
WHITE PAPER

 1

October 2000

Prepared by
Alain Lissoir

Technology Consultant
Compaq Services

Compaq Computer
Corporation

Understanding Microsoft Windows Script
Host and Active Directory Service
Interfaces in Windows 2000
This white paper gives an overview of the scripting possibilities offered by the Windows
Script Host (WSH) and Active Directory Service Interface (ADSI) components under
Windows 2000. It explains the basic concepts and practices related to WSH and ADSI.

After a WSH architectural overview, the document explains how to use this technology to
access basic Windows system components. This paper also provides a general ADSI
architectural overview and explains the basic access methods for the Active Directory.
Through several simple examples, the reader will discover how to combine WSH
functions with ADSI components in order to build a Logon Script under Windows 2000.

Acknowledgments:

Micky Balladelli
Jan De Clercq
Mike Dransfield
Andrew Gent
Andy Harjanto (Microsoft Corporation)
Dung Hoang Khac
Jurgen Klejdzinski
Tony Redmond
John Rhoton
Rudy Schockaert
Alan Smith (Microsoft Corporation)
Roland Schoenauen

.

WHITE PAPER (cont.)

2 WSH and ADSI – Part 1

NOT ICE

The information in this publication is subject to change without notice.

Compaq Computer Corporation shall not be liable for technical or editorial errors or omissions
contained herein, nor for incidental or consequential damages resulting from the furnishing,
performance, or use of this material.

This publication does not constitute an endorsement of the product or products that were tested.
The configuration or configurations tested or described may or may not be the only available
solution. This test is not a determination of product quality or correctness, nor does it ensure
compliance with any federal, state or local requirements. Compaq does not warrant products other
than its own strictly as stated in Compaq product warranties.

Product names mentioned herein may be trademarks and/or registered trademarks of their
respective companies.

Compaq, Contura, Deskpro, Fastart, Compaq Insight Manager, LTE, PageMarq, Systempro,
Systempro/LT, ProLiant, TwinTray, LicensePaq, QVision, SLT, ProLinea, SmartStart, NetFlex,
DirectPlus, QuickFind, RemotePaq, BackPaq, TechPaq, SpeedPaq, QuickBack, PaqFax, registered
United States Patent and Trademark Office.

Aero, Concerto, QuickChoice, ProSignia, Systempro/XL, Net1, SilentCool, LTE Elite, Presario,
SmartStation, MiniStation, Vocalyst, PageMate, SoftPaq, FirstPaq, SolutionPaq, EasyPoint, EZ
Help, MaxLight, MultiLock, QuickBlank, QuickLock, TriFlex Architecture and UltraView,
CompaqCare and the Innovate logo, are trademarks and/or service marks of Compaq Computer
Corporation.

Other product names mentioned herein may be trademarks and/or registered trademarks of their
respective companies.

©1999 Compaq Computer Corporation. Printed in the U.S.A.

Microsoft, Windows, Windows NT, Windows NT Advanced Server, SQL Server for Windows NT
are trademarks and/or registered trademarks of Microsoft Corporation.

October 2000

2nd version.

Feedback may be addressed directly to alain.lissoir@compaq.com

 .

WHITE PAPER (cont.)

3 WSH and ADSI – Part 1

TABLE OF CONTENTS

INTRODUCTION ... 6

PREREQUISITES ... 8

WHAT’S NEW IN THIS UPDATED VERSION?.. 9

WINDOWS SCRIPT HOST ... 10
DESCRIPTION .. 10
THE OBJECT MODEL .. 11
THE WINDOWS SCRIPT HOST CAPABILITIES ... 14

USING BASIC WSH FUNCTIONS IN A WINDOWS 2000 LOGON SCRIPT.......................... 15
PROVIDING INFORMATION ON THE SCRIPT ENVIRONMENT AND THE WINDOWS SYSTEM................... 15
READING ARGUMENTS FROM THE COMMAND LINE ... 16
MANIPULATING THE ENVIRONMENT VARIABLES... 18
CREATING, RETRIEVING AND DELETING NETWORK CONNECTIONS.. 19
RUNNING EXTERNAL PROGRAMS .. 20
CREATING SHORTCUTS ... 21
ACCESSING THE REGISTRY.. 21
USING REGISTERED COM OBJECTS... 23
ACCESSING THE FILE SYSTEM ... 24
SUPPORT FOR INCLUDE FILES .. 25
SUPPORT FOR MULTIPLE ENGINES ... 26
PAUSING A SCRIPT .. 26
DRAG AND DROP SUPPORT ... 26
STANDARD INPUT AND STANDARD OUTPUT ... 26

ACTIVE DIRECTORY SERVICE INTERFACES ... 28
DESCRIPTION .. 28
ADSI IMPLEMENTATION... 30
ADSI OBJECTS AND NAMESPACES .. 31

HOW IS THE ACTIVE DIRECTORY STRUCTURED?... 33
THE ROOTDSE ... 33
THE NAMING CONTEXTS .. 35

The Schema Naming Context ... 36
The Configuration Naming Context ... 36
The Domain Naming Context... 36
The Default Naming Context.. 36
The Root Naming Context .. 36

ACCESSING THE DIRECTORY ... 37
THE BINDING OPERATION ... 37

The Namespace .. 37
Using other credentials.. 37

THE DISTINGUISHED NAME .. 38
WHICH SYNTAX TO USE?... 39

WHITE PAPER (cont.)

4 WSH and ADSI – Part 1

The Namespace syntax differences... 39
The object syntax differences ... 41
Discovering the syntax of an object ... 41
Discovering the Directory Tree, Objects, attributes and syntaxes... 43
Getting and setting object’s attribute values in respect of the syntax .. 45
Which methods to use to manipulate ADSI data? .. 47

COMPLETING THE WSH FUNCTIONS SET WITH ADSI INFORMATION........................ 50
GETTING THE USER’S DISTINGUISHED NAME... 50
GETTING THE USER FULLNAME... 51
GROUP MEMBERSHIP CHECKING... 52
GETTING THE DEFAULT DOMAIN OR THE ROOT DOMAIN DISTINGUISHED NAME.............................. 53
LOGON SCRIPT SAMPLE .. 54

CONCLUSION .. 55

APPENDIX A: ADSI INTERFACES LIST .. 56

APPENDIX B: REFERENCES AND POINTERS ... 58

TABLE OF SAMPLES

Sample 1 Providing information on the running script and Windows System. 15
Sample 2 Reading arguments from the command line... 17
Sample 3 Manipulating the environment variables.. 18
Sample 4 Creating, retrieving and deleting network connections ... 19
Sample 5 Manipulating Desktop objects.. 21
Sample 6 Accessing the registry... 21
Sample 7 Using registered COM objects ... 23
Sample 8 Accessing the file system .. 24
Sample 9 Standard Input and Standard Output usage... 26
Sample 10: Looking at some RootDSE object’s attributes... 34
Sample 11: Getting Administrator's group membership from a Windows 2000 DC in different
namespaces. ... 39
Sample 12: Accessing the syntax of an attribute.. 41
Sample 13: Loading the entire Active Directory Tree objects with their attributes and syntaxes loaded
in an Excel sheet. ... 43
Sample 14 Getting the user distinguished name .. 50
Sample 15 Information available from the IADsSsystemInfo interface. .. 51
Sample 16 Getting the user Fullname.. 51
Sample 17 Group Membership checking ... 52
Sample 18 Getting the Default Domain or the Root Domain distinguished name............................... 53
Sample 19 Logon Script Sample functions overview ... 54
TABLE OF FIGURES

Figure 1 Microsoft Scripting architecture ... 10
Figure 2 The Wscript object .. 11
Figure 3 The Wscript.Shell object.. 12
Figure 4 The WshNetwork object... 13
Figure 5 ADSI Service Providers... 29
Figure 6 ADSI Architecture and language support. .. 30

WHITE PAPER (cont.)

5 WSH and ADSI – Part 1

Figure 7 ADSI Interfaces for each name space used. .. 56

WHITE PAPER (cont.)

6 WSH and ADSI – Part 1

INTR ODUCT ION

Since the introduction of the PC to the world in 1981-1982, there has been a need to automate certain
system functions. From the simple .bat (batch file) up to the most complex tasks, administrators and
software developers have always wanted a way to describe and automate common tasks. In 1982, the
purpose may have been to automate the simple compilation of a program developed in
IBM/Microsoft Basic 1.0 or to simply make a safe copy of files located on the 10MB hard disk to the
famous 180K/360K 5” ¼ floppies.

The evolution of the PC operating system has consistently proven that the interpreted batch file from
the COMMAND.COM was really not enough to address all the needs.

During all those years, due to this lack of support in the operating system, third party vendors have
led many initiatives to solve the scripting problem. One of the best examples is the adaptation of Unix
tools to DOS (i.e. GNU Utilities, Perl Scripting). This was a great help to many administrator and
developers. But the challenge was to choose the right tools, and sometimes the right script interpreter.

One important initiative came from IBM with the arrival of OS/2 in 1988. IBM delivered an
established scripting language called REXX. As part of the OS/2 Operating System, REXX offered
all the functions required to achieve common tasks such as automating a full Operating System setup,
installing applications, creating icons, calling 32 bits API DLLs and so on. IBM developed a DOS
version of REXX that was available in PC DOS v7.0.

In addition to the “classical” .bat extension, OS/2 added a new file type for native OS/2 command
files and REXX script files. The extension was called .CMD (Command File).

Of course, under Unix, such scripting capabilities were certainly not new. The Korn Shell, Bourn
Shell, and C Shell, had all offered similar features for quite some time.

More or less in parallel with OS/2 came the arrival of Windows 3.1. Windows 3.1, which was still
based on DOS, offered no real scripting language and the REXX support under Windows 3.1 was not
well integrated. Scripting continued to be neglected in the DOS world. Most people expected many
new scripting features with the arrival of the first Windows NT version. In fact, there were some new
builtin features available in Windows NT 4.0 Service Pack 3 through the use of .CMD files.
Unfortunately, those new features fall far short of the capabilities available under a Unix Shell or a
REXX command file.

Today, with the arrival of Windows 2000, those waiting since 1982 for a valid and powerful scripting
language built into the Operating System will receive an answer. Windows Script Host (WSH) is the
Microsoft answer.

WSH fills the gap between the classical batch file programming and the real advanced programming
world.

Microsoft does not restrict WSH to Windows 2000. It is also available for Windows NT 4.0 SP3.
WSH version 1.0 (called Windows Scripting Host) is included in the Windows NT 4.0 Option Pack;
WSH version 2.0 (called Windows Script Host) is available from the web.

This white paper provides a brief overview of WSH and the Active Directory Service Interface
(ADSI). The paper is divided into two parts:

1. The first part (this document) describes both technologies and discusses the basic functions.

WHITE PAPER (cont.)

7 WSH and ADSI – Part 1

2. The second part goes further. Explaining how WSH and ADSI make an Administrator’s life
easier through practical scripting samples.

The capabilities described in this white paper are based on Windows 2000. Some changes may occur
with later builds.

WHITE PAPER (cont.)

8 WSH and ADSI – Part 1

PREREQUISITES
The reader should have an understanding of the following technologies before reading this document:

• VisualBasic Scripting

• How to use COM objects inside VisualBasic Scripting

• Windows 2000 Active Directory

• Windows 2000 concepts

To run sample scripts given in this document, you must have:

• Windows 2000 with Active Directory installed.

• Microsoft Excel 97 or Microsoft Excel 2000 installed.

WHITE PAPER (cont.)

9 WSH and ADSI – Part 1

WHAT’S N EW IN THIS UPDA TED VERS ION?
APPENDIX B on page 58 contains updated references and pointers.

WHITE PAPER (cont.)

10 WSH and ADSI – Part 1

WINDOWS SCRIPT HOST

Description
Windows Script Host is an infrastructure to run scripts. The implementation uses callable ActiveX
interfaces. This is a language-independent host allowing running scripts under Windows 9x,
Windows NT and Windows 2000. When executing a script for Windows Script Host, it can be run in
either of two modes:

• Command line mode (Cscript.EXE)

This engine will display the output as a regular batch file in a DOS Command prompt
(Cscript as Command Script). The default engine can be determined from the command line:

Cscript.Exe //H:Cscript

• Window mode (Wscript.EXE)

Instead of displaying messages in a DOS Command prompt, this engine will create a
message popup window to display each message (Wscript as Window script). The default
engine can be determined from the command line:

Wscript.Exe //H:Wscript

You can execute scripts with either engine; the results will be the same. However, running a script in
window mode will require user intervention each time a message is displayed. When invoking a script
from an interactive application, Wscript.Exe is a good choice. For a logon script, Cscript.Exe is
usually better.

Windows Script Host supports both the Visual Basic and Java script languages but the architecture
permits to extend this support to any other language by developing new ActiveX (i.e. Perl). At this
time, two separate versions of Windows Script Host exist. Each version handles different scripting
languages slightly differently. Both versions are structured around the scripting ActiveX interfaces.
This means that Windows Script Host reuses scripting components already used by other existing
applications such as Internet Explorer or Internet Information Server.

Figure 1 Microsoft Scripting architecture

IInntteerrnneett
EExxpplloorreerr

IInntteerrnneett
IInnffoorrmmaattiioonn

SSeerrvviicceess

WWiinnddoowwss
SSccrriippttiinngg

HHoosstt

OOtthheerr
aapppplliiccaattiioonnss

AAccttiivveeXX ssccrriippttiinngg iinntteerrffaacceess

MMiiccrroossoofftt
VVBBSSccrriipptt

PPeerrll ((SSeerrvviicceess
ffoorr UUNNIIXX))

TThhiirrdd ppaarrttyy
ssccrriipptt

eennggiinneess

MMiiccrroossoofftt
JJSSccrriipptt

WHITE PAPER (cont.)

11 WSH and ADSI – Part 1

Using Windows Script Host is not very difficult. If you know Visual Basic, it is easy to transform
many simple Visual Basic programs into WSH script files.

Windows Script Host has only one data type called a Variant. This means that the behavior of the
Variant type will change based on the context. If you use it with a text string, the variant will behave
like a string. If you use it with numbers, the variant will behave like a number.

The first Windows Script Host version (officially named Windows Scripting Host 1.0) is usable but
has some major restrictions. For instance, it is impossible to use an <include> statement inside a
script to reuse existing function from an external file. Under Windows Scripting Host v1.0, all of the
code must be physically in a single script file.

With the arrival of the next Windows Script Host version (officially named Windows Script Host 2.0)
in July 1999, some of the limitations of v1.0 were removed. Microsoft includes Windows Script Host
2.0 in the release of Windows 2000. Other platforms, such as Windows 9x and Windows NT, will
support this version as well. The WSH module can be downloaded from the Web (See Appendix B on
page 58).

