 3 2 1 0

0 O
C reserved

R
H
S
C

F
N
O

U
E

R
D

S
F

W
D
H

S
O

Figure 7-4: HcInterruptStatus Register

Read/Write
Key Reset HCD HC Description

SO 0b R/W R/W SchedulingOverrun
This bit is set when the USB schedule for the current Frame
overruns and after the update of HccaFrameNumber. A
scheduling overrun will also cause the
SchedulingOverrunCount of HcCommandStatus to be
incremented.

WDH 0b R/W R/W WritebackDoneHead
This bit is set immediately after HC has written HcDoneHead to
HccaDoneHead. Further updates of the HccaDoneHead will not
occur until this bit has been cleared. HCD should only clear this
bit after it has saved the content of HccaDoneHead.

SF 0b R/W R/W StartofFrame
This bit is set by HC at each start of a frame and after the
update of HccaFrameNumber. HC also generates a SOF token
at the same time.

RD 0b R/W R/W ResumeDetected
This bit is set when HC detects that a device on the USB is
asserting resume signaling. It is the transition from no resume
signaling to resume signaling causing this bit to be set. This bit
is not set when HCD sets the USBRESUME state.

UE 0b R/W R/W UnrecoverableError
This bit is set when HC detects a system error not related to
USB. HC should not proceed with any processing nor signaling
before the system error has been corrected. HCD clears this bit
after HC has been reset.

FNO 0b R/W R/W FrameNumberOverflow
This bit is set when the MSb of HcFmNumber (bit 15) changes
value, from 0 to 1 or from 1 to 0, and after HccaFrameNumber
has been updated.

RHSC 0b R/W R/W RootHubStatusChange
This bit is set when the content of HcRhStatus or the content of
any of HcRhPortStatus[NumberofDownstreamPort] has
changed.

OC 0b R/W R/W OwnershipChange
This bit is set by HC when HCD sets the
OwnershipChangeRequest field in HcCommandStatus. This
event, when unmasked, will always generate an System
Management Interrupt (SMI) immediately.
This bit is tied to 0b when the SMI pin is not implemented.

OpenHCI - Open Host Controller Interface Specification for USB

115

7.1.5 HcInterruptEnable Register
Each enable bit in the HcInterruptEnable register corresponds to an associated interrupt bit in the
HcInterruptStatus register. The HcInterruptEnable register is used to control which events
generate a hardware interrupt. When a bit is set in the HcInterruptStatus register AND the
corresponding bit in the HcInterruptEnable register is set AND the MasterInterruptEnable bit is
set, then a hardware interrupt is requested on the host bus.

Writing a '1' to a bit in this register sets the corresponding bit, whereas writing a '0' to a bit in this
register leaves the corresponding bit unchanged. On read, the current value of this register is
returned.

3 3 2 0 0 0 0 0 0 0 0
1 0 9 7 6 5 4 3 2 1 0

M
I
E

O
C reserved

R
H
S
C

F
N
O

U
E

R
D

S
F

W
D
H

S
O

Figure 7-5: HcInterruptEnable Register

Read/Write
Key Reset HCD HC Description

SO 0b R/W R 0 - Ignore
1 - Enable interrupt generation due to Scheduling Overrun.

WDH 0b R/W R 0 - Ignore
1 - Enable interrupt generation due to HcDoneHead Writeback.

SF 0b R/W R 0 - Ignore
1 - Enable interrupt generation due to Start of Frame.

RD 0b R/W R 0 - Ignore
1 - Enable interrupt generation due to Resume Detect.

UE 0b R/W R 0 - Ignore
1 - Enable interrupt generation due to Unrecoverable Error.

FNO 0b R/W R 0 - Ignore
1 - Enable interrupt generation due to Frame Number Overflow.

RHSC 0b R/W R 0 - Ignore
1 - Enable interrupt generation due to Root Hub Status Change.

OC 0b R/W R 0 - Ignore
1 - Enable interrupt generation due to Ownership Change.

MIE 0b R/W R A ‘0’ written to this field is ignored by HC. A '1' written to this
field enables interrupt generation due to events specified in the
other bits of this register. This is used by HCD as a Master
Interrupt Enable.

OpenHCI - Open Host Controller Interface Specification for USB

116

7.1.6 HcInterruptDisable Register
Each disable bit in the HcInterruptDisable register corresponds to an associated interrupt bit in
the HcInterruptStatus register. The HcInterruptDisable register is coupled with the
HcInterruptEnable register. Thus, writing a '1' to a bit in this register clears the corresponding bit
in the HcInterruptEnable register, whereas writing a '0' to a bit in this register leaves the
corresponding bit in the HcInterruptEnable register unchanged. On read, the current value of the
HcInterruptEnable register is returned.

3 3 2 0 0 0 0 0 0 0 0
1 0 9 7 6 5 4 3 2 1 0

M
I
E

O
C reserved

R
H
S
C

F
N
O

U
E

R
D

S
F

W
D
H

S
O

Figure 7-6: HcInterruptDisable Register

Read/Write
Key Reset HCD HC Description

SO 0b R/W R 0 - Ignore
1 - Disable interrupt generation due to Scheduling Overrun.

WDH 0b R/W R 0 - Ignore
1 - Disable interrupt generation due to HcDoneHead Writeback.

SF 0b R/W R 0 - Ignore
1 - Disable interrupt generation due to Start of Frame.

RD 0b R/W R 0 - Ignore
1 - Disable interrupt generation due to Resume Detect.

UE 0b R/W R 0 - Ignore
1 - Disable interrupt generation due to Unrecoverable Error.

FNO 0b R/W R 0 - Ignore
1 - Disable interrupt generation due to Frame Number Overflow.

RHSC 0b R/W R 0 - Ignore
1 - Disable interrupt generation due to Root Hub Status Change.

OC 0b R/W R 0 - Ignore
1 - Disable interrupt generation due to Ownership Change.

MIE 0b R/W R A '0' written to this field is ignored by HC. A '1' written to this
field disables interrupt generation due to events specified in the
other bits of this register. This field is set after a hardware or
software reset.

OpenHCI - Open Host Controller Interface Specification for USB

117

7.2 Memory Pointer Partition
7.2.1 HcHCCA Register

The HcHCCA register contains the physical address of the Host Controller Communication Area.
The Host Controller Driver determines the alignment restrictions by writing all 1s to HcHCCA
and reading the content of HcHCCA. The alignment is evaluated by examining the number of
zeroes in the lower order bits. The minimum alignment is 256 bytes; therefore, bits 0 through 7
must always return '0' when read. Detailed description can be found in Chapter 4. This area is
used to hold the control structures and the Interrupt table that are accessed by both the Host
Controller and the Host Controller Driver.

3 0 0 0
1 8 7 0

HCCA 0

Figure 7-7: HcHCCA Register

Read/Write
Key Reset HCD HC Description

HCCA 0h R/W R This is the base address of the Host Controller
Communication Area.

7.2.2 HcPeriodCurrentED Register
The HcPeriodCurrentED register contains the physical address of the current Isochronous or
Interrupt Endpoint Descriptor.

3 0 0 0
1 4 3 0

PCED 0

Figure 7-8: HcPeriodCurrentED Register

Read/Write
Key Reset HCD HC Description

PCED 0h R R/W PeriodCurrentED
This is used by HC to point to the head of one of the Periodic
lists which will be processed in the current Frame. The content
of this register is updated by HC after a periodic ED has been
processed. HCD may read the content in determining which ED
is currently being processed at the time of reading.

