
7HFKQLFDO *XLGH

May 1999
ECG506/0599

Prepared by Internet and
E-Commerce Solutions Business
Unit

Enterprise Solutions Division

Compaq Computer Corporation

Contents
Introduction..................................3
Problem Analysis.........................3
Tested Configuration...................4
Overview of the Testbed5
Performance Testing...................6

Test Methodologies....................7
Performance Optimization7

Hardware and Operating
System.......................................7
Runtime......................................8

Test Results10
Static Performance: Network
Bandwidth and RAM10
Static Performance:
Workload Size..........................16
Static Performance:
Recommendations16
CGI Performance: Overhead ...16
CGI Performance: Additional
Processor.................................17
CGI Performance:
Recommendations18

Appendix: Source Code for
Moderate CGI Program..............19

3HUIRUPDQFH &KDUDFWHUL]DWLRQ
DQG 7XQLQJ RI $SDFKH :HE
6HUYHU
Abstract: This guide provides developers and system integrators
with details of performance characterization and tuning for Linux in
conjunction with the Apache HTTP Server on Compaq server
hardware.

3HUIRUPDQFH &KDUDFWHUL]DWLRQ DQG 7XQLQJ RI $SDFKH :HE 6HUYHU 5

ECG506/0599

Notice
The information in this publication is subject to change without notice and is provided “AS IS” WITHOUT
WARRANTY OF ANY KIND. THE ENTIRE RISK ARISING OUT OF THE USE OF THIS
INFORMATION REMAINS WITH RECIPIENT. IN NO EVENT SHALL COMPAQ BE LIABLE FOR
ANY DIRECT, CONSEQUENTIAL, INCIDENTAL, SPECIAL, PUNITIVE OR OTHER DAMAGES
WHATSOEVER (INCLUDING WITHOUT LIMITATION, DAMAGES FOR LOSS OF BUSINESS
PROFITS, BUSINESS INTERRUPTION OR LOSS OF BUSINESS INFORMATION), EVEN IF
COMPAQ HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

The limited warranties for Compaq products are exclusively set forth in the documentation accompanying
such products. Nothing herein should be construed as constituting a further or additional warranty.

This publication does not constitute an endorsement of the product or products that were tested. The
configuration or configurations tested or described may or may not be the only available solution. This test
is not a determination of product quality or correctness, nor does it ensure compliance with any federal,
state or local requirements.

Compaq, ActiveAnswers, Deskpro, Compaq Insight Manager, Fastart, Systempro, Systempro/LT, ProLiant,
ROMPaq, QVision, SmartStart, NetFlex, QuickFind, PaqFax, and Prosignia are registered with the United
States Patent and Trademark Office.

Netelligent, Systempro/XL, SoftPaq, QuickBlank, QuickLock are trademarks and/or service marks of
Compaq Computer Corporation.

Linux is a registered trademark of Linus Torvalds.

Pentium is a registered trademark of Intel Corporation.

Other product names mentioned herein may be trademarks and/or registered trademarks of their respective
companies.

Performance Characterization and Tuning of Apache Web Server
Technical Guide prepared by Internet and E-Commerce Solutions Business Unit

Enterprise Solutions Division

First Edition (May 1999)
Document Number ECG506/0599

3HUIRUPDQFH &KDUDFWHUL]DWLRQ DQG 7XQLQJ RI $SDFKH :HE 6HUYHU 6

ECG506/0599

Introduction
This document provides guidelines for optimizing Apache Web Server on Linux for best
performance. Although Compaq used the SuSE 6.0 Linux distribution to test these performance
optimizations, these guidelines apply to the Linux kernel and to the Apache HTTP Server and can
therefore be applied to any Linux distribution.

Problem Analysis
When analyzing a typical Web server's capability to handle work, Compaq determined that the
major issues are the data throughput and the number of requests the server can handle in a given
time period. Based on the results of testing the Apache HTTP Sever on Linux, Compaq has
identified the amount of RAM available to the server and CPU performance as the two most
important factors determining this server’s capacity to handle work.

Compaq set up a test environment that simulated thousands of requests coming into the Apache
HTTP Server system and increased the demands on the server until the CPU utilization was
maximized. This provided empirical data that allowed Compaq to identify the server's peak
performance.

Compaq used these data to create the Compaq Sizer for Apache Web Server on Linux. The sizer
uses the performance data with information supplied by the customer to recommend a hardware
configuration that meets the customer's Web server requirements.