The object model

Windows Script Host is a COM component provider. The architecture is based on two main COM
modules:

Figure 2 The Wscript object
Wscript.Exe: Implements the Wscript object and the WshArguments
object. This object is the main component used by any WSH script. It
provides all the basic functions used inside a WSH script.
Wshom.Ocx: This is an ActiveX control offering all other WSH objects.
(WshShell, WshNetwork, WshShortcut, WshUrlShortcut, WshCollection,
WshEnvironment, WshSpecialFolders)

Inside this object collection, only three objects are publicly available.
(Objects publicly available have a Prog ID defined in the Windows System.)
All other objects, even if they are defined in the Wsh Object model
(Wshom.Ocx) must be accessed through one of the three publicly available
objects: Wscript, Wscript.Shell and Wscript.Network.

Note: The Prog ID is an identifier of the COM object. To instantiate an
object in an application, use the Prog ID as a reference to the desired COM
object. Prog IDs are published in the registry HKCR\CLSID.

In Figure 2, the Wscript object is publicly (in green) visible from the
Windows Script Host run-time Wscript.Exe. The Wscript object is part of the
WSH run-time. So, it is not necessary to instantiate this object. It is available
by default in the WSH run-time environment.

On the other hand, the WshArguments object can only be accessed from the
Wscript object itself. This object is not publicly available (in red) because no

Prod ID is defined in the Windows system to access it directly. The only way to access the
WshArguments object is to refer to it via the Wscript object as:

WshArguments=CreateObject (Wscript.Arguments)

WHITE PAPER (cont.)

12 WSH and ADSI – Part 1

Note: A shortened version is used in the rest of the document to ease the presentation in the

figures: WshArguments=Wscript.Arguments
Figure 3 The Wscript.Shell object

The WshArguments object makes it possible to access arguments
passed from the command line to the script. Under WSH 2.0, this
object also supports the drag and drop function. From the Windows
Explorer, when a file is dropped on the script name, the dropped file
name is passed to the script as a regular command line parameter.

As shown in Figures 2, 3, and 4, each of the publicly accessible
WSH objects exposes properties and methods as any usual COM
object.

Note: The properties and methods listed in Figures 2, 3, and 4
are given as examples only; please refer to the Windows Script Host
command reference available from Microsoft for complete
properties and methods reference (See APPENDIX B on page 58)

The WshShell script object is publicly (in green) available via the
Prog ID Wscript.Shell. This object contains other objects with their
properties and methods and they must be accessed via the WshShell
object. In this case, objects not publicly available (in red) are:

• WshEnvironment,accessed via WshShell.Environment.
• WshShortCut, accessed via WshShell.CreateShortcut.
• WshURLShortCut, accessed via WshShell.CreateShortcut.
• WshSpecialFolder, accessed via WshShell.SpecialFolder.

Each object is related to a particular function.

WshShell allows you to manipulate the registry. With this object, a
script is able to read, write and delete keys and values from the
registry. WshShell also gives the ability to run an application from
within the script.

WshEnvironment gives access to four variable environments within
Windows 2000 (Volatile, Process, System and User). This object,
with its associated methods, allows reading, creating and deleting
variable values from the environment.

WshShortcut gives access to shortcut characteristics for shortcut
creation. All shortcut properties are represented.

WshURLShortcut, similar to the WshShortcut object, creates a
shortcut containing an URL. Only the extension of the shortcut
makes the difference between a traditional shortcut and an URL
shortcut.

WHITE PAPER (cont.)

13 WSH and ADSI – Part 1

WshSpecialFolder gives access to the special folders existing on the file system.

The meaning of the special folders are described by their names:

AllUsersDesktop
AllUsersStartMenu
AllUsersPrograms
AllUsersStartup
Desktop
Favorites

Fonts
MyDocuments
NetHood
PrintHood
Programs
Recent

SendTo
StartMenu
Startup
Templates

In the same way as the WshShell object, the
WshNetwork object is publicly (in green) available via
the Prog ID:

Wscript.Network

WshNetwork offers access to another object type
specifically related to enumerations. Enumerations
refer to the WshCollection object and are used to
enumerate network drive connections and printer
connections. These two WshNetwork object methods
allow access to the WshCollection object. The way to
access it is by referring to the WshNetwork object:

WshCollection=WshNetwork.Enum ...

Figure 4 The WshNetwork object

WHITE PAPER (cont.)

14 WSH and ADSI – Part 1

The Windows Script Host Capabilities

Based on the COM object model described in the previous section, you can see that the Windows
Script Host supports a variety of uses. Each version of WSH provides different levels of support.
Windows Scripting Host 1.0 provides the following features:

• Reading arguments on the command line
• Providing information on the running script itself
• Manipulating the variable environment
• Accessing network information (i.e. such as the current user)
• Creating, retrieving and deleting network drive mappings
• Running external programs
• Manipulating Desktop objects (i.e. creating shortcuts)
• Accessing the registry
• Using registered COM object methods and properties, such as MAPI, ADSI and WBEM (all

registered COM providers written for an automation language are usable from within WSH)
• Accessing the file system (via the Scripting.FileSystemObject object)

Windows Script Host 2.0 provides all the features supported by version 1.0 and adds new features
such as:

• Support for include files:
It is possible to write a function, put it in a separate file and make reference to that file when
you need to use the function.

• Support for multiple engines:
To permit a better reusability, you can mix languages inside the same script. So, it will be
possible to reuse a function written in JavaScript from a script developed in VBScript.

• Support for pausing a script.
• Support for Std In and Sdt Out pipe redirection.
• Support for Drag and Drop:

A script can be started simply by dragging and dropping a filename on the script name visible
in the Windows Explorer.

To get an overview of all new features provided by WSH version 2.0, look at:
http://msdn.microsoft.com/workshop/languages/clinic/scripting061499.asp

http://msdn.microsoft.com/workshop/languages/clinic/scripting061499.asp

WHITE PAPER (cont.)

15 WSH and ADSI – Part 1

US IN G BA S IC WSH FUNC TION S IN A WIND OWS 2000 LOGON
SCR IP T
All of the code presented in the following pages comes from a Logon Script sample included in the
Scripts Kit that accompanies this White Paper. Each basic WSH function is easy to reuse because it is
encapsulated in a callable VB script function.

Note: For more information about WSH reusable code, see the second part of this study called “The
powerful combination of WSH and ADSI under Windows 2000”.

Functions presented use some global variables declared in the beginning of the script. Be sure to
check the complete source code to know which variables are used internally in the functions.

The purpose of the sample codefragments is to show how to use WSH to get specific information, not
to show the complete Logon Script logic. Code has been removed in order to highlight the essential
WSH operations. Missing lines are represented by an ellipsis (“…:”).

Note: Most of the time, the missing code concerns error handling or the file logging tracing calls This
is why the reader will often see an objFileName parameter in all presented functions.

Providing information on the script environment and the Windows System
After the usual variable and constant declarations, the first operation is to instantiate the Wscript.Shell
and the Wscript.Network objects (lines 111 and 113 in Sample 1). It is important to keep in mind that
the only object available by default under WSH is the Wscript object. The three basic objects give
access to the whole set of information available about the WSH run-time environment.

Sample 1 Providing information on the running script and Windows System.
...:
...:
...:
107:' --
108:' Create WSH base objects.
109:
110:' For the Shell operations ---
111:Set WShell = Wscript.CreateObject("Wscript.Shell")
112:' For the Network operations ---
113:Set WNetwork = Wscript.CreateObject("Wscript.Network")
114:
115:' --
116:WShell.LogEvent 0, "Logon Script started."
...:
128:' --
129:' Get misc. information for script run-time environment.
130:
131:' Create variable commontly used in the logon script ---
132:' Information about misc. directories
133:strStartMenu = WShell.SpecialFolders("StartMenu") & "\"
...:
136:strSystemRoot = ReadEnvironmentVariable (objLogFileName, "Process", "SystemRoot") & "\"
137:strUserTemp = ReadEnvironmentVariable (objLogFileName, "User", "Temp") & "\"
...:
139:strSystem32 = strSystemRoot & "system32\"
...:
141:strAllUsersStartMenu = WShell.SpecialFolders("AllUsersStartMenu") & "\"
...:
144:

WHITE PAPER (cont.)

16 WSH and ADSI – Part 1

145:' Information about Network --
146:strDomainName = WNetwork.UserDomain
147:strUserName = WNetwork.UserName
148:strLocalComputerName = WNetwork.ComputerName
149:strLogonServerName = Mid (ReadEnvironmentVariable (objLogFileName, "Process", "LogonServer"), 3)
150:
151:' Information about script environment ---
152:strScriptName = Wscript.ScriptName
153:strScriptFullName = Wscript.ScriptFullName
...:
155:strScriptingName = Wscript.Name
156:strEngineFullName = Wscript.FullName
157:strEnginePath = Wscript.Path
158:strEngineVersion = Wscript.Version
...:
...:
...:

Once WSH basic objects are instantiated and made available, the script can assign miscellaneous information to script variables for
use in later processing. For instance, it is possible to know the File System path of the “current user’s Startup folder” (Line 133) or
the “All Users Startup Folder” (line 141). Note the appended backslash to the path to ease any future reuse.

Environment variables can be read by using a dedicated function (lines 136, 137 and 149). Instead of using the in-line coding of the
WSH methods to read environment variables, this operation is encapsulated in a function. This encapsulation allows bind the
function to other useful operations for a Logon Script, such as logging events to a trace file (See Sample 8 on page 24) or error
handling.

In a traditional NT Command file (.CMD), the way to identify the current user and his domain membership is to read the
environment variables %Username% and %UserDomain%. To determine the computer name, it is possible to read the environment
variable %ComputerName%. WSH offers another way to determine this information within a script (line 146 to 148) by using the
Wnetwork object (object instantiated at line 113).

Information about the script itself is also available through several properties of the WScript object (lines 152 to 158).

WSH is able to write a trace in the Windows 2000 application event log by using the Wshell.LogEvent method (line 116) to notify
the logon script startup.

Reading arguments from the command line
As with other scripts, command line arguments can be specified to WSH scripts. In the case of the
Logon Script sample, two arguments are accepted: Verbose (To log all the activity in a file) and
ErrorPopup (To popup any error during the Logon script execution). The sample below shows two
pieces of code:

• The first part (lines 163 to 182) verifies if the retrieved arguments are valid arguments accepted by

the script.
• The second part of the code (lines 806 to 833) gets the arguments typed on the command line. This

second part uses the WSH arguments object to read the command line. As input, the function gets
an object file pointer to log trace the operations (See Sample 8 on page 24) and an array pointer to
return the arguments list.

WHITE PAPER (cont.)

17 WSH and ADSI – Part 1

Sample 2 Reading arguments from the command line
...:
...:
...:
163:' --
164:' Command line argument reading. ('verbose'or nothing)
165:Dim intIndice
166:Dim strParameterList()
167:
168:If (ReadCommandLineArgument (objLogFileName, strParameterList)) Then
169: For intIndice = 0 to Ubound(strParameterList) - 1
170: Select Case Ucase (strParameterList (intIndice))
171: Case "VERBOSE"
172: boolVerbose = True
173: WShell.LogEvent 0, "'Verbose' mode enabled."
174: Case "ERRORPOPUP"
175: boolErrorPopup = True
176: WShell.LogEvent 0, "'ErrorPopup' mode enabled."
177: Case Else
178: WShell.LogEvent 1, "Invalid command line parameter detected: '" & _
179: strParameterList (intIndice) & "'."
180: End Select
181: Next
182:End If
...:
...:
...:
806:' --
807:Private Function ReadCommandLineArgument (objFileName, strParameterList)
808:
809:Dim objArguments
810:Dim intIndice
...:
816: Set objArguments = Wscript.Arguments
817:
818: If objArguments.Count = 0 Then
819: intRC = WriteToFile (objFileName, "No command line arguments given")
820: Else
821: ReDim strParameterList (objArguments.Count)
822: For intIndice = 0 To objArguments.Count - 1
...:
825: strParameterList (intIndice) = objArguments (intIndice)
826: Next
827: End If
828:
829: ReadCommandLineArgument = objArguments.Count
830:
831: Set objArguments = Nothing
832:
833:End Function
...:
...:
...:

The arguments are read by a new object: Wscript.Arguments (line 816). Command line parameters are stored in this object and are
accessible via an array index. A simple “For … Next” loop allows you to extract each command line argument separately (line 822
to 826). The argument separator is the space character. If an argument contains spaces, it must be enclosed by quotation marks. By
using the Count property, the script initializes the exact size needed for the array used to return the command line parameters list
(line 821)

WHITE PAPER (cont.)

18 WSH and ADSI – Part 1

Manipulating the environment variables

There are four types of environment variables: Process, User, System and Volatile. Each environment
type contains a specific set of variables. WSH offers methods to read, create and delete environment
variables. Each operation is encapsulated in a specific function for the Logon Script. Note that regular
Domain users do not have access to the System environment. The access to the System environment
requires administrative privileges.

Sample 3 Manipulating the environment variables
...:
...:
...:
136:strSystemRoot = ReadEnvironmentVariable (objLogFileName, "Process", "SystemRoot") & "\"
137:strUserTemp = ReadEnvironmentVariable (objLogFileName, "User", "Temp") & "\"
138:strSystemTemp = ReadEnvironmentVariable (objLogFileName, "System", "Temp") & "\"
...:
241:' --
242:' Create three new environment variables
243:intRC = CreateEnvironmentVariable (objLogFileName, "Process", "USERNAMEADsPath", strUserNameADsPath)
244:intRC = CreateEnvironmentVariable (objLogFileName, "Process", "USERNAMEDN", strUserNameDN)
245:intRC = CreateEnvironmentVariable (objLogFileName, "Volatile", "SITENAME", strLogonSiteName)
...:
695:' --
696:Private Function ReadEnvironmentVariable (objFileName, strEnvironmentType, strVarName)
697:
698:Dim objEnvironment
...:
706: ' Create a new variable via environment object.
707: Set objEnvironment = WShell.Environment (strEnvironmentType)
...:
713: ReadEnvironmentVariable = WShell.ExpandEnvironmentStrings (objEnvironment(strVarName))
...:
719: Set objEnvironment = Nothing
720:
721:End Function
722:
723:' --
724:Private Function CreateEnvironmentVariable (objFileName, strEnvironmentType, strVarName, varValue)
725:
726:Dim objEnvironment
...:
735: ' Create a new variable via environment object.
736: Set objEnvironment = WShell.Environment (strEnvironmentType)
...:
743: objEnvironment (strVarName)=varValue
...:
750: Set objEnvironment = Nothing
751:
752:End Function
753:
754:' --
755:Private Function RemoveEnvironmentVariable (objFileName, strEnvironmentType, strVarName)
756:
757:Dim objEnvironment
...:
765: ' Remove variable via environment object.
766: Set objEnvironment = WShell.Environment (strEnvironmentType)
...:
774: objEnvironment.Remove (strVarName)
775:
776: Set objEnvironment = Nothing

WHITE PAPER (cont.)

