Alpha 21264/EV6 Microprocessor
Hardware Reference Manual

Order Number: DS-0027C-TE

This manual is directly derived from the internal 21264/EV6 Specifications, Revi-
sion 4.5. You can access this hardware reference manual in PDF format from the
following site:

ftp://ftp.compaqg.com/pub/products/alphaCPUdocs

Revision/Update Information: This is a revised document. It seqgedes
the Alpha 21264 Microprocessor
Hardware Reference Manual
(DS—-0027B-TE).

Compaq Computer Corporation
CDMPA a Shrewsbury, Massachusetts

March 2002
The information in this publication is subject to change without notice.

COMPAQ COMPUTER CORPORATION SHALL NOT BE LIABLE FOR TECHNICAL OR EDITORIAL
ERRORS OR OMISSIONS CONTAINED HEREIN, NOR FOR INCIDENTAL OR CONSEQUENTIAL DAM-
AGES RESULTING FROM THE FURNISHING, PERFORMANCE, OR USE OF THIS MATERIAL. THIS
INFORMATION IS PROVIDED “AS IS” AND COMPAQ COMPUTER CORPORATION DISCLAIMS ANY
WARRANTIES, EXPRESS, IMPLIED OR STATUTORY AND EXPRESSLY DISCLAIMS THE IMPLIED WAR-
RANTIES OF MERCHANTABILITY, FITNESS FOR PARTICULAR PURPOSE, GOOD TITLE AND AGAINST
INFRINGEMENT.

This publication contains information protected by copyright. No part of this publication may be photocopied or
reproduced in any form without prior written consent from Compaq Computer Corporation.

© Compaq Computer Corporation 2002.
All rights reserved. Printed in the U.S.A.
COMPAQ, the Compagq logo, the Digital logo, and VAX Registered in United States Patent and Trademark Office.

Pentium is a registered trademark of Intel Corporation.

Other product names mentioned herein may be trademarks and/or registered trademarks of their respective compa-
nies.

Alpha 21264/EV6 Hardware Reference Manual

Table of Contents

Preface

1 Introduction

11 The ArChiteCtUre
111 AdAreSSINg . . . oot e
1.1.2 INteger Data TYPES. . . o
1.1.3 Floating-Point Data TyYpesot
1.2 21264/EV6 MICroproCessor FeatUresottt e e

2 Internal Architecture

21 21264/EV6 Microarchitecture
2.1.1 Instruction Fetch, Issue, and Retire Unit
21.1.1 Virtual Program Counter LOgiC oot
2112 Branch Predictor
2113 Instruction-Stream Translation Buffer.
2114 Instruction Fetch Logic e
2115 Register Rename Maps e e
2.1.1.6 Integer ISSUe QUEUEttt e e
2.1.1.7 Floating-Point ISsue QUEUE i e e s
2.1.1.8 Exception and Interrupt LOgIiCot
2.1.1.9 Retire LOgiC. . ..o e
21.2 Integer Execution Unit e
2.1.3 Floating-Point Execution Unit. e e e
214 External Cache and System Interface Unit
2141 Victim Address File and Victm Data File,
2142 HO Write BUffer e
2.1.4.3 Probe QUEUE. e e
2144 Duplicate Dcache Tag Arrayt e
215 ONChip Caches. . .. o e
2151 Instruction Cache e
2152 Data Cache
2.1.6 Memory Reference Unit. e
2.16.1 Load QUEUE e
2.1.6.2 SIOre QUEBUE . . . oo e e
2.16.3 Miss Address File
2164 Dstream Translation Buffer.
217 SROM INterface e
2.2 Pipeline Organization e e
221 Pipeline AboOmtS o e
23 Instruction Issue RUIES e

Alpha 21264/EV6 Hardware Reference Manual

|
DU WNN -

N
||I\)I\)II\JI\JI\)I\)I\)I\)I\)I\JI\)I\)

|
PP O0WOoWOoWNO®

PPN
N e =
HH

2-11
2-11
2-11
2-12
2-12
2-13
2-13
2-13
2-13
2-13
2-13
2-16
2-16

231 Instruction Group Definitions e

232 EDOX SIOtiNgo e
233 INStruction Latencies
24 Instruction Retire RUlES e
241 Floating-Point Divide/Square Root Early Retire.
25 Retire of Operate Instructions into R31/F31 s
2.6 Load Instructionsto R3L and F31 o
2.6.1 Normal Prefetch: LDBU, LDF, LDG, LDL, LDT, LDWU, HW_LDL Instructions
2.6.2 Prefetch with Modify Intent: LDS Instruction
2.6.3 Prefetch, Evict Next: LDQ and HW_LDQ Instructions
2.6.4 Prefetch with the LDx_L / STx_C Instruction Sequence
2.7 Special Cases of Alpha Instruction Execution.
271 Load Hit Speculation e
2.7.2 Floating-Point Store INStructions e
2.7.3 CMOV INSHIUCHION. . . .ottt e e e
2.8 Memory and I/O Address Space InStructions
281 Memory Address Space Load Instructions i
2.8.2 I/0 Address Space Load INStruCtions.t
283 Memory Address Space Store INStructions
284 I/0O Address Space Store INStructionst e
2.9 MAF Memory Address Space Merging Rules
2.10 INStrUCHION OFderiNg. ot e e e e e e e e e e
2.11 Replay Traps . . . oot
2111 MBOX Order Trapsottt e
21111 Load-Load Order Trapv it e e e e
2111.2 Store-Load Order Trapttt e e e
2.11.2 Other Mbox Replay Trapso e
212 I/O Write Buffer and the WMB Instruction e
2121 Memory Barrier (MB/WMB/TB Fill Flow)
21211 MB Instruction Processingottt
2.121.2 WMB INStruction ProCeSsSINg.ottt
2.12.1.3 TB R FIOW . . .
2.13 Performance Measurement Support—Performance Counters
2.14 Floating-Point Control Register. ot e e
2.15 AMASK and IMPLVER Values e
2.15.1 AM A S K .
2.15.2 IMPLVER . . .
2.16 Design EXamples e

Hardware Interface

3.1 21264/EV6 Microprocessor Logic Symbol
3.2 21264/EV6 Signal Names and FUNCLIONS e e
3.3 Pin ASSIgNMENtS e
3.4 Mechanical Specifications
3.5 21264/EV6 Packaging. . . . oo oot i e

Cache and External Interfaces

4.1 Introduction to the External Interfaces. e
41.1 System Interface e
411.1 Commands and AddreSSES.t e
4.1.2 Second-Level Cache (Bcache) Interface
4.2 Physical Address Considerations i
4.3 Bcache StrUCtUrE.o
4.3.1 Bcache Interface Signals e

2-17
2-18
2-19
2-21
2-21
2-22
2-22
2-23
2-23
2-23
2-23
2-23
2-24
2-25
2-26
2-26
2-27
2-27
2-28
2-28
2-29
2-30
2-31
2-31
2-31
2-31
2-31
2-32
2-32
2-32
2-33
2-33
2-35
2-35
2-37
2-37
2-38
2-38

OJ(.IO(.».)

3-1
3-19

TEE T
AR wpP

-h-l|>-l>
~N o b

Alpha 21264/EV6 Hardware Reference Manual

4.3.2 System Duplicate Tag Stores.ottt
4.4 Victim Data Buffer
4.5 Cache CONEIENCY e e
45.1 Cache Coherency BasiCS.t
45.2 Cache BIOCK States e
453 Cache Block State Transitions e
454 Using SYysDC Commandsottt e
455 Dcache Statesand Duplicate Tags. oo oo i e
4.6 Lock MeChanism e
4.6.1 In-Order Processing of LDx_L/STx_C Instructionsccvvvo....
4.6.2 Internal Eviction of LDX_L BIOCKS. oo e
46.3 Liveness and Fairnessttt e
4.6.4 Implications of Executing PALcode Between a LDx_L/STx_C Sequence...........
4.7 SYSteM PO . . . e
4.7.1 SyStem PoOrt PiNS . . . e
4.7.2 Programming the System Interface Clocks
4.7.3 21264/EV6-t0-System Commands.o v
4.7.3.1 Bank Interleave on Cache Block Boundary Mode
4.7.3.2 Page Hit Mode e e e
4.7.4 21264/EV6-t0-System Commands Descriptions i
4.7.5 ProbeResponse Commands (Command[4:0] =00001).............c.cvvvvinn...
4.7.6 SysAck and 21264/EV6-to-System Commands Flow Control
4.7.7 System-t0-21264/EV6 COmMmaNnds.o o
4.7.7.1 Probe Commands (Four CycCles) e
4.7.7.2 Data Transfer Commands (TwWo CycCles).o i
478 Data Movement In and Out of the 21264/EV6. i
4781 21264/EV6 CIOCK BaSICS. . . . o vttt e e e
47.8.2 Fast Data Mode
4783 Fast Data Disable Mode e
4.7.8.4 SysDatalnValid_L and SysDataOutValid_L
4785 SySFIllValid_L
4.7.8.6 Data WrapPiNg . oo e
4.7.9 Nonexistent Memory ProCesSiNgo oo e e
4.7.10 Ordering of System Port Transactions. it e
4.7.10.1 21264/EV6 Commands and System Probes
4.7.10.2 System Probes and SysDc Commandst
4.8 Bcache PO, e
48.1 Bcache Port Pins
4.8.2 Bcache ClocKing e
4821 Setting the Period ofthe Cache Clock
48.3 Bcache Transactions e
4.83.1 Bcache Data Read and Tag Read Transactions,
4.8.3.2 Bcache Data Write Transactions i
48.3.3 Bubbles on the Bcache Data Bus e
4.8.4 Pin DeSCIIPliONS . . . e e
48.4.1 BCAdA_H[23:4] . .
48.4.2 Bcache Control Pinso
4.8.4.3 BcDatalnClk_Hand BcTagInCIk_H e
4.8.5 Bcache Bankingo e e
4.8.6 Disabling the Bcache for Debugging i
4.9 I B TUPES . . o e

5 Internal Processor Registers

5.1 EDOX IPRS . ..
5.1.1 Cycle Counter Register — CC.ttt e e e e e e s
5.1.2 Cycle Counter Control Register —CC_CTL .. .o oo i s et

Alpha 21264/EV6 Hardware Reference Manual

vi

5.13 Virtual Address Register — VA e 5-4
5.14 Virtual Address Control Register —VA_CTL e 5-4
5.15 Virtual Address Format Register —VA_FORM. i 5-6
5.2 IDOX P RS . . ot e 5-6
5.21 ITB Tag Array Write Register — ITB_TAGo 5-7
5.2.2 ITB PTE Array Write Register — ITB_PTE e 5-7
5.2.3 ITB Invalidate All Process (ASM=0) Register —ITB_IAP 5-7
5.24 ITB Invalidate All Register — ITB_IA. e 5-8
5.25 ITB Invalidate Single Register — ITB_IS. e 5-8
5.2.6 Exception Address Register —EXC_ADDR 5-8
5.2.7 Instruction Virtual Address Format Register — IVA_FORM. 5-9
5.2.8 Interrupt Enable and Current Processor Mode Register —IER_CM. 5-10
5.2.9 Software Interrupt Request Register —SIRR 5-11
5.2.10 Interrupt Summary Register — ISUM e 5-11
5.2.11 Hardware Interrupt Clear Register —HW_INT_CLR 5-13
5.2.12 Exception Summary Register —EXC_SUM 5-14
5.2.13 PAL Base Register — PAL_BASE 5-15
5.2.14 Ibox Control Register — |_CTL o e 5-16
5.2.15 Ibox Status Register — | ST AT o 5-19
5.2.16 Icache Flush Register — IC_FLUSH. e 5-20
5.2.17 Icache Flush ASM Register — IC_FLUSH_ASM 5-20
5.2.18 Clear Virtual-to-Physical Map Register —CLR_MAP 5-20
5.2.19 Sleep Mode Register —SLEEP 5-20
5.2.20 Process Context Register — PCTX.ottt e 5-21
5.2.21 Performance Counter Control Register —-PCTR_CTL 5-22
5.3 MBOX P RS . . o 5-24
531 DTB Tag Array Write Registers 0 and 1 — DTB_TAGO, DTB_TAG1 5-24
5.3.2 DTB PTE Array Write Registers 0 and 1 — DTB_PTEO, DTB_PTE1 5-24
5.3.3 DTB Alternate Processor Mode Register - DTB_ALTMODE. 5-26
5.3.4 Dstream TB Invalidate All Process (ASM=0) Register—DTB_IAP................ 5-26
5.35 Dstream TB Invalidate All Register —DTB_IA e 5-26
5.3.6 Dstream TB Invalidate Single Registers0and 1 -DTB_1S0,1 5-26
5.3.7 Dstream TB Address Space Number Registers 0 and 1 — DTB_ASNO,1 5-27
5.3.8 Memory Management Status Register —MM_STAT 5-27
5.3.9 Mbox Control Register = M_CTL i e e e e 5-28
5.3.10 Dcache Control Register = DC_CTL ..o e e e e 5-29
5.3.11 Dcache Status Register — DC_ ST AT .. . oo e e e e 5-30
5.4 Cbox CSRs and IPRS e 5-31
5.4.1 Chox Data Register — C_DAT A . . . e e e e 5-31
5.4.2 Chox Shift Register — C_SHFT e e 5-32
5.4.3 Cbox WRITE_ONCE Chain Descriptionttt 5-32
5.4.4 Cbox WRITE_MANY Chain Descriptiont 5-37
5.4.5 Cbox Read Register (IPR) Description e 5-40
Privileged Architecture Library Code

6.1 PALCOde DeSCHptiON.o e e 6-1
6.2 PALMoOde Environment e 6-2
6.3 Required PALcode FUNCtion COdeSottt e e e e e 6-3
6.4 Opcodes Reserved for PALCOAE.ot e e e e e e 6-3
6.4.1 HW_LD INStrUCtiON o e e e e 6-3
6.4.2 HW ST INStrUCtiONo e e e e 6-4
6.4.3 HW _RET INStrUCtiON e e e e e e e 6-5
6.4.4 HW_MFPR and HW_MTPR INStruCtionso e e e e e 6—6
6.5 Internal Processor Register Access Mechanisms. 6-7
6.5.1 IPR Scoreboard BitS. 6-8
6.5.2 Hardware Structure of Explicitly Written IPRs i 6-8

Alpha 21264/EV6 Hardware Reference Manual

6.5.3 Hardware Structure of Implicitly Written IPRs

6.5.4 IPR ACCESS Ordering ... oottt e e e
6.5.5 Correct Ordering of Explicit Writers Followed by Implicit Readers.
6.5.6 Correct Ordering of Explicit Readers Followed by Implicit Writers.
6.6 PALShadow RegiSters. e e
6.7 PALcode Emulation of the FPCR e
6.7.1 StatUS Flags . . . oo e
6.7.2 ME P CR
6.7.3 MT P CR .
6.8 PALcOode ENtry POINtS e e
6.8.1 CALL _PAL ENtry POINtS. . ..o e e e e e
6.8.2 PALcode Exception Entry POINtS oo e
6.9 Translation Buffer (TB) Fill FIOWS e e e
6.9.1 DB Fill ..
6.9.2 ITB Fill
6.10 Performance Counter SUPPOItot e e
6.10.1 Performance Counting Programming Guidelines,
6.10.1.1 Initialization
6.10.1.2 OPEratiON ..ot e
6.10.1.3 Enabling Aggregate Mode Data Collection.

7 Initialization and Configuration

7.1 Power-Up Reset Flow and the Reset_L and DCOK_HPIins.
7.1.1 Power Sequencing and Reset State for Signal Pins
7.1.2 Clock Forwarding and System Clock Ratio Configuration
7.1.3 PLL RamMpP UP. .o e
7.1.4 BiST and SROM Load and the TestStat HPin.
7.1.5 Clock Forward Reset and System Interface Initialization.
7.2 Fault Reset FIOWo e
7.3 Energy Star Certification and Sleep Mode Flow i
7.4 Warm Reset FIOW e
7.5 Array Initialization e
7.6 Initialization Mode ProCessing.ottt e e
7.7 External Interface Initialization e
7.8 Internal Processor Register Power-Up ResetState, ..
7.9 IEEE 1149.1 Test POrt ReSet.ot e e
7.10 Reset State Machine. e
7.11 Phase-Lock Loop (PLL) Functional DescCriptionttt
7.111 Differential Reference Clocks.
7.11.2 PLL OUtpUt CIOCKS oo e e e e
7.11.2.1 GCLK
7.11.2.2 Differential 21264/EV6 CIOCKS
7.11.2.3 Nominal Operating FreqUeNCYottt e e e e
7.11.2.4 Power-Up/Reset Clocking.o e e
7.11.2.5 IDDQ Testing and ZERO_POWER Mode.

8 Error Detection and Error Handling

8.1 Data Error Correction Code.ottt e
8.2 Icache Data or Tag Parity Error. e e
8.3 Dcache Tag Parity Error e e
8.4 Dcache Data Single-Bit Correctable ECC EMror
8.4.1 Load INStrUCtioN e
8.4.2 Store Instruction (Quadword or Smaller)
8.4.3 Dcache VIictim EXIractSo oo e

Alpha 21264/EV6 Hardware Reference Manual

Vii

8.5 Dcache Store Second ErTOr e 84
8.6 Dcache Duplicate Tag Parity Efrorot e 84
8.7 Bcache Tag Parity Error e e 8-5
8.8 Bcache Data Single-Bit Correctable ECC EIrort 8-5
8.8.1 Icache Fill from Bcache 8-5
8.8.2 Dcache Fill from Bcache e 8-6
8.8.3 Bcache Victim Read. 8-6
8.8.3.1 Bcache Victim Read During a Dcache/Bcache Miss 8-6
8.8.3.2 Bcache Victim Read During an ECB Instruction. 8-7
8.9 Memory/System Port Single-Bit Data Correctable ECCError. 8-7
8.9.1 Icache Fill from Memory. e 8-7
8.9.2 Dcache Fill from Memory e 8-7
8.10 Bcache Data Single-Bit Correctable ECC ErroronaProbe 8-8
8.11 Double-Bit Fill EFrOrSo e e 8-9
8.12 Error Case SUMMArY.o 8-9
9 Electrical Data
9.1 Electrical CharaCteristiCs.o e 9-1
9.2 DC CharacCteriStiCs e 9-2
9.3 Power Supply Sequencing and Avoiding Potential Failure Mechanisms 9-5
9.4 AC CharaCteristiCs.o 9-6
10 Thermal Management
10.1 Operating TEMPEIAtUIEottt e e e e e e e e e e e 10-1
10.2 Heat Sink Specifications e 10-3
10.3 Thermal Design Considerationsottt e e e e e e s 10-5
11 Testability and Diagnostics
111 TSt PINS . . o e 11-1
11.2 SROM/Serial Diagnostic Terminal Port. e e 11-2
11.2.1 SROM Load Operation. ov v e e 11-2
11.2.2 Serial Terminal Port 11-2
11.3 IEEE 1149.0 PO, . .ottt e e e e e 11-3
11.4 TestStat H Pin .. e e 11-4
115 Power-Up Self-Test and Initialization i 11-5
1151 Built-in Self-Test. 11-5
1152 SROM Initialization. e 11-5
11521 Serial Instruction Cache Load Operation, 11-6
11.6 Notes on IEEE 1149.1 Operationand Compliance 11-7
A Alpha Instruction Set
A.l Alpha INStrucCtion SUMMaAIY ot e e et e e A-1
A.2 Reserved OpPCOUES oo e e A-8
A2l Opcodes Reserved for Compag.o oo vt e e A-8
A.2.2 Opcodes Reserved for PALCOde i e A-9
A.3 IEEE Floating-Point INStructions e e e A-9
A4 VAX Floating-Point INStruCtionNsS. i e e A-11
A5 Independent Floating-Point Instructions i A-11
A.6 OPCOdE SUMMAIY . . oottt e e e e e e A-12
A7 Required PALcode FUNCtion Codesttt e e A-13

viii Alpha 21264/EV6 Hardware Reference Manual

A.8

IEEE Floating

-Point Conformance A-14

B 21264/EV6 Boundary-Scan Register

B.1
B.1.1

BSDL De

C Serial Icache Load Predecode Values

D PALcode Restrictions and Guidelines

D.1
D.2
D.3
D.4
D.5
D.6
D.7
D.8
D.9
D.10
D.11
D.12
D.13
D.14

D.15
D.16
D.17
D.18
D.19
D.20

D.21
D.22
D.23
D.24

D.25
D.26
D.27
D.28
D.29
D.30
D.31
D.32
D.33
D.34
D.35
D.36
D.37
D.38
D.39
D.40
D.41

Restriction 1
Restriction 2
Restriction 4
Guideline 6

Restriction 7
Restriction 9
Restriction 10
Restriction 11
Restriction 12
Restriction 13
Restriction 14
Guideline 16 :
Restriction 17

Restriction 18:

HW_MTPR .

Restriction 19:
Guideline 20:
Restriction 21:
Restriction 22:
Restriction 23:
Restriction 24:

Restriction 25:

Guideline 26:
Restriction 27
Restriction 28

Guideline 29 :

Restriction 30 :

Restriction 31

Restriction 32 :
Restriction 33 :
Restriction 34 :

Boundary-Scan Register e B-1
scription of the Alpha 21264/EV6 Boundary-Scan Register B-1
: Reset Sequence Required by Retire Logic and Mapper D-1
: No Multiple Writers to IPRs in Same Scoreboard Group D-8
: No Writers and Readers to IPRs in Same Scoreboard Group D-8
: Avoid Consecutive Read-Modify-Write-Read-Modify-Write D-9
: Replay Trap, Interrupt Code Sequence, and STF/ITOF. D-9
: PALmode Istream Address Ranges. o D-10
:Duplicate IPRMode BitsSo D-10
. Ibox IPR Update Synchronization D-10
: MFPR of Implicitly-Written IPRs EXC_ADDR, IVA_FORM, and EXC_SUM. D-11
:DTBFill Flow Collision D-11
THW RET D-11
JSR-BAD VA L D-11
:MTPR to DTB_TAGO/DTB_PTEO/DTB_TAG1/DTB_PTE1 D-11

No FP Operates, FP Conditional Branches, FTOI, or STF in Same Fetch Block as
... D-12
HW_RET/STALL After Updating the FPCR by way of MT_FPCR in PALmode D-12
|_CTL[SBE] Stream BufferEnable. D-12
HW_RET/STALL After HW_MTPR ASNO/ASNL.\ D-12
HW_RET/STALL After HW_MTPRISO/IST.o D-12
HW_ST/P/CONDITIONAL Does Not Clear the Lock Flag. D-13
HW_RET/STALL After HW_MTPR IC_FLUSH, IC_FLUSH_ASM, CLEAR_MAP
... D-13
HW_MTPR ITB_IA After Reset.ot D-14
Conditional Branches in PALcode D-14
: Reset of ‘Force-Fail Lock Flag’ State in PALcode. D-14
: Enforce Ordering Between IPRs Implicitly Written by Loads and Subsequent Loads
... D-14
JSR, JMP, RET, and JSR_COR inPALcode. D-15
HW_MTPR and HW_MFPRtothe CboxCSR....................... D-15
CI_CTLIVA_A8]Updateo D-17
PCTR_CTLUPAEttt e D-17
HW_LD Physical/Lock Use. e e es D-17
Writing Multiple ITB Entries in the Same PALcode Flow D-17

Guideline 35

Restriction 36 :
Restriction 37 :

Restriction 38
Guideline 39:
Restriction 40

Restriction 41: MTPR ITB_TAG, MTPR ITB_PTE Must Be in the Same Fetch Block.

Restriction 42
Restriction 43
Restriction 44
Restriction 45

CHW INT _CLR Update e e e
Updating |_CTL[SDE]. e e e e
Updating VA _CTLIVA 48] ... o e e e e

cUpdating PCTR _CTL ..o e e e e e e
Writing Multiple DTB Entries in the Same PALFlow.
: Scrubbing a Single-Bit Error

~

[R
O © 0 0o 0 0

o

: Updating VA_CTL,CC CTL,orCCIPRS iiiiiiiiiee e
: No Trappable Instructions Along with HW_MTPR.
: Restriction: Virtual Operation Required in Every PALcode Exception Flow .
: No HW_JMP or JMP Instructions in PALcode

UUUUUIUUUUUU
NRNNNNRPRRR R R

Alpha 21264/EV6 Hardware Reference Manual iX

D.42 Restriction 46: Avoiding Live Locks in Speculative Load CRD Handlers. D-21

D.43 Restriction 47: Cache Eviction for Single-Bit Cache Errors D-22
D.44 Restriction 48: MB Bracketing of Dcache Writes to Force Bad Data ECC and Force Bad Tag Parity
... D-23

E 21264/EV6-to-Bcache Pin Interface

E.l Forwarding Clock Pin Groupings. oottt e e E-1
E.2 Late-Write Non-Bursting SSRAMS e E-2
E.3 Dual-Data Rate SSRAMS E-3
Glossary
Index

X Alpha 21264/EV6 Hardware Reference Manual

Figures

2-1 21264/EV6 Block Diagram e
2-2 Branch PrediCtor e
2-3 Local Predictor e
2-4 Global PrediCtor. e
2-5 Choice PrediCtor e
2-6 Integer Execution Unit—Clusters 0 and 1.t
2-7 Floating-Point Execution Unit e
2-8 Pipeline Organization e
2-9 Pipeline Timing for Integer Load InStructions
2-10 Pipeline Timing for Floating-Point Load Instructions. o,
2-11 Floating-Point Control Register e
2-12 Typical Uniprocessor Configurationt
2-13 Typical Multiprocessor Configuration i
3-1 21264/EV6 Microprocessor Logic Symbol
3-2 Package DIMeNSIONS. . . . ottt e
3-3 21264/EV6 Top View (PINDOWN) oo e e
34 21264/EV6 Bottom View (PInUpP)o
4-1 21264/EV6 System and Bcache Interfaces.
4-2 21264/EV6 Bcache Interface Signals
4-3 Cache Subset Hierarchy e
4-4 System Interface Signals.
4-5 Fast Transfer Timing Example e
4-6 SysFillValid_L TimiNgo e e
5-1 Cycle Counter REgISIErt e
5-2 Cycle Counter Control Register. e
5-3 Virtual Address Registero
5-4 Virtual Address Control Register. e
5-5 Virtual Address Format Register (VA_48=0,VA_ FORM_32=0)....................
5-6 Virtual Address Format Register (VA_ 48 =1, VA FORM 32=0)............cc......
5-7 Virtual Address Format Register (VA_ 48=0,VA_ FORM 32=1)....................
5-8 ITB Tag Array Write Register e e e e e
5-9 ITB PTE Array Write RegisSter e e e e e e
5-10 ITB Invalidate Single Register. i e e
5-11 Exception Address Register e
5-12 Instruction Virtual Address Format Register (VA_48=0,VA_ FORM_32=0)
5-13 Instruction Virtual Address Format Register (VA _48=1,VA FORM_32=0)
5-14 Instruction Virtual Address Format Register (VA_48=0,VA FORM_32=1)
5-15 Interrupt Enable and Current Processor Mode Register.
5-16 Software Interrupt Request Register. e e
5-17 Interrupt SUMMary RegiSter e
5-18 Hardware Interrupt Clear Register i e e e e
5-19 Exception Summary Registert
5-20 PAL Base ReQiSter o e
5-21 IboX Control RegISter. e
5-22 IbOX Status ReQiSter e
5-23 Process Context RegiSterot
5-24 Performance Counter Control Register. i e
5-25 DTB Tag Array Write RegistersOand 1 i e
5-26 DTB PTE Array Write Registers 0 and 1. i e
5-27 DTB Alternate Processor Mode Register i e
5-28 Dstream Translation Buffer Invalidate Single Registers
5-29 Dstream Translation Buffer Address Space Number RegistersOand1................
5-30 Memory Management Status Register i
5-31 MbOX CoNntrol RegiSter. e
5-32 Dcache Control Registerot e e e e
5-33 Dcache Status Register. i e

Alpha 21264/EV6 Hardware Reference Manual

U'IU'IU'IU'ILI)'IU'IU'IU'IU'IU'I
© O© 0O ~N~NOO O O

T
(o]

5-10
5-10
5-11
5-12
5-13
5-14
5-16
5-17
5-20
5-21
5-23
5-24
5-25
5-26
5-27
5-27
5-27
5-28
5-29
5-30

Xi

il

5-34
5-35
5-36
6-1

Chox Data RegiSter. o e 5-31
Cbox Shift RegiStero e 5-32
WRITE_MANY Chain Write Transaction Example 5-38
HW_LD Instruction Formatt e e e e e 6-4
HW_ST Instruction Formatt e e e e e e 6-4
HW_RET Instruction Format e e e 6—6
HW_MFPR and HW_MTPR Instructions Format i 6—6
Single-Miss DTB Instructions Flow Example. 6-14
ITB Miss Instructions Flow Example e 6-16
Power-Up Timing SEQUENCE oottt e e e e e 7-3
Fault Reset Sequence of Operationt 7-9
Sleep Mode Sequence of Operation i 7-11
Example for Initializing Bcache e 7-13
21264/EV6 Reset State Machine State Diagram i 7-17
Type L Heat SinK. e 10-3
Type 2 Heat SinK. e 10-4
Type 3 Heat SiNK. e 10-5
TAP Controller State Machine. e 11-4
TestStat_H Pin Timing During Power-Up Built-In Self-Test (BiST) 11-5
TestStat_H Pin Timing During Built-In Self-Initialization (BiSI) 11-5
SROM Content Mapo oot e 11-6

Alpha 21264/EV6 Hardware Reference Manual

Tables

1-1 INteger Data TYPESttt e
2-1 Pipeline Abort Delay (GCLK CycCles). oo e
2-2 Instruction Name, Pipeline, and TYPes
2-3 Instruction Group Definitions and Pipeline Unit.
2-4 Instruction Class Latency in CycCles.
2-5 Minimum Retire Latencies for Instruction Classes
2-6 Instructions Retired Without Execution e
2-7 Rules for I/O Address Space Load Instruction DataMerging
2-8 Rules for I/O Address Space Store Instruction Data Merging.
2-9 MAF Merging RUIES. e
2-10 Memory Reference Ordering.ttt e
2-11 /O Reference Orderingot e e e e
2-12 TBFillFlow Example Sequence 1 e
2-13 TBFillFlow Example Sequence 2
2-14 Floating-Point Control Register Fields.
2-15 21264/EV6 AMASK ValUES oo
2-16 AMASK Bit ASSIGNMENTSot e
3-1 Signal Pin Types Definitionso
3-2 21264/EV6 Signal DesCriptions. oo
3-3 21264/EV6 Signal Descriptions by Function.
34 Pin List Sorted by Signal Name e
3-5 Pin List Sorted by PGA Location e
3-6 Ground and Power (VSS and VDD) Pin List i
4-1 Translation of Internal References to External Interface Reference
4-2 21264/EV6-Supported Cache Block States
4-3 Cache Block State Transitionst e
4-4 System Responses to 21264/EV6 Commandsottt
4-5 System Responses to 21264/EV6 Commands and Reactions
4-6 SysStem Port PiNS. e
4-7 Programming Values for System Interface Clocks
4-8 Program Values for Data-Sample/Drive CSRS e
4-9 Forwarded Clocks and Frame Clock Ratio i
4-10 Bank Interleave on Cache Block Boundary Mode of Operation
4-11 Page Hit Mode of Operation e
4-12 21264/EV6-to-System Command Fields Definitions.
4-13 Maximum Physical Address for Short Bus Format,
4-14 21264/EV6-to-System Commands Descriptions. i
4-15 Programming INVAL_TO_DIRTY_ENABLE[L:0].o e
4-16 Programming SET_DIRTY_ENABLE[2:0]. i e e e
4-17 21264/EV6 ProbeResponse Commandst
4-18 ProbeResponse Fields Descriptions e e
4-19 System-t0-21264/EV6 Probe Commands i
4-20 System-t0-21264/EV6 Probe Commands Fields Descriptions
4-21 Data Movement Selection by Probe[4:3]. i
4-22 Next Cache Block State Selection by Probe[2:0]
4-23 Data Transfer Command Format e
4-24 SysDc[4:0] Field DesCription oo e
4-25 SYSCLK Cycles Between SysAddOutand SysData.c ..
4-26 Cbox CSR SYSDC_DELAY[3:0] Examples i
4-27 Four Timing EXamples e
4-28 Data Wrapping RUIES e
4-29 System Wrap and Deliver Data.t e
4-30 Wrap Interleave Order. e e
4-31 Wrap Order for Double-Pumped Data Transfers.
4-32 21264/EV6 Commands, with NXM Addresses, and System Response
4-33 21264/EV6 Response to System Probe and In-Flight Command Interaction

Alpha 21264/EV6 Hardware Reference Manual

1-2
2-16
2-17
2-18
2-19
2-21
2-22
2-27
2-29
2-29
2-30
2-30
2-34
2-34
2-36
2-37
2-37

3-3

3-3

3-8
3-12
3-17

4-5

4-9
4-10
4-11
4-12
4-17
4-18
4-19
4-19
4-20
4-20
4-20
4-21
4-21
4-23
4-24
4-24
4-25
4-26
4-27
4-27
4-27
4-28
4-28
4-31
4-32
4-34
4-36
4-36
4-37
4-37
4-38
4-41

Xiii

Xiv

4-34 Rules for System Control of Cache Status Update Order. 4-41

4-35 Range of Maximum Bcache Clock Ratios. i 4-42
4-36 Bcache Port Pins. 4-43
4-37 BC_CPU_CLK_DELAY[L:0]Values e e 4-45
4-38 BC_CLK_DELAY[L:0]ValUESot 4-45
4-39 Program Values to Set the Cache Clock Period (Single-Data) 4-46
4-40 Program Values to Set the Cache Clock Period (Dual-DataRate) 4-46
4-41 Data-Sample/Drive ChoX CSRS e 4-47
4-42 Programming the Bcache to Support Each Size of the Bcache 4-50
4-43 Programming the Bcache Control Pins. e 4-51
4-44 Control Pin Assertion for RAM_TYPE A e 4-51
4-45 Control Pin Assertion for RAM_TYPE B e e 4-51
4-46 Control Pin Assertion for RAM_TYPE C e 4-51
4-47 Control Pin Assertion for RAM_TYPE D e e 4-52
5-1 Internal Processor RegISterSo e e 5-1
5-2 Cycle Counter Control Register Fields Description. 5-4
5-3 Virtual Address Control Register Fields Description 5-5
5-4 IER_CM Register Fields DesCription. e e e 5-10
5-5 Software Interrupt Request Register Fields Description 5-11
5-6 Interrupt Summary Register Fields Description. 5-12
5-7 Hardware Interrupt Clear Register Fields Description. 5-13
5-8 Exception Summary Register Fields Description i 5-15
5-9 PAL Base Register Fields Description e 5-16
5-10 Ibox Control Register Fields DesCription. e i e 5-17
5-11 Ibox Status Register Fields Descriptiont 5-20
5-12 IPR Index Bits and Register Fields e 5-21
5-13 Process Context Register Fields Description i 5-21
5-14 Performance Counter Control Register Fields Description 5-23
5-15 Performance Counter Control Register Input Select Field SLO. 5-24
5-16 DTB Alternate Processor Mode Register Fields Description. 5-26
5-17 Memory Management Status Register Fields Description 5-28
5-18 Mbox Control Register Fields Description e 5-29
5-19 Dcache Control Register Fields Description e 5-29
5-20 Dcache Status Register Fields Description e 5-30
5-21 Cbox Data Register Fields Description e 5-32
5-22 Cbox Shift Register Fields Description e 5-32
5-23 Cbox WRITE_ONCE Chain Orderttt 5-33
5-24 Cbox WRITE_MANY Chain Ordero it 5-38
5-25 Cbox Read IPR Fields DeSCHptionttt e e 5-40
6-1 Required PALcode Function Codesot 6-3
6-2 Opcodes Reserved for PALCOAE.t e e e e 6-3
6-3 HW_LD Instruction Fields DescCriptions.ot e e e 6-4
6—4 HW_ST Instruction Fields Descriptions. it e e e 6-5
6-5 HW_RET Instruction Fields Descriptions e 6—6
6—6 HW_MFPR and HW_MTPR Instructions Fields Descriptions.. 6-7
6—7 Paired Instruction Fetch Order e 6-9
6-8 PALcode Exception Entry LOCAtioNS ittt e 6-13
6-9 IPRs Used for Performance Counter SUPPOrt.ttt e 6-17
6-10 PCTR_CTL Fields to Enable Aggregate Mode Data Collection 6-18
7-1 21264/EV6 Reset State Machine Major Operationst 7-1
7-2 Signal Pin Reset State e 7-3
7-3 Pin Signal Names and Initialization State 7-5
-4 Power-Up Flow Signals and Their Constraints -7
7-5 Effect on IPRs After Fault Reset e 7-8
7-6 Effect on IPRs After Transition Through SleepMode 7-10
-7 Signals and Constraints for the Sleep Mode Sequenceiuun. 7-11
7-8 Effect on IPRs After Warm Reset e 7-11
7-9 WRITE_MANY Chain CSR Values for Bcache Initialization 7-12
7-10 Internal Processor Registers at Power-Up ResetState 7-14

Alpha 21264/EV6 Hardware Reference Manual

7-11 21264/EV6 Reset State Machine State Descriptions i,
7-12 Differential Reference Clock Frequencies in Full-Speed Lock
8-1 21264/EV6 Error Detection Mechanisms
8-2 64-Bit Data and Check Bit ECC Code.ttt e
8-3 Error Case SUMMaArY.ot e e e e e e
9-1 Maximum Electrical Ratings e
9-2 SIgNAl TYPES .« o ot e
9-3 VDD (I_DC_POWER) . . . oo e e e e
9-4 Input DC Reference Pin (I_DC_REF) e
9-5 Input Differential Amplifier Receiver (I_DA).o
9-6 Input Differential Amplifier Clock Receiver (I DA _CLK)o,
9-7 Open-Drain Output Driver (O_OD) . ..ot e e
9-8 Bidirectional, Differential Amplifier Receiver, Open-Drain Output Driver (B_DA OD)
9-9 Open-Drain Driver for Test Pins (O_OD_TP) it
9-10 Bidirectional, Differential Amplifier Receiver, Push-Pull Output Driver (B_DA PP)
9-11 Push-Pull Qutput Driver (O_PP) e e e e e
9-12 Push-Pull Output Clock Driver (O_PP_CLK). o e e
9-13 AC SPECIICALIONS . .. o e
10-1 Operating Temperature at Heat Sink Center (TC)t e e e e
10-2 gca at Various Airflows for 21264/EV6 e
10-3 Maximum Ta for 21264/EV6 @ 466 MHz with Various Airflows
10-4 Maximum Ta for 21264/EV6 @ 500 MHz with Various Airflows
10-5 Maximum Ta for 21264/EV6 @ 550 MHz with Various Airflows
10-6 Maximum Ta for 21264/EV6 @ 575 MHz with Various Airflows
10-7 Maximum Ta for 21264/EV6 @ 600 MHz with Various Airflows
11-1 Dedicated Test POrt PiNS. e
11-2 IEEE 1149.1 Instructions and OpCodesSttt e
11-3 Icache Bit Fields inan SROM LINE e e
A-1 Instruction Format and Opcode Notation e
A-2 Architecture INStrUCtiONS o e
A-3 Opcodes Reserved for Compag oo oo e
A-4 Opcodes Reserved for PALCOE. ot e e e e
A-5 IEEE Floating-Point Instruction Function Codes i
A-6 VAX Floating-Point Instruction Function Codes
A-7 Independent Floating-Point Instruction Function Codes
A-8 OPCOdE SUMMAIY . . oottt e e e e e e e e e
A-9 Key to Opcode Summary UsedinTable A=8 i
A-10 Required PALcode Function Codest e
A-11 Exceptional Input and Output Conditions i
E-1 Bcache Forwarding Clock Pin Groupings oo oot
E-2 Late-Write Non-Bursting SSRAMs Data PinUsage
E-3 Late-Write Non-Bursting SSRAMs Tag PinUsagec i
E-4 Dual-Data Rate SSRAM Data PinUsage
E-5 Dual-Data Rate SSRAMs Tag PinUsageot e es

Alpha 21264/EV6 Hardware Reference Manual

| o1 T 01 11
PNOORPMRMPRPOWWWWOWNREPRODN

[el e e =
SRS CECPPPRRA A
NDNDN

=
e e oo

|
OCONRFEPNWERLRWNDN

XV

Audience

Content

Preface

This manual is for system designers and programmers who use the Alpha 21264/EV6
microprocessor (refred to as th@1264/EV6).

This manual contains the following chapters and appendixes:

Chapter 1, Introduction, introduces the 21264/EV6 and provides an overview of the
Alpha architecture.

Chapter 2, Internal Architecture, describes the major hardware functions and the inter-
nal chip architecture. It describes performance measurement facilities, coding rules, and
design examples.

Chapter 3, Hardware Interfadésts and describes the internal hardware interface sig-
nals, and provides mechanical data and packaging information, including signal pin
lists.

Chapter 4, Cache and External Interfaces, describes the external bus functions and
transactions, lists bus commands, and describes the clock functions.

Chapter 5, Internal Processor Registers, lists and describes the internal processor regis-
ter set.

Chapter 6, Privileged Architecture Library Code, describes the privileged architecture
library code (PALcode).

Chapter 7, Initialization and Configuration, describes the initialization and configura-
tion sequence.

Chapter 8, Error Detection and Error Handling, describes error detection and error han-
dling.

Chapter 9, Electrical Data, provides electrical data and describes signal integrity issues.
Chapter 10, Thermal Management, provides information about thermal management.
Chapter 11, Testability and Diagnostics, describes chip and system testability features.
Appendix A, Alpha Instruction Set, summarizes the Alpha instruction set.

Appendix B, 21264/EV6 Boundary-Scan Register, presents the BSDL description of
the 21264/EV6 boundary-scan register.

Alpha 21264/EV6 Hardware Reference Manual XVii

Xviii

Appendix C, Serial Icache Load Predecode Values, provides a pointer to the Alpha
Motherboards Software Developer’s Kit (SDK), which contains this information.

Appendix D, PALcode Restrictions and Guidelines, lists restrictions and guidelines that
must be adhered to when generating PALcode.

Appendix E, 21264/EV6-to-Bcache Pin Infiéce, povides the pin interface between
the 21264/EV6 and Bcache SSRAMs.

The Glossary lists and defines terms associated with the 21264/EV6.
Documentation Included by Reference

The companion volume to this manual, thipha Architecture Reference Manual
Fourth Edition can be accessed from the following websifgy.compag.com/
pub/products/alphaCPUdocs

Alpha 21264/EV6 Hardware Reference Manual

Terminology and Conventions

This section defines the abbreviations, terminology, and other conventions used
throughout this document.

Abbreviations
- Binary Multiples

The abbreviations K, M, and G (kilo, mega, and giga) represent binary multiples
and have the following values.

K = 210(1024)
M = 220(1,048,576)
G = 230(1,073,741,824)

For example:
2KB = 2kilobytes = 2x2%pytes
4MB = 4megabytes = 4x 220pytes
8GB = 8gigabytes = gx 230pytes
2K pixels = 2kilopixels = 2x 210 pixels
4Mpixels = 4 megapixels= 4 x 220 pixels

» Register Access

The abbreviations used to indicate the type of access to register fields and bits have
the following definitions:

Abbreviation Meaning

IGN Ignore
Bits and fields specified are ignored on writes.
MBZ Must Be Zero

Software must never place a nonzero value in bits and fields spec-
ified as MBZ. A nonzero read produces an lllegal Operand excep-
tion. Also, MBZ fields are reserved for future use.

RAZ Read As Zero
Bits and fields return a zero when read.
RC Read Clears

Bits and fields are cleared when read. Unless otherwise specified,
such bits cannot be written.

RES Reserved
Bits and fields are reserved by Compaq and should not be used,

however, zeros can be written to reserved fields that cannot be
masked.

RO Read Only
The value may be read by software. It is written by hardware.
Software write operations are ignored.

RON Read Only, and takes the valo@at power-on reset.
The value may be read by software. It is written by hardware.
Software write operations are ignored.

Alpha 21264/EV6 Hardware Reference Manual Xix

Abbreviation Meaning

RW Read/Write
Bits and fields can be read and written.

RW,n Read/Write, and takes the valnat power-on reset.
Bits and fields can be read and written.
wWicC Write One to Clear

If read operations are allowed to the register, then the value may
be read by software. If it is a write-only register, then a read oper-
ation by software returns an UNPREDICTABLE result. Software
write operations of a 1 cause the bit to be cleared by hardware.
Software write operations of a 0 do not modify the state of the bit.

W1s Write One to Set
If read operations are allowed to the register, then the value may
be read by software. If it is a write-only register, then a read oper-
ation by software returns an UNPREDICTABLE result. Software
write operations of a 1 cause the bit to be set by hardware. Soft-
ware write operations of a 0 do not modify the state of the bit.

\We Write Only
Bits and fields can be written but not read.

WO,n Write Only, and takes the valueat power-on reset.
Bits and fields can be written but not read.

» Sign extension
SEXT(X) meanx s sign-extended to the required size.

Addresses

Unless otherwise noted, all addresses and offsets are hexadecimal.

Aligned and Unaligned

The termsalignedandnaturally alignedare interchangeable and refer to data objects
that are powers of two in size. An aligned datum of siné?stored in memory at a

byte address that is a multiple ofizhat is, one that haslow-order zeros. For ex-
ample, an aligned 64-byte stack frame has a memory address that is a multiple of 64.

A datum of size 8 is unalignedif it is stored in a byte address that is not a multiple of
2n.

Bit Notation

Multiple-bit fields can include contiguous and noncontiguous bits contained in square

brackets ([]). Muliple contiguous bits are indicated by a pair of numbers separated by a
colon [:]. For example, [9:7,5,2:0] specifies bits 9,8,7,5,2,1, and 0. Similarly, single bits
are frequently indicated with square brackets. For example, [27] specifies bit 27. See

also Field Notation.

Caution

Cautions indicate potential damage to equipment or loss of data.

Alpha 21264/EV6 Hardware Reference Manual

Data Units

The following data unit terminology is used throughout this manual.

Term Words Bytes Bits Other

Byte Yo 1 8 —

Word 2 16 —
Longword 2 4 32 Dword
Quadword 4 8 64 2 longword

Do Not Care (X)

A capital X represents any valid value.

External

Unless otherwise stated, external means not contained in the chip.
Field Notation

The names of single-bit and multiple-bit fields can be used rather than the actual bit
numbers (see Bit Notation). When the field name is used, it is contained in square
brackets ([]). For exampld®isterName[LowByte]specifiesRegisterName[7:0]

Note
Notes emphasize particularly important information.
Numbering

All numbers are decimal or hexadecimal unless otherwise indicated.r&fig Px indi-

cates a hexadecimal number. For example, 19 is decimal, but 0x19 and 0x19A are hexa-
decimal (also see Addresses). Otherwise, the base is indicated by a subscript; for
example, 109is a binary number.

Ranges and Extents

Rangesare specified by a pair of numbers separated by two periods (..) and are inclu-
sive. For example, a range of integers 0..4 includes the integers 0, 1, 2, 3, and 4.

Extentsare specified by a pair of numbers in square brackets ([]) separated by a colon
(:) and are inclusive. Bit fields are often specified as extents. For example, bits [7:3]
specifies bits 7, 6, 5, 4, and 3.

Alpha 21264/EV6 Hardware Reference Manual XXi

xXii

Register Figures
The gray areas in gister figures indicate reserved or unused bits and fields.

Bit ranges that are coupled with the field name specify the bits of the named field that
are included in the register. The bit range may, but need not necessarily, correspond to
the bitExtentin the register. See the explanation above Table 5-1 for more information.

Signal Names
The following examples describe signal-name conventions used in this document.

AlphaSignal[n:n] Boldface, mixed-case type denotes signal names that are
assigned internal and external to the 21264 (that is, the sig-
nal traverses a chip interface pin).

AlphaSignal_x[n:n] When a signal has high and low assertion states, a lower-
case italicx represents the assertion states. For example,
SignalName x[3:0] representSignalName_H[3:0]and
SignalName_L[3:0}

UNDEFINED

Operations specified as UNDEFINED may vary from moment to moment, implementa-
tion to implementation, and instruction to instruction within implementations. The
operation may vary in effect from nothing to stopping system operation.

UNDEFINED operations may halt the processor or cause it to lose information. How-
ever, UNDEFINED operations must not cause the processor to hang, that is, reach an
unhalted state from which there is no transition to a normal state in which the machine
executes instructions.

UNPREDICTABLE

UNPREDICTABLE results or occurrences do not disrupt the basic operation of the pro-
cessor; it continues to execute instructions in its normal manner. Further:

« Results or occurrences specified as UNPREDICTABLE may vary from moment to
moment, implementation to implementation, and instruction to instruction within
implementations. Software can never depend on results specified as UNPREDICT-
ABLE.

« An UNPREDICTABLE result may acquire an artity valuesubject to a few con-
straints. Such a result may be an arbitrary function of the input operands or of any
state information that is accessible to the process in its current access mode.
UNPREDICTABLE results may be unchanged from their previous values.

Operations that produce UNPREDICTABLE results may also produce exceptions.

« Anoccurrence specified as UNPREDICTABLE may happen or not based on an
arbitrary choice function. The choice function is subject to the same constraints as
are UNPREDICTABLE results and, in particular, must not constitute a security
hole.

Specifically, UNPREDICTABLE results must not depend upon, or be a function of,
the contents of memory locations or registers that are inaccessible to the current
process in the current access mode.

Also, operations that may produce UNPREDICTABLE results must not:

Alpha 21264/EV6 Hardware Reference Manual

— Write or modify the contents of memory locations or registers to which the cur-
rent process in the current access mode does not have access, or

— Halt or hang the system or any of its components.

For example, a security hole would exist if some UNPREDICTABLE result
depended on the value of a register in another process, on the contents of processor
temporary registers left behind by some previously running process, or on a
sequence of actions of ddfent processes.

X

Do not care. A capital X represents any valid value.

Alpha 21264/EV6 Hardware Reference Manual Xxiii

1

Introduction

This chapter provides a brief introduction to the Algrahitecture, Compaq’s RISC
(reduced instruction set computing) architecture designed for high performance. The
chapter then summarizes the specific features of the Alpha 21264/EV6 microprocessor
(hereafter called the 21264/EV6) that implements the Alpha architecture. Appendix A
provides a list of Alpha instructions.

The companion volume to this manual, #leha Architecture Reference Many&lourth
Edition, contains the complete architecture information, and is availabfgpatom-
pag.com/pub/products/alphaCPUdocs.

1.1 The Architecture

The Alpha architecture is a 64-bit load and store RISC architecture designed with par-
ticular emphasis on speed, multiple instruction issue, multiple processors, and software
migration from many operating systems.

All registers are 64 bits long and all operations are performed between 64-bit registers.
Allinstructions are 32 bits long. Memory operations are either load or store operations.
All data manipulation is done between registers.

The Alpha architecture supports the following data types:

e 8-, 16-, 32-, and 64-bit integers

* |EEE 32-bit and 64-bit floating-point formats

* VAX architecture 32-bit and 64-bit floating-point formats

In the Alpha architecture, instructions interact with each other only by one instruction
writing to a register or memory location and another instruction reading from that regis-
ter or memory location. This use of resoas makes it easy to build implememndats

that issue multiple instructions every CPU cycle.

The 21264/EV6 uses a set of subroutines, called privileged architectuaeylitode
(PALcode), that is specific to a particular Alpha operating system implementation and
hardware platform. These subroutines provide operating system primitives for context
switching, interrupts, exceptions, and memory management. These subroutines can be
invoked by hardware or CALL_PAL instructions. CALL_PAL instructions use the
function field of the instruction to vector to a specified subroutine. PALcode is written

in standard machine code with some implementation-specific extensions to provide

Alpha 21264/EV6 Hardware Reference Manual Introduction 1-1

The Architecture

direct access to low-level hardware functions. PALcode supports optimizations for mul-

tiple operating systems, flexible memory-management implementations, and multi-
instruction atomic sequences.

The Alpha architecture performs byte shifting and masking with normal 64-bit, regis-
ter-to-register instructions. The 21264/EVérformssingle-byte and single-word load
and store instructions.

1.1.1 Addressing

The basic addressable unit in the Alpha architecture is the 8-bit byte. The 21264/EV6
supports a 48-bit or 43-bit virtual address (selectable under IPR control).

Virtual addresses as seen by the program are translated into physical memory addresses
by the memory-management mechanism. The 21264/EV6 supports a 44-bit physical
address.

1.1.2 Integer Data Types

Alpha architecture supports the four integer data types listed in Table 1-1.

Table 1-1 Integer Data Types

Data Type Description

Byte A byte is 8 contiguous hits that start at an addressable byte boundary.
A byte is an 8-bit value.

Word A word is 2 contiguous bytes that start at an arbitrary byte boundary.
A word is a 16-bit value.

Longword A longword is 4 contiguous bytes that start at an arbitrary byte boundary.
A longword is a 32-bit value.

Quadword A quadword is 8 contiguous bytes that start at an arbitrary byte boundary.

Note: Alpha implementations may impose a significant performance penalty

when accessing operands that are not naturally aligned. Refer tdptiee
Architecture Handbook, Version fpr details.

1.1.3 Floating-Point Data Types

The 21264/EV6 supports the following floating-point data types:
* Longword integer format in floating-point unit
* Quadword integer format in floating-point unit
* |EEE floating-point formats
— S floating
— T _floating
* VAX floating-point formats
— F_floating
— G_floating
— D_floating (limited support)

1-2 Introduction Alpha 21264/EV6 Hardware Reference Manual

21264/EV6 Microprocessor Features

1.2 21264/EV6 Microprocessor Features

The 21264/EV6 microprocessor is a superscalar pipelined processor. It is packaged in a
587-pin PGA carrier and has removable application-specific heat sinks. A number of
configuration options allow its use in a range of system designs ranging from extremely
simple uniprocessor systems with minimum component count to high-performance
multiprocessor systems with very high cache and memory bandwidth.

The 21264/EV6 can issue four Alpha instructions in a single cycle, thereby minimizing
the average cycles per instruction (CPI). A number of low-latency and/or high-through-
put features in the instruction issue unit and the onchip components of the memory sub-
system further reduce the average CPI.