The sizer is available from the Compaq ActiveAnswers website at:
http://www.compaq.com/ActiveAnswers/

http://www.compaq.com/ActiveAnswers/

3HUIRUPDQFH &KDUDFWHUL]DWLRQ DQG 7XQLQJ RI $SDFKH :HE 6HUYHU 7

ECG506/0599

Tested Configuration
Although there are a number of ways to examine a Web server's performance and capability to
handle work, the Compaq approach was limited to analyzing the total amount of work that can be
accomplished by a server in a given amount of time. This approach identifies the peak capabilities
of a server given a fixed system resources.

The empirical basis for conclusions drawn from this testing and for the data used to create the
sizer is derived from performance testing conducted on the Compaq ProLiant 1850R server in a
standalone configuration. Table 1 describes this server:

Table 1: Tested Configuration

ProLiant 1850R

Pentium II, 450MHz, 512 KB cache, 1P and 2P

128MB, 256MB, and 512 MB of DRAM

Integrated 10/100 TX UTP controller

Compaq PCI Netelligent Intel NIC

1x9.1 GB, 10000 RPM, SCSI hard drive (for the OS)

1x4.3 GB, 10000 RPM, SCSI hard drive

3HUIRUPDQFH &KDUDFWHUL]DWLRQ DQG 7XQLQJ RI $SDFKH :HE 6HUYHU 8

ECG506/0599

Overview of the Testbed
The server described in table 1 was placed as a system unit under test (SUT) into the test bed
shown in figure 1. Compaq ran a defined suite of tests on the SUT and recorded the results for
analysis. The server was configured with two Network Interface Controllers, each of which was
connected to a 100baseTx full-duplex network.

Figure 1. Testbed configuration.

3HUIRUPDQFH &KDUDFWHUL]DWLRQ DQG 7XQLQJ RI $SDFKH :HE 6HUYHU 9

ECG506/0599

 Performance Testing
Compaq carried out the performance testing using a Compaq ProLiant 1850R server running
SuSE Linux 6.0 and Apache HTTP Server 1.3.4. The Linux distribution was updated to use the
2.2.4 kernel, the latest kernel available.

Compaq made a number of modifications (described below in the section on "Performance
Optimization") to the 2.2.4 kernel. These modifications are available1 as a .config file that the
user can place in the /usr/src/linux directory for the 2.2.4 kernel.

Compaq disabled most system services: only crond , klogd , httpd , inetd 2 and other
necessary daemons (such as the console login daemons) were running. In this way, the testing
focused on the Linux and Apache products rather than the peculiarities of a particular
distribution.

Compaq selected the test methodologies based on an analysis of existing websites and their file
content mix. File store sizes3 were 64MB, 256MB, and 512MB; file content varied between
100% percent static files, 100% simple CGI4 files, and 100% moderate CGI files. The file content
included:

x A static-only file mix that consisted of the HTML file tree from the Web Bench 2.0 suite.

x A simple program mix that consisted of a CGI program echoing CGI variables back to the
Web client. This consisted of several copies of the simcgi program deployed in a dense file
system tree (with many sub-directories, each containing a few copies of the file) from the
Web Bench 2.0 suite.

x A moderate CGI program that echoed CGI variables back to the Web client and wrote them
to the file system in a file whose name depended on the process ID of the CGI program. To
test different workload sizes, several copies of this file were made in a dense file system tree
until the appropriate work load size was reached. The source code for this program is
included in the appendix to this guide.

Note: To achieve larger file store sizes, Compaq simply replicated the original file tree so that
multiple copies resided on the server.

1 Use the appropriate link on the ActiveAnswers page from which this document was downloaded.
2 Compaq left inetd running even though many users may disable this daemon for security reasons.
3 The average file size was 6kB.
4 Dynamic content.

3HUIRUPDQFH &KDUDFWHUL]DWLRQ DQG 7XQLQJ RI $SDFKH :HE 6HUYHU :

ECG506/0599

Test Methodologies

Compaq tested each hardware configuration using an HTTP load test tool (Ziff-Davis WebBench
2.0) to apply an appropriate5 load for the particular test run.

Compaq ran each configuration/CPU-utilization combination three times. There were two
purposes for this:

x To verify that one particular set of test results was comparable to another to eliminate any
aberrations in the test data.

x To increase the number of data points available for analysis.