19 WSH and ADSI – Part 1

777:
778:End Function
...:
...:
...:

The initial operation is the instantiation of the Wshell.Environment object (lines 707, 736 and 766) to a specific environment type.
The environment variable to be accessed determines the environment type to select. For instance, to read the %SystemRoot%
variable, the script needs to access the Process environment. To read the %LogonServer% variable, the script must read the Volatile
environment.

A particular case of reading an environment variable is when an environment variable contains in its assignment another
environment variable name. This is the case for the %Path% variable. The %SystemRoot% variable is part of the %Path% value. To
resolve the content of the %Path% variable, the script must invoke the ExpandEnvironmentString method (line 713).

Creating, retrieving and deleting network connections

The network operations can be completed via the Wnetwork object. With this object, a script is able to
complete network drive or printer connections. The method is the same, only the parameters are
different if the script connects to a drive or to a printer.

Note: Under ADSI, much more network information can be retrieved; see the code examples

beginning with Sample 14 on page 50 for additional examples.

Some basic network information (such as the domain and username of the user currently logged in,
local machine name and logon server) can be retrieved as shown in Sample 1 on page 15 (line 146 to
149).

Sample 4 Creating, retrieving and deleting network connections
...:
...:
...:
271: intRC = EnumerateDriveConnections (objLogFileName)
272: intRC = ConnectNetworkDrive (objLogFileName, "V:", cHomeDirectoryRootShare)
273: intRC = EnumerateDriveConnections (objLogFileName)
274: intRC = DisconnectNetworkDrive (objLogFileName, "V:", True)
...:
509:' --
510:Private Function EnumerateDriveConnections (objFileName)
511:
512:Dim enumDrives
513:Dim intIndice
...:
519: Set enumDrives = WNetwork.EnumNetworkDrives
...:
526: If enumDrives.Count = 0 Then
527: intRC = WriteToFile (objFileName, "No drive to list.")
528: Else
529: intRC = WriteToFile (objFileName, "Current network drive connections:")
530: For intIndice = 0 To enumDrives.Count - 1 Step 2
531: intRC = WriteToFile (objFileName, enumDrives (intIndice) & " -> " & _
532: enumDrives (intIndice + 1))
533: Next
534: End If
535:
536:End Function
537:

WHITE PAPER (cont.)

20 WSH and ADSI – Part 1

538:' --
539:Private Function ConnectNetworkDrive (objFileName, strDriveLetter, strShareName)
...:
547: WNetwork.MapNetworkDrive strDriveLetter, strShareName
...:
554:End Function
555:
556:' --
557:Private Function DisconnectNetworkDrive (objFileName, strDriveLetter, boolConfirm)
558:
559:Dim intClick
560:
561: On Error Resume Next
562:
563: If boolConfirm Then
564: intClick = WShell.Popup ("Remove Network Drive connection '" & _
565: UCase (strDriveLetter) & "' (Y/N) ?", _
566: 0, _
567: "(LogonScript) Confirmation", _
568: cQuestionMarkIcon + cYesNoButton)
569: If intClick = cNoClick Then
570: Exit Function
571: End If
572: End If
...:
577: WNetwork.RemoveNetworkDrive strDriveLetter
...:
583:
584:End Function
...:
...:
...:

The script above shows how to enumerate the current network drive connections before creating a new drive connection (line 271,
272). The drive connection enumeration uses a specific object for this purpose (line 519). Once the enumeration object is created, a
“For … Next” loop can retrieve all existing connections (lines 530 to 533). The existence of connections is tested by the count
property available from the enumeration object (line 526). The connections are available as an array from the enumeration object.
Even array elements contain the drive letter used for the connection; odd array elements contain the Universal Naming Convention
(UNC) mapping used (lines 531, 532).

Note: The display output of the enumeration is written to a file by invoking the “WriteToFile” function. See Sample 8 on page 24

for more details about the “WriteToFile” function.

The connection and the disconnection methods are pretty easy to use. The connection needs the drive letter and the UNC (line 547).
The disconnection needs the drive letter only (line 577). To complete the disconnection process, a supplemental parameter (line 557,
parameter boolConfirm) is added to the function input. This parameter specifies whether the user needs to confirm the drive
disconnection (line 563 to 572). The user popup function is done via the Wshell object popup method (line 564).

Network printer connections use the same methods and logic. See the Logon Script sample provided in the Sample Scripts Kit
accompanying this White Paper for the complete sample functions.

Running external programs

This functionality is not used in the current Logon Script sample, but some circumstances may require
use of external applications. To start an application from a script, the Wshell object provides the run
method. Only one line is needed:

WHITE PAPER (cont.)

21 WSH and ADSI – Part 1

WshShell.run "Notepad.Exe", intWindowStyle, boolWait

The “intWindowStyle” parameter determines the window behavior of the started application. Based
on that value, the window will be hidden (0), normal active (1 or 5), minimized active (2), maximized
(3), visible but not activated (4) or minimized (6). These values can be assigned to meaningful
constants in the beginning of the script to make the code easier to read.
Note: One of these constants is used for the shortcut creation in Sample 5.

The “boolWait” parameter determines if the method has to wait until the started application is closed
to continue the script execution.

Creating shortcuts
WSH provides methods to create shortcuts in any folder available on the File System. Basically,
shortcuts can be created in any SpecialFolders such as the Desktop folder (See page 13 for the
SpecialFolders list). Shortcut creation is available directly from the Wshell object. The procedure is
relatively explicit. All parameters available from a traditional shortcut GUI can be referenced through
the objShortcut object in Sample 5 below.

Sample 5 Manipulating Desktop objects
...:
...:
...:
303:' --
304:' Create a Shortcut on the Desktop for this particular user.
305:Dim objShortCut
306:
307:intRC = WriteToFile (objLogFileName, "** Create a shortcut on the Desktop.")
308:
309:Set objShortCut = WShell.CreateShortCut(strDesktop & "\Windows Getting Started.Lnk")
310:objShortCut.Description = "Getting started with Windows NT Server"
311:objShortCut.Arguments = ""
312:objShortCut.HotKey = "ALT+CTRL+S"
313:objShortCut.IconLocation = strSystem32 & "\wizmgr.exe"
314:objShortCut.TargetPath = strSystem32 & "\wizmgr.exe"
315:objShortCut.WindowStyle = SW_SHOWNORMAL
316:objShortCut.WorkingDirectory = strSystem32
317:objShortCut.Save
...:
...:
...:

Accessing the registry
Access to the registry is available through the Wshell object. This object exposes three methods to
read, create and delete registry keys or registry key values. If the user security context has the required
permissions, any registry key can be accessed.

Sample 6 Accessing the registry
...:
...:
...:
198:strNTVersion = ReadRegistry (objLogFileName, _
199: "HKLM\SOFTWARE\Microsoft\Windows NT\CurrentVersion", _
200: "CurrentVersion", _
201: "REG_SZ")
...:

WHITE PAPER (cont.)

22 WSH and ADSI – Part 1

320:' --
...:
322:' Creating some "dummy" registry keys to show how to do.
323:intRC = WriteRegistry (objLogFileName, "HKCU\Software\Compaq\Registry Access", _
324: "ValueRegBinary", "REG_BINARY", 65534)
...:
336:Dim varRegValue
337:
338:varRegValue = ReadRegistry (objLogFileName, "HKCU\Software\Compaq\Registry Access", _
339: "ValueRegBinary", "REG_BINARY")
...:
347:' --
348:' Delete the registry (Be sure that user has right to create it)
...:
350:intRC = DeleteRegistry (objLogFileName, "HKCU\Software\Compaq\Registry Access", _
351: "ValueRegBinary")
...:
392:' --
393:Private Function ReadRegistry (objFileName, strKeyName, KeyValueName, strRegType)
394:
395:Dim strRegKey
396:Dim varRegKeyValue
397:
398:Dim strTempValue
399:Dim strChar
400:Dim strTemp
...:
408: strTempValue = WShell.RegRead (strRegKey)
...:
414: Select Case strRegType
415: Case "REG_BINARY"
416: For Each strChar In strTempValue
417: strTemp = Right("00" & hex(strChar), 2) & strTemp
418: Next
419: varRegKeyValue = "0x" & strTemp
420: Case "REG_DWORD"
421: varRegKeyValue = "0x" & Hex (strTempValue)
422: Case Else
423: varRegKeyValue = strTempValue
424: End Select
...:
429: ReadRegistry = varRegKeyValue
430:
431:End Function
432:
433:' --
434:Private Function WriteRegistry (objFileName, strKeyName, KeyValueName, strRegType, varRegKeyValue)
435:
436:Dim strRegKey
...:
440: strRegKey = strKeyName & "\" & KeyValueName
...:
453: WShell.RegWrite strRegKey, varRegKeyValue, strRegType
...:
459:End Function
460:
461:' --
462:Private Function DeleteRegistry (objFileName, strKeyName, KeyValueName)
463:
464:Dim strRegKey
...:
468: strRegKey = strKeyName & "\" & KeyValueName
...:
471: WShell.RegDelete strRegKey

WHITE PAPER (cont.)

23 WSH and ADSI – Part 1

...:
477: intRC = WriteToFile (objFileName, strRegKey & " -> DELETED")
478:
479:End Function
...:
...:
...:

The general rule for accessing the registry is to provide the following parameters:

• The Key Name
• The Key Value Name
• The Value for the given Key Name

All methods to manipulate keys have the same behavior. If the passed parameter ends with a backslash ‘\’, then the invoked method
addresses a key path. If the passed parameter does not end with a backslash ‘\’, then the invoked method addresses a key value
name. This is why the sample functions concatenate the key path and the key value name (line 408, 440 and 468). If the key value
name is empty, then the parameter passed to the WSH registry method ends with a backslash and will address a key name. In this
way, a single function can be used for both key names and key value names.

The only complexity in the sample code is the handling of binary values. A binary registry key value needs to be converted to a
hexadecimal string. This is the purpose of lines 416 to 419.

Using registered COM objects
Any COM object publicly available from the Windows system (and written for automation language
usage) can be instantiated from WSH. For instance, Message Application Programming Interface
(MAPI), Active Directory Service Interfaces (ADSI) and many other objects can be referenced from a
WSH script. For example, the Logon Script sample contains a function that shows the user the number
of unread mail in his mailbox. This function uses MAPI. MAPI is out of the scope of this White
Paper, but it is a nice feature to have in a Logon Script. Other samples using ADSI objects are
provided on page 50 and following pages.

Sample 7 Using registered COM objects
...:
...:
...:
979:' --
980:Private Function CheckMAPIMail (objFileName, strMAPIProfileName, strUserName, boolPrompt)
981:
982:Dim MAPISession
983:Dim MAPIMessages
...:
996: Set MAPISession = Wscript.CreateObject ("MSMAPI.MAPISession")
997: Set MAPIMessages = Wscript.CreateObject ("MSMAPI.MAPIMessages")
...:
1005: MAPISession.DownLoadMail = False
1006:
1007: ' Do not prompt the user for the MAPI profile, use the default
1008: MAPISession.LogonUI = False
1009: MAPISession.UserName = strMAPIProfileName
1010:
1011: ' Signon method.
1012: MAPISession.SignOn
....:
1018: MAPISession.NewSession = True

WHITE PAPER (cont.)

24 WSH and ADSI – Part 1

1019:
1020: ' Associate the MAPIMessages session to current opened MAPI session
1021: MAPIMessages.SessionID = MAPISession.SessionID
1022:
1023: MAPIMessages.FetchUnreadOnly = True
1024: MAPIMessages.Fetch
1025:
1026: ' Test the 'MAPIMessages.MsgCount' and skip prompting if equal to zero
1027: ' If counter is equal to zero, its needless to show this information.
1028: CheckMAPIMail = MAPIMessages.MsgCount
....:
1031: If MAPIMessages.MsgCount And boolPrompt Then
1032: WShell.Popup "Today, you have " & MAPIMessages.MsgCount & " unread mail(s).", _
1033: 0, _
1034: "(LogonScript) Hello, " & strUserName, _
1035: cInformationMarkIcon Or cOkButton
1036: End If
1037:
1038: ' Close the session.
1039: MAPISession.SignOff
1040:
1041: ' Flag for new session.
1042: MAPISession.NewSession = False
....:
1049:
1050:End Function
....:
....:
....:

Accessing the file system

The File System can be accessed from WSH via a specific object. It is important to understand that the
File System object is not an object provided by WSH. As MAPI can be used from WSH, the
FileSystem object follows the same rules. To access the File System, the script needs to instantiate the
File System object by its publicly available ProgID:

Scripting.FileSystemObject

Once created, the FileSystemObject offers several methods to manipulate files. A full examination of
the FileSystemObject is outside of the scope of this White Paper, but for more information about the
object please refer to APPENDIX B on page 58.

The Logon Script uses the FileSystem object to trace all the operations executed during Logon. The
purpose is to ease the troubleshooting of the logon process. Only three basic operations are used: file
creation, writing data to the open file and closing the file.

The trace logging function is important because once the Logon Script is published in the Windows
2000 Group Policies; it is executed in the background. Having a trace logging function based on a
parameter (‘verbose’ in Sample 2) will make it easier to locate any potential problems or errors during
the script execution.

Sample 8 Accessing the file system
...:
185: ' ---
186: ' Create the Text file for logging.
187: Set objLogFileName = CreateTextFile (strLogFileName)

WHITE PAPER (cont.)