OpenHCI - Open Host Controller Interface Specification for USB

118

7.2.3 HcControlHeadED Register
The HcControlHeadED register contains the physical address of the first Endpoint Descriptor of
the Control list.

3 0 0 0
1 4 3 0

CHED 0

Figure 7-9: HcControlHeadED Register

Read/Write
Key Reset HCD HC Description

CHED 0h R/W R ControlHeadED
HC traverses the Control list starting with the HcControlHeadED
pointer. The content is loaded from HCCA during the
initialization of HC.

7.2.4 HcControlCurrentED Register
The HcControlCurrentED register contains the physical address of the current Endpoint
Descriptor of the Control list.

3 0 0 0
1 4 3 0

CCED 0

Figure 7-10: HcControlCurrentED Register

Read/Write
Key Reset HCD HC Description

CCED 0h R/W R/W ControlCurrentED
This pointer is advanced to the next ED after serving the
present one. HC will continue processing the list from where it
left off in the last Frame. When it reaches the end of the
Control list, HC checks the ControlListFilled of in
HcCommandStatus. If set, it copies the content of
HcControlHeadED to HcControlCurrentED and clears the bit. If
not set, it does nothing. HCD is allowed to modify this register
only when the ControlListEnable of HcControl is cleared.
When set, HCD only reads the instantaneous value of this
register. Initially, this is set to zero to indicate the end of the
Control list.

OpenHCI - Open Host Controller Interface Specification for USB

119

7.2.5 HcBulkHeadED Register
The HcBulkHeadED register contains the physical address of the first Endpoint Descriptor of the
Bulk list.

3 0 0 0
1 4 3 0

BHED 0

Figure 7-11: HcBulkHeadED Register

Read/Write
Key Reset HCD HC Description

BHED 0h R/W R BulkHeadED
HC traverses the Bulk list starting with the HcBulkHeadED
pointer. The content is loaded from HCCA during the
initialization of HC.

7.2.6 HcBulkCurrentED Register
The HcBulkCurrentED register contains the physical address of the current endpoint of the Bulk
list. As the Bulk list will be served in a round-robin fashion, the endpoints will be ordered
according to their insertion to the list.

3 0 0 0
1 4 3 0

BCED 0

Figure 7-12: HcBulkCurrentED Register

Read/Write
Key Reset HCD HC Description

BCED 0h R/W R/W BulkCurrentED
This is advanced to the next ED after the HC has served the
present one. HC continues processing the list from where it left
off in the last Frame. When it reaches the end of the Bulk list,
HC checks the ControlListFilled of HcControl. If set, it copies
the content of HcBulkHeadED to HcBulkCurrentED and clears
the bit. If it is not set, it does nothing. HCD is only allowed to
modify this register when the BulkListEnable of HcControl is
cleared. When set, the HCD only reads the instantaneous
value of this register. This is initially set to zero to indicate the
end of the Bulk list.

OpenHCI - Open Host Controller Interface Specification for USB

120

7.2.7 HcDoneHead Register
The HcDoneHead register contains the physical address of the last completed Transfer Descriptor
that was added to the Done queue. In normal operation, the Host Controller Driver should not
need to read this register as its content is periodically written to the HCCA.

3 0 0 0
1 4 3 0

DH 0

Figure 7-13: HcDoneHead Register

Read/Write
Key Reset HCD HC Description

DH 0h R R/W DoneHead
When a TD is completed, HC writes the content of
HcDoneHead to the NextTD field of the TD. HC then overwrites
the content of HcDoneHead with the address of this TD.
This is set to zero whenever HC writes the content of this
register to HCCA. It also sets the WritebackDoneHead of
HcInterruptStatus.

7.3 Frame Counter Partition
7.3.1 HcFmInterval Register

The HcFmInterval register contains a 14-bit value which indicates the bit time interval in a Frame,
(i.e., between two consecutive SOFs), and a 15-bit value indicating the Full Speed maximum
packet size that the Host Controller may transmit or receive without causing scheduling overrun.
The Host Controller Driver may carry out minor adjustment on the FrameInterval by writing a
new value over the present one at each SOF. This provides the programmability necessary for the
Host Controller to synchronize with an external clocking resource and to adjust any unknown
local clock offset.

3 3 1 1 1 1 0
1 0 6 5 4 3 0

F
I
T

FSMPS reserved FI

Figure 7-14: HcFmInterval Register

OpenHCI - Open Host Controller Interface Specification for USB

121

Read/Write
Key Reset HCD HC Description

FI 2EDFh R/W R FrameInterval
This specifies the interval between two consecutive SOFs
in bit times. The nominal value is set to be 11,999.
HCD should store the current value of this field before
resetting HC. By setting the HostControllerReset field of
HcCommandStatus as this will cause the HC to reset this
field to its nominal value. HCD may choose to restore the
stored value upon the completion of the Reset sequence.

FSMPS TBD R/W R FSLargestDataPacket
This field specifies a value which is loaded into the Largest
Data Packet Counter at the beginning of each frame. The
counter value represents the largest amount of data in bits
which can be sent or received by the HC in a single
transaction at any given time without causing scheduling
overrun. The field value is calculated by the HCD.

FIT 0b R/W R FrameIntervalToggle
HCD toggles this bit whenever it loads a new value to
FrameInterval.

7.3.2 HcFmRemaining Register
The HcFmRemaining register is a 14-bit down counter showing the bit time remaining in the
current Frame.

3 3 1 1 0
1 0 4 3 0

F
R
T

reserved FR

Figure 7-15: HcFmRemaining Register

Read/Write
Key Reset HCD HC Description

FR 0h R R/W FrameRemaining
This counter is decremented at each bit time. When it reaches
zero, it is reset by loading the FrameInterval value specified in
HcFmInterval at the next bit time boundary. When entering the
USBOPERATIONAL state, HC re-loads the content with the
FrameInterval of HcFmInterval and uses the updated value
from the next SOF.

FRT 0b R R/W FrameRemainingToggle
This bit is loaded from the FrameIntervalToggle field of
HcFmInterval whenever FrameRemaining reaches 0. This bit
is used by HCD for the synchronization between FrameInterval
and FrameRemaining.

OpenHCI - Open Host Controller Interface Specification for USB

122

7.3.3 HcFmNumber Register
The HcFmNumber register is a 16-bit counter. It provides a timing reference among events
happening in the Host Controller and the Host Controller Driver. The Host Controller Driver
may use the 16-bit value specified in this register and generate a 32-bit frame number without
requiring frequent access to the register.

3 1 1 0
1 6 5 0

reserved FN

Figure 7-16: HcFmNumber Register

Read/Write
Key Reset HCD HC Description

FN 0h R R/W FrameNumber
This is incremented when HcFmRemaining is re-loaded. It will be
rolled over to 0h after ffffh. When entering the USBOPERATIONAL

state, this will be incremented automatically. The content will be
written to HCCA after HC has incremented the FrameNumber at
each frame boundary and sent a SOF but before HC reads the
first ED in that Frame. After writing to HCCA, HC will set the
StartofFrame in HcInterruptStatus.

7.3.4 HcPeriodicStart Register
The HcPeriodicStart register has a 14-bit programmable value which determines when is the
earliest time HC should start processing the periodic list.