The basic test procedure included:

x Prior to testing a new configuration, all clients and servers were rebooted6.

x Each test was run for 10 minutes (a 4-minute ramp-up, a 5-minute run, and a 1-minute ramp-
down).

x A vmstat job was running on the Web server to gather performance data.

x After each test run, a copy of the Ziff-Davis WebBench 2.0 performance data log was saved
to hard disk for subsequent analysis.

Performance Optimization
Compaq determined that additional performance improvements and application scaling can be
accomplished through hardware and operating system optimizations and runtime optimizations.

Details of the specific optimizations are given below.

Hardware and Operating System

To optimize Web server performance, Compaq provides these recommendations:

x RAM : Compaq determined that when the content being served is principally static, the
single most important hardware factor affecting Web server performance is the amount of
RAM.

x Maximum number of clients: Control the MaxClients setting of the Apache HTTP Server
so that the web server can accommodate enough concurrent connections to maximize web
server performance. Specific disclosure of values is made in the next section.

x TCP/IP patches: Use a recent kernel version to ensure that the latest Linux TCP/IP patches
are installed. Version 2.2.3 (and later) contains several networking improvements over
previous versions. Compaq used kernel version 2.2.4 was used for this testing.

5 Sufficient to drive the server to 100 percent CPU utilization.
6 Reboots occurred only when changing test configurations. When repeating a configuration the second and third time, there was no
reboot.

3HUIRUPDQFH &KDUDFWHUL]DWLRQ DQG 7XQLQJ RI $SDFKH :HE 6HUYHU ;

ECG506/0599

Runtime

The runtime optimizations include optimizations recommended by Compaq, optimizations
recommended by Apache, and updates to default settings.

Compaq Recommendations

To optimize Web server performance, Compaq provides these recommendations:

x Removing non-essential daemons: Use the appropriate Linux distribution tool to remove all
unnecessary services so that only crond , klogd , httpd , inetd and other necessary
daemons (such as the console login daemons) are running. For SuSE, the YaST tool is
useful; Caldera provides a tool known as LISA in their OpenLinux version 1.3; Red Hat
depends on the linuxconfig toolkit. Alternatively, the user can manually modify the
/etc/rc.d , etc/rc.d/init.d , and /etc/sysconfig directories .

x Increase the maximum number of files and inodes that the system can open at one time:
Add the following to the system’s start-up scripts in order to allow the Web server to utilize
as many of the system’s resources as possible:

echo 16384 > /proc/sys/fs/file-max

echo 49152 > /proc/sys/fs/inode-max

The /proc file system in Linux provides an interface between the user and the kernel.
Several read-only files allow the user to view kernel utilization statistics and are used by
programs like top and vmstat to obtain the statistics that they present to the user.

Other writable files allow the user to change kernel parameters on the fly. These files
(including those added to the start-up scripts above) allow the user to specify the maximum
number of files and inodes that the kernel can have open at any given time. The suggested
values are about 4 times the default values for these parameters for kernel version 2.2.4.

IMPORTANT: This single optimization resulted in a nearly fourfold increase in the static
content capabilities of the Web server.

Apache Recommendations

The following recommendations were taken from the Apache website at:
http://www.apache.org/docs/misc/perf-tuning.html. They are post-compile optimizations that
Compaq implemented for this performance testing.

x Turning off Hostname lookups: Edit the server’s httpd.conf file:

HostnameLookups off

<Files ~ "\.(html|cgi)$>

 HostnameLookups on

</Files>

http://www.apache.org/docs/misc/perf-tuning.html

3HUIRUPDQFH &KDUDFWHUL]DWLRQ DQG 7XQLQJ RI $SDFKH :HE 6HUYHU <

ECG506/0599

x Configuring the httpd.conf file to allow overrides: Edit the server’s httpd.conf
file:
DocumentRoot /usr/local/httpd/htdocs

<Directory />

 AllowOverride none

</Directory>

x Disabling symbolic links: Edit the server’s httpd.conf file:

DocumentRoot /usr/local/httpd/htdocs

<Directory />

 Options -FollowSymLinks

</Directory>

<Directory /cgi-bin>

 Options –FollowSymLinks

</Directory>

x Turning off default document negotiation: Edit the server’s httpd.conf file:

DirectoryIndex index.html

x Creating the process: To prevent the start-up costs of the httpd daemon from being
measured, configure the following in httpd.conf :

x Set the MinSpareServers value to 50.

x Set the MaxSpareServers value to 150.

x Set the MaxRequestsPerChild value to 3,000,000.

x Set the MaxClient value to 256.

x For the benchmark testing proper, the StartServers parameter was set to 150 to minimize
startup lag times.