The 21264/EV6 and associated PALcode implements IEEE single-precision and dou-
ble-precision, VAX F_floating and G_floating data types, and supports longword
(32-bit) and quadword (64-bit) integers. Byte (8-bit) and word (16-bit) support is pro-
vided by byte-manipulation instructions. Limited hardware support is provided for the
VAX D_floating data type.

Other 21264/EV6 features include:
e The ability to issue up to four instructions during each CPU clock cycle.
* A peakinstruction execution rate of four times the CPU clock frequency.

* Anonchip, demand-paged memory-management unit with translation buffer, which,
when used with PALcode, can implement a variety of page table structures and trans-
lation algorithms. The unit consists of a 128-entry, fully-associative data translation
buffer (DTB) and a 128-entry, fully-associative instruction translation buffer (ITB),
with each entry able to map a single 8KB page or a group of 8, 64, or 512 8KB
pages. The allocation scheme for the ITB and DTB is round-robin. The size of each
translation buffer entry’s group is specified hint bits stored in the entry. The
DTB and ITB implement 8-bit address space numbers (ASN), MAX_ASN=255.

e Two onchip, high-throughput pipelined floating-point units, capable of executing
both VAX and IEEE floating-point data types.

* Anonchip, 64KB virtually-addressed instruction cache with 8-bit ASNs
(MAX_ASN=255).

* Anonchip, virtually-indexed, physically-tagged duabhd-ported64KB data
cache.

e Supports a 48-bit or 43-bit virtual address (program selectable).

e Supports a 44-bit physical address.

* Anonchip I/O write buffer with four 64-byte entries for I/O write transactions.
* Anonchip, 8-entry victim data fer.

* Anonchip, 32-entry load queue.

* Anonchip, 32-entry store queue.

* Anonchip, 8-entry miss address file for cache fill requests and I/O read
transactions.

* Anonchip, 8-entry probe queue, holding pending system port probe commands.

Alpha 21264/EV6 Hardware Reference Manual Introduction 1-3

21264/EV6 Microprocessor Features

* Anonchip, duplicate tagreay used to maintain level 2 cache coherency.
* A 64-bit data bus with onchip parity and error cottiea code (ECC) support.

e Support for an external second-level (Bcache) cache. The size and some timing
parameters of the Bcache are programmable.

* Aninternal clock generator providing a high-speed clock used by the 21264/EV6,
and two clocks for use by the CPU module.

* Onchip performance counters to measure and analyze CPU and system p
mance.

e Chip and module level test support, including an instruction cache tesfdoe to
support chip and module level testing.

e A 2.2-Vexternal interface.

Refer to Chapter 9 for 21264/EV6 dc and ac electrical characteristics. Refer to the
Alpha Architecture Handbook, Version Appendix E, for waivers and any other imple-
mentation-dependent information.

1-4 Introduction Alpha 21264/EV6 Hardware Reference Manual

2

Internal Architecture

This chapter provides both an overview of the 21264/EV6 microarchitecture and a system
designer’s view of the 21264/EV6 implementation of the Alpha architecture. The combi-
nation of the 21264/EV6 microarchitecture and privileged architecture library code (PAL-
code) defines the chip’s implementation of the Alpha architecture. If a certain piece of
hardware seems to be “architecturally incomplete,” the missing functionality is imple-
mented in PALcode. Chapter 6 provides more information on PALcode.

This chapter describes the major functional hardware units and is not intended to be a
detailed hardware description of the chip. It is organized as follows:

e 21264/EV6 microarchitecture

* Pipeline organization

* Instruction issue and retire rules

e Load instructions to R31/F31 (software-directed instructicsfetich)
e Special cases of Alpha instruction execution

e Memory and I/O address space

* Miss address file (MAF) and load-merging rules
* Instruction ordering

* Replay traps

* 1/O write buffer and the WMB instruction

* Performance measurement support

* Floating-point control register

* AMASK and IMPLVER instruction values

e Design examples

2.1 21264/EV6 Microarchitecture

The 21264/EV6 microprocessor is a high-performance third-generation implementation
of the Compagq Alpha architecture. The 21264/EV6 consists of the following sections,
as shown in Figure 2—-1.:

* Instruction fetch, issue, and retire unit (Ibox)

* Integer execution unit (Ebox)

Alpha 21264/EV6 Hardware Reference Manual Internal Architecture 2-1

21264/EV6 Microarchitecture

Floating-point execution unit (Fbox)

Onchip caches (Icache and Dcache)

Memory reference unit (Mbox)

External cache and system interface unit (Cbox)

Pipeline operation sequence

2.1.1 Instruction Fetch, Issue, and Retire Unit

The instruction fetch, issue, and retire unit (Ibox) consists of the following subsections:

Virtual program counter logic

Branch predictor

Instruction-stream translation fier (ITB)
Instruction fetch logic

Register rename maps

Integer and floating-point issue queues
Exception and interrupt logic

Retire logic

2.1.1.1 Virtual Program Counter Logic

2-2

The virtual program counter (VPC) logic maintains the virtual addresses for instruc-
tions that are in flight. There can be up to 80 instructions, in 20 successive fetch slots, in
flight between the register rename mappers and the end of the pipeline. The VPC logic
contains a 20-entry table to store these fetched VPC addresses.

Internal Architecture Alpha 21264/EV6 Hardware Reference Manual

21264/EV6 Microarchitecture

Figure 2—-1 21264/EV6 Block Diagram

Instruction Cache

A A
Ibox h
- Four Physical
Fetch Unit Virtual Address »| ITB Instructions Address
VPC
Queue ‘ Next Address | Predecode |-
A
Y
Branch Retire Decode and 128
Predictor Unit Rename Registers
I
Y r X
Integer Issue Queue FP Issue Queue
(20 Entries) (15 Entries) Cbox CDa cthe
Probe ata
Queue 128
Ebox Y / / / Fbox Y / Cache
Duplicate
Address INT INT Address FP FP Tag Store Index
ALU 0 UNIT UNIT ALU 1 ADD MUL 20
(LO) 0 1 (L1) DIV
(Vo) (U1) SQRT IOWB System
A A AA AA A A < BUS o
Y y ((Victim 64
Integer Registers 0 Integer Registers 1 FP Registers Buffer System
(80 Registers) (80 Registers) (72 Registers) Address
l———— >
A A T T A A A A Arbiter 15
A A
Y Y Y Y
Mbax Data
DTB Load Store Miss Address| |
(Dual-ported, 128-entry)| | Queue Queue File i 128
Physical A
¥ Address (y bae
Dual-Ported Data Cache -<
FM-05642-Al4

2.1.1.2 Branch Predictor

The branch predictor is composed of three units: the local, global, and choice predic-
tors. Figure 2—2 shows how the branch predictor generates the predicted branch
address.

Alpha 21264/EV6 Hardware Reference Manual Internal Architecture 2-3

21264/EV6 Microarchitecture

Figure 2—2 Branch Predictor

Local Global Choice
Predictor Predictor Predictor

Y Y

N A&c—

Predicted
L Branch
Address

FM-05810.Al4

Local Predictor

The local predictor uses a 2-level table that holds the history of individual branches.
The 2-level table design approaches the prediction accuracy of a larger single-level
table while requiring fewer total bits of storage. Figure 2—3 shows how the local pre-
dictor generates a prediction. Bits [11:2] of the VPC of the current branch are used as
the index to a 1K entry table in which each entry is a 10-bit value. This 10-bit value is
used as the index to a 1K entry table of 3-bit saturating counters. The value of the satu-
rating counter determines the predication, taken/not-taken, of the current branch.

Figure 2—-3 Local Predictor

M Loca|
History
Table
>»1 1K x 10
10
10 Llal
Index
»| Predictor +/-
1K x 3

A X

1

Y

Local Branch Prediction

FM-05811.Al4

Global Predictor

The global predictor is indexed by a global history of all recent branches. The global
predictor correlates the lochistory of the curent branctwith all recent branches. Fig-

ure 2—4 shows how the global predictor generates a prediction. The global path history
is comprised of the taken/not-taken state of the 12 most-recent branches. These 12
states are used to form an index into a 4K entry table of 2-bit saturating counters. The
value of the saturating counter determines the predication, taken/not-taken, of the cur-
rent branch.

2-4 Internal Architecture Alpha 21264/EV6 Hardware Reference Manual

21264/EV6 Microarchitecture

Figure 2—4 Global Predictor

Global
Path
History
12 v
Global
|
ndex »1 Predictor +/-
4K x 2

3 X

1

Y

Global Branch Prediction

FM-05812.Al4

Choice Predictor

The choice predictor monitors the history of the local and global predictors and chooses
the best of the two predictors for a particular branch. Figure 2-5 shows how the choice
predictor generates its choice of the result of the localob@ prediction. The 12-bit

global path history (see Figure 2—4) is used to index a 4K entry table of 2-bit saturating
counters. The value of the saturating counter determines the choice between the outputs
of the local and global predictors.

Figure 2-5 Choice Predictor

Global
Path
History
12 Y 2
Choice
»1 Predictor 5 1 > Choice Prediction
4K x 2

FM-05813.Al4

2.1.1.3 Instruction-Stream Translation Buffer

The Ibox includes a 128-entry, fully-associative instruction-stream translation buffer
(ITB) that is used to store recently used instruction-stream (Istream) address transla-
tions and page protection information. Each of the entries in the ITB can map 1, 8, 64,
or 512 contiguous 8 KB pages. The allocation scheme is round-robin.

The ITB supports an 8-bit ASN and contains an ASM bit. Tteche is virtually
addressed and contains the access-check information, so the ITB is accessed only for
Istream referenceshich miss in the Icache.

Istream transactions to I/0O address space are UNNEBIL
2.1.1.4 Instruction Fetch Logic

The instruction pefetcher (predecode) reads an octaword, containing up to four natu-
rally aligned instructions per cycle, from the Icache. Branch prediction and line predic-
tion bits accompany the four instructions. The branch prediction scheme operates most

Alpha 21264/EV6 Hardware Reference Manual Internal Architecture 2-5

21264/EV6 Microarchitecture

efficiently whenonly one branch instruction is contained among the four fetched
instructions. The line prediction scheme attempts to predict the Icache line that the
branch predictor will generate, and is described in Section 2.2.

An entry from the subroutine return prediction stack, together with set prediction bits
for use by the Icache stream controller, are fetched along with the octaword. The Icache
stream controller generates fetch requests for additional Icache lines and stores the
Istream data in the Icache. There is no separate buffleoldIstream requests.

2.1.1.5 Register Rename Maps

The instruction pefetcher forwards instraions to the integer and floating-point regis-
ter rename maps. The rename maps perform the two functions listed here:

e Eliminate register write-after-read (WAR) and write-after-write (WAW) data
dependencies while preserving true read-after-write (RAW) data dependencies, in
order to allow instructions to be dynamically rescheduled.

* Provide a means of speculatively executing instructions before the control flow
previous to those instructions is resolved. Both exceptions and branch
mispredictions represent deviations from the control flow predicted by the
instruction prefetcher.

The map logic translates each instruction’s operand register specifiers frornmttred
register numbers in the instruction to thRysicalregister numbers that hold the corre-
sponding architecturally-correct values. The map logic also renames each instruction’s
destination register specifier from the virtual number in the instruction to a physical
register number chosen from a listfofe physical registers, and updates the register
maps.

The map logic can process four instructions per cycle. It does not return the physical
register, which holds the old value of an instruction’s virtual destination register, to the
free list until the instruction has been retired, indicating that the control flow up to that
instruction has been resolved.

If a branch mispredict or exception occurs, the map logic backs up the contents of the
integer and floating-point register rename maps to the state associated with the instruc-
tion that triggered the condition, and thesfetcher restarts at the appropriate VPC. At
most, 20 valid fetch slots containing up to 80 instructions can be in flight between the
register maps and the end of the machine’s pipeline, where the control flow is finally
resolved. The map logic is capable of backing up the contents of the maps to the state
associated with any of these 80 instructions in a single cycle.

The register rename logic places instructions into an integer or floating-point issue
gueue, from which they are later issued to functional units for execution.

2.1.1.6 Integer Issue Queue

The 20-entry integer issue queue (1Q), associated with the integer execution units
(Ebox), issues the following types of instructions at a maximum rate of four per cycle:

* Integer operate
* Integer conditional branch

* Unconditional branch — both displacement and memory format

2-6 Internal Architecture Alpha 21264/EV6 Hardware Reference Manual

21264/EV6 Microarchitecture

* Integer and floating-point load and store

e PAL-reserved instructions: HW_MTPR, HW_MFPR, HW_LD, HW_ST,
HW_RET

* Integer-to-floatingpoint (ITOFxX) and floating-point-to-integer (FTQ)

Each queue entry asserts four request signals—one for each of the Ebox subclusters. A
gueue entry asserts a request when it contains an instruction that can be executed by the
subcluster, if the instruction’s operand register values are available within the subclus-
ter.

There are two arbiters—one for the upper subclusters and one for the lower subclusters.
(Subclusters are described in Section 2.1.2.) Each arbiter picks two of the possible 20
requesters for service each cycle. A given instruction only requests upper subclusters or
lower subclusters, but because many instructions can only be executed in one type or
another this is not too limiting.

For example, load and store instructions can only go to lower subclusters and shift
instructions can only go to upper subclusters. Other instructions, such as addition and
logic operations, can execute in either upper or lower subclusters and are statically
assigned before being placed in the IQ.

The 1Q arbiters choose between simultaneous requesters of a subcluster based on the
age of the request—older requests are given priority over newer requests. If a given
instruction requests both lower subclusters, and no older instruction requests a lower
subcluster, then the arbiter assigns subcluster L0 to the instruction. If a given instruction
requests both upper subclusters, and no older instruction requests an upper subcluster,
then the arbiter assigns subcluster U1 to the instruction. This asymmetry between the
upper and lower subcluster arbiters is a circuit implementation optimization with negli-
gible overall performance effect.

2.1.1.7 Floating-Point Issue Queue

The 15-entry floating-point issue queue (FQ) associated with the Fbox issues the fol-
lowing instruction types:

* Floating-point operates

* Floating-point conditional branches

* Floating-point stores

* Floating-point register to integer register transfers (FOI

Each queue entry has three request lines—one for the add pipeline, one for the multiply
pipeline, and one for the two store pipelines. There are three arbiters—one for each of
the add, multiply, and store pipelines. The add and multiply arbiters pick one requester
per cycle, while the store pipeline arbiter picks two requesters per cycle, one for each
store pipeline.

The FQ arbiters pick between simultaneous requesters of a pipeline based on the age of
the request—older requests are given priority over newer requests. Floating-point store
instructions and FTQinstructions in even-numbered queue entries arbitrate for one
store port. Floating-point store instructions and FX{ktructions in odd-numbered

gueue entries arbitrate for the second store port.

Alpha 21264/EV6 Hardware Reference Manual Internal Architecture 2-7

21264/EV6 Microarchitecture

Floating-point store instructions and FTDOhstructions are queued in both the integer
and floating-point queues. They wait in the floating-point queue until their operand reg-
ister values are available. They subsequently request service from the store arbiter.
Upon being issued from the floating-point queue, they signal the corresponding entry in
the integer queue to request service. Upon being issued from the integer queue, the
operation is completed.

2.1.1.8 Exception and Interrupt Logic

There are two types of exceptions: faults and synchronous traps. Arithmetic exceptions
are precise and are reported as synchronous traps.

The four sources of interrupts are listed as follows:
* Level-sensitive hardware interrupts sourced bylR@ H[5:0] pins

e Edge-sensitive hardware interrupts geated by the serial line receive pin,
performance aunter overflows, and hardware corrected read errors

e Software interrupts sourced by the software interrupt request (SIRR) register
e Asynchronous system traps (ASTs)

Interrupt sources can be individually masked. In addition, AST interrupts are qualified
by the current procesor mode.

2.1.1.9 Retire Logic

The Ibox fetches instructions in program order, executes them out of order, and then
retires them in order. The Ibox retire logic maintains #nehitectural state of the

machine by retiring an instruction only if all previous instructions have executed with-
out generating exceptions or branch mispredictions. Retiring an instruction commits the
machine to any changes the instruction may have made to the software-visible state.
The three software-visible states are listed as follows:

* Integer and floating-point registers
e Memory

* Internal processor registers (including control/status registers and translation
buffers)

The retire logic can sustain a maximum retire rate of eight instructions per cycle, and
can retire up to as many as 11 instructions in a single cycle.

2.1.2 Integer Execution Unit

The integer execution unit (Ebox) is a 4-path integer execution unit that is implemented
as two functional-unit “clusters” labeled 0 and 1. Each cluster contains a copy of an 80-
entry, physical-register file and two “subclusters”, named upper (U) and lower (L). Fig-

ure 2—6 shows the integer execution unit. In the figiwp, wris the cross-cluster bus

for moving integer result values between clusters.

2-8 Internal Architecture Alpha 21264/EV6 Hardware Reference Manual

21264/EV6 Microarchitecture

Figure 2—-6 Integer Execution Unit—Clusters 0 and 1

eff VA V ¢ eff VA

iop_wr
iop_wr
Y Y
uo Ul
Register Register
LO L1
KA A iop_wr A A A
iop_wr
Load/Store Data

Load/Store Data

Y

FM-05643.Al14

Most instructions have 1-cycle latency for consumers that execute within the same clus-
ter. Also, there is another 1-cycle delay associated with producing a value in one cluster
and consuming the value in the other cluster. The instruction issue queue minimizes the
performance effect of this oss-cluster delay. The Ebox contains the following

resources:

Four 64-bit adders that are used to calculate results for integer add instructions
(located in U0, U1, LO, and L1)

The adders in the lower subclusters that are used to generatéfdhtive virtual
address for load and store instructions (located in LO and L1)

Four logic units

Two barrel shifters and associated byte logic (located in U0 and U1)
Two sets of conditional branch logic (located in U0 and U1)

Two copies of an 80-entry register file

One pipelined multiplier (located in U1) with 7-cycle latency for all integer multiply
operations

One fully-pipelined unit (located in U0), with 3-cycle latency, that executes the fol-
lowing instructions: PERR, MINxxx, MAXxxx, UNPKxx, PKxx

The Ebox has 80 register-file entries that contain storage for the values of the 31 Alpha
integer registers (the value of R31 is not stored), the values of 8 PALshadow registers,
and 41 results written by instructions that have not yet been retired.

Alpha 21264/EV6 Hardware Reference Manual Internal Architecture 2-9

21264/EV6 Microarchitecture

Ignoring cross-cluster delay, the two copies of the Ebox register file contain identical
values. Each copy of the Ebox register file contains four read ports and six write ports.
The four read ports are used to source operands to each of the two subclusters within a
cluster. The six write ports are used as follows:

e Two write ports are used to write results generated within the cluster.
e Two write ports are used to write results generated by the other cluster.

e Two write ports are used to write results from load instructions. These two ports
are also used for FTQIinstructions.

2.1.3 Floating-Point Execution Unit

The floating-point execution unit (Fbox) has two paths. The Fbox executes both VAX
and IEEE floating-point instructions. It support IEEE S_floating-point and T_floating-
point data types and all rounding modes. It also supports VAX F_floating-point and
G_floating-point data types, and provides limited support for D_floating-point format.
The basic structure of the floating-point execution unit is shown in Figure 2—7.

Figure 2—7 Floating-Point Execution Unit

Floating-Point
Execution Units

FP Mul

Reg

FP Add

FP Div

SQRT

LK98-0004A

The Fbox contains the following resources:

e Fully-pipelined multiplier with 4-cycle latency

e 72-entry physical register file

* Fully-pipelined adder with 4-cycle latency

* Nonpipelined divide unit associated with the adder pipeline

* Nonpipelined square root unit associated with the adder pipeline

The 72 Fbox register file entries contain storage for the values of the 31 Alpha floating-
point registers (F31 is not stored) and 41 values written by instructions that have not
been retired.

The Fbox register file contains six reads ports and four write ports. Four read ports are
used to source operands to the add and multiply pipelines, and two read ports are used
to source data for store instructions. Two write ports are used to write results generated
by the add and multiply pipelines, and two write ports are used to write results from
floating-point load instructions.

2-10 Internal Architecture Alpha 21264/EV6 Hardware Reference Manual

21264/EV6 Microarchitecture

2.1.4 External Cache and System Interface Unit

The interface for theystem and external cache (Chox) controls teadhe and system
ports. It contains the following structures:

* Victim address file (VAF)

* Victim data file (VDF)

e |/O write buffer (IOWB)

* Probe queue (PQ)

e Duplicate Dcache tag (DTAG)
2.1.4.1 Victim Address File and Victim Data File

The victim address file (VAF) and victim data file (VDF) together form an 8-entry vic-
tim buffer used for holding:

* Dcache blocks to be written to the Bcache

e |stream cachélocks from memory to be written to the Bcache

* Bcache blocks to be written to memory

e Cache blocks sent to the system in response to probe commands
2.1.4.2 1/O Write Buffer

The 1/O write buffer (IOWB) onsists of four 64-byte entries and associated address
and control logic used for fering 1/0 write data between the store queue and the sys-
tem port.

2.1.4.3 Probe Queue

The probe queue (PQ) is an 8-entry queue that holds pending system port cache probe
commands and addresses.

2.1.4.4 Duplicate Dcache Tag Array

The duplicate Dcache tag (DTAG) array holds a duplicate copy of the Dcache tags and
is used by the Cbox when processing Dcache fills, Icache fills, and system port probes.

2.1.5 Onchip Caches

The 21264/EV6 contains two onchip primary-level caches.
2.1.5.1 Instruction Cache

The instruction cachddache) is ®4KB virtual-addressed, 2-way set-predict cache.
Set prediction is used to approximate the performance of a 2-set cache without slowing
the cache access time. Each Icache block contains:

e 16 Alpha instructions (64 bytes)

e Virtual tag bits [47:15]

* 8-bit address space number (ASN) field

e 1-bit address space match (ASM) bit

* 1-bit PALcode bit to indicate physical addressing

Alpha 21264/EV6 Hardware Reference Manual Internal Architecture 2-11

21264/EV6 Microarchitecture

* Valid bit
e Data and tag parity bits

* Four access-check bits for the following modes: kernel, executive, supervisor, and
user (KESU)

e Additional predecoded information to assist with instruction processing and fetch
control

2.1.5.2 Data Cache

The data cache (Dcache) is a 64KB, 2-way set-associative, virtually indexed, physically
tagged, write-back, read/write allocate cache with 64-byte blocks. Derdh cycle
the Dcache can perform one of the following transactions:

* Two quadword (or shorter) read transactions to arbitrary addresses

e Two quadword write transactions to the same aligned octaword

* Two non-overlapping less-than-quadword writes to the same aligned quadword
* One sequential read and write transaction from and to the shgmed octaword
Each Dcache block contains:

* 64 data bytes and associated quadword ECC bits

* Physical tag bits

e Valid, dirty, shared, and modified bits

e Tag parity bit calculated across the tag, dirty, shared, and modified bits

* One bit to control round-robin set allocation (one bit per two cache blocks)

The Dcache contains two sets, each with 512 rows containing 64-byte blocks per row
(that is, 32K bytes of data per set). The 21264/EV6 requires two additional bits of vir-
tual address beyond the bits that specify an 8KB page, in order to specify a Dcache row
index. A given virtual address might be found in four unique locations in the Dcache,
depending on the virtual-to-physical translation for those two bits. The 21264/EV6 pre-
vents this aliasing by keeping only one of the four possible translated addresses in the
cache at any time.

2.1.6 Memory Reference Unit

The memory reference unit (Mbox) controls the Dcache and ensures architecturally
correct behavior for load and store instructions. The Mbox contains the following struc-
tures:

* Load queue (LQ)
e Store queue (SQ)
* Miss address file (MAF)

e Dstream translation buffer (DTB)

2-12 Internal Architecture Alpha 21264/EV6 Hardware Reference Manual

Pipeline Organization

2.1.6.1 Load Queue

The load queue (LQ) is a reorder buffer for load instructions. It contains 32 entries and
maintains the state associated with load instructions that have been issued to the Mbox,
but for which results have not been delivered to the processor and the instructions
retired. The Mbox assigns load instructions to LQ slots based on the order in which
they were fetched from the Icache, then places them into the LQ after thessaesliby

the 1Q. The LQ helps ensure corredpha memory eference behaor.

2.1.6.2 Store Queue

The store queue (SQ) is a reordefffenand graduation unit fastore instructions. It
contains 32 entries and maintains the state associated with store instructions that have
been issued to the Mbox, but for which data has not been written to the Dcache and the
instruction retired. The Mbox assigns store instructions to SQ slots based on the order
in which they were fetched from the Icache and places them into the SQ after they are
issued by the IQ. The SQ holds data associated with store instructions issued from the
IQ until they are retired, at which point the store can be allowed to update the Dcache.
The SQ also helps ensure correct Alpha memory reference behavior.

2.1.6.3 Miss Address File

The 8-entry miss address file (MAF) holds physical addresses associated with pending
Icache and Dcache fill requests and pending I/O space read transactions.

2.1.6.4 Dstream Translation Buffer

The Mbox includes a 128-entry, fully associative Dstream translation buffer (DTB) used

to store Dstream address translations and page protection information. Each of the entries
inthe DTB can map 1, 8, 64, or 512 contiguous 8KB pages. The allocation scheme is
round-robin. The DTB supports an 8-bit ASN and contains an ASM bit.

2.1.7 SROM Interface

The serial read-only memory (SROM) interface provides the initialization data load
path from a system SROM to theache. Refer to Chapter 7 for more information.

2.2 Pipeline Organization

The 7-stage pipeline provides an optimized environment for executing Alpha instruc-
tions. The pipeline stages (0 to 6) are shown in Figure 2—8 and described in the follow-
ing paragraphs.

Alpha 21264/EV6 Hardware Reference Manual Internal Architecture 2-13

Pipeline Organization

Figure 2—-8 Pipeline Organization

0 1 2 3 4 5 6
o ALU
Branch - Shifter
Predictor Integer — Y
Register Integer > Shifter
Integer Multiplier
A _y|Rename | | Issue - : < >
Map - Queue - Reglster System
Y File Address
(20) —)-ALU <> Bus
(64 Bits)
Address
- > A J—
— Four _ 64KB Bus
| etetons Data |-« Interface |—
Instruction Cache Unit Cache
Cache Floating-Point Bus)
(64KB)) Floating-) »| Add, Divide, (128 Bits)
(2-Set) Floating- Point Float_mg- and Square Root
—>»1 Point | |ssue - Po}mt
Register Queue Re':gi:zter « | Floating-Point
Rename (15) ™ wuttiply Physica
ap Address
) (44 Bits)
T FM-05575.A14

Stage 0 — Instruction Fetch

The branch predictor uses a branch history algorithm to predict a branch instruction tar-
get address.

Up to four aligned instructions are fetched from thache, in program order. The

branch prediction tables are also accessed in this cycle. The branch predictor uses tables
and a branch history algorithm to predict a branch instruction target address for one
branch or memory format JSR instruction per cycle. Therefore, the prefetcher is limited
to fetching through one branch per cycle. If there is more than one branch within the
fetch line, and the branch predictor predicts that the first branch will not be taken, it will
predict through subsequent branches at the rate of one per cycle, until it predicts a taken
branch or predicts through the last branch in the fetch line.

The Icache array also contains a line prediction field, the contents of which are applied
to the Icache in the next cycle. The purpose of the line predictor is to remove the pipe-
line bubble which would otherwise beeated when the branch predictor predicts a
branch to be taken. In effect, the line predictor attempts to predict the IcacheHinb

the branch predictor will generate. On fills, the line predictor value at each fetch line is
initialized with the index of the next sequential fetch line, and later retrained by the
branch predictor if necessary.

Stage 1 — Instruction Slot

The Ibox maps four instructions per cycle from the 64KB 2-way set-predict Icache.
Instructions are mapped in order, executed dynamically, but are retired in order.

2-14 Internal Architecture Alpha 21264/EV6 Hardware Reference Manual

Pipeline Organization

In the slot stage the branch predictor compares the next Icache index that it generates to
the index that was generated by the line predictor. If there is a mismatch, the branch
predictor wins—the instructions fetched during that cycle are aborted, and the index
predicted by the branch predictor is applied to kteche during the next cycle. Line
mispredictions result in one pipeline bubble.

The line predictor takes precedence over the branch predictor during memory format
calls or jumps. If the line predictor was trained with a true (as opposed to predicted)
memory format call or jump target, then its contents take precedence over the target
hint field associated with these instructions. This allows dynamic calls or jumps to be
correctly predicted.

The instruction fetcher produces the full VPC address during the fetch stage of the pipe-
line. The Icache produces the tags for both Icache sets 0 and 1 each time it is accessed.
That enables the fetcher to separate set mispredictions from true Icache misses. If the
access was caused by a set misprediction, the instruction fetcher aborts the last two
fetched slots and refetches the slot in the next cycle. It also retrains the appropriate set
prediction bits.

The instruction data is transfred from the Icache to thiateger and floating-point reg-
ister map hardware during this stage. When the integer instruction is fetched from the
Icache and slotted into the 1Q, the slot logic determines whether the instruction is for
the upper or lower subclusters. The slot logic makes the decision based on the
resources needed by the (up to four) integer instructions in the fetch block. Although all
four instructions need not be issued simultaneously, distributing their resource usage
improves instruction loading across the units. For example, if a fetch block contains
two instructions that can be placed in either cluster followed by two instructions that
must execute in the lower cluster, the slot logic would designate that combination as
EELL and slot them as UULL. Slot combinations are described in Section 2.3.2 and
Table 2-3.

Stage 2 — Map

Instructions are sent from the Icache to the integer and flogtoigt register maps dur-

ing the slot stage and register renaming is performed during the map stage. Also, each
instruction is assigned a unique 8-bit number, calletham, which is used to identify

the instruction and its program order with respect to other instructions during the time
that it is in flight. Instructions are considered to be in flight between the time they are
mapped and the time they are retired.

Mapped instructions and their associated inums are placed in the integer and floating-
point queues by the end of the map stage.

Stage 3 — Issue

The 20-entry integer issue queue (IQ) issues instructions at the rate of four per cycle.
The 15-entry floating-point issue queue (FQ) issues floating-poietaip hstructions,
conditional branch instructions, and store instructions, at the rate of two per cycle. Nor-
mally, instructions are deleted from the 1Q or FQ two cycles after they are issued. For
example, if an instruction is issued in cycigit remains in the FQ or 1Q in cycle+1

but does not request service, and is deleted in ayele

Alpha 21264/EV6 Hardware Reference Manual Internal Architecture 2-15

Instruction Issue Rules

Stage 4 — Register Read

Instructions issued from the issue queues read their operands from the integer and float-
ing register files and receive bypass data.

Stage 5 — Execute
The Ebox and Fbox pipelines begin execution.
Stage 6 — Dcache Access

Memory reference instructions access the Dcache and data translation buffers. Nor-
mally load instructions access the tag and datays while storénstructions only

access the tag arrays. Store data is written to the store queue where it is held until the
store instruction is retired. Most integer operate instructions write their register results
in this cycle.

2.2.1 Pipeline Aborts

The abort penalty as given is measured from the cycle after the fetch stage of the
instruction which triggers the abort to the fetch stage of the new target, ignoring any
Ibox pipeline stalls or queuing delay that the triggering instruction might experience.
Table 2-1 lists the timing associated with each common source of pipeline abort.

Table 2—1 Pipeline Abort Delay (GCLK Cycles)

Penalty
Abort Condition (Cycles) Comments
Branch misprediction 7 Integer or floating-point conditional branch
misprediction.
JSR misprediction 8 Memory format JSR or HW_RET.
Mbox order trap 14 Load-load order or store-load order.

Other Mbox replay traps 13 —

DTB miss 13 —
ITB miss 7 —
Integer arithmetic trap 12 —

Floating-point arithmetic 13+latency Add latency of instruction. See Section 2.3.3 for
trap instruction latencies.

2.3 Instruction Issue Rules

This section defines instruction classes, the functional unit pipelines to which they are
issued, and their associated latencies.

2-16 Internal Architecture Alpha 21264/EV6 Hardware Reference Manual

Instruction Issue Rules

2.3.1 Instruction Group Definitions

Table 2-2 lists the instruction class, the pipeline assignments, and the instructions
included in the class.

Table 2-2 Instruction Name, Pipeline, and Types

Class

Name Pipeline Instruction Type

ild LO, L1 All integer load instructions

fid LO, L1 All floating-point load instructions

ist LO, L1 All integer store instructions

fst FSTO, FST1, LO, L1 All floating-point store instructions

Ida LO, L1, UO, U1 LDA, LDAH

mem_misc L1 WH64, ECB, WMB

rpcc L1 RPCC

rx L1 RS, RC

mxpr Lo, L1 HW_MTPR, HW_MFPR

(depends on IPR)

icbr uo, U1 Integer conditional branch instructions

jsr LO BR, BSR, JMP, CALL, RET, COR, HW_RET,
CALL_PAL

iadd LO, UO, L1, Ul Instructions with opcode {{) except CMPBGE

ilog LO, U0, L1, U1 AND, BIC, BIS, ORNOT, XOR, EQV, CMPBGE

ishf uo, U1 Instructions with opcode 1

cmov LO, UO, L1, Ul Integer CMOQOV - either cluster

imul Ul Integer multiply instructions

imisc uo PERR, MINxxx, MAXxxx, PKxx, UNPKxx

fcbr FA Floating-point conditional branch instructions

fadd FA All floating-point operate instructions except multiply,
divide, square root, and conditional move instructions

fmul FM Floating-point multiply instruction

fcmovl FA Floating-point CMOV—first half

fcmov2 FA Floating-point CMOV— second half

fdiv FA Floating-point divide instruction

fsqrt FA Floating-point square root instruction

nop None TRAP, EXCB, UNOP - LDQ_U R31, 0(Rx)

ftoi FSTO, FST1, LO, L1 FTOIS, FTOIT

itof LO, L1 ITOFS, ITOFF, ITOFT

mx_fpcr FM Instructions that move data from the floating-point

control register

Alpha 21264/EV6 Hardware Reference Manual Internal Architecture 2-17

Instruction Issue Rules

2.3.2 Ebox Slotting

Instructions that are issued from the 1Q, and could execute in either upper or lower
Ebox subclusters, are slotted to one pair or the other during the pipeline mapping stage
based on the instruction mixture in the fetch line. The codes that are used in Table 2—3
are as follows:

e U—The instruction only executes in an upper subcluster.
e L—The instruction only executes in a lower subcluster.
e E—The instruction could execute in either an upper or lower subcluster.

Table 2—3 defines the slotting rules. The table figstruction Class 3, 2, 1 and iden-
tifies each instruction’s location in the fetch line by the value of bits [3:2] in its PC.

Table 2—3 Instruction Group Definitions and Pipeline Unit

Instruction Class Slotting Instruction Class Slotting
3210 3210 3210 3210
EEEE ULUL LLLL LLLL
EEEL ULUL LLLU LLLU
EEEU ULLU LLUE LLUU
EELE ULLU LLUL LLUL
EELL UuULL LLUU LLUU
EELU ULLU LUEE LULU
EEUE ULUL LUEL LUUL
EEUL ULUL LUEU LULU
EEUU LLUU LULE LULU
ELEE ULUL LULL LULL
ELEL ULUL LULU LULU
ELEU ULLU LUUE LUUL
ELLE ULLU LUUL LUUL
ELLL ULLL LUUU LUUU
ELLU ULLU UEEE ULUL
ELUE ULUL UEEL ULUL
ELUL ULUL UEEU ULLU
ELUU LLUU UELE ULLU
EUEE LULU UELL UulLL
EUEL LUUL UELU ULLU
EUEU LULU UEUE ULUL
EULE LULU UEUL ULUL
EULL UUuULL UEUU UuLuUuU
EULU LULU ULEE ULUL

2-18 Internal Architecture Alpha 21264/EV6 Hardware Reference Manual

Instruction Issue Rules

Table 2—3 Instruction Group Definitions and Pipeline Unit (Continued)

Instruction Class Slotting Instruction Class Slotting

3210 3210 3210 3210

EUUE LUUL ULEL ULUL
EUUL LUUL ULEU ULLU
EUUU LUUU ULLE ULLU
LEEE LULU ULLL ULLL

LEEL LUUL ULLU ULLU
LEEU LULU ULUE ULUL
LELE LULU ULUL ULUL
LELL LULL UuLUU UuLuUuU
LELU LULU UUEE UULL
LEUE LUUL UUEL UULL
LEUL LUUL UUEU UuuLuU
LEUU LLUU UULE UULL
LLEE LLUU UuULL UulLL
LLEL LLUL UuuLuU UuuLuU
LLEU LLUU UUUE UuulL
LLLE LLLU UuulL UuulL
— — uuuu uuuu

2.3.3 Instruction Latencies

After an instruction is placed in the 1Q or FQ, its issue point is determined by the avail-
ability of its register operands, functional unit(s), and relationship to other instructions
in the queue. There are register producer-consumer dependencies and dynamic func-
tional unit availability dependencies thaffect instruction issue. The mapper removes
register producer-producer dependencies.

The latency to produce a register result is generally fixed. The one exception is for load
instructions that miss the Dcache. Table 2—4 lists the latency, in cycles, for each

instruction class.

Table 2—4 Instruction Class Latency in Cycles

Class Latency Comments
ild 3 Dcache hit.
13+ Dcache miss, latency with 6-cycle Bcache. Add additional Bcache loop latency if
Bcache latency is greater than 6 cycles.
fid 4 Dcache hit.
14+ Dcache miss, latency with 6-cycle Bcache. Add additional Bcache loop latency if

Bcache latency is greater than 6 cycles.

Ida 1 Possible 1-cycle Ebox cross-cluster delay.

Alpha 21264/EV6 Hardware Reference Manual

Internal Architecture 2-19

Instruction Issue Rules

Table 2—4 Instruction Class Latency in Cycles (Continued)

Class Latency Comments
mem_m — Does not produce register value.
isc
ist — Does not produce register value.
fst — Does not produce register value.
rpcc 1 Possible 1-cycle cross-cluster delay.
rx 1 —
mxpr lor3 HW_MFPR: Ebox IPRs = 1.
Ibox and Mbox IPRs = 3.
HW_MTPR does not produce a register value.
icbr — Conditional branch. Does not produce register value.
ubr 3 Unconditional branch. Does not produce register value.
jsr 3 —
iadd 1 Possible 1-cycle Ebox cross-cluster delay.
ilog 1 Possible 1-cycle Ebox cross-cluster delay.
ishf 1 Possible 1-cycle Ebox cross-cluster delay.
cmovl 1 Only consumer is cmov2. Possible 1-cycle Ebox cross-cluster delay.
cmov2 1 Possible 1-cycle Ebox cross-cluster delay.
imul 7 Possible 1-cycle Ebox cross-cluster delay.
imisc 3 Possible 1-cycle Ebox cross-cluster delay.
fcbr — Does not produce register value.
fadd 4 Consumer other than fst or ftoi.
6 Consumer fst or ftoi.
Measured from when an fadd is issued from the FQ to when an fst or ftoi is issued from
the 1Q.
fmul 4 Consumer other than fst or ftoi.
6 Consumer fst or ftoi.
Measured from when an fmul is issued from the FQ to when an fst or ftoi is issued from
the 1Q.
fcmovl 4 Only consumer is fcmov2.
fcmov2 4 Consumer other than fst.
6 Consumer fst or ftoi.
Measured from when an fcmov2 is issued from the FQ to when an fst or ftoi is issued
from the 1Q.
fdiv 12 Single precision - latency to consumer of result value.
9 Single precision - latency to using divider again.
15 Double precision - latency to consumer of result value.
12 Double precision - latency to using divider again.
fsqrt 18 Single precision - latency to consumer of result value.
15 Single precision - latency to using unit again.
33 Double precision - latency to consumer of result value.
30 Double precision - latency to using unit again.

2-20 Internal Architecture Alpha 21264/EV6 Hardware Reference Manual

Instruction Retire Rules

Table 2—4 Instruction Class Latency in Cycles (Continued)

Class Latency Comments

ftoi 3 —

itof 4 —

nop — Does not produce register value.

2.4 Instruction Retire Rules

An instruction is retired when it has been executed to completion, and all previous
instructions have been retired. The execution pipeline stage in which an instruction
becomes eligible to be retired depends upon the instruction’s class.

Table 2-5 gives the minimum retire latencies (assuming that all previous instructions
have been retired) for various classes of instructions.

Table 2-5 Minimum Retire Latencies for Instruction Classes

Instruction Class Retire Stage Comments

Integer conditional branch 7 —

Integer multiply 7113 Latency is 13 cycles for the MUL/V instruction.

Integer operate 7 —

Memory 10 —

Floating-point add 11 —

Floating-point multiply 11 —

Floating-point DIV/SQRT 11 + latency Add latency of unit reuse for the instruction indicated in Table

2—4. For example, latency for a single-precision fdiv would be
11 plus 9 from Table 2—4. Latency is 11 if hardware detects that
no exception is possible (see Section 2.4.1).

Floating-point conditional 11 Branch instruction mispredict is reported in stage 7.
branch
BSR/JSR 10 JSR instruction mispredict is reported in stage 8.

2.4.1 Floating-Point Divide/Square Root Early Retire

The floating-point divider and square root unit can detect that, for many combinations
of source operand values, no extiep can be generated. Instructions with these oper-

ands can be retired before the result is generated. When detected, they are retired with

the same latency as the FP add class. Early retirement is not possible for the following
instruction/operana@tchitecture state conditions:

e Instruction is not a DIV or SQRT.

* SORT source operand is negative.
e Divide operand exponent_a s 0.

* Either operand is NaN or INF.

* Divide operand exponent_b is 0.

Alpha 21264/EV6 Hardware Reference Manual Internal Architecture 2-21

Retire of Operate Instructions into R31/F31

e Trapping mode is /I (inexact).
* INE status bit is O.

Early retirement is also not possible for divide instructions if the resulting exponent has
any of the following characteristics (EXP is the result exponent):

« DIVT, DIVG: (EXP >= 3FF;¢) OR (EXP <= 2¢)
 DIVS, DIVF: (EXP >=7F ¢ OR (EXP <= 383y)

2.5 Retire of Operate Instructions into R31/F31

Many instructions that have R31 or F31 as their destination are retired immediately
upon decode (stage 3). These instructions do not produce a result and are removed from
the pipeline as well. They do not occupy a slot in the issue queues and do not occupy a
functional unit. Table 2—6 lists these instructions and some of their characteristics. The

Table 2—6 Instructions Retired Without Execution

Instruction Type Notes

INTA, INTL, INTM, INTS All with R31 as destination.

FLTI, FLTL, FLTV All with F31 as destination. MT_FPCR is not included
because it has no destination—it is never removed from the
pipeline.

LDQ U All with R31 as destination.

MISC TRAPB and EXCB are always removed. Others are never
removed.

FLTS All (SQRT, ITOF) with F31 as destination.

instruction type in Table 2—6 is from Table C-6 in Appendix C of &lgha Architecture
Handbook, Version 4

2.6 Load Instructions to R31 and F31

This section describes how the 21264/EV6 processes saftdieected prefetch trans-
actions and load instructions with a destination of R31 and F31.

Prefetches allocate a MAF entry. How the MAF entry is allocated is what distinguishes
the type of prefetch. A normal prefetch is equivalent to a normal load MAF (that is, a
MAF entry that puts the block into the Dcache in a readable state). A prefetch with
modify intent is equivalent to a normal store MAF (that is, a MAF entry that puts the
block into the Dcache in a writeable state). A prefetch, evict nexgisvalent to a nor-

mal load MAF, with the additional behavior described in Section 2.6.3, below.

A prefetch is not performed if the prefetch hits in the Dcache (as if it were a normal
load).

Load operations to R31 and F31 may generate exceptions. These exceptions must be
dismissed by PALcode.

The following sections describe the operational prefetch behavior of these instructions.

2-22 Internal Architecture Alpha 21264/EV6 Hardware Reference Manual

Special Cases of Alpha Instruction Execution

2.6.1 Normal Prefetch: LDBU, LDF, LDG, LDL, LDT, LDWU, HW_LDL Instructions

The 21264/EV6 processes these instructions as normal cache line prefetches. If the load
instruction hits the Dcache, the instruction is dismissed, otherwise the addressed cache
block is allocated into the Dcache.

The HW_LDL instruction construct equates to the HW_LD instruction with the LEN
field clear. See Table 6-3.

2.6.2 Prefetch with Modify Intent: LDS Instruction

The 21264/EV6 processes an LDS instruction, with F31 as the destination, as a prefetch
with modify intent transaction (ReadBlkMod command). If the transaction hits a dirty
Dcache block, the instruction is dismissed. Otherwise, the addressed cache block is
allocated into the Dcache for write access, with its dirty and modified bits set.

2.6.3 Prefetch, Evict Next: LDQ and HW_LDQ Instructions

The 21264/EV6 processes this instruction like a normefgich transaction (ReadBIk-
Spec command), with one exception—if the load misses the Dcache, the addressed
cache block is allocated into the Dcache, but the Dcache set allocation pointer is left
pointing to this block. The next miss to the same Dcache line will evict the block. For
example, this instruction might be used when software is reading an array thatis known
to fit in the offchip Bcache, but will not fit into the onchip Dcache. In this case, the
instruction ensures that the hardware provides the desired prefetch function without dis-
placing useful cache blocks stored in the other set within the Dcache.

The HW_LDQ instruction construct equates to the HW_LD instruction with the LEN
field set. See Table 6-3.

2.6.4 Prefetch with the LDx_L / STx_C Instruction Sequence

A prefetch within a dynamic 80-instruction window of a LDx_L instruction can cause

the subsequent STx_C to incorrectly succeed when all three references are to the same
64-byte cache block. Within that 80-instruction window, the proximity of the prefetch

to the LDx_L instruction directhaffects thepossibility of the incorrect behavior. Fur-

ther, if the prefetch issues before the LDx_L, the error cannot occur, and iféifietgh

issues after the LDx_L, the error can only occur when another processor is simulta-
neously acquiring the same lock.

2.7 Special Cases of Alpha Instruction Execution

This section describes the mechanisms that the 21264/EV6 uses to proegskr
instructions in the Alpha instruction set, and cases in which the 21264/EV6 processes
instructions in a non-intuitive way.

Alpha 21264/EV6 Hardware Reference Manual Internal Architecture 2-23

Special Cases of Alpha Instruction Execution

2.7.1 Load Hit Speculation

2-24

The latency of integer load instructions that hit in the Dcache is three cycles. Figure 2—
9 shows the pipeline timing for these integer load instructions. In Figure 2-9:

Symbol Meaning

q Issue queue

R Register file read
E Execute

D Dcache access
B Data bus active

Figure 2—-9 Pipeline Timing for Integer Load Instructions

Hit

Cycle Number 1 2 3 4 (5 6 7 8
ILD Q R E D B
Instruction 1 Q R
Instruction 2 Q

FM-05814.Al4

There are two cycles in which the 1Q may speculatively issue instructions that use load
data before Dcache hit information is known. Any instructions that are issued by the 1Q
within this 2-cycle speculative window are kept in the 1Q with their requests inhibited
until the load instruction’s hit condition is known, even if they are not dependent on the
load operation. If the load instruction hits, then these instructions are removed from the
gueue. If the load instruction misses, then the execution of these instructions is aborted
and the instructions are allowed to request service again.

For example, in Figure 2-9, instruction 1 and instruction 2 are issued within the specu-
lative window of the load instruction. If the load instruction hits, then both instructions
will be deleted from the queue by the start of cycle 7—one cycle later than normal for
instruction 1 and at the normal time for instruction 2. If the load instruction misses, both
instructions are aborted from the execution pipelines and may request service again in
cycle 6.

IQ-issued instructions are aborted if issued within the speculative window of an integer
load instruction that missed in the Dcache, even if they are not dependent on the load
data. However, if software misses are likely, the 21264/EV6 can still benefit from
scheduling the instruction stream for Dcache miss latency. The 21264/EV6 includes a
saturating counter that is incremented when load instructions hit and is decremented
when load instructions miss. When the upper bit of the counter equals zero, the integer
load latency is increased to five cycles and the speculative window is removed. The
counter is 4 bits wide and is incremented by 1 on a hit and is decremented by two on a
miss.

Internal Architecture Alpha 21264/EV6 Hardware Reference Manual

Special Cases of Alpha Instruction Execution

Since load instructions to R31 do not produce a result, they do not create a speculative
window when they execute and, therefore, never waste 1Q-issue cycles if they miss.
Floating-point load instructions that hit in the Dcache have a latency of four cycles. Fig-
ure 2-10 shows the pipeline timing for floating-point load instructions. In Figure 2—10:

Symbol Meaning

q Issue queue

R Register file read
E Execute

D Dcache access
B Data bus active

Figure 2-10 Pipeline Timing for Floating-Point Load Instructions

Hit
Cycle Number 1 2 3 4 (5 6 7 8
FLD Q R E D B
Instruction 1 Q R
Instruction 2 Q

FM-05815.A14

The speculative window for floating-point load instructions is one cycle wide.
FQ-issued instructions that are issued within the speculative window of a floating-point
load instruction that has missed, are only aborted if they depend on the load being suc-
cessful.

For example, in Figure 2—10 instruction 1 is issued in the speculative window of the
load instruction.

If instruction 1 is not a user of the data returned by the load instruction, then it is
removed from the queue at its normal time (at the start of cycle 7).

If instruction 1 is dependent on the load instruction data and the load instruction hits,
instruction 1 is removed from the queue one cycle later (at the start of cycle 8). If the
load instruction misses, then instruction 1 is aborted from the Fbox pipeline and may
request service again in cycle 7.

2.7.2 Floating-Point Store Instructions

Floating-point store instructions are duplicated and loaded into both the 1Q and the FQ
from the mapper. Each IQ entry contains a control bit, fpWait, that when set prevents
that entry from asserting its requests. This bit is initially set for each floating-point store
instruction that enters the 1Q, unless it was the target of a replay trap. The instruction’s
FQ clone is issued when its Ra register is about to become clean, resulting in its 1Q
clone’s fpWait bit being cleared and allowing the IQ clone to issue and be executed by
the Mbox. This mechanism ensures that floating-point store instructions are always
issued to the Mbox, along with the associated data, without requiring the floating-point
register dirty bits to be available within the 1Q.

Alpha 21264/EV6 Hardware Reference Manual Internal Architecture 2-25

Memory and I/O Address Space Instructions

2.7.3 CMOQV Instruction

For the 21264/EV6, the Alpha CMOQV instruction has three operands, and so presents a
special case. The required operation is to move either the value in register Rb or the
value from the old physical destination register into the new destination register, based
upon the value in Ra. Since neither the mapper nor the Ebox and Fbox data paths are
otherwise required to handle three operand instructions, the CMOV instruction is
decomposed by the Ibox pipeline into two 2-operand instructions:

The Alpha architecture instruction CMOV Ra, Rb ? Rc

Becomes the 21264/EV6 instructions CMOV1 Ra, oldRmewRc1
CMOV2 newRcl, Rb= newRc2

The first instruction, CMOV1, tests the value of Ra and records the result of this test in
a 65th bit of its destination register, newRcLl. It also copies the value of the old physical
destination register, oldRc, to newRcl.

The second instruction, CMOV2, then copies either the value in newRc1 or the value in
Rb into a second physical destination register, newRc2, based on the Qividi¢ate
bit stored in newRc1.

In summary, the original CMOV instruction is decomposed into two dependent instruc-
tions that each use a physical register from the free list.

To further simplify this operation, the two component instructions of a CMQV instruc-
tion are driven through the mappers in successive cycles. Hence, if a fetch line contains
n CMOQV instructions, it takes+1 cycles to run that fetch line through the mappers.

For example, the following fetch line:

ADD CMOV SUB CMQV

Results in the following three map cycles:
ADD CMOM

CMO¥2 SUB CMOXL.

CMOY2

The Ebox executes integer CMOV instructions as two distinct 1-cycle laterenaop
tions. The Fbox add pipeline executes floating-point CMOV instructions as two distinct
4-cycle latency operations.

2.8 Memory and I/0O Address Space Instructions

2-26

This section provides an overview of the way the 21264/EV6 processes memory and I/
O address space instructions.

The 21264/EV6 supports, and internally recognizes, a 44-bit physical address space
that is divided equally between memory address space and I/O address space. Memory
address space resides in the lower half of the physical address space (PA[43]=0)

and 1/0O address space resides in the upper half of the physical address space
(PA[43]=1).

Internal Architecture Alpha 21264/EV6 Hardware Reference Manual

Memory and I/O Address Space Instructions

The IQ can issue any combination of load and store instructions to the Mbox at the rate
of two per cycle. The two lower Ebox subclusters, LO and L1, generate the
48-bit effective virtual address for these instructions.

An instruction is defined to beewerthan another instruction if it follows that instruc-
tion in program order and islder if it precedes that instruction in program order.

2.8.1 Memory Address Space Load Instructions

The Mbox begins execution of a load instruction by translating its virtual address to a
physical address using the DTB and by accessing the Dcache. The Dcache is virtually
indexed, allowing these two operations to be done in parallel. The Mbox puts informa-
tion about the load instruction, including its physical address, destination register, and
data format, into the LQ.

If the requested physical location is found in the Dcache (a hit), the data is formatted
and written into the appropriate integer or floating-point register. If the location is notin
the Dcache (a miss), the physical address is placed in the miss address file (MAF) for
processing by the Cbox. The MAF performs a merging function in which a new miss
address is compared to miss addresses already held in the MAF. If the new miss address
points to the same Dcache block as a miss address in the MAF, then the new miss
address is discarded.

When Dcache fill data is returned to the Dcache by the Chox, the Mbox satisfies the
requesting load instructions in the LQ.

2.8.2 1/0O Address Space Load Instructions

Because I/O space load instructions may have sftéets, they canot be performed
speculatively. When the Mbox receives an I/O space load instruction, the Mbox places
the load instruction in the LQ, where it is held until it retires. The Mbox replays retired
I/0 space load instructions from the LQ to the MAF in program order, at a rate of one
per GCLK cycle.

The Mbox allocates a new MAF entry to an I/O load instruction and increases 1/0O band-
width by attempting to merge 1/O load instructions in a merge register. Table 2—7 shows
the rules for merging data. The columns represent the load instructions replayed to the
MAF while the rows represent the size of the load in the merge register.