25 WSH and ADSI – Part 1

...:
191:' Put a trace of logon script startup in log file.
192:intRC = WriteToFile (objLogFileName, "** Logon started " & _
193: FormatDateTime (Date, vbLongDate) & " at " & _
194: FormatDateTime (Time, vbShortTime) & ".")
...:
369:' --
370:intRC = WriteToFile (objLogFileName, "** Closing Log file.")
371:CloseTextFile (objLogFileName)
...:
1128:' --
1129:Private Function CreateTextFile (strFileName)
1130:
1131:Dim objFileName
1132:
1133: On Error Resume Next
1134:
1135: Set objFileSystem = Wscript.CreateObject ("Scripting.FileSystemObject")
....:
1141: Set objFileName = objFileSystem.CreateTextFile (strFileName, True)
....:
1147: Set CreateTextFile = objFileName
1148:
1149:End Function
1150:
1151:' --
1152:Private Function CloseTextFile (objFileName)
1153:
1154: If boolVerbose Then
1155: objFileName.Close
1156:
1157: Set objFileName = Nothing
1158:
1159: Wscript.DisconnectObject objFileSystem
1160: Set objFileSystem = Nothing
1161: End If
1162:
1163:End Function
1164:
1165:' --
1166:Private Function WriteToFile (objFileName, Text)
1167:
1168: If boolVerbose Then
1169: If Mid(Text, 1, 3) = "** " Then
1170: objFileName.WriteLine (Text)
1171: Else
1172: objFileName.WriteLine " " & Text
1173: End If
1174: End If
1175:
1176:End Function

Support for include files
Including external scripts in a main script enables code reusability. With WSH version 1.0, it was
mandatory to have one single file containing all the code with all the functions in it. A second script
was not able to reuse functions from that single file without copying and pasting code from one file to
the other. This process duplicates pieces of code and creates problems in terms of code maintenance.

Support for file inclusion is implemented in WSH version 2.0 through the use of XML sections. The
programmer can have several script files containing miscellaneous functions. By using the XML
sections, the programmer can refer to each file to reuse the defined functions.

WHITE PAPER (cont.)

26 WSH and ADSI – Part 1

This feature is examined in more detail in the second part of this white paper called “The powerful
combination of WSH and ADSI under Windows 2000”.

Support for multiple engines
Using include files allows the reuse of previously developed functions, but what about the language
used to code the included function? WSH version 2.0, based on the same XML sections principle,
allows the programmer to specify the language of the included function. In this case, the developer
can reuse a function written in JavaScript from a VB script (and vice versa).

This feature is examined in part 2 of this white paper called “The powerful combination of WSH and
ADSI under Windows 2000”.

Pausing a script

The ability to pause a script is not used in the current Logon Script sample. However, there are
circumstances where such a function can be useful. The WSH method is available from the Wscript
object and uses only one parameter: the number of milliseconds to pause the script.

Wscript.Sleep (MillSeconds)

Drag and Drop support
The drag and drop support is implemented in WSH version 2.0 only. This support enables the user to
start a script by dragging and dropping a file on the desired script name. From the programming point
of view, this is transparent because the dropped file name is presented to the script as an argument
from the command line. So, to capture a dropped file name, the script must use the logic of Sample 2
on page 17.

Standard Input and Standard Output

WSH version 2.0 provides support for standard input and output pipes. This new feature lets you pipe
input and output between scripts or any other applications from the command line. For instance, if you
type the following on the command line, output of the DIR command is piped to the script:

DIR | Cscript.Exe StdInOut.vbs

Sample 9 demonstrates how the output of the DIR command can be written to the standard output. Of
course, it was also possible to redirect the output to the standard error (Wscript.StdErr).

Sample 9 Standard Input and Standard Output usage
1:' VB Script demonstrating a Standard Input and Standard Output usage '
2:' '
3:' Version 1.00 - Alain Lissoir '
4:' Compaq Computer Corporation - Professional Services - Belgium - '
5:' '
6:' Any comments or questions: EMail:alain.lissoir@compaq.com '
7:
8:Option Explicit
9:
10:Dim strInputString
11:Dim stdOut, stdIn
12:

WHITE PAPER (cont.)

27 WSH and ADSI – Part 1

13:Set stdOut = WScript.StdOut
14:Set stdIn = WScript.StdIn
15:
16:Do While Not stdIn.AtEndOfStream
17:
18: strInputString = stdIn.ReadLine
19: stdOut.WriteLine "String piped: '" & strInputString & "'"
20:
21:Loop

WHITE PAPER (cont.)

28 WSH and ADSI – Part 1

ACT IVE DIREC TORY SER VICE INTERFAC ES

Description
ADSI stands for Active Directory Service Interfaces. ADSI is the primary interface to the Windows
2000 Active Directory. More than Windows 2000, ADSI provides access to many other data sources.
Some of them are:

• Windows NT 4.0 SAM Database

• Internet Information Server 4.0

• Site Server 3.0

• Exchange Server 5.5

• Netware 3x, 4.x and 5.0.

Using ADSI represents a direct benefit for administrators. ADSI gives easy access to objects in the
directory and OS. Scripts and programs can access these directory objects through COM interfaces.
Moreover, COM is the easiest way for scripts to communicate with some Operating System
components. Whatever the scripting language used (JavaScript, VBScript or Perl), the way in which
the COM object is used is independent. It is independent because the COM object itself exposes
available methods and properties. Of course, the language engine must be COM-aware to be able to
communicate with the object.

For instance, you can use ADSI from an ASP page to read or write specific data in an Exchange
Directory, but you can also use ADSI from Perl, JavaScript, or VBScript to create users in a NT 4.0
domain, or in an Active Directory Domain.

Each time an object in the Active Directory is accessed, a COM object method is used. Each time
some object properties are read (or written) from the Active Directory, COM methods and a set of
properties are used.

Combining the facility of Windows Script Host and ADSI provides the tool needed for powerful
logon scripts, unattended setup and remote administration.

Before ADSI, when an administrator (or developer) wanted access to some directory information, he
had to use a specific SDK. The SDK used depends on the platform accessed. Now, with this unified
way of programming, you can access Directory Service objects in a heterogeneous environment.

The main purpose of ADSI is to abstract the directory service. Even if a Directory Service can have a
specific name space, most ADSI objects are namespace independent (See APPENDIX A on page 56)

To bind to a data source, choose a name space provider. Several name space providers exist and they
each provide access to different data sources. Here are the available name spaces:

• LDAP: The LDAP name space provides access to the Windows 2000 Active Directory, the
Exchange Server Directory, a Netscape server Directory, or any other LDAP host

• WinNT: The WinNT name space provides access to the Windows NT 4.0 SAM database or
to a Windows 2000 Active Directory server seen as a NT 4.0 legacy system.

WHITE PAPER (cont.)

29 WSH and ADSI – Part 1

• IIS: The IIS name space provides access to the Internet Information Server 4.0 configuration
and settings. For instance, you can create a virtual directory configuration from a script by
using ADSI.

• NWCOMPAT: The NWCOMPAT name space provides access to a Netware server in
bindery mode (native NetWare server mode such as Novell 3.x servers).

• NDS: The NDS name space provides access to the Netware Directory Service available on
Netware 4.x and 5.x servers. Note that Novell also has a LDAP access to its Directory
service.

Figure 5 ADSI Service Providers

A service provider has to be used to access a name space. The service provider translates the ADSI
method into a Directory Service specific API (DS-Api) call. At this point, ADSI makes the abstraction
of the Directory accessed.

Of course, once a namespace is selected, there is a specific syntax related to that namespace. More
than this, the LDAP access has also to take into account the Directory structure to access objects. For
instance, the Exchange 5.5 Directory is not organized in the same way as a Windows 2000 Active
Directory, even if a script uses the same namespace (LDAP) to access them.

It is very important to understand that ADSI abstracts the way a directory is accessed, but not the
directory structure itself.

 NNeettWWaarree
bbiinnddeerryy

NNDDSS NNootteess
NNTTSS
DDSS LLDDAAPP

AAccttiivvee DDiirreeccttoorryy SSeerrvviiccee IInntteerrffaacceess

SSPPSSPPSSPPSSPP SSPP

WHITE PAPER (cont.)

30 WSH and ADSI – Part 1

ADSI implementation

ADSI
Non-Automation
Client Application

(C/C++, etc)

ADSI Automation
Client Application

(Visual Basic, VBScript, Java,
JScript, Active Server Page,
other scripting languages)

ADO
(ActiveX Data Objects)

OLE DB

OLE DB Provider

WinNT NW 3.x NDS LDAP ODBC

Pure COM
Interfaces

Pure COM
Interfaces

WinNT Provider NWCOMPAT
Provider NDS Provider LDAP Provider

ADSI Router
ADSI OLE DB

Provider

Automation
COM Interfaces

Automation
COM Interfaces

Automation
COM Interfaces

Automation
COM Interfaces

Figure 6 ADSI Architecture and language support.

Whatever the access mechanism, interaction with data sources can be done from many programming
languages. The language used (Automation or non-automation) determines the interface type used to
complete the task (See Figure 6 above). Note the particular access to the ADSI OLE DB provider via
ADO for the automation languages.

Note: Part two of this document named “The powerful combination of WSH and ADSI under
Windows 2000” will cover how to use this particular interface to make queries in the Active
Directory.

Behind the word “access”, it is important to understand that there are several types of operations
provided by ADSI, including:

• Bind to a DS object:

This operation links an application to an object of the Directory. The bind operation can be
executed in two forms: using the current credentials or using a specific credential. Using
specific credentials allows the script to override the security limitation of a user running the

WHITE PAPER (cont.)

31 WSH and ADSI – Part 1

application. In other words, the script can access objects in a different security context from
the application.

• Enumerate objects within a DS object:

Once binding is complete, it is possible to enumerate all the objects contained within the DS
object (that is, enumerating all the child objects present in a container).

• Read from and write to properties (attributes) of a DS object:

Changing a property on an object means that the object must be accessed first. To know
which properties are available for an object, it is mandatory to query the schema. The schema
will give information about the syntax to be used for each property access.

• Manage the schema of a DS:

One of the most important purposes of a Directory Service is to be extensible. This is why
there is a schema. The schema contains all the object classes, the properties associated to
objects, the property syntax and the relation between all of them. Having a schema permits to
add, remove, change objects published in the Directory Service. ADSI provides also a way of
access to the schema.

• Manage security on DS objects:

More than managing objects, changing the security on available objects is also possible. This
security management can also be executed through some ADSI SDK extensions. There are
some restrictions related to the name space used.

• Submit queries to a DS and return result sets:

ADSI is providing access through a given name space. More than this, ADSI is providing an
ADO read-only interface for searching the data source. When an application wants to make
perform a search through ADSI, it can connect to the OLE DB interface provided by ADSI.
The application can then submit a search in a query form in the same way as an SQL Query
(or a RFC LDAP syntax).

ADSI objects and namespaces

ADSI exposes a lot of publicly available objects. Most objects exposed by ADSI are objects
commonly used in the Active Directory. For instance, in the Active Directory Service, there is a user
object, so ADSI exposes an IADsUser interface.

When using an ADSI object, its behavior is determined by the namespace used to address the object.
For instance, under the LDAP namespace, a script can access the lastName attribute of a user object.
Under the WinNT namespace, this attribute is not available because ADSI takes care of what is
available in the directory.

Note: To list all of the objects (with methods and properties) that ADSI makes available would

necessitate an entire book into itself. Please refer to APPENDIX A on page 56 for a list of
available ADSI interfaces in regards of the name space used (or refer to the Microsoft Active
Directory Service Interfaces SDK help file for the complete list of supported interfaces and
properties. Make a search on “Provider Support of ADSI Interfaces” to locate the tables).

WHITE PAPER (cont.)

32 WSH and ADSI – Part 1

To ease the ADSI understanding, reader should concentrate on four big interfaces:
IADsOpenDSObject, IADs, IADsContainer, and Searches via ADO. Almost 90% of the Active
Directory tasks can be done using just these interfaces. Two others important ones are IADsUser and
IADsGroup.

WHITE PAPER (cont.)

33 WSH and ADSI – Part 1

HOW IS THE ACTIVE DIRECTORY STRUCTURED?
The Active Directory is a LDAP v3.0 accessible directory. Therefore, it is important to know how the
Active Directory looks from an LDAP point of view.

Note: This paper does not examine the Active Directory architecture. For more information on this,
please refer to the White Paper “Active Directory - A technical overview” by Micky
Balladelli.

The RootDSE
Any respectable LDAP v3.0 server has a RootDSE object. The purpose of this object is to provide
information about the directory service. The information is located in a set of attributes associated
with that object.

Under Windows 2000, when an application accesses the Active Directory Domain objects, it first
contacts the RootDSE to determine what is the default Windows 2000 Domain name. In the same
way, if it wants to get information about available object classes in the Active Directory (with their
associated attributes and syntaxes), it must access the Schema context. The Schema access path is also
published by one of those RootDSE attributes.

The RootDSE RFC definition can be found at http://www.rfc-editor.org/rfc/rfc2251.txt.

Here is the list of attributes available from a RootDSE object under Windows 2000:

currentTime: Current time set on this directory server.
subschemaSubentry: Distinguished name for the subSchema object. The subSchema

object contains attributes that expose the supported attributes (in
the attributeTypes attribute) and classes (in the objectClasses
attribute). The subschemaSubentry attribute and subschema are
defined in LDAP 3.0 (see RFC 2251).

dsServiceName: The distinguished name of the NTDS (NT Directory Server)
settings object for this directory server. This path can be helpful to
determine the links the server has with other partners.

namingContexts: Multi-valued. Contains a distinguished name for all naming
contexts stored on this directory server. By default, a Windows
2000 domain controller contains at least three contexts: Schema,
Configuration, and one for the domain of which the server is a
member.

defaultNamingContext: By default, the distinguished name for the domain of which this
directory server is a member. Under Exchange 5.5, the value
returned will be the organization name (o=OrgName)

schemaNamingContext: Distinguished name for the schema container.
configurationNamingContext: Distinguished name for the configuration container.
RootDomainNamingContext: Distinguished name for the first domain in the Forest that contains

the domain of which this directory server is a member.
SupportedControl: Multi-valued. Object Identifiers (OID) for extension controls

supported by this directory server.
SupportedLDAPVersion: Multi-valued. LDAP versions (specified by major version number)

supported by this directory server.

http://www.rfc-editor.org/rfc/rfc2251.txt

WHITE PAPER (cont.)

34 WSH and ADSI – Part 1

HighestCommittedUSN: Highest USN used on this directory server. Used by directory
replication.

SupportedSASLMechanisms: Security mechanisms supported for SASL (Simple Authentication
and Secutiry Layer) negotiation (see LDAP RFCs).

DnsHostName: DNS address for this directory server.
LdapServiceName: Service Principal Name (SPN) for the LDAP server. Used for

mutual authentication.
ServerName: Distinguished name for the server object for this directory server

in the configuration container.