3 1 1 0
1 4 3 0

reserved PS

 Figure 7-17: HcPeriodicStart Register

Read/Write
Key Reset HCD HC Description

PS 0h R/W R PeriodicStart
After a hardware reset, this field is cleared. This is then set by
HCD during the HC initialization. The value is calculated
roughly as 10% off from HcFmInterval.. A typical value will be
3E67h. When HcFmRemaining reaches the value specified,
processing of the periodic lists will have priority over
Control/Bulk processing. HC will therefore start processing the
Interrupt list after completing the current Control or Bulk
transaction that is in progress.

OpenHCI - Open Host Controller Interface Specification for USB

123

7.3.5 HcLSThreshold Register
The HcLSThreshold register contains an 11-bit value used by the Host Controller to determine
whether to commit to the transfer of a maximum of 8-byte LS packet before EOF. Neither the
Host Controller nor the Host Controller Driver are allowed to change this value.

3 1 1 0
1 2 1 0

reserved LST

 Figure 7-18: HcLSThreshold Register

Read/Write
Key Reset HCD HC Description

LST 0628h R/W R LSThreshold
This field contains a value which is compared to the
FrameRemaining field prior to initiating a Low Speed
transaction. The transaction is started only if
FrameRemaining ≥ this field. The value is calculated by
HCD with the consideration of transmission and setup
overhead.

7.4 Root Hub Partition
All registers included in this partition are dedicated to the USB Root Hub which is an integral part
of the Host Controller though still a functionally separate entity. The HCD emulates USBD
accesses to the Root Hub via a register interface. The HCD maintains many USB-defined hub
features which are not required to be supported in hardware. For example, the Hub's Device,
Configuration, Interface, and Endpoint Descriptors are maintained only in the HCD as well as
some static fields of the Class Descriptor. The HCD also maintains and decodes the Root Hub's
device address as well as other trivial operations which are better suited to software than
hardware.

The Root Hub register interface is otherwise developed to maintain similarity of bit organization
and operation to typical hubs which are found in the system. Below are four register definitions:
HcRhDescriptorA, HcRhDescriptorB, HcRhStatus, and HcRhPortStatus[1:NDP]. Each register
is read and written as a Dword. These registers are only written during initialization to
correspond with the system implementation. The HcRhDescriptorA and HcRhDescriptorB
registers should be implemented such that they are writeable regardless of the HC USB state.
HcRhStatus and HcRhPortStatus must be writeable during the USBOPERATIONAL state.

Note: IS denotes an implementation-specific reset value for that field.

OpenHCI - Open Host Controller Interface Specification for USB

124

7.4.1 HcRhDescriptorA Register
The HcRhDescriptorA register is the first register of two describing the characteristics of the
Root Hub. Reset values are implementation-specific. The descriptor length (11), descriptor type
(TBD), and hub controller current (0) fields of the hub Class Descriptor are emulated by the
HCD. All other fields are located in the HcRhDescriptorA and HcRhDescriptorB registers.

3 2 2 1 1 1 1 0 0 0 0
1 4 3 3 2 1 0 9 8 7 0

POTPGT Reserved N
O
C
P

O
C
P
M

D
T

N
P
S

P
S
M

NDP

Figure 7-19: HcRhDescriptorA Register

Power
On

Read/Write

Field Reset HCD HC Description

NDP IS R R NumberDownstreamPorts
These bits specify the number of downstream ports supported
by the Root Hub. It is implementation-specific. The minimum
number of ports is 1. The maximum number of ports supported
by OpenHCI is 15.

NPS IS R/W R NoPowerSwitching
These bits are used to specify whether power switching is
supported or port are always powered. It is implementation-
specific. When this bit is cleared, the PowerSwitchingMode
specifies global or per-port switching.

0: Ports are power switched
1: Ports are always powered on when the HC is powered on

PSM IS R/W R PowerSwitchingMode
This bit is used to specify how the power switching of the Root
Hub ports is controlled. It is implementation-specific. This field
is only valid if the NoPowerSwitching field is cleared.

0: all ports are powered at the same time.
1: each port is powered individually. This mode allows port

power to be controlled by either the global switch or per-
port switching. If the PortPowerControlMask bit is set,
the port responds only to port power commands
(Set/ClearPortPower). If the port mask is cleared, then
the port is controlled only by the global power switch
(Set/ClearGlobalPower).

DT 0b R R DeviceType
This bit specifies that the Root Hub is not a compound device.
The Root Hub is not permitted to be a compound device. This
field should always read/write 0.

OpenHCI - Open Host Controller Interface Specification for USB

125

OCPM IS R/W R OverCurrentProtectionMode
This bit describes how the overcurrent status for the Root Hub
ports are reported. At reset, this fields should reflect the same
mode as PowerSwitchingMode. This field is valid only if the
NoOverCurrentProtection field is cleared.

0: over-current status is reported collectively for all
downstream ports

1: over-current status is reported on a per-port basis
NOCP IS R/W R NoOverCurrentProtection

This bit describes how the overcurrent status for the Root Hub
ports are reported. When this bit is cleared, the
OverCurrentProtectionMode field specifies global or per-port
reporting.

0: Over-current status is reported collectively for all
downstream ports

1: No overcurrent protection supported
POTPGT IS R/W R PowerOnToPowerGoodTime

This byte specifies the duration HCD has to wait before
accessing a powered-on port of the Root Hub. It is
implementation-specific. The unit of time is 2 ms. The duration
is calculated as POTPGT * 2 ms.

7.4.2 HcRhDescriptorB Register
The HcRhDescriptorB register is the second register of two describing the characteristics of the
Root Hub. These fields are written during initialization to correspond with the system
implementation. Reset values are implementation-specific.

3 1 1 0
1 6 5 0

PPCM DR

Figure 7-20: HcRhDescriptorB Register

OpenHCI - Open Host Controller Interface Specification for USB

126

Power-
On

Read/Write

Field Reset HCD HC Description
DR IS R/W R DeviceRemovable

Each bit is dedicated to a port of the Root Hub. When cleared,
the attached device is removable. When set, the attached
device is not removable.
bit 0: Reserved
bit 1: Device attached to Port #1
bit 2: Device attached to Port #2
...
bit15: Device attached to Port #15

PPCM IS R/W R PortPowerControlMask
Each bit indicates if a port is affected by a global power control
command when PowerSwitchingMode is set. When set, the
port's power state is only affected by per-port power control
(Set/ClearPortPower). When cleared, the port is controlled by
the global power switch (Set/ClearGlobalPower). If the device
is configured to global switching mode
(PowerSwitchingMode=0), this field is not valid.
bit 0: Reserved
bit 1: Ganged-power mask on Port #1
bit 2: Ganged-power mask on Port #2
...
bit15: Ganged-power mask on Port #15

7.4.3 HcRhStatus Register

The HcRhStatus register is divided into two parts. The lower word of a Dword represents the
Hub Status field and the upper word represents the Hub Status Change field. Reserved bits
should always be written '0'.

3 3 1 1 1 1 1 0 0 0
1 0 8 7 6 5 4 2 1 0

C
R
W
E

Reserved
O
C
I
C

L
P
S
C

D
R
W
E

Reserved
O
C
I

L
P
S

Figure 7-21: HcRhStatus Register

OpenHCI - Open Host Controller Interface Specification for USB

127

Root
Hub

Read/Write

Field Reset HCD HC Description
LPS 0b R/W R (read) LocalPowerStatus

The Root Hub does not support the local power status feature;
thus, this bit is always read as ‘0’.

(write) ClearGlobalPower
In global power mode (PowerSwitchingMode=0), This bit is
written to ‘1’ to turn off power to all ports (clear
PortPowerStatus). In per-port power mode, it clears
PortPowerStatus only on ports whose PortPowerControlMask
bit is not set. Writing a ‘0’ has no effect.