Table 2—7 Rules for /0O Address Space Load Instruction Data Merging

Merge Register/

Replayed Instruction Load Byte/Word Load Longword Load Quadword

Byte/Word No merge No merge No merge

Longword No merge Merge up to 32 bytes No merge
Quadword No merge No merge Merge up to 64 bytes

In summary, Table 2—7 shows some of the following rules.

e Byte/word load instructions and different size load instructions are not allowed to
merge.

* A stream of ascending non-overlapping, but not necessarily consecutive, longword
load instructions are allowed to merge into naturally aligned 32-byte blocks.

Alpha 21264/EV6 Hardware Reference Manual Internal Architecture 2-27

Memory and I/O Address Space Instructions

* Astream of ascending non-overlapping, but not necessarily consecutive, quadword
load instructions are allowed to merge into naturally aligned 64-byte blocks.

* Merging of quadwords can be limited to naturally-aligned 32-byte blocks based on
the Cbox WRITE_ONCE chain 32_BYTE_IO field.

* Issued MB, WMB, and I/O load instructions close the 1/O register merge window.
To minimize latency, the merge window is also closed when a timer detects no 1/O
store instruction activity for 1024 cycles.

After the Mbox I/O register has closed its merge window, the Cbox sends I/O read
requests offchip in the order that they were received from the Mbox.

2.8.3 Memory Address Space Store Instructions

The Mbox begins execution of a store instruction by translating its virtual address to a
physical address using the DTB and by probing the Dcache. The Mbox puts informa-
tion about the store instruction, including its physical address, its data and the results of
the Dcache probe, into the store queue (SQ).

If the Mbox does not find the addressed location in the Dcache, it places the address
into the MAF for processing by the Chox. If the Mbox finds the addressed location in a
Dcache block that is not dirty, then it places a ChangeToDirty request into the MAF.

A store instruction can write its data into the Dcache when it is retired, and when the
Dcache block containing its address is dirty and not shared. SQ entries that meet these
two conditions can be placed into theitable state. These SQ entries are placed into
thewritable state in program order at a maximum rate of two entries per cycle. The
Mbox transferswritable store queue entry data from the SQ to the Dcache in program
order at a maximum rate of two entries per cycle. Dcache lines associatedritéble

store queue entries are locked by the Mbox. System port probe commands cannot evict
these blocks until their associated writable SQ entries have beengmatsinto the

Dcache. This restriction assists in STx_C instruction and Dcache ECC processing.

SQ entry data that has not been transferred to the Dcache may source data to newer load
instructions. The Mbox compares the virtual Dcache index bits of incoming load
instructions to queued SQ entries, andrees the data from the SQypassing the

Dcache, when necessary.

2.8.4 1/0 Address Space Store Instructions

The Mbox begins processing I/O space store instruction, like memory space store
instruction, by translating the virtual address and placing the state associated with the
store instruction into the SQ.

The Mbox replays retired I/O space store entries from the SQ to the IOWB in program
order at a rate of one per GCLK cycle. The Mbox never allows queued I/O space store
instructions to source data to subsequent load instructions.

2-28 Internal Architecture Alpha 21264/EV6 Hardware Reference Manual

MAF Memory Address Space Merging Rules

The Cbox maximizes I/0O bandwidth when it allocates a new IOWB entry to an 1/O

store instruction by attempting to merge 1/O store instructions in a merge register. Table
2—-8 shows the rules for I/O space store instruction data merging. The columns represent
the load instructions replayed to the IOWB while the rows represent the size of the store
in the merge register.

Table 2-8 Rules for I/O Address Space Store Instruction Data Merging

Merge Register/ Store

Replayed Instruction Byte/Word Store Longword Store Quadword
Byte/Word No merge No merge No merge

Longword No merge Merge up to 32 bytes No merge
Quadword No merge No merge Merge up to 64 bytes

Table 2—-8 shows some of the following rules:

e Byte/word store instructions andfféirent sizestore instructions are not allowed to
merge.

* A stream of ascending non-overlapping, but not necessarily consecutive, longword
store instructions are allowed to merge into naturally aligned 32-byte blocks.

e Astream of ascending non-overlapping, but not necessarily consecutive, quadword
store instructions are allowed to merge into naturally aligned 64-byte blocks.

* Merging of quadwords can be limited to naturally-aligned 32-byte blocks based on
the Cbox WRITE_ONCE chain 32_BYTE_IO field.

* Issued MB, WMB, and I/O load instructions close the 1/O register merge window.
To minimize latency, the merge window is also closed when a timer detects no 1/O
store instruction activity for 1024 cycles.

After the IOWB merge register has closed its merge window, the Cbox sends I/O space
store requests offchip in the order that they were received from the Mbox.

2.9 MAF Memory Address Space Merging Rules

Because all memory transactions are to 64-byte blocks, efficiency is improved by merg-
ing several small data transactions into a single larger data transaction.

Table 2-9 lists the rules the 21264/EV6 uses when merging memory transactions into
64-byte naturally aligned data block transactions. Rows represent the merged instruc-
tion in the MAF and columns represent the new issued transaction.

Table 2-9 MAF Merging Rules

MAF/New LDx STx STx_C WH64 ECB Istream
LDx Merge — — — — —
STx Merge Merge — — — —
STx_C — — Merge — — —

Alpha 21264/EV6 Hardware Reference Manual Internal Architecture 2-29

Instruction Ordering

Table 2-9 MAF Merging Rules

MAF/New LDx STx STx_C WH64 ECB Istream
WH64 — — — Merge — —
ECB — — — — Merge —
Istream — — — — — Merge

In summary, Table 2—9 shows that only like instruction types, with the exception of
load instructions merging with store instructions, are merged.

2.10 Instruction Ordering

2-30

In the absence of explicit instruction ordering, such as with MB or WMB instructions,
the 21264/EV6 maintains a default instruction ordering relationship between pairs of

load and store instructions.

The 21264/EV6 maintains the default memory data instruction ordering as shown in
Table 2-10 (assume address X and address Y are different).

Table 2-10 Memory Reference Ordering

First Instruction in Pair

Second Instruction in Pair

Reference Order

Load memory to address X
Load memory to address X
Store memory to address X
Store memory to address X
Load memory to address X
Load memory to address X
Store memory to address X

Store memory to address X

Load memory to address X
Load memory to address Y
Store memory to address X
Store memory to address Y
Store memory to address X
Store memory to address Y
Load memory to address X

Load memory to address Y

Maintained (litmus test 1)
Not maintained
Maintained

Maintained

Maintained

Not maintained
Maintained

Not maintained

The 21264/EV6 maintains the default I/O instruction ordering as shown in Table 2—11
(assume address X and address Y affedint).

Table 2-11 1/0 Reference Ordering

First Instruction in Pair

Second Instruction in Pair

Reference Order

Load I/O to address X
Load I/O to address X
Store I/O to address X
Store I/O to address X
Load I/O to address X
Load I/O to address X
Store I/0 to address X
Store I/O to address X

Load I/O to address X
Load I/O to address Y
Store I/O to address X
Store I/O to address Y
Store I/O to address X
Store I/O to address Y
Load I/O to address X
Load I/O to address Y

Maintained
Maintained
Maintained
Maintained
Maintained
Not maintained
Maintained

Not maintained

Internal Architecture

Alpha 21264/EV6 Hardware Reference Manual

Replay Traps

2.11 Replay Traps

There are some situations in which a load or store instruction cannot be executed due to
a condition that occurs after that instruction issues from the 1Q or FQ. The instruction is
aborted (along with all newer instructions) and restarted from the fetch stage of the
pipeline. This mechanism is called a replay trap.

2.11.1 Mbox Order Traps

Load and store instructions may be issued from the |Q irffardint order than they

were fetched from the Icache, while the architecture dictates that Dstream memory
transactions to the same physical bytes must be completed in order. Usually, the Mbox
manages the memory reference stream by itself to achieve architecturally correct
behavior, but the two cases in which the Mbox uses replay traps to manage the memory
stream ardoad-loadandstore-loadorder traps.

2.11.1.1 Load-Load Order Trap

The Mbox ensures that load instructions thedid the same piical byte(s) ultimately

issue in correct order by using ttead-loadorder trap. The Mbox compares the

address of each load instruction, as it is issued, to the address of all load instructions in
the load queue. If the Mbox finds a newer load instruction in the load queue, it invokes
aload-loadorder trap on the newer instruction. This is a replay trap that aborts the tar-
get of the trap and all newer instructions from the machine and refetches instructions
starting at the target of the trap.

2.11.1.2 Store-Load Order Trap

The Mbox ensures that a load instruction ultimately issues after an older store instruc-
tion that writes some portion of its memory operand by using the

store-loadorder trap. The Mbox compares the address of each store instruction, as it is
issued, to the address of all load instructions in the load queue. If the Mbox finds a
newer load instruction in the load queue, it invokest@e-loadorder trap on the load
instruction. This is a replay trap. It functions like tlead-loadorder trap.

The Ibox contains extra hardware to reduce the frequency dfttre-loadtrap. There

is a 1-bit by 1024-entry VPC-indexed table in the Ibox called the stWait table. When an
Icache instruction is fetched, the associated stWait table entry is fetched along with the
Icache instruction. The stWait table produces 1 bit for each instruction accessed from
the Icache. When a load instruction getst@re-loadorder replay trap, its associated bit

in the stWait table is set during the cycle that the load is refetched. Hence, the trapping
load instruction’s stWait bit will be set the next time it is fetched.

The IQ will not issue load instructions whose stWait bit is set while there are older unis-
sued store instructions in the queue. A load instruction whose stWait bit is set can be
issued the cycle immediately after the last older store instruction is issued from the
gueue. All the bits in the stWait table are unconditionally cleared every 16384 cycles.

2.11.2 Other Mbox Replay Traps

The Mbox also uses replay traps to control the flow of the load queue and store queue,
and to ensure that there are never multiple outstanding misseffeiedt physical

addresses that map to the same Dcache or Bcache line. Unlike the order traps, however,
these replay traps are invoked on the incoming instruction that triggered the condition.

Alpha 21264/EV6 Hardware Reference Manual Internal Architecture 2-31

I/O Write Buffer and the WMB Instruction

2.12 1/0O Write Buffer and the WMB Instruction

The 1/O write buffer (IOWB) onsists of four 64-byte entries with the associated
address and control logic used toftew I/O write data between thgtore queue (SQ)
and the system port.

2.12.1 Memory Barrier (MB/WMB/TB Fill Flow)

The Cbox CSR SYSBUS_MB_ENABLE bit determines if MB instructions produce
external system port transactions. When the SYSBUS_MB_ENABLE bit equals 0, the
Cbox CSR MB_CNTI[3:0] field contains the number of pending uncommitted transac-
tions. The counter will increment for each of the following commands:

* RdBIk, RdBlkMod, RdBIKkI

* RdBIkSpec (valid), RdBIkModSpec (valid), RdBIkSpecl (valid)
* RdBIkVic, RdBIkModVic, RdBIkVicl

e CleanToDirty, SharedToDirty, STChangeToDirty, InvalToDirty
* FetchBIk, FetchBlkSpec (valid), Evict

* RdByte, RdLw, RdQw, WrByte, WrLW, WrQW

The counter is decremented with the C (commit) bit in the Probe and SysDc commands
(see Section 4.7.7). Systems can assert the C bit in the SysDc fill response to the com-
mands that originally incremented the counter, or attached to the last probe seen by that
command when it reached the system serialization point. If the number of uncommitted
transactions reaches 15 (saturating the counter), the Cbox will stall MAF and IOWB
processing until at least one of the pending transactions has been committed. Probe pro-
cessing is not interrupted by the state of this counter.

2.12.1.1 MB Instruction Processing

When an MB instruction is fetched in the predicted instruction execution path, it stalls
in the map stage of the pipeline. This also stalls all instructions after the MB, and con-
trol of instruction flow is based upon the value in Cbox CSR SYSBUS_MB_ENABLE
as follows:

e |f Cbox CSR SYSBUS MB_ENABLE is clear, the Chox waits until the I1Q is
empty and then performs the following actions:

a. Sends all pending MAF and IOWB entries to the system port.

b. Monitors Cbox CSR MB_CNT][3:0], a 4-bit counter of outstanding committed
events. When the counter decrements from one to zero, the Cbox marks the
youngest probe queue entry.

c. Waits until the MAF contains no more Dstreaeferences and the SQ, LQ, and
IOWB are empty.

When all of the above have oagad and a probe sponse has been sent to the sys-
tem for the marked probe queue entry, instruction execution continues with the
instruction after the MB.

* |fCbox CSR SYSBUS MB_ENABLE is set, the Cbox waits until the 1Q is empty
and then performs the following actions:

2-32 Internal Architecture Alpha 21264/EV6 Hardware Reference Manual

I/O Write Buffer and the WMB Instruction

Sends all pending MAF and IOWB entries to the system port
b. Sendsthe MB command to the system port

c. Waits until the MB command is acknowledged, then marks the youngest entry
in the probe queue

d. Waits until the MAF contains no more Dstreaegferences and the SQ, LQ, and
IOWB are empty

When all of the above have oacad and a probe sponse has been sent to the sys-
tem for the marked probe queue entry, instruction execution continues with the
instruction after the MB.

Because the MB instruction is executed speculatively, MB processing can begin
and the original MB can be Kkilled. In the internal acknowledge case, the MB may
have already been sent to the systemrfatee, and the system is still expected to
respond to the MB.

2.12.1.2 WMB Instruction Processing

Write memory barrier (WMB) instructions are issued into the Mbox store-queue, where
they wait until they are retired and all prior store instructions become writable. The
Mbox then stalls the writable pointer and informs the Cbox. The Chox closes the IOWB
merge register and responds in one of the following two ways:

If Cbox CSR SYSBUS MB_ENABLE is clear, the Cbox performs the following
actions:

a. Stalls further MAF and IOWB processing.

b. Monitors Cbox CSR MB_CNT][3:0], a 4-bit counter of outstanding committed
events. When the counter decrements from one to zero, the Cbox marks the
youngest probe queue entry.

c. When a probe response has been sent to the system for the marked probe queue
entry, the Cbox considers the WMB to be satisfied.

If Cbox CSR SYSBUS MB_ENABLE is set, the Cbox performs the following
actions:

a. Stalls further MAF and IOWB processing.
b. Sends the MB command to the system port.

c. Waits until the MB command is acknowledged by the system with a SysDc
MBDone command, then sends acknowledge and marks the youngest entry in
the probe queue.

d. When a probe response has been sent to the system for the marked probe queue
entry, the Cbox considers the WMB to be satisfied.

2.12.1.3 TB Fill Flow

Load instructions (HW_LDs) to a virtual page table entry (VPTE) are processed by the
21264/EV6 to avoid litmus test problems associated with the ordering of memory trans-
actions from another processor against loading of a page table entry and the subsequent
virtual-mode load from this processor.

Alpha 21264/EV6 Hardware Reference Manual Internal Architecture 2-33

I/O Write Buffer and the WMB Instruction

Consider the sequence shown in Table 2—12. The data could be in the Bcache. Pj should
fetch datai if it is using PTEi.

Table 2-12 TB Fill Flow Example Sequence 1

Pi Pj

Write Datai Load/Store datai

MB <TB miss>

Write PTEI Load-PTE
<write TB>

Load/Store (restart)

Also consider the related sequence shown in Table 2—-13. In this case, the data could be
cached in the Bcache; Pj should fetch datai if it is using PTEi.

Table 2-13 TB Fill Flow Example Sequence 2

Pi Pj
Write Datai Istream read datai
MB <TB miss>
Write PTEI Load-PTE
<write TB>

Istream read (restart) - will miss the Icache

The 21264/EV6 processes Dstream loads to the PTE by injecting, in hardware, some
memory barrier processing between the PTE transaction and any subsequent load or
store instruction. This is accomplished by the following mechanism:

1. Theinteger queue issues a HW_LD instruction with VPTE.

2. Theinteger queue issues a HW_MTPR instruction with a DTB_PTEDO, that is data-
dependent on the HW_LD instruction with a VPTE, and is required in order to fill
the DTBs. The HW_MTPR instruction, when queued, sets IPR scoreboard bits [4]
and [O].

3. When a HW_MTPR instruction with a DTB_PTEO is issued, the Ibox signals the
Cbox indicating that a HW_LD instruction with a VPTE has been processed. This
causes the Cbox to begin processing the MB instruction. The Ibox prevents any
subsequent memory operations being issued by not clearing the IPR scoreboard bit
[0]. IPR scoreboard bit [0] is one of the scoreboard bits associated with the
HW_MTPR instruction with DTB_PTEO.

4. When the Cbox completes processing the MB instruction (using one of the above
sequences, depending upon the state of SYSBUS_ MB_ENABLE), the Cbhox sig-
nals the Ibox to clear IPR scoreboard bit [0].

The 21264/EV6 uses a similar mechanism to process Istream TB misses and fills to the
PTE for the Istream.

1. Theinteger queue issues a HW_LD instruction with VPTE.

2. ThelQ issues a HW_MTPR instruction with an ITB_PTE that is data-dependent
upon the HW_LD instruction with VPTE. This is required in order to fill the ITB.
The HW_MTPR instruction, when queued, sets IPR scoreboard bits [4] and [0].

2-34 Internal Architecture Alpha 21264/EV6 Hardware Reference Manual

Performance Measurement Support—Performance Counters

3. The Cbox issues a HW_MTPR instruction for the ITB_PTE and signals the Ibox
thata HW_LD/VPTE instruction has been processed, causing the Cbox to start pro-
cessing the MB instruction. The Mbox stalls Ibox fetching from when the HW_LD/
VPTE instruction finishes until the probe queue is drained.

4. When the 21264/EV6 is finished (SYS_MB selects one of the above sequences),
the Cbox directs the Ibox to clear IPR scoreboard bit [0]. Also, the Mbox directs the
Ibox to start prefetcimg.

Inserting MB instruction processing within the TB fill flow is only required for multi-
processor systems. Uniprocessor systems can disable MB instruction processing by
deasserting Ibox CSR|_CTL[TB_MB_EN].

2.13 Performance Measurement Support—Performance Counters

The 21264/EV6 provides hardware support for obtaining program performance feed-
back information without requiring program modification. See Section 6.10 for infor-
mation about counter control.

2.14 Floating-Point Control Register

The floating-point control register (FPCR) is shown in Figure 2—11.

Figure 2-11 Floating-Point Control Register

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 32
I

L L L
I T T O B
1 1 1 1

SUM
INED
UNFD
UNDZ
DYN
10V
INE
UNF
OVF
DZE
INV
OVFD
DZED
INVD
DNZ

31 0

.

rrrrrr-rrrrrr-rr-rr-rr-rr-rr T

e
T T T T T T T

LKG-10978A-98WF

Alpha 21264/EV6 Hardware Reference Manual Internal Architecture 2-35

Floating-Point Control Register

The floating-point control register fields are described in Table 2-14.

Table 2-14 Floating-Point Control Register Fields

Name

Extent

Type

Description

SUM

INED

UNFD

UNDZzZ

DYN

IOV

INE

UNF

OVF

DZE

INV

2-36

(63]

(62]

(61]

(60]

[59:58]

[57]

[56]

[55]

[54]

(53]

[52]

Internal Architecture

RwW

RW

RW

RW

RW

RW

RwW

RW

RW

RW

RwW

Summary bit. Records bit-wise OR of FPCR exception bits.The summary bit is
not directly modified by writes to bit 63 of the FPCR, but is indirectly modified
by changes to FPCR bits 57-52.

Inexact Disable. If this bit is set and a floating-point instruction that enables
trapping on inexact results generates an inexact value, the result is placed in the
destination register and the trap is suppressed.

Underflow Disable. The 21264/EV6 hardware cannot generate IEEE compliant
denormal results. UNFD is used in conjunction with UNDZ as follows:

UNFD UNDZ Result

0 X Underflow trap.
1 0 Trap to supply a possible denormal result.

1 1 Underflow trap suppressed. Destination is written
with a true zero (+0.0).

Underflow to zero. When UNDZ is set together with UNFD, underflow traps are
disabled and the 21264/EV6 places a true zero in the destination register. See
UNFD, above.

Dynamic rounding mode. Indicates the rounding mode to be used by an IEEE
floating-point instruction when the instruction specifies dynamic rounding
mode:

Bits Meaning
00 Chopped

01 Minus infinity
10 Normal
11 Plus infinity

Integer overflow. A CVTGQ, CVTTQ, or CVTQL overflowed the destination
precision.

Inexact result. A floating-point arithmetic or conversion operation gave a result
that differed from the mathematically exact result.

Underflow. A floating-point arithmetic or conversion operation gave a result
that underflowed the destination exponent.

Overflow. A floating-point arithmetic or conversion operation gave a result that
overflowed the destination exponent.

Divide by zero. An attempt was made to perform a floating-point divide with a
divisor of zero.

Invalid operation. An attempt was made to perform a floating-point arithmetic
operation and one or more of its operand values were illegal.

Alpha 21264/EV6 Hardware Reference Manual

AMASK and IMPLVER Values

Table 2-14 Floating-Point Control Register Fields (Continued)

Name Extent Type Description

OVFD [51] RwW Overflow disable. If this bit is set and a floating-point arithmetic operation gen-
erates an overflow condition, then the appropriate IEEE nontrapping result is
placed in the destination register and the trap is suppressed.

DZED [50] RW Division by zero disable. If this bit is set and a floating-point divide by zero is
detected, the appropriate IEEE nontrapping result is placed in the destination
register and the trap is suppressed.

INVD [49] RW Invalid operation disable. If this bit is set and a floating-point operate generates
an invalid operation condition and 21264/EV6 is capable of producing the cor-
rect IEEE nontrapping result, that result is placed in the destination register and
the trap is suppressed.

DNz [48] RwW Denormal operands to zero. If this bit is set, treat all Denormal operands as a
signed zero value with the same sign as the Denormal operand.

Reserved [47:(}] — —

1 Alpha architecture FPCR bit 47 (DNOD) is not implemented by the 21264/EV6.

2.15 AMASK and IMPLVER Values

The AMASK and IMPLVER instructions return the supported architecture extensions
and processor type , respectively.

2.15.1 AMASK

The 21264/EV6 returns the AMASK instruction values provided in Table 2—-15. The
|_CTL register reports the 21264/EV6 pass level (see |_CTL[CHIP_ID], Section
5.2.14).

Table 2-15 21264/EV6 AMASK Values

21264/EV6 Pass Level AMASK Feature Mask Value

Pass 1 00{g

Pass 2 305

The AMASK bit definitions provided in Table 2—15 are defined in Table 2—-16.

Table 2-16 AMASK Bit Assignments

Bit Meaning

0 Support for the byte/word extension (BWX)
The instructions that comprise the BWX extension are LDBU, LDWU, SEXTB,
SEXTW, STB, and STW.

Alpha 21264/EV6 Hardware Reference Manual Internal Architecture 2-37

Design Examples

Table 2-16 AMASK Bit Assignments

Bit Meaning

1 Support for the square-root and floating-point convert extension (FIX)
The instructions that comprise the FIX extension are FTOIS, FTOIT, ITOFF,
ITOFS, ITOFT, SQRTF, SQRTG, SQRTS, and SQRTT.

8 Support for the multimedia extension (MVI)

The instructions that comprise the MVI extension are MAXSB8, MAXSW4,
MAXUB8, MAXUW4, MINSB8, MINSW4, MINUB8, MINUW4, PERR, PKLB,
PKWB, UNPKBL, and UNPKBW.

Support for precise arithmetic trap reporting in hardware. The trap PC is the same as
the instruction PC after the trapping instruction is executed.

2.15.2 IMPLVER
For the 21264/EV6, the IMPLVER instruction returns the value 2.
2.16 Design Examples

The 21264/EV6 can be designed into manffedent uniprocesor and multiprocessor
system configurations. Figures 2-12 and 2-13 illustrate two possible configurations.
These configurations employ additional system/memory controller chipsets.

Figure 2—12 shows a typical uniprocessor system with a second-level cache. This sys-
tem configuration could be used in standalone or networked workstations.

Figure 2-12 Typical Uniprocessor Configuration

L2 Cache 21264 21272 Core Duplicate
Logic Chipset | »| Tag Store
(Optional)
ST ag >»1 Tag
tore
Address - Control
\ Out - Chips
Address "
Address| Data Slice Arrays
/ in [Chips
Data »| Data
>
Store Host PCI »1 Address
Data = - Bridge Chip
- »1 Data
\ I
< 64-bit PCI Bus >
FM-05573.A14

Figure 2—13 shows a typical multiprocessor system, each processor with a second-level
cache. Each interface controller must employ a duplicate tag store to maintain cache

coherency. This system configuration could be used in a networked database server
application.

2-38 Internal Architecture Alpha 21264/EV6 Hardware Reference Manual

Figure 2-13

Typical Multiprocessor Configuration

Design Examples

L2

Cache [

L2

Cache [

21272 Core
21264 ; . DRAM
Logic Chipset
> > g P Arrays
> < »1 Address
> <> Control - »| Data
Chip
o 21264 - Data Slice
> > Chips DRAM
Arrays
>»1 Address
. - Host PCI Host PCI
Bridge Chip Bridge Chip | |« »|Data
A A A A

s > |

< 64-bit PCI Bus

> FM-05574.A14

Alpha 21264/EV6 Hardware Reference Manual

Internal Architecture 2-39

3

Hardware Interface

This chapter contains the 21264/EV6 microprocessor logic symbol and provides infor-
mation about signal names, their function, and their location. This chapter also
describes the mechanical specifications of the 21264/EV6. It is organized as follows:

The 21264/EV6 logic symbol

The 21264/EV6 signal names and functions

Lists of the signal pins, sorted by name and PGA location
The specifications for the 21264/EV6 mechanical package
The top and bottom views of the 21264/EV6 pinouts

3.1 21264/EV6 Microprocessor Logic Symbol
Figure 3—1 show the logic symbol for the 21264/EV6 chip.

Alpha 21264/EV6 Hardware Reference Manual Hardware Interface 3-1

21264/EV6 Microprocessor Logic Symbol

3-2

Figure 3—1 21264/EV6 Microprocessor Logic Symbol

21264
System Interface Bcache Interface
—>»| SysAddin_L[14:0] BcAdd_H[23:4]
—»| SysAddInCIk_L BcData_H[127:0]
<€«——{ SysAddOut_L[14:0] BcChec k_H[15:0]
-«——{ SysAddOutClk_L BcDatalnClk_H[7:0]
—>»| SysVref BcDataOutClk_x[3:0]
-«—>»| SysData_L[63:0] BcDataOE_L
~«—>»| SysCheck_L[7:0] BcDataWr_L
—»| SysDatalnClk_H[7:0] BcTag_H[42:20]
~«—{ SysDataOutClk_L[7:0] BcTagInClk_H
——>| SysDatalnV alid_L BcTagOutClk_x
—»| SysDataOutV alid_L BcVref
—>| SysFillValid_L BcTagDirty_H
BcTagParity_H
BcTagShared_H
BcTagValid_H
BcTagOE_L
BcTagWr_L
BcLoad_L
— Clkin_x Clocks
—» FrameClk_x
—>» EV6CIK_x
3.3V — PLL_VDD
Miscellaneous
—>»| IRQ_H[5:0]
——>» CIkFwdRst_H
—»| SromData_H
—> Tms_H
—» Trst_L
—>» Tck_H
—> Tdi_H
—> PliBypass_H SromClk_H
—>» MiscVref SromOE_L
—»| Reset_L TestStat_H
——>» DCOK_H Tdo_H

Hardware Interface

Alpha 21264/EV6 Hardware Reference Manual

21264/EV6 Signal Names and Functions

3.2 21264/EV6 Signal Names and Functions
Table 3—1 defines the 21264/EV6 signal type®redd to inthis section.

Table 3—-1 Signal Pin Types Definitions

Signal Type Definition

Inputs

|_ DC_REF Input DC reference pin

I|_DA Input differential amplifier receiver

| DA_CLK Input clock pin

Outputs

O_0OD Open drain output driver

O_OD_TP Open drain driver for test pins

O_PP Push/pull output driver

O_PP_CLK Push/pull output clock driver

Bidirectional

B_DA _OD Bidirectional differential amplifier receiver with open drain output
B_DA PP Bidirectional differential amplifier receiver with push/pull output
Other

Spare Reserved to COMPAQ

NoConnect No connection — Do not connect to these pins for any revision of the

21264/EV6. These pins must float.

LAl Spare connections are Reserved to COMPAQ to maintain compatibility between
passes of the chip. Designers should not use these pins.

Table 3-2 lists all signal pins in alphabetic order and provides a full functional descrip-
tion of the pins. Table 3—4 lists the signal pins and their corresponding pingagd a
(PGA) locations in alphabetic order for the signal type. Table 3-5 lists the pin grid array
locations in alphabetical order.

Table 3-3 lists signals by function and provides an abbreviated description.

Table 3-2 21264/EV6 Signal Descriptions

Signal Type Count Description
BcAdd_H[23:4] O_PP 20
BcCheck_H[15:0] B_DA_PP 16
BcData_H[127:0] B_DA_PP 128
BcDatalnClk_HJ[7:0] |_DA 8

These signals provide the index to the Bcache.
ECC check bits f@cData_H[127:0].
Bcache data signals.

Bcache data input clocks. These clocks are used with high
speed SDRAMSs, such as DDRs, that provide a clock-out with
data-output pins to optimize Bcache read bandwidths. The
21264/EV6 internally synchronizes the data to its logic with
clock forward receive circuits similar to the system interface.

Alpha 21264/EV6 Hardware Reference Manual Hardware Interface 3-3

21264/EV6 Signal Names and Functions

Table 3-2 21264/EV6 Signal Descriptions (Continued)

Signal Type Count Description

BcDataOE_L O_PP 1 Bcache data output enable. The 21264/EV6 asserts this signal
during Bcache read operations.

BcDataOutClk_H[3:0] O_PP 8 Bcache data output clocks. These free-running clocks are dif-

BcDataOutCIk_L[3:0] ferential copies of the Bcache clock and are derived from the
21264/EV6 GCLK. Their period is a multiple of the GCLK
and is fixed for all operations. They can be configured so that
their rising edge lagBcAdd_H[23:4] by 0 to 2 GCLK cycles.

The 21264/EV6 synchronizes tag output information with
these clocks.

BcDataWr_L O_PP 1 Bcache data write enable. The 21264/EV6 asserts this signal
when writing data to the Bcache data arrays.

BcLoad_L O_PP 1 Bcache burst enable.

BcTag_H[42:20] B_DA PP 23 Bcache tag bits.

BcTagDirty H B_DA PP 1 Tag dirty state bit. During cache write operations, the 21264/
EV6 will assert this signal if the Bcache data has been modi-
fied.

BcTagInClk_H |_DA 1 Bcache tag input clock. The 21264/EV6 uses this input clock
to latch the tag information on Bcache read operations. This
clock is used with high-speed SDRAMs, such as DDRs, that
provide a clock-out with data-output pins to optimize Bcache
read bandwidths. The 21264/EV6 internally synchronizes the
data to its logic with clock forward receive circuits similar to
the system interface.

BcTagOE_L O_PP 1 Bcache tag output enable. This signal is asserted by the 21264/
EV6 for Bcache read operations.

BcTagOutClk_H O_PP 2 Bcache tag output clock. These clocks “echo” the clock-for-

BcTagOutClk_L wardedBcDataOutClk_x[3:0] clocks.

BcTagParity H B_DA PP 1 Tag parity state bit.

BcTagShared_H B_DA PP 1 Tag shared state bit. The 21264/EV6 will write a 1 on this sig-
nal line if another agent has a copy of the cache line.

BcTagValid_H B_DA_PP 1 Tag valid state bit. If set, this line indicates that the cache line
is valid.

BcTagWr_L O_PP 1 Tag RAM write enable. The 21264/EV6 asserts this signal
when writing a tag to the Bcache tag arrays.

BcVref | DC_ REF 1 Bcache tag reference voltage.

ClkFwdRst_H |_DA 1 Systems assert this synchronous signal to wake up a powered-
down 21264/EV6. Th€lkFwdRst_H signal is clocked into a
21264/EV6 register by the capturédameClk_x signals.
Systems must ensure that the timing of this signal meets
21264/EV6 requirements (see Section 4.7.2).

Clkin_H | DA CLK 2 Differential input signals provided by the system.

ClkIn_L

DCOK _H |_DA 1 dc voltage OK. Must be deasserted until dc voltage reaches

3-4 Hardware Interface

proper operating level. After thaCOK_H is asserted.

Alpha 21264/EV6 Hardware Reference Manual

21264/EV6 Signal Names and Functions

Table 3-2 21264/EV6 Signal Descriptions (Continued)

Signal Type Count Description

EV6CIk_H O _PP_CLK 2 Provides an external test point to measure phase alignment of

EV6CIK_L the PLL.

FrameClk_H | DA CLK 2 A skew-controlled differential 50% duty cycle copy of the
FrameClk_L system clock. It is used by the 21264/EV6 as a reference, or
framing, clock.

IRQ_H[5:0] |_DA 6 These six interrupt signal lines may be asserted by the system.
The response of the 21264/EV6 is determined by the system
software.

MiscVref |_ DC_REF 1 \oltage reference for the miscellaneous pins
(see Table 3-3).

PliIBypass_H |_DA 1 When asserted, this signal will cause the two input clocks
(CIkIn_x) to be applied to the 21264/EV6 internal circuits,
instead of the 21264/EV6 global clock (GCLK).

PLL_VDD 3.3V 1 3.3-V dedicated power supply for the 21264/EV6 PLL.

Reset_L I|_DA 1 System reset. This signal protects the 21264/EV6 from dam-
age during initial power-up. It must be asserted until
DCOK_H is asserted. After that, it is deasserted and the
21264/EV6 begins its reset sequence.

SromCIlk_H O OD TP 1 Serial ROM clock. Supplies the clock that causes the SROM
to advance to the next bit. The cycle time for this clock is 256
times the cycle time of the GCLK (internal 21264/EV6 clock).

SromData_H I|_DA 1 Serial ROM data. Input data line from the SROM.

SromOE_L O OD TP 1 Serial ROM enable. Supplies the output enable to the SROM.

SysAddin_L[14:0] I|_DA 15 Time-multiplexed command/address/ID/Ack from system to
the 21264/EV6.

SysAddInClk_L |_DA 1 Single-ended forwarded clock from system for
SysAddIn_L[14:0] andSysFillValid_L.

SysAddOut_L[14:0] O_0OD 15 Time-multiplexed command/address/ID/mask from the
21264/EV6 to the system bus.

SysAddOutCIk_L O_0OD 1 Single-ended forwarded clock output for
SysAddOut_L[14:0].

SysCheck_L[7:0] B DA OD 8 Quadword ECC check bits f@ysData_L[63:0].

SysData_L[63:0] B DA OD 64 Data bus for memory and I/O data.

SysDatalnClk_H[7:0] | _DA 8 Single-ended system-generated clocks for clock forwarded
input system data.

SysDatalnValid_L |_DA 1 When asserted, marks a valid data cycle for data transfers to
the 21264/EV6.

SysDataOutClk_L[7:0] O_OD 8 Single-ended 21264/EV6-generated clocks for clock for-
warded output system data.

SysDataOutValid_L I_DA 1 When asserted, marks a valid data cycle for data transfers

Alpha 21264/EV6 Hardware Reference Manual

from the 21264/EV6.

Hardware Interface 3-5

21264/EV6 Signal Names and Functions

Table 3-2 21264/EV6 Signal Descriptions (Continued)

Signal Type Count Description

SysFillvalid_L |_DA 1 When asserted, this bit indicates validation for the cache fill
delivered in the previous system SysDc command.

SysVref | DC REF 1 System interface reference voltage.

Tck _H |_DA 1 IEEE 1149.1 test clock.

Tdi_H |_DA 1 IEEE 1149.1 test data-in signal.

Tdo_H O OD TP 1 IEEE 1149.1 test data-out signal.

TestStat H O OD TP 1 Test status pin. System reset drives the test status pin low.
TheTestStat_Hpin is forced high at the start of the Icache
BiST. If the Icache BiST passes, the pin is deasserted at the
end of the BiST operation; otherwise, it remains high.
The 21264/EV6 generates a timeout reset signal if an instruc-
tion is not retired within one billion cycles.
The 21264/EV6 signals the timeout reset event by outputting a
256 GCLK cycle wide pulse ormestStat_H.

Tms_H |_DA 1 IEEE 1149.1 test mode select signal.

Trst_ L |_DA 1 IEEE 1149.1 test access port (TAP) reset signal.

Table 3-3 21264/EV6 Signal Descriptions by Function

Signal Type Count Description

BcVref Domain

BcAdd_H[23:4] O_PP 20 Bcache index.

BcCheck _H[15:0] B_DA PP 16 ECC check bits f@cData_H[127:0].
BcData_H[127:0] B_DA PP 128 Bcache data.
BcDatalnClk_HJ[7:0] |_DA 8 Bcache data input clocks.
BcDataOE_L O_PP 1 Bcache data output enable.
BcDataOutClk_H[3:0] O_PP 8 Bcache data output clocks.
BcDataOutCIk_L[3:0]

BcDataWr_L O_PP 1 Bcache data write enable.
BcLoad_L O_PP 1 Bcache burst enable.
BcTag_H[42:20] B_DA PP 23 Bcache tag bits.
BcTagDirty H B_DA PP 1 Tag dirty state bit.
BcTagInClk_H |_DA 1 Bcache tag input clock.
BcTagOE_L O_PP 1 Bcache tag output enable.
BcTagOutClk_H O_PP 2 Bcache tag output clocks.
BcTagOutClk_L

BcTagParity H B_DA PP 1 Tag parity state bit.
BcTagShared_H B_DA PP 1 Tag shared state bit.
BcTagValid_H B_DA PP 1 Tag valid state bit.

3-6 Hardware Interface Alpha 21264/EV6 Hardware Reference Manual

21264/EV6 Signal Names and Functions

Table 3-3 21264/EV6 Signal Descriptions by Function (Continued)

Signal Type Count Description

BcTagWr_L O_PP 1 Tag RAM write enable.

BcVref | DC REF 1 Tag data input reference voltage.

SysVref Domain

SysAddin_L[14:0] |_DA 15 Time-multiplexed SysAddIn, system-to-21264/EV6.

SysAddInClk_L |_DA 1 Single-ended forwarded clock from system for
SysAddIn_L[14:0] andSysFillValid_L.

SysAddOut_L[14:0] O_0OD 15 Time-multiplexed SysAddOut, 21264/EV6-to-system.

SysAddOutCIk_L O_0OD 1 Single-ended forwarded-clock.

SysCheck_L[7:0] B DA OD 8 Quadword ECC check bits f@ysData_L[63:0].

SysData_L[63:0] B DA OD 64 Data bus for memory and I/O data.
SysDatalnClk_H[7:0]

DA 8 Single-ended system-generated clocks for clock forwarded
input system data.

SysDatalnValid_L |_DA 1 When asserted, marks a valid data cycle for data transfers to
the 21264/EV6.

SysDataOutClk_L[7:0] O_OD 8 Single-ended 21264/EV6-generated clocks for clock for-
warded output system data.

SysDataOutValid_L |_DA 1 When asserted, marks a valid data cycle for data transfers
from the 21264/EV6.

SysFillvalid_L |_DA 1 Validation for fill given in previous SysDC command.

SysVref | DC REF 1 System interface reference voltage.

Clocks and PLL

Clkin_H | DA CLK 2 Differential input signals provided by the system.

Clkin_L

EV6CIk_H O_PP_CLK 2 Provides an external test point to measure phase alignment of

EV6CIk_L the PLL.

FrameClk_H | DA CLK 2 A skew-controlled differential 50% duty cycle copy of the

FrameCIlk_L system clock. It is used by the 21264/EV6 as a reference, or
framing, clock.

PLL_VDD 3.3V 1 3.3-V dedicated power supply for the 21264/EV6 PLL.

MiscVref Domain

CIkFwdRst_H |_DA 1 Systems assert this synchronous signal to wake up a powered-
down 21264/EV6. Th€lkFwdRst_H signal is clocked into a
21264/EV6 register by the capturédameClk_x signals.

DCOK_H |_DA 1 dc voltage OK. Must be deasserted until dc voltage reaches
proper operating level. After thaCOK_H is asserted.

IRQ_H[5:0] I_DA 6 These six interrupt signal lines may be asserted by the system.

MiscVref | DC_ REF 1 Reference voltage for miscellaneous pins.

Alpha 21264/EV6 Hardware Reference Manual Hardware Interface 3-7

Pin Assignments

Table 3-3 21264/EV6 Signal Descriptions by Function (Continued)

Signal Type Count Description

PliIBypass_H |_DA 1 When asserted, this signal will cause the input clocks
(CIkIn_x) to be applied to the 21264/EV6 internal circuits,
instead of the 21264/EV6’s global clock (GCLK).

Reset L |_DA 1 System reset. This signal protects the 21264/EV6 from dam-
age during initial power-up. It must be asserted until
DCOK_H is asserted. After that, it is deasserted and the
21264/EV6 begins its reset sequence.

SromCIlk_H O OD TP 1 Serial ROM clock.

SromData_H |_DA 1 Serial ROM data.

SromOE_L O OD TP 1 Serial ROM enable.

Tck H |_DA 1 IEEE 1149.1 test clock.

Tdi_H |_DA 1 IEEE 1149.1 test data-in signal.

Tdo_H O OD TP 1 IEEE 1149.1 test data-out signal.

TestStat H O OD TP 1 Test status pin.

Tms_H |_DA 1 IEEE 1149.1 test mode select signal.

Trst_ L |_DA 1 IEEE 1149.1 test access port (TAP) reset signal.

3.3 Pin Assignments

The 21264/EV6 package has 587 pins aligned in a pin grid array (PGA) design. There
are 388 functional signal pins, 1 dedicated 3.3-V pin for the PLL, 104 grM8f8ipins,

and 94VvDD pins. Table 3—4 lists the signal pins and their corresponding pin gy a
(PGA) locations in alphabetical order for the signal type. Table 3-5 lists the pin grid
array locations in alphabetical order.

Table 3—-4 Pin List Sorted by Signal Name

PGA PGA
Signal Name Location Signal Name Location Signal Name PGA Location
BcAdd_H_10 B30 BcAdd H_11 D30 BcAdd H_12 c31
BcAdd_H_13 H28 BcAdd_H_14 G29 BcAdd_H_15 A33
BcAdd_H_16 E31 BcAdd_H_17 D32 BcAdd_H_18 B34
BcAdd_H_19 A35 BcAdd_H_20 B36 BcAdd H 21 H30
BcAdd_H_22 C35 BcAdd_H_23 E33 BcAdd H_4 B28
BcAdd_H_ 5 E27 BcAdd_H_6 A29 BcAdd H_7 G27
BcAdd_H_8 c29 BcAdd H_ 9 F28 BcCheck H_0 F2
BcCheck H_1 AB4 BcCheck H_10 AW1 BcCheck H_11 BD10
BcCheck H_12 E45 BcCheck H_13 AC45 BcCheck H_14 AT44
BcCheck H_15 BB36 BcCheck H_2 AT2 BcCheck H_3 BC11
BcCheck H_4 M38 BcCheck H_5 AB42 BcCheck H_6 AU43

3-8 Hardware Interface Alpha 21264/EV6 Hardware Reference Manual

Table 3—-4 Pin List Sorted by Signal Name (Continued)

Pin Assignments

Signal Name

PGA

Location Signal Name

PGA

Location Signal Name

PGA Location

BcCheck H 7
BcData H O
BcData_H_100
BcData H_103
BcData_H_106
BcData_ H_109
BcData H_ 111
BcData H_114
BcData H_117
BcData_ H_12
BcData H_122
BcData H_125
BcData_H_ 13
BcData_H_16
BcData_H_19
BcData_H 21
BcData_H_24
BcData_H_27
BcData_ H_3
BcData_H_32
BcData_H_35
BcData_H_38
BcData_H_40
BcData_H_43
BcData_H_46
BcData_H_49
BcData_H_51
BcData_H_54
BcData_H_57
BcData_H_6
BcData_H_62
BcData_H_65
BcData_H_68

Alpha 21264/EV6 Hardware Reference Manual

BC37
B10
D42
H42
L45
u45
AA43
AE41
AL43
T2
AV42
BC41
ul
AC1
AG1
AL3
AY2
BB4
C5
G33
C41
G41
K44
P42
Y42
AE43
AJAS
AP44
AU41
H6
BB38
A7
B4

BcCheck H_ 8
BcData H_1
BcData_H_101
BcData_H_104
BcData_H_107
BcData_ H_11
BcData_H_112
BcData_H_115
BcData_H_118
BcData_H_120
BcData_ H_123
BcData_H_126
BcData_H_14
BcData_ H_17
BcData H_2
BcData_H_22
BcData_H_25
BcData_H_28
BcData_H_30
BcData_H_33
BcData_H_36
BcData_H_39
BcData_H_41
BcData_H_44
BcData_H_47
BcData_ H_ 5
BcData_H_52
BcData_H_55
BcData_H_58
BcData_H_60
BcData_H_63
BcData_H_66
BcData_H_69

M8
D10
D44
G45
N45
M2
AC43
AGA45
AM42
AP40
BB44
BA37
V2
AD2
A5
AR1
BB2
BB8
BB10
C37
C43
F44
N41
u43
AB44
E3
AK42
AN41
AY44
BC43
BE41
C9
D4

BcCheck H 9
BcData_H_10
BcData_H_102
BcData_H_105
BcData_H_108
BcData_H_110
BcData_H_113
BcData_H_116
BcData_H_119
BcData_ H_121
BcData_ H_124
BcData_H_127
BcData_H_15
BcData_H_18
BcData_H_20
BcData_H_23
BcData_H_26
BcData_H_29
BcData_H_31
BcData_H_34
BcData_H_37
BcData_ H_4
BcData_H_42
BcData_H_45
BcData_H_48
BcData_H_50
BcData_H_53
BcData_H_56
BcData_H_59
BcData_H_61
BcData_H_64
BcData_H_67
BcData H_7

Hardware Interface

AA3
L3
H40
L43
T44
W45
AD44
AK44
AR45
BA45
BB42
BD40
Y4
AE3
AK2
AP2
AWS5
BE5
BE7
B40
E43
c3
M44
Va4
AD42
AF42
AN45
AWA45
BA43
BD42
cu1
B6
E1

3-9

Pin Assignments

Table 3—-4 Pin List Sorted by Signal Name (Continued)

PGA PGA
Signal Name Location Signal Name Location Signal Name PGA Location
BcData_ H_ 70 G5 BcData H_ 71 D2 BcData H_72 H4
BcData_ H_73 Gl BcData_ H_74 N5 BcData_H_75 L1
BcData_H_76 N1 BcData H_77 (UK} BcData_H_78 W5
BcData_H_79 w1 BcData_ H_8 J3 BcData_H_80 AB2
BcData_H_81 AC3 BcData_H_82 AD4 BcData_H_83 AF4
BcData_H_84 AJ3 BcData_H_85 AK4 BcData_H_86 AN1
BcData_H_87 AM4 BcData_H_88 AU5 BcData_H_89 BA1
BcData_ H 9 K2 BcData_H_90 BA3 BcData_H_91 BC3
BcData_H_92 BD6 BcData H_93 BA9 BcData_H_94 BC9
BcData_H_95 AY12 BcData_H_96 A39 BcData_H_97 D36
BcData H_ 98 A4l BcData_ H_ 99 B42 BcDatalnClk_H_0 E7
BcDatalnClk_H_1 R3 BcDatalnClk_H_2 AH2 BcDatalnClk_H_3 BC5
BcDatalnClk_H_4 F38 BcDatalnClk_H_5 U39 BcDatalnClk_H_6 AH44
BcDatalnClk_H_7 AY40 BcDataOE_L A27 BcDataOutClk H 0 J5
BcDataOutClk_H_1 AU3 BcDataOutClk H 2 J43 BcDataOutClk_ H 3 AR43
BcDataOutClk_L_0 K4 BcDataOutClk_L_1 AV4 BcDataOutClk_L 2 K42
BcDataOutClk_L_3 AT42 BcDataWr_L D26 BcLoad L F26
BcTag_H_20 E13 BcTag_H_21 H16 BcTag_H_22 All
BcTag_H_23 B12 BcTag_H_24 D14 BcTag_H_25 E15
BcTag_H_26 Al13 BcTag_H_27 G17 BcTag_H_28 c15
BcTag_H_29 H18 BcTag_H_30 D16 BcTag_H_31 B16
BcTag_H_32 c17 BcTag_H_33 Al7 BcTag_H_34 E19
BcTag_H_35 B18 BcTag_H_36 Al9 BcTag_H_37 F20
BcTag_H_38 D20 BcTag_H_39 E21 BcTag_H_40 c21
BcTag_H_41 D22 BcTag_H_42 H22 BcTagDirty_H Cc23
BcTagInClk_H G19 BcTagOE_L H24 BcTagOutClk_H C25
BcTagOutClk_L D24 BcTagParity_H B22 BcTagShared_H G23
BcTagValid_H B24 BcTagWr_L E25 BcVref F18
ClkFwdRst_H BE1l Clkin_H AMS8 Clkin_L AN7
DCOK_H AY18 EV6CIk_H AM6 EV6CIk_L AL7
FrameClk_H AV16 FrameClk_L AW15 IRQ H O BA15
IRQ H_ 1 BE13 IRQ H 2 AW17 IRQ H_3 AV18
IRQ H_4 BC15 IRQ H 5 BB16 MiscVref AV22

3-10 Hardware Interface Alpha 21264/EV6 Hardware Reference Manual

Table 3—-4 Pin List Sorted by Signal Name (Continued)

Pin Assignments

Signal Name

PGA

Location Signal Name

PGA

Location Signal Name

PGA Location

NoConnect
PlIBypass_H
Spare

Spare

Spare

Spare

Spare

Spare

Spare
SromOE_L
SysAddin_L_1
SysAddin_L_13
SysAddin_L_3
SysAddIn_L_6
SysAddIn_L_9
SysAddOut_L_1

SysAddOut_L_12

SysAddOut_L_2
SysAddOut_L_5
SysAddOut_L_8
SysCheck_L_0O
SysCheck_L_3
SysCheck_L_6
SysData_L_1
SysData_L_12
SysData_L_15
SysData_L_18
SysData_L_20
SysData_L_23
SysData_L_26
SysData_L_29
SysData_L_31
SysData_L_34

Alpha 21264/EV6 Hardware Reference Manual

BB14
BD12
R5
D38
AW41
AJl
V38
AT4
BE9
BE17
BC29
BE23
BE29
BD28
BC25
BE39
BC31
BD36
AY32
BB32
L7
BA13
AM40
G13
V8
Y6
AD8
AHG6
AL5
AT8
AW11
AW13
H34

NoConnect
Reset L

Spare

Spare

Spare

Spare

Spare

Spare
SromCIlk_H
SysAddin_L_0
SysAddIn_L_11
SysAddin_L_14
SysAddin_L_4
SysAddIn_L_7
SysAddInCIk_L

SysAddOut_L_10
SysAddOut_L_13

SysAddOut_L_3
SysAddOut_L_6
SysAddOut_L_9
SysCheck_L_1
SysCheck_L_4
SysCheck_L_7
SysData_L_10
SysData_L_13
SysData_L_16
SysData_L_19
SysData_L_21
SysData_L_24
SysData_L_27
SysData_L_3
SysData_L_32
SysData_L_35

BD2
BD16
AG5
T42
F8
BD4
AJ4A3
AR3
AW19
BD30
AV24
AW23
AW27
BE27
BB26
BE33
AV28
BC35
BE35
BA31
AA5
L39
AY34
P6
V6
ABS8
AES5
AHS8
AP8
AV6
H12
F32
G35

PLL_VDD
Spare

Spare

Spare

Spare

Spare

Spare

Spare
SromData_H
SysAddin_L_10
SysAddIn_L_12
SysAddIn_L_2
SysAddIn_L_5
SysAddIn_L_8
SysAddOut_L_0

SysAddOut_L_11
SysAddOut_L_14

SysAddOut_L_4
SysAddOut_L_7

SysAddOutClk_L

SysCheck_L_2
SysCheck_L_5
SysData_L_0

SysData_L_11
SysData_L_14
SysData_L_17
SysData_L_2

SysData_L_22
SysData_L_25
SysData_L_28
SysData_L_30
SysData_L_33
SysData_L_36

Hardware Interface 3-11

AV8
E9
BA7
AG39
T4
E39
BA39
BC21
BC17
BB24
BD24
AY28
BA27
AY26
AW33
AW?29
BB30
BA33
AV30
BD34
AK8
AA41
F14
T8
w7
AC7
F12
AJ7
AR7
AV10
AV12
F34
F40

Pin Assignments

Table 3—-4 Pin List Sorted by Signal Name (Continued)

PGA PGA
Signal Name Location Signal Name Location Signal Name PGA Location
SysData_L_37 G39 SysData_L_38 K38 SysData_L_39 J41
SysData_L_4 H10 SysData_L_40 M40 SysData_L_41 N39
SysData_L_42 P40 SysData_L_43 T38 SysData_L_44 V40
SysData_L_45 w41 SysData_L_46 W39 SysData_L_47 Y40
SysData_L_48 AB38 SysData_L_49 AC39 SysData_L_5 G7
SysData_L_50 AD38 SysData_L_51 AF40 SysData_L_52 AH38
SysData_L_53 AJ39 SysData_L_54 AL41 SysData_L_55 AK38
SysData_L_56 AN39 SysData_L_57 AP38 SysData_L_58 AR39
SysData_L_59 AT38 SysData_L_6 F6 SysData_L_60 AY38
SysData_L_61 AV36 SysData_L_62 AW35 SysData_L_63 AV34
SysData_L_7 K8 SysData_L_8 M6 SysData_L_9 N7
SysDatalnClk_H_0 D8 SysDatalnClk_H_1 P4 SysDatalnClk_H_2 AF6
SysDatalnClk_H_3 AY6 SysDatalnClk_H_4 E37 SysDatalnClk_H_5 R43
SysDatalnClk_H_6 AG41 SysDatalnCIk_H_7 AV40 SysDatalnValid_L BD22
SysDataOutClk_L_ 0 G11 SysDataOutClk_L_1 U7 SysDataOutClk_L_2 AG7
SysDataOutClk_L_3 AYS8 SysDataOutClk_L_4 H36 SysDataOutClk_L_5 R41