Note: By default, Exchange 5.5 Server acts as an LDAP v3.0 server. This means that a RootDSE
object is accessible. This Exchange’s RootDSE object does not have all the same attributes
as a Windows 2000 Domain Controller. Listed below are the attributes available from an
Exchange 5.5 server RootDSE object:

• currentTime
• subschemaSubentry
• defaultNamingContext
• SupportedControl
• namingContexts
• HighestCommittedUSN

Sample 10: Looking at some RootDSE object’s attributes.
1:' VB Script accessing RootDSE object to show all associated attributes '
2:' '
3:' Version 1.00 - Alain Lissoir '
4:' Compaq Computer Corporation - Professional Services - Belgium - '
5:' '
6:' Any comments or questions: EMail:alain.lissoir@compaq.com '
7:
8:Option Explicit
9:
10:Dim objRoot
11:Dim strMember
12:
13:' ---
14:WScript.Echo
15:
16:WScript.Echo "Script RootDSE.vbs showing some RootDSE attributes"
17:WScript.Echo
18:
19:Set objRoot = GetObject("LDAP://RootDSE")
20:
21:' If we contact an Exchange server, we do not get an error for the Windows 2000 related attributes.
22:On Error Resume Next
23:
24:' These attributes are Windows 2000 related.
25:WScript.Echo "configurationNamingContext='" & objRoot.Get("configurationNamingContext") & "'"
26:WScript.Echo "RootDomainNamingContext='" & objRoot.Get("RootDomainNamingContext") & "'"
27:WScript.Echo "schemaNamingContext='" & objRoot.Get("schemaNamingContext") & "'"
28:
29:' These attributes are Windows 2000 and Exchange 5.5 related.
30:WScript.Echo "DefaultNamingContext='" & objRoot.Get("DefaultNamingContext") & "'"
31:WScript.Echo "currentTime='" & objRoot.Get("currentTime") & "'"
32:WScript.Echo "subschemaSubentry='" & objRoot.Get("subschemaSubentry") & "'"
33:WScript.Echo "defaultNamingContext='" & objRoot.Get("defaultNamingContext") & "'"
34:WScript.Echo "HighestCommittedUSN='" & objRoot.Get("HighestCommittedUSN") & "'"
35:

WHITE PAPER (cont.)

35 WSH and ADSI – Part 1

36:' We use a loop to examine a multi-valued attribute, so we get all the values
37:For Each strMember In objRoot.Get("SupportedControl")
38: WScript.Echo "SupportedControl='" & strMember & "'"
39:Next
40:
41:' We use a loop to examine a multi-valued attribute, so we get all the values
42:For Each strMember In objRoot.Get("namingContexts")
43: WScript.Echo "namingContexts='" & strMember & "'"
44:Next
45:
46:Set objRoot = Nothing
47:
48:WScript.Quit (0)

The sample above is getting the RootDSE object’s attributes (line 19). The next statement block gets RootDSE attributes existing
only for Windows 2000 (lines 25 to 27). An “On Error Resume Next” statement is set to avoid any problem if this script is run
with an Exchange 5.5 server (line 22). The next statement block is getting the attributes that are common to Windows 2000 and
Exchange 5.5 (lines 30 to 44). The last two blocks show how to get and display a multi-valued attribute (lines 37 to 44).

Note: See on page 41: “The object syntax differences” for more information about multi-valued attributes and how to retrieve

the information they contain.

The Naming Contexts
Once connected to the RootDSE, the script will have to access a naming context. The naming context
choice depends on the type of information the script must retrieve. Here are some sample questions:

• Q1: Do you want to have more information about an object or more about a syntax attribute?

• Q2: Do you want to read or change a site configuration in the organization?

• Q3: Do you want to read or change a user group membership?

Each of these questions is addressed by a different naming context. By looking at the RootDSE, it is
possible to know what is the exact path to use for each related naming context.

The three questions address the following naming contexts:

• SchemaNamingContext to get knowledge about the object and attributes available with the

syntax used by the attributes. (Q1) You are accessing the Directory Schema owned by one of the
Flexible Single Master Operations (FSMO) server role and replicated in the enterprise.

Note: For more information on FSMO roles, please refer to the White Paper: “Active Directory - A

technical overview” by Micky Balladelli.

• ConfigurationNamingContext to access sites and subnet definitions. (Q2)
• DefaultNamingContext or RootDomainNamingContext if the user object is in the same

Domain or in the Root Domain. (Q3)

Note: Exchange 5.5, has several naming contexts. The only difference is that the multi-valued
attribute called namingContexts must be used because the Exchange’s RootDSE does not
expose each available context as a separate attribute. The only context exposed as a
separate attribute is the defaultNamingContext containing the Exchange organization
name.

WHITE PAPER (cont.)

36 WSH and ADSI – Part 1

The Schema Naming Context

In addition to knowing its distinguished name, it is important to know which attributes are available
for an object. Most of the ADSI objects implement a COM interface for each available object in the
directory. (i.e. IADsUser, IADsComputer, …) Of course, this will only work for “standard” objects or
objects for which sufficient exposed information is available. What about objects not represented by
ADSI? What about an object’s attributes? We will see how we can use ADSI and the Active Directory
Schema to get information about objects, their available attributes and the syntax to be used for each
of those attributes.

The key is that everything resides in the Active Directory Schema. The Schema is the part of the
Directory containing all the possible object definitions present in the directory. Querying the Schema
is fundamental to knowing more about objects. The schema can also help you write code that is
independent of the object/ attributes used in a script.

The Schema Naming Context contains all the classes and attributes and is replicated throughout the
entire Forest.

The Configuration Naming Context

The Configuration Naming Context contains all the objects that represent the structure of the Active
Directory in terms of domains, Domain Controllers, sites, and other configuration type objects. It
shows the topology of the forest and is replicated throughout the forest.

All the objects and their attributes included in this context are defined in the Schema Naming Context.

The Domain Naming Context

The Domain Naming Context contains all the data within a domain. It is replicated only within the
domain.

All the objects and their attributes included in this context are defined in the Schema Naming Context.

The Default Naming Context

The Default Naming Context is a Domain Naming Context. Each Windows 2000 Domain Controller
is attached to a specific Windows 2000 domain. The Default Naming Context contains the name of
current domain.

All the objects and their attributes included in this context are defined in the Schema Naming Context.

The Root Naming Context

The Root Naming Context is a Domain Naming Context. It is the name of the Root domain in the
forest. Except from that, it looks like a regular Domain Naming Context.

All the objects and their attributes included in this context are defined in the Schema Naming Context.

WHITE PAPER (cont.)

37 WSH and ADSI – Part 1

ACCESSING THE DIRECTORY
By accessing the RootDSE, you are accessing the first visible part of the Windows 2000 Active
Directory. The following pages describe how to explore the directory.

The Binding operation

The Namespace

A bind operation is always performed in a specific namespace. Whatever the method used (GetObject
or OpenDSObject) a namespace must always be specified.

Note: See below: “Using other credentials” for more details about GetObject or OpenDSObject
methods.

Under Windows 2000, there are three native namespaces:

LDAP: This namespace will give access to the Windows 2000 Active Directory. By default, TCP
port 389 will be used as described by the RFC. This namespace will return all the accessed
objects in a syntax related to this LDAP directory namespace.

GC: This namespace will give access to the Windows 2000 Global Catalog. TCP port 3268 will
be used. This is a Microsoft implementation. The same type of access is possible by using
LDAP on port 3268 (Overwriting the default 389). The syntax of this namespace is the
same as the LDAP namespace.

WinNT: This namespace will give access to the NT namespace as it is under Windows NT 4.0. This
is a Microsoft implementation. Accessing a Windows 2000 system with this namespace
makes the Windows 2000 server look like a Windows NT 4.0 server. No object that is
specific to Windows 2000 will be visible or accessible. This is a compatibility access mode.

Note: Installing the Netware Client provides a new namespace called NDS:. This namespace is
not related to the Windows NT Domain.

Installing the Internet Information Server is providing a new namespace called IIS:. This
namespace is not related to the Windows NT Domain environment.

Note: Choosing a namespace implicitly defines the interfaces available for that namespace. Please
refer to the Microsoft Active Directory Service Interfaces SDK for a complete list of
supported interfaces in regards to the selected namespace. (Search for “Provider Support of
ADSI Interfaces”)

Using other credentials

Once you select a namespace to use, the security context used for the bind operation is determined.
ADSI provides two main methods for binding to an object:

• GetObject: A client calls the GetObject function to bind to an ADSI object. It takes an
LDAP path as input and returns a pointer to the requested interface. By default the binding
uses a secure authentication option with the security context of the current logged on
user. However, if the authentication fails, the secure bind is downgraded to an anonymous
bind, for example, a simple bind without any user credentials.

WHITE PAPER (cont.)

38 WSH and ADSI – Part 1

• OpenDSObject: A client calls the OpenDSObject function to bind to an ADSI object
using other credential than the current user security context. It takes an LDAP path as input
and returns a pointer to the requested interface. The major advantages of using
OpenDSObject are the following:

• The ability to specify an alternate user name and password to authenticate to the

directory.
• The ability to use encryption to protect the data exchange over the network between

application and the directory server
• The possibility to specify the authentication method to use.

Use the logged on user's credentials whenever possible. However, if an application needs to supply
alternate credentials, use OpenDSObject method.

The namespace used can have an influence in how the alternate credential is provided:

• Under the WinNT: namespace (Windows NT 4.0 and Windows 2000), use the form:

 “NTDomain\UserID”

• Under the LDAP: or GC: namespace (Windows 2000 only), use the form:

 “NTDomain\UserID”

• Under the LDAP: or GC: namespace (Windows 2000 only), use the form:

 “UserID@NTDomain.com”

• Under the LDAP: or GC: namespace (Windows 2000 only), use the form:

“CN=UserID,CN=Users,DC=NTDomain,DC=com”

Note: This form imposes a non-secure authentication.

• Under the LDAP: namespace (Exchange 5.5 only), use the form:

“cn=UserID,dc=NTDomain”

Note: All samples listed in this document use the GetObject method. This means that the security

context must have enough rights to run all the script properly. This approach was used to
simplify the understanding and the script code reading. (See Sample 11 on page 39 at line
19 and 32 for a GetObject sample)

The Distinguished Name

The Active Directory may contain several NT domains, each of those NT domains contain several
objects such as Computers, Users, Organizational Units, etc … Each of them has a position in the
hierarchical organization of the Active Directory. So, to access any of the available objects, the
programmer must be aware of their location in that structure. The location of an object is an LDAP
path. As we have a path to access files on a disk, we have a similar concept for the Active Directory
LDAP accesses.

The LDAP path is a type of fully qualified path name through the hierarchy of the Active Directory. It
is often associated with the distinguished name. We will see that the distinguished name is sometimes
a little bit different from the Active Directory real access path. It is mandatory to know this last

mailto:UserID@DNSDomain.com

WHITE PAPER (cont.)

39 WSH and ADSI – Part 1

property to access an object. Knowing only its name (or its relative distinguished name) as visible in
most of the Windows 2000 interfaces is not enough to bind an application to the object.

Which syntax to use?
To access an object via the bind operation, an object path in a proper syntax must be provided. We
will see that the syntax plays a role at two levels. It is important because the script will have to cover
both levels.

• ADsPath: To obtain the correct path syntax related to a name space, use a property
associated with each object by ADSI: ADsPath. This property returns a sort of distinguished
Name. In fact, this property most of the time (but there are exceptions) has a value equal to
the LDAP namespace pointer combined with the distinguishedName. This property is very
useful when an application needs to browse inside the Active Directory. Each time an object
container is discovered, it is possible to enumerate all of the objects it includes. Instead of
building the LDAP path to these objects by programming, it can query the ADsPath property
to have the exact path of objects listed in the container.

Note: This property is not part of the schema. This property is built when getting
information on the object (GetInfo method).

• Attribute: The syntax of an object attribute is determined by the definition stored in the
Schema. Knowing the attribute syntax is important when reading or updating its values. A
script must take care of this because ADSI returns value as Variant. It is important to know
how to manipulate them. A script will never handle data octetString type as it will handle
data DirectoryString type. Some tasks need to be executed to manipulate data correctly (type
conversion and adapted function calls).

The Namespace syntax differences

To illustrate the namespace difference, a simple script will show the Administrator’s group
membership on a Windows 2000 Domain Controller.

Sample 11: Getting Administrator's group membership from a Windows 2000 DC in different namespaces.
1:' VB Script showing the Administrator's group membership via two '
2:' different name spaces (WinNT: and LDAP) to show the name space '
3:' syntax differences. '
4:' '
5:' Version 1.00 - Alain Lissoir '
6:' Compaq Computer Corporation - Professional Services - Belgium - '
7:' '
8:' Any comments or questions: EMail:alain.lissoir@compaq.com '
9:
10:Option Explicit
11:
12:Dim objUser
13:Dim objMember
14:Dim strObjPath
15:
16:' ---
17:First access via the WinNT: namespace
18:strObjPath = "WinNT://MyW2KDomain/Administrator"
19:Set objUser = GetObject(strObjPath)
20:
21:WScript.Echo
22:WScript.Echo "ADSI Query via WinNT: namespace"

WHITE PAPER (cont.)

40 WSH and ADSI – Part 1

23:For Each objMember In objUser.Groups
24: WScript.Echo "'" & objMember.Name & "' has a ADsPath of '" & objMember.AdsPath & "'"
25:Next
26:
27:Set objUser = Nothing
28:
29:' ---
30:' Next access via the LDAP: namespace
31:strObjPath = "LDAP://CN=Administrator,CN=Users,DC=MyW2KDomain,DC=com"
32:Set objUser = GetObject(strObjPath)
33:
34:WScript.Echo
35:WScript.Echo "ADSI Query via LDAP: namespace"
36:For Each objMember In objUser.Groups
37: WScript.Echo "'" & objMember.Name & "' has a ADsPath of '" & objMember.AdsPath & "'"
38:Next
39:
40:Set objUser = Nothing

This sample uses two different namespaces (WinNT: and LDAP:) to demonstrate the syntax differences. To keep it simple, the
path to the Administrator object (line 18 and 31) is provided. In practice, the domain name of the Administrator should not be hard
coded but it should be looked up via the defaultDomainContext. This will provide the exact domain distinguished name. This
method is used in the Sample 10 on page 34.