Updates to Default Settings

Compaq modified these default settings:

x Logging: Since most Web servers maintain logs, Compaq enabled logging at a low level and
mounted the directory /var/log (into which Compaq wrote log files
httpd.access_log and httpd.error_log) on its own partition on a disk separate
from the main OS disk.

x noatime option: Since Web server log files provide access times for files, Compaq
mounted the Apache document root with the noatime option on a separate partition within
the same disk as the main OS disk. However, the results of the performance testing showed
that this option had a minimal impact on performance.

3HUIRUPDQFH &KDUDFWHUL]DWLRQ DQG 7XQLQJ RI $SDFKH :HE 6HUYHU 43

ECG506/0599

x Optimizing the Linux 2.2.4 kernel: Compaq rebuilt the Linux 2.2.4 kernel and added some
optimizations including optimizations for 6x86-class machines and the removal of several
kernel options not necessary for the ProLiant 1850R server. The .config file that
determined the Compaq kernel build accompanies this document as sample code7.

Test Results
This section discusses the results of the Compaq testing and identifies key factors that influence
Web server performance with static or CGI content. Compaq provides recommendations that can
allow customers to improve Web server performance.

Static Performance: Network Bandwidth and RAM

Web servers with a high percentage of static content (HTML) are more likely to experience
network bandwidth as a gating factor rather than CPU utilization limits. This is especially
significant since many Web servers have no more than a single T1 line to provide network access.
The results of the Compaq testing indicate that the Apache HTTP Server running under Linux on
Compaq hardware is capable of handling more network throughput than that offered by several
T1 lines.

Another limiting factor for a server with primarily static content is the amount of RAM available
to the server. This becomes more critical as bandwidth increases. Figure 2 shows that a server
with just 128 MB of RAM serving up a 512 MB workload set (where there is not enough RAM to
cache all the content) has a total network throughput greater than that provided by 5 T1 lines. The
amount of RAM does not become a factor until this throughput is exceeded.

7Use the appropriate link on the ActiveAnswers page from which this document was downloaded.

3HUIRUPDQFH &KDUDFWHUL]DWLRQ DQG 7XQLQJ RI $SDFKH :HE 6HUYHU 44

ECG506/0599

Figure 2. Network throughput and RAM utilization

Once the total throughput exceeds the capabilities of between 5 and 7 T1 lines, then the amount
of RAM available to the server becomes the primary factor influencing Web server performance.
However, Compaq testing indicated that a single server can accommodate the throughput of a T3
line if enough RAM is installed. This is apparent both from the throughput shown in figure 2 and
also from the number of requests per second serviced shown in figure 3. Both figures show that,
as the workload size exceeds the capabilities of the RAM available to the system, server
performance suffers.

This is even clearer in figure 4, which shows the CGI and static results side-by-side. Static web
serving performance decreases to almost the level of the simple CGI performance when there is
insufficient RAM. As the available RAM increases, the static performance increases
proportionally to the point that significantly more static requests can be processed than CGI
requests.