SysDataOutClk_L_6 AH40 SysDataOutClk_L_7 AW39 SysDataOutValid_L BB22

SyskFillvalid_L BC23 SysVref BA25 Tck_H BE19
Tdi_H BA21 Tdo_H BB20 TestStat_H BA19
Tms_H BD18 Trst_L AY20 — —

Table 3-5 Pin List Sorted by PGA Location

PGA PGA PGA

Location Signal Name Location Signal Name Location Signal Name
All BcTag H_22 Al13 BcTag H_26 Al7 BcTag H_33
Al19 BcTag H_36 A27 BcDataOE_L A29 BcAdd_H_6
A33 BcAdd_H_15 A35 BcAdd H_19 A39 BcData_ H_96
A41 BcData_H_98 A5 BcData H_2 A7 BcData_H_65
AA3 BcCheck H_9 AA41 SysCheck L 5 AA43 BcData H 111
AA5 SysCheck L 1 AB2 BcData H_80 AB38 SysData L 48
AB4 BcCheck H_1 AB42 BcCheck H_5 AB44 BcData_H_47
ABS8 SysData_L_16 AC1 BcData_ H_16 AC3 BcData_H_81
AC39 SysData_L_49 AC43 BcData H_112 AC45 BcCheck H_13
AC7 SysData_L_17 AD2 BcData H_17 AD38 SysData_L_50

3-12 Hardware Interface Alpha 21264/EV6 Hardware Reference Manual

Table 3-5 Pin List Sorted by PGA Location (Continued)

Pin Assignments

PGA

Location Signal Name

PGA

Location Signal Name

AD4
ADS8
AE43
AF40
AG1
AGA45
AH2
AH44
AJl
AJ4A3
AK2
AK42
AL3
AL5
AM40
AM8
AN41
AP2
AP44
AR3
AR45
AT38
AT44
AU41
AV10
AV18
AV28
AV36
AV42
AW1
AW15
AW23
AW33

BcData H_82
SysData_L_18
BcData_H_49
SysData_L_51
BcData_H_19
BcData_H_115

BcDatalnClk_H_2
BcDatalnClk_H_6

Spare

Spare
BcData_H_20
BcData_H_52
BcData_ H_21
SysData_L_23
SysCheck_L_6
CIkin_H
BcData_H_55
BcData_H_23
BcData_H_54
Spare
BcData_H_119
SysData_L_59
BcCheck H 14
BcData_H_57
SysData_L_28
IRQ H_3

SysAddOut_L_13

SysData_L_61
BcData_H_122
BcCheck H 10
FrameClk_L
SysAddin_L_14
SysAddOut_L_0

PGA

Location Signal Name
AD42 BcData H_48
AE3 BcData H_18
AE5 SysData_L_19

AF42 BcData_H_50

AG39 Spare

AG5 Spare

AH38 SysData_L_52

AHG6 SysData_L_20
AJ3 BcData H_84

AJ45 BcData_H_51
AK38 SysData_L_55
AK44 BcData_H_116

AL41 SysData_L_54

AL7 EV6CIk_L
AM42 BcData_H_118
AN1 BcData_H_86
AN45 BcData_H_53
AP38 SysData_L_57
AP8 SysData_L_24
AR39 SysData_L_58
AR7 SysData_L_25
AT4 Spare
AT8 SysData_L_26
AU43 BcCheck H_6
AV12 SysData_L_30
AV22 MiscVref

AV30 SysAddout_L_7

AV4 BcDataOutClk_L_1
AV6 SysData_L_27
AW11 SysData_L_29
AW17 IRQ H 2

AW27 SysAddin_L_4
AW35 SysData_L_62

Alpha 21264/EV6 Hardware Reference Manual

AD44
AE41
AF4
AF6
AG41
AG7
AH40
AH8
AJ39
AJ7
AK4
AK8
AL43
AM4
AM6
AN39
AN7
AP40
AR1
AR43
AT2
AT42
AU3
AU5
AV16
AV24
AV34
AV40
AV8
AW13
AW19
AW29
AW39

BcData H 113
BcData H_114
BcData_H_83
SysDatalnClk_H_2
SysDatalnClk_H_6
SysDataOutClk_L_2
SysDataOutClk_L_6
SysData L 21
SysData_L_53
SysData_L_22
BcData_H_85
SysCheck_L_2
BcData H_117
BcData_H_87
EV6CIk_H
SysData_L_56
Clkin_L

BcData H_120
BcData_H_22
BcDataOutClk_H_3
BcCheck _H_2
BcDataOutClk_L_3
BcDataOutClk_H_1
BcData_H_88
FrameClk_H
SysAddin_L_11
SysData_L_63
SysDatalnClk_H_7
PLL_VDD
SysData_L_31
SromCLK_H
SysAddOut_L_11
SysDataOutClk_L_7

Hardware Interface 3-13

Pin Assignments

Table 3-5 Pin List Sorted by PGA Location (Continued)

PGA PGA PGA

Location Signal Name Location Signal Name Location Signal Name
AWA41 Spare AWA45 BcData_ H_56 AW5 BcData H 26
AY12 BcData H_95 AY18 DCOK_H AY2 BcData_H_24
AY20 Trst_L AY26 SysAddin_L_8 AY28 SysAddin_L_2
AY32 SysAddOut_L_5 AY34 SysCheck_L_7 AY38 SysData_L_60
AY40 BcDatalnClk_H_7 AY44 BcData H_58 AY6 SysDatalnClk_H_3
AY8 SysDataOutClk_L_3 B10 BcData H_ 0 B12 BcTag_H_23
B16 BcTag_H_31 B18 BcTag_H_35 B22 BcTagParity H
B24 BcTagValid_H B28 BcAdd H_4 B30 BcAdd_H_10
B34 BcAdd_H_18 B36 BcAdd_H_20 B4 BcData_H_68
B40 BcData H_34 B42 BcData_H_99 B6 BcData_H_67
BA1 BcData_H_89 BA13 SysCheck_L_3 BA15 IRQ H 0

BA19 TestStat_H BA21 Tdi_H BA25 SysVref

BA27 SysAddin_L_5 BA3 BcData H_90 BA31 SysAddOut_L_9
BA33 SysAddOut_L_4 BA37 BcData H_126 BA39 Spare

BA43 BcData_H_59 BA45 BcData H_121 BA7 Spare

BA9 BcData_H_93 BB10 BcData_H_30 BB14 NoConnect
BB16 IRQ H 5 BB2 BcData H_25 BB20 Tdo_H

BB22 SysDataOutValid_L BB24 SysAddin_L_10 BB26 SysAddInClk_L
BB30 SysAddout_L_14 BB32 SysAddOut_L_8 BB36 BcCheck H_15
BB38 BcData_H_62 BB4 BcData_H_27 BB42 BcData_H_124
BB44 BcData H_123 BBS BcData H_28 BC11 BcCheck H_3
BC15 IRQ_H 4 BC17 SromData_H BC21 Spare

BC23 SysFillvalid_L BC25 SysAddin_L_9 BC29 SysAddin_L_1
BC3 BcData_H_91 BC31 SysAddOut_L_12 BC35 SysAddOut_L_3
BC37 BcCheck H_7 BC41 BcData H_125 BC43 BcData_H_60
BC5 BcDatalnCIk_H_3 BC9 BcData H_94 BD10 BcCheck H_11
BD12 PlIBypass_H BD16 Reset L BD18 Tms_H

BD2 NoConnect BD22 SysDatalnValid_L BD24 SysAddin_L_12
BD28 SysAddin_L_6 BD30 SysAddin_L_0 BD34 SysAddOutClk_L
BD36 SysAddOut_L_2 BD4 Spare BD40 BcData H_ 127
BD42 BcData_H_61 BD6 BcData_H_92 BE1l ClkFwdRst_H
BE13 IRQ H_ 1 BE17 SromOE_L BE19 Tk _H

BE23 SysAddin_L_13 BE27 SysAddin_L_7 BE29 SysAddin_L_3

3-14 Hardware Interface Alpha 21264/EV6 Hardware Reference Manual

Table 3-5 Pin List Sorted by PGA Location (Continued)

Pin Assignments

PGA

Location Signal Name

PGA

Location Signal Name

PGA

Location Signal Name

BE33
BE41
BE9
c17
c25
c31
ca1
co
D16
D22
D30
D38
D44
E13
E21
E3
E37
E45
F12
F2
F28
F38
F6
G11
G19
G29
G39
G5
H12
H22
H30
H4
Heé

SysAddOut_L_10
BcData_H_63
Spare
BcTag_H_32
BcTagOutClk_H
BcAdd H_12
BcData_H_35
BcData_H_66
BcTag_H_30
BcTag_H_41
BcAdd H_11
Spare
BcData_H_101
BcTag_H_20
BcTag_H_39
BcData_ H_ 5
SysDatalnClk_H_4
BcCheck H 12
SysData_L_2
BcCheck H_0
BcAdd H_ 9
BcDatalnClk_H_4
SysData_L_6
SysDataOutCIlk_L_0
BcTagInClk_H
BcAdd_H_14
SysData_L_37
BcData_H_70
SysData_L_3
BcTag_H_42
BcAdd H_21
BcData_ H_72
BcData_H_6

BE35
BE5
c11
c21
c29
C35
c43
D10
D2
D24
D32
D4
D8
E15
E25
E31
E39
E7
F14
F20
F32
F40
F8
G13
G23
G33
G41
G7
H16
H24
H34
H40
33

SysAddOut_L_6
BcData_H_29
BcData_H_64
BcTag_H_40
BcAdd_H_8
BcAdd H_22
BcData_H_36
BcData H_1
BcData H_71
BcTagOutClk_L
BcAdd H_17
BcData_H_69
SysDatalnClk_H_0
BcTag_H_25
BcTagWr_L
BcAdd_H_16
Spare
BcDatalnClk_H_0
SysData_L_0
BcTag_H_37
SysData_L_32
SysData_L_36
Spare
SysData_L_1
BcTagShared H
BcData_H_32
BcData_H_38
SysData_L_5
BcTag_H_21
BcTagOE_L
SysData_L_34
BcData_H_102
BcData_H_8

Alpha 21264/EV6 Hardware Reference Manual

BE39
BE7
C15
Cc23
C3
C37
C5
D14
D20
D26
D36
D42
El
E19
E27
E33
E43
E9
F18
F26
F34
F44
Gl
G17
G27
G35
G45
H10
H18
H28
H36
H42
Jai

SysAddOut_L_1
BcData_H_31
BcTag_H_28
BcTagDirty_H
BcData_ H 4
BcData_H_33
BcData_ H_3
BcTag_H_24
BcTag_H_38
BcDataWr_L
BcData_H_97
BcData_H_100
BcData H_ 7
BcTag_H_34
BcAdd_H 5
BcAdd_H_23
BcData_H_37
Spare

BcVref
BcLoad L
SysData_L_33
BcData_H_39
BcData_ H_73
BcTag_H_27
BcAdd_H_7
SysData_L_35
BcData H 104
SysData_L_4
BcTag_H_29
BcAdd_H_13
SysDataOutClk_L_4
BcData H_103
SysData_L_39

Hardware Interface 3-15

Pin Assignments

Table 3-5 Pin List Sorted by PGA Location (Continued)

PGA

Location Signal Name

J43
K38
K44
L3
L45
M38
M6
N39
N5
P40
R3
R5
T4
T8
u39
u7
V40
V8
w41
w7
Y42

BcDataOutClk_H 2
SysData_L_38
BcData_H_40
BcData_H_10
BcData_H_106
BcCheck H_4
SysData_L_8
SysData_L_41
BcData_H_74
SysData_L_42
BcDatalnClk_H_1
Spare

Spare
SysData_L_11
BcDatalnClk_H_5
SysDataOutCIlk_L_1
SysData_L_44
SysData_L_12
SysData_L_45
SysData_L_14
BcData_H_46

PGA PGA

Location Signal Name Location Signal Name

J5 BcDataOutClk H 0 K2 BcData H 9

K4 BcDataOutClk_L_0 K42 BcDataOutClk_L_2

K8 SysData_L_7 L1 BcData_H_75

L39 SysCheck_L_4 L43 BcData H_105

L7 SysCheck_L_0 M2 BcData H_ 11

M40 SysData_L_40 M44 BcData_H_42

M8 BcCheck_H_8 N1 BcData H 76

N41 BcData_H_41 N45 BcData_H_107

N7 SysData_L_9 P4 SysDatalnClk_H_1

P42 BcData_H_43 P6 SysData_L_10

R41 SysDataOutClk_L_5 R43 SysDatalnClk_H_5
T2 BcData H_12 T38 SysData_L_43
T42 Spare T44 BcData_ H_108

Ul BcData H_13 (UK} BcData_H_77

u43 BcData H_44 u45 BcData_H_109

V2 BcData H_14 V38 Spare

V44 BcData_H_45 V6 SysData_L_13

w1 BcData_H_79 W39 SysData_L_46

w45 BcData_H_110 w5 BcData H_78

Y4 BcData_H_15 Y40 SysData_L_47

Y6 SysData_L_15 — —

3-16 Hardware Interface

Alpha 21264/EV6 Hardware Reference Manual

Pin Assignments

Table 3—6 lists the 21264/EV6 ground and powégSandVDD, respectively) pin list.

Table 3-6 Ground and Power (VSS and VDD) Pin List

Signal PGA Location

VSS C1 W3 AR5 G9 E17 G25 C33 AA39 BA41 R45
J1 AG3 BA5 AW9 BAl17 AW25 BC33 AE39 A43 AA45
R1 AN3 C7 C19 BE25 E35 AL39 G43 AE45
AAl AW3 J7 E11 BC19 C27 BA35 AU39 N43 AL45
AE1 BE3 R7 BA1l A21 BC27 A37 BC39 W43 AU45
ALl E5 AA7 Cl13 G21 E29 G37 E41 AG43 BC45
AUl L5 AE7 BC13 AW21 BA29 AW37 L41 AN43
BC1 U5 AU7 Al15 BE21 A31 BE37 U4l AwA43
A3 AC5 AW7 G15 E23 G31 C39 AC41 BE43
G3 AJ5 BC7 AY14 BA23 AW31l J39 AJ41l C45
N3 AN5 A9 BE15 A25 BE31 R39 AR41 J45

VDD B2 V4 AP6 D12 B20 H26 BD32 AM38 BB40 Y44
H2 AH4 AT6 BB12 H20 AV26 D34 AV38 F42 AF44
P2 AP4 BB6 Bl4 AvV20 BD26 BB34 BD38 M42 AM44
Y2 AY4 B8 H14 BD20 D28 F36 D40 V42 Av44
AF2 D6 P8 AV14 F22 BB28 AY36 K40 AH42 BD44
AM2 K6 Y8 BD14 AY22 F30 B38 T40 AP42
AV2 T6 AF8 F16 A23 AY30 H38 AB40 AY42
AB6 BD8 AYl6 F24 B32 P38 AD40 B44 F4
AD6 F10 D18 AY24 H32 Y38 AK40 H44 M4
AK6 AY10 BB18 B26 AV32 AF38 AT40 P44

Alpha 21264/EV6 Hardware Reference Manual Hardware Interface 3-17

Mechanical Specifications

3.4 Mechanical Specifications

This section shows the 21264/EV6 mechanical package dimensions without a heat sink.
For heat sink information and dimensions, refer to Chapter 10.

Figure 3—-2 shows the package physical dimensions without a heat sink.

Figure 3—2 Package Dimensions

—> <«—=1.27 mm (.050 in) Typ

—>» ||<=4.32 mm (.170 in) Typ
—»‘ <= 2.54mm (.100 in) Typ l<—1.377 mm (.055 i) Typ
BE O ==
sc BD*;J}((J} C D) C D) [ONONONONONS) C D) S‘:‘
b v oo o2 587x 1.40 mm (.055 in) Typ = I
e S 2 00010660660 2 =
i 3 00000 o .
o = oo r1.27 mm (.050 in) Typ
i a5
[Nl EOXOXO) oot——"—
" Ax—fq 2 00) f
G AH——E7 o) (@) J(“ L
RS £ Sa id ,— 1/4-20 Stud (%)
A AB*?:) + (@)
w :75: exox ©
R =2 oke) = [l
0 a 27.94 mm = 7.62 mm (.300 in) Typ
; K—’:ia K (1.100 in) 1
L ROKSRS SRR o eRoRaR R OXONSRORONOXS) 9 H
i D—:T“fx @ 00000 @ @ oo I
A Bff‘)f(() WT() ¢ TWT(T() VOO RORO N T(‘H lSmm 4
T O T (.005in) R
020406 08| 10| 12| 14| 16 18 20| 22| 24| 25 28 a0 | a2 a4 a5 a8 | a0 a2 a4
03 05 07 09 1113 15 17 19 21 23 25 27 29 3L 33 35 37 39 41 43 ds
27.94 mm —»| |=— 1.905 mm (.075 in) Typ
(1.100 in)
<———59.94 mm (2.360 in) Typ ——>|
29.62 mm
(1.180in) Typ
s Y s | s I o B e | o
s I s | s I s |
s) s | || — | s) e |
29.62 mm
(1.180in) Typ
D+ 0
b= = o
i | s i |
B EHEa s s s s
o s s s | e s s |
25.40 mm
(1.000 in) Typ
53.85 mm
(2.1201in) Typ FM-05662.A14

3-18 Hardware Interface Alpha 21264/EV6 Hardware Reference Manual

21264/EV6 Packaging

21264/EV6 Packaging

3.5

Figure 3—-3 shows the 21264/EV6 pinout from the top view with pins facing down. Fig-
ure 3—4 shows the 21264/EV6 pinout from the bottom view with pins facing up.

Figure 3—-3 21264/EV6 Top View (Pin Down)

000000000000 00000000
OHOGAGHGAGAGHAGAOAGHAOAOAONAGHOAONAGHONONGAONT)
GNOAGAGKOAGAGKOAGAGAOAGAGKOAGAGAONAGNAGNONONGNC,
O 00 00 0000000000000 000
ONONONGNGHONGNGHONGAGHONGAGHONONAGHONONGHONT)
OOQQQ
ONONONONONCHONONCNONONCNONONONCHONG NI ONE)

0-0°00 0-00
0000 OHON®
0-0°00 0"00
0000 000
0-0°00 0"00
0000 000
0-0°00 0"00
0000 000
0-0°00 0"00
0000 000
0-0°00 0"00
0000 °_= 000
0-0°00 23% 0"00
00002 338 Eexexs
0000 Q8 000
00700, NFE SO0
0-0°00 0"00
0000 000
0-0°00 0"00
0000 000
0-0°00 0"00
0000 000
0-0°00 0"00
0000 000
RERORORS 000
0-0°00 0"00

OOQQQQQQQOQOQOQOQOQOQOQOQOQOQOQOQOQOQOQQQ@Q
O 00 00 0000000000000 000
OOQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQ@Q@Q@Q
ONONOAGAGHONGAGHONGNAGHONGNAGHONONAGHONGNAGHOND)

44142140138(36(34(32|30|28|26|24(22]|20(18|16|14|12]10|08]06 (04|02

IT|ju|Qo|lm

45 43 41 39 37 35 33 31 29 27 25 23 21 19 17 15 13 11 09 07 05 03 01

FM-05644.Al4

Hardware Interface 3-19

Alpha 21264/EV6 Hardware Reference Manual

21264/EV6 Packaging

Figure 3—4 21264/EV6 Bottom View (Pin Up)

000000000000 0000000006
OHOGAGKOAGAGKOAGAGKOAGAGKOAGAGKONGAGNONONGKC,
GHONOAGHONGOAGHOAGAGHONGAGHONGAGHONGNAGNONONGNCE,
O 00 000 000000000000 000
OHORONGAOROAGAGROAGAGHONGAGHONGAGHONGNGHONS)
OOO
ONOAGHONONCHONONCHONONCHONONCHONONCNONONE)

0000 000
0000 000
0000 000
0000 000
0000 000
0000 000
0000 000
0000 000
0000 000
0000 000
0000 o 000
oo oo ida oo
0-0"0°0 5% 000
0000 SES 000
00000 N5 0000
0000 N 000
0000 000
0000 000
0000 000
0000 000
0000 000
0000 000
0000 000
0000 000
CRORORON 000
0000 000

O 000000000000 00000. OO0

OOO

GOHORONGHOROAGAGRONGAGHONGAGHONGAGHONGNAGHONS)

O 0000 0000000000000 000

OQOQOQOQOQOQOQOQOOOOOQOQOQ@QOQOQOQOQOQOOOOO

02(04106(08|10|12(14]16|18)20(22|24|26|28|30(32)|34(36|38|40(|42|44

PIPTIPIPIPIPIPIPIPIPIPIPIPIPIPIPIPIPIPP

>|>|F|la|lS|IX|IT|w|la|lm

Qlal>|>|=la|Z||ZT|e|a|lm
oL C|CIC|<

w O < DX Z2 4 o O W oo < oD xXx 2 a4 - w O <
BBBMAAAAAAAAAW ©

01 03 05 07 09 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45

FM-05645.Al4

Alpha 21264/EV6 Hardware Reference Manual

3-20 Hardware Interface

A

Cache and External Interfaces

This chapter describes the 21264/EV6 cache and extermafant which includes the
second-level cache (Bcache) irfece and theystem inteface. It also describes locks,
interrupt signals, and ECC/parity generation. It is organized as follows:

* Introduction to the external intiaces
e Physical address considerations

* Bcache structure

* Victim data buffer

e Cache coherency

* Lock mechanism

e System port

e Bcache port

* Interrupts

Chapter 3 lists and defines all 21264/EV6 hardware interface signal pins. Chapter 9
describes the 21264/EV6 hardwaregdirfaice electrical rguirements.

4.1 Introduction to the External Interfaces

A 21264/EV6-based system can be divided into three major sections:
e 21264/EV6 microprocessor

* Second-level Bcache

e System interface logic

— Optional duplicate tag store
— Optional lock register
— Optional victim buffers

The 21264/EV6 external inttace is flxible and mandates few design rules, allowing a
wide range of prospective systems. The external interface is composed of the Bcache
interface and the system imtace.

* Inputclocks must have the same frequency as theiesponding output clock. For
example, the frequency &ysAddInClk_L must be the same as
SysAddOutClk_L.

Alpha 21264/EV6 Hardware Reference Manual Cache and External Interfaces 4-1

Introduction to the External Interfaces

4-2

¢ The Bcache interface includes a 128-bit bidirectional data bus, a 20-bit unidirec-
tional address bus, and several control signals.

— TheBcDataOutClk_x[3:0] clocks are free-running and are derived from the
internal GCLK. The period oBcDataOutClk_x[3:0] is a programmable mul-
tiple of GCLK.

— The Bcache turns thecDataOutClk_x[3:0] clocks around and returns them
to the 21264/EV6 aBcDatalnClk_H[7:0]. Likewise,BcTagOutCIk_x
returns aBcTagInClk_H.

— The Bcache interface supports a 64-byte block size.

* The system interface includes a 64-bit bidirectional data bus, two 15-bit
unidirectional address buses, and several control signals.

— TheSysAddOutCIlk_L clock is free-unning and is derived from the internal
GCLK. The period ofSysAddOutClk_L is a programmable multiple of
GCLK.

— TheSysAddInClk_L clock is a turned-around copy &ysAddOutCIk_L.

Figure 4—-1 shows a simplified view of the externakiriace. The funiton and purpose
of each signal is described in Chapter 3.

Cache and External Interfaces Alpha 21264/EV6 Hardware Reference Manual

Introduction to the External Interfaces

Figure 4-1 21264/EV6 System and Bcache Interfaces

SysAddin_L[14:0] -<
SysAddInClk_L -<
SysAddOut_L[14:0]
SysAddOutCIk_L
SysVref <
SysData_L[63:0]
SysChec k_L[7:0]
SysDatalnCIk_H[7:0] -<
SysDataOutCIk_L[7:0]
SysDatalnValid_L
SysDataOutValid_L >
SysFillV alid_L >
BcAdd_H[23:4]

Yy

A

Yy

i

i

[23:4] y [23:6] y [23:6]
21264 | Data | | Tag | | Status | System
AAA AAA AA AAAAAA

BclLoad_L
BcData_H[127:0]
BcCheck_H[15:0]
BcDatalnClk_H[7:0] -
BcDataOutClk_ x[3:0]
BcDataOE_L
BcDataWr_L
BcTag_H[42:20]
BcTagInClk_H
BcTagOutCIk_ x
BcVref
BcTagWr_L
BcTagOE_L
BcTagValid_H
BcTagDirty_H
BcTagShared_H
BcTagParity_H
IRQ_H[5:0]

A A

A A

4

AAAAA

FM-05818B .Al7

4.1.1 System Interface

This section introduces the system (external) busrfate. The system interface is

made up of two unidirectional 15-bit address buses, 64 bidirectional data lines, eight
bidirectional check bits, two single-ended unidirectional clocks, and a few control pins.
The 15-bit address buses provide time-shared address/command/ID in two or four
GCLK cycles. The Cbox controls the system interface.

Alpha 21264/EV6 Hardware Reference Manual Cache and External Interfaces 4-3

Physical Address Considerations

4.1.1.1 Commands and Addresses

The system sends probe and data movement commands to the 21264/EV6. The 21264/
EV6 can hold up to eight probe commands from the system. The system controls the
number of outstanding probe commands and must ensure that the 21264/EV6 8-entry
probe queue does not overflow.

The Cbox contains an 8-entry miss buffer (MAF) and an 8-entry victiffelb (VAF).

A miss occurs when the 21264/EV6 probes the Bcache but does not find the addressed
block. The 21264/EV6 can queue eight cache misses to the system in its MAF.

4.1.2 Second-Level Cache (Bcache) Interface

The 21264/EV6 Cbox provides control signals and an fatar for a seand-level

cache, the Bcache. The 21264/EV6 supports a Bcache from 1MB to 16MB, with 64-
byte blocks. A 128-bit data bus is used for triams between th81264/EV6 and the
Bcache. The Bcache must be comprised of synchronous static RAMs (SSRAMs) and
must contain either one, two, or three internal registers. All Bcache control and address
pins are clocked synchronously on Bcache cycle boundaries. Taeh® clock rate

varies as a multiple of the CPU clock cycle in half-cycle increments from 1.5 to 4.0,
and in full-cycle increments of 5, 6, 7, and 8 times the CPU clock cycle. The 1.5 multi-
ple is only available in dual-data mode.

4.2 Physical Address Considerations

The 21264/EV6 supports a 44-bit physical address space that is divided equally
between memory space and I/O space. Memory space resides in the lower half of the
physical address space (PA[43] = 0) and I/O space resides in the upper half of the phys-
ical address space (PA[43] = 1). The 21264/EV6 recognizes these spaces internally.

The 21264/EV6-generated externdemences to memory space are always of a fixed
64-byte size, though the internal access granularity is byte, word, longword, or quad-
word. All 21264/EV6-generated externaferences to memory or /O space atg/si-

cal addresses that are either successfully translated from a virtual address or produced
by PALcode. Speculative execution may causeferemnce tamonexistent memory. Sys-
tems must check the range of all addresses and report nonexistent addresses to the
21264/EV6.

Table 4-1 describes the translation of internal references to external interface refer-
ences. The first column lists the instructions used by the programmer, including load
(LDx) and store (STx) instructions of several sizes. The column headings are described
here:

e DcHit (block was found in the Dcache)
e DcW (block was found in a writable state in the Dcache)
e BcHit (block was found in the Bcache)
* BcW (block was found in a writable state in the Bcache)

e Status and Action (status at end of instruction and actenfopmed by the21264/
EV6)

4-4 Cache and External Interfaces Alpha 21264/EV6 Hardware Reference Manual

Physical Address Considerations

Prefetches (LDL, LDF, LDG, LDT, LDBU, LDWU) to R31 use the LDx flow, and
prefetch with nodify intent (LDS) uses the STx flow. If the prefetch target is addressed
to I/O space, the upper address bit is cleared, converting the address to memory space
(PA[42:6]). Notes follow the table.

Table 4—1 Translation of Internal References to External Interface Reference

Instruction DcHit DcW BcHit BcW Status and Action

LDx Memory 1 X X X Dcache hit, done.

LDx Memory 0 X 1 X Bcache hit, done.

LDx Memory 0 X 0 X Miss, generate RdBlk command.

LDx 1/O X X X X RdBytes, RdLWs, or RdAQWSs based on size.

Istream Memory 1 X X X Dcache hit, Istream serviced from Dcache.

Istream Memory 0 X 1 X Bcache hit, Istream serviced from Bcache.

Istream Memory 0 X 0 X Miss, generate RdBIkl command.

STx Memory 1 1 X X Store Dcache hit and writable, done.

STx Memory 1 0 X X Store hit and not writable, set dirty flow (note 1).

STx Memory 0 X 1 1 Store Bcache hit and writable, done.

STx Memory 0 X 1 0 Store hit and not writable, set-dirty flow (note 1).

STx Memory 0 X 0 X Miss, generate RdBIkMod command.

STx1/0O X X X X WrBytes, WrLWs, or WrQWs based on size.

STx_C Memory 0 X X X Fail STx_C.

STx_C Memory 1 0 X X STx_C hit and not writable, set dirty flow (note 1).

STx_C /O X X X X Always succeed and WrQws or WrLws are generated,
based on the size.

WH64 Memory 1 1 X X Hit, done.

WH64 Memory 1 0 X X WH64 hit not writable, set dirty flow (note 1).

WH64 Memory 0 X 1 1 WH64 hit dirty, done.

WH64 Memory 0 X 1 0 WH64 hit not writable, set dirty flow (note 1).

WH64 Memory 0 X 0 X Miss, generate InvalToDirty command (note 2).

WH64 1/0 X X X X NOP the instruction. WH64 i&YNDEFINED for /O
space.

ECB Memory X X X Generate evict command (note 3).

ECB 1/O X X X X NOP the instruction. ECB instruction is UNDEFINED
for 1/0 space.

MB/WMB X X X X Generate MB command (note 4). See Section 2.12.1.

TB Fill Flows

Alpha 21264/EV6 Hardware Reference Manual Cache and External Interfaces 4-5

Bcache Structure

Table 4-1 notes:

1. Set Dirty Flow: Based onthe Cbox CSR SET_DIRTY_ENABLE[2:0], SetDirty
requests can be either internally acknowledged (called a SetModify) or sent to the
system environment for processing. When externally acknowledged, the shared sta-
tus information for the cache block is also broadcast. The commands sent exter-
nally are SharedToDirty or CleanToDirty. Based on the Chox CSR
ENABLE_STC_COMMANDIO0], the external system can be informed of a STx_C
generating a SetDirty using the STCChangeToDirty command. See Table 4-16 for
more information.

2. InvalToDirty: Based on the Cbox CSR INVAL_TO_DIRTY_ENABLEJ1:0], Inval-
ToDirty requests can be either internally acknowledged or sent to the system envi-
ronment as InvalToDirty commands. This Cbox CSR provides the ability to convert
WH&64 instructions to RdModx operations. See Table 4-15 for more information.

3. Evict: There are two aspects to the commands that are generated by an ECB
instruction: first, those commands that are generated to notify the system of an evict
being performed; second, those commands that are generated by any victim that is
created by servicing the ECB.

— If Cbox CSR ENABLE_EVICTI0] is clear, no command is issued by the
21264/EV6 on the external interface to notify the system of an evict being per-
formed. If Cbox CSR ENABLE_EVICTI0] is set, the 21264/EV6 issues an
Evict command on the system interface only if a Bcache index match to the
ECB address is found in the 21264/EV6 cache system.

Note that whenever ENABLE_EVICTI[0] is true (in the write-many chain),
BC_CLEAN_VICTIM must also be true (in the write-once chain). Otherwise,

the 21264/EV6 could respond miss to a probe, rather than hit, before an Evict
command has been sent off chip, but after the Evict command has removed a
(clean) block from the internal caches and theaBhe. That beléor might

cause systems that maintain an external duplicate copy of the Bcache tags to
become confused, because the system could receive the probe response indicat-
ing the miss before it receives the Evict command.

— The 21264/EV6 can issue the commands CleanVictimBlk and WrVictimBIk for
avictim that is created by an ECB. CleanVictimBlk is issued only if Cbox CSR
BC_CLEAN_VICTIM is set and there is a Bcache index match valid but not
dirty in the 21264/EV6 cache system. WrVictimBIk is issued for any Bcache
match of the ECB address that is dirty in the 21264/EV6 cache system.

4., MB: Based onthe Cbox CSR SYSBUS_ MB_ENABLE, the MB command can be
sent to the pins.

Each of these CSRs is programmed appropriately, based on the cache coherence proto-
col used by the system environment. For example, uniprocessor systems would prefer
to internally acknowledge most of these transactions. In contrast, multiprocessor sys-
tems may require notification and control of any change in cache state. The 21264/EV6
and the external system must cooperate to maintain cachearude. Section 4.5

explains the 21264/EV6 part of the cache coherency protocol.

4.3 Bcache Structure

The 21264/EV6 Chox provides control signals and aerfiaice for a seand-level cache
(Bcache).

4-6 Cache and External Interfaces Alpha 21264/EV6 Hardware Reference Manual

Bcache Structure

The 21264/EV6 supports a Bcache from 1MB to 16MB, with 64-byte blocks. A 128-bit
bidirectional data bus is used for transfers between the 21264/EV6 and the Bcache. The
Bcache is fully synchronous and the synchronous static RAMs (SSRAMs) must contain
either one, two, or three internal registers. All Bcache control and address pins are
clocked synchronously on Bcache cycle boundaries. The Bcache clock rate varies as a
multiple of the CPU clock cycle in half-cycle increments from 1.5 to 4.0, and in full-
cycle increments of 5, 6, 7, and 8 times the CPU clock cycle. The 1.5 multiple is only
available in dual-data mode.

4.3.1 Bcache Interface Signals

Figure 4-2 shows the 21264/EV6 systeneifiéice signals.

Figure 4-2 21264/EV6 Bcache Interface Signals

BcData_H[127:0]

21264 BcCheck _H[15:0]

_ BcDataInClk_H[7:0]
BcDataOutClk_ £3:0]
BcDataOE_L
BcDataWr_L
BcAdd_H[23:4]
BcTag_H[42:20]

_ BcTagInClk_H

N BcTagOutClk_ x

__ Bcvref

D BcTagDirty H
BcTagParity H
BcTagShared_H
BcTagValid_H
BcTagOE_L
BcTagWr_L
BcLoad_L

YYYVYY

Y

Yvyy

FM-05650.A18

4.3.2 System Duplicate Tag Stores

The 21264/EV6 provides Bcache state support for systems with and without duplicate
tag stores, and will take fierent acitons on this basis. The system sets the Cbox CSR
DUP_TAG_ENA]OQ], indicating that it has a duplicate tag store for the Bcache. Systems
using the DUP_TAG_ENA][0] bit must also use the Cbox CSR

BC_CLEAN_VICTIM[O] bit to avoid deadlock situations.

Systems using a Bcache duplicate tag storeazmelerate system performance by:

* Issuing probes and SysDc fill commands to the 21264/EV6 out-of-order with
respect to their order at the system serialization point

* Filtering out all probe misses from the 21264/EV6 cache system

Alpha 21264/EV6 Hardware Reference Manual Cache and External Interfaces 4-7

Victim Data Buffer

If a probe misses in the 21264/EV6 cache system (Bcache miss and VAF miss), the
21264/EV6 stalls probe processing with the expectation that a SysDc fill will allocate
this block. Because of this, in duplicate tag mode, the 21264/EV6 can never generate a
probe miss response.

When Cbox CSR DUP_TAG_ENA[O] equals 0, the 21264/EV6 delivers a miss
response for probes that do not hit in its cache system.

4.4 Victim Data Buffer

The 21264/EV6 has eight victim dataffers (VDBs). They have the fldwing proper-
ties:

* The VDBs are used for both victims (fills that are replacing dirty cache blocks) and
for system probes that require data movement. The CleanVictimBlk command
(optional) assigns and uses a VDB.

* Each VDB has two valid bits that indicate the buffer is valid for a victim or valid
for a probe or valid for both a victim and a probe. Probe commands that match the
address of a victim address file (VAF) entry with an asserted probe-valid bit (P)
will stall the 21264/EV6 probe queue. No ProbeResponses will be returned until
the P bit is clear.

* The release victim buffer (RVB)it, when asserted, causes the victim valid bit, on
the victim data buffer (VDB) specified in the ID field, to be cleared. The RVB bit
will also clear the IOWB when systems move data on 1/O write transactions. In this
case, ID[3] equals one.

* The release probe buffer (RPB) bit, when asserted (with a WriteData or Release-
Buffer SysDc command), €ars the P bit in the victim buffer entry specified in the
ID field.

¢ Read data commands and victim write commands use IDs 0-7, while IDs 8-11 are
used to address the four I/O write buffers.

4.5 Cache Coherency

This section describes the basics and protocols of the 21264/EV6 cache coherency
scheme.

4.5.1 Cache Coherency Basics

The 21264/EV6 systems maintain the cache hierarchy shown in Figure 4-3.

4-8 Cache and External Interfaces Alpha 21264/EV6 Hardware Reference Manual

Cache Coherency

Figure 4-3 Cache Subset Hierarchy

System
Main Memory

Bcache

The following tasks must be performed to maintain cache coherency:

FM-05824.Al14

* |stream data from memory spaces may be cached in the Icache and Bcache. Icache
coherence is not maintained by hardware—it must bmtaened by software using
the CALL_PAL IMB instruction.

* The 21264/EV6 maintains the Dcache as a subset of the Bcache. The Dcache is set-
associative but is kept a subset of the larger externally implemented direct-mapped
Bcache.

e System logic must help the 21264/EV6 to keep the Bcache coherent with main
memory and other caches in the system.

* The 21264/EV6 requires the system to allow only one change to a block at a time.
This means that if the 21264/EV6 gains the bus to read or write a block, no other
node on the bus should be allowed to access that block until the data has been
moved.

* The 21264/EV6 provides hardware mechanisms to support several cache coherency
protocols. The protocols can be separated into two classes: write invalidate cache
coherency protocol and flush cache coherency protocol.

4.5.2 Cache Block States
Table 4-2 lists the cache block states supported by the 21264/EV6.

Table 4-2 21264/EV6-Supported Cache Block States

State Name Description
Invalid The 21264/EV6 does not have a copy of the block.
Clean This 21264/EV6 holds a read-only copy of the block, and no other agent in

the system holds a copy. Upon eviction, the block is not written to memory.

Alpha 21264/EV6 Hardware Reference Manual Cache and External Interfaces 4-9

Cache Coherency

Table 4-2 21264/EV6-Supported Cache Block States (Continued)

State Name Description

Clean/Shared This 21264/EV6 holds a read-only copy of the block, and at least one other
agent in the system may hold a copy of the block. Upon eviction, the block
is not written to memory.

Dirty This 21264/EV6 holds a read-write copy of the block, and must write it to
memory after it is evicted from the cache. No other agent in the system
holds a copy of the block.

Dirty/Shared This 21264/EV6 holds a read-only copy of the dirty block, which may be
shared with another agent. The block must be written back to memory when
it is evicted.

4 5.3 Cache Block State Transitions

Cache block state transitions aeflected by21264/EV6-generated commands to the
system. Cache block state transitions can also be caused by system-generated com-
mands to the 21264/EV6 (probes). Probes control the next state for the cache block.
The next state can be based on the previous state of the cache block. Table 4-3 lists the
next state for the cache block.

Table 4-3 Cache Block State Transitions

Next State Action Based on Probe Hit

No change Do not update cache state. Useful for DMA transactions that
sample data but do not want to update tag state.

Clean Independent of previous state, update next state to Clean.

Clean/Shared Independent of previous state, update next state to Clean/

Shared. This transaction is useful for systems that update
memory on probe hits.

T1: Based on the dirty bit, make the block clean or dirty shared.
Clean= Clean/Shared This transaction is useful for systems that do not update
Dirty = Dirty/Shared memaory on probe hits.

T3: If the block is Clean or Dirty/Shared, change to Clean/
Clean= Clean/Shared Shared. If the block is Dirty, change to Invalid. This transac-
Dirty = Invalid tion is useful for systems that use the Dirty/Shared state as

Dirty/Shared= Clean/Shared an exclusive state.

4-10 Cache and External Interfaces Alpha 21264/EV6 Hardware Reference Manual

Cache Coherency

The cache state transitions caused by 21264/EV6-generated commands are under the
full control of the system environment using the SysDc (system data control) com-
mands. Table 4—4 lists these commands.

Table 4-4 System Responses to 21264/EV6 Commands

Response Type 21264/EV6 Action

SysDc ReadData Fill block with the associated data and update tag with clean
cache status.

SysDc ReadDataDirty Fill block with the associated data and update tag with dirty
cache status.

SysDc ReadDataShared Fill block with the associated data and update tag with
shared cache status.

SysDc ReadDataShared/Dirty Fill block with the associated data and update tag with dirty/
shared status.

SysDc ReadDataError Fill block with all-ones reference pattern and update tag with
invalid status.

SysDc ChangeToDirtySuccess Unconditionally update block with dirty cache status.

SysDc ChangeToDirtyFalil Do not update cache status and fail any associated STx_C
instructions.

4.5.4 Using SysDc Commands

Note the following:

* The conventional response for RdBIk commands is SysDc ReadData or ReadD-
ataShared.

* The conventional response for a RdBlkMod command is SysDc ReadDataDirty.

* The conventional response for ChangeToDirty commands is
ChangeToDirtySuccess or ChangeToDirtyFail.

However, the system environment is not limited to these responses. Table 4-5 shows all
21264/EV6 commands, system responses, and the 2126442¢bn. The 21264/
EV6 commands are described in the following list:

* Rdx commands are generated by load or Istream references.
* RdBIkModx commands are generated by store references.

* The ChxToDirty command group includes CleanToDirty, SharedToDirty, and STC-
ChangeToDirty commands, which are generated by stfegences that hit in the
21264/EV6 cache system.

* InvalToDirty commands are generated by WH64 instructions that miss in the
21264/EV6 cache system.

* FetchBIlk and FetchBlkSpec are noncached references to memory space that have
missed in the 21264/EV6 cache system.

* Rdiox commands are noncached references to I/O address space.

* Evict and STCChangeToDirty commands are generated by ECB and STx_C
instructions, respectively.

Alpha 21264/EV6 Hardware Reference Manual Cache and External Interfaces 4-11

Cache Coherency

Table 4-5 shows the system responses to 21264/EV6 commands and 21264/EV6 reac-
tions.

Table 4-5 System Responses to 21264/EV6 Commands and Reactions

21264/EV6 CMD SysDc 21264/EV6 Action

Rdx ReadData This is a normal fill. The cache block is filled and marked clean or
ReadDataShared shared based on SysDc.

Rdx ReadDataShared/Dirty The cache block is filled and marked dirty/shared. Succeeding store

commands cannot update the block without external reference.

Rdx ReadDataDirty The cache block is filled and marked dirty.

Rdx ReadDataError The cache block access was to NXM address space. The 21264/EV6
delivers an all-ones pattern to any load command and evicts the
block from the cache (with associated victim processing). The cache
block is marked invalid.

Rdx ChangeToDirtySucces®8oth SysDc responses are illegal for read commands.

ChangeToDirtyFail

RdBIkModx ReadData The cache block is filled and marked with a nonwritable status. If
ReadDataShared the store instruction that generated the RdBIkModx command is still
ReadDataShared/Dirty active (not killed), the 21264/EV6 will retry the instruction, generat-

ing the appropriate ChangeToDirty command. Succeeding store
commands cannot update the block without external reference.

RdBIkModx ReadDataDirty The 21264/EV6 performs a normal fill response, and the cache
block becomes writable.

RdBIkModx ChangeToDirtySuccesd8oth SysDc responses are illegal for read/modify commands.

ChangeToDirtyFail

RdBIkModx ReadDataError The cache block command was to NXM address space. The 21264/
EV6 delivers an all-ones pattern to any dependent load command,
forces a fail action on any pending store commands to this block,
and any store to this block is not retried. The Cbox evicts the cache
block from the cache system (with associated victim processing).
The cache block is marked invalid.

ChxToDirty ReadData The original data in the Dcache is replaced with the filled data. The
ReadDataShared block is not writable, so the 21264/EV6 will retry the store instruc-
ReadDataShared/Dirty tion and generate another ChxToDirty class command. To avoid a

potential livelock situation, the STC_ENABLE CSR bit must be set.
Any STx_C instruction to this block is forced to fail. In addition, a
Shared/Dirty response causes the 21264/EV6 to generate a victim
for this block upon eviction.

ChxToDirty ReadDataDirty The data in the Dcache is replaced with the filled data. The block is
writable, so the store instruction that generated the original com-
mand can update this block. Any STx_C instruction to this block is
forced to fail. In addition, the 21264/EV6 generates a victim for this
block upon eviction.

ChxToDirty ReadDataError Impossible situation. The block must be cached to generate a Chx-

ToDirty command. Caching the block is not possible because all
NXM fills are filled noncached.

4-12 Cache and External Interfaces Alpha 21264/EV6 Hardware Reference Manual

Cache Coherency

Table 4-5 System Responses to 21264/EV6 Commands and Reactions (Continued)

21264/EV6 CMD

SysDc 21264/EV6 Action

ChToDirty

ChxToDirty

InvalToDirty

InvalToDirty

InvalToDirty

InvalToDirty

Fetchx
Rdiox

Fetchx

Rdiox

Evict

STCChangeTo
Dirty
STCChangeTo
Dirty

MB

ChangeToDirtySuccess Normal response. ChangeToDirtySuccess makes the block writable.

ChangeToDirtyFail

ReadData
ReadDataShared

ReadDataShared/Dirty

ReadDataError

ReadDataDirty

The 21264/EV6 retries the store instruction and updates the Dcache.
Any STx_C instruction associated with this block is allowed to suc-
ceed.

The MAF entry is retired. Any STx_C instruction associated with
the block is forced to fail. If a STx instruction generated this block,
the 21264/EV6 retries and generates either a RdBlkModx (because
the reference that failed the ChangeToDirty also invalidated the
cache by way of an invalidating probe) or another ChxToDirty com-
mand.

The block is not writable, so the 21264/EV6 will retry the WH64
instruction and generate a ChxToDirty command.

The 21264/EV6 doesn’t send InvalToDirty commands offchip spec-
ulatively. This NXM condition is a hard error. Systems should per-
form a machine check.

The block is writable. Done.

ChangeToDirtySuccess

ChangeToDirtyFail

ReadData
ReadDataShared

lllegal. InvalToDirty instructions must provide a cache block.

The 21264/EV6 delivers the data block, independent of its
status, to waiting load instructions and does not cache the block in

ReadDataShared/Dirty the 21264/EV6 cache system.

ReadDataDirty

ReadDataError

ReadDataError

ChangeToDirtyFalil

ReadDataX
ChangeToDirtyFail

The cache block address was to an NXM address space. The 21264/
EV6 delivers the all-ones patterns to any dependent load instructions
and does not cache the block in the 21264/EV6 cache system.

The cache block access was to NXM address space. The 21264/EV6
delivers an all-ones pattern to any load command and does not cache
the block in the 21264/EV6 cache system.

Retiring the MAF entry is the only legal response.

All fill and ChangeToDirtyFail responses will fail the STx_C
requirements.

ChangeToDirtySuccess The STx_C instruction succeeds.

MBDone

Acknowledgment for MB.

The 21264/EV6 sends a WrVictimBlk command to the system when it evicts a Dirty or

Dirty/Shared cache block. The 21264/EV6 may be configured to send a CleanVictim-
Blk to the system (by way of the Cbox CSR BC_CLEAN_VICTIMI[0]) when evicting a

clean or shared block. Both commands allocate buffers in the VAF (victim address file).
This buffer is a coherent part of tl#.264/EV6 cache system. Write data control and
deallocation of the VAF can be directly controlled by using the SysDc WriteData and

ReleaseBuffer commands.

Alpha 21264/EV6 Hardware Reference Manual Cache and External Interfaces 4-13

Lock Mechanism

4.5.5 Dcache States and Duplicate Tags

Each Dcache block contains an extra state bit (modified bit), beyond those required to
support the cache protocol. If set, this bit indicates that the associated block should be
written to the Bcache when it is evicted from the Dcache. The modified bit is set in two

cases:

1. When a block is filled into the Dcache from memory its modified bit is set, ensur-
ing that it also gets written back into the Bcache at some future time.

2. When the processor writes to a dirty Dcache block the modified bit is set, indicating
it should be written to the Bcache when evicted.

The contents of the modified bit are functionally invisible to the external cache environ-
ment, but knowledge of the bits function is useful to programmers optimizing the
scheduling of the Bcache data bus.

The Cbox contains a duplicate copy of the Dcacheaiagy. In ©ntrast to the Dcache

tag array (DTAG), which is virtually indexed, the Cbox copy of the Dcache tag array
(CTAG) is physically-indexed. The Chox uses the CTAG array entries in the following
situations.

1. When the Mbox requests a Dcache fill, the Cbox uses the CTAG array entry to find
if the Dcache already contains the requested physical address in another virtually-
indexed Dcache line. If it does, the Cbox invalidates that cache line after first writ-
ing the data back to the Bcache if it was in the modified state. The Chox also checks
to see if the Dcache contains an address different from the requested address, but
maps to the same Bcache line. If it does, the Dcache line is evicted in order to keep
the Dcache a subset of the Bcache.

2. When the Ibox requests an Icache fill, the Cbox uses the CTAG array entries to find
if the Dcache contains the requested physical address in the modified state. If it
does, the Cbhox forces the line to be written back to the Bcache before servicing the
Icache fill request. The Cbox also checks to see if the Dcache contains an address
different from the requested address titich maps to the same Bcache line. In
this case the Istream request will miss the Bcache, and the Chox will
service the request by launching a noncached Fetch command to the system port
and will not put the Istream block into the Bcache. This mechanism allows the
21264/EV6 to use a cache resident lock flag for LDx_L/STx_C instructions.

3. The Cbox uses the CTAG array entries to find whether probe addresses are held in
the Dcache without imfrrupting load/store instruction processing in the processor
core.

4.6 Lock Mechanism

The 21264/EV6 does not contain a dedicated lock register, nor are system components
required to do so.

When a load-lock (LDx_L) instruction executes, data is accessed from the Dcache or
Bcache. If there is a cache miss, data is accessed from memory with a RdBIk command.
Its associated cache line is filled into the&xhe in the clean state, if it is not already
there.

4-14 Cache and External Interfaces Alpha 21264/EV6 Hardware Reference Manual

Lock Mechanism

When the store-conditional (STx_C) instruction executes, it is allowed to succeed if its
associated cache line is still present in the Dcache and can be made writable; otherwise,
it fails.

This algorithm is successful because another agent in the system writing to the cache
line between the load-lock and the store-conditional cache line would make the cache
line invalid. This mechanism’s coherence is based on the following four items:

1. LDx_L instructions are processed in-order in relation to the associated STx_C.

2. Once ablockis locked by way of an LDx_L instruction, no internal agent can evict
the block from the Dcache as a side-effect of its processing.

3. Any external agent that intends to update the contents of the stored block must use
an invalidating probe command to inform the 21264/EV6.

4. The system is the only agent with sufficient information to manage the tasks of fair-
ness and liveness. However, to enable these tasks, the 21264/EV6 only generates
external commands for nonspeculative STx_C instructions, and once given a suc-
cess indication from the system, must faithfully update the Dcache with the STx_C
value.

The system is entirely responsible for item number three. The 21264/EV6 plays an
active role in items one, two, and four.

4.6.1 In-Order Processing of LDx_L/STx_C Instructions

The 21264/EV6 uses the stWait logic in the 1Q to ensure that LDx_L/STx_C pairs are
issued in order. The stWait logic treats an Ldx_L instruction like Stx instructions.
STx_C instructions are always loaded into the 1Q with their associate stWait bit set.
Thus, a STx_C instruction is not issued until the older LDx_L is out of the IQ.

4.6.2 Internal Eviction of LDx_L Blocks

The 21264/EV6 prevents the eviction of cache blocks in the Dcache due to either of the
following references:

¢ |stream referencesith a Bcache index that matches the Dcache block and a
Bcache tag that mismatches the Dcache block.

To avoid evictions of LDx_L blocks, Istream eences that match thedex of a
block in the Dcache are converted to noncactefdrences.

e Ldx or Stx references with a Dcache index that matches the block.

In the Alpha architecture, Dstream references betweebya L/STx_C pair force
the value of the STx_C success flag to be UNPREDICTABLE. The 21264/EV6
forces all STx_C instructions that interrupt an LDx_L/STx_C pair to fail in pro-
gram order.

There should be no Dstream references between LDx_L/STx_C pairs; however, the
out-of-order nature of the 21264/EV6 can introduce Dstream references between
LDx_L/STx_C pairs. To prevent load or store instructions older than the LDx_L
from evicting the LDx_L cache block, the Mbox invokes a replay trap on the
incoming load or store instruction, which also aborts the LDx_L. These instructions
are issued in program order in the next iteration of the trap retry down the pipeline.
To prevent newer load or store instructions from evicting the locked cache line, the

Alpha 21264/EV6 Hardware Reference Manual Cache and External Interfaces 4-15

System Port

Ibox ensures that a STx_C is issued before any newer load or store instruction by
placing the STx_C into the IQ and stalling all subsequent instructions in the map
stage of the pipe until the 1Q is empty.

Branch instructions between the LDx_L/STx_C pair may be mispredicted, intro-
ducing load and store instructions that evict the locked cache block. To prevent that
from happening, there is a bit in the instruction fetcher that is set for a LDx_L refer-
ence and cleared on any other memmference. Whethis bit is set, the branch
predictor predicts all branches to fall through.

4.6.3 Liveness and Fairness

To prevent a livelock condition, the 21264/EV6 processes the STx_C as follows:

1. If aSTx_C misses the Dcache, then no system port transaction is started and the
STx_C fails.

2. Ifa STx_C hits a block that is not dirty, then a ChangeToDirty (Shared or Clean) is

launched after the STx_C retires and all older store queue entries are in the writable
state. This ensures that once the ChangeToDirty command is launched on behalf of
the STx_C, the STx_C will be executed to completion if the ChangeToDirty com-
mand succeeds.

If the ChangeToDirty command succeeds, the STx_C enters the writable state, and
the Mbox locks the Dcache line. The Mbox does not release the Dcache line until
the STx_C data is transferred to the Dcachieis ensures that no other agent, by

way of a probe, can take the block before the STx_C can update the locked block.