OCI 0b R R/W OverCurrentIndicator
This bit reports overcurrent conditions when the global reporting
is implemented. When set, an overcurrent condition exists.
When cleared, all power operations are normal. If per-port
overcurrent protection is implemented this bit is always ‘0’

DRWE 0b R/W R (read) DeviceRemoteWakeupEnable
This bit enables a ConnectStatusChange bit as a resume
event, causing a USBSUSPEND to USBRESUME state transition and
setting the ResumeDetected interrupt.

0 = ConnectStatusChange is not a remote wakeup event.
1 = ConnectStatusChange is a remote wakeup event.

(write) SetRemoteWakeupEnable
Writing a '1' sets DeviceRemoveWakeupEnable. Writing a '0'
has no effect.

LPSC 0b R/W R (read) LocalPowerStatusChange
The Root Hub does not support the local power status feature;
thus, this bit is always read as ‘0’.

(write) SetGlobalPower
In global power mode (PowerSwitchingMode=0), This bit is
written to ‘1’ to turn on power to all ports (clear
PortPowerStatus). In per-port power mode, it sets
PortPowerStatus only on ports whose PortPowerControlMask
bit is not set. Writing a ‘0’ has no effect.

CCIC 0b R/W R/W OverCurrentIndicatorChange
This bit is set by hardware when a change has occurred to the
OCI field of this register. The HCD clears this bit by writing a ‘1’.
Writing a ‘0’ has no effect.

CRWE - W R (write) ClearRemoteWakeupEnable
Writing a '1' clears DeviceRemoveWakeupEnable. Writing a '0'
has no effect.

OpenHCI - Open Host Controller Interface Specification for USB

128

7.4.4 HcRhPortStatus[1:NDP] Register

The HcRhPortStatus[1:NDP] register is used to control and report port events on a per-port
basis. NumberDownstreamPorts represents the number of HcRhPortStatus registers that are
implemented in hardware. The lower word is used to reflect the port status, whereas the upper
word reflects the status change bits. Some status bits are implemented with special write behavior
(see below). If a transaction (token through handshake) is in progress when a write to change
port status occurs, the resulting port status change must be postponed until the transaction
completes. Reserved bits should always be written '0'.

3 2 2 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0
1 1 0 9 8 7 6 5 0 9 8 7 5 4 3 2 1 0

Reserved
P
R
S
C

O
C
I
C

P
S
S
C

P
E
S
C

C
S
C

Reserved
L
S
D
A

P
P
S

Rsvd
P
R
S

P
O
C
I

P
S
S

P
E
S

C
C
S

Figure 7-22: HcRhPortStatus Register

Root
Hub

Read/Write

Field Reset HCD HC Description
CCS 0b R/W R/W (read) CurrentConnectStatus

This bit reflects the current state of the downstream port.
0 = no device connected
1 = device connected

(write) ClearPortEnable
The HCD writes a ‘1’ to this bit to clear the PortEnableStatus bit.
Writing a ‘0’ has no effect. The CurrentConnectStatus is not
affected by any write.

Note: This bit is always read ‘1b’ when the attached device is
nonremovable (DeviceRemoveable[NDP]).

OpenHCI - Open Host Controller Interface Specification for USB

129

Root
Hub

Read/Write

Field Reset HCD HC Description
PES 0b R/W R/W (read) PortEnableStatus

This bit indicates whether the port is enabled or disabled. The
Root Hub may clear this bit when an overcurrent condition,
disconnect event, switched-off power, or operational bus error
such as babble is detected. This change also causes
PortEnabledStatusChange to be set. HCD sets this bit by
writing SetPortEnable and clears it by writing ClearPortEnable.
This bit cannot be set when CurrentConnectStatus is cleared.
This bit is also set, if not already, at the completion of a port reset
when ResetStatusChange is set or port suspend when
SuspendStatusChange is set.
0 = port is disabled
1 = port is enabled

(write) SetPortEnable
The HCD sets PortEnableStatus by writing a ‘1’. Writing a ‘0’ has
no effect. If CurrentConnectStatus is cleared, this write does not
set PortEnableStatus, but instead sets ConnectStatusChange.
This informs the driver that it attempted to enable a disconnected
port.

PSS 0b R/W R/W (read) PortSuspendStatus
This bit indicates the port is suspended or in the resume
sequence. It is set by a SetSuspendState write and cleared when
PortSuspendStatusChange is set at the end of the resume
interval. This bit cannot be set if CurrentConnectStatus is
cleared. This bit is also cleared when PortResetStatusChange is
set at the end of the port reset or when the HC is placed in the
USBRESUME state. If an upstream resume is in progress, it should
propagate to the HC.
0 = port is not suspended
1 = port is suspended

(write) SetPortSuspend
The HCD sets the PortSuspendStatus bit by writing a ‘1’ to this
bit. Writing a ‘0’ has no effect. If CurrentConnectStatus is
cleared, this write does not set PortSuspendStatus; instead it
sets ConnectStatusChange. This informs the driver that it
attempted to suspend a disconnected port.

POCI 0b R/W R/W (read) PortOverCurrentIndicator
This bit is only valid when the Root Hub is configured in such a
way that overcurrent conditions are reported on a per-port basis.
If per-port overcurrent reporting is not supported, this bit is set to
0. If cleared, all power operations are normal for this port. If set,
an overcurrent condition exists on this port. This bit always
reflects the overcurrent input signal
0 = no overcurrent condition.
1 = overcurrent condition detected.

(write) ClearSuspendStatus
The HCD writes a ‘1’ to initiate a resume. Writing a ‘0’ has no
effect. A resume is initiated only if PortSuspendStatus is set.

OpenHCI - Open Host Controller Interface Specification for USB

130

Root
Hub

Read/Write

Field Reset HCD HC Description
PRS 0b R/W R/W (read) PortResetStatus

When this bit is set by a write to SetPortReset, port reset
signaling is asserted. When reset is completed, this bit is cleared
when PortResetStatusChange is set. This bit cannot be set if
CurrentConnectStatus is cleared.
0 = port reset signal is not active
1 = port reset signal is active

(write) SetPortReset
The HCD sets the port reset signaling by writing a ‘1’ to this bit.
Writing a ‘0’ has no effect. If CurrentConnectStatus is cleared,
this write does not set PortResetStatus, but instead sets
ConnectStatusChange. This informs the driver that it attempted
to reset a disconnected port.

PPS 0b R/W R/W (read) PortPowerStatus
This bit reflects the port’s power status, regardless of the type of
power switching implemented. This bit is cleared if an overcurrent
condition is detected. HCD sets this bit by writing SetPortPower
or SetGlobalPower. HCD clears this bit by writing
ClearPortPower or ClearGlobalPower. Which power control
switches are enabled is determined by PowerSwitchingMode
and PortPortControlMask[NDP]. In global switching mode
(PowerSwitchingMode=0), only Set/ClearGlobalPower controls
this bit. In per-port power switching (PowerSwitchingMode=1), if
the PortPowerControlMask[NDP] bit for the port is set, only
Set/ClearPortPower commands are enabled. If the mask is not
set, only Set/ClearGlobalPower commands are enabled. When
port power is disabled, CurrentConnectStatus,
PortEnableStatus, PortSuspendStatus, and PortResetStatus
should be reset.
0 = port power is off
1 = port power is on

(write) SetPortPower
The HCD writes a ‘1’ to set the PortPowerStatus bit. Writing a ‘0’
has no effect.