When running this script, the following output is produced:

ADSI Query via WinNT: namespace
'Schema Admins' has a ADsPath of 'WinNT://w2k-home/Schema Admins'
'Enterprise Admins' has a ADsPath of 'WinNT://w2k-home/Enterprise Admins'
'Domain Admins' has a ADsPath of 'WinNT://w2k-home/Domain Admins'
'Domain Users' has a ADsPath of 'WinNT://w2k-home/Domain Users'
'Group Policy Admins' has a ADsPath of 'WinNT://w2k-home/Group Policy Admins'
'Administrators' has a ADsPath of 'WinNT://w2k-home/Administrators'

ADSI Query via LDAP: namespace
'CN=Group Policy Admins' has a ADsPath of 'LDAP://CN=Group Policy Admins,CN=Users,DC=w2k-
home,DC=com'
'CN=Domain Admins' has a ADsPath of 'LDAP://CN=Domain Admins,CN=Users,DC=w2k-home,DC=com'
'CN=Domain Users' has a ADsPath of 'LDAP://CN=Domain Users,CN=Users,DC=w2k-home,DC=com'
'CN=Enterprise Admins' has a ADsPath of 'LDAP://CN=Enterprise Admins,CN=Users,DC=w2k-home,DC=com'
'CN=Schema Admins' has a ADsPath of 'LDAP://CN=Schema Admins,CN=Users,DC=w2k-home,DC=com'
'CN=Administrators' has a ADsPath of 'LDAP://CN=Administrators,CN=Builtin,DC=w2k-home,DC=com'

The WinNT: namespace uses a very different syntax compared to the LDAP: namespace. It is important to use the correct path
related to the namespace to access objects. This is important when writing an ADSI browser because this kind of application must
be namespace independent. For such a case, ADSI provides the path and the syntax to use.

In addition to a classic naming variation caused by the presence of “CN=” (“DC=”, or “o=”) in some
cases the pathname of the object itself changes. For instance when a name has a backslash (\)
included, the name coding must be adapted. Under Windows 2000, a good example of a name with a
slash is the subnet name associated with a site. When a subnet is created with the MMC plug-in
“Active Directory Sites and Services”, a name in the form: 200.200.200.0/24 must be provided. This
means that the distinguishedName property is:

CN=200.200.200.0/24,CN=Subnets,CN=Sites,CN=Configuration,DC=w2k-home,DC=com

But the property ADsPath for that particular object is:

LDAP://CN=200.200.200.0\/24,CN=Subnets,CN=Sites,CN=Configuration,DC=w2k-home,DC=com

WHITE PAPER (cont.)

41 WSH and ADSI – Part 1

(Note the backslash before the /24)

This example shows the importance of using the ADsPath property of an object. If this property is not
available, the script (or application) has to take care of this. In terms of string manipulation, this may
complicate the programming.

Note: Active Directory Service Interfaces SDK includes specific methods to convert an ADsPath
to a distinguishedName. Search for the IADsPathname interface in the Microsoft Active
Directory Service Interfaces SDK for more information).

Another possible source to convert ADsPath to a distinguishedName is to use the Windows
2000 Resource Kit. It contains an IADSTOOLS.DLL. This .DLL exposes several functions
to convert, extract and manipulate miscellaneous data coming from the Active Directory.

In a default Windows 2000 installation, there is another object that uses a slash in its name:

CN=DIRECTORY/MYW2KDC,CN=RpcServices,CN=System,DC=w2k-home,DC=com

The conclusion is that it is recommended to use the ADsPath for the bind operation. It should not be
confused with the distinguishedName property. The distinguishedName property is not always
usable to bind to objects. In the case of the last sample, this will create a binding error.

The object syntax differences

In the Active Directory, objects have different natures and different meaning. The way they are
encoded in the Active Directory is adapted to the content. Each object in the Active Directory has a
syntax. The syntax is located in the schema. By querying the syntax of an object’s attribute, the script
will get the necessary information to handle the returned value properly.

When manipulating values, it is important to know if the attribute is multi-valued or not. This means
that the script must take in to account the fact that the attribute may have several values. In the case,
the attribute is an array. Obviously, from the programming point of view, a single variable is not
manipulated in the same way as an array.

The Active Directory provides all this information. The script must take this particularity in
consideration.

Discovering the syntax of an object

As there is an ADsPath object property, there is also a Schema path property for an object. By using
this property, it is possible to determine the attribute list associated with an object and the exact syntax
of each associated attribute.

Sample 12: Accessing the syntax of an attribute
1:' VB Script showing the attributes syntax differences from a user object '
2:' '
3:' Version 1.00 - Alain Lissoir '
4:' Compaq Computer Corporation - Professional Services - Belgium - '
5:' '
6:' Any comments or questions: EMail:alain.lissoir@compaq.com '
7:
8:Option Explicit
.:
17:' ---
18:' Get the default Windows 2000 Domain name
19:Wscript.Echo "Binding to RootDSE to get default Domain Name"
20:Wscript.Echo

WHITE PAPER (cont.)

42 WSH and ADSI – Part 1

21:Set objRoot = GetObject("LDAP://RootDSE")
22:strDefaultDomainName = objRoot.Get("DefaultNamingContext")
23:Set objRoot = Nothing
24:
25:' Create the Distinsguished Name (DN) by adding the default Windows 2000
26:' Domain name to the user name.
27:strUserDN = "CN=Administrator,CN=Users," & strDefaultDomainName
28:
29:' ---
30:' Bind to the user object
31:Wscript.Echo "Binding to '" & strUserDN & "'"
32:Wscript.Echo
33:Set objUser = GetObject("LDAP://" & strUserDN)
34:
35:' ---
36:' Bind to the class definition (User) path of the selected object.
37:Wscript.Echo "Binding to '" & objUser.Schema & "'"
38:Wscript.Echo
39:Set objUserClass = GetObject(objUser.Schema)
40:
41:' ---
42:Wscript.Echo "Show the 'sAMAccountName' syntax attribute of '" & strUserDN & "'"
43:
44:Set objProperty = GetObject(objUserClass.Parent + "/sAMAccountName")
45:WScript.Echo objProperty.Name & " (Syntax=" & objProperty.Syntax & ")" & _
46: " (Multi-Valued=" & objProperty.Multivalued & ")"
..:
51:' ---
52:Wscript.Echo "Show the 'objectSid' syntax attribute of '" & strUserDN & "'"
53:
54:Set objProperty = GetObject(objUserClass.Parent + "/objectSid")
55:WScript.Echo objProperty.Name & " (Syntax=" & objProperty.Syntax & ")" & _
56: " (Multi-Valued=" & objProperty.Multivalued & ")"
..:
..:
..:

In Sample 12 above, the user path is not explicitly provided. The RootDSE (lines 21 and 22) object knows the default Domain
Name (defaultNamingContext attribute). This distinguished name is concatenated to the user name with respect to the syntax
(line 27). By default Windows 2000 locates all the users in the CN=Users container. If a script needs to look after users created
elsewhere in the Active Directory (i.e. in other “organizationalUnit”), the programmer has two choices:

• Knowing the correct distinguishedName property, a valid ADsPath can be built.

• A search using the ADO interface provided by ADSI. That method will suppress the need to know the
distinguishedName property of an object because the query result will provide the answer.

As the bind to the user ‘Administrator’ object (line 33) is complete, it is possible to know what’s the schema path for this user. In
this case, a user object is examined (known as a class ‘user’ object). This ‘user’ class is defined somewhere in the schema. The
schema path is giving a pointer to the exact location of this class definition (line 39). The schema can be queried to get information
about the syntax of two particular attributes: the sAMAccountName and the objectSid (lines 44 and 54). These two attributes are
chosen in the example because there are using a totally different syntax. Running the script will have the following display output.

Binding to RootDSE to get default Domain Name
Binding to 'CN=Administrator,CN=Users,DC=w2k-home,DC=com'

Binding to 'LDAP://schema/user'

Show the 'sAMAccountName' syntax attribute of 'CN=Administrator,CN=Users,DC=w2k-home,DC=com'
sAMAccountName (Syntax=DirectoryString) (Multi-Valued=False)

WHITE PAPER (cont.)

43 WSH and ADSI – Part 1

Show the 'objectSid' syntax attribute of 'CN=Administrator,CN=Users,DC=w2k-home,DC=com'
objectSid (Syntax=OctetString) (Multi-Valued=False)

As can be seen, the sAMAccountName attribute is a DirectoryString and the objectSid attribute is an OctetString. Both attributes
are single valued. When handling those attribute values in a script, the developer must be aware of their respective types.

Discovering the Directory Tree, Objects, attributes and syntaxes

Now we are able to find some attributes from the Active Directory. Looking from the RootDSE
object, we know how to access an object and its attributes. What about all the other objects? What
about their attributes and their syntaxes? What about unknown objects present in the Active
Directory? Is there documentation about this? The answer to all of those questions is same: “The
information is located in the Active Directory Schema”.

The solution is to have a script able to extract the interesting information from the Active Directory
Schema. The script should be able to determine if an object has attributes and for those attributes
what’s the associated syntax. This is the purpose of the script Sample 13 below. This will help to
determine what needs to be done to access the desired data.

To do so, the MandatoryProperties and OptionalProperties methods are used from any object class
definition. Those two ADSI methods return the list of all available attributes for an object class. This
script is exactly the same as Sample 12. The only difference is that two new loops are inserted. The
first loop is to browse the Active Directory through a recursive routine looking if there are some
available objects inside the examined object (container) (lines 78 to 97). The second loop is to list all
the mandatory and optional attributes defined in the schema for the object’s class (lines 117 to 133).

The script does not display the results at the Command Prompt. You must have Excel installed on the
machine where you intend to run this script. The results of the browsing operation are loaded into an
Excel sheet. The use of Excel makes the output easier to read because a lot of data is produced.

Sample 13: Loading the entire Active Directory Tree objects with their attributes and syntaxes loaded in an Excel sheet.
1:' VB Script loading all objects from an AD context location into an Excel sheet '
2:' (with attributes and syntaxes) '
3:' '
4:' Version 1.00 - Alain Lissoir '
5:' Compaq Computer Corporation - Professional Services - Belgium - '
6:' '
7:' Any comments or questions: EMail:alain.lissoir@compaq.com '
8:
9:Option Explicit
10:
11:' Set this constant to zero, if you don't want indentation in the Excel Sheet
12:Const cIndent = 1
..:
21:' ---
22:' Start the Excel Worksheet reading
23:Public objXL
24:
25:' Bind to an Excel worksheet object
26:Set objXL = WScript.CreateObject("EXCEL.application")
..:
37:' ---
38:intY = 0
39:intX = 0
..:
61:WScript.Echo strObject
62:objXL.activecell.offset(intY, intX).Value = strObject

WHITE PAPER (cont.)

44 WSH and ADSI – Part 1

63:
64:Call LookInsideObject ("LDAP://" & strObject , intX + cIndent)
..:
75:WScript.Quit (0)
76:
77:' ---
78:Private Sub LookInsideObject (strObject, intX)
79:
80:Dim objObject
81:Dim objObjectClass
82:Dim objMember
83:
84: Set objObject = GetObject(strObject)
85: Set objObjectClass = GetObject(objObject.Schema)
86:
87: WScript.Echo Space (intX) & objObject.Name
88: Call GetMemberInfo (objObject, objObjectClass, intX)
89:
90: For Each objMember in objObject
91: Call LookInsideObject (objMember.ADsPath, intX + cIndent)
92: Next
93:
94: Set objObjectClass = Nothing
95: Set objObject = Nothing
96:
97:End Sub
98:
99:' ---
100:Private Sub GetMemberInfo (objObject, objObjectClass, intX)
101:
102: intY = intY + 1
103:
104: objXL.activecell.offset(intY, intX).Value = objObject.Name
105: objXL.activecell.offset(intY, intX + 1).Value = objObject.Class
106: objXL.activecell.offset(intY, intX + 2).Value = objObject.ADsPath
107:
108: ' Show object's mandatory attributes with syntax
109: Call LoadPropertiesInXL (objObjectClass.MandatoryProperties, objObjectClass, intX)
110:
111: ' Show object's optional attributes with syntax
112: Call LoadPropertiesInXL (objObjectClass.OptionalProperties, objObjectClass, intX)
113:
114:End Sub
115:
116:' ---
117:Private Sub LoadPropertiesInXL (PropertyList, objObjectClass, intX)
118:
119:Dim strProperty
120:Dim objProperty
121:
122: For Each strProperty in PropertyList
123: Set objProperty = GetObject(objObjectClass.Parent + "/" + strProperty)
124:
125: intY = intY + 1
126: objXL.activecell.offset(intY, intX).Value = objProperty.Name
127: objXL.activecell.offset(intY, intX + 1).Value = objProperty.Syntax
128: objXL.activecell.offset(intY, intX + 2).Value = objProperty.Multivalued
129:
130: Set objProperty = Nothing
131: Next
132:
133:End Sub
...:
...:

WHITE PAPER (cont.)

45 WSH and ADSI – Part 1

The key to the script resides in the recursive effect. Each time a bind to an object is done (after displaying its attributes with their
syntax at line 88) a “For Each” loop (line 90) is performed to determine if this object contains other objects. This is very important
because the recursive loop gives an answer to a fundamental question when browsing the Active Directory: Is the object a
container? This information is also available from an object attribute but it is not necessary to query that characteristic, as the
“For Each” loop will take care of this.

The code is somewhat less readable than before. This is due to the Excel COM object references needed to load the huge volume
of information retrieved. If this script is run in a default Windows 2000 installation, it will produce a very manageable Excel sheet
size (± 500K). Of course, it is not recommended to use this script in a production environment with thousands of users and
servers. The purpose of the Sample 13 is to help find the information needed during the script development phase.

By default, Sample 13 looks for the distinguished name of the defaultNamingContext. If no parameter is specified on the
command line, the script will prompt the user for a distinguished name start point. This script will act transparently and will get a
list of the available objects with their attributes and associated syntax. This “low cost browser” can be very useful. The data
contained in the Excel sheet was used to write all the samples in this document

Below is a partial screen output from running the script. Each time a container is found by the “For Each” loop the script what the
object it includes.

DC=dev,DC=w2k-home,DC=com
DC=dev
CN=Builtin
CN=Account Operators
CN=Administrators
CN=Backup Operators
CN=Guests
CN=Print Operators
CN=Replicator
CN=Server Operators
CN=Users
CN=Computers
OU=Domain Controllers

… continue …

Getting and setting object’s attribute values in respect of the syntax

Once the syntax (DirectoryString, OctetString, …) and the value attribute form (Multi-valued, single-
valued) are known, some retrieval-adapted methods are used depending on theses characteristics.
Unfortunately, we are not living in a perfect world. There is still a last tricky characteristic to deal
with. Some objects, as the User Object, have three specific attribute types:

(Extracted from the ADSI SDK)
• Domain-replicated, stored attributes

Some attributes are stored in the directory (such as cn, nTSecurityDescriptor, objectGUID,
…) and replicated to all domain controllers within a domain. A subset of these attributes is
also replicated to the global catalog. If a script enumerates the attributes of a user object from
the global catalog, only the attributes that are replicated to the global catalog are returned.
Some attributes are also indexed. Including an indexed attribute in a query improves its
performance.