Without the intervention of PALcode and/or the operating system, a bad-path store can
cause a STx_C to continuously fail on another processor. Though a bad-path store is
eventually killed before it updates any memory (cache) values, it can still launch a
ReadMod MAF entry that the other processor will see. If a processor is in the middle of
a lock sequence and sees the ReadMod, the STx_C will fail. If the bad-path store con-
tinuously impedes system progress in this way, the system can livelock. Interrupts and
other random system traffic can remove the livelock condition in many cases, but if the
processor that is executing the bad-path store is at a high interrupt-priority level, the
livelock condition can persist. To remove the possibility of that livelock condition per-
sisting, the PALcode and/or the operating system intervenes to break up the livelock
condition.

4.6.4 Implications of Executing PALcode Between a LDx_L/STx_C Sequence

A legitimate translation bifier miss or interrupt can occur in theiddle of a LDx_L/
STx_C sequence. If the PALcode flow contains a virtual load or store, the lock flag will
be cleared. However, if the PALcode flow does not contain a virtual load or store, the
PALcode must intervene to avoid the very rare case where the lock hastb&sanisy
another processor but bad-path code that is issued on the return from PALcode pulls
back the cache block and makes it appear that the lock is still held.

4.7 System Port

The system port is the 21264/EV6’s connection to either a memory or I/O controller or
to a shared multiprocessor system controller. System porfagisignals are shown in
Figure 4-4.

4-16 Cache and External Interfaces Alpha 21264/EV6 Hardware Reference Manual

System Port

The system port supports transactions between the 21264/EV6 and the system. Systems
must receive and drive signals that are asserted low. Transaction commands are com-
municated on signal lineSysAddOut_L[14:0] (21264/EV6-to-system) and
SysAddin_L[14:0] (system-to-21264/EV6). Transaction data is transferred on a bidi-
rectional data bus over pirgysData_L[63:0]with ECC on pinsSysCheck_L[7:0]

Figure 4-4 System Interface Signals

__ SysAddin_L[14:0]

1264 | _ SysAddinClk_L
SysAddOut_L[14:0]
SysAddOutCIk_L

__ SysVref
SysData_L[63:0]
SysCheck_L[7:0]

| SysDataInCIk_H[7:0]

" SysDataOutClk_L[7:0]

__ SysDatalnValid_L

: SysDataOutValid_L

~ SysFillvalid_L

-< IRQ_HI5:0]

Yy

FM-05652.A18

4.7.1 System Port Pins

Table 3-1 defines the 21264/EV6 signal typeferred to irthis section. Table 4-6 lists
the system port pin groups along with their type, number, and functional description.

Table 4-6 System Port Pins

Pin Name Type Count Description

IRQ_H[5:0] |_DA 6 These six interrupt signal lines may be
asserted by the system.

SysAddin_L[14:0] |_DA 15 Time-multiplexed SysAddin, system-to-
21264/EV6.

SysAddInClk_L |_DA 1 Single-ended forwarded clock from system
for SysAddin_L[14:0] and
SyskFillvalid_L.

SysAddOut_L[14:0] O_0OD 15 Time-multiplexed SysAddOut, 21264/EV6-
to-system.

SysAddOutCIk_L O_0OD 1 Single-ended forwarded clock.

SysVref | DC_REF 1 System interface reference voltage.

SysCheck_L[7:0] B DA OD 8 Quadword ECC check bits for
SysData_L[63:0].

SysData_L[63:0] B DA OD 64 Data bus for memory and I/O data.

Alpha 21264/EV6 Hardware Reference Manual Cache and External Interfaces 4-17

System Port

Table 4-6 System Port Pins (Continued)

Pin Name Type Count Description

SysDatalnClk_HJ[7:0] |_DA 8 Single-ended system-generated clocks for
clock forwarded input system data.

SysDatalnValid_L |_DA 1 When asserted, marks a valid data cycle for
data transfers to the 21264/EV6.

SysDataOutClk_L[7:0] O_OD 8 Single-ended 21264/EV6-generated clocks
for clock forwarded output system data.

SysDataOutValid_L |_DA 1 When asserted, marks a valid data cycle for
data transfers from the 21264/EV6.

SyskFillvalid_L |_DA 1 Validation for fill given in previous SysDc
command.

4.7.2 Programming the System Interface Clocks

The system forwarded clocks are free running and derived from the 21264/EV6 GCLK.
The period of the system forwarded clocks is controlled by three Cbox CSRs, based on
the bit-rate ratio (similar to the Bcache bit-rate ratio) except that all transfers are dual-
data.

e SYS_CLK_LD_VECTOR[15:0]

e SYS _BPHASE_LD_VECTORJ[3:0]

e SYS_FDBK_ENJ[7:0]

Table 47 lists the programming values used to program the system interface clocks.

Table 4-7 Programming Values for System Interface Clocks

??jéifzr SYS_CLK_LD_VECTOR ! SYS_BPHASE_LD_VECTOR! SYS_FDBK_EN?
1.5X-DD 9249 5 02
2.0X-DD 3333 0 01
2.5X-DD 8C63 5 02
3.0X-DD 71C7 0 10
3.5X-DD C387 A 04
4.0X-DD OFOF 0 01
5.0X-DD 7C1F 0 40
6.0X-DD FO3F 0 10
7.0X-DD CO7F 0 04
8.0X-DD O0FF 0 01

1 These are hexadecimal values.

4-18 Cache and External Interfaces Alpha 21264/EV6 Hardware Reference Manual

System Port

In addition to programming of the clock CSRs, the data-sample/drive Cbox CSRs at the
pads have to be set appropriately. Table 4—8 shows the programmed values for these
system CSRs.

Table 4-8 Program Values for Data-Sample/Drive CSRs

CBOX CSR Description

SYS_DDM_FALL_EN]O] Enables the update of 21264/EV6 system outputs based on the falling edge
of the system forwarded clock. (Always asserted)

SYS_DDM_RISE_ENJ0] Enables the update of 21264/EV6 system outputs based on the rising edge of

the system forwarded clock. (Always asserted)

SYS_DDM_RD_FALL _EN[0] Enables the sampling of incoming data on the falling edge of the incoming
forwarded clock. (Always asserted)

SYS_DDM_RD_RISE_ENIO] Enables the sampling of incoming data on the rising edge of the incoming
forwarded clock. (Always asserted)

SYS_DDMF_ENABLE Enables the falling edge of the system forwarded clock. (Always asserted)
SYS_DDMR_ENABLE Enables the rising edge of the system forwarded clock. (Always asserted)

Table 4-9 lists the program values for CSR SYS_FRAME_LD_VECTORJ4:0] that set
the ratio between the forwarded clocks and the frame clock.

Table 4-9 Forwarded Clocks and Frame Clock Ratio

1

Clock Ratio Transfer Mode Value
1:1 All 00
2:1 3.0X, 3.5X, 8.0X 1E
2:1 1.5X, 2.0X, 2.5X 4.0X, 5.0X, 6.0X 7.0X 1F
4:1 8X 15
4:1 1.5X, 4.0X, 5.0X, 6.0X, 7.0X 0B
4:1 3.0X, 3.5X 14
4:1 2.0X, 2.5X 0A

1 These are hexadecimal values.

4.7.3 21264/EV6-to-System Commands

This section describes the 21264/EV6-to-system commands format and operation. The
command, address, ID, and mask bits are transmitted in four consecutive cycles on
SysAddOut_L[14:0]. The 21264/EV6 sends the command information in one of the

two following modes as selected by the Cbox CSR bit.

* Bank interleave on cache block boundary mode—SYSBUS_FORMAT[0] =0
* Page hit mode—SYSBUS_FORMAT[0] =1

The physical address (PA) bits arrangements for the two modes is shown in Tables 4-10
and 4-11. The purpose of the two modes is to give the system the PA bits that allow it to
select the memory bank and drive the RAS address as soon as possible.

Alpha 21264/EV6 Hardware Reference Manual Cache and External Interfaces 4-19

System Port

4.7.3.1 Bank Interleave on Cache Block Boundary Mode

Table 4—10 shows the command format for the bank interleave on cache block bound-
ary mode of operation (21264/EV6-to-system).

Table 4-10 Bank Interleave on Cache Block Boundary Mode of Operation

SysAddOut_L[14:2] BysAddOut_L[1] SysAddOut_L[0O]
Cyclel | M1 Command[4:0] PA[34:28] PA[36] PA[38]
Cycle 2 PA[27:22], PA[12:6] PA[35] PA[37]
Cycle3 | M2 Mask[7:0] CH ID[2:0] PA[40] PA[42]
Cycle4 | RV PA[21:13], PA[5:3] PA[39] PA[41]

4.7.3.2 Page Hit Mode
Table 4-11 shows the command format for page hit mode (21264/EV6-to-system).

Table 4-11 Page Hit Mode of Operation

SysAddOut_L[14:2] BysAddOut_L[1] SysAddOut_L[0O]
Cyclel | M1 Command[4:0] PA[31:25] PA[32] PA[33]
Cycle 2 PA[24:12] PA[11] PA[34]
Cycle3 | M2 Mask[7:0] CH ID[2:0] PA[35] PA[37]
Cycle4 | RV PA[34:32], PA[11:3] PA[36] PA[38]

Table 4—12 describes the field definitions for Tables 4-10 and 4-11.

Table 4-12 21264/EV6-to-System Command Fields Definitions

SysAddOut Field Definition

M1 When set, reports a miss to the system for the oldest probe.
When clear, has no meaning.
Command[4:0] The 5-bit command field is defined in Table 4-14.

SysAddOut[1:0] This field is needed for systems with greater than 32GB of memory, up to a maximum of 8
Terabyte (8TB). Cost-focused systems can tie these bits high and use a 13-bit command/
address field.

M2 When set, reports that the oldest probe has missed in cache. Also, this bit is set for system-
t0-21264/EV6 probe commands that hit but have no data movement (see the CH bit,
below).

When clear, has no meaning.

M1 and M2 are not asserted simultaneously. Reporting probe results as soon as possible is
critical to high-speed operation, so when a result is known the 21264/EV6 uses the earli-
est opportunity to send an M signal to the system. M bit assertion can occur either in a
valid command or a NZNOP.

ID[2:0] The ID number for the MAF, VDB, or WIOB associated with the command.

RV If set, validates this command.
In speculative read mode (optional), RV = 1 validates the command and RV =0 indicates
a NOP.

For all nonspeculative commands RV = 1.

4-20 Cache and External Interfaces Alpha 21264/EV6 Hardware Reference Manual

System Port

Table 4-12 21264/EV6-to-System Command Fields Definitions (Continued)

SysAddOut Field

Definition

Mask[7:0]
CH

The byte, LW, or QW mask field for the corresponding I/O commands.

The cache hit bit is asserted, along with M2, when probes with no data movement hit in
the Dcache or Bcache. This response can be generated by a probe that explicitly indicates
no data movement or a ReadlfDirty command that hits on a valid but clean or shared

block.

System designers can minimize pin count for systems with a small memory by config-
uring both the bank interleave on cache block boundary mode and the page hit mode
formats into ashort busformat. The pinSysAddOut_L[1] and/orSysAddOut_L[0]

are not used (selected by Cbox CSR SYS_BUS_SIZE[1:0]). Table 4—-13 lists the values
for SYSBUS FORMAT and SYS_BUS_SIZE[1:0] and shows the maximum physical
memory size.

Table 4-13 Maximum Physical Address for Short Bus Format

SYSBUS_ SYSBUS_

FORMAT SIZE[1:0] Maximum PA Comment

0 00 42 Bank interleave + full address

0 01 36 Bank interleave $ysAddOut_L[0] unused

0 10 lllegal Illegal combination

0 11 34 Bank interleave + botBysAddOut_L[1:0] are used for I1/O
1 00 38 Page hit mode + full address

1 01 36 Page hit mode $ysAddOut_L[0] unused

1 10 lllegal Illegal combination

1 11 34 Page hit mode + bo8ysAddOut_L[1:0] are unused

Because addresses above the maximum PA are not visible to the external system, any
memory transaction generated to addresses above the maximum PA are detected and
converted to transactions to NXM (nonexistent memory) and processed internally by

the 21264/EV6.

4.7.4 21264/EV6-to-System Commands Descriptions

Table 4-14 describes the 21264/EV6-to-system commands.

Table 4-14 21264/EV6-to-System Commands Descriptions

Command

Command [4:0] Function

NOP 00000 The 21264/EV6 drives this command on idle cycles during reset. After
the clock forward reset period, the first NZNOP is generated and this
command is no longer generated.

ProbeResponse 00001 Returns probe status and ID number of the VDB entry holding the
requested cache block.

NZNOP 00010 This nonzero NOP helps to parse the command packet.

Alpha 21264/EV6 Hardware Reference Manual

Cache and External Interfaces 4-21

System Port

Table 4-14 21264/EV6-to-System Commands Descriptions (Continued)

Command

Command [4:0] Function

VDBFlushRequest 00011 VDB flush request. The 21264/EV6 sends this command to the system
when an internally generated transaction Bcache index matches a Bcache
victim or probe in the VDB. The system should flush VDB entries
associated with all probe and WrVictimBIk transactions that occurred
before this command.

mB?! 00111 Indicates an MB was issued, optional when Cbhox CSR
SYSBUS_MB_ENA[0] is set.

ReadBIk 10000 Memory read.

ReadBlkMod 10001 Memory read with modify intent.

ReadBIKI 10010 Memory read for Istream.

FetchBIk 10011 Noncached memory read.

ReadBIkSpe% 10100 Speculative memory read (optional).

ReadBIkModSpe% 10101 Speculative memory read with modify intent (optional).

ReadBIkSpe@l 10110 Memory read for Istream (optional).

FetchBIkSpe% 10111 Speculative memory noncached ReadBlk (optional).

ReadBIkVic 11000 Memory read with a victim (optional).

ReadBIkModVié 11001 Memory read with modify intent, with a victim (optional).

ReadBIkVicP 11010 Memory read for Istream with a victim (optional).

WrVictimBIk 00100 Write-back of dirty block.

CleanVictimBlk 00101 Address of a clean victim (optional).

Evict* 00110 Invalidate evicted block at the given Bcache index (optional).

ReadBytes 01000 I/0 read, byte mask.

ReadlLWs 01001 1/0 read, longword mask.

ReadQWs 01010 I/0 read, quadword mask.

WrBytes 01100 1/0 write, byte mask.

WrLWs 01101 I/0 write, longword mask.

WrQWs 01110 I/0 write, quadword mask.

CIeanToDirt)93 11100 Sets a block dirty that was previously clean (optional for duplicate tags).

SharedToDirt§ 11101 Sets a block dirty that was previously shared (optional for multiprocessor
systems).

STCChangeToDirt@ 11110 Sets a block dirty that was previously clean or shared fora STx_C
instruction (optional for multiprocessor systems).

InvaIToDirtyVic?"5 11011 Invalid to dirty with a victim (optional).

InvaIToDirty5 11111 WH64 Acts like a ReadBlkMod without the fill cycles (optional).

4-22 Cache and External Interfaces

Alpha 21264/EV6 Hardware Reference Manual

System Port

Table 4-14 footnotes:

1. Systems can optionally enable MB instructions to the external system by asserting
Cbox CSR SYSBUS_MB_ENABLE. This mode is described in Section 2.12.1.

2. To minimize load-to-use memory latency, systems can optionally enable specula-
tive transactions to memory space by asserting the Cbox CSR
SPEC_READ_ENABLE]JO0]. If the Cbox system command queue is empty, a
bypass between the Bcache interface and the system interface is enabled (in combi-
nation with this mode). When the next new transaction is delivered by the Mbox,
the Cbox starts MAF memory references to thistem interface before the results
of Bcache hit is known. The RV bit is deasserted on a Bcache hit, or in
BC_RDVICTIM[0] mode (see footnote 3, below), and for Bcache miss transactions
that generate a victim (clean or dirty). Otherwise, the RV bit is asserted.

3. Systems can optionally enable RdBIkVic, RdBIkModVic, and InvalToDirtyVic
commands using Cbox CSR BC_RDVICTIMIO0]. In this mode of operation
RdBIkxVic command cycles are always followed immediately by the WrVictimBIk
commands. Also, when CleanVictimBlk commands are enabled, they
immediately follow RdBIkVic, RdBIkModVic, and InvalToDirtyVic commands.

4. Systems can optionally enable Evict commands by asserting the Cbox CSR
ENABLE_EVICT. In this mode, all ECB instructions will generate an Evict com-
mand, and in combination with BC_RDVICTIM[0] mode, the WriteVictim or
CleanVictim (when Cbox CSR BC_CLEAN_VICTIMIO0] is asserted) is associated
with the Evict command is atomically sent after the Evict command.

5. Optionally, systems can enable InvalToDirty commands by programming Cbox
CSR INVAL_TO_DIRTY[1:0]. Table 4-15 shows how to program
INVAL_TO_DIRTY_ENABLE[1:0].

Table 4-15 Programming INVAL_TO_DIRTY_ENABLE[1:0]

INVAL_TO_DIRTY_ENABLE[1:0] Cbox Action

X0 WH@64 instructions are converted to RdModx commands
at the interface. Beyond this point, no other agent sees the
WH64 instruction. This mode is useful for microproces-
sors that do not want to support InvalToDirty transac-
tions.

01 WH64 instructions are enabled, but they are acknowl-
edged within the 21264/EV6.

11 WH64 instructions are enabled, and generate InvalTo-
Dirty transactions at the 21264/EV6 pins.

Alpha 21264/EV6 Hardware Reference Manual Cache and External Interfaces 4-23

System Port

6. Optionally, systems can enable CleanToDirty or SharedToDirty commands by
using Cbox CSR SET_DIRTY_ENABLE[2:0]. These three bits control the Cbox
action upon a block that was hit in the Dcache with a status of dirayésh clean/
shared, or clean respectively.

Table 4-16 Programming SET_DIRTY_ENABLE[2:0]
SET_DIRTY_ENABLE

[2,0] (DS,CS,C) Cbox Action

000 Everything acknowledged internally (uniprocessor).

001 Only clean blocks generate external acknowledge (CleanToDirty
commands only).

010 Only clean/shared blocks generate external acknowledge (Shared-
ToDirty command only).

011 Clean and clean/shared blocks generate external acknowledge.

100 Only dirty/shared blocks generate external acknowledge (Shared-
ToDirty commands only).

101 Only dirty/shared and clean blocks generate external acknowledge.

110 Only dirty/shared and clean/shared blocks generate external

acknowledge.

111 All transactions generate external acknowledge.

Systems that require an explicit indication of ChangeToDirty status changes initi-
ated by STx_C instructions can assert Cbox CSR STC_ENABLE[0]. When this
register field = 000, CleanToDirty and SharedToDirty commands are used. The dis-
tinction between a ChangeToDirty command generated by a STx_C instruction and
one generated by a STx instruction is important to systems that want to service
ChangeToDirty commands with dirty data from a source processor. In this case, the
distinction between a locked exclusive instruction and a normal instruction is criti-
cal to avoid livelock for a LDx_L/STx_C sequence.

4.7.5 ProbeResponse Commands (Command[4:0] = 00001)

The 21264/EV6 responds to system probes that did not miss with a 4-cycle transfer on
SysAddOut_L[14:0]. As shown in Table 4-14, the Command[4:0] field for a ProbeRe-
sponse command equals 00001. Table 4-17 shows the format of the 21264/EV6 Probe-
Response command.

Table 4-17 21264/EV6 ProbeResponse Commands

SysAddOut_L[14:2] 5ysAddOut_L[1] SysAddOut L[0]
Cycle 1 0 |00001 |Status[1:0] DM | VS | VDB|X X
[2:0]
Cycle 2 0 MS | MAF| X X
[2:0]
Cycle3 |0 X X X
Cycle 4 X X X

4-24 Cache and External Interfaces Alpha 21264/EV6 Hardware Reference Manual

System Port

Table 4-18 describes the ProbeResponse command fields.

Table 4-18 ProbeResponse Fields Descriptions

ProbeResponse Field

Description

Command[4:0]

DM
VS
VDB[2:0]

MS
MAF[2:0]

Status[1:0]

The value 00001 identifies the command as a ProbeResponse.
Indicates that data movement should occur (copy of probe valid bit). See Section 4.4.
Write victim sent bit.

ID number of the VDB entry containing the requested cache block. This field is valid
when either the DM bit or the VS bit equals 1.

MAF address sent.

This field indicates the SharedToDirty, CleanToDirty, or
STCChangetoDirty MAF entry that matched the full probe address.

Result of probe:
Status[1:0] Probe state

00 HitClean

01 HitShared

10 HitDirty

11 HitSharedDirty

The system uses the SysDc signal lines to retrieve data for probes that requested a cache
block from the 21264/EV6. See Section 4.7.7.2 for more information about 2-cycle data
transfer commands. Probes that respond with M1, M2, or CH=1 will not be reported to
the system in a probe response command.

4.7.6 SysAck and 21264/EV6-to-System Commands Flow Control

Alpha 21264/EV6 Hardware Reference Manual

Controlling the flow of 21264/EV6-to-system commands is a joint task of the 21264/
EV6 and the system. The flow is controlled using the A bit, which is asserted by the
system, and the Cbox CSR SYSBUS_ACK_LIMIT[4:0] counter. The counter has the
following properties:

The 21264/EV6 increments its command-outstanding counter when it sends a com-
mand to the system. The 21264/EV6 decrements the counter by one each time the
A bit (SysAddIn_L[14]) is asserted in a system-t0-21264/EV6 command. The A

bit is transmitted during cycle four of a probe mode command or during cycle two

of a SysDc command.

The 21264/EV6 stops sending new commands when the counter hits the maximum
count specified by Cbox CSR SYSBUS_ACK_LIMIT[4:0]. When this counter is
programmed to zero, the CMD_ACK count is ignored (unlimited commands are
allowed in-flight).

Because RdBIkVic and WrVictimBlk commands are atomic when the CSR
BC_RDVICTIMIO] is set, the 21264/EV6 does not send a Rd&fik command if

the SYSBUS_ACK_LIMIT[4:0] is equal to one less than the maximum outstanding
count. The limit cannot be programmed with a value of one when RdBtkcom-
mands are enabled unless the Cbox CSR RDVIC_ACK_INHIBIT command is also
asserted (see Table 5-23).

Cache and External Interfaces 4-25

System Port

* There is no mechanism for the system to reject a 21264/EV6-to-system command.
ProbeResponse, VDBFlushReq, NOP, NZNOP, and RxiBec (with a clear RV
bit) commands do not require a response from the system. Systems must provide
adequate resources for responses to all probes sent to the 21264/EV6.

e Systems that program the Cbox CSR BC_RDVICTIM][0] to immediately follow
victim write transactions with read transactions and allocate combinedroesou
for the pair, may find it useful to increment the SYSBUS _IAQ.IMIT[4:0]
counter only once for the pair. These systems may assert Chox CSR
RDVIC_ACK_INHIBIT, which does not increment the
SYSBUS_ACK_LIMIT[4:0] count for RdBIkVic, RdBIkModVic, and RdBIkVicl
commands.

e Systems that maintain victim data buffers may find it useful to limit the number of
outstanding WrVictimBlk commands. This can be accomplished by using the Cbhox
CSR SYSBUS_VIC_LIMIT[2:0]. When the number of outstanding WrVictim
commands or CleanVictim commands reaches this programmed limit, the Cbox
stops generating victim commands on the system port. Because victim and read
commands are atomic when BC_RDVICTIMI[0] = 1, the RdBlic commands are
stalled when the victim limit is reached. Programming the
SYSBUS_VIC_LIMIT[2:0] to zero disables this limit.

4.7.7 System-to-21264/EV6 Commands

The system can send either probes (4-cycle) or data movement (2-cycle) commands to
the 21264/EV6. Signal piBysAddin_L[14] in the first command cycle indicates the

type of command being sent (1 = probe, 0 = data transfer). Sections 4.7.7.1 and 4.7.7.2
describe the formats of the two types of commands.

4.7.7.1 Probe Commands (Four Cycles)

Probes are always 4-cycle commands that contain a field to indicate a valid SysDc com-
mand. The format of the 4-cycle command is shown below.

Note: The SysAddIn_L[1:0] signal lines are optional and are used for memory
designs greater than 32GB. The position of the address bits matches the
selected format of the SysAddOut bus. The example below shows the bank
interleave format.

Table 4-19 shows the format of the system-t0-21264/EV6 probe commands.

Table 4-19 System-t0-21264/EV6 Probe Commands

SysAddin_L[14:2] SBysAddin_L[1] SysAddin_L[0]
Cyclel| 1 Probe[4:0] PA[34:28] PA[36] PA[38]
Cycle 2 PA[27:22], PA[12:6] PA[35] PA[37]
Cycle3| 0 SysDc[4:0] | RVB RPB A | ID[3:0] | PAJ40] PA[42]
Cycle4| C PA[21:13], PA[5:3] PA[39] PA[41]

4-26 Cache and External Interfaces Alpha 21264/EV6 Hardware Reference Manual

System Port

Table 4—-20 describes the system-t0-21264/EV6 probe commands fields descriptions.

Table 4-20 System-t0-21264/EV6 Probe Commands Fields Descriptions
SysAddin_L[14:0]

Field Description

Probe[4:0] Probe type and next tag state (See Tables 4-21 and 4-22).

SysDc[4:0] Controls data movement in and out of the 21264/EV6. See Table 4-24 for a list of data
movement types.

RVB Clears the victim or I/O write buffer (IOWB) valid bit specified in ID[3:0].

RPB Clears probe valid bit specified in ID[2:0].

A Command acknowledge. When set, the 21264/EV6 decrements its command outstanding
counter (SYSBUS_ACK_LIMIT[4:0]).

ID[3:0] Identifies the victim data buffer (VDB) number or the 1/O write buffer (IOWB) number. Bit
[3] is only asserted for the IOWB.

C Commit bit. This bit decrements the uncommitted event counter (MB_CNTR) used for MB
acknowledge.

The probe command field Probe[4:0] has two sections, Probe[4:3] and Probe[2:0].
Table 4-21 lists the data movement selected by Probe[4:3].

Table 4-21 Data Movement Selection by Probe[4:3]

Probe[4:3] Data Movement Function

00 NOP

01 Read if hit, supply data to system if block is valid.

10 Read if dirty, supply data to system if block is valid/dirty.
11 Read anyway, supply data to the system at index of probe.

Table 4-22 lists the next cache block state selected by Probe[2:0].

Table 4-22 Next Cache Block State Selection by Probe[2:0]

Probe[2:0] Next Tag State

000 NOP

001 Clean

010 Clean/Shared

011 Transition3: Clean= Clean/Shared

Dirty = Invalid
Dirty/Shared= Clean/Shared

100 Dirty/Shared
101 Invalid
110 Transition?: Clean= Clean/Shared

Dirty = Dirty/Shared
111 Reserved

Alpha 21264/EV6 Hardware Reference Manual Cache and External Interfaces 4-27

System Port

L Transition3 is useful in nonduplicate tag systems that want to give writable status to
the reader and do not know if the block is clean or dirty.

2 Transitionl is useful in nonduplicate tag systems that do not update memory on
ReadBlIk hits to a dirty block in another processor.

The 21264/EV6 holds pending probe commands in a 8-entry deep probe queue. The
system must count the number of probes that have been sent and ensure that the probes
do not overrun the 21264/EV6 queue. The 21264/EV6 removes probes from the inter-
nal probe queue when the probe response is sent.

The 21264/EV6 expects to hitin cache on a probe response, so it always fetches a cache
block from the Bcache on system probes. This can become a performance problem for
systems that do not monitor the Bcache tags, so the 21264/EV6 provides Cbox CSR
PRB_TAG_ONLY[0], which only accesses Bcache tags for system probes. For a
Bcache hit, the 21264/EV6 retries the prakéerence to get thesaociated data. In this
mode, the 21264/EV6 has a cache-hit counter that maintains some history of past cache
hits in order to fetch the data with the tag in the cases where streamed transactions are
being performed to the host processor.

4.7.7.2 Data Transfer Commands (Two Cycles)

Data transfer commands use a 2-cycle formaSgaAddin_L[14:0]. The SysDc[4:0]
field indicates success or failure for ChangeToDirty and MB commands, and error con-
ditions as shown in Table 4-24.

The pattern of data is controlled by tBgsDatalnValid_L andSysDataOutValid_L
signals. These signals are valid each cycle of data transfer, indicating any gaps in the
data cycle pattern. Th8ysDatalnValid_L andSysDataOutValid_L signals are
described in Section 4.7.8.4. Table 4-23 shows the format of the data transfer com-
mand.

Table 4-23 Data Transfer Command Format

SysAddin_L[14:2] SysAddin_L[1] SysAddin_L[0]
Cyclel |0 SysDc[4:0] RvB | RPB | A | ID[3:0] | X X
Cycle2 | C X X X

Table 4-24 describes the SysDc[4:0] field.

Table 4-24 SysDc[4:0] Field Description

SysDc[4:0] Command SysDcl[4:0] Description

NOP 00000 NOP, SysData is ignored by the 21264/EV6.

ReadDataError 00001 Data is returned for read commands. The system drives the SysData
bus, I1/0, or memory NXM.

ChangeToDirtySuccess 00100 No data. SysData is ignored by the 21264/EV6. This command is
also used for the InvalToDirty response.

ChangeToDirtyFail 00101 No data. SysData is ignored by the 21264/EV6. This command is
also used for the Evict response.

MBDone 00110 Memory barrier operation completed.

4-28 Cache and External Interfaces Alpha 21264/EV6 Hardware Reference Manual

System Port

Table 4-24 SysDc[4:0] Field Description (Continued)

SysDc[4:0] Command SysDc[4:0] Description

ReleaseBuffer

ReadData
(System Wrap)

00111 Command to alert the 21264/EV6 that the RVB, RPB, and ID field
are valid.
100xx Data returned for read commands. The system drives SysData. The

system uses SysDc[1:0] to control the wrap order. See Section
4.7.8.6 for a description of the data wrapping scheme.

ReadDataDirty 101xx Data is returned for Rcand RdMod commands. The ending tag
(System Wrap) status is dirty. The system uses SysDc[1:0] to define the wrap order.
ReadDataShared 110xx Data is returned for read commands. The system drives the data. The
(System Wrap) tag is marked shared. The system uses SysDc[1:0] to control the
wrap order.
ReadDataShared/Dirty 111xx Data is returned for the RdBlk command. The ending tag status is
(System Wrap) Shared/Dirty. The system uses SysDc[1:0] to control the wrap order.
WriteData 010xx Data is sent for 21264/EV6 write commands or system probes. The

21264/EV6 drives during the SysData cycles. The lower two bits of
the command specify the octaword address around which the 21264/
EV6 wraps the data.

The A bit in the first cycle indicates that the command is acknowledged. When A = 1, the
21264/EV6 derements its command outatding counter, but the A bit is not necessar-
ily related to the current SysDc command.

Probe commands can combine a SysDc command along with MBDone. In that event,
the probe is considered ahead of the SysDc command. If the SysDc command allows
the 21264/EV6 to retire an instruction before an MB, or allows the 21264/EV6 itself to
retire an MB (SysDc is MBDone), that MB will not complete until the probe is exe-
cuted.

The system can select the ending cache status for a cache fill operation by specifying
the status in one of the following SysDc commands:

ReadData (Clean) ReadDataShared (Clean/Shared)
ReadDataDirty (Dirty) ReadDataShared/Dirty (Shared/Dirty)

The system returns ReadDataShared or ReadData for ReadBlk commands, and ReadD-
ataDirty for a ReadMod command. However, other combinations are possible, but
should be used only after aeful study of thesituation.

The ChangeToDirtySuccess and ChangeToDirtyFail commands cannot be issued in the
shadow of SysDc cache fill commands (ReadDataError, ReadData, ReadDataDirty,
ReadDataShared, and ReadDataShared/Dirty). Each cache fill command allocates eight
cycles on the SysData bus. Systems are required to ensure that any future SysDc com-
mands do not cause conflicts with those eight SysData bus cycles. In addition, the sys-
tem must not issue ChangeToDirtySuccess or ChangeToDirtyFail commands in the six
SysAddrin cycles after any of the ReadDatmmmands because doing so will over-

load internal MAF resources in the 21264/EV6.

Because of an internal 21264/EV6 constraint, a minimum memory latency of
4x BCACHE_CLK_PERIOD is imposed. This latency is measured from A3 of the out-
going command (the last cycle) to the delivery of the SysDc command to the processor.

Alpha 21264/EV6 Hardware Reference Manual Cache and External Interfaces 4-29

System Port

4.7.8 Data Movement In and Out of the 21264/EV6

There are two modes of operation for data movement in and out of the 21264/EV6: fast
mode and fast mode disable. The data movement mode is selected using Cbox CSR
FAST_MODE_DISABLEJQ]. Fast data mode allows movement of data from the
21264/EV6 to bypass protocol and achieve the lowest possible latency for probe’s data,
write victim data, and 1/0O write data. Rules and conditions for the two modes are listed
and described in Sections 4.7.8.2 and 4.7.8.3. Before discussing data movement opera-
tion, 21264/EV6 clock basics are described in Section 4.7.8.1.

4.7.8.1 21264/EV6 Clock Basics

The 21264/EV6 uses a clock forwarding technique to achieve very high bandwidth on
its pin interfaces. The clock forwarding technique has three main principles:

1. Local point-to-point trarfers can be made safely, and at vargh bandwidth, if the
sender can provide the receiver with a forward clock (FWD_CLK) to latch the
transmitted data at the receiver.

— TheSysAddOutClk_L andSysDataOutCIlk_L[7:0] pins provide the forward-
ing clocks for transfers out of the 21264/EV6.

— TheSysAddInClk_L andSysDatalnCIk_H][7:0] pins provide the forwarding
clocks for transfers into the 21264/EV6.

2. If only one state element was used to capture the transmitted data, and the skew
between the two clock systems was greater then the bit-rate of the transfer, the data
valid time of the transmitted data would not be sufficient to safely transfer the
latched data into the receivers clock domain. In order to avoid this problem, the
receiver provides a queue that is manipulated in the transmitter’s time domain.
Using this queue, the data valid window of the transmitted data is extended (to an
arbitrary size based on the queue size), and the transfer to the receiver’s clock
domain can be safely made by delaying the unloading of this queue element beyond
the skew between the two clock domains. The internal clock that unloads this queue
is labelled INT_FWD_CLK. INT_FWD_CLK is timed at both the rising and fall-
ing edges of the external clock, thus appearing to run at twice the external clock’s
frequency.

3. The first two points provide the steady state basis for clock forwarded transfers;
however, both the sender and receiver must besctly initialized to enable coher-
ent and predictable transferBhis clock initialization is performed during system
initialization using theClkFwdRst_H andFrameClk_H signals.

If both the sender and the receiver are sampling at the same rate, these three principles
are sufficient to safely make point-to-point tré@s using clock forwardingdowever,

it is often desirable for systems to align clock-forwarded transactions on a slower
SYSCLK that is the basis of all non-processor system transactions.

The 21264/EV6 supports three ratios for SYSCLK to INT_FWD_CLK:

one-to-one (1-1), two-to-one (2-1), and four-to-one (4-1). Using one of these ratios, the
21264/EV6 starts transactions on SYSCLK boundaries. This ratio is programmed into
the 21264/EV6 using the Cbox CSR SYS_FRAME_LD VECTOR[4:0]. This ratio is
independent of the frequency BfameClk_H.

For data movement, the 21264/EV6 reacts to SysDc commands when they are resolved
into the 21264/EV6’s clock domain. This occurs when the 21264/EV6’s
INT_FWD_CLK unloads the SysDc command from the clock forwarding queue. This

4-30 Cache and External Interfaces Alpha 21264/EV6 Hardware Reference Manual

System Port

moment is determined by the amount of delay programmed into the clock forwarding
silo (by way of Cbox CSR SYS_RCV_MUX_ CNT_PRESETI[1:0]). Thus, all the tim-
ing relationships are relative to this unload point in time, which will bemrefd#to as

the point the command is perceived by 21264/EV6.

4.7.8.2 Fast Data Mode

The 21264/EV6 is the default driver of the bidirectional SysDate}bels the 21264/
EV6 is processing WrVictim, ProbeResponse (only the hit case), and IOWB commands
to the system, accompanying data is made available at the clock-forwarded bus.

Because there is a bandwidth difference between address (4 cycles) and data (8 cycles)
transfers, the 21264/EV6 tries to fully use fast data mode by delaying the next
SysAddOut write command until a fast data mode slot is available on the SysDataOut
bus.

SysDc commandache fill or explicit write commiads) that collide with the fast data

on the SysData bus have higher priority, and so magriapt the successful completion

of the fast transfer. Systems are responsible for detecting and replaying all interrupted
fast transfers. There are no gaps in a fast transfer and no data wrapping (the first cycle
contains QWO0, addressed by PA[5:3] = 000).

The system must release victimffars, and probe buffers and IOWB entries by send-
ing a SysDc command with the appropriate RVB/RPB bit for both successful fast data
transfers and for transfers that have been replayed. Fast data transfers have two parts:

1. SysAddOut command with the probe response, WrVictim, ofiAD)

2. Data

The command precedes data by at least one SYSCLK period. Table 4-25 shows the
number of SYSCLK cycles between SysAddOut and SysData for all system clock
ratios (clock forwarded bit times) and system framing clock multiples.

Table 4-25 SYSCLK Cycles Between SysAddOut and SysData

GCLK/INT_FWD_CLK (Data Rate Ratio)
System framing | 1.5X 2.0X 25X 3.0X 3.5X 4.0X 5.0X 6.0X 7.0X 8.0X
clock ratio
1 4 3 2 2 2 2 1 1 1 1
2 2 2 1 1 1 1 1 1 1 1
4 1 1 1 1 1 1 1 1 1 1

Figure 4-5 show a simple example of a fast transfer. The data rate ratio is 1.5X with a
4:1 SYSCLK to INT_FWD_CLK ratio.

1 The SysData bus contai8ysData_L[63:0]andSysCheck_L[7:0]

Alpha 21264/EV6 Hardware Reference Manual Cache and External Interfaces 4-31

System Port

Figure 4-5 Fast Transfer Timing Example
\ \ \ \

SysAddOut_L[14:0] :XProbe esponseX X

&

—— > — —><—
3

— NS N

soadvouck L /NN N S D

INT_FWD_CLKI|||||||||I|||||I|||I||

FM05822B.Al4

In fast data mode, movement of data into the 21264/EV6 requires turning around the
SysData bus that is being actively driven by the 21264/EV6. Given a SysDc fill com-
mand (ReadDataError, ReadData, ReadDataShared, ReadDatiBiryeReadData-
Dirty), the 21264/EV6 responds as follows:

1. Three GCLK cycles after perceiving the SysDc fill command, the 21264/EV6 turns
off its drivers, interrupting any ongoing fast data write transactions.

2. The 21264/EV6 drivers stay off until the last piece of fill data is received, or a new
SysDc write command a@rrides the currenty®Dc fill command. It is the responsi-
bility of the external system to schedule SysDc fill or write commands so that there
is no conflict on the SysData bus.

3. The 21264/EV6 samples fill data in the GCLK clock domain, 10 +
SYSDC_DELAY GCLK cycles after perceiving the SysDc fill command. The
Cbox CSR SYSDC_DELAY[3:0] provides GCLK granularity for precisely placing
fills into the processor pipeline discussed in Section 2.2.

Table 4-26 shows four example configurations and shows their use of the
SYSDC_DELAY[3:0].

Table 4-26 Chox CSR SYSDC_DELAY[3:0] Examples

System Bit Rate System Framing Clock Ratio 1 SYSDC_DELAY

System 1 1.5X 4:1 5 (3 SYSCLK cycles)
System 2 2.0X 2:1 2 (3 SYSCLK cycles)
System 3 2.5X 2:1 0 (2 SYSCLK cycles)
System 4 4X 2:1 6 (2 SYSCLK cycles)

L The system framing clock ratio is the number of INT_FWD_CLK cycles per
SYSCLK cycles.

4-32 Cache and External Interfaces Alpha 21264/EV6 Hardware Reference Manual

System Port

System 1 has six GCLKs to every SYSCLK and only sends 4-cycle commands to the
21264/EV6. Thus, a period of three SYSCLKs between the SysDc command and data
leaves a period of 15 GCLKs between SysDc and data (SysDc is in the middle of the 4-
cycle command). A SYSDC_DELAY[3:0] of five would align sampling and receipt of
SysData.

System 2 has four GCLKs in every SYSCLK, so leading data by three SYSCLK cycles,
and programming the SYSDC_DELAY[3:0] to two, aligns sampling and receiving.

Timing for systems 3 and 4 is derived in a similar manner.

Note: The maximum valid value for SYSDC_DELAY must be less than the min-
imum number of GCLK cycles between two consecutive SYSDC com-
mands to the 21264/EV6.

If a fast data transfer is interrupted and fails to complete, the system must use the con-
ventional protocol to send a SysDc WriteData command to the 21264/EV6, removing
the desired data buffer. Section 4.7.8.3 describes the timing events for transferring data
from the 21264/EV6 to the system.

4.7.8.3 Fast Data Disable Mode

The system controls all data movement to and from the 21264/EV6. Movement of data
into and out of the 21264/EV6 is preceded by a SysDc command. The 21264/EV6 driv-
ers are only enabled for the duration of an 8-cycle transfer of data from the 21264/EV6
to the system. Systems must ensure that there is no overlap of enabled drivers and that
there is adequate settle time on the SysData bus.

Given a SysDc fill command, the 21264/EV6 samples data 10 + SYSDC_DELAY
GCLK cycles after the command is perceived within the 21264/EV6 clock domain.
Because there is no linkage with the output driver, fills into the 21264/EV6 are not
affected by the SYS_RCV_MX_PRESET[1:0] value.

In both modes, given a SysDc write command, the 21264/EV6 looks for the next
SYSCLK edge 8.5 cycles after perceiving the SysDc write command in its clock
domain. Because the SysDc write command must be perceived before its use, SysDc
write commands are dependent upon the amount of delay introduced by Cbox CSR
SYS_RCV_MUX_CNT_PRESETJ1:0].

Table 4-27 lists information for the four timing examples. In Table 4-27, note the fol-

lowing:

e SysDc write commands are not affected by the SYSDC_DELAY parameter.

e The SYS _RCV_MUX_ PRESET adds delay at the rate of one INT_FWD_CLK ata
time. For example, adding the delay of one bit time to system 1 adds 1.5 GCLK

cycles to the delay and drives the SysDc write command-to-data relationship from
one to two SYSCLKs.

Alpha 21264/EV6 Hardware Reference Manual Cache and External Interfaces 4-33

System Port

* For write transfers, the 21264/EV6 drivers are enabled on the preceding GCLK
BPHASE, before the start of a write transfer, and disabled on the succeeding GCLK
BPHASE at the end of the write transfer. The write data is enveloped by the 21264/
EV6 drivers to guarantee that every data transfer has the same data valid window.

Table 4-27 Four Timing Examples

System Framing Clock Ratio

System Bit Rate Ratio Write Data

System 1 1.5X 4:1 2 SYSCLKs
System 2 2.0X 2:1 3 SYSCLKs
System 3 2.5X 2:1 2 SYSCLKs
System 4 4X 2:1 2 SYSCLKs

1 The system framing clock ratio is the number of INT_FWD_CLK cycles per
SYSCLK cycles.

The four examples described here assume no skew for the 2.0X and 4.0X cases and one
bit time of skew for the 1.5X and 2.5X cases.

For system 1, the distance between SysDc and the first SYSCLK is nine GCLK cycles
but the additional delay of one bit time (1.5 GCLKSs) puts the actual delay after perceiv-
ing the SysDc command to 7.5 GCLKS, which misses the 8.5 cycle constraint. There-
fore, the 21264/EV6 drives data two SYSCLKs afteceving the SysDc write

command.

For system 2, the distance between SysDc and the second SYSCLK is eight GCLK
cycles, which also misses the 8.5 cycle constraint, so the 21264/EV6 drives data three
SYSCLK cycles after receiving the SysDc write command (12 cycles).

The other two cases are derived in a similar manner.

4.7.8.4 SysDatalnValid_L and SysDataOutValid_L

The SysDataValid sighal$fsDatalnValid_L andSysDataOutValid_L) are driven by
the system and control the rate of data delivery to and from the 21264/EV6.

SysDatalnValid L

The SysDatalnValid_L signal controls the flow of data into the 21264/EV6, and may
be used to introduce an arbitrary number of cycles between octaword transfers into the
21264/EV6. The rules for usingysDatalnValid_L follow:

1. TheSysDatalnValid_L signal must be asserted for both cycles of a SysDc fill
command, and two quadwords of data must be delivered to the 21264/EV6 in suc-
ceeding bit-clock cycles with the appropriate timing in reference to the SysDc fill
command (SYSDC_DELAY + 10 CPU cycles).

2. Any number of bubble cycles can be introduced within the fill by deasserting
SysDatalnValid_L between octaword transfers.

3. The transfer of fill data can continue by assert8ygDatalnValid_L for at least
two bit-clock cycles, and delivering data SYSDC_DELAY + 10 CPU cycles after
the assertion ogysDatalnValid_L.

4-34 Cache and External Interfaces Alpha 21264/EV6 Hardware Reference Manual

System Port

4. The 21264/EV6 must s&kysDatalnValid_L asserted for eight data cycles in order
to complete a fill. When the eighth cycle of an asse@gdDatalnValid_L is per-
ceived by the 21264/EV6, the transfer is complete.

5. Systems that do not uSysDatalnValid_L may tie the pin to the asserted state.

If SYSDC_DELAY is greater than the bit-time of a transfer, 8¢sDatalnValid_L
signal must be internally pipelined. To enable thereot samfing of
SysDatalnValid_L, the 21264/EV6 provides a delay, with Cbox CSR
DATA_VALID DELAY[1:0], that is equal to SYSDC_DELAY[3:0]/bit-time. For
example, consider system 1 in Table 4-26, which has a SYSDC_DELAY of five
GCLKs. Running at a bit-time of 1.5X, the DATA_VALID DELAY[1:0] is pro-
grammed with a value of tee.

SysDataOutValid_L

Systems that use a ratio of 1:1 for SYSCLK:INT_FWD_CLK may control the flow of
data out of the 21264/EV6 by usif@ysDataOutValid_L as follows:

1. TheSysDatalnValid_L pin must be asserted for at least the first cycle of the SysDc
write command that initiates a write transfer.

2. Any number of bubble cycles may be introduced between quadword transfers by
deassertinggysDatalnValid_L.

3. The 21264/EV6 must see tlysDataOutValid_L signal asserted for eight data
cycles to complete a write transaction, and when the eighth cycle of an asserted
SysDataOutValid_L is perceived by the 21264/EV6, the transfer is complete.

4.7.8.5 SysFillvalid_L

The SysFillvalid_L pin, when asserted, validates theremt memory and I/O data
transfer into the 21264/EV6. The system designer may tie this pin to the asserted state
(validating all fills), or use it to enable or cancel fills as they progress. The 21264/EV6
samplesSysFillvalid_L at D1 time (when the 21264/EV6 samples the second data
cycle).

If SysFillvalid_L is asserted at D1 time, the fill will continue unémtupted. If it is not
asserted, the 21264/EV6 cancels the fill, but expects all eight QWs of dateve at

its system bus before continuing to the next fill. Also, the 21264/EV6 maintains the
state of the MAF, expecting another valid fill to the same MAF entry. Figure 46 illus-
tratesSysFillvalid_L timing.

Figure 4—6 SysFillvValid_L Timing

SysAddin_L[14:0] :XSysDcX X;):():():(

Transport Delay on Address
| | |

| | |
Command Receiver—‘—((T3 / /

\ \ \ \ \
| | | | |
SysFillvalid_L \ \ \ \ \
\ \ \ \ \
\ \ \ \ \

\ \

\ \

\ \

\ \

\ \

| |

\ \

[\ \ \ \ [

\ \ \ \ \ \
SysData_L[63:0] X po X b1 X p2 X D3 X D4)

FM-05823B.FH8

Alpha 21264/EV6 Hardware Reference Manual Cache and External Interfaces 4-35

System Port

4.7.8.6 Data Wrapping

All data movement between the 21264/EV6 and the system is composed of 64 bytes in
eight cycles on the data bus. All 64 bytes of memory data are valid. This applies to
memory read transactions, memory write transactions, and systemnasxbt&ransac-

tions. The wrap order is interleaved. The internal data bus, which delivers data to the
functional units and the Dcache, is 16 bytes wide, and so, nofei@isappemintil two

data cycles occur on the interface.

Table 4-28 lists the rules for data wrapping. I/O read and write addresses on the
SysAddOut bus point to the desired byte, word, LW, or QW, with a combination of
SysAddOut_L[5:3] and the mask field [7:0].

Table 4-28 Data Wrapping Rules

Significant Address Mask

Command Bits Type Rules

ReadQW and SysAddOut L[5:3] QW SysAddOut_L[5:3] contains the exact PA bits of the first

WrQw LDQ or STQ to the block. The mask bits point to the valid
QWs merged in ascending order.

ReadlW and SysAddOut_L[5:3] LW SysAddOut_L[5:3] contain the exact PA bits of the first

WrLW LDL or STL to the block. The mask bits point to the valid
LWs merged in ascending order within one hexword.

LDByte/Word SysAddOut_L[5:3] Byte SysAddOut_L[5:3] contain the exact QW PA bits of the

and LDByte/Word or STByte/Word instruction. The mask bits

STByte/Word point to the valid byte in the QW.

The order in which data is provided to the 21264/EV6 (for a memory or I/O fill) or

moved from the 21264/EV6 (write victims or probe reads) can be determined by the
system. The system chooses to reflect back the same low-order address bits and the cor-
responding octaword found in the SysAddOut field or the system chooses any other
starting point within the block.

SysDc commands for the ReadData, ReadDataShared, and WriteData groups require
that systems define the position of the first QW by inserting the appropriate value of
SysAddOut_L[5:3] into bits [1:0] of the command field. The recommended starting
point is the QW pointed to by the 21264/EV6; however, some systems may find it
more beneficial to begin the transfer elsewhere. The system must always indicate the
starting point to the 21264/EV6. The wrap order for subsequent QWs is interleaved.

Table 4-29 defines the method for systems to specify wrap and deliver data.

Table 4-29 System Wrap and Deliver Data

Source/

Destination SysDc[4:2] SysDc[1:0] Size Rules

Memory 100 (ReadData) SysAddOut_L[5:4] Block (64 Bytes) See Note 1
Memory 101(ReadDataDirty) SysAddOut_L[5:4] Block (64 Bytes) See Note 1
Memory 110 (ReadDataShared) SysAddOut_L[5:4] Block (64 Bytes) See Note 1
Memory 111(Read DataShared/DirtypysAddOut_L[5:4] Block (64 Bytes) See Note 1
Memory 010 (WriteData) SysAddOut_L[5:4] Block (64 Bytes) See Note 1

4-36 Cache and External Interfaces Alpha 21264/EV6 Hardware Reference Manual

System Port

Table 4-29 System Wrap and Deliver Data (Continued)

Source/

Destination SysDc[4:2] SysDc[1:0] Size Rules

/0 100 (ReadData) SysAddOut_L[5:4] QW (8-64 Bytes) See Note 1
/0 100 (ReadData) SysAddOut_L[4:3] LW(4-32 Bytes) See Note 2
/0 100 (ReadData) SysAddOut_L[4:3] Byte/Word See Note 2
/0 010 (WriteData) SysAddOut_L[5:4] QW (8-64 Bytes) See Note 1
/0 010 (WriteData) SysAddOut_L[5:4] LW(4-32 Bytes) See Note 1
/0 010 (WriteData) SysAddOut_L[5:4] Byte/Word See Note 1

Note 1: Transfers to and from the 21264/EV6 have eight data cycles for a total of
eight quadwords. The starting point is defined by the system. The preferred
starting point is the one pointed to by SysAddOut_L[5:4]. Systems can
insert the SysAddOut_L[5:4] into the SysDc[1:0] field of the command.
See Table 4-30 for the wrap order.

Note 2: LW and byte/word read transferdfdir from all other transfers. Theystem
unloads only four QWSs of data into eight data cycles by sending each QW
twice (referred to asalible-pumped data transfer). The first QW returned
is determined bysysAddOut_L[4:3]. The system again may elect to
choose its own starting point for the transfer and insert that value into
SysDc[1:0]. See Table 4-31 for the wrap order.

Table 4-30 defines the interleaved scheme for the wrap order.

Table 4-30 Wrap Interleave Order

PA Bits [5:3] of Transferred QW

First quadword 000 010 100 110
Second quadword 001 011 101 111
Third quadword 010 000 110 100
Fourth quadword 011 001 111 101
Fifth quadword 100 110 000 010
Sixth quadword 101 111 001 011
Seventh quadword 110 100 010 000
Eighth quadword 111 101 011 001

Table 4-31 defines the wrap order for double-pumped dataftnamns

Table 4-31 Wrap Order for Double-Pumped Data Transfers

PA [5:3] of Transferred QW

First quadword x00 x01 x10 x11
Second quadword x00 x01 x10 x11
Third quadword x01 x00 x11 x10

Alpha 21264/EV6 Hardware Reference Manual Cache and External Interfaces 4-37

System Port

Table 4-31 Wrap Order for Double-Pumped Data Transfers (Continued)

PA [5:3] of Transferred QW

Fourth quadword x01 x00 x11 x10
Fifth quadword x10 x11 x00 x01
Sixth quadword x10 x11 x00 x01
Seventh quadword x11 x10 x01 x00
Eighth quadword x11 x10 x01 x00

4.7.9 Nonexistent Memory Processing

Like its predecessors, the 21264/EV6 can generdéearces to nonéstent (NXM)

memory or I/O space. However, unlike tharlier Alpha microprocessor implementa-

tions, the 21264/EV6 can generate speculative references to memory space. To accom-
modate the speculative nature of the 21264/EV6, the system must not generate or lock
error registers because of speculative references2TB84/EV6 translates all memory
references tlough the translation lookaside buffer (TLB) and, in some cases, the
21264/EV6 may generate speculative references (instruction execution down mispre-
dicted paths) to NXM space. In these cases, the system sends a SysDc ReadDataError
and the 21264/EV6 does the following:

Delivers an all-ones pattern to all load instructions to the NXM address

Force-fails all store instructions to the NXM address (much like a STx_C
failure)

Invalidates the cache block at the same index by way of an atomic Evict
command

Table 4-32 shows each 21264/EV6 command, with NXM addresses, and the appropri-
ate system response.