Note: This bit is always reads ‘1b’ if power switching is not
supported.

LSDA Xb R/W R/W (read) LowSpeedDeviceAttached
This bit indicates the speed of the device attached to this port.
When set, a Low Speed device is attached to this port. When
clear, a Full Speed device is attached to this port. This field is
valid only when the CurrentConnectStatus is set.
0 = full speed device attached
1 = low speed device attached

(write) ClearPortPower
The HCD clears the PortPowerStatus bit by writing a ‘1’ to this
bit. Writing a ‘0’ has no effect.

OpenHCI - Open Host Controller Interface Specification for USB

131

Root
Hub

Read/Write

Field Reset HCD HC Description
CSC 0b R/W R/W ConnectStatusChange

This bit is set whenever a connect or disconnect event occurs.
The HCD writes a ‘1’ to clear this bit. Writing a ‘0’ has no effect. If
CurrentConnectStatus is cleared when a SetPortReset,
SetPortEnable, or SetPortSuspend write occurs, this bit is set to
force the driver to re-evaluate the connection status since these
writes should not occur if the port is disconnected.
0 = no change in CurrentConnectStatus
1 = change in CurrentConnectStatus

Note: If the DeviceRemovable[NDP] bit is set, this bit is set only
after a Root Hub reset to inform the system that the device is
attached.

PESC 0b R/W R/W PortEnableStatusChange
This bit is set when hardware events cause the PortEnableStatus
bit to be cleared. Changes from HCD writes do not set this bit.
The HCD writes a ‘1’ to clear this bit. Writing a ‘0’ has no effect.
0 = no change in PortEnableStatus
1 = change in PortEnableStatus

PSSC 0b R/W R/W PortSuspendStatusChange
This bit is set when the full resume sequence has been completed.
This sequence includes the 20-s resume pulse, LS EOP, and 3-ms
resychronization delay. The HCD writes a ‘1’ to clear this bit.
Writing a ‘0’ has no effect. This bit is also cleared when
ResetStatusChange is set.
0 = resume is not completed
1 = resume completed

OCIC 0b R/W R/W PortOverCurrentIndicatorChange
This bit is valid only if overcurrent conditions are reported on a
per-port basis. This bit is set when Root Hub changes the
PortOverCurrentIndicator bit. The HCD writes a ‘1’ to clear this
bit. Writing a ‘0’ has no effect.
0 = no change in PortOverCurrentIndicator
1 = PortOverCurrentIndicator has changed

PRSC 0b R/W R/W PortResetStatusChange
This bit is set at the end of the 10-ms port reset signal.
The HCD writes a ‘1’ to clear this bit. Writing a ‘0’ has no effect.
0 = port reset is not complete
1 = port reset is complete

OpenHCI - Open Host Controller Interface Specification for USB

132

PCI CONFIGURATION

APPENDIX A

PCI INTERFACE

This section describes the configuration registers necessary for the OpenHCI-compliant USB
Host Controller to interface with the other system components in a PCI-based PC host.
Specifically, only the bits relevant to the implementation of a USB Host Controller with PCI
interface, which complies with Release 1.0 of the OpenHCI Specification, are described here. For
the definition of the other bits/registers which are not described here, please refer to the PCI
Specification, Revision 2.1.

In a typical PCI-based PC host, the registers described here are accessed for set-up during PCI
initialization. They might also be accessed through special cycles during normal system runtime.
Header type 0 is the format for the device’s configuration header region, the first 16 Dwords.
They are also commonly called the PCI configuration spaces of a PCI device. For the OpenHCI-
compliant USB Host Controller with PCI interface, the operational registers (i.e., PCI
nonconfiguration spaces) that are described in the Operational Registers chapter are directly
memory-mapped into the main memory of the PC host system. “Reset” issued to the Host
Controller through its respective programming interface does not affect the contents of the PCI
configuration space (contents of the operational registers of the Root Hub are also not affected).
“Hardware reset” issued by the system logic in the PC host, during system power-up and “cold-
boot”, causes all of the on-chip registers of the Host Controller and the Root Hub to return their
default values.

In the following sections, the PCI configuration spaces are described in relation to their individual
logical responsibilities. As such, they are of either byte-/word-oriented. Nevertheless, the
alignment for decoding purpose should adhere strictly to those defined in the PCI Specification,
Revision 2.1.

Note: The LATENCY_TIMER in the PCI configuration spaces defines the minimum amount of
time that the Host Controller is permitted to retain ownership of the bus after it has
acquired bus ownership and has initiated a subsequent transaction. It should be set to a
value that reflects the nominal burst size of the underlying device, resulting in a good
compromise between the utilization and efficiency of the PCI bus. In determining the
value, it should be considered that the maximum size of packet transferred over the USB
ranges from 64 bytes to 1023 bytes. A value of ‘16h’ is recommended, as it will allow a
total of 24 PCI clocks, sufficient for a burst transfer of 64-byte (assuming a target initial
latency of 8 PCI clocks).

OpenHCI - Open Host Controller Interface Specification for USB

133

PCI Configuration Spaces for OpenHCI-compliant USB Host
Controller

Table A-1 provides a summary of the registers that are necessary for the OpenHCI-compliant
USB Host Controller to be successfully configured in a PCI-based PC host. Those registers
which are implementation-dependent are not described in the table; their implementation is left to
the individual manufacturers for innovation. However, they are defined in the PCI Specification,
Revision 2.1 (PCI Special Interest Group, 1995).

Table A - 1: OpenHCI-Related PCI Configuration Registers

Offset Register Description
05-04 COMMAND Provides coarse control over a device’s ability to generate

and respond to PCI cycles
0B-09 CLASS_CODE Identifies the generic function of the device
13-10 BAR_OHCI Specifies the base address of a contiguous block in the

main memory of the PC host, from which 4 KB of directly-
mapped addressing spaces are reserved by OpenHCI for
the operational registers of the Host Controller

OpenHCI

Operational
Registers
Mode

Host Controller
Communications Area

HCCA
Status
Event
Frame Int

Control

Interrupt 0
Interrupt 1

Interrupt 31
. . .

Interrupt 2

Done

. . .

. . .

Bulk

Ratio

Shared RAMDevice Register
in memory space

PCI Device

CLASS_CODE

. . .

BAR_OHCI

. . .

. . .

. . .

COMMAND

Figure A - 1: The PCI Configuration Spaces for OpenHCI

OpenHCI - Open Host Controller Interface Specification for USB

134

COMMAND Register
This register provides coarse control over the device’s ability to generate and respond to PCI
cycles. It is imperative of the OpenHCI standard that the Host Controller has to support both PCI
bus-mastering and memory-mapping of all operational registers into the main memory of the PC
host. Consequently, the fields MA and BM should always be set to ‘1b’s during device
configuration.

Once the Host Controller has started processing endpoint lists of periodic and nonperiodic, the
action to reset either field MA or BM to its default value should be approached with caution. If
the field MA is reset to ‘0’, the Host Controller can no longer respond to any software command
addressed to it and interrupt generation is halted, while the Host Controller can still generate the
SOF token at the beginning of each frame. If the field BM is reset to ‘0’, the Host Controller will
no longer be able to read Descriptors (both Endpoint and Transfer) from the main memory, nor
can it update the HCCA partition in the main memory.