Throughput - Mbits/sec

0

10

20

30

40

50

60

70

T1 5 T1s 512
MB/128

MB

512
MB/256

MB

T3 512
MB/512

MB

256
MB/128

MB

256
MB/256

MB

256
MB/512

MB

64
MB/128

MB

64
MB/256

MB

64
MB/512

MB

Workload Size/RAM Amount

M
eg

ab
its

 p
er

 s
ec

on
d

Throughput - Mbits/sec

3HUIRUPDQFH &KDUDFWHUL]DWLRQ DQG 7XQLQJ RI $SDFKH :HE 6HUYHU 45

ECG506/0599

Figure 3. Static requests per second with increasing RAM

Static Requests per Second

0

200

400

600

800

1000

1200

1400

128 MB 256 MB 512 MB

RAM

R
eq

/s
ec 64 MB Workload

256 MB Workload

512 MB Workload

3HUIRUPDQFH &KDUDFWHUL]DWLRQ DQG 7XQLQJ RI $SDFKH :HE 6HUYHU 46

ECG506/0599

Figure 4. Static requests per second and CGI requests per second, 128MB RAM

CGI to Static Requests Comparison
128 MB RAM

0

200

400

600

800

1000

1200

1400

64 MB 256 MB 512 MB

Workload Size

R
eq

/s
ec Moderate CGI

Simple CGI

Static

3HUIRUPDQFH &KDUDFWHUL]DWLRQ DQG 7XQLQJ RI $SDFKH :HE 6HUYHU 47

ECG506/0599

Figure 5. Static requests per second and CGI requests per second, 256MB RAM

CGI to Static Requests Comparison,
256 MB RAM

0

200

400

600

800

1000

1200

1400

64 MB 256 MB 512 MB

Workload Size

R
eq

/s
ec Moderate CGI

Simple CGI

Static

3HUIRUPDQFH &KDUDFWHUL]DWLRQ DQG 7XQLQJ RI $SDFKH :HE 6HUYHU 48

ECG506/0599

Figure 6. Static requests per second and CGI requests per second, 512MB RAM

Figures 4, 5, and 6 demonstrate clearly that, as the amount of RAM increases, the server's
capability to serve up static pages increases correspondingly. For Web servers that primarily
serve up static pages, the customer can make a relatively small investment in RAM in order to
greatly increase performance. However, this investment may not be warranted if the network
bandwidth to the server is so low that RAM is not a performance limiter.

CGI to Static Requests Comparison
512 MB RAM

0

200

400

600

800

1000

1200

1400

64 MB 256 MB 512 MB

Workload Size

R
eq

/s
ec

Moderate CGI

Simple CGI

Static

3HUIRUPDQFH &KDUDFWHUL]DWLRQ DQG 7XQLQJ RI $SDFKH :HE 6HUYHU 49

ECG506/0599

Static Performance: Workload Size

The relationship between the workload size and the amount of RAM also affects Web server
performance. If the workload size greatly exceeds the amount of RAM available to the system,
the performance of a static-only Web serving system degrades to a similar level to that of a CGI-
only system. In such cases, the customer can purchase additional RAM to improve static-only
performance.

However, since most websites serve up only a fraction of their total content in response to typical
requests, the customer should analyze the Web server log files to identify the most common
content size. In the Compaq test environment, every file in a given workload set had more or less
the same probability of being served: in the real world, the total content at many websites can be
1GB or more8 but the system only serves from a 256MB subset 70% - 80% of the time. The
customer should identify the size of the subset that is most frequently served and allocate enough
RAM to accommodate that subset.

Static Performance: Recommendations

Based on this testing, Compaq recommends that the customer should determine the maximum
throughput that the network can present to the Web server. For a low throughput, the customer
should deploy a machine configured with a minimal amount of RAM (128MB); for a higher
throughput (more than 5 T1 lines), the user should configure additional RAM to cache the subset
of files that are most frequently served.

CGI Performance: Overhead

Figures 4, 5, and 6 demonstrate little correlation between the amount of RAM available to the
Web server and the performance of CGI applications. The number of requests served per second
is virtually the same regardless of the amount of RAM available.

This can be attributed to the manner in which CGI programs are executed:

1. The CGI program is found on disk (or in the file system cache) and launched.

2. The CGI program executes its functionality.

3. The CGI program process is terminated.

The test results suggest that the overhead required to complete these steps is so great that the
available RAM cannot be effectively utilized. Since this is mostly execution overhead, the
processor must work harder to accommodate it: this, in turn, suggests that increasing the
processor capacity is the best way to improve the performance of CGI applications.

8 More than Compaq used for this testing.

3HUIRUPDQFH &KDUDFWHUL]DWLRQ DQG 7XQLQJ RI $SDFKH :HE 6HUYHU 4:

ECG506/0599

CGI Performance: Additional Processor

Compaq conducted tests to compare the performance of single and dual processor systems. The
results indicated that, while the performance improvements were minimal, the dual processor
system performed better than the single processor system in all tests. In particular, testing with
moderate CGI content demonstrated a more significant performance increase than testing with
simple CGI or static content.

Figure 7 shows the number of requests per second for single and dual processor tests; figure 8
shows the percentage increase from one test to the other using the single processor test as the
denominator.