Table 4-32 21264/EV6 Commands, with NXM Addresses, and System Response

21264/EV6

Command NXM

Address System/21264/EV6 Response

ProbeResponse Probe responses for addresses to NXM space are of UNPREDICTABLE status. Although
the final status of a ReadDataError is Invalid, the 21264/EV6 fills the block Valid/Clean
and uses an atomic Evict command to invalidate the block. Systems that send probes to
NXM space to the 21264/EV6 must disregard the probe result.

RdBIk Load references to NXM space can be speculative. In this case, systems should respond

RdBIkSpec with a SysDc ReadDataError fill that the 21264/EV6 uses to service the original load/

RdBIkVic Istream command. If the original load command was speculative, the 21264/EV6 will

remove the load instruction that generated the NXM command, and start processing
instructions down the correctly predicted path. If the command was not speculative, there
must be an error in the operating system mapping of a virtual address to an illegal physical
address, and the 21264/EV6 provides an all ones pattern as a signature for this bug. The
NXM block is not cached in the Dcache or Bcache.

4-38 Cache and External Interfaces Alpha 21264/EV6 Hardware Reference Manual

System Port

Table 4-32 21264/EV6 Commands, with NXM Addresses, and System Response

21264/EV6

Command NXM

Address System/21264/EV6 Response

RdBIKI Istream references to NXM space can be speculative. In this case, systems should respond

RdBIkSpecl with a SysDc ReadDataError fill, which the 21264/EV6 will use to service and execute the

RdBIkVicl original Istream reference. If the original Istream reference was speculative, the 21264/
EV6 will remove the instructions started after the mispredicted instruction that generated
the NXM reference, and start instruction processing down the correctly predicted path. If
the reference was not speculative, there must be an error in the operating system mapping
of a virtual address to an illegal physical address, and the 21264/EV6 provides an all ones
pattern as a signature for this bug. The NXM block is not cached in the Bcache, but can be
cached in the Icache.

RdBIkMod Store instructions to NXM space initiate RdBlkMod commands. Again, speculative store

RdBIkModSpec instructions are removed. Nonspeculative store instructions are forced to fail, much like

RdBIkModVic STx_C instructions that fail. The NXM block is not cached in the Dcache or Bcache.

WrVictimBIk Dirty Victims to NXM space are illegal. Systems should perform a machine check, with

CleanVictimBlk

the 21264/EV6 indicating a severe error.

The 21264/EV6 can generate CleanVictimBlk commands to NXM space if the Cbox CSR
BC_CLEAN_VICTIMIO0] bit is asserted and a SysDc ReadDataError has been generated.
Systems that use clean victims must faithfully deallocate the CleanVictim VAF entry.

Evict If the Cbox CSR ENABLE_EVICT is asserted, the 21264/EV6 will generate Evict com-
mands to NXM space. Systems may use this command to invalidate their duplicate tags.
Systems must respond with SysDc ChangeToDirtyFail to retire the NXM MAF entry.

RdBytes Load instructions to I/O space are not speculative, so an I/O reference to NXM space is an

RdLWs error. Systems must respond with ReadDataError and should generate a machine check to

RdQWs indicate an operating system error.

WrBytes Store instructions to I/O space are not speculative, so an I/O reference to NXM space is an

WrLWs error. Systems must respond by deallocating the appropriate IOWB entries, and should

WrQWws generate a machine check to indicate an operating system error.

FetchBIk Loads to noncached memory in NXM space may be speculative. Systems must respond

FetchBlkSpec with a SysDc ReadDataError to retire the MAF entry.

CleanToDirty
SharedToDirty

STCChangeToDirty

InvalToDirty
InvalToDirtyVic

ChangeToDirty commands to NXM space are impossible in the 21264/EV6 because all
NXM references to memory space are atomically filled with an Invalid cache status.

InvalToDirty commands are not speculative, so InvalToDirty commands to NXM space
indicate an operating system error. Systems should respond with a SysDc ReadDataError,
and should generate a machine check to indicate error.

4.7.10 Ordering of System Port Transactions

This section describes ordering of system port transactions. The two classes of transac-
tions are listed here:

e 21264/EV6 commands and system probes

e System probes and SysDc transfers

Alpha 21264/EV6 Hardware Reference Manual Cache and External Interfaces 4-39

System Port

4.7.10.1 21264/EV6 Commands and System Probes

This section describes the interaction of 21264/EV6-generated commands and system-
generated probes that reference the same dalole&. Some definitions are presented
here:

ProbeResponses generated by the 21264/EV6 respond to all system-generated
probe commands. System-generated data transfer commands respond to all 21264/
EV6-generated data transfer commands.

The victim address file (VAF) and victim data buffer (VDB) entries each have inde-
pendent valid bits for both a victim and a probe.

Probe results indicate a hit on a VAF/VDB and when a WrVictim command has
been sent to the system. Systems can decide whether to move the buffer once or
twice.

ProbeResponses are issued in the order that the system-generated probes were
received; however, there is no requirement for the system to retain order when issu-
ing release buffer commands.

Probe processing can stall inside the 21264/EV6 when the probe entry index
matches PA[19:6] of a previous probe entry in the VAF.

The 21264/EV6 reserves one VAF entry for probe processing, so that VAF-full con-
ditions cannot stall the processing of probes at the head of the queue.

Table 4-33 lists all interactions between pending internal 21264/EV6 commands and
the Probe[2:0] command field, Next Cache Block State, described in Table 4-22.

Table 4-33 shows the 21264/EV6 response to system probe and in-flight command
interaction. In the table, note the following:

ReadBIlkVic and ReadBlIkModVic commands do not appear in Table 4-33. If there
is interaction between the probe and the victim, it is the same as a WrVictimBIk
command.

Probes that invalidate locked blocks do not generate a ReadBlkMod command. The
21264/EV6 fails the STx_C instruction as defined in &ipha Architecture Hand-
book, Version 4.

All read commands (RdBIk, RdBIkMod, Fetch, InvalToDirty) do notargct
because the 21264/EV6 does not yet own the block.

4-40 Cache and External Interfaces Alpha 21264/EV6 Hardware Reference Manual

System Port

Table 4-33 21264/EV6 Response to System Probe and In-Flight Command Interaction

Pending Internal

21264/EV6

Command 21264/EV6 Response to System Probe and In-Flight Command Interaction

ReadBlk This case assumes that a WrVictimBlk command has been sent to the system and another

ReadBlkMod agent has performed a load/store instruction to the same address. The 21264/EV6 provides

FetchBIk VAF hit information with the probe response so that the system can manage the race con-

InvalToDirty dition between the WrVictimBlk command from this processor and a possible WrVictim-

WrVictimBIk Blk command from the probing processor. This race condition can be managed by either
forcing the completion of the WrVictimBlk command to memory before allowing the
progress by the probing processor, or by killing the WrVictimBlk command in this proces-
sor.

CleanToDirty This case assumes that a SetDirty command has been sent to the system environment

SharedToDirty because of a store instruction that hit in the 21264/EV6 caches and that another processor

has performed a load/store instruction to the same address. The 21264/EV6 provides MAF
hit information so that the system can correctly respond to the Set/Dirty command. If the
next state of the probe was Invalid (the other processor performed a store instruction), and
the probe reached the system serialization point before the Set/Dirty command, the system
must either fail the Set/Dirty command or provide the updated data from the other proces-
sor.

STCChangeToDirty This case is similar to case 2, except that the initiating instruction for the Set/Dirty com-
mand is a STx_C. An address match with an invalidating probe must fail the Set/Dirty
command. Delivering the updated data from the other processor is not an option because
of the requirements of the LDx_L/STx_C instruction pair.

4.7.10.2 System Probes and SysDc Commands

Ordering of cache transactions at the system serialization point mustibeted in the
21264/EV6 cache system. Table 4-34 shows the rules that a system must follow to con-
trol the order of cache status update within the 21264/EV6 cache structures (including
the VAF) at the 21264/EV6 pins.

Table 4-34 Rules for System Control of Cache Status Update Order

First Second Rule

Probe Probe To control the sequence of cache status updates between probes, systems
can present the probes in order to the 21264/EV6, and the 21264/EV6 will
update the appropriate cache state (including the VAF) in order.

Probe SysDc MAF To ensure that a probe updates the internal cache status before a SysDc
MAF transaction (including fills and ChangeToDirtySuccess commands),
systems must wait for the probe response before presenting the SysDc
MAF command to the 21264/EV6. To ensure that a probe updates a VAF
entry before a SysDc VAF (releaseffar), systems must wait for the
probe response.

Probe SysDc VAF Same as Probe/SysDc MAF, above.

Alpha 21264/EV6 Hardware Reference Manual Cache and External Interfaces 4-41

Bcache Port

Table 4-34 Rules for System Control of Cache Status Update Order (Continued)

First Second Rule

SysDc MAF Probe To ensure that a SysDc MAF command updates the 21264/EV6 cache sys-
tem before a probe to the same address, systems must deliver the D1 (the
second QW of data delivered to the 21264/EV6) before or in the same
cycle as the A3 of the probe (the last cycle of the 4-cycle probe command).
This rule also applies to ChangeToDirtySuccess commands that have a vir-
tual DO and D1 transaction.

SysDc MAF SysDc MAF SysDc MAF transactions can be ordered into the 21264/EV6 by ordering
them appropriately at the 21264/EV6 éntace.

SysDc MAF SysDc VAF SysDc MAF transactions and SysDc VAF transactions cannetant
within the 21264/EV6 because the 21264/EV6 does not generate MAF
transactions to the same address as existing VAF transactions.

SysDc VAF Probe To ensure that a SysDc VAF invalidates a VAF entry before a probe to the
same address, the SysDc VAF command must@de the first cycle of the
4-cycle probe command.

SysDc VAF SysDc MAF SysDc MAF transactions and SysDc VAF transactions cannetant
within the 21264/EV6 because the 21264/EV6 does not generate MAF
transactions to the same address as existing VAF transactions.

SysDc VAF SysDc VAF SysDc VAF transactions can be ordered into the 21264/EV6 by ordering
them appropriately at the 21264/EV6 éntace.

4.8 Bcache Port

The 21264/EV6 supports a second-level cacheafie)with 64-byte blocks. The

Bcache size can be 1MB, 2MB, 4MB, 8MB, or 16MB. The Bcache port has a 144-bit
data bus that is used for data transfers between the 21264/EV6 and the Bcache. All
Bcache control and address signal lines are clocked synchronously on Bcache clock cycle
boundaries.

The Bcache supports the following multiples of the GCLK period: 1.5X (dual-data
mode only), 2X, 2.5X, 3X, 3.5X, 4X, 5X, 6X, 7X, and 8X. However, the 21264/EV6
imposes a maximum @&che clock period based on the SYSCLK ratio. Tabi85 lists
the range of maximum Bcache clock jmats. Section 4.7.8.2 describes fast mode.

Table 4-35 Range of Maximum Bcache Clock Ratios

Bcache Clock Ratio with Bcache Clock Ratio with Fast Mode
SYSCLK Ratio Fast Mode Enabled Disabled
1.5X 4.0X 7.0X
2.0X 4.0X 7.0X
2.5X 5.0X 8.0X
3.0X 6.0X 8.0X
3.5X 7.0X 8.0X
4.0X 7.0X 8.0X
5.0X 8.0X 8.0X

4-42 Cache and External Interfaces Alpha 21264/EV6 Hardware Reference Manual

Bcache Port

Table 4-35 Range of Maximum Bcache Clock Ratios (Continued)

Bcache Clock Ratio with Bcache Clock Ratio with Fast Mode
SYSCLK Ratio Fast Mode Enabled Disabled
6.0X 8.0X 8.0X
7.0X 8.0X 8.0X
8.0X 8.0X 8.0X

The 21264/EV6 provides a range of programmable Cbox CSRs to manipulate the
Bcache port pins so that a variety of industry-standard SSRAMs can communicate effi-
ciently with the 21264/EV6. The following SSRAMs can be used:.

* Nonburst mode Reg/Reg late-write SSRAMs
e Burst mode Reg/Reg late-write dual-data SSRAMs
4.8.1 Bcache Port Pins

Table 3—1 defines the 21264/EV6 signal type®redd to inthis section. Table 4-36
lists the Bcache port pin groups along with their type, numbeeresice clock, and
functional description.

Table 4-36 Bcache Port Pins

Pin Name Type Count Reference Clock Description

BcAdd_H[23:4] O_PP 20 Int_Index_BcClk Bcache index

BcCheck H[15:0] B DA PP 16 Int_Data_BcClk> output ECC check bits for BcData
BcDatalnClk_H= input

BcData_H[127:0] B DA PP 128 Int_Data_BcCHe output Bcache data
BcDatalnClk_H= input

BcDatalnClk_HJ[7:0] I_DA 8 NA Bcache data input clocks

BcDataOE_L O_PP 1 Int_Index_BcClIk Bcache data output enable/chip

select

BcDataOutClk_H[3:0] O_PP 8 NA Bcache data clocks— high and low

BcDataOutCIk_L[3:0] version

BcDataWr_L O_PP 1 Int_Index_BcClIk Bcache data write enable

BcLoad_L O_PP 1 Int_Index_BcClk Bcache burst enable

BcTag_H[42:20] B DA PP 23 Int_Data_BcClk> output Bcache tag data
BcTagInClk_H= input

BcTagDirty H B DA PP 1 Int_Data_BcClks output Bcache tag dirty bit
BcTagInClk_H= input

BcTagInClk_H I_DA 1 NA Tag input data reference clock

BcTagOE_L O_PP 1 Int_Index_BcClIk Bcache tag output enable/chip

select

BcTagOutClk_H O_PP 2 NA Bcache tag clock— high and low

BcTagOutClk_L versions

BcTagParity H B DA PP 1 Int_Data_BcClk> output Bcache tag parity bit

BcTagInClk_H= input

Alpha 21264/EV6 Hardware Reference Manual Cache and External Interfaces 4-43

Bcache Port

Table 4-36 Bcache Port Pins (Continued)

Pin Name Type Count Reference Clock Description

BcTagShared_H B DA PP 1 Int_Data_BcClk> output Bcache tag shared bit
BcTagInClk_H= input

BcTagValid_H B DA PP 1 Int_Data_BcClks> output Bcache tag valid bit
BcTagInClk_H= input

BcVref | DC_REF 1 NA Input reference voltage for tag data

BcTagWr_L O_PP 1 Int_Index_BcClk Bcache data write enable

4.8.2 Bcache Clocking

For clocking, the Bcache port pins can be divided into three groups.

1. The Bcache index pins (address and control) aereeiced to IntAdd_BcClk, an
internal version of the Bcache forwarded clock. The index pins are valid for the
whole period of the Int_Add_BcClk. The index pins are:

BcAdd_H[23:4]
BcDataOE_L
BcDataWr_L
BcLoad L
BcTagOE_L
BcTagWr_L

2. The data pins, when driven as outputs, aferemced to Int_Data BcCIk, another
internal version of the Bcache forwarded clock. The data pins, when used as inputs,
can be referenced to the incoming Bcache clo8chatalnClk_H[7:0] and
BcTagIinClk_H. Int_Data_BcClk can be delayed relative to Int_Add_BcClk from
0to 3 GCLK cycles by using Cbox CSR BC_CPU_CLK_DELAY[1:0]. The data
pins are:

BcCheck H[15:0]
BcData_H[127:0]
BcTag_H[42:20]
BcTagDirty H
BcTagParity H
BcTagShared H
BcTagValid H

3. The Bcache clock pin8¢DataOutClk_x[3:0] andBcTagOutClk_x) clock the
index and data pins at the SSRAMs. These clocks can be delayed from
Int_Data BcClIk from 0to 2 GCLK phases (half cycles) using Cbox CSR
BC_CPU_CLK_DELAY[1:0].

4-44 Cache and External Interfaces Alpha 21264/EV6 Hardware Reference Manual

Bcache Port

Table 4-37 provides the BC_CPU_CLK_DELAY[1:0] values, which is the delay
from BC_ADDRESS to BC_WRITE_DATA (and BC_CLOCK_OUT) in GCLK
cycles.

Table 4-37 BC_CPU_CLK_DELAY[1:0] Values

BC_CPU_CLK_DELAY[1:0] Value GCLK Cycles of Delay
0 0

1 1
2 2
3 3

In the 21264/EV6 topology, the index pins are loaded by all the SSRAMSs, while the
clock and data pins see a limit load. Thisamgement requires a relatively large amount

of delay between the index pins and the Bcache clock pins to meet the setup constraints
at the SSRAMSs. The 21264/EV6 Cbox CSRs can provide a programmable amount of
delay between the index and clock pins by using Cbox CSRs
BC_CPU_CLK_DELAY[1:0] and BC_CLK_DELAY[1:0].

Table 4-38 provides the BC_CLK_DELAY[1:0] values, which is the delay from
BC_WRITE_DATA to BC_CLOCK_OUT, in GCLK phases.

Table 4-38 BC_CLK_DELAY[1:0] Values

BC_CLK_DELAY[1:0] Value GCLK Phases

0 Invalid (turns off BC_CLOCK_OUT)
1 0
2 1
3 2

With BC_CPU_CLK_DELAY[1:0] and BC_CLK_DELAY[1:0], a 500-MHz 21264/

EV6 can provide up to 8 ns (82 + 2) of delay between the index and the outgoing for-
warded clocks. The relative loading difference between the data and the clock is mini-
mal, so Cbox CSR BC_CLK_DELAY[1:0] alone is sufficient to provide the delay
needed for the setup constraint at the Bcache data register.

4.8.2.1 Setting the Period of the Cache Clock

The free running Bcache clocks are derived from the 21264/EV6 GCLK. The period of
the Bcache clocks is programmed using the following three Cbox CSRs:

1. BC_CLK_LD_VECTORI[15:0]
2. BC_BPHASE_LD_VECTORI[3:0]
3. BC_FDBK_EN[7:0]

To program these three CSRs, the programmer must know the bit-rate of the Bcache
data, and whether only the rising edge or both edges of the clock are used to latch data.
For example, a 200-MHz late-write SSRAM has a data period of 5 ns. For a 2-ns
GCLK, the READCLK_RATIO must be set to 2.5X. This partis called a 2.5X SD (sin-
gle-data part).

Alpha 21264/EV6 Hardware Reference Manual Cache and External Interfaces 4-45

Bcache Port

Table 4-39 Program Values to Set the Cache Clock Period (Single-Data)

Table 4-39 shows how the three CSRs are programmed for single-data devices.

'?rcs:shf(;r BC CLK LD VECTOR 1 BC_BPHASE_LD_VECTOR'! BC_FDBK_EN1?
2.0X-SD 5555 0 01
2.5X-SD 94A5 3 02
3.0X-SD 9249 A 02
3.5X-SD 4C99 C 04
4.0X-SD 3333 0 01
5.0X-SD 8C63 5 02
6.0X-SD 71C7 0 10
7.0X-SD C387 A 04
8.0X-SD OFOF 0 01

1 These are hexadecimal values.

With the exception of the 2.5X-SD and 3.5X-SD cases, the clock waveform generated
by the 21264/EV6 for the forwarded clocks has a 50-50 duty cycle. In the 2.5X-SD
case, the 21264/EV6 produces an asymmetric clock that is high for two GCLK phases
and low for three phases. Likewise, for the 3.5X-SD case, the 21264/EV6 produces an
asymmetric clock that is high for three GCLK phases, and low for four GCLK phases.
Also, for both of these cases, the 21264/EV6 will only start transactions on the rising
edge of the GCLK and the Bcache clock. The 1.5X-SD case is not supported.

A dual-data rate (DDR) SSRAM'’s data rate is derived in a similar manner, except that

because both edges of the clock are used, the SSRAM clock generated is 2X the period
of the data. This part is called a 2.5X DDR SSRAM.

Table 4-40 shows how the three CSRs are programmed for dual-data devices.

Table 4-40 Program Values to Set the Cache Clock Period (Dual-Data Rate)

Ef;:sher BC_CLK_LD VECTOR ! BC BPHASE LD VECTOR! BC_FDBK_EN?
1.5X-DD 9249 A 02
2.0X-DD 3333 0 01
2.5X-DD 8C63 5 02
3.0X-DD 71C7 0 10
3.5X-DD C387 A 04
4.0X-DD OFOF 0 01
5.0X-DD 7C1F 0 40
6.0X-DD FO3F 0 10
7.0X-DD CO7F 0 04
8.0X-DD OOFF 0 01

4-46 Cache and External Interfaces

Alpha 21264/EV6 Hardware Reference Manual

Bcache Port

1 These are hexadecimal values.

In addition to programming the clock CSRs, the data-sample/drive Chox CSRs, at the
pads, must be set appropriately. Table 4—-41 lists these CSRs and provides their pro-
grammed value.

Table 4-41 Data-Sample/Drive Cbox CSRs

CBOX CSR Description

BC_DDM_FALL_ENIO] Enables the update of the 21264/EV6’s Bcache outputs referenced to the fall-
ing edge of the Bcache forwarded clock. Dual-data RAMs assert this CSR.

BC_TAG_DDM_FALL_EN[0] Enables the update of the 21264/EV6’s Bcache tag outputs referenced to the
falling edge of the Bcache forwarded clock. Alway deasserted.

BC_DDM_RISE_ENJ0] Enables the update of the 21264/EV6’s Bcache outputs referenced to the ris-
ing edge of the Bcache forwarded clock. Always asserted.

BC_TAG_DDM_RISE_EN[0] Enables the update of the 21264/EV6’s Bcache tag outputs referenced to the
rising edge of the Bcache forwarded clock. Always asserted.

BC_DDMF_ENABLE[O] Enables the rising edge of the Bcache forwarded clock. Always asserted.
BC_DDMR_ENABLE[0Q] Enables the falling edge of the Bcache forwarded clock. Always asserted.
BC_FRM_CLK]|O0] Forces the 21264/EV6 to only start Bcache transactions on the rising edge of

Bcache clocks that also coincide with the rising edge of GCLK. Must be
asserted for all dual-data parts and single-data parts at 2.5X and 3.5X.

BC_CLKFWD_ENABLE[O] Enables clock forward enable. Always asserted.

4.8.3 Bcache Transactions

The Cbox uses the programmed clock values to start data read, tag read, data write, and
tag write transactions on the rising edge of a Bcache clock. The Cbox can also be con-
figured to introduce a programmable number of bubbles when changing between write
and read commands. The following three sections describe these Bcache transactions.

4.8.3.1 Bcache Data Read and Tag Read Transactions

The 21264/EV6 alwayseads four pieces of data (64 bytes) from the Bcache during a
data read transaction, and always interrogates the tag array on the first cycle. Once
started, data read transactions are never cancelled. Assuming that the appropriate values
have been programmed for the Bcache clock period, and with satisfactory delay param-
eters for the SSRAM setup/hold Bcache address latch requirements, a Bcache read
command proceeds through the 21264/EV6 Cbox as follows:

1. When the 21264/EV6 clocks out the first address value on the Bcache index pins
with the appropriate Int_Add_BcClk value, the Cbox loads the values of Cbox CSR
BC_LAT_DATA_ PATTERN[31:0] and Cbox CSR
BC_LAT_TAG_PATTERN[23:0] into two shift registers, which shift during every
GCLK cycle.

2. The address and control pins are latched into the SSRAMSs. During the next cycle,
the SSRAMSs provide data and tag information to the 21264/EV6.

Alpha 21264/EV6 Hardware Reference Manual Cache and External Interfaces 4-47

Bcache Port

4.8.3.2 Bcache

3. Using the returning forwarded clockB¢DatalnClk_H[7:0], BcTagInClk_H), the
data/tag information is loaded into the 21264/EV6 clock forwarding queue for the
Bcache.

4. Based on the value of BC_RCV_MUX_PRESET_CNT[1,0] (the unload pointer),
the result of a Bcache write command is loaded into a 21264/EV6 GCLK
(BPHASE) register.

5. The Cbox CSR BC_LAT_DATA_PATTERN[31:0] and
BC_LAT_TAG_PATTERN][23:0] contain the GCLK frequency at which the output
of the clock forward FIFO can be consumed by the processor. This provides GCLK
granularity for the Bcache interface, so that the 21264/EV6 can minimize latency to
the Bcache. When the values based on these Cbox CSRs are shifted down to the
bottom of the shift register, the processor samples the Bcache data and delivers it to
the consumers of load data in the 21264/EV6 functional units.

For example, when a 2.5X-SD SSRAM has a latency of eight GCLK cycles from
BcAdd_H[23:4] to the output of Bcache FIFO, Cbox CSR
BC_LAT_DATA_PATTERNI[31:0] is programmed to 948and Cbox CSR
BC_LAT_TAG_PATTERNJ[23:0] is programmed tg & The data pattern contains the
placement for four pieces of data and the aggregate rate of the data is 2.5X. In addition,
bit one of the BC_LAT_DATA_PATTERN is placed at a GCLK latency of six GCLK
cycles, which is the minimum latency supported by the 21264/EV6. The
BC_LAT_TAG_PATTERN contains the placement of the tag data to the 21264/EV6.

A shift of one to the left increases the latency of the Bcache transfer to nine GCLK
cycles, and a shift to the right reduces the latency of the Bcache transfer to seven GCLK
cycles.

The Cbox performs isolated tag read transactions in response to system probe com-
mands. In addition, when using burst-mode SSRAMs, the Cbox can combine a separate
tag read transaction with the tail end of a dadad transaction, thusptimizing Bcache
bandwidth. A Bcache tag read transaction proceeds exactly like a Bcache data read
transaction, except that only the BC_LAT _TAG PATTERN is used to update the tag
shift register.

Data Write Transactions

During a data write transaction, the 21264/EV6 always writes four pieces of data (64
bytes of data and 8 bytes of ECC) to the Bcache, and always writes the tag array during
the first cycle. Once started, data write operations are never cancelled. Given the appro-
priate programming of the Bcache clock period and delay parameters to satisfy SSRAM
setup/hold requirements of the Bcache address latch, a Bcache write transaction pro-
ceeds through the Cbox as follows:

1. The Chox transmits the index and write control signals during an Int_Adr_BcClk
edge.

2. The datais placed on Bcache data, tag, and tag status pins on the appropriate
Int_Data BcClk edge from 0 to 7 Bcache bit-times later, based on the Cbox CSR
BC_LATE_WRITE_NUM]J2:0]. The BC_LATE_WRITE_NUM][2:0] supports the
late-write SSRAM, which optimize Bcache data bus bandwidth by minimizing
bubbles between read and write transactions. For example, single-data late-write
SSRAMSs would need this CSR programmed to a value of one, and dual-data late-
write SSRAMs would need this CSR programmed to a value of two.

4-48 Cache and External Interfaces Alpha 21264/EV6 Hardware Reference Manual

Bcache Port

3. The difference between the data delivery (Int_Data BcCIk) and forwarded clocks
out provides the setup for the data at the Bcache data flip-flop.

4. For Bcache writes, the 21264/EV6 drivers are enabled on the GCLK BPHASE
preceding the start of a write transfer, and disabled on the succeeding GCLK
BPHASE at the end of a write transfer. Thus, the write data is enveloped by the
21264/EV6 drivers to guarantee that every data transfer has the same data-valid
window.

4.8.3.3 Bubbles on the Bcache Data Bus

When changing between read and write tratisas on the bidirectional bus, it is often
necessary to introduce NOP cycles (bubbles) to allow the bus to settle and to drain the
Bcache read pipeline. The Cbox provides two CSRS, BC_RD_WR_BUBBLES|5:0]
and BC_WR_RD_BUBBLES[3:0] to help control the bubbles between read and write
transactions.

The optimum parameters for these CSRs are determined by formulas that include the
following terms:

Term Description

bcfrm Bcache frame clock.
¢ |n dual-data mode, bcfrm is twice the ratio.
* Insingle-data mode, the value for bcfrm is determined by whether
the ratio is even or odd:
— When the ratio is even, bcfrm is equal to the ratio.
— When the ratio is odd, bcfrm is twice the ratio.

For example, in single-data mode:

Ratio Bcfrm
2 2
2.5 5

GCLK The processor clock.

Ratio The number of GCLK cycles per peak Bcache bandwidth transfer. For example, a
ratio of 2.5 means the peak Bcache bandwidth is 16 bytes for every 2.5 GCLK
cycles.

rd_wr The minimum spacing required between the read and write indices at the data/tag

pins, expressed as GCLK cycles.

wr_rd The minimum spacing required between the write and read indices at the data/tag
pins, expressed as GCLK cycles.

The Relationship Between Write-to-Read — BC_WR_RD_BUBBLES and wr_rd

The following formulas calculate the relationship between the Chox CSR
BC_WR_RD_BUBBLES and wr_rd:

wr_rd = (BC_WR_RD BUBBLES — 1) * bcfrm

or

BC_WR_RD BUBBLES = ((wr_rd + bcfrm — 1) / bcfrm) + 1

There is never a need to use a value of 0 or 1 for BC_WR_RD_BUBBLES.

Alpha 21264/EV6 Hardware Reference Manual Cache and External Interfaces 4-49

Bcache Port

If wr_rd = 4*ratio , then value 3 would be the minimum
BC_WR_RD_BUBBLES value whebcfrm = 2*ratio , and value 5 would be the
minimum BC_WR_RD_BUBBLES value whercfrm = ratio

There is a special case fowtio = 2.0 in single-data mode. In this case, the for-
mula is:

wr_rd = (BC_WR_RD_BUBBLES — 2) * bcfrm
The Relationship Between Read-to-Write — BC_RD_WR_BUBBLES and rd_wr

Use the following formula to calculate the value for the Chox CSR
BC_RD_WR_BUBBLES that produces the minimum rd_wr restriction:

BC_RD WR BUBBLES = rd wr — 6

Note that a value for BC_RD_WR_BUBBLES of zero really means 64 GCLK cycles.
In that case, amend the formula. For example, it is impossible tolltawer = 6 in
the 1.5x dual-data rate mode case.

4.8.4 Pin Descriptions
This section describes the characteristics of the Bcache interface pins.

4.8.4.1 BcAdd_H[23:4]

TheBcAdd_H[23:4] pins are high drive outputs that provides the index for the Bcache.
The 21264/EV6 supports Bcache sizes of 1MB, 2MB, 4MB, 8MB, and 16MB. Table
4-42 lists the values to be programmed into Cbox CSRs BC_ENABLE[0] and
BC_SIZE[3:0] to support each size of the Bcache.

Table 4-42 Programming the Bcache to Support Each Size of the Bcache

BC_ENABLE0] BC_SIZE[3:0] Bcache Size
1 0000 1MB

1 0001 2MB

1 0011 4MB

1 0111 8MB

1 1111 16MB

When the Cbox CSR BC_BANK_ENABLE[O] is not set, the unugsdd_H[23:4]

pins are tied to zero. For example, when configured as a 4MB cache, the 21264/EV6
never changeBcAdd_H[23:22] from logic zero, and when BC_BANK_ENABLE]0]

is asserted, the 21264/EV6 drives the complement of the MSB index on the next higher
BcAdd_H pin.

4.8.4.2 Bcache Control Pins

The Bcache control pind¢cLoad_L, BcDataWr_L, BcDataOE_L, BcTagWr_L,
BcTagOE_L) are controlled using Cbox CSRs BC_BURST_MODE_ENABLEJ[0] and
BC_PENTIUM_MODEJO0].

4-50 Cache and External Interfaces Alpha 21264/EV6 Hardware Reference Manual

Bcache Port

Table 4-43 shows the four combinations of Bcache control pin behavior obtained using

the two CSRs.

Table 4-43 Programming the Bcache Control Pins

BC_PENTIUM_MODE

BC_BURST MODE_ENABLE RAM_TYPE

0 0 RAM_TYPE A
0 1 RAM_TYPE B
1 0 Unsupported
1 1 Unsupported

Table 4-44 lists the combination of control pin assertionaM_TYPE A.

Table 4-44 Control Pin Assertion for RAM_TYPE A

TYPE_A NOP RAO RA1 RA2 RA3 NOP NOP WA0O WAl WA2 WA3 NOP
BcLoad_L H H H H H H H H H H H H
BcDataOE_L H L L L L H H L L L L H
BcDataWr_L H H H H H H H L L L L H
BcTagOE_L H L H H H H H L H H H H
BcTagWr_L H H H H H H H L H H H H

Table 4-45 lists the combination of control pin assertion for RAM_TYPE B.

Table 4-45 Control Pin Assertion for RAM_TYPE B

TYPE_B NOP RAO RA1 RA2 RA3 NOP NOP WAO WAl WA2 WA3 NOP
BcLoad_L H L H H H H H L H H H H
BcDataOE_L H L L L L H H L L L L H
BcDataWr_L L H H H H L L L L L L L
BcTagOE_L H L H H H H H L H H H H
BcTagWr_L H H H H H H H L H H H H

Table 4-46 lists the combination of control pin assertion for RAM_TYPE C.

Table 4-46 Control Pin Assertion for RAM_TYPE C

TYPE_C NOP RA0O RA1 RA2 RA3 NOP NOP WAO WAL WA2 WA3 NOP
BcLoad_L H H H H H H H H H H H H
BcDataOE_L H H L L L L L H H H H H
BcDataWr_L H H H H H H H L L L L H
BcTagOE_L H L L H H H H H H H H H
BcTagWr_L H H H H H H H L H H H H

Alpha 21264/EV6 Hardware Reference Manual

Cache and External Interfaces 4-51

Bcache Port

Table 4-47 lists the combination of control pin assertion for RAM_TYPE D.

Table 4-47 Control Pin Assertion for RAM_TYPE D

TYPE_D NOP RAO RA1 RA2 RA3 NOP NOP WAO0 WAl WA2 WA3 NOP

BcLoad_L H L H H H H H L H H H H

BcDataOE_L H H L L L L L H H H H H

BcDataWr_L H H H H H H H L L L L H

BcTagOE_L H H L L H H H H H H H H

BcTagWr_L H H H H H H H L H H H H
Notes:

1. The NOP condition for RAM_TYPE B is consistent with bursting nonPentium
style SSRAMs.

2. In bothRAM_TYPE A and RAM_TYPE B, the pin8cDataOE_L andBcTagOE_L
function changes from output-enable control to chip-select control.

3. Inboth RAM_TYPE C and RAM_TYPE D SSRAMs, the piBsDataOE_L and
BcTagOE_L function as an asynchronous output enable that envelopes the Bcache
read data by providing an extra cycle of output enable.

Using these Cbox CSRs, late-write nonbursting and dual-data rate SSRAMs can be
connected to the 21264/EV6 as described in Appendix E.

4.8.4.3 BcDatalnClk_H and BcTagInClk_H

TheBcDatalnClk_H[7:0] andBcTagInClk_H pins are used to capture tag data and

data from the Bcache data and tag RAMs respectively. Dual-data rate SSRAMSs provide
a clock output with the data output pins to minimize skew between the data and clock,
thus allowing maximum bandwidth. The 21264/EV6 internally synchronizes the data to
its GCLK with clock forward receive circuitry similar to that in the systeneifiice.

For nonDDR SSRAMSs, systems can connect the Bcache data and tag output clock pins
to the Bcache data and tag input clock pins.

4.8.5 Bcache Banking

Bcache banking is possible by decoding the index MSB (as determined by Cbox CSR
BC_SIZE[3:0]) and asserting Cbox CSR BC_BANK_ENABLE[0]. To facilitate bank-
ing, the 21264/EV6 provides the complement of the MSB bit in the next higher unused
index bit. For example, when configured as an 8MB cache with banking enabled, the
21264/EV6 drives the inversion of PA[22] @tAdd_H[23] for use as a chip enable in

a banked configuration. Because there is no higher index bit available for 16 MB
caches, this scheme only works for cache sizes of 1MB, 2MB, 4MB, and 8MB.

Setting BC_RD_RD_BUBBLE to 1 introduces one Bcache clock cycle of delay
between consecutive read transactions, regardless of whether or not they are read trans-
actions to the same bank.

Setting BC_WR_WR_BUBBLE to 1 introduces one Bcache clock cycle of delay
between consecutive write transactions, regardless of whether or not they are write
transactions to the same bank.

4-52 Cache and External Interfaces Alpha 21264/EV6 Hardware Reference Manual

Interrupts

Setting BC_SJ BANK_ENABLE to 1 introduces one Bcache clock cycle of delay
between consecutive read transactions tdfamint bank (based on the MSB of the

index), even if BC_RD_RD_BUBBLE is set to 0. No additional delay is inserted
between consecutive read transactions to the same bank or between consecutive write
transactions.

4.8.6 Disabling the Bcache for Debugging

The Bcache is a required component for a 21264/EV6-based system. However, for
debug purposes, the 21264/EV6 can be operated with the Bcache disabled. The Bcache
can be disabled by clearing all of the BC_ENABLE bits in the Cbox WRITE_MANY
CSR. When disabling the Bcache, the following additional steps must be taken:

1. The various Bcache control bits in the Cbox WRITE_ONCE chain must be pro-
grammed to a valid combination (normally the same settings that would be used if
the Bcache were enabled).

2. The Bcache must still be initialized (using BC_INIT mode) during the reset PAL
flow, after which the Bcache should be left disabled.

3. Error Detection and Correction should be disabled by clearing DC_DAT_ERR_EN
(bit 7 of the DC_CTL IPR), or the following bits in the Cbox WRITE_ONCE chain
must be programmed to the indicated values:

BC_CLK_DELAY[1.0] = 0x1

BC_CPU_CLK_DELAY[L:0] = 0xl
BC_CPU_LATE_WRITE_NUMIL:0] = Ox1

BC_LATE_WRITE_NUM[2.0] = 0x0
BC_LATE_WRITE_UPPER =0
DUP_TAG_ENABLE =0

4.9 Interrupts

The system may request interrupts by way of fR® H[5:0] pins. These six interrupt
sources are identical. They may be asynchronous, are level sensitive, and can be indi-
vidually masked by way of the EIE field of the CM_IER IPR. The system designer
determines how these signals are used and selects their relative priority.

Alpha 21264/EV6 Hardware Reference Manual Cache and External Interfaces 4-53

5

Internal Processor Registers

This chapter describes 21264/EV6 internal processor registers (IPRs). They are sepa-
rated into the following circuit logic groups: Ebox, Ibox, Mbox, and Cbox.

The gray areas in gaster figures indicate reserved fields. Bit ranges that are coupled
with the field name specify those bits in that named field that are included in the IPR.
For example, in Figure 5-2, the field named COUNTER][31:4] contains bits 31 through

4 of the COUNTER field from Section 5.1.1. The bit range of COUNTER][31:4] in the
IPR is also listed in the columiBxtentin Table 5-2. In many cases, such as this one, the

bit ranges correspond. However, the bit range of the named field need not always corre-
spond to théxtentin the IPR. For example, in Figure 5-13, the field VA[47:13] resides

in IPR IVA_FORM][37:3] under the stated conditions.

The register contents after initialization are listed in Section 7.8.

Table 5-1 lists the 21264/EV6 internal processor registers.

Table 5-1 Internal Processor Registers

MT/MF
Issued
Score- from Latency
Index Board Ebox for MFPR
Register Name Mnemonic (Binary) Bit Access Pipe (Cycles)
Ebox IPRs
Cycle counter cC 11000000 5 RW 1L 1
Cycle counter control CC_CTL 11000001 5 WO 1L —
Virtual address VA 11000010 4,5,6,7 RO 1L 1
Virtual address control VA _CTL 11000100 5 WO 1L —
Virtual address format VA_FORM 11000011 4,5,6,7 RO 1L 1

Alpha 21264/EV6 Hardware Reference Manual Internal Processor Registers 5-1

Table 5-1 Internal Processor Registers (Continued)

MT/MF
Issued
Score- from Latency
Index Board Ebox for MFPR
Register Name Mnemonic (Binary) Bit Access Pipe (Cycles)
Ibox IPRs
ITB tag array write ITB_TAG 0000 0000 6 WO oL —
ITB PTE array write ITB_PTE 0000 0001 4,0 WO oL —
ITB invalidate all process (ASM=0) ITB_IAP 0000 0010 4 WO oL —
ITB invalidate all ITB_IA 0000 0011 4 WO oL —
ITB invalidate single ITB_IS 0000 0100 4,6 WO oL —
Exception address EXC_ADDR oooaio — RO oL 3
Instruction VA format IVA_FORM 00000111 5 RO oL 3
Current mode CM 0000 1001 4 RW oL 3
Interrupt enable IER 0000 1010 4 RW oL 3
Interrupt enable and current mode IER_CM 0000 10xx 4 RW oL 3
Software interrupt request SIRR 0000 1100 4 RW oL 3
Interrupt summary ISUM 0000 1101 — RO — —
Hardware interrupt clear HW_INT_CLR 0000 1110 4 WO oL —
Exception summary EXC_SUM 0000 11117 — RO oL 3
PAL base address PAL_BASE 0001 0000 4 RW oL 3
Ibox control I_CTL 00010001 4 RW oL 3
Ibox status |_STAT 0001 0110 4 RW oL 3
Icache flush IC_FLUSH 0001 0011 4 W oL —
Icache flush ASM IC_FLUSH_ASM 0001 0010 4 \We} oL —
Clear virtual-to-physical map CLR_MAP 0001 0101 4,5,6,7 WO oL —
Sleep mode SLEEP 00010111 4,5,6,7 WO oL —
Process context register PCTX owwnnt 4 W oL 3
Process context register PCTX 01xx xxxx 4 R oL 3
Performance counter control PCTR_CTL 00010100 4 RW oL 3
Mbox IPRs
DTB tag array write O DTB_TAGO 00100000 2,6 WO oL —
DTB tag array write 1 DTB_TAG1 10100000 1,5 WO 1L —
DTB PTE array write O DTB_PTEO 00100001 0,4 WO oL —
DTB PTE array write 1 DTB_PTE1l 10100001 3,7 WO oL —
DTB alternate processor mode DTB_ALTMODE 00100110 6 WO 1L —
DTB invalidate all process (ASM =0) DTB_IAP 10100010 7 WO 1L —
DTB invalidate all DTB_IA 1010 0011 7 WO 1L —

5-2

Internal Processor Registers

Alpha 21264/EV6 Hardware Reference Manual

Table 5-1 Internal Processor Registers (Continued)

Ebox IPRs

MT/MF
Issued
Score- from Latency
Index Board Ebox for MFPR
Register Name Mnemonic (Binary) Bit Access Pipe (Cycles)
Mbox IPRs (cont.)
DTB invalidate single (array 0) DTB_ISO 00100100 6 WO oL —
DTB invalidate single (array 1) DTB_IS1 10100100 7 WO 1L —
DTB address space humber 0 DTB_ASNO 00100101 4 WO oL —
DTB address space number 1 DTB_ASN1 10100101 7 WO 1L —
Memory management status MM_STAT 00100111 — RO oL 3
Mbox control M_CTL 0010 1000 6 WO oL —
Dcache control DC_CTL 00101001 6 WO oL —
Dcache status DC_STAT 0010 1010 6 RW oL 3
Cbox IPRs
Cbox data C_DATA 00101011 6 RW oL 3
Cbox shift control C_SHFT 0010 1100 6 WO oL o

IWnhenn equals 1, that process context field is selected (FPE, PPCE, ASTRR, ASTER, ASN).

5.1 Ebox IPRs

This section describes the internal processor registers that control Ebox functions.

5.1.1 Cycle Counter Register — CC

The cycle counter register (CC) is a read-write register. The lower half of CC is a

counter that, when enabled by way of CC_CTL[32], increments once each CPU cycle.
The upper half of the register is 32 bits of register storage that may be used as a counter
offset as described in thipha Architecture Handbook, Versionuhider Processor Cycle
Counter (PCC) Register.

A HW_MTPR instruction to the CC writes the upper half of the register and leaves the
lower half unchanged. The RPCC instruction returns the full 64-bit value of the register.
Figure 5-1 shows the cycle counter register.

Figure 5-1 Cycle Counter Register

OFFSET ‘ ‘ ‘ ‘ ‘ ‘

COUNTER

FM-05832.Al14

Alpha 21264/EV6 Hardware Reference Manual

Internal Processor Registers 5-3

Ebox IPRs

5.1.2 Cycle Counter Control Register — CC_CTL

The cycle counter control register (CC_CTL) is a write-only register through which the
lower half of the CC register may be written and its associated counter enabled and dis-
abled. Figure 5—-2 shows the cycle counter control register.

Figure 5-2 Cycle Counter Control Register

CC_ENA

1
|
COUNTER[31:4] |

FM-05833.A14

Table 5-2 describes the CC_CTL register fields.

Table 5-2 Cycle Counter Control Register Fields Description

Name Extent Type Description
Reserved [63:33] — —
CC_ENA [32] WO Counter Enable.
When set, this bit allows the cycle counter to increment.
COUNTER][31:4] [31:4] WO CC[31:4] may be written by way of this field. Write transactions

to CC_CTL result in CCJ[3:0] being cleared.
Reserved [3:0] — —

5.1.3 Virtual Address Register — VA

The virtual address register (VA) is a read-only register. When a DTB miss or fault
occurs, the associatedfective virtual address is written into the VA register. VA is not
written when a LD_VPTE gets a DTB miss or Dstream fault. Figure 5-3 shows the vir-
tual address register.

Figure 5-3 Virtual Address Register
63)))))) 32

VA[63:32]

I
|
VA[31:0] |

FM-05834.A14

5.1.4 Virtual Address Control Register — VA _CTL

The virtual address control register (VA_CTL) is a write-only register that controls the
way in which the faulting virtual address stored in the VA register is formatted when it
is read by way of the VA_FORM register. It also contains control bits that affect the

5-4 Internal Processor Registers Alpha 21264/EV6 Hardware Reference Manual

Ebox IPRs

behavior of the memory pipe virtual address sign extension checkers and the behavior
of the Ebox extract, insert, and mask instructions. Figure 5—4 shows the virtual address
control register.

Figure 5-4 Virtual Address Control Register

63 32
I I
| | | 1 | | | 1 | | | 1 | | | | | | | 1 | | | 1 | | | 1 | | |
VPTB[63:32]
313029 ‘ ‘ ‘ ‘ ‘ 3210
I I
| | 1 | | | 1 | | | 1 | | | 1 | | | 1 | | | 1 | | | 1 | |
VPTB[31:30]
VA _FORM 32
VA 48
B_ENDIAN

FM-05838.Al4

Table 5-3 describes the virtual address control register fields.

Table 5-3 Virtual Address Control Register Fields Description

Name Extent Type Description

VPTBI[63:30] [63:30] WO Virtual Page Table Base.

See the VA_FORM register section for details.

Reserved [29:3] — —

VA_FORM_32 [2] WO This bit is used to control address formatting when reading the
VA_FORM register. See the section on the VA_FORM register
for details.

VA_48 [1] WO,0 This bit controls the format applied to effective virtual addresses
by the VA_FORM register and the memory pipe virtual address
sign extension checkers. When VA_48 is clear, the 43-bit virtual
address format is used, and when VA_48 is set, the 48-bit virtual
address format is used.
When VA_48 is set, the sign extension checkers generate an
access control violation (ACV) if VA[63:0f SEXT (VA[47:0]).
When VA_48 is clear, the sign extension checkers generate an
ACV if VA[63:0] # SEXT(VA[42:0]).

B_ENDIAN [0] WO Big Endian Mode.

When set, the shift amount (Rbv[2:0]) is inverted for EXTxx,
INSxx, and MSKxx instructions. The lower bits of the physical
address for Dstream accesses are inverted based upon the length
of the reference as follows:

Byte: Invert bits [2:0]

Word: Invert bits [2:1]

Longword: Inverts bit [2]

Alpha 21264/EV6 Hardware Reference Manual Internal Processor Registers 5-5

Ibox IPRs

5.1.5 Virtual Address Format Register - VA_FORM

The virtual address format register (VA_FORM) is a read-only register. It contains the
virtual page table entry address derived from the faulting virtual address stored in the
VA register. It also contains the virtual page table base and associated control bits stored
in the VA_CTL register.

Figure 5-5 shows VA_FORM when VA_CTL(VA_48) equals 0 and
VA _CTL(VA_FORM_32) equals 0.

Figure 5-5 Virtual Address Format Register (VA_48 =0, VA_FORM_32 =0)

63 ‘ ‘ ‘ ‘ ‘ ‘ ‘ 33 32
1 1
| | | 1 | | | 1 | | | 1 [1 | | | 1 | | | 1 | | | 1 | |

VPTB[63:33]
VA[42]

31 32 0
rrrrrrrrrrrrr 1t Tr Tt T 1T T T T T 1T T T T T T T"] [
L

VA[41:13] | FM-05835.A14

Figure 5-6 shows VA_FORM when VA_CTL(VA_48) equals 1 and
VA _CTL(VA_FORM_32) equals 0.

Figure 5-6 Virtual Address Format Register (VA_48 =1, VA FORM_32 =0)

63 43 42 38 37 33 32
1 1
I 1 I 1 Ll 1 I 1 I 1 L 1 | | 1 I
VPTB[63:43]
SEXT(VA[47])
VA[47:42]
31 32 0
1 I I
| | | 1 | | | 1 | | | 1 | | | 1 | | | 1 | | | 1 | | | ‘ |
VA[41:13] |
FM-05836.A14

Figure 5-7 shows VA_FORM when VA_CTL(VA_48) equals 0 and
VA_CTL(VA_FORM_32) equals 1.

Figure 5-7 Virtual Address Format Register (VA_48 =0, VA_FORM_32 =1)

63 ‘ ‘ ‘ ‘ ‘ ‘ ‘ 32
rrrrrrrrrrrrr-rrrrrr-r T T T T T T T T T
[—— 1 [—— 1 [—— 1 I I I | 1 [—— 1 [—— 1 [——
VPTB[63:32]
313029 . 2221 ‘ ‘ ‘ 32 0
I T T I
| L T A L
VPTB[31:30] |
VA[31:13] FM-05837.A14

5.2 Ibox IPRs

This section describes the internal processor registers that control Ibox functions.

5-6 Internal Processor Registers Alpha 21264/EV6 Hardware Reference Manual

Ibox IPRs

5.2.1 ITB Tag Array Write Register — ITB_TAG

The ITB tag array write register (ITB_TAG) is a write-only register. The ITB tag array
is written by way of this register. A write transaction to ITB_TAG writes a register out-
side the ITB array. When a write to the ITB_PTE register is retired, the contents of both
the ITB_TAG and ITB_PTE registers are written into the ITB entry. The specific ITB
entry that is written is determined by a round-robin algorithm; the algorithm writes to
entry number 0 as the first entry after the 21264/EV6 is reset. Figure 5-8 shows the ITB
tag array write register.

Figure 5-8 ITB Tag Array Write Register

63 48 47 32
rrrrrr T T T T T T T T T T 1T T 1T 1T T T T 1T T"
L | 1 L | 1 L | 1 L | L | 1 L L L | 1 L |
VA[47:32]
31 13 12 0
[[[[[[[[[I [[[T I I
L | 1 L | 1 L | 1 L | 1 L 1 Ll | 1 Ll | 1 Ll |
VA[31 13] FM-05839.Al4

5.2.2 ITB PTE Array Write Register — ITB_PTE

The ITB PTE array write register (ITB_PTE) is a write-only register through which the
ITB PTE array is written. A round-robin allocation algorithm is used. A write to the
ITB_PTE array, when retired, resultslth the ITB_TAG and ITB_PTE arrays being
written. The specific entry that is written is chosen by the round-robin algorithm
described above. Figure 5-9 shows the ITB PTE array write register.

Figure 5-9 ITB PTE Array Write Register

63)))) 44 43)) 32
T

PFN[43:32]

31)))) 13121110 9 8 7 6 5 4 3 0
T T T I L

PFN[31:13]
URE

SRE

ERE

KRE
GH[1:0]
ASM

FM-05840.A14

5.2.3 ITB Invalidate All Process (ASM=0) Register — ITB_IAP

The ITB invalidate all process register (ITB_IAP) is a pseudo register that, when writ-
ten to, invalidates all ITB entries whose ASM bit is clear. An explicit write to
IC_FLUSH_ASM is required to flush the Icache of blocks with ASM equal to zero.

Alpha 21264/EV6 Hardware Reference Manual Internal Processor Registers 5-7

Ibox IPRs

5.2.4 ITB Invalidate All Register — ITB_IA

The ITB invalidate all register (ITB_IA) is a pseudo register that, when written to,
invalidates all ITB entries. An explicit write to IC_FLUSH is required to flush the
Icache.

5.2.5 ITB Invalidate Single Register — ITB_IS

The ITB invalidate single register (ITB_IS) is a write-only register. Writing a virtual
page number to this register invalidates any ITB entry that meets one of the following
criteria:

e The ITB entry’s virtual page number matches ITB_IS[47:13] (or fewer bits if gran-
ularity hint bits are set in the ITB entry) and its ASN field matches the address
space number supplied in PCTX[46:39].

* The ITB entry’s virtual page number matches ITB_1S[47:13] and its ASM bit is set.

Figure 5-10 shows the ITB invalidate single register.

Figure 5-10 ITB Invalidate Single Register

63 48 47 32
rrrrrr T T T T T T T T T T 1T T 1T 1T T T T 1T T"
sy I sy
INVAL ITB[47:32] ‘ ‘ ‘ ‘ ‘
31 13 12 0
S s e B B B B e B e B T
L | 1 L | 1 L | 1 L | 1 L 1 Ll | 1 Ll | 1 Ll |
INVAL_ITB[31:13] 05541 Al
Note: Because the Icache is virtually indexed and tagged, it is normally not nec-

essary to flush the Icache when paging. Therefore, a write to ITB_IS will
not flush the Icache.

5.2.6 Exception Address Register — EXC_ADDR

The exception address register (EXC_ADDR) is a read-only register that is updated by
hardware when it encounters an exception or interrupt.

EXC_ADDR]0]is set if the associated exception oged in PAL mode. The exception
actions are listed here:

* Ifthe exception was a fault or a synchronous trap, EXC_ADDR contains the PC of
the instruction that triggered the fault or trap.

* |f the exception was an interrupt, EXC_ADDR contains the PC of the next instruc-
tion that would have executed if the interrupt had not occurred.

Figure 5-11 shows the exception address register.