Table A - 2: COMMAND Register

FIELD BITS Read/
Write

DESCRIPTION

0 R/W Refer to PCI Specification, Revision 2.1, for definition

MA 1 R/W MEMORY ACCESS
Default ‘0b’ Indicates the device’s ability to respond to PCI
memory cycles

BM 2 R/W BUS MASTER
Default ‘0b’ Indicates the device’s ability to act as a bus-master

15-9 R/W Refer to PCI Specification, Revision 2.1, for definition

CLASS_CODE Register
This register identifies the basic function of the device, and a specific programming interface code
for an OpenHCI-compliant USB Host Controller.

Table A - 3: CLASS_CODE Register

FIELD BITS Read/
Write

DESCRIPTION

PI 7-0 R PROGRAMMING INTERFACE
A constant value of ‘10h’ Identifies the device being an
OpenHCI Host Controller

SC 15-8 R SUB CLASS
A constant value of ‘03h’ Identifies the device being of
Universal Serial Bus

BC 23-16 R BASE CLASS
A constant value of ‘0Ch’ Identifies the device being a Serial
Bus Controller

OpenHCI - Open Host Controller Interface Specification for USB

135

BAR_OHCI Register
The BAR_OHCI register specifies the base address of a contiguous memory space in the main
memory of the PC host, which is reserved for the operational registers defined by the OpenHCI
Specification, Release 1.0. All of the operational registers described in Chapter 7 of this
document are directly mapped into this memory space. In reference to the PCI Specification,
Revision 2.1, the Host Controller Driver will always allocate a memory band of 4 KB for the
OpenHCI Host Controller’s operational registers as defined in Chapter 7. This is despite the fact
that the number of operational registers defined by the OpenHCI Specification, Release 1.0, is far
less than 4 KB. Regardless of whether the hardware vendor of a OpenHCI-compliant USB Host
Controller chooses to implement the decoding logic for bits [11:0] or not, the respective hardware
must be able to decode the operational registers defined in Chapter 7. When any of the addresses
between the block of operational registers and the 4-KB upper-bound is accessed, the hardware
is not required to respond and the access can be ignored.

Those hardware registers that are used to implement vendor specific features are not covered by
the OpenHCI Specification, Release 1.0. Consequently, those vendor-specific hardware registers
should not be mapped into the memory space starting at the address location as indicated by
BAR_OHCI.

Table A - 4: BAR_OHCI Register

FIELD BITS Read/
Write

DESCRIPTION

IND 0 R INDICATOR
A constant value of ‘0b’ Indicates that the operational registers
of the device are mapped into memory space of the main
memory of the PC host system

TP 2-1 R TYPE
A constant value of ‘00b’ Indicates that the base register is 32-
bit wide and can be placed anywhere in the 32-bit memory space;
i.e., lower 4 GB of the main memory of the PC host

PM 3 R PREFETCH MEMORY
A constant value of ‘0b’ Indicates that there is no support for
“prefetchable memory”

11-4 R/W Default value of ‘00h’ and is read only Represents a
maximum of 4-KB addressing space for the OpenHCI’s
operational registers

BAR 31-12 R/W BASE ADDRESS
Specifies the upper 20 bits of the 32-bit starting base address.
This represents a maximum of 4-KB addressing space for the
OpenHCI’s operational registers

OpenHCI - Open Host Controller Interface Specification for USB

136

OVERVIEW
To support applications and drivers in non-USB-aware environments (e.g., DOS), the Host
Controller needs to provide some amount of hardware support for the emulation of a PS/2
keyboard and/or mouse by their USB equivalents. For Open HCI, this emulation support is
provided by a set of registers that are controlled by code running in SMM. Working in
conjunction, this hardware and software produces approximately the same behavior-to-application
code as would be produced by a PS/2-compatible keyboard and/or mouse interface.

To minimize hardware impact, the Host Controller accesses a USB keyboard and/or mouse using
the standard OpenHCI descriptor-based accesses. The emulation code sets up the appropriate
Endpoint Descriptors and Transfer Descriptors that cause data to be sent to or received from a
USB keyboard/mouse using the normal USB protocols. When data is received from the
keyboard/mouse, the emulation code is notified and becomes responsible for translating the USB
keyboard/mouse data into a data sequence that is equivalent to what would be produced by a
PS/2-compatible keyboard/mouse interface. The translated data is made available to the system
through the legacy keyboard interface I/O addresses at 60h and 64h. Likewise, when data/control
is to be sent to the keyboard (as indicated by the system writing to the legacy keyboard interface),
the emulation code is notified and becomes responsible for translating the information into
appropriate data to be sent to the USB keyboard/mouse through the transfer descriptor
mechanism.

On the PS/2 keyboard/mouse interface, a read of I/O port 60h returns the current contents of the
keyboard output buffer; a read of I’O port 64h returns the contents of the keyboard status
register. An I/O write to port 60h or 64h puts data into the keyboard input buffer (data is being
input into the keyboard subsystem). When emulation is enabled, reads and writes of registers 60h
and 64h are captured in HceOutput, HceStatus, and/or HceInput operational registers.

The emulation hardware described in this document supports a mixed environment in which either
the keyboard or mouse is located on USB and the other device is attached to a standard PS/2
interface.

APPENDIX B

LEGACY SUPPORT INTERFACE SPECIFICATION

OpenHCI - Open Host Controller Interface Specification for USB

137

OPERATIONAL THEORY
Keyboard/Mouse Input

The Interrupt Transfer Descriptor for the USB keyboard and/or mouse is processed at the rate
established by the Endpoint Descriptor’s location(s) in the interrupt list (a 1-ms rate is the
recommended rate for emulation). The Transfer Descriptors are processed as normal by the Host
Controller. When a successful transfer of data has occurred from the keyboard, the Transfer
Descriptor is moved to the Done Queue by the Host Controller. At the beginning of the next
frame when the interrupt associated with the transfer completion is to be signaled, an interrupt is
generated. System software should ensure that the InterruptRouting bit in HcControl is set to 1
so that these interrupts will result in an SMI. Upon receipt of the SMI, the emulation software
removes the Transfer Descriptor from the Done Queue, clears the HC IRQ, and translates the
keyboard/mouse data into a equivalent PS/2-compatible sequence for presentation to the
application software. For each byte of PS/2-compatible data that is to be presented to the
applications software, the emulation code writes to the HceOutput register. The emulation code
then sets the appropriate bits in the HceStatus register (normally, OutputFull is set for keyboard
data and OutputFull plus AuxOutputFull for mouse data). If keyboard/mouse interrupts are
enabled, setting the HceStatus register bits cause the generation of an IRQ1 for keyboard data and
IRQ12 for mouse data. The emulation code then exits and waits for the next emulation interrupt.

When the host CPU exits from SMM, it can service the pending IRQ1/IRQ12. This normally
results in a read from I/O port 60h. When I/O port 60h is read, the Host Controller intercepts the
access and returns the current contents of HceOutput. The Host Controller then also clears the
OutputFull bit in HceStatus and de-asserts IRQ1/IRQ12.

If the emulation software has multiple characters to send to the application software, it sets the
CharacterPending bit in the HceControl register. This causes the Host Controller to generate
an emulation interrupt on the next frame boundary after the application has read from port 60h
(HceOutput.)

OpenHCI - Open Host Controller Interface Specification for USB

138

Keyboard Output
Keyboard output is indicated by application software writing data to either I/O address 60h or
64h. Upon a write to either address, the Host Controller captures the data in the HceInput
register and, except in the case of a Gate A20 sequence, updates the HceStatus register’s
InputFull and CmdData bits. When the InputFull bit is set, an emulation interrupt is generated.