Figure 7. Numerical comparison between single processor and dual processor performance

Numerical Comparison 1P-2P - Requests per Second - 512 MB RAM/64 MB Workload

0

200

400

600

800

1000

1200

1400

1600

Static Simple CGI Moderate CGI

Request Type

R
eq

/s
ec 1 Processor

2 Processors

3HUIRUPDQFH &KDUDFWHUL]DWLRQ DQG 7XQLQJ RI $SDFKH :HE 6HUYHU 4;

ECG506/0599

Figure 8. Percentage performance improvement by adding a second processor

CGI Performance: Recommendations

x Faster processor: For a CGI-intensive Web server application, Compaq recommends using
the fastest processor that the customer can afford.

x Additional processor: Although the performance increase will not be dramatic, the
customer should consider adding a second processor to increase the overall performance of
the Web server. If the site serves more intensive CGI requests, the customer can expect a
greater performance increase when upgrading from a single processor to dual processors than
if the site serves mostly static or simple CGI requests.

Percent Increase in Requests per Second by Adding a Second Processor

0

5

10

15

20

25

30

35

Improvement

P
er

ce
nt

ag
e Static

Simple CGI

Moderate CGI

3HUIRUPDQFH &KDUDFWHUL]DWLRQ DQG 7XQLQJ RI $SDFKH :HE 6HUYHU 4<

ECG506/0599

Appendix: Source Code for
Moderate CGI Program

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>

int HexToDec(char c)
{
 switch(c)
 {
 case '0':
 return 0;
 case '1':
 return 1;
 case '2':
 return 2;
 case '3':
 return 3;
 case '4':
 return 4;
 case '5':
 return 5;
 case '6':
 return 6;
 case '7':
 return 7;
 case '8':
 return 8;
 case '9':
 return 9;
 case 'a' : case 'A' :
 return 10;
 case 'b' : case 'B' :
 return 11;
 case 'c' : case 'C' :
 return 12;
 case 'd' : case 'D' :
 return 13;
 case 'e' : case 'E' :
 return 14;
 case 'f' : case 'F' :
 return 15;
 default:
 return 0; // uh-oh
 }

 return 0; // uh-oh
}

3HUIRUPDQFH &KDUDFWHUL]DWLRQ DQG 7XQLQJ RI $SDFKH :HE 6HUYHU 53

ECG506/0599

void dump(char *p, FILE *fp, int len)
{
 int iAsciiEscape;
 int iAsciiValue;
 int i;
 char *pOut;
 int j;

 pOut = (char *)calloc(len, sizeof(char));

 iAsciiEscape = 0;
 j = 0;
 for(i = 0; i < strlen(p); i++)
 {
 if(iAsciiEscape)

{
 if(iAsciiEscape == 1) // first digit
 {
 iAsciiValue = HexToDec(p[i]);
 iAsciiValue *= 16;
 iAsciiEscape++;
 }
 else // second digit
 {
 iAsciiEscape = 0;
 iAsciiValue += HexToDec(p[i]);
 pOut[j++] = iAsciiValue;
 }
}

 else
{
 if(p[i] == '+')
 {
 pOut[j++] = ' ';
 }
 else if(p[i] == '&') // separator
 {
 pOut[j++] = '\n';
 }
 else if(p[i] == '%') // begin ASCII escape sequence
 {
 iAsciiEscape = 1;
 continue;
 }
 else
 {
 pOut[j++] = p[i];
 }
}

 }

 pOut[j] = '\0';
 fprintf(stdout, "%s", pOut);
 fprintf(fp, "%s", pOut);
 free(pOut);
}

3HUIRUPDQFH &KDUDFWHUL]DWLRQ DQG 7XQLQJ RI $SDFKH :HE 6HUYHU 54

ECG506/0599

main()
{

 pid_t id;
 int u;
 FILE *fp;
 char *p;
 char fn[64];
 char buffer[2048];

 id = getpid();
 u = (int) id;
 sprintf(fn, "./File%d.dat", u);
 fp = fopen(fn, "a+");
 if(!fp)// could not open file
 {
 printf("Server-Type: Apache 1.3.4\n\n<html>\
<body><h1>Could not open file ./File.dat</h1></body></html>\
\r\n");
 exit(-1);
 }

 printf("Server-Type: Apache 1.3.4\n\n<html>\
<body><P>");
 p = getenv("QUERY_STRING");
 fprintf(stdout, "QUERY_STRING:\n");
 fprintf(fp, "QUERY_STRING:\n");
 dump(p, fp, strlen(p));

 fprintf(stdout, "
POST_DATA:\n");
 fprintf(fp, "POST_DATA:\n");
 while((p = fgets(buffer, 2047, stdin)) != NULL)
 {
 dump(p, fp, 2048);
 }

 printf("</body></html>\r\n");
 fprintf(fp,\
"\n===\n");

 fclose(fp);

 return 0;

}