5-8 Internal Processor Registers Alpha 21264/EV6 Hardware Reference Manual

Ibox IPRs

Figure 5-11 Exception Address Register

63 ‘ 32

1 [[[[[[[[[[[[[[[

L 1 L 1 L 1 I O O | 1 L 1 L 1 L
PC[63:32]

31 210

rrrrrrrrrrrrrrrrrrrrr T Tt T T T T T T T

Ll 1 Ll 1 Ll 1 I I I | 1 Ll 1 Ll 1 |
PC[31:2]
PAL

FM-06384.A14

5.2.7 Instruction Virtual Address Format Register — IVA_FORM

The instruction virtual address format register (IVA_FORM) is a read-only register. It
contains the virtual PTE address derived from the faulting virtual address stored in the
EXC_ADDR register, and from the virtual page table base, VA_48 and VA_FORM_ 32
bits, stored in the |_CTL register.

Figure 5-12 shows IVA_FORM when VA_48 equals 0 and VA_FORM_32 equals 0.

Figure 5-12 Instruction Virtual Address Format Register (VA_48 = 0, VA_FORM_32 = 0)

63 ‘ ‘ ‘ ‘ ‘ ‘ ‘ 33 32
e
[—— 1 [—— 1 [—— 1 [—— 1 [—— 1 [—— 1 [—— 1 (-
VPTB[63:33]
VA[42]
31 ‘ ‘ ‘ ‘ ‘ ‘ 32 0
T L
I 1 I 1 I 1 I 1 I 1 I 1 I 1 Ll
VA[41:13] | FM-05843.A14

Figure 5-13 shows IVA_FORM when VA 48 equals 1 and VA_FORM_32 equals 0.

Figure 5-13 Instruction Virtual Address Format Register (VA_48 =1, VA_FORM_32 = 0)

63 ‘ ‘ ‘ ‘ 43 42 . 3837 32
rrrrrrr-rr T T T T T 1T T T T T" L T T
| | | 1 | | | 1 | | | 1 | | | 1 | | | 1 | | 1 | | 1 | |
VPTB[63:43]
SEXT(VA[47])
VA[47:42]
31 32 0
I I
| | | 1 | | | 1 | | | 1 | | | 1 | | | 1 | | | 1 | | | 1 | |
VA[41:13
[] | FM-05844.Al14

Figure 5-14 shows IVA_FORM when VA_48 equals 0 and VA_FORM_32 equals 1.

Alpha 21264/EV6 Hardware Reference Manual Internal Processor Registers 5-9

Ibox IPRs

Figure 5-14 Instruction Virtual Address Format Register (VA_48 =0, VA_FORM_32 = 1)

63))))))) 32
rrrrrrrrrrrrrrrrrrrrrr T T T T T T T T T T T 1
I 1 I 1 I 1 I I O I | 1 I 1 I 1 I
VPTB[63:32]
313029 2 ‘ ‘ ‘ 32 0
1 I I I I I I I 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 I I
| | 1 I 1 | | 1 I 1 I 1 I 1 I 1 L
VPTB[31:30] |
VA[31:13] FM-05845.A14

5.2.8 Interrupt Enable and Current Processor Mode Register — IER_CM

The interrupt enable and current processor mode register (IER_CM) contains the inter-
rupt enable and current processor mode bit fields. These bit fields can be written either
individually or together with a single HW_MTPR instruction. When bits [7:2] of the

IPR index field of a HW_MTPR instruction contain the value 000910is register is
selected. Bits [1:0] of the IPR index indicate which bit fields are to be written: bit[1]
corresponds to the IER field and bit[0] corresponds to the processor mode field. A
HW_MFPR instruction to this register returns the values in both fields. Figure 5-15
shows the interrupt enable and current processor mode register.

Figure 5-15 Interrupt Enable and Current Processor Mode Register

EIEN[5:0]
SLEN

CREN
PCEN[1:0]
SIEN[15:1]
ASTEN
CM[1:0]

FM-05846.A14

Table 5—4 describes the interrupt enable and current processor mode register fields.

Table 5-4 IER_CM Register Fields Description

Name Extent Type Description

Reserved [63:39] — —

EIEN[5:0] [38:33] RwW External Interrupt Enable

SLEN [32] RW Serial Line Interrupt Enable

CREN [31] RW Corrected Read Error Interrupt Enable
PCENJ1:0] [30:29] RW Performance Counter Interrupt Enables
SIEN[15:1] [28:14] RW Software Interrupt Enables

5-10 Internal Processor Registers Alpha 21264/EV6 Hardware Reference Manual

Ibox IPRs

Table 5-4 IER_CM Register Fields Description (Continued)
Name Extent Type Description
ASTEN [13] RwW AST Interrupt Enable
When set, enables those AST interrupt requests that are also
enabled by the value in ASTER.
Reserved [12:5] — —
CM[1:0] [4:3] RwW Current Mode
00 Kernel
01 Executive
10 Supervisor
11 User
Reserved [2:0] — —

5.2.9 Software Interrupt Request Register — SIRR

The software interrupt request register (SIRR) is a read-write register containing bits to
request software interrupts. To generate a particular software interruptyriéspond-

ing bits in SIRR and IER[SIER] must both be set. Figure 5-16 shows the software
interrupt request register.

Figure 5-16 Software Interrupt Request Register

SIR[15:1]

FM-05847.A14

Table 5-5 describes the software interrupt request register fields.

Table 5-5 Software Interrupt Request Register Fields Description

Name Extent Type Description

Reserved [63:29] — —

SIR[15:1] [28:14] RW Software Interrupt Requests
Reserved [13:0] — —

5.2.10 Interrupt Summary Register — ISUM

The interrupt summary register (ISUM) is a read-only register that records all pending
hardware, software, and AST interrupt requests that have their corresponding enable bit
set.

If a new interrupt (hardware, serial line, crd, or performance counters) occurs simulta-
neously with an ISUM read, the ISUM read returns zeros. That condition is normally
assumed to be a passive release condition. The interrupt is signaled again when the
PALcode returns to native mode. The effectghog condition can be minimized by
reading ISUM twice and ORing the results.

Alpha 21264/EV6 Hardware Reference Manual Internal Processor Registers 5-11

Ibox IPRs

Usage of ISUM in performance monitoring is described in Section 6.10. Figure 5-17
shows the interrupt summary register.

Figure 5-17 Interrupt Summary Register

63 ‘ ‘ ‘ ‘ ‘ 39 38 ‘ 33 32

EI[5:0]
sL

313029 28 ‘ ‘ , 1413 11109 8.7 654 32 0
T T T

e e e s) | Ll
T T T T T T

CR
PC[L:0]
SI[15:1]
ASTU
ASTS
ASTE
ASTK

FM-05849.A14
Table 5-6 describes the interrupt summary register fields.

Table 5-6 Interrupt Summary Register Fields Description

Name Extent Type Description

Reserved [63:39] — —

EI[5:0] [38:33] RO External Interrupts

SL [32] RO Serial Line Interrupt

CR [31] RO Corrected Read Error Interrupts
PC[1:0] [30:29] RO Performance Counter Interrupts

PCO when PCJ[0] is set.
PC1 when PC[1] is set.

SI[15:1] [28:14] RO Software Interrupts
Reserved [13:11] — —
ASTU, ASTS [10],[9] RO AST Interrupts

For each processor mode, the bit is set if an associated AST
interrupt is pending. This includes the mode’s ASTER and
ASTRR bits and whether the processor mode value held in the
IER_CM register is greater than or equal to the value for the
mode.

5-12 Internal Processor Registers Alpha 21264/EV6 Hardware Reference Manual

Ibox IPRs

Table 5-6 Interrupt Summary Register Fields Description (Continued)

Name Extent Type Description
Reserved [8:5] — —
ASTE, ASTK [4].,[3] RO AST Interrupts

For each processor mode, the bit is set if an associated AST
interrupt is pending. This includes the mode’s ASTER and
ASTRR bits and whether the processor mode value held in the
IER_CM register is greater than or equal to the value for the
mode.

Reserved [2:0] — —

5.2.11 Hardware Interrupt Clear Register — HW_INT_CLR

The hardware interrupt clear register (HW_INT_CLR) is a write-only register used to
clear edge-sensitive interrupt requests. See Section D.31 for more information about the
PALcode restriction concerning this register. Figure 5—-18 shows the hardwenejsit

clear register.

Figure 5-18 Hardware Interrupt Clear Register

63 ‘ 33 32
rrrrrrrrrrrrrt 71T "1 "7 T " " 7T 1T 17T T T T T T T T T"]
I 1 I 1 I 1 I 1 I 1 I 1 I 1 Ll
SL
31 30 29 28,27 26 ‘ ‘ ‘ ‘ ‘ 0
I | rrrrrrrrrrr 1T 7t T 77T T " " T T 1T T T T/
| L
i i i i i i
CR
PC[1:0]
MCHK_D
FBTP FM-05850.A14

Table 5—7 describes the hardware interrupt clear register fields.

Table 5-7 Hardware Interrupt Clear Register Fields Description

Name Extent Type Description

Reserved [63:33] — —

SL [32] wicC Clears serial line interrupt request

CR [31] wicC Clears corrected read error interrupt request
PC[1:0] [30:29] wicC Clears performance counter interrupt requests
MCHK_D [28] WicC Clears Dstream machine check interrupt request
Reserved [27] — —

FBTP [26] W1Ss Forces the next Bcache hit that fills the Icache to

generate bad Icache fill parity
Reserved [25:0] — —

Alpha 21264/EV6 Hardware Reference Manual Internal Processor Registers 5-13

Ibox IPRs

5.2.12 Exception Summary Register - EXC_SUM

The exception summary register (EXC_SUM) is a read-only register that contains
information about instructions that have triggered traps. The register is updated at trap
delivery time. Its contents are valid only if it is read (by way of a HW_MFPR) in the
first fetch block of the exception handler. There are three types of traps for which this
register captures related information:

* Arithmetic traps: The instruction generated an exceptional condition that should be
reported to the operating system, and/or the FPCR status bit associated with this
condition is clear and should be set by PALcode. Additionally, the REG field con-
tains the register number of the destination specifier for the instruction that trig-
gered the trap.

e |stream ACV: The B\D_IVA bit of this register indicates whether thé&ending
Istream virtual address is latched into the EXXDDR register or the VA register.

e Dstream exceptions: The REG field contains the register number of either the
source specifier (for stores) or the destination specifier (for loads) of the instruction
that triggered the trap.

Figure 5-19 shows the exception summary register.

Figure 5-19 Exception Summary Register

63 ‘ ‘ ‘ 48,47 46 45 44,43 42 41 40, ‘ 32
L L T T
I Iy | I |

T T

I
Iy |
T

SEXT(SET_IOV)
SET_IOV
SET_INE
SET_UNF
SET_OVF
SET _DZE
SET_INV
PC_OVFL

31 . 141312, 876 543210

BAD_IVA
REG[4:0]
INT

IOV

INE

UNF
Fov
DZE

INV
SWC

FM-05851.Al4

5-14 Internal Processor Registers Alpha 21264/EV6 Hardware Reference Manual

Ibox IPRs

Table 5-8 describes the exception summary register fields.

Table 5-8 Exception Summary Register Fields Description

Name Extent Type Description

SEXT(SET_IOV) [63:48] RO, 0 Sign-extended value of SET_IOV because itis bit 47.

SET_IOV [47] RO PALcode should set FPCR[IOV].

SET_INE [46] RO PALcode should set FPCR[INE].

SET_UNF [45] RO PALcode should set FPCR[UNF].

SET_OVF [44] RO PALcode should set FPCR[OVF].

SET_DZE [43] RO PALcode should set FPCR[DZE].

SET_INV [42] RO PALcode should set FPCR[INV].

PC_OVFL [41] RO Indicates that EXC_ADDR was improperly sign extended for 48-
bit mode over/underflow IACV.

Reserved [40:14] RO, 0 Reserved for COMPAQ.

BAD_IVA [13] RO Bad Istream VA.

This bit should be used by the IACV PALcode routine to deter-
mine whether the offending I-stream virtual address is latched in
the EXC_ADDR register or the VA register. If BAD_IVA is clear,
then EXC_ADDR contains the address, if BAD_IVA is set then
VA contains the address.

REG[4:0] [12:8] RO Destination register of load or operate instruction that triggered
the trap OR source register of store that triggered the trap. These
bits may contain the Rc field of an operate instruction or the Ra
field of a load or store instruction. The value is UNPREDICTABLE
if the trap was triggered by an ITB miss, interrupt, OPCDEC, or
other non load/st/operate.

INT [71 RO Set to indicate Ebox integer overflow trap, clear to indicate Fbox
trap condition.

[e)Y] [6] RO Indicates Fbox convert-to-integer overflow or Ebox integer over-
flow trap.

INE [5] RO Indicates floating-point inexact error trap.

UNF [4] RO Indicates floating-point underflow trap.

FOvV [3] RO Indicates floating-point overflow trap.

DZE [2] RO Indicates divide by zero trap.

INV [1] RO Indicates invalid operation trap.

sSwcC [0] RO Indicates software completion possible. This bit is set if the

instruction that triggered the trap contained the /S modifier.

5.2.13 PAL Base Register — PAL_BASE

The PAL base register (PAL_BASE) is a read-write register that contains the base phys-
ical address for PALcode. Its contents are cleared by chip reset but are not cleared after
waking up from sleep mode or from fault reset. Figure 5—-20 shows the PAL base regis-

ter.

Alpha 21264/EV6 Hardware Reference Manual Internal Processor Registers 5-15

Ibox IPRs

Figure 5-20 PAL Base Register

PAL_BASE[43:32]

PAL_BASE[31:15] | | | | | | | ‘Fm.osssz Al4

Table 5-9 describes the PAL base register fields.

Table 5-9 PAL Base Register Fields Description

Name Extent Type Description

Reserved [63:44] RO, 0 Reserved for COMPAQ.
PAL_BASE[43:15] [43:15] RW Base physical address for PALcode.
Reserved [14:0] RO, 0 Reserved for COMPAQ.

5.2.14 Ibox Control Register —1_CTL

The Ibox control register (I_CTL) is a read-write register that controls various Ibox
functions. Its contents are cleared by chip reset. Figure 5—-21 shows the Ibox control
register.

5-16 Internal Processor Registers Alpha 21264/EV6 Hardware Reference Manual

Ibox IPRs

Figure 5-21 Ibox Control Register

63 ‘ ‘ ‘ 48 47 ‘ ‘ ‘ 32

SEXT(VPTB[47])
VPTB[47:32]

313029 232221201918 17 1615 14131211 10 9 8 7 6 5 3 210
I L I I I UL I

VPTB[31:30]
CHIP_ID[5:0]
BIST_FAIL
TB_MB_EN
MCHK_EN
CALL _PAL_R23
PCT1_EN
PCTO_EN
SINGLE_ISSUE_H
VA_FORM_32
VA_48

SL_RCV
SL_XMIT

HWE
BP_MODE[1:0]
SBE[1:0]
SDE[1:0]
SPE[2:0]
IC_EN[1:0]
SPCE

FM-05853.A18

Table 5-10 describes the Ibox control register fields.

Table 5-10 Ibox Control Register Fields Description

Name Extent Type Description

SEXT(VPTBI[47]) [63:48] RwW,0 Sign extended VPTB[47].

VPTBI[47:30] [47:30] RW,0 Virtual Page Table Base. See Section 5.1.5 for details.
CHIP_IDI[5:0] [29:24] RO This is a read-only field that supplies the revision ID number

for the 21264/EV6 part.

21264/EV6 pass 2.3 ID is 000011
21264/EV6 pass 2.4 1D is 000101
21264/EV6 pass 2.5 ID is 000140

BIST_FAIL [23] RO,0 Indicates the status of BiST (clear = pass, set = fail),
described in Section 11.5.1.

Alpha 21264/EV6 Hardware Reference Manual Internal Processor Registers 5-17

Ibox IPRs

Table 5-10 Ibox Control Register Fields Description (Continued)

Name Extent Type

Description

TB_MB_EN [22] RW,0

MCHK_EN [21] RW,0
CALL_PAL_R23 [20] RW,0

PCT1_EN [19] RW,0

PCTO_EN [18] RW,0

SINGLE_ISSUE_H [17] RW,0

VA_FORM_32 [16] RW,0

VA_48 [15] RW,0

SL_RCV [14] RO
SL_XMIT [13] WO
HWE [12] RW,0

5-18 Internal Processor Registers

When set, the hardware ensures that the virtual-mode loads
in DTB and ITB fill flows that access the page table and the
subsequent virtual mode load or store that is being retried are
‘ordered’ relative to another processor’s stores. This must be
set for multiprocessor systems in which no MB instruction is
present in the TB fill flow, unless there are other mecha-
nisms present that ensure coherency.

Machine check enable — set to enable machine checks.

CALL_PAL linkage register. If this bit is one, the
CALL_PAL linkage register is R23; when zero, it is R27.
Coordinate setting this bit with SDE[1:0] to ensure that the
shadow register is used as the linkage register.

Enable performance counter #1. If this bit is one, the perfor-
mance counter will count if either the system (SPCE) or pro-
cess (PPCE) performance counter enable is asserted.

Enable performance counter #0. If this bit is one, the perfor-
mance counter will count if EITHER the system (SPCE) or
process (PPCE) performance counter enable is set.

When set, this bit forces instructions to issue only from the
bottom-most entries of the IQ and FQ.

This bit controls address formatting on a read of the
IVA_FORM register.

This bit controls the format applied to effective virtual
addresses by the IVA_FORM register and the Ibox virtual
address sign extension checkers. When VA_48 is clear, 43-
bit virtual address format is used, and when VA_48 is set,
48-bit virtual address format is used. The effect of this bit on
the IVA_FORM register is identical to the effect of
VA_CTL[VA_48] on the VA_FORM register. See Section
5.1.5.

When VA_48 is set, the sign extension checkers generate an
ACV if va[63:0] # SEXT(va[47:0]). When VA_48 is clear,
the sign extension checkers generate an ACV if va[63:0]
SEXT(va[42:0]).

This bit also affects DTB_DOUBLE traps. If set, the DTB
double miss traps vector to the DTB_DOUBLE_4 entry
point.

DTB_DOUBLE PALcode flow selection is not affected by
VA_CTL[VA_48].

See Section 11.2.
When set, drives a value @romClk_H. See Section 11.2.

If set, allow PALRES intructions to be executed in kernel
mode. Note that modification of the ITB while in kernel
mode/native mode may cause UNPREDICTABLE behavior.

Alpha 21264/EV6 Hardware Reference Manual

Ibox IPRs

Table 5-10 Ibox Control Register Fields Description (Continued)

Name Extent Type Description

BP_MODE[1:0] [11:10] RW,0 Branch Prediction Mode Selection.

BP_MODE[1], if set, forces all branches to be predicted to
fall through. If clear, the dynamic branch predictor is chosen.
BP_MODE[O0]. If set, the dynamic branch predictor chooses
local history prediction. If clear, the dynamic branch predic-
tor chooses local or global prediction based on the state of
the chooser.

SBE[1:0] [9:8] RW,0 Stream Buffer Enable.

The value in this bit field specifies the number of Istream
buffer prefetches (besides the demand-fill) that are launched
after an Icache miss. If the value is zero, only demand
requests are launched.

SDE[1:0] [7:6] RW,0 PALshadow Register Enable.

Enables access to the PALshadow registers. If SDE[1] is set,
R4-R7 and R20-R23 are used as PALshadow registers.
SDE[0] does not affect 21264/EV6 operation.

SPE[2:0] [5:3] RW,0 Superpage Mode Enable.
Identical to the SPE bits in the Mbox M_CTL SPE[2:0]. See
Section 5.3.9.

IC_EN[1:0] [2:1] RW,3 Icache Set Enable.

At least one set must be enabled. The entire cache may be
enabled by setting both bits. Zero, one, or two Icache sets
can be enabled.

This bit does not clear the Icache, but only disables fills to
the affected set.

SPCE [0] RW,0 System Performance Counting Enable.
Enables performance counting for the entire system if indi-
vidual counters (PCTRO or PCTRL1) are enabled by setting
PCTO_EN or PCT1_EN, respectively.

Performance counting for individual processes can be
enabled by setting PCTX[PPCE].

See Section 6.10 for information.

5.2.15 Ibox Status Register — |_STAT

The Ibox status register (I_STAT) is a read/write-1-to-clear register that contains Ibox
status information.

Usage of |_STAT in performance monitoring is described in Section 6.10.

Figure 5-22 shows the Ibox status register.

Alpha 21264/EV6 Hardware Reference Manual Internal Processor Registers 5-19

Ibox IPRs

Figure 5-22 Ibox Status Register

63 ‘ ‘ ‘ ‘ 32
rrrrrr T
L e
1 1 1 1 1 1 1
3130 2928, ‘ ‘ ‘ ‘ ‘ ‘ 0
e rrrrrrrr-r-r-r-rr-rrr T
e e I Iy
T T T T T T T
DPE
TPE FM-05854.A18

Table 5-11 describes the Ibox status register fields.

Table 5-11 Ibox Status Register Fields Description

Name Extent Type Description
Reserved [63:31] RO Reserved for COMPAQ.
DPE [30] wicC Icache data parity error

When set, this bit indicates that the Icache encountered a data parity error
on instruction fetch.

TPE [29] WicC Icache tag parity error
When set, this bit indicates that the Icache encountered a tag parity error
on instruction fetch.

Reserved [28:0] RO Reserved for COMPAQ.

5.2.16 Icache Flush Register — IC_FLUSH

The Icache flush register (IC_FLUSH) is a pseudo register. Writing to this register
invalidates all Icache blocks. The cache is flushed when the next HW_RET/STALL
instruction is retired. See Section D.20 for more information.

5.2.17 Icache Flush ASM Register — IC_FLUSH_ASM

The Icache flush ASM register (IC_FLUSH_ASM) is a pseudo register. Writing to this
register invalidates alcacheblocks with their ASM bit clear.

5.2.18 Clear Virtual-to-Physical Map Register — CLR_MAP

The clear virtual-to-physical map register (CLR_MAP) is a pseudo register that, when
written, results in the clearing of the current map of virtual to physical registers. This
register must only be written after there are no register-borne dependencies present and
there are no unretired instructions. See an example in the PALcode restrictions.

5.2.19 Sleep Mode Register — SLEEP

The sleep mode register (SLEEP) is a pseudo register that, when written, results in the
PLL speed being reduced and the chip entering a low-power mode. This register must
only be written after a sequence of code has been run which saves all necessary state to
DRAM, flushes the caches, and unmasks certain interrupts so the chip can be woken up.
See Section 7.3 for details.

5-20 Internal Processor Registers Alpha 21264/EV6 Hardware Reference Manual

Ibox IPRs

5.2.20 Process Context Register — PCTX

The process context register (PCTX) contains information associated with the context
of a process. Any combination of the bit fields within this register may be written with
a single HW_MTPR instruction. When bits [7:6] of the IPR index field of a

HW_MTPR instruction contain the value 92%his register is selected. Bits [4:0] of the
IPR index indicate which bit fields are to be written. Usage of PCTX in performance
monitoring is described in Section 6.10.

Table 5-12 lists the adoespondence between IPR index bits and register fields.

Table 5-12 IPR Index Bits and Register Fields

IPR Index Bit Register Field

0 ASN

1 ASTER
2 ASTRR
3 PPCE
4 FPE

A HW_MFPR from this register returns the values in all of its component bit fields.

Figure 5-23 shows the process context register.

Figure 5-23 Process Context Register

63 ‘ 47 46 39 38 32
rrrrrr-r-r-r-T T T T T T 1 T L
e 1 I 1 I 1 e 1 |- 1 - 1 I
ASN[7:0]
31 ‘ 1312 9 8 543210
T I I I
L 1 I 1 I 1 I 1 L 1 L 1 J 1
ASTRRI[3:0]
ASTER[3:0]
FPE
PPCE

FM-05855.A14

Table 5-13 describes the process context register fields.

Table 5-13 Process Context Register Fields Description

Name Extent Type Description

Reserved [63:47] — —

ASNJ7:0] [46:39] RW Address space number.
Reserved [38:13] — —

Alpha 21264/EV6 Hardware Reference Manual Internal Processor Registers 5-21

Ibox IPRs

Table 5-13 Process Context Register Fields Description (Continued)

Name Extent Type Description

ASTRR][3:0] [12:9] RwW AST request register—used to request AST interrupts in
each of the four processor modes.
To generate a particular AST interrupt, its corresponding
bits in ASTRR and ASTER must be set, along with the
ASTE bitin IER.
Further, the value of the current mode bits in the PS register
must be equal to or higher than the value of the mode associ-
ated with the AST request.
The bit order with this field is:

User Mode 12
Supervisor Mode 11
Executive Mode 10
Kernel Mode 9
ASTER[3:0] [8:5] RW AST enable register—used to individually enable each of

the four AST interrupt requests.
The bit order with this field is:

User Mode 8
Supervisor Mode 7
Executive Mode 6
Kernel Mode 5

Reserved [4:3] — —

FPE [2] RwW,1 Floating-point enable—if clear, floating-point instructions
generate FEN exceptions. This bit is set by hardware on
reset.

PPCE [1] RW Process performance counting enable.
Enables performance counting for an individual process
with counters PCTRO or PCTR1, which are enabled by set-
ting PCTO_EN or PCT1_EN, respectively.
Performance counting for the entire system can be enabled
by setting |_CTL[SPCE].
See Section 6.10 for information.

Reserved [0] — —

5.2.21 Performance Counter Control Register - PCTR_CTL

The performance counter control register (PCTR_CTL) is a read-write register that
controls the function of the performance counters. Usage of PCTR_CTérforp
mance monitoring is described in Section 6.10.

Figure 5-24 shows the performance counter control register.

5-22 Internal Processor Registers Alpha 21264/EV6 Hardware Reference Manual

Ibox IPRs

Figure 5-24 Performance Counter Control Register

SEXT(PCTRO_CTL[47])
PCTRO[19:4]

31 28272625 ‘ ‘ ‘ , 6543210
! !

PCTRO[3:0]
PCTR1[19:0]
SLO
SL1[3:0]

FM-05856.A18

Table 5-14 describes the performance counter control register fields.

Table 5-14 Performance Counter Control Register Fields Description

Name Extent Type Description

SEXT(PCTRO_CTL[47]) [63:48] RO When read, this field is sign extended from PCTR_CTL[47]. Writes
to this field are ignored.

PCTRO0[19:0] [47:28] — Performance counter 0. Mode is determined by PCTR_CTL[SLO]
and operation is described in Table 5-15.

Reserved [27:26] RO Reads to this field return zero. Writes to this field are ignored.

PCTR1[19:0] [25:6] — Performance counter 1.

PCTR1 must be enabled by I|_CTL[PCT1_EN] and either
|_CTL[SPCE] or PCTX[PPCE]. On overflow, an interrupt is trig-
gered at ISUM[PC1] if enabled by IER_CM[PCEN1].

When enabled, PCTRL1 is incremented at each cycle by the selected

input.
Reserved [5] RO Reads to this field return zero. Writes to this field are ignored.
SLO [4] — SLOinput select 0. Selects counter PCTRO.

0: Cycles

1: Retired instructions
See Table 5-15 for more information.

SL1[3:0] [3:0] — SL1linputselectl. Selects counter PCTRL1.
Bit Value Meaning
0000 Counter 1 counts cycles.
0001 Counter 1 counts retired conditional branches.
0010 Counter 1 counts retired branch mispredicts.
0011 Counter 1 counts retired DTB single misses * 2.
0100 Counter 1 counts retired DTB double double misses.
0101 Counter 1 counts retired ITB misses.
0110 Counter 1 counts retired unaligned traps.
0111 Counter 1 counts replay traps.

Alpha 21264/EV6 Hardware Reference Manual Internal Processor Registers 5-23

Mbox IPRs

Table 5-15 Performance Counter Control Register Input Select Field SLO

SLO[0]

Bit Value Meaning

0 Counts cycles.

1 Counts retired instructions.

PCTRO is incremented by up to 8 retired instructions per cycle when enabled via|_CTL[PCTO_EN]
and either |_CTL[SPCE] or PCTX[PPCE]. On overflow, an interrupt is triggered at ISUM[PCO] if
enabled via IER_CM[PCENO].

The 21264/EV6 can retire up to 11 instructions per cycle, which exceeds PCTRO0’s maximum
increment of 8 per cycle. However, in aggregate counting mode, no retires go uncounted because the
21264/EV6 cannot sustain 11 retires/cycle, and the 21264/EV6 corrects PCTRO in subsequent
cycles.

A squashed instruction does not count as a retire.

5.3 Mbox IPRs

This section describes the internal processor registers that control Mbox functions.

5.3.1 DTB Tag Array Write Registers 0 and 1 — DTB_TAGO, DTB_TAG1

The DTB tag array write registers 0 and 1 (DTB_TAGO and DTB_TAGL1) are write-
only registers through which the two memory pipe DTB &apys are witten. Write
transactions to DTB_TAGO and DTB_TAGL1 writes data to registers outside the DTB
arrays. When write transactions to themwsponding DTB_PTE registers are retired,

the contents of both the DTB_TAG and DTB_PTE registers are written into their
respective DTB arrays, at locations determined by the round-robin allocation algorithm.
Figure 5-25 shows the DTB tag array write registers 0 and 1.

Figure 5-25 DTB Tag Array Write Registers 0 and 1

63 48 47 32
T

VA[47:32]

31 13 12 0
e rrrrrrrrr T

VA[31:13]

FM-05857.Al4

5.3.2 DTB PTE Array Write Registers 0 and 1 — DTB_PTEO, DTB_PTE1

The DTB PTE array write registers 0 and 1 (DTB_PTEO and DTB_PTEL) are registers
through which the DTB PTE arrays are written. The entries to be written are chosen by
a round-robin allocation scheme. Write transactions to the DTB_PTE registers, when
retired, result in both the DTB_TAG and DTB_PTE arrays being written. Figure 5-26
shows the DTB PTE array write registers 0 and 1.

5-24 Internal Processor Registers Alpha 21264/EV6 Hardware Reference Manual

Mbox IPRs

Figure 5-26 DTB PTE Array Write Registers 0 and 1

63 62 6160, 59 58 57 56 55 54 53 52 51 50 49 48 47
I

46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
T I I I

PA[43:13]

UWE
SWE
EWE
KWE
URE
SRE
ERE
KRE
GH[1:0]
ASM
FOW
FOR

FM-05858.Al4

Alpha 21264/EV6 Hardware Reference Manual Internal Processor Registers 5-25

Mbox IPRs

5.3.3 DTB Alternate Processor Mode Register - DTB_ALTMODE

The DTB alternate processor mode register (DTB_ALTMODE) is a write-only register
whose contents specify the alternate processor mode used by some HW_LD and
HW_ST instructions. Figure 5-27 shows the DTB alternate processor mode register.

Figure 5-27 DTB Alternate Processor Mode Register

ALT_MODE[1:0]

FM-05859.A14

Table 5-16 describes the DTB_ALTMODE register fields.

Table 5-16 DTB Alternate Processor Mode Register Fields Description

Name Extent Type Description
Reserved [63:2] — —
ALT_MODE[1:0] [1:0] WO Alt_Mode:
ALT_MODE[1:0] Mode
00 Kernel
01 Executive
10 Supervisor
11 User

5.3.4 Dstream TB Invalidate All Process (ASM=0) Register — DTB_IAP

The Dstream tnaslation bdfer invalidate all (ASM=0) process register (DTB_IAP) isa
write-only pseudo register. Write transactions to this register invalidate all DTB entries
in which the address space match (ASM) bit is clear.

5.3.5 Dstream TB Invalidate All Register — DTB_IA

The Dstream translation Har invalidate all register (DTB_IA) is a write-only pseudo
register. Write transactions to this register invalidate all DTB entries and reset the DTB
not-last-used pointer to its initial state.

5.3.6 Dstream TB Invalidate Single Registers 0 and 1 — DTB_IS0,1

The Dstream translation buffer invalidate single registers (DTB_ISO and DTB_IS1) are
write-only pseudo registers through which software may invalidate a single entry in the
DTB arrays. Writing a virtual page number to one of these registers invalidates any
DTB entry in the corresponding memory pipeline which meets one of the following cri-
teria:

* The DTB entry’'s virtual page number matches DTB_IS[47:13] and its ASN field
matches DTB_ASN[63:56].

* The DTB entry’s virtual page number matches DTB_IS[47:13] and its ASM bit is
set.

5-26 Internal Processor Registers Alpha 21264/EV6 Hardware Reference Manual

Mbox IPRs

Figure 5-28 shows the Dstream translation buffer invalidate single registers.

Figure 5-28 Dstream Translation Buffer Invalidate Single Registers

63 48 47 32
1T 1T T T T 1T 1T T T T T T T T T T T T T T T 11
| | | 1 | | | 1 | | | 1 | | | | | | 1 | | | | | | | 1 | | |
VA[47:32]
31)))) 13 12‘)) 0
I I
| | | 1 | | | 1 | | | 1 | | | 1 | | 1 | | | 1 | | | 1 | | |
VA[31 :13] | FM-05839.Al4

5.3.7 Dstream TB Address Space Number Registers 0 and 1 — DTB_ASNO,1

The Dstream translation Har address space number registers (DTB_ASNO and
DTB_ASN1) are write-only registers that should be written with the address space
number (ASN) of the current process. Figure 5—29 shows the Dstream translation buffer
address space number registers 0 and 1.

Figure 5-29 Dstream Translation Buffer Address Space Number Registers 0 and 1

31))))))) 0
et rrrrtrrtrrrrrrr 1T 7t trTr1T 1T 77T T T T 1T T T T T
| | | 1 | | | 1 | | | 1 | | | 1 | | | 1 | | | 1 | | | 1 | | |
63 56 55 ‘ ‘ ‘ ‘ ‘ 32
T T T T T -t rrr-trr 1T 1T T T T 1T"1T T " T T T T T
T I | e e |
ASN[7:0] ‘ ‘ ‘ ‘ ‘
| FM-05861.Al4

5.3.8 Memory Management Status Register — MM _STAT

The memory management status register (MM_STAT) is a read-only register.

When a Dstream TB miss or fault occurs, information abouttner is latched in
MM_STAT. MM_STAT is not updated when a LD_VPTE gets a DTB miss instruction.
Figure 5-30 shows the memory management status register.

Figure 5-30 Memory Management Status Register

63 ‘ ‘ 32
rrrrrrrrrrrtrrrrr 1T >t 71T T T T T T T [T T T T T/
I I | % I % I % I % I % I % I
31 11 10 9 4 3210
I I T [[[[[[[I I [[
Yy oy % {—— % {—— % {—— % | 1 Ll

DC_TAG_PERR

OPCODE[5:0]

Fow

FOR

ACV

WR

FM-05862.A14

Alpha 21264/EV6 Hardware Reference Manual Internal Processor Registers 5-27

Mbox IPRs

Table 5-17 describes the memory management status register fields.

Table 5-17 Memory Management Status Register Fields Description

Name Extent Type Description
Reserved [63:11] — —
DC_TAG_PERR [10] RO This bit is set when a Dcache tag parity error occurred during the

initial tag probe of a load or store instruction. The error created a
synchronous fault to the D_FAULT PALcode entry point and is
correctable. The virtual address associated with the error is avail-
able in the VA register.

OPCODE][5:0] [9:4] RO Opcode of the instruction that caused the error.
HW_LD is displayed as 3 and HW_ST is displayed as 7.

FOW [3] RO This bit is set when a fault-on-write error occurs during a write
transaction and PTE[FOW] was set.

FOR [2] RO This bit is set when a fault-on-read error occurs during a read
transaction and PTE[FOR] was set.

ACV [1] RO This bit is set when an access violation occurs during a transac-
tion. Access violations include a bad virtual address.

WR [0] RO This bit is set when an error occurs during a write transaction.

Note: The Ra field of the instruction that triggered the error can be obtained from

the Ibox EXC_SUM register.

5.3.9 Mbox Control Register — M_CTL

The Mbox control register (M_CTL) is a write-only register. Its contents ararelt by
chip reset. Figure 5-31 shows the Mbox control register.

Figure 5-31 Mbox Control Register

63 & & & & & & 32

SPE[2:0]

FM-05863B.AI7

5-28 Internal Processor Registers Alpha 21264/EV6 Hardware Reference Manual

Mbox IPRs

Table 5-18 describes the Mbox control register fields.

Table 5-18 Mbox Control Register Fields Description

Name Extent Type Description
Reserved [63:4] — —
SPE[2:0] [3:1] WO,0 Superpage mode enables.

SPE[2], when set, enables superpage mapping when VA[47:46]
= 2. In this mode, VA[43:13] are mapped directly to PA[43:13]
and VA[45:44] are ignored.

SPE[1], when set, enables superpage mapping when VA[47:41]
= 7B 6 In this mode, VA[40:13] are mapped directly to
PAJ40:13] and PA[43:41] are copies of PA[40] (sign extension).

SPE[0], when set, enables superpage mapping when VA[47:30]
= 3FFFEg In this mode, VA[29:13] are mapped directly to
PA[29:13] and PA[43:30] are cleared.

Reserved [0] — —

Note: Superpage accesses are only allowed in kernel mode. Non-kernel mode ref-
erences to superpages result in access violations.

5.3.10 Dcache Control Register — DC_CTL

The Dcache control register (DC_CTL) is a write-only register that controls Dcache
activity. The contents of DC_CTL are initialized by chip reset as indicated. Figure 5-32
shows the Dcache control register.

Figure 5-32 Dcache Control Register

31 ‘ ‘ ‘ ‘ 8,76 54,3210
!

DCDAT_ERR_EN
DCTAG_PAR_EN
F_BAD DECC
F_BAD_TPAR
FHIT
SET_EN[L:0]

FM-05864.A14

Table 5-19 describes the Dcache control register fields.

Table 5-19 Dcache Control Register Fields Description

Name Extent Type Description

Reserved [63:8] — —

DCDAT_ERR_EN [7] WO,0 Dcache data ECC and parity error enable.
DCTAG_PAR_EN [6] WO,0 Dcache tag parity enable.

Alpha 21264/EV6 Hardware Reference Manual Internal Processor Registers 5-29

Mbox IPRs

Table 5-19 Dcache Control Register Fields Description (Continued)

Name Extent Type Description

F_BAD_DECC [5] WO,0 Force Bad Data ECC. When set, ECC dataisvritten into
the cache along with the block that is loaded by a fill or store.
Writing data that is different from that already in the block will
cause bad ECC to be present. Since the old ECC value will
remain, the ECC will béad

F_BAD_TPAR [4] WO,0 Force Bad Tag Parity. When set, this bit causes bad tag parity to
be put into the Dcache tag array during Dcache fill operations.

Reserved [3] — —

F _HIT [2] WO,0 Force Hit. When set, this bit causes all memory space load and
store instructions to hit in the Dcache, independent of the
Dcache tag address compare. F_HIT does not force the status of
the block to register as DIRTY (the tag status bits are still con-
sulted), so stores may still generate offchip activity.
In this mode, only one of the two sets may be enabled, and tag
parity checking must be disabled (set DCTAG_PER_EN to
Zero).

SET_EN[1:0] [1:0] WO0,3 Dcache Set Enable. At least one set must be enabled.

5.3.11 Dcache Status Register — DC_STAT

The Dcache status register (DC_STAT) is a read-write register. If a Dcache tag parity
error or data ECC error occurs, information about the error is latched in this register.
Figure 5-33 shows the Dcache status register.

Figure 5-33 Dcache Status Register

63 32
rrrrrrrrrrrr 1T rrrrrr-rr T T 7T T 1T T 1T T T T
L | 1 L | 1 L | 1 L | 1 L | 1 L | 1 L | 1 L |
31 543210
[[[[[[[[[[[[[
[1 [1 [1 [1 [1 [1 Ll
SEO
ECC_ERR_LD
ECC_ERR_ST
TPERR P1
TPERR_P0

FM-05865.A14

Table 5—-20 describes the Dcache status register fields.

Table 5-20 Dcache Status Register Fields Description

Name Extent Type Description
Reserved [63:5] — —
SEO [4] Ww1cC Second error occurred. When set, this bit indicates that a sec-

ond Dcache store ECC error occurred within 6 cycles of the
previous Dcache store ECC error.

5-30 Internal Processor Registers Alpha 21264/EV6 Hardware Reference Manual

Cbox CSRs and IPRs

Table 5-20 Dcache Status Register Fields Description

Name Extent Type Description

ECC_ERR_LD [3] wicC ECC error on load. When set, this bit indicates that a single-bit
ECC error occurred while processing a load from the Dcache
or any fill.

ECC_ERR_ST [2] wicC ECC error on store. When set, this bit indicates that an ECC
error occurred while processing a store.

TPERR_P1 [1] wicC Tag parity error — pipe 1. When set, this bit indicates that a

Dcache tag probe from pipe 1 resulted in a tag parity error.
The error is uncorrectable and results in a machine check.

TPERR_PO [0] wicC Tag parity error — pipe 0. When set, this bit indicates that a
Dcache tag probe from pipe 0 resulted in a tag parity error.
The error is uncorrectable and results in a machine check.

5.4 Cbox CSRs and IPRs

This section describes the Cbox CSRs and IPRs.
The Cbox configuration registers are split into three shift register chains:

* The hardware allocates 367 bits for the WRITE_ONCE chain, of which the 21264/
EV6 uses 303 bits. During hardware reset (after BiST), 367 bits are always shifted
into the WRITE_ONCE chain from the SROM, MSB first, so that any unused bits
are shifted out the end of the WRITE_ONCE chain.

* A 36-bit WRITE_MANY chain thatis loaded using MTPR instructions to the Cbox
data register. Six bits of information are shifted into the WRITE_MANY chain dur-
ing each write transaction to the Cbox data register.

* A 60-bit Cbox ERROR_REG chain that is read by using MFFR instructions from
the Cbox data register in combination with MTPR instructions to the Cbox shift
register. Each write transaction to the Chox shift register destructively shifts six bits
of information out of the Cboerror ragister.

5.4.1 Cbox Data Register — C_DATA

Figure 5-34 shows the Cbox data register.

Figure 5-34 Chox Data Register

C_DATA[5:0]

FM-05866.A14

Alpha 21264/EV6 Hardware Reference Manual Internal Processor Registers 5-31

Cbox CSRs and IPRs

Table 5-21 describes the Cbox data register fields.

Table 5-21 Chox Data Register Fields Description

Name Extent Type Description
Reserved [63:6] — —
C_DATAJ5:0] [5:0] RwW Cbox data register. A HW_MTPR instruction to this register

causes six bits of data to be placed into a serial shift register.
When the HW_MTPR instruction is retired, the data is shifted
into the Cbox. After the Chox shift register has been accessed,
performing a HW_MFPR instruction to this register will return
six bits of data.

5.4.2 Cbox Shift Register — C_SHFT
Figure 5-35 shows the Cbox shift register.

Figure 5-35 Cbhox Shift Register

63 32
et rrrrrtrrtrrrrrrrr1Tr7rr Tt Trr1T T 77T T T 1T 1T T T T T
| | | 1 | | | 1 | | | 1 | | | 1 | | | 1 | | | 1 | | | 1 | | |
31 1 0
rrrrrrrrrrrrrtrtrrrrTrrtr 177 " T 77T 1T T [T T T°"T T T T/
| | | 1 | | | 1 | | | 1 | | | 1 | | | 1 | | | 1 | | | 1 | |
C_SHIFTI0]
FM-06118.Al4

Table 5-22 describes the Cbox shift register fields.

Table 5-22 Cbhox Shift Register Fields Description

Name Extent Type Description
Reserved [63:1] — —
C_SHIFTIO] [0] W1 Writing a 1 to this register bit causes six bits of Cbox IPR data

to shift into the Cbox data register. Software can then use a
HW_MFPR read operation to the Cbox data register to read the
six bits of data.

5.4.3 Cbox WRITE_ONCE Chain Description
The WRITE_ONCE chain order is contained in Table 5-23. In the table:

* Many CSRs are duplicated for ease of hardware implementation. These CSRs are
indicated in italics. They must be written with values that are identical to the values
written to the original CSRs.

* Only a brief description of each CSR is given. The functional description of these
CSRs is contained in Chapter 4.

* The order of multibit vectors is [MSB:LSB], so the LSB is first bit in the Cbhox
chain.

5-32 Internal Processor Registers Alpha 21264/EV6 Hardware Reference Manual

Cbox CSRs and IPRs

Table 5-23 describes the Cbox WRITE_ONCE chain order from LSB to MSB.

Table 5-23 Chox WRITE_ONCE Chain Order

Cbox WRITE_ONCE Chain

Description

32_BYTE_IO[0]

SKEWED_FILL_MODE[0]
SKEWED_FILL_MODE[0]
DCVIC_THRESHOLD[7:0]

BC_CLEAN_VICTIM[O]
SYS_BUS_SIZE[1:0]
SYS_BUS_FORMATI[0]
SYS_CLK_RATIO[4:1]

DUP_TAG_ENABLE[0]
PRB_TAG_ONLY/[0]
FAST_MODE_DISABLE[0]
BC_RDVICTIM[0]
BC_CLEAN_VICTIM[O]
RDVIC_ACK_INHIBIT

SYSBUS_MB_ENABLE
SYSBUS_ACK_LIMIT[0:4]
SYSBUS_VIC_LIMIT[0:2]
BC_CLEAN_VICTIM[O]
BC_WR_WR_BUBBLE[0]
BC_RD_WR_BUBBLES[0:5]
BC_RD_RD_BUBBLE[0]
BC_SJ_BANK_ENABLE
BC_WR_RD_BUBBLES[0:3]
DUP_TAG_ENABLE
SKEWED_FILL_MODE
BC_RDVICTIM

Alpha 21264/EV6 Hardware Reference Manual

Enable 32_BYTE I/O mode.
Asserted when Bcache is at 1.5X ratio.
Duplicate of prior bit.

Threshold of the number of Dcache victims that will accumulate
before streamed write transactions to the Bcache are initiated. The
Cbox can accumulate up to six victims for streamed Dcache pro-
cessing. This register is programmed with the decoded value of the
threshold count.

Enable clean victims to the system interface.
Size of SysAddOut and SysAddOut buses.
Indicates system bus format.

Speed of system bus.

Code Multiplier
0001 1.5X
0010 2.0X
0100 2.5X
1000 3.0X

Enable duplicate tag mode in the 21264/EV6.
Enable probe-tag only mode in the 21264/EV6.
When asserted, disables fast data movement mode.
Enables RdVictim mode on the pins.

Duplicate CSR.

Enable inhibition of incrementing acknowledge counter for RdVic
commands.

Enable MB commands offchip.
Sysbus acknowledge limit CSR.
Limit for victims.

Duplicate CSR.
Write to write GCLK bubble.

Read to write GCLK bubbles for the Bcache interface.
Read to read GCLK bubble for banked Bcaches.
Enable bank mode for Bcache.

Write to read GCLK bubbles.

Duplicate CSR.

Duplicate CSR.

Duplicate CSR.

Internal Processor Registers 5-33

Cbox CSRs and IPRs

Table 5-23 Chox WRITE_ONCE Chain Order (Continued)

Cbox WRITE_ONCE Chain

Description

SKEWED_FILL_MODE
BC_RDVICTIM
BC_CLEAN_VICTIM
DUP_TAG_MODE
SKEWED_FILL_MODE
ENABLE_PROBE_CHECK
SPEC_READ_ENABLE[0]
SKEWED_FILL_MODE
SKEWED_FILL_MODE
MBOX_BC_PRB_STALL

BC_LAT_DATA_PATTERN[0:31]
BC_LAT_TAG_PATTERN[0:23]
BC_RDVICTIM
ENABLE_STC_COMMANDI0]
BC_LATE_WRITE_NUMI[0:2]

BC_CPU_LATE_WRITE_NUM[0:1]

BC_BURST_MODE_ENABLE[0]
BC_PENTIUM_MODE[0]
SKEWED_FILL_MODE
BC_FRM_CLK[0]

BC_CLK_DELAY[0:1]
BC_DDMR_ENABLE[0]

BC_DDMF_ENABLE[0]

BC_LATE_WRITE_UPPER][0]

BC_TAG_DDM_FALL_EN[0]

BC_TAG_DDM_RISE_EN[O0]

BC_CLKFWD_ENABLE[0]
BC_RCV_MUX_CNT_PRESET[0:1]

5-34 Internal Processor Registers

Duplicate CSR.

Duplicate CSR.

Duplicate CSR.

Duplicate CSR.

Duplicate CSR.

Enable error checking during probe processing.
Enable speculative references to the system port.
Duplicate CSR.

Duplicate CSR.

Must be asserted when BC_RATIO = 4.0X, 5.0X, 6.0X, 7.0X, or
8.0X.

Bcache data latency pattern.

Bcache tag latency pattern.

Duplicate CSR.

Enable STx_C instructions to the pins.

Number of Bcache clocks to delay the data for Bcache write com-
mands.

Number of GCLK cycles to delay the Bcache clock/data from
index.

Burst mode enable signal.
Enable Pentium mode RAM behavior.
Duplicate CSR.

Force all Bcache transactions to start on rising edges of the A
phase of a GCLK.

Delay of Bcache clock for 0,0,1,2 GCLK phases.

Enables the rising edge of the Bcache forwarded clock (always
enabled).

Enable the falling edge of the Bcache forwarded clock (always
enabled).

Asserted when (BC_LATE_WRITE_NUM > 3) or
((BC_LATE_WRITE_NUM = 3) and
(BC_CPU_LATE_WRITE_NUM > 1)).

Enables the update of the 21264/EV6 Bcache tag outputs based on
the falling edge of the forwarded clock.

Enables the update of the 21264/EV6 Bcache tag outputs based on
the rising edge of the forwarded clock.

Enable clock forwarding on the Bcache interface.

Initial value for the Bcache clock forwarding unload pointer FIFO.

Alpha 21264/EV6 Hardware Reference Manual

Cbox CSRs and IPRs

Table 5-23 Chox WRITE_ONCE Chain Order (Continued)

Cbox WRITE_ONCE Chain

Description

BC_LATE_WRITE_UPPER[0]
SYS_DDM_FALL_EN[0]

SYS_DDM_RISE_EN[0]

SYS_CLKFWD_ENABLE[0]
SYS_RCV_MUX_CNT_PRESET[0:1]
SYS_CLK_DELAY[0:1]

SYS_DDMR_ENABLEJ[0]

SYS_DDMF_ENABLEJ0]

BC_DDM_FALL_ENJ0]

BC_DDM_RISE_EN[0]

BC_CLKFWD_ENABLE
BC_RCV_MUX_CNT_PRESET[0:1]
BC_CLK_DELAY[0:1]
BC_DDMR_ENABLE
BC_DDMF_ENABLE
SYS_DDM_FALL_EN
SYS_DDM_RISE_EN
SYS_CLKFWD_ENABLE
SYS_RCV_MUX_CNT_PRESET[0:1]
SYS_CLK_DELAY[0:1]
SYS_DDMR_ENABLE
SYS_DDMF_ENABLE
BC_DDM_FALL_EN
BC_DDM_RISE_EN
BC_CLKFWD_ENABLE
BC_RCV_MUX_CNT_PRESET[0:1]
SYS_DDM_FALL_EN
SYS_DDM_RISE_EN
SYS_CLKFWD_ENABLE
SYS_RCV_MUX_CNT_PRESET[0:1]

Alpha 21264/EV6 Hardware Reference Manual

Duplicate CSR.

Enables the update of the 21264/EV6 system outputs based on the
falling edge of the system forwarded clock.

Enables the update of the 21264/EV6 system outputs based on the
rising edge of the system forwarded clock.

Enables clock forwarding on the system interface.
Initial value for the system clock forwarding unload pointer FIFO.

Delay of 0 to 2 phases between the forwarded clock out and
address/data.

Enables the rising edge of the system forwarded clock (always
enabled).

Enables the falling edge of the system forwarded clock (always
enabled).

Enables update of data/address on the rising edge of the system
forwarded clock.

Enables the update of data/address on the falling edge of the sys-
tem forwarded clock.

Duplicate CSR.
Duplicate CSR.
Duplicate CSR.
Duplicate CSR.
Duplicate CSR.
Duplicate CSR.
Duplicate CSR.
Duplicate CSR.
Duplicate CSR.
Duplicate CSR.
Duplicate CSR.
Duplicate CSR.
Duplicate CSR.
Duplicate CSR.
Duplicate CSR.
Duplicate CSR.
Duplicate CSR.
Duplicate CSR.
Duplicate CSR.
Duplicate CSR.

Internal Processor Registers 5-35

Cbox CSRs and IPRs

Table 5-23 Chox WRITE_ONCE Chain Order (Continued)

Cbox WRITE_ONCE Chain

Description

SYS_CLK_DELAY[0:1]
SYS_DDMR_ENABLE
SYS_DDMF_ENABLE
BC_DDM_FALL_EN
BC_DDM_RISE_EN
BC_CLKFWD_ENABLE
BC_RCV_MUX_CNT_PRESET[0:1]
BC_CLK_DELAY[0:1]
BC_DDMR_ENABLE
BC_DDMF_ENABLE
SYS_DDM_FALL_EN
SYS_DDM_RISE_EN
SYS_CLKFWD_ENABLE
SYS_RCV_MUX_CNT_PRESET[0:1]
SYS_CLK_DELAY[1:0]
SYS_DDMR_ENABLE
SYS_DDMF_ENABLE
BC_DDM_FALL_EN
BC_DDM_RISE_EN
BC_CLKFWD_ENABLE
BC_RCV_MUX_CNT_PRESET[1:0]
SYS_CLK_DELAY[0:1]
SYS_DDMR_ENABLE
SYS_DDMF_ENABLE
SYS_DDM_FALL_EN
SYS_DDM_RISE_EN
SYS_CLKFWD_ENABLE
SYS_RCV_MUX_CNT_PRESET[0:1]
CFR_GCLK_DELAY[0:3]
CFR_EV6CLK_DELAY[0:2]
CFR_FRMCLK_DELAY[0:1]
BC_LATE_WRITE_NUM][0:2]
BC_CPU_LATE_WRITE_NUM[1:0]
JITTER_CMD[0]

5-36 Internal Processor Registers

Duplicate CSR.
Duplicate CSR.
Duplicate CSR.
Duplicate CSR.
Duplicate CSR.
Duplicate CSR.
Duplicate CSR.
Duplicate CSR.
Duplicate CSR.
Duplicate CSR.
Duplicate CSR.
Duplicate CSR.
Duplicate CSR.
Duplicate CSR.
Duplicate CSR.
Duplicate CSR.
Duplicate CSR.
Duplicate CSR.
Duplicate CSR.
Duplicate CSR.
Duplicate CSR.
Duplicate CSR.
Duplicate CSR.
Duplicate CSR.
Duplicate CSR.
Duplicate CSR.
Duplicate CSR.
Duplicate CSR.
Number of GCLK cycles to delay internal ClkFwdRst.
Number of EV6CIkx cycles to delay internal CIkFwdRst.
Number of FrameClkk cycles to delay internal CIkFwdRst.
Duplicate CSR.
Duplicate CSR.
Add one GCLK cycle to the SYSDC write path.