Upon receipt of the emulation interrupt, the emulation software reads HceControl and HceStatus
to determine the cause of the emulation interrupt and performs the operation indicated by the
data.

Emulation Interrupts
Emulation interrupts are caused by reads and writes of the emulation registers. Emulation
software can also receive interrupts due to Host Controller events as defined in the OpenHCI base
specification. However, as used in this document, these are not emulation interrupts.

Interrupts generated by the emulation hardware are steered by the Host Controller to either an
SMI or the standard Host Controller Interrupt. Steering is determined by the setting of the
InterruptRouting bit in the HcControl Register.

Emulation interrupts for data coming from the keyboard/mouse are generated on frame
boundaries. At the beginning of each frame, the conditions which define asynchronous emulation
interrupt are checked and, if an interrupt condition exists, the emulation interrupt is signaled to
the host at the same time the interrupts are coming from the Host Controller’s normal USB
processing. This has the effect of reducing the number of SMIs that are generated for legacy
input to no more than 1,000 per second. Although still somewhat large, this number of interrupts
is less than the number that could be generated if emulation interrupts were not merged with the
normal Host Controller interrupts.

The number of emulation interrupts is limited because the maximum rate of data delivery to an
application cannot be more than 1,000 bytes (key strokes) per second. A benefit of this rule is
that, for normal keyboard and mouse operations, only one SMI is required for each data byte sent
to the application. Additionally, delay of the interrupt until the next Start of Frame causes data
persistence for keyboard input data that is equivalent to that provided by an 8042.

OpenHCI - Open Host Controller Interface Specification for USB

139

Mixed Environment
A mixed environment is one in which a USB device and a PS/2 device are supported
simultaneously (e.g., a USB keyboard and a PS/2 mouse). The mixed environment is supported
by allowing the emulation software to control the PS/2 interface. Control of this interface
includes capturing I/O accesses to port 60h and 64h and also includes capture of interrupts from
the PS/2 keyboard controller. IRQ1 and IRQ12 from the legacy keyboard controller are routed
through the Host Controller. When ExternalIRQEn in HceControl is set, IRQ1 and IRQ12 from
the legacy keyboard controller are blocked at the Host Controller and an emulation interrupt is
generated instead. This allows the emulation software to capture data coming from the legacy
controller and presents it to the application through the emulated interface.

Gate A20 Sequence
The Gate A20 sequence occurs frequently in DOS applications. Mostly, the sequence is to enable
A20. To reduce the number of SMIs caused by the Gate A20 sequence, the host controller
generates an SMI only if the A20 sequence would change the state of Gate A20.

The Gate A20 sequence is initiated with a write of D1h to port 64h. On detecting this write, the
HC sets the GateA20Sequence bit in HceControl. It captures the data byte in HceInput but does
not set InputFull bit in HceStatus. When GateA20Sequence is set, a write of a value to I/O port
60h that has bit 1 set to a value different than A20State in HceControl causes InputFull to be set
and causes an interrupt. An SMI with both InputFull and GateA20Sequence set indicates that
the application is trying to change the setting of Gate A20 on the keyboard controller. However,
when GateA20Sequence is set and a write of a value to I/O port 60h that has bit 1 set to the
same value as A20State in HceControl is detected, then no interrupt can occur.

As mentioned above, a write to 64h of any value other than D1h causes GateA20Sequence to be
cleared. If GateA20Sequence is active and a value of FFh is written to port 64h,
GateA20Sequence is cleared but InputFull is not set. A write of any value other than D1h or
FFh causes InputFull to be set which then causes an SMI. A write of FFh to port 64h when
GateA20Sequence is not set causes InputFull to be set.

OpenHCI - Open Host Controller Interface Specification for USB

140

SYSTEM REQUIREMENTS
The sections below define the system requirements that must be met in order for the OpenHCI
legacy support to function properly.

Host Controller Mapping
The Host Controller uses memory addresses to enable system software to access its operational
registers. In a PCI implementation, the address of the Host Controller operations registers is set
in BAR_OHCI. The address range specified in BAR_OHCI must be accessible to SMM code.
The address in BAR_OHCI should not be modified by any software while the emulation software
has control of the Host Controller. The only exception to this is when the OS is booting and is
trying to interrogate the PCI bus. It is common for an OS, as it is loaded, to enumerate and ‘size’
the various buses on the machine. For a PCI system, the OS typically writes a value to each
card’s BAR to determine the memory space occupied by that card. If emulation is running during
enumeration, the Host Controller may generate an SMI as the OS is changing the BAR from the
value that the emulation code is using.

To prevent problems during enumeration and ‘sizing’ of the PCI bus, a specific OS sequence is
defined for ‘sizing’ the Host Controller on PCI systems:

Save the current value of the PCI COMMAND register
Save the current value of BAR_OHCI
Clear the Memory Access* bit in the PCI COMMAND register.
Write 0xFFFFFFFF to BAR_OHCI
Read BAR_OHCI to determine the block size
Restore the original version of BAR_OHCI
Restore the PCI COMMAND register

(*The Memory Access is bit 1 of the PCI COMMAND register. This field has several aliases in
various documents but is labeled Memory Access in Appendix A of the OpenHCI Host Controller
Specification.)

The SMM code that services SMI should check that the Memory Access bit on the Host
Controller is set before accessing the Host Controller operational registers.

The HC should not generate an emulation interrupt while the Memory Access bit not set to 1. If
an interrupt is being signaled when Memory Access is set to 0, the Host Controller inactivates
that interrupt (including SMI). If an interrupt condition exists when Memory Access is set to 1,
that interrupt is immediately signaled. If ExternalIRQEn in HceControl is not set, IRQ1 and
IRQ12 are propagated through the Host Controller regardless of the setting of Memory Access.

OpenHCI - Open Host Controller Interface Specification for USB

141

SMI Signaling
The OpenHCI controller must be able to signal an SMI event to the x86 system processor. Since
none of the standard add-in card interfaces make provision for SMI signaling, it is assumed that
this requirement implies that the OpenHCI controller is located on the system motherboard.

Intercept Port 60h and 64h Accesses
When emulation is enabled, I/O accesses of I/O ports 60h and 64h must be handled by the Host
Controller. The Host Controller must be positioned in the system so that it can do a positive
decode of accesses to I/O addresses 60h and 64h on the PCI bus. If a keyboard controller is
present in the system, it must either use subtractive decode or have provisions to disable its
decode of ports 60h and 64h. If the legacy keyboard controller uses positive decode and is turned
off during emulation, it must be possible for the emulation code to quickly re-enable and disable
the legacy keyboard controller’s 60h and 64h decode. This is necessary to support a mixed
operating environment.

Interrupts
The Host Controller must connect to IRQ1 and IRQ12 on the system board and be wired OR
with other non-legacy IRQ1 and IRQ12 sources. IRQ1 and IRQ12 from the legacy keyboard
controller (if present) must be routed through the Host Controller.

Run-time Memory
Legacy emulation requires that the Host Controller have read/write access to a portion of system
memory that is not used by a system OS for any purpose. In addition, this memory must be
accessible by the host CPU while the host CPU is in SMM.