• Non-replicated, locally stored attributes

Non-replicated attributes are stored on each domain controller but are not replicated
elsewhere (such as badPwdCount, lastLogon, lastLogoff, and so on). The non-replicated

WHITE PAPER (cont.)

46 WSH and ADSI – Part 1

attributes are a attributes that pertain to a particular domain controller. For example,
lastLogon is the last date/time that the user's network logon was validated by the particular
domain controller that is returning the attribute. These attributes can be retrieved in the same
way as the domain-wide attributes described previously. However, for these attributes, each
domain controller stores only values that pertain to that particular domain controller. For
example, to get the last time a user logged on to the domain, the lastLogon attribute for the
user at every domain controller in the domain has to be read, the times compared, and then
the latest time can be found.

• Non-stored, constructed attributes

A user object also has constructed attributes that are not stored in the directory but are
calculated by the domain controller (such as canonicalName, distinguishedName,
allowedAttributes, ADsPath, …). Most are automatically retrieved and cached when
getting attribute value on the object. However, some constructed attribute are not set and
therefore require a specific method to explicitly retrieve them. For example, the
canonicalName is not retrieved by a traditional Get method. The attribute is constructed
when invoking the GetInfoEx method.

The attribute characteristic is also located in the Active Directory Schema. An attributeSchema
definition (which is nothing more than the definition of an object located in the Schema context) has
an attribute called systemFlag. That is where this supplemental information is stored. This means that
the script must bind to the attributeSchema related to the attribute for which this information has to
be retrieved.

The layout of the systemFlag is explained in the ADS_SCHEMA_SYSTEMFLAG enumeration
defined in the Microsoft Active Directory Services Interfaces SDK. Here are the existing values and
their meaning:

• ADS_SYSTEMFLAG_DISALLOW_DELETE

The attribute cannot be deleted.
• ADS_SYSTEMFLAG_CONFIG_ALLOW_RENAME

The configuration attribute can be renamed.
• ADS_SYSTEMFLAG_CONFIG_ALLOW_MOVE

The configuration attribute can be moved.
• ADS_SYSTEMFLAG_CONFIG_ALLOW_LIMITED_MOVE

The configuration attribute can be moved with restrictions.
• ADS_SYSTEMFLAG_DOMAIN_DISALLOW_RENAME

The domain attribute cannot be renamed.
• ADS_SYSTEMFLAG_DOMAIN_DISALLOW_MOVE

The domain attribute cannot be moved.
• ADS_SYSTEMFLAG_CR_NTDS_NC

Naming context is in NTDS.
• ADS_SYSTEMFLAG_CR_NTDS_DOMAIN

Naming context is a domain.
• ADS_SYSTEMFLAG_ATTR_NOT_REPLICATED

The attribute is not to be replicated.
• ADS_SYSTEMFLAG_ATTR_IS_CONTRUCTED

The attribute is a constructed attribute.
To acquire the systemFlag, Sample 13 on page 43 is not sufficient. The next part of this study will
complete Sample 13 to provide the missing information. For this, a search function is needed. The

WHITE PAPER (cont.)

47 WSH and ADSI – Part 1

advanced part of the study shows how to build a search function and how to use it to complete this set
of information coming from the Active Directory Schema. (See Part 2: “The powerful combination of
WSH and ADSI under Windows 2000”) The purpose is to get the right attribute in the right way.

Which methods to use to manipulate ADSI data?

To summarize, getting an attribute value from an object in the Active Directory requires knowing
several things:

• The Active Directory context of the desired object. (DefaultNaming Context, SchemaNaming

Context, ConfigurationNaming Context)
• The Active Directory location of the desired object in the selected context (ADsPath).
• The object attribute name desired. (distinguishedName, canonicalName, lastName)
• The syntax of the desired attribute. (OctetString, DirectoryString)
• The value type of the desired attribute. (Multi-valued)
• The attribute type. (Domain-replicated, stored attributes, Non-replicated, locally stored attributes,

Non-stored, constructed attributes)

Once characteristics of the objects and their related attributes are known, it is possible to access the
information in respect of that information. With the IADs interface, ADSI provides several methods to
get or set values from/to Active Directory objects:

• Get Method
Individual attributes can be retrieved from the directory using the Get method.

Value = Object.Get (“attributeName”)

With automation languages, the attribute name can be directly used with the dot notation if the ADSI
COM object implements a property for it:

Value = Object.COMpropertyName

• GetEx Method

Some attributes are returned as multiple values. They can contain one or more values. For instance, a
list of descriptions on a domain is a multi-valued attribute. A multi-valued attribute can be retrieved as
an array using the GetEx method.

objList = Object.GetEx("MultiValuedPropetyName")

For Each Element In objList
 Wscript.Echo Element
Next

GetEx gets attributes that support single or multiple values in variant structures from the property
cache.

WHITE PAPER (cont.)

48 WSH and ADSI – Part 1

• GetInfo Method

The GetInfo method is used to refresh ADSI object's cached attributes from the underlying directory
service. ADSI invokes an implicit GetInfo if a Get is performed on a specific attribute in the property
cache and no value is found. Once GetInfo has been called, an implicit call will not be repeated. If a
value already exists in the property cache, however, calling Get without first calling GetInfo will
retrieve the cached value rather than the most current value from the underlying directory. To obtain
the most recent values for an object, always call GetInfo. Any changes made in the property cache
will be replaced with the current values from the server.

Object.GetInfo

• GetInfoEx Method

The GetInfoEx method is called explicitly to refresh some ADSI object's cached properties from the
underlying namespace. To refresh all properties, use GetInfo. GetInfoEx gets specific current values
for the attributes of an Active Directory object from the underlying directory store, refreshing the
cached values.

Object.GetInfoEx Array("description", "distinguishedName", “canonicalName”), 0

After this call, the cache reflects the attribute values in the underlying namespace directory store.
However, the cache is only updated with the values specifically requested in the GetInfoEx call.

Some servers will not return all attributes of an object in response to a GetInfo call. In this case, an
explicit GetInfoEx call naming these "non-default" attributes (such as the “Non-stored, constructed
attributes”) has to be done in order to get them in the cache. As shown in the example, GetInfoEx is
the only way to get the canonicalName attribute in the cache because it is a constructed attribute.

• Put Method

The Put method saves the value of a named Active Directory object attribute into the property cache.
This value is not updated in the underlying directory service until SetInfo is called.

Object.Put “description”, strDescription

• PutEx Method

The PutEx method uses the name of an attribute to save a single or multi-valued attribute into the
property cache. This overwrites any value in the property cache. The values in the cache are not
written to the underlying directory service until a SetInfo occurs. The first argument of PutEx
indicates whether you want to clear, update, add or append to any existing attribute value.

Const ADS_PROPERTY_CLEAR = 1
Const ADS_PROPERTY_UPDATE = 2
Const ADS_PROPERTY_APPEND = 3
Const ADS_PROPERTY_DELETE = 4

 Object.PutEx ADS_PROPERTY_APPEND, "siteList", Array(strSiteOne, strSiteTwo)

In the example, two new sites are appended to the existing siteList attribute.

WHITE PAPER (cont.)

49 WSH and ADSI – Part 1

• SetInfo Method

The SetInfo method saves the current object attribute values from the property cache to the underlying
directory store. This is analogous to flushing a buffer out to disk.

SetInfo will update objects that already exist in the directory or create a new directory entry for newly
created objects.

At the time of the SetInfo call, if any property cache values were written with a PutEx control code
such as ADS_PROPERTY_UPDATE or ADS_PROPERTY_CLEAR, then the appropriate requests
are passed on to the underlying directory service.

Object.SetInfo

Important ! SetInfo is always an explicit call. It is never called implicitly. It is the programmer’s
responsibility to invoke that method at the right time to commit all the changes to the underlying
directory.

WHITE PAPER (cont.)

50 WSH and ADSI – Part 1

COMPLET IN G T HE WSH F UNCT IONS S ET WIT H ADSI
INF OR MAT ION

Once a Logon Script is started by the Windows 2000 Group Policies configurations, it can be useful to
enhance the set of information available from the scripting environment, WSH. ADSI is able to
provide in the script run-time environment many other Active Directory data.

The information available from ADSI complementary data set can be about the user currently
executing the Logon script (i.e. Full Name, Email address), but also about the current site location of
this user. The following section explains how to access and use this information from a logon script

Getting the user’s distinguished name

Getting the user’s distinguished name from a Logon script is a particular case because it needs to
locate the user object in the Active Directory to know its distinguished name. This is a chicken and
egg problem. “How do I know the user’s distinguished name if the script is not yet bound to the user
object, whereas the script needs at least to know the distinguished name to make the bind operation?”

Of course, the script developer can assume the default user object location in the CN=Users container.
But this is not realistic because any user object can be located in any other container (such as
organizational units). Assuming the default will never be usable in practice.

Another difficulty is to know the username from the script environment. The only thing you know
from such context is the username provided by the environment variable or the username provided by
the Wnetwork object (See Sample 1 on page 15). Under Windows 2000, a user can logon by using the
down level client form (DomainName\UserName) or the UPN (User Principal Name) form
(firstname.lastname@DomainName.Com)

A solution is to launch a query from the script in the Active Directory (or in the Global Catalog) to
locate the user object using this down level or UPN name. This will seriously complicate the Logon
script development.

To address the problem, Microsoft provides an ADSI interface called IADsSystemInfo. This object
exposes attributes providing useful information about the current user logged in the system.

Note: ADSI 2.5 does not expose the IADsSystemInfo interface. This is an ADSI object only

available under Windows 2000.

Sample 14 Getting the user distinguished name
...:
...:
...:
219:' Bind to the IADsSystemInfo to get current system and user information. ---------------------------
220:Dim objSysinfo
221:
222:Set objSysinfo = CreateObject("ADSystemInfo")
...:
225:strUserNameDN = objSysinfo.UserName
226:strUserNameADsPath = "GC://" & strUserNameDN
227:strLogonSiteName = objSysinfo.SiteName
...:

WHITE PAPER (cont.)

51 WSH and ADSI – Part 1

As any regular object, the script must first instantiate the ADSI object (line 222). Next, the miscellaneous properties are available to
extract the user’s distinguished name and the site name. Note the construction of the ADsPath. Any other reference to the user
object will use the Global Catalog instead of the local Active Directory (LDAP:). Because the script needs to get information about
users from any domain in the organization, the Global Catalog is the only database containing information about all users in the
organization. (For this, desired attributes need to be replicated in the GC, See the explanation of systemFlags on page 45).

Sample 15 Information available from the IADsSsystemInfo interface.
.:
.:
.:
9:Dim objSysInfo
10:
11:Set objSysInfo = CreateObject("ADSystemInfo")
12:
13:Wscript.Echo "UserNameDN=" & objSysInfo.UserName
14:Wscript.Echo "ComputerName=" & objSysInfo.ComputerName
15:Wscript.Echo "SiteName=" & objSysInfo.SiteName
16:Wscript.Echo "DomainShortName=" & objSysInfo.DomainShortName
17:Wscript.Echo "DomainDNSName=" & objSysInfo.DomainDNSName
18:Wscript.Echo "ForestDNSName=" & objSysInfo.ForestDNSName
19:Wscript.Echo "PDCRoleOwner=" & objSysInfo.PDCRoleOwner
20:Wscript.Echo "SchemaRoleOwner=" & objSysInfo.SchemaRoleOwner
21:Wscript.Echo "IsNativeMode=" & objSysInfo.IsNativeMode
22:Wscript.Echo "GetAnyDCName=" & objSysInfo.GetAnyDCName
23:Wscript.Echo "GetDCSiteName=" & objSysInfo.GetDCSiteName ("W2K-DPEN6400DEV")
..:
..:
..:

Getting the user Fullname

Once the user’s distinguished name is known, it is possible to execute a bind operation on the user
object. Any information replicated to the Global Catalog and available from the user object can be
read. When the logon script makes a popup window to show the number of unread mail in his
mailbox, the script shows the user’s full name (See Sample 7 on page 23). The user’s full name is read
in Sample 16.

Sample 16 Getting the user Fullname
...:
...:
...:
231:' --
232:' Get the user FullName stored in AD via ADSI
233:strUserFullName = GetUserFullName (objLogFileName, strUserNameADsPath)
...:
481:' --
482:Private Function GetUserFullName (objFileName, strUserNameADsPath)
...:
491: Set objUser = GetObject(strUserNameADsPath)
...:
497: strUserFullName = objUser.Get("Name")
...:
504: GetUserFullName = strUserFullName
505: Set objUser = Nothing
506:
507:End Function
...:
...:
...:

WHITE PAPER (cont.)

52 WSH and ADSI – Part 1

Group Membership checking

For any other regular Logon script, it is important to know the current user membership to determine
assignments or operations to be made (i.e. Network resource connections). From a native WSH object
it is impossible to determine this information.

With ADSI, the IADsUser interface offers a method to know the group membership of a given user
(See Sample 11 on page 39). The principle is to encapsulate this method invocation (line 853) in a
function returning a Boolean value. If the user is member of the given group, True is returned,
otherwise False is returned. This is shown in Sample 17.

Sample 17 Group Membership checking
...:
...:
...:
267:If GroupMember (objLogFileName, strUserNameADsPath, "Domain Admins") Then
268:
269: ' ---
270: ' Current user is a 'Domain Admins' member, makes special mappings for him
...:
276:End If
...:
835:' --
836:Private Function GroupMember (objFileName, strUserNameADsPath, strGroupName)
837:
838:Dim objUser
839:Dim objGroup
...:
847: Set objUser = GetObject(strUserNameADsPath)
...:
853: For Each objGroup In objUser.Groups
854: If strGroupName = objGroup.Get("Name") Then
...:
856: GroupMember = True
857: Exit Function
858: End If
859: Next
...:
862: GroupMember = False
863:
864:End Function
...:
...:
...:

WHITE PAPER (cont.)

53 WSH and ADSI – Part 1

Getting the Default Domain or the Root Domain distinguished name
For Sample 10 on page 34, important information to have inside a Logon script is the Default Domain
or the Root Domain distinguished name. The method is not different from the previous sample except
that the operation is encapsulated in a function.