OpenHCI - Open Host Controller Interface Specification for USB

142

PROGRAMMING INTERFACE
Modifications to existing registers
HcRevision Register

The following modification is needed to the HcRevision Register:

3 0 0 0
1 8 7 0

reserved L REV

Figure B-1: HcRevision Register

Table B-1: HcRevision Register Fields

Read/Write
Key Reset HCD HC Description

REV 10h R R Revision
This read-only field contains the BCD representation of the
version of the HCI specification that is implemented by this HC.
For example, a value of 11h corresponds to version 1.1. All of
the HC implementations that are compliant with this
specification will have a value of 10h.

L 1b R R Legacy
This read-only field is 1 to indicate that the legacy support
registers are present in this HC.

Legacy Support Registers
Four operational registers are used to provide the legacy support . Each of these registers is
located on a 32-bit boundary. The offset of these registers is relative to the base address of the
Host Controller operational registers with HceControl located at offset 100h.

Table B-2: Legacy Support Registers

Offset Register Description
100h HceControl Used to enable and control the emulation hardware and report

various status information.
104h HceInput Emulation side of the legacy Input Buffer register.
108h HceOutput Emulation side of the legacy Output Buffer register where

keyboard and mouse data is to be written by software.
10Ch HceStatus Emulation side of the legacy Status register.

OpenHCI - Open Host Controller Interface Specification for USB

143

Three of the operational registers (HceStatus, HceInput, HceOutput) are accessible at I/O address
60h and 64h when emulation is enabled. Reads and writes to the registers using I/O addresses
have side effects as outlined in the Table B-3.

Table B-3: Emulated Registers

I/O
Address

Cycle
Type

Register Contents
Accessed/Modified Side Effects

60h IN HceOutput IN from port 60h will set OutputFull in
HceStatus to 0

60h OUT HceInput OUT to port 60h will set InputFull to 1 and
CmdData to 0 in HceStatus.

64h IN HceStatus IN from port 64h returns current value of
HceStatus with no other side effect.

64h OUT HceInput OUT to port 64h will set InputFull to 0 and
CmdData in HceStatus to 1.

HceInput Register

Table B-4: HceInput Registers

bit Field R/W Description
7-0 InputData R/W This register holds data that is written to I/O ports 60h and 64h.

8-31 Reserved -

I/O data that is written to ports 60h and 64h is captured in this register when emulation is enabled.
This register may be read or written directly by accessing it with its memory address in the Host
Controller’s operational register space. When accessed directly with a memory cycle, reads and
writes of this register have no side effects.

HceOutput Register

Table B-5: HceOutput Registers

bit Field R/W Description
7-0 OutputData R/W This register hosts data that is returned when an I/O read of

port 60h is performed by application software.
8-31 Reserved -

The data placed in this register by the emulation software is returned when I/O port 60h is read
and emulation is enabled. On a read of this location, the OutputFull bit in HceStatus is set to 0.

OpenHCI - Open Host Controller Interface Specification for USB

144

HceStatus Register

Table B-6: HceStatus Register

bit Field R/W Description
0 OutputFull R/W The HC sets this bit to 0 on a read of I/O port 60h. If IRQEn is

set and AuxOutputFull is set to 0, then an IRQ1 is generated as
long as this bit is set to 1. If IRQEn is set and AuxOutputFull is
set to 1, then an IRQ12 is generated as long as this bit is set to
1. While this bit is 0 and CharacterPending in HceControl is
set to 1, an emulation interrupt condition exists.

1 InputFull R/W Except for the case of a Gate A20 sequence, this bit is set to 1
on an I/O write to address 60h or 64h. While this bit is set to 1
and emulation is enabled, an emulation interrupt condition exists.

2 Flag R/W Nominally used as a system flag by software to indicate a warm
or cold boot.

3 CmdData R/W The HC sets this bit to 0 on an I/O write to port 60h and to 1 on
an I/O write to port 64h.

4 Inhibit Switch R/W This bit reflects the state of the keyboard inhibit switch and is set
if the keyboard is NOT inhibited.

5 AuxOutputFull R/W IRQ12 is asserted whenever this bit is set to 1 and OutputFull is
set to 1 and the IRQEn bit is set.

6 Time-out R/W Used to indicate a time-out
7 Parity R/W Indicates parity error on keyboard/mouse data.

8-31 Reserved -

The contents of the HceStatus Register are returned on an I/O Read of port 64h when emulation
is enabled. Reads and writes of port 60h and writes to port 64h can cause changes in this register.
Emulation software can directly access this register through its memory address in the Host
Controller’s operational register space. Accessing this register through its memory address
produces no side effects.

OpenHCI - Open Host Controller Interface Specification for USB

145

HceControl Register

Table B-7: HceControl Register

bit Field Reset R/W Description
0 EmulationEnable 0b R/W When set to 1, the HC is enabled for legacy emulation.

The HC decodes accesses to I/O registers 60h and 64h and
generates IRQ1 and/or IRQ12 when appropriate.
Additionally, the HC generate s an emulation interrupt at
appropriate times to invoke the emulation software.

1 EmulationInterrupt - R This bit is a static decode of the emulation interrupt
condition.

2 CharacterPending 0b R/W When set, an emulation interrupt is generated when the
OutputFull bit of the HceStatus register is set to 0.

3 IRQEn 0b R/W When set, the HC generates IRQ1 or IRQ12 as long as the
OutputFull bit in HceStatus is set to 1. If the
AuxOutputFull bit of HceStatus is 0, then IRQ1 is
generated; if it is 1, then an IRQ12 is generated.

4 ExternalIRQEn 0b R/W When set to 1, IRQ1 and IRQ12 from the keyboard
controller causes an emulation interrupt. The function
controlled by this bit is independent of the setting of the
EmulationEnable bit in this register.

5 GateA20Sequence 0b R/W Set by HC when a data value of D1h is written to I/O port
64h. Cleared by HC on write to I/O port 64h of any value
other than D1h.

6 IRQ1Active 0b R/W Indicates that a positive transition on IRQ1 from keyboard
controller has occurred. SW may write a 1 to this bit to
clear it (set it to 0). SW write of a 0 to this bit has no effect.

7 IRQ12Active 0b R/W Indicates that a positive transition on IRQ12 from keyboard
controller has occurred. SW may write a 1 to this bit to
clear it (set it to 0). SW write of a 0 to this bit has no effect.

8 A20State 0b R/W Indicates current state of Gate A20 on keyboard controller.
Used to compare against value written to 60h when
GateA20Sequence is active.

9-31 Reserved - - Must read as 0s.

OpenHCI - Open Host Controller Interface Specification for USB

146

IMPLEMENTATION NOTES
Emulation Interrupt Decode

Emulation interrupts are of two types: frame synchronous and asynchronous. For frame
synchronous interrupts, the conditions for a frame synchronous interrupt are sampled by the Host
Controller at each USB frame interval and, if an interrupt condition exists, it is signaled at that
time. For asynchronous interrupts, the interrupt is signaled as soon as the condition exists.

The equation for the synchronous emulation interrupt condition is:

synchronousInterrupt = HceControl.EmulationEnable AND
HceControl.CharacterPending AND NOT(HceStatus.OutputFull)

When this decode is true, an emulation interrupt is generated at the start of the next USB frame.
The interrupt condition is latched until the decode becomes false. The equation for the
asynchronous interrupt condition is:

asynchronousInterrupt = (HceControl.EmulationEnable AND
HceStatus.InputFull) OR (HceControl.ExternIRQEn AND
(HceControl.IRQ1Active OR HceControl.IRQ12Active))

 A20 Gate
The A20State bit in the host controller should be brought to a pin on the Host Controller,
through suitable buffering, for inclusion in the Gate A20 logic on the motherboard.