Sample 18 Getting the Default Domain or the Root Domain distinguished name
...:
...:
...:
211:' --
212:' Determine distinquished names and ADsPath needed for further object bindings with ADSI
...:
214:strRootDomainNameDN = GetRootDomainNameDN (objLogFileName)
...:
217:strDefaultDomainNameDN = GetDefaultDomainNameDN (objLogFileName)
...:
894:' --
895:Private Function GetRootDomainNameDN (objFileName)
896:
897:Dim objRoot
898:Dim strRootDomainContext
899:Dim objRootDomainContext
...:
905: Set objRoot = GetObject("LDAP://RootDSE")
906: strRootDomainContext = objRoot.Get("RootDomainNamingContext")
907: Set objRootDomainContext = GetObject("LDAP://" & strRootDomainContext)
...:
915: GetRootDomainNameDN = objRootDomainContext.distinguishedName
916:
917: Set objRootDomainContext = Nothing
918: Set objRoot = Nothing
919:
920:End Function
...:
950:' --
951:Private Function GetDefaultDomainNameDN (objFileName)
952:
953:Dim objRoot
954:Dim strDefaultDomainContext
955:Dim objDefaultDomainContext
...:
962: Set objRoot = GetObject("LDAP://RootDSE")
963: strDefaultDomainContext = objRoot.Get("DefaultNamingContext")
964: Set objDefaultDomainContext = GetObject("LDAP://" & strDefaultDomainContext)
...:
970: intRC = WriteToFile (objFileName, objDefaultDomainContext.distinguishedName)
971:
972: GetDefaultDomainNameDN = objDefaultDomainContext.distinguishedName
973:
974: Set objDefaultDomainContext = Nothing
975: Set objRoot = Nothing
976:
977:End Function
...:
...:
...:

WHITE PAPER (cont.)

54 WSH and ADSI – Part 1

Logon Script Sample
The Logon Script sample is provided in the Sample Script kit accompanying this White Paper. It
contains the full listing (and usable) scripts. To give an overview of all functions available for reuse,
Sample 19 gives an overview of all function definitions with their parameters.

Sample 19 Logon Script Sample functions overview
Private Function ReadRegistry (objFileName, strKeyName, KeyValueName, strRegType)
Private Function WriteRegistry (objFileName, strKeyName, KeyValueName, strRegType, varRegKeyValue)
Private Function DeleteRegistry (objFileName, strKeyName, KeyValueName)
Private Function GetUserFullName (objFileName, strUserNameADsPath)
Private Function EnumerateDriveConnections (objFileName)
Private Function ConnectNetworkDrive (objFileName, strDriveLetter, strShareName)
Private Function DisconnectNetworkDrive (objFileName, strDriveLetter, boolConfirm)
Private Function EnumeratePrinterConnections (objFileName)
Private Function ConnectWindowsNetworkPrinter (objFileName, strShareName, boolDefault)
Private Function ConnectNetworkPrinter (objFileName, strLPT, strShareName)
Private Function DisconnectNetworkPrinter (objFileName, strLPT, boolConfirm)
Private Function ReadEnvironmentVariable (objFileName, strEnvironmentType, strVarName)
Private Function CreateEnvironmentVariable (objFileName, strEnvironmentType, strVarName, varValue)
Private Function RemoveEnvironmentVariable (objFileName, strEnvironmentType, strVarName)
Private Function GetAllEnvironmentVariables (objFileName, strEnvironmentType)
Private Function ReadCommandLineArgument (objFileName, strParameterList)
Private Function GroupMember (objFileName, strUserNameADsPath, strGroupName)
Private Function GetRootDomainNameADsPath (objFileName)
Private Function GetRootDomainNameDN (objFileName)
Private Function GetDefaultDomainNameADsPath (objFileName)
Private Function GetDefaultDomainNameDN (objFileName)
Private Function CheckMAPIMail (objFileName, strMAPIProfileName, strUserName, boolPrompt)
Private Function LogPublicVariables (objFileName)
Private Function ErrorHandler (objFileName, strFunctionName, Err, boolPopupErrors)
Private Function CreateTextFile (strFileName)
Private Function CloseTextFile (objFileName)
Private Function WriteToFile (objFileName, Text)

WHITE PAPER (cont.)

55 WSH and ADSI – Part 1

CONCLUSION

Windows Script Host as provided under Windows 2000 is powerful. The power of this scripting
environment comes mainly from the COM object reusability.

In such an environment, the knowledge of a scripting language (such as Visual Basic Script or Java
Script) is required but the challenge is not to know the programming language. Today, the challenge
resides more in the existing COM objects knowledge. Knowing the COM available methods and
properties is the key to successfully control the power of Windows 2000.

In this document, ADSI interfaces are mainly used. Today, Microsoft provides to the script developer
most of the Windows Operating System parts through COM objects (such as WMI, MAPI or Internet
Explorer interfaces for instance).

For a long time, Windows has suffered from a lack of scripting functionalities. Today, with Windows
Script Host and all COM objects available under Windows 2000, administrators and developers
receive the right answer. Windows Script Host and the COM objects functionalities fill a gap between
the simple batch file development and advanced MFC programming.

WHITE PAPER (cont.)

56 WSH and ADSI – Part 1

APPENDIX A: ADSI INTERFACES LIST

Figure 7 ADSI Interfaces for each name space used.

Interface Name LDAP WinNT NDS NWCOMPAT
IADs Yes Yes Yes Yes
IADsAccessControlEntry Yes No Yes No
IADsAccessControlList Yes No Yes No
IADsAcl No No Yes No
IADsBackLink No No Yes No
IADsCaseIgnoreList No No Yes No
IADsClass Yes Yes Yes Yes
IADsCollection No Yes No Yes
IADsComputer No Yes No Yes
IADsComputerOperations No Yes No Yes
IADsContainer Yes Yes Yes Yes
IADsDeleteOps Yes No No No
IADsDomain No Yes No No
IADsEmail No No Yes No
IADsExtension Yes Yes No Yes
IADsFaxNumber No No Yes No
IADsFileService No Yes No Yes
IADsFileServiceOperations No Yes No Yes
IADsFileShare No Yes No Yes
IADsGroup Yes Yes Yes Yes
IADsHold No No Yes No
IADsLargeInteger Yes No No No
IADsLocality Yes No Yes No
IADsMembers Yes Yes Yes Yes
IADsNamespaces Yes Yes Yes Yes
IADsNetAddress No No Yes No
IADsO Yes No Yes No
IADsOU Yes No Yes No
IADsObjectOptions Yes No No No
IADsOctetList No No Yes No
IADsOpenDSObject Yes Yes Yes No
IADsPath No No Yes No
IADsPathname Yes Yes Yes Yes
IADsPostalAddress No No Yes No
IADsPrintJob No Yes No Yes
IADsPrintJobOperations No Yes No Yes
IADsPrintQueue Yes Yes Yes Yes
IADsPrintQueueOperations Yes Yes Yes Yes
IADsProperty Yes Yes Yes Yes
IADsPropertyEntry Yes Yes Yes Yes
IADsPropertyList Yes Yes Yes Yes
IADsPropertyValue Yes Yes Yes Yes

WHITE PAPER (cont.)

57 WSH and ADSI – Part 1

Interface Name LDAP WinNT NDS NWCOMPAT
IADsPropertyValue2 Yes Yes Yes Yes
IADsReplicaPointer No No Yes No
IADsResource No Yes No No
IADsSecurityDescriptor Yes No Yes No
IADsService No Yes No No
IADsServiceOperations No Yes No No
IADsSession No Yes No No
IADsSyntax Yes Yes Yes Yes
IADsTimestamp No No Yes No
IADsTypedName No No Yes No
IADsUser Yes Yes Yes Yes
IDirectoryObject Yes No Yes No
IDirectorySearch Yes No Yes No

WHITE PAPER (cont.)

58 WSH and ADSI – Part 1

APPENDIX B: REFERENCES AND POINTERS

Microsoft WSH

• Windows Script Host 2.0 (On-line HTML help)
http://msdn.microsoft.com/scripting/windowshost/wshdoc.exe

• Windows Script Host Download
http://www.microsoft.com/scripting/downloads/ws/x86/ste51en.exe (WSH 2.0)
http://www.microsoft.com/scripting/downloads/ws/x86/scr55en.exe (WSH 5.5 for Windows NT 4.0)
http://www.microsoft.com/scripting/downloads/ws/x86/scripten.exe (WSH 5.5 for Windows 2000)
The following files will install Windows Script Components containing:

• Visual Basic Script Edition (VBScript) Version 5.1 or 5.5.
• JScript® Version 5.1 or 5.5.
• Windows Script Components
• Windows Script Host 2.0
• Windows Script Runtime Version 5.1 or 5.5.

• Windows Script Components (Documentation)
http://msdn.microsoft.com/scripting/scriptlets/serverdocs.htm

• Windows Script Components (On-line HTML help)
http://msdn.microsoft.com/scripting/scriptlets/wscdoc.exe

• Windows Script Component Wizard
http://msdn.microsoft.com/scripting/scriptlets/wz10en.exe

• Microsoft Script Encoder
http://msdn.microsoft.com/scripting/vbscript/download/x86/sce10en.exe

Windows Script Host Editor

• PrimalSCRIPT 2.0 - The Windows Script Host Editor
http://www.sapien.com/PrimalSCRIPT.htm

Microsoft Scripting

• Windows Script Debugger
http://msdn.microsoft.com/scripting/debugger/default.htm

• VB Script Documentation and Java Script Documentation
http://msdn.microsoft.com/scripting/vbscript/techinfo/vbsdocs.htm
http://msdn.microsoft.com/scripting/jscript/techinfo/jsdocs.htm

• File System Object Tutorial
http://msdn.microsoft.com/scripting/vbscript/doc/jsFSOTutor.htm
http://msdn.microsoft.com/scripting/jscript/doc/jsFSOTutor.htm

http://msdn.microsoft.com/scripting/default.htm?/scripting/windowshost/beta/default.htm
http://msdn.microsoft.com/scripting/windowshost/beta/x86/wsh20en.exe
http://www.microsoft.com/scripting/downloads/ws/x86/scr55en.exe
http://www.microsoft.com/scripting/downloads/ws/x86/scripten.exe
http://msdn.microsoft.com/scripting/scriptlets/serverdocs.htm
http://msdn.microsoft.com/scripting/scriptlets/default.htm
http://msdn.microsoft.com/scripting/scriptlets/wz10en.exe
http://msdn.microsoft.com/scripting/vbscript/download/x86/sce10en.exe
http://www.sapien.com/PrimalSCRIPT2.htm
http://msdn.microsoft.com/scripting/debugger/default.htm
http://msdn.microsoft.com/scripting/vbscript/techinfo/vbsdocs.htm
http://msdn.microsoft.com/scripting/jscript/techinfo/jsdocs.htm
http://msdn.microsoft.com/scripting/vbscript/techinfo/vbsdocs.htm
http://msdn.microsoft.com/scripting/jscript/techinfo/jsdocs.htm

WHITE PAPER (cont.)

59 WSH and ADSI – Part 1

Internet sites about Scripting

• Win 32 Scripting
http://cwashington.netreach.net/

• WSH Glazier Systems
http://wsh.glazier.co.nz/default.asp

• The WinScripter
http://www.winscripter.com/index.html

Microsoft ADSI

• Microsoft ADSI
http://www.microsoft.com/windows/server/Technical/directory/adsilinks.asp

• Microsoft ADSI 2.5 Download
http://www.microsoft.com/ntserver/nts/downloads/other/ADSI25/default.asp

• Microsoft ADSI 2.5 SDK Download
http://www.microsoft.com/ntserver/nts/downloads/other/ADSI25/sdk.asp

• Active Directory Service Interfaces (ADSI) Implemented in Java
http://www.microsoft.com/ntserver/nts/downloads/previews/NTSADSIJava/default.asp

• Microsoft News Group
nntp://microsoft.public.active.directory.interfaces

Internet Sites about ADSI

• 15 Seconds (ADSI)
http://www.15seconds.com/focus/ADSI.htm

Books about ADSI

• ADSI ASP Programmer's Reference
http://www.wrox.com/Consumer/Store/Details.asp?ISBN=186100169X

http://cwashington.netreach.net/
http://wsh.glazier.co.nz/default.asp
http://www.winscripter.com/index.html
http://www.microsoft.com/windows/server/Technical/directory/adsilinks.asp
http://www.microsoft.com/ntserver/nts/downloads/other/ADSI25/default.asp
http://www.microsoft.com/ntserver/nts/downloads/other/ADSI25/sdk.asp
http://www.microsoft.com/ntserver/nts/downloads/previews/NTSADSIJava/default.asp
http://www.15seconds.com/focus/ADSI.htm
http://www.wrox.com/Consumer/Store/Details.asp?ISBN=186100169X

WHITE PAPER (cont.)

60 WSH and ADSI – Part 1

• Professional ADSI CDO Programming with ASP
http://www.wrox.com/Consumer/Store/Details.asp?ISBN=1861001908

• Windows NT/2000 ADSI Scripting for System Administration
 http://www.amazon.com/exec/obidos/ASIN/1578702194/ref=sim_books/102-2951111-8168957

• Professional ADSI Programming
http://www.wrox.com/Consumer/Store/Details.asp?ISBN=1861002262

http://www.wrox.com/Consumer/Store/Details.asp?ISBN=1861001908
http://www.wrox.com/Consumer/Store/Details.asp?ISBN=1861002262
http://www.wrox.com/Consumer/Store/Details.asp?ISBN=1861002262

WHITE PAPER (cont.)

61 WSH and ADSI – Part 1

• Scripting Windows 2000 (Compaq Computer)
 http://www.amazon.com/exec/obidos/ASIN/007212444X/ref=sim_books/104-4077239-3243961

• Professional ADSI Programming
 http://www.amazon.com/exec/obidos/ASIN/0672315874/qid%3D967880578/102-2951111-8168957

Books about WSH

• Windows Script Host Programmer's Reference
http://www.wrox.com/Consumer/Store/Details.asp?ISBN=1861002653

http://www.amazon.com/exec/obidos/ASIN/1578701392/qid%3D953064013/103-4505117-1055804
http://www.wrox.com/Consumer/Store/Details.asp?ISBN=1861002262
http://www.wrox.com/Consumer/Store/Details.asp?ISBN=1861002653

WHITE PAPER (cont.)

62 WSH and ADSI – Part 1

• Windows Script Host
http://www.amazon.com/exec/obidos/ASIN/1578701392/qid%3D953064013/103-4505117-1055804

http://www.amazon.com/exec/obidos/ASIN/1578701392/qid%3D953064013/103-4505117-1055804

	Wscript.Network
	Scripting.FileSystemObject
	DIR | Cscript.Exe StdInOut.vbs
	
	
	
	ADS_SYSTEMFLAG_CR_NTDS_DOMAIN

	LDAP
	WinNT
	
	
	
	Microsoft WSH
	Windows Script Host Editor
	Microsoft Scripting
	Internet sites about Scripting
	Microsoft ADSI
	Internet Sites about ADSI
	Books about ADSI