Alpha 21264/EV6 Hardware Reference Manual

Cbox CSRs and IPRs

Table 5-23 Chox WRITE_ONCE Chain Order (Continued)

Cbox WRITE_ONCE Chain

Description

FAST_MODE_DISABLE[0]
SYSDC_DELAY[3:0]

DATA_VALID_DLY[1:0]

BC_DDM_FALL_EN
BC_DDM_RISE_EN
BC_CPU_CLK_DELAY[0:1]
BC_FDBK_EN[0:7]

BC_CLK_LD_VECTORI[0:15]

BC_BPHASE_LD_VECTORI[0:3]
SYS_DDM_FALL_EN
SYS_DDM_RISE_EN
SYS_CPU_CLK_DELAY[0:1]

SYS_FDBK_EN[0:7]

SYS_CLK_LD_VECTOR][0:15]

SYS_BPHASE_LD_VECTOR[0:3]
SYS_FRAME_LD_VECTOR[0:4]

Duplicate CSR.

Number of GCLK cycles to delay SysDc fill commands before
action by the Cbox.

Number of Bcache clock cycles to delay signal SysDatalnValid
before sample by the Cbox.

Duplicate CSR.
Duplicate CSR.
Delay of Bcache clock for 0, 1, 2, 3 GCLK cycles.

CSR to program the Bcache forwarded clock shift register feed-
back points.

CSR to program the Bcache forwarded clock shift register load
values.

CSR to program the Bcache forwarded clock b-phase enables.
Duplicate CSR.
Duplicate CSR.

Delay of 0..3 GCLK cycles between the forwarded clock out and
address/data.

CSR to program the system forwarded clock shift register feed-
back points.

CSR to program the system forwarded clock shift register load val-
ues.

CSR to program the system forwarded clock b-phase enables.

CSR to program the ratio between frame clock and system for-
warded clock.

5.4.4 Cbox WRITE_MANY Chain Description
The WRITE_MANY chain order is contained in Table 5-24. Note the following:

* Many CSRs are duplicated for ease of hardware implementation. These CSR names

are indicated in italics and have two leading asterisks.

* Only a brief description of each CSR is given. The functional description of these
CSRs is contained in Chapter 3.

* The order of multibit vectors is [MSB:LSB], so the LSB is first bit in the Cbox

chain.

Alpha 21264/EV6 Hardware Reference Manual

Internal Processor Registers 5-37

Cbox CSRs and IPRs

Table 5-24 describes the Cbox WRITE_MANY chain order from LSB to MSB.

Table 5-24 Chox WRITE_MANY Chain Order

Cbox WRITE_MANY Chain

Description

For Information:

BC_ENABLE[0]

INIT_MODE[0]

BC_SIZE[3:0]

BC_ENABLE

BC_ENABLE

BC_SIZE[0:3]

BC_ENABLE

BC_ENABLE

BC_ENABLE
INVAL_TO_DIRTY_ENABLE[1]
ENABLE_EVICT

BC_ENABLE
INVAL_TO_DIRTY_ENABLE[0]
BC_ENABLE

BC_ENABLE

BC_ENABLE
SET_DIRTY_ENABLE[0]
INVAL_TO_DIRTY_ENABLE[0]
SET_DIRTY_ENABLE[2:1]
BC_BANK_ENABLE[0]
BC_SIZE[0:3]

INIT_MODE
BC_WRT_STS[0:3]

Enable the Bcache
Enable initialize mode

Bcache size

Duplicate CSR

Duplicate CSR

Duplicate CSR

Duplicate CSR

Duplicate CSR

Duplicate CSR
WHG64 acknowledges

Enable issue evict

Duplicate CSR
WHG64 acknowledges

Duplicate CSR

Duplicate CSR

Duplicate CSR

SetDirty acknowledge programming

Duplicate CSR

SetDirty acknowledge programming
Enable bank mode for Bcache
Duplicate CSR

Duplicate CSR

Table 4-42
Section 7.6
Table 4-42
Table 4-42
Table 4-42
Table 4-42
Table 4-42
Table 4-42
Table 4-42
Table 4-15
Table 4-1
Table 4-42
Table 4-15
Table 4-42
Table 4-42
Table 4-42
Table 4-16
Table 4-15
Table 4-16
Section 4.8.5
Table 4-42
Section 7.6

Write status for Bcache in initialize-mode Section 7.6

(Valid, Dirty, Shared, Parity)

1 mBZz during initialization mode; see Section 7.6 for information.

Figure 5-36 shows an example of PALcode used to write to the WRITE_MANY chain.

Figure 5-36 WRITE_MANY Chain Write Transaction Example

; Initialize the Bcache configuration in the Cbox

BC_ENABLE =1
INIT_MODE = 0
BC_SIZE = OxF

ENABLE_EVICT = 1

: INVALID_TO_DIRTY_ENABLE = 3

SET_DIRTY_ENABLE = 6

5-38 Internal Processor Registers

Alpha 21264/EV6 Hardware Reference Manual

Cbox CSRs and IPRs

BC_BANK_ENABLE = 1
BC_WRT_STS = 0

The value for the write_many chain is based on Table 5-24.

The value is sampled from MSB, 6 bits at a time, as it is written

to EV6__DATA. Therefore, before the value can be shifted in, it must be
inverted on a by 6 basis. The code then writes out 6 bits at a time,
shifting right by 6 after each write.

So the following transformation is done on the write_many value:

[35:30]|[29:24]|[23:18]|[17:12]|[11:06]|[05:00] =>
[05:00]|[11:06]|[17:12]|[23:18]|[29:24]|[35:30]

WRITE_MANY chain = 0x07FBFFFFD
value to be shifted in = OxF7FFEFFC1

Before the chain can be written, |_CTL[SBE] must be disabled,
and the code must be forced into the Icache.

ALIGN_CACHE_BLOCK <"x47FF041F>; align with nops

mb ; wait for MEM-OP’s to complete

Ida r0, ~x0086(r31) ; load |_CTL.....

hw_mtpr ro, EV6__ | CTL Do SDE=2, IC_EN=3, SBE=0

br ro, . . create dest address

addq r0, #17, r0 ; finish computing dest address

hw_mtpr r31, EV6__IC_FLUSH ; flush the Icache

bne r31, . ; separate retires

hw_jmp_stall (rO0) ; force flush

ALIGN_CACHE_BLOCK <"x47FF041F> ; align with nops
bc_config:

mb ; pull this block in Icache

Ida rl, "xFFC1(r31) ; data[15:00] = OxFFC1

Idah r0, "X7FFE(r31) ; data[31:16] = OX7FFE

zap rl, #'x0c, rl ; clear out bits [31:16]

bis rl, r0, rl ; or in bits [31:16]

addq r31, #6, rO ; shift in 6 x 6 bits
bc_config_shift_in:

hw_mtpr rl, EV6__DATA ; shift in 6 bits

subq r0, #1, r0 ; decrement RO

beq r0, bc_config_done ; done if RO is zero

srl rl, #6, rl ; align next 6 bits

br r31, bc_config_shift_in ; continue shifting
bc_config_done:

hw_mtpr r31, <EV6__MM_STAT ! 64> ; wait until last shift

beq r31, bc_config_end ; predicts fall thru

br r31, .-4 ; predict infinite loop

bis r31, r31, r31 ; nop

bis r31, r31, r31 ; nop

bc_config_end:

Alpha 21264/EV6 Hardware Reference Manual Internal Processor Registers 5-39

Cbox CSRs and IPRs

5.4.5 Cbox Read Register (IPR) Description

The Cbox read register is read 6 bits at a time. Table 5-25 shows the ordering from LSB
to MSB.

Table 5-25 Chox Read IPR Fields Description

Name Description

C_SYNDROME_1[7:0] If CMD is ChxToDirty, then C_SYNDROME_1 is X; otherwise, is syndrome for
upper QW in OW of victim that was scrubbed.

C_SYNDROME_Q0[7:0] If CMD is CiToDirty, then C_SYNDROME_O0 is X; otherwise, is syndrome for
lower QW in OW of victim that was scrubbed.

C_STAT[4:0] Bits Error Status

00000 Either no error, or error on a speculative load, or
a Bcache victim read due to a Dcache/Bcache miss

00001 BC_PERR (Bcache tag parity error)
00010 DC_PERR (duplicate tag parity error)
00011 DSTREAM_MEM_ERR

00100 DSTREAM_BC_ERR

00101 DSTREAM_DC_ERR

0011X PROBE_BC_ERR

01000 Reserved

01001 Reserved

01010 Reserved

01011 ISTREAM_MEM_ERR

01100 ISTREAM_BC_ERR

01101 Reserved

1 XXXX DOUBLE_BIT_ERROR

C_STSJ[3:0] If C_STAT equalzxx MEM_ERR orxxx BC_ERR, then C_STS contains the
status of the block as follows; otherwise, the value of C_STS is X:
Bit Value Status of Block
7:4 Reserved
3 Parity
2 Valid
1 Dirty
0 Shared

C_ADDR[6:42] Address of last reported ECC or parity error. If C_STAT value is
DSTREAM_DC_ERR, only bits 6:19 are valid. If C_STAT is
DOUBLE_BIT_ERROR, then C_ADDR is X.

5-40 Internal Processor Registers Alpha 21264/EV6 Hardware Reference Manual

6

Privileged Architecture Library Code

This chapter describes the 21264/EV6 privilegechitecture library code (PALcode).
The chapter is organized as follows:

e PALcode description

* PALmode environment

* Required PALcode function codes

* Opcodes reserved for PALcode

* Internal processor registeceess mechanisms
e PALshadow registers

* PALcode emulation of FPCR

* PALcode entry points

* Translation buffer fill flows

* Performance counter support

6.1 PALcode Description

PALcode is macrocode thatgrides an architecturally-defined, operating-system-spe-
cific programming interface that is common across all Alpha microgsaes. The

actual implementation of PALcode differs for each operating system. PALcode runs
with privileges enabled, instruction stream (Istream) mapping disabled, and interrupts
disabled. PALcode has privilege to use five special opcodes that allow functions such as
physical data stream (Dstream) references and internal gsoceegister (IPR) manip-
ulation.

PALcode can be invoked by the following events:
* Reset

e System hardware exceptions (MCHK, ARITH)
* Memory-management exceptions

* Interrupts

e CALL_PAL instructions

PALcode has characteristics that make it appear to be dication of microcode,
ROM BIOS, and system service routines, though the analogy to any of these other
items is not exact. PALcode exists for several major reasons:

Alpha 21264/EV6 Hardware Reference Manual Privileged Architecture Library Code 6-1

PALmode Environment

* There are some necessary support functions that are too complex to implement
directly in a processor chip’s hardware, but that cannot be handled by a normal
operating system software routine. Routines to fill the translation buffer (TB),
acknowledge interrupts, and dispatch exceptions are some examples. In some archi-
tectures, these functions are handled by microcode, but the Alpha architecture is
careful not to mandate the use of microcode so as to allow reasonable chip imple-
mentations.

* There are functions that must run atomically, yet involve long sequences of instruc-
tions that may need complete access to all of the underlying computer hardware.
An example of this is the sequence that returns from an exceptionesrupt.

* There are some instructions that are necessary for backward compatibility or ease
of programming; however, these are not used often enough to dedicate them to
hardware, or are so complex that they would jeopardize the overall performance of
the computer. For example, an instruction that does a VAX style interlocked mem-
ory access might be familiar to someone used to programming on a CISC machine,
but is not included in the Alpharchitecture. Another example is the emulation of
an instruction that has no direct hardware support in a particular chip implementa-
tion.

In each of these cases, PALcode routines are used to provide the function. The routines
are nothing more than programs invoked at specified times, and read in as Istream code
in the same way that all other Alpha code is read. Once invoked, however, PALcode
runs in a special mode called PALmode.

6.2 PALmode Environment
PALcode runs in a special environment called PALmode, defined as follows:

* |stream memory naping is disabled. Because the PALcode is used to implement
translation buffer fill routines, Istream mapping clearly cannot be enabled. Dstream
mapping is still enabled.

* The program has privileged access to all of the computer hardware. Most of the
functions handled by PALcode are privileged and need control of the lowest
levels of the system.

* Interrupts are disabled. If a long sequence of instructions need to be executed
atomically, interrupts cannot be allowed.

An important aspect of PALcode is that it uses normal Alpha instructions for most of its
operations; that is, the same instruction set that nonprivileged Alpha programmers use.
There are a few extra instructions that are only available in PALmode, and will cause a
dispatch to the OPCDEC PALcode entry point if attempted while not in PALmode. The
Alpha architecture allows some flexibility in what these special PALmode instructions do.
In the 21264/EV6, the special PALmode-only instructions perform the following func-
tions:

* Read or write internal processor registers (HW_MFPR, HW_MTPR)

* Perform memory load or store operations without invoking the normal memory-
management routines (HW_LD, HW_ST)

* Return from an exception or interrupt (HW_RET)

6-2 Privileged Architecture Library Code Alpha 21264/EV6 Hardware Reference Manual

Required PALcode Function Codes

When executing in PALmode, there are certain restrictions for using the privileged

instructions because PALmMode gives the programmer complete access to many of the

internal details of the 21264/EV6. Refer to Section 6.4 for information on these special
PALmode instructions.

Caution: Itis possible to cause unintended side effects by writing what appears to be
perfectly acceptable PALcode. As such, PALcode is not something that

many users will want to change. Before writing PALcode, at least become
familiar with the information in Appendix D.

6.3 Required PALcode Function Codes
Table 6-1 lists opcodes required for all Alpha implementations. The notation used is
oo.ffff, where 00 is the hexadecimal 6-bit opcode and ffff is the hexadecimal 26-bit

function code.

Table 6—-1 Required PALcode Function Codes

Mnemonic Type Function Code
DRAINA Privileged 00.0002
HALT Privileged 00.0000
IMB Unprivileged 00.0086

6.4 Opcodes Reserved for PALcode

Table 6-2 lists the opcodes reserved by the Alpha architecture for implementation-spe-
cific use. These opcodes are privileged and are only available in PALmode.

Table 6-2 Opcodes Reserved for PALcode

Architecture
Mnemonic Opcode Mnemonic Function

HW_LD 1B PAL1B Dstream load instruction
HW_ST 1F PAL1F Dstream store instruction
HW_RET 1E PAL1E Return from PALcode routine
HW_MFPR 19 PAL19

Copies the value of an IPR into an integer GPR

HW_MTPR 1D PAL1D Writes the value of an integer GPR into an IPR

These instructions generally produce an OPCDEC exception if executed while the pro-
cessor is not in PALmode. If |_CTL[HWE] is set, these instructions can also be exe-

cuted in kernel mode. Software that uses these instructions must adhere to the PALcode
restrictions listed in this section.

6.4.1 HW_LD Instruction

PALcode uses the HW_LD instruction to access memory outside the realm of normal

Alpha memory management and to perform special Dstream load transactions. Data
alignment traps are disabled for the HW_LD instruction.

Figure 6—1 shows the HW_LD instruction format.

Alpha 21264/EV6 Hardware Reference Manual Privileged Architecture Library Code 6-3

Opcodes Reserved for PALcode

Figure 6-1 HW_LD Instruction Format
31 . 2625 21 20, 1615 13 12 11 ‘ ‘ 0

UL
‘O?CPPE‘ RA RB DISP

TYPE T T T | T T

LEN FM-05654.A14

Table 6—3 describes the HW_LD instruction fields.

Table 6-3 HW_LD Instruction Fields Descriptions

Extent Mnemonic Value Description

[31:26] OPCODE 1Bg The opcode value.

[25:21] RA — Destination register number.

[20:16] RB — Base register for memory address.

[15:13] TYPE 00Q Physical — The effective address for the HW_LD instruction is physical.
001, Physical/Lock — The effective address for the HW_LD instruction is

physical. It is the load lock version of the HW_LD instruction.

016, Virtual/VPTE — Flags a virtual PTE fetch (LD_VPTE). Used by trap logic
to distinguish a single TB miss from a double TB miss. Kernel mode access
checks are performed.

100, Virtual — The effective address for the HW_LD instruction is virtual.

10%, Virtual/WrChk — The effective address for the HW_LD instruction is
virtual. Access checks for fault-on-read (FOR), fault-on-write (FOW), read
and write protection.

110, Virtual/Alt — The effective address for the HW_LD instruction is virtual.
Access checks use DTB_ALT_MODE IPR.
111, Virtual/WrChk/Alt — The effective address for the HW_LD instruction is

virtual. Access checks for FOR, FOW, read and write protection. Access
checks use DTB_ ALT_MODE IPR.

[12] LEN 0 Access length is longword.
1 Access length is quadword.
[11:0] DISP — Holds a 12-bit signed byte displacement.

6.4.2 HW_ST Instruction

PALcode uses the HW_ST instruction to access memory outside the realm of normal
Alpha memory management and to do special forms of Dstream store instructions. Data
alignment traps are inhibited for HW_ST instructions. Figure 6—2 shows the HW_ST
instruction format.

Figure 6—2 HW_ST Instruction Format

31 . 2625 2120, 1615 131211 ‘ ‘ 0
P T T L T I L
\OI\:)C\C)I\DE\ | \RA\ | | \RB\ | el I \Dl\sp\ I

1 1 1 1 1

TYPE

LEN FM-05654.A14

6-4 Privileged Architecture Library Code Alpha 21264/EV6 Hardware Reference Manual

Opcodes Reserved for PALcode

Table 6—4 describes the HW_ST instruction fields.

Table 6-4 HW_ST Instruction Fields Descriptions

Extent Mnemonic Value Description

[31:26] OPCODE 1kg The opcode value.

[25:21] RA — Write data register number.

[20:16] RB — Base register for memory address.

[15:13] TYPE 00Q Physical — The effective address for the HW_ST instruction is
physical.

001, Physical/Cond — The effective address for the HW_ST
instruction is physical. Store conditional version of the HW_ST
instruction. The lock flag is returned in RA. Refer to PALcode
restrictions for correct use of this function.

016, Virtual — The effective address for the HW_ST instruction is
virtual.

110, Virtual/Alt — The effective address for the HW_ST instruction is
virtual. Access checks use DTB_ ALT_MODE IPR.

All others Unused.

[12] LEN 0 Access length is longword.

1 Access length is quadword.

[11:0] DISP — Holds a 12-bit signed byte displacement.

6.4.3 HW_RET Instruction

The HW_RET instruction is used to return instruction flow to a specified PC. The RB
field of the HW_RET instruction specifies an integer GPR, which holds the new value
of the PC. Bit [0] of this register provides the new value of PALmode after the
HW_RET instruction is executed. Bits [15:14] of the instruction determine the stack
action.

Normally the HW_RET instruction succeeds a CALL_PAL instruction, or a trap han-
dler that pushed its PC onto the prediction stack. In this mode, the HINT should be set
to ‘10’ to pop the PC and generate a predicted target address for the HW_RET instruc-
tion.

In some conditions, the HW_RET instruction is used in the middle of a PALcode flow
to cause a group of instructions to retire. In these cases, if the HW_RET instruction
does not have a corresponding instruction that pushed a PC onto the stack, the HINT
field should be set to ‘00’ to keep the stack from being modified.

In the rare circumstance that the HW_RET instruction might be used like a JSR or
JSR_COROUTINE, the stack can be managed by setting the HINT bits accordingly.

See Section D.25 for more information about the HW_RET instruction.

Figure 6—3 shows the HW_RET instruction format.

Alpha 21264/EV6 Hardware Reference Manual Privileged Architecture Library Code 6-5

Opcodes Reserved for PALcode

Figure 6-3 HW_RET Instruction Format

HINT

STALL

FM-05656.Al14

Table 6-5 describes the HW_RET instruction fields.

Table 6-5 HW_RET Instruction Fields Description s

Extent Mnemonic Value Description
[31:26] OPCODE 1kg The opcode value.
[25:21] RA — Register number. It should be R31.
[20:16] RB — Target PC of the HW_RET instruction. Bit [0] of the register’s contents
determines the new value of PALmode.
[15:14] HINT 00 HW_JMP — The PC is not pushed onto the prediction stack. The
predicted target is PC + (4*DISP[12:0]).
01 HW_JSR — The PC is pushed onto the prediction stack. The predicted
targetis PC + (4*DISP[12:0]).
10 HW_RET — The prediction is popped off the stack and used as the target.
11 HW_COROUTINE — The prediction is popped off the stack and used as
the target. The PC is pushed onto the stack.
[13] STALL — If set, the fetcher is stalled until the HW_RET instruction is retired or
aborted. The 21264/EV6 will:
» Force a mispredict
» Kill instructions that were fetched beyond the HW_RET instruction
» Refetch the target of the HW_RET instruction
» Stall until the HW_RET instruction is retired or aborted
If instructions beyond the HW_RET have been issued out of order, they
will be killed and refetched.
[12:0] DISP — Holds a 13-bit signed longword displacement.

6.4.4 HW_MFPR and HW_MTPR Instructions

66

The HW_MFPR and HW_MTPR instructions are used to access internal processor reg-
isters. The HW_MFPR instruction reads the value from the specified IPR into the inte-
ger register specified by the RA field of the instruction. The HW_MTPR instruction
writes the value from the integer GPR, specified by the RB field of the instruction, into
the specified IPR. Figure 6—4 shows the HW_MFPR and HW_MTPR instructions for-
mat.

Figure 6-4 HW_MFPR and HW_MTPR Instructions Format

16 15) 8 7 0

LU
\S?%D MﬁﬁK\

Privileged Architecture Library Code

FM-05657.Al14

Alpha 21264/EV6 Hardware Reference Manual

Internal Processor Register Access Mechanisms

Table 6—6 describes the HW_MFPR and HW_MTPR instructions fields.

Table 6-6 HW_MFPR and HW_MTPR Instructions Fields Descriptions

Extent Mnemonic Value Description
[31:26] OPCODE 194 The opcode value for the HW_MFPR instruction.
1D¢g The opcode value for the HW_MTPR instruction.

[25:21] RA — Destination register for the HW_MFPR instruction. It should be R31 for the
HW_MTPR instruction.

[20:16] RB — Source register for the HW_MTPR instruction. It should be R31 for the
HW_MFPR instruction.

[15:8] INDEX — IPR index.

[7:0] sSCBD_ — Specifies which IPR scoreboard bits in the IQ are to be applied to this

MASK instruction. If a mask bit is set, it indicates that the corresponding IPR score-

board bit should be applied to this instruction.

6.5 Internal Processor Register Access Mechanisms

This section describes the hardware and software access mechanisms that are used for
the 21264/EV6 IPRs.

Because the Ibox reorders and executes instructions speculatively, extra hardware is
required to provide software with therect view of the arhitecturally-defined state.

The Alpha architecture defines two classes of state: general-purpose registers and
memory. Register renaming is used to provide architecturally-correct register file
behavior. The Ibox and Mbox each have dedicated hardware that provides correct mem-
ory behavior to the programmer. Because the internal processor registers are implemen-
tation-specific, and their state is not defined by the Alpha architecture, access
mechanisms for these registers may be defined that impose restrictions and limitations
on the software that uses them.

For every IPR, each instruction type can be classified by how it affects and is affected
by the value held by that IPR.

e Explicit readers are HW_MFPR instructions that explicitly read the value of the
IPR.

* Implicit readers are instructions whose behavior is affected by the value of the IPR.
For example, each load instruction is an implicit reader of the DTB.

e Explicit writers are HW_MTPR instructions that explicitly write a value into the
IPR.

* Implicit writers are instructions that may write a value into the IPR as adfidet
of execution. For example, a load instruction that generates an access violation is
an implicit writer of the VA, MM_STAT, and EXC_ADDR IPRs. In the 21264/
EV6, only instructions that generate an exception will act as implicit IPR writers.

Only certain IPRs, such as those with write-one-to-clear bits, are both implicitly and
explicitly written. The read-write semantics of these IPRs is controlled by software.

Alpha 21264/EV6 Hardware Reference Manual Privileged Architecture Library Code 6-7

Internal Processor Register Access Mechanisms

6.5.1 IPR Scoreboard Bits

In previous Alpha implementations, IPR registers were not scoreboarded in hardware.
Software was required to schedule HW_MTPR and HW_MFPR instructions for each
machine’s pipeline organization in order to ensurgect behaior. This software
scheduling task is more difficult in the 21264/EV6 because the Ibox performs dynamic
scheduling. Hence, eight extra scoreboard bits are used within the 1Q to help maintain
correct IPR access order. The HW_MTPR and HW_MFPR instruction formats contain
an 8-bit field that is used as an IPR scoreboard bit mask to specify which of the eight
IPR scoreboard bits are to be applied to the instruction.

If any of the unmasked scoreboard bits are set when an instruction is about to enter the
1Q, then the instruction, and those behind it, are stalled outside the 1Q until all the
unmasked scoreboard bits are clear and the queue does not contain any implicit or
explicit readers that were dependenttbose bits when they entered the queue. When

all the unmasked scoreboard bits are clear, and the queue does not contain any of those
readers, the instruction enters the 1Q and the unmasked scoreboard bits are set.

HW_MFPR instructions are stalled in the 1Q until all their unmasked IPR scoreboard
bits are clear.

When scoreboard bits [3:0] and [7:4] are set, their effect on other instructions is differ-
ent, and they are cleared in a different manner.

If any of scoreboard bits [3:0] are set when a load or store instruction enters the 1Q, that
load or store instruction will not be issued from the 1Q until those scoreboard bits are
clear.

Scoreboard bits [3:0] are cleared when the HW_MTPR instructions that set them are
issued (or are aborted). Bits [7:4] are cleared when the HW_MTPR instructions that set
them are retired (or are aborted).

Bits [3:0] are used for the DTB_TAG and DTB_PTE register pairs within the DTB fill
flows. These bits can be used to order writes to the DTB for load and store instructions.
See Sections 5.3.1 and 6.9.1.

Bit [0] is used in both DTB and ITB fill flows to trigger, in hardware, a lightweight
memory barrier (TB-MB) to be inserted between a LD_VPTE and the corresponding
virtual-mode load instruction that missed in the TB.

6.5.2 Hardware Structure of Explicitly Written IPRs

IPRs that are written by software are physically implemented as two registers. When
the HW_MTPR instruction that writes the IPR executes, it writes its value téirte
register. When the HW_MTPR instruction is retired, the contents diitberegister are
written into thesecondegister. Instructions that either implicitly or explicitly read the
value of the IPR access tlsecondegister. Read-after-write and write-after-write
dependencies are managed using the IPR scoreboard bits. To avoid write-after-read
conflicts, thesecondregister is not written until the writer is retired. The writer will not

be retired until the previous reader is retired, and the reader is retired after it has read its
value from thesecondregister.

Some groups of IPRs are built using a single shdirstiregister. To prevent write-
after-write conflicts, IPRs that shardfiest register also share scoreboard bits.

6-8 Privileged Architecture Library Code Alpha 21264/EV6 Hardware Reference Manual

Internal Processor Register Access Mechanisms

6.5.3 Hardware Structure of Implicitly Written IPRs

Implicitly written IPRs are physically built using only a single level of register, how-
ever the IPR has two hardware states associated with it:

1. Default State—The contents of the register may be written when an instruction gen-
erates an exception. If an exception occurs, write a new value into the IPR and go to

state 2.

Locked State—The contents of the register may only be overwritten by an except-
ing instruction that is older than the instruction associated with the contents of the
IPR. If such an exception occurs, overwrite the value of the IPR. When the trigger-

ing instruction, or instruction that is older than the triggering instruction, is killed
by the Ibox, go to state 1.

6.5.4 IPR Access Ordering

IPR access mechanisms must allow values to be passed through each IPR from a pro-

ducer to its intended consumers.

Table 6—7 lists all of the paired instruction orderings between instructions of the four
IPR access types. It specifies whether access order must be maintained, and if so, the

mechanisms used to ensure correct ordering.

Table 6—7 Paired Instruction Fetch Order

Second
Instruction

First Instruction

Implicit Reader

Implicit Writer

Explicit Reader

Explicit Writer

Implicit Reader

Read transac-
tions can be reof
dered.

No IPRs in this class.

Read transactions cd
be reordered.

A variety of mecha-
nisms are used to
ensure order:
scoreboard bits to stal
issue of reader;
HW_RET_STALL to
stall reader; double
write plus buffer
blocks to force retire
and allow for propag4g
tion delay.

Implicit Writer

No IPRs in this
class.

The hardware struc-

ture of implicitly writ-

ten IPRs handles this
case.

IPR-specific PALcode
restrictions are require
for this case. An inter-
lock mechanism must
be placed between the
explicit reader and the
implicit writer (a read
transaction).

No IPRs in this class.
)|

Explicit Reader

Read transac-
tions can be reof
dered.

-PALcode routine
invoked by the excep}

If the reader is in the

tion associated with
the writer, then order

ing is guaranteed.

Alpha 21264/EV6 Hardware Reference Manual

Read transactions can
be reordered.

Scoreboard bits stall
issue of reader until
writer is retired.

Privileged Architecture Library Code

6-9

Internal Processor Register Access Mechanisms

Table 6—7 Paired Instruction Fetch Order (Continued)

Second
Instruction

First Instruction

Explicit Writer

Reader reads
second register.
Writer cannot
write second reg

Write-one-to-clear
bits, or performance
counter special case.
-For example, perfor-

Reader reads second
register. Writer cannot
write second register
until it is retired.

Scoreboard bits stall
second writer in map
stage until first writer
is retired.

mance counter incre-|
ments are typically nof
scoreboarded agains
read transactions.

ister until it is
retired.

For convenience of implementation, there is no IPR scoreboard bit checking within the
same fetch block (octaword-aligned octaword).

* Within one fetch block, there can be only one explicit writer (HW_MTPR) to an
IPR in a particular scoreboard group.

e Within one fetch block, an explicit writer (HW_MTPR) to an IPR in a particular
scoreboard group cannot be followed by an explicit reader (HW_MFPR) to an IPR
in that same scoreboard group.

e Within one fetch block, an explicit writer (HW_MTPR) to an IPR in a particular
scoreboard group cannot be followed by an implicit reader to an IPR in that score-
board group. This case covers writes to DTB_PTE or DTB_TAG followed by a
LD, ST, or any memory operation, including HW_RETs without the ‘stall’ bit set.

6.5.5 Correct Ordering of Explicit Writers Followed by Implicit Readers

6-10 Privileged Architecture Library Code

Across fetch blocks, the cagct ordering of the xplicit write of the DTB_PTE or
DTB_TAG followed by an implicit reader (memory operation) is guaranteed using the
IPR scoreboard bits.

However, there are cases wherereot ordering of gplicit writers followed by implicit
readers cannot be guaranteed using the IPR scoreboard mechanism. If the instruction
that implicitly reads the IPR does so before the issue stage of the pipeline, the score-
board mechanism is not sufficient.

For example, modification of the ITB affects instructions before the issue state of the
pipeline. In this case, PALcode must contain a HW_RET instruction, with its stall bit
set, before any instruction that implicitly reads the IPR(Ss) in question. This prevents
instructions that are newer than the HW_RET instruction from being successfully
fetched, issued, and retired until after the HW_RET instruction is retired (or aborted).

There are also cases when the HW_RET with the STALL bit mechanism is not suffi-
cient. There may be additional propagation delay past the retirement of the HW_RET
instruction. In these cases, instead of using a HW_RET, a suggested method of ensur-
ing the ordering is coding a group of 5 fetch blocks, where the first contains the
HW_MTPR to the IPR, the second contains a HW_MTPR to the same IPR or one in the
same scoreboard group, and where the following 3 fetch blocks each contain at least
one non-NOP instruction. See Appendix D for a listing of cases where this method is
recommended.

Alpha 21264/EV6 Hardware Reference Manual

PALshadow Registers

6.5.6 Correct Ordering of Explicit Readers Followed by Implicit Writers

Certain IPRs that are updated as a result of faulting memory operations require PAL-
code assistance to maintain ordering against newer instructions. Consider the following
code sequence:

HW_MFPR IPR_MM_STAT
LDQ rx,(ry)
It is typically the case that these instructions would issue in-order:

* The MFPR is data-ready and both instructions use a lower subcluster. However, the
HW_MFPRs (and HW_MTPRS) respond to certain resource-busy indications and
do not issue when the MBOX informs the IBOX that a certain set of resources
(store bubbles) are busy.

* The LDs respond to a different set of resource-busy indications (load-bubbles) and
could issue around the HW_MFPR in the presence of the former. PALcode assis-
tance is required to enforce the issue order.

One totally reliable method is to insert an MB (memoayrtter)instruction before the
first load that occurs after the HW_MFPR MM_STAT. Another method would be to
force a register dependency between the HW_MFPR and the LD.

6.6 PALshadow Registers

The 21264/EV6 contains eight extra virtual integer registers, called shadow registers,
which are available to PALcode for use as scratch space and storage for commonly used
values. These registers are made available under the control of the SDE[1] field of the
|_CTL IPR. These shadow registers overlay R4 through R7 and R20 through R23,
when the CPU is in PALmode and SDE[1] is set.

PALcode generally runs with shadow mode enabled. Any PALcode that supports
CALL_PAL instructions must run in that mode because the hardware writes a
PALshadow register with the return address of CALL_PAL instructions.

PALcode may occasionally be required to toggle shadow mode to obtain access to the
overlayed registers. See the PALcode restriction, Updating |_ CTL[SDE], in Section
D.32.

6.7 PALcode Emulation of the FPCR

The FPCR register contains status and control bits. They are accessed by way of the
MT_FPCR and MF_FPCR instructions. The register is physically implemented like an
explicitly written IPR. It may be written with a value from the floating-point register

file by way of the MT_FPCR instruction. Architecturally-compliant FPCR behavior
requires PALcode assistance. The FPCR register must operate as listed here:

1. Correct operation of the status bits, which must be set when a floating-point
instruction encounters an exceptional condition, independent of whether a trap for
the condition is enabled.

2. Correct values must be returned when the FPCR is read by way of a MF_FPCR
instruction.

Alpha 21264/EV6 Hardware Reference Manual Privileged Architecture Library Code 6-11

PALcode Entry Points

3. Correct actions must occur when the FPCR is written by way of a MT_FPCR
instruction.

6.7.1 Status Flags

The FPCR status bits in the 21264/EV6 are set with PALcode assistance. Floating-point
exceptions, for which the associated FPCR status bit is clear or for which the associated
trap is enabled, result in a hardware trap to the ARITH PALcode routine. The
EXC_SUM register contains information to allow this routine to update the FPCR
appropriately, and to decide whether to report the exception to the operating system.

6.7.2 MF_FPCR

The MF_FPCR is issued from the floating-point queue and executed by the Fbox. No
PALcode assistance is required.

6.7.3 MT_FPCR

The MT_FPCR instruction is issued from the floating-point queue. This instruction is
implemented as an explicit IPR write operation. The value is written intdittstdatch,

and when the instruction is retired, the value is written intostheondatch. There is no
IPR scoreboarding mechanism in the floating-point queue, so PALcode assistance is
required to ensure that subsequent readers of the FPCR get the updated value.

After writing thefirst latch, the MT_FPCR instruction invokes a synchronous trap to
the MT_FPCR PALcode entry point. The PALcode can return using a HW_RET
instruction with its STALL bit set. This sequence ensures that the MT_FPCR instruc-
tion will be correctly ordered for subsequent readers of the FPCR.

6.8 PALcode Entry Points

PALcode is invoked at specific entry points, of which there are two classes:
CALL_PAL and exceptions.

6.8.1 CALL_PAL Entry Points

CALL_PAL entry points are used whenever the Ibox encounters a CALL_PAL instruc-
tion in the Istream. To speed the processing of CALL_PAL instructions, CALL_PAL
instructions do not invoke pipeline aborts but are processed as normal jumps to the off-
set from the contents of the PAL_BASE register, which is specified by the CALL_PAL
instruction’s function field.

The Ibox fetches a CALL_PAL instruction, bubbles one cycle, and then fetches the
instructions at the CALL_PAL entry point. For convenience of implementation, returns
from CALL_PAL are aided by a linkage register (much like JSRs). PALshadow regis-
ter R23 is used as the linkage register. The Ibox loads the PC of the instruction after the
CALL_PAL instruction, into the linkage register. Bit [0] of the linkage register is set if
the CALL_PAL instruction was executed while the processor was in PALmode.

The Ibox pushes the value of the return PC onto the return prediction stack.
CALL_PAL instructions start at the following offsets:

* Privileged CALL_PAL instructions start at offset 20Q0
* Nonprivileged CALL_PAL instructions start at offset 3G@0

6-12 Privileged Architecture Library Code Alpha 21264/EV6 Hardware Reference Manual

PALcode Entry Points

Each CALL_PAL instruction includes a function field that is used to calculate the PC of
its associated PALcode entry point. The PALcode OPCDEC exception flow will be
invoked if the CALL_PAL function field satisfies any of the following requirements:

* Isinthe range of 4{;to 7F;ginclusive
* Is greater than Bfg

* Is between 0gs and 3Fginclusive, and IER_CM[CM] is not equal to the kernel
mode value 0

If none of the conditions above are met, the PALcode entry point PC is as follows:
* PC[63:15] = PAL_BASE[63:15]

* PC[14]=0

* PC[13]=1

J PC[12] = CALL_PAL function field [7]

J PC[11:6] = CALL_PAL function field [5:0]

* PC[5:1]=0

J PC[0] = 1 (PALmode)

6.8.2 PALcode Exception Entry Points

When hardware encounters an exception, Ibox execution jumps to a PALcode entry
point at a PC determined by the type of exception. The return PC of the instruction that
triggered the exception is placed in the EXC_ADDR register and onto the return predic-
tion stack.

Table 6—8 shows the PALcode exception entry locations and their offset from the
PAL_BASE IPR.

Table 6-8 PALcode Exception Entry Locations

Entry Name Type Offset 14 Description

DTBM_DOUBLE_3 Fault 100 Dstream TB miss on virtual page table entry fetch. Use three-
level flow.

DTBM_DOUBLE_4 Fault 180 Dstream TB miss on virtual page table entry fetch. Use four-
level flow.

FEN Fault 200 Floating point disabled.

UNALIGN Fault 280 Unaligned Dstream reference.

DTBM_SINGLE Fault 300 Dstream TB miss.

DFAULT Fault 380 Dstream fault or virtual address sign check error.

OPCDEC Fault 400 Illegal opcode or function field:

*Opcode 1,2,3,4,5,60r7

* Opcode 19g, 1Bg 1D;6 1Eg0r 1F g, not PALmode or
not |_CTL[HWE]

» Extended precision IEEE format

» Unimplemented function field of opcodes {kbr 1C;¢

IACV Fault 480 Istream access violation or virtual address sign check error

Alpha 21264/EV6 Hardware Reference Manual Privileged Architecture Library Code 6-13

Translation Buffer (TB) Fill Flows

Table 6-8 PALcode Exception Entry Locations (Continued)

Entry Name Type Offset 14 Description

MCHK Interrupt 500 Machine check.

ITB_MISS Fault 580 Istream TB miss.

ARITH Synch. Trap 600 Arithmetic exception or update to FPCR.
INTERRUPT Interrupt 680 Interrupts: hardware, software, and AST.
MT_FPCR Synch. Trap 700 Invoked when a MT_FPCR instruction is issued.
RESET/WAKEUP Interrupt 780 Chip reset or wake-up from sleep mode.

6.9 Translation Buffer (TB) Fill Flows

This section shows the expected PALcode flows for DTB miss and ITB miss. Familiar-
ity with 21264/EV6 IPRs is assumed.

6.9.1 DTB Fill

Figure 6-5 shows single-miss DTB instructions flow.

Figure 6-5 Single-Miss DTB Instructions Flow Example

hw_mfor 123, EV6__EXC ADDR

hw_mfpr r4, EV6__ VA FORM

hw_mfpr 15, EV6__MM_STAT

hw_mfpr 17, EV6__EXC SUM
trap__dtbm_single_vpte:

hw_ldgv 4, (]

blit p_misc, trap__ditol

hw_mfpr 16, EV6 VA

blbc4, trap _invalid_dpte

sl r4, #7, r7

hw_mtpr 16, EV6__DTB _TAGO
hw_mtpr 16, EV6_DTB TAG1
hw_mtpr r4, EV6__DTB PTEO
hw_mtpr r4, EV6__DTB PTE1l

ASSUME <tb mb_en + pte_eco> ne 2
if ne pte_eco
blba7, trap _dtbm_single_mb; branch for mb

hw_ret (r23)

trap__dtbm_single_mb:
mb

.endc
hw_ret (r23)

6-14 Privileged Architecture Library Code

; (OL) get exception address
; (4-7,1L) get vpte address
; (OL) get miss info

; (OL) get exc_sum for ra

; (L) get vpte
; (xU) [63]=1 => 1-to-1
; (4-7,1L) get original va
; (xU) invalid => branch
; get mb bit

; (2&6,0L) write tag0
; (1&5,1L) write tagl

; (0&4,0L) write pteO
; (3&7,1L) write ptel

; retun

; (OL) return

Alpha 21264/EV6 Hardware Reference Manual

Translation Buffer (TB) Fill Flows

The following list presents information about the single-miss DTB code example:

In Figure 6-5, where (x,y) or (y) appear in the commextgpecifies the scoreboard
bits andy specifies the Ebox subcluster.

r4 —r7 and r20- r23 are PALshadow registers.

PALshadow r22 contains a flag that indicates whether the native code is running
“1-to-1", that is, running in a mode where the physical address should be mapped
1-to—-1 to the virtual address, rather than being taken from a page table.

IPR scoreboard bits [3:0] are used to order the restarted load or store instructions
for the DTB write transactions.

MM_STAT and VA will not be overwritten if the LD_VPTE instruction misses the
DTB. There is no issue order constraint.

The code is written to prevent a later execution of the DTB fill instruction from
being issued before a previous execution and corrupting the previous write to the
TB registers. The avect sequence of exettons is accomplished by placing code
dependencies on scoreboard bits [7:4] in the path of the successive writers. This
prevents the successive writers from being issued before the previous writers are
retired.

When |_CTL[TB_MB_EN] =1, the issue of MTPR DTB_PTEDO triggers, in hard-
ware, a lightweight memory barrier (TB-MB). The light-weight memory barrier
enforces read-ordering of store instructions from another processor (l) to this pro-
cessor’s (J) page table and this processor’s virtual memory area such that if this
processor sees the write to the PTE from (1) it will see the new data.

Processor | Processor J

Wr Data LD/ST

MB <tb miss>

Wr PTE LD-PTE, write TB
LD/ST

The conditional branch is placed in the code so that all of the MTPR instructions
are issued and retired or none of them are issued and retired. This allows the TB fill
hardware to update the TB whenever it sees the retiring of PTE1 and to ignore
writes to TAGO/TAG1/PTEO/PTEL in the interim between the issuing of those
writes and a retire of PTEL.

As an alternative to using |_CTL[TB_MB_EN] = 1 to enforoead ordeng,
|_CTL[TB_MB_EN] can be set to 0 and the PALcode may use a bit in the PTE to
indicate whether to do an explicit MB. The flow example in Figure 6-5 assumes
this alternative.

The value in DTB_PTKGH] determines whether the scoreboard mechanism alone
is sufficient to guarantee all subsequent load/store instructions (implicit readers of
the DTB) are ordered relative to the creation of a new DTB entry; whether all sub-
sequent loads and stores to the loaded address will hitin the DTB.

— If DTB_PTEX[GH] is zero, the scoreboard mechanism alone is sufficient.

Alpha 21264/EV6 Hardware Reference Manual Privileged Architecture Library Code 6-15

Translation Buffer (TB) Fill Flows

6.9.2 ITB Fill

If DTB_PTEX[GH] is not zero, the scoreboard mechanism alone is not sulffi-
cient (although this is not a problem). In this case, the new DTB entry is not
visible to subsequent load/store instructions until after the MTPR DTB_PTE1
retires.

Issuing a HW_RET_STALL instead of a HW_RET would guarantee ordering,
but is not necessary. Code executes correctly without the stall although execu-
tion might result in two passes through the DTB miss flow, rather than one,
because the re-exetion of the memory ogration after the first DTB miss

might miss again.

This behavior is functionally correct because DTB loads that tag-match an
existing DTB entry are ignored by the 21264/EV6 and the second DTB miss
execution will load exactly the same entry as the first.

Figure 6—6 shows the ITB miss instructions flow.

Figure 6-6 ITB Miss Instructions Flow Example

hw_mfpr
hw_mfpr
lda
bis

trap__itb_miss_vpte:

hw,_Idghv
and

r4, EV6__IVA FORM ; (OL) get vpte address
123, EV6__EXC_ADDR ; (OL) get exception address
16, OFFF(r31) ; (xU) create mask for prot
r31, r31, r31 ; (xU) fil out fetch block
r4, (r4) ; (XL) get vpte
r4, 16, 15 ; (XL) get prot bits

bt p_misc, trap__iltol

sl

sl

and
blbc
bne

s
bis
hw_mtpr
hw_mtpr

r4,

r6,
r4,

#OSF_PTE_PFN_S, 16

#EV6__ITB_ PTE_PFN_S, 16

#<1@OSF_PTE__FOE__S>, 17

; (xU) 14o0-1 => branch
; (xU) shit PFN to <0>

; (xU) shit PFN into place
; (xU) get FOE bit

r4, trap__invalid_ipte ; (xU) invalid => branch

r7, trap__foe ; (xU) FOE => branch
rd4, #7, 17 ; check for mb bit

15, 16, 16 ; (X PTE in ITB format
123, EV6__ITB_TAG ; (6,0L) write tag

r6, EV6__ITB_PTE ; (0&4,0L) write PTE

ASSUME <th mb_en + pte_eco> ne 2

if ne pte_eco

bloc

r7, trap__itb_miss_mb
hw_ret stall (r23) ; (OL)

trap__itb_miss_mb:

mb
.endc

hw_ret stall (r23)

6-16 Privileged Architecture Library Code

: branch for mb

; OL)

Alpha 21264/EV6 Hardware Reference Manual

Performance Counter Support

The following list presents information about the ITB miss flow code example:

* In Figure 6-6, where (x,y) or (y) appear in the commexggecifies the scoreboard
bits andy specifies the Ebox subcluster.

e TheITB is only accessed on Icache misses.
* r4-r7 and r20-r23 are PALshadow registers.

e PALshadow r22 contains a flag that indicates whether the native code is running
“1-to-1", that is, running in a mode where the physical address should be mapped
1-to—-1 to the virtual address, rather than being taken from a page table.

e The HW_RET instruction should have its STALL bit set to ensure that the restarted
Istream does not read the ITB until the ITB is written.

e Asan alternative to using |_CTL[TB_MB_EN] = 1 to enforoead ordeing,
|_CTL[TB_MB_EN] can be set to 0 and the PALcode may use a bit in the PTE to
indicate whether to do an explicit MB. The flow example in Figure 6—6 assumes
this alternative.

6.10 Performance Counter Support

The 21264/EV6 provides hardware support for obtaining program performance feed-
back information without requiring program modification. Counter support uses the
hardware registers listed in Table 6-9.

Table 6-9 IPRs Used for Performance Counter Support

Register Name Mnemonic Described in Section
Ibox control |_CTL 5.2.14

Interrupt enable and current processor mode IER_CM 5.2.8

Ibox status |_STAT 5.2.15

Interrupt summary ISUM 5.2.10
Performance counter control PCTR_CTL 5.2.21

Ibox process context PCTX 5.2.20

6.10.1 Performance Counting Programming Guidelines

Performance counting is done in Aggregate mode, so named because an aggregate
count is compiled. Use the following information to program counters in Aggregate
mode.

6.10.1.1 Initialization

Initialize both counters, PCTR_CTL[PCTRO and PCTR1], to zero in reset PALcode to
avoid spurious interrupts when exiting initial PALcode. Counters must be written twice
during initialization to ensure that the overflow latch has beearele (see the PALcode
restrictions in Sections D.28 and D.34).

Alpha 21264/EV6 Hardware Reference Manual Privileged Architecture Library Code 6-17

Performance Counter Support

6.10.1.2 Operation

The counters should never be left within one cycle of overflow when disabled because
that can cause some interrupts to be blocked in anticipation of an overflow interrupt
(see PALcode restriction 32). On overflow, interrupt latency is a minimum of nine
cycles until the interrupt handler is fetched. Interrupts are disabled in PALmode. In
aggregate counting mode, counters continue to count after overflow.

Note: As a quirk of the implementation, while counting is disabled, a read of
PCTR_CTL can yieldralue+some incrementvherevalueis the actual
value in PCTR_CTL, anthcremenfor PCTRO is in the range 0..8 (retired
instructions in that cycle), anidcrementfor PCTR1 is dependent on SL1.

6.10.1.3 Enabling Aggregate Mode Data Collection
To enable Aggregate mode data collection:
1. Setthe PCTR_CTL fields as shown in Table 6-10.

Table 6-10 PCTR_CTL Fields to Enable Aggregate Mode Data Collection

Field Contents

SLO 0

SL1 Value in the range 0..3, to select counted events
PCTRO 0- (2**20 —16)

PCTR1 0—(2**20-4)

2. Enable systemwide performance counting by setting | _CTL[SPCE], or enable indi-
vidual process performance counting by setting PCTX[PPCE].

3. Enable performance counters by setting |_ CTL[PCTO_EN]and |_CTL[PCT1_EN].
4. Enable interrupts by setting IER_CM[PCENO] and IER_CM[PCENL1].

Once the interrupt is delivered, read PCTR_CTL to get count after overflow.

6-18 Privileged Architecture Library Code Alpha 21264/EV6 Hardware Reference Manual

v

Initialization and Configuration

This chapter provides information on 21264/EV6-specific microprocessor system ini-
tialization and configuration. It is organized as follows:

e Power-up reset flow

* Faultreset flow

* Energy star certification and sleep mode flow

* Warm reset flow

e Array initialization

e Initialization mode processing

* External interface initialization

* Internal processor register (IPR) reset state

* |EEE 1149.1 test port reset

* Reset state machine state transitions

* Phase-locked loop (PLL) functional description

Initialization is controlled by the reset state machine, which is responsible for four
major operations. Table 7—1 describes the four major operations.

Table 7-1 21264/EV6 Reset State Machine Major Operations

Operation Function

Ramp up Sequence the PLL input and output dividerg(nd Zj;,) to gradually raise the
internal GCLK frequency and generate time intervals for the PLL to re-establish lock.

BiST/SROM Receive a synchronous transfer on@tid-wdRst_H pin in order to start built-in self-
test and SROM load at a predictable GCLK cycle.

Clock forward interface Receive a synchronous transfer oi€tkEwdRst_H pin in order to initialize the
clock forwarding interface.

Ramp down Sequence the PLL input and output dividerg,(Xnd Z;,) to gradually lower the
internal GCLK frequency during sleep mode.

7.1 Power-Up Reset Flow and the Reset_L and DCOK_H Pins

The 21264/EV6 reset sequence is triggered using the two input sidgtedst_Land
DCOK_H in a sequence thatis described in Section 7.1.1. ARtget_Lis deasserted,
the following sequence of operations takes place:

Alpha 21264/EV6 Hardware Reference Manual Initialization and Configuration 7-1

Power-Up Reset Flow and the Reset_L and DCOK_H Pins

1. The clock forwarding and system clock ratio configuration information is loaded
onto the 21264/EV6. See Section 7.1.2.

The internal PLL is ramped up to operating frequency.

The internal arrays built-in self-test (BiST) is run, followed by Icache initialization
using an external serial ROM (SROM) interface.

The 21264/EV6 systems, unlike the Alpha 21064 and 21164 microprocessor sys-
tems, are required to have an SROM. The SROM provides the only means to con-
figure the system port, and the SROM pins can be used as a software-controlled
UART.

The Icache must contain PALcode that starts at location 0x780. This code is used to
configure the 21264/EV6 IPRs aseessary before causing any offchip read or

write commands. This allows the 21264/EV6 to be configured to match the external
system implementation.

4. After configuring the 21264/EV6, control can be tramedd to code aywhere in
memory, including the noncacheable regions. The Icache can be flushed by a write
operation to the ITB invalid&tall regster after control is trarisrred.This transfer
of control should be to addresses not loaded in the Icache by the SROKadaeter
the lcache may provide unexpected instructions.

5. Typically, any state required by the PALcode is initialized and then the console is
started (switching out of PALmode and into native mode). The console code initial-
izes and configures the system and boots an operating system from an 1/O device
such as a disk or the network.

Figure 7-1 shows the sequence of events at power-up, or cold reset. In Figure 7-1, note
the following symbols for constraints and information:

Constraints:

A Setup (A0) and hold (A1) for IRQ’s to be latched by DCOK (2 ns for each).

B Enough time foReset_Lto propagate through 5 stages of RESET synchronizer (clocked by the
internal framing clock, which is driven bigV6Clk_x). Worst case is 5x8x8 = 320 GCLK cycles,
because Y, values above 8 are out of range.

C Min = 1 FrameCIk cycle.

Information:

8 GCLK cycles from DCOK assertion to first “regEV6Clk_x cycle.

Approximately 264 GCLK cycles for external framing clock to be sampled and captured.
1FrameClk_x cycle.

3FrameCIk_x cycles.

Approximately 264 GCLK cycles to prevent first command from appearing too early.

Approximately 700,000 GCLK cycles for BiST + approximately 100,000 GCLK cycles fixed time +
approximately 50,000 GCLK cycles per line of Icache for SROM load.

g 16 GCLK cycles.

-~ O QO O T Q©

7-2 Initialization and Configuration Alpha 21264/EV6 Hardware Reference Manual

Power-Up Reset Flow and the Reset_L and DCOK_H Pins

Figure 7-1 Power-Up Timing Sequence

—»-|A0|AL|e—
IRQ_H |
DCOK_H /
—| a |<—
Reset_L /
—>I B |- = f——]
state WAIT SETTLE _ XWAIT_ NOMINALX _ RAMPL X RAMP2 X WAIT_ClkFwdrsto X WAIT_BiST X WAIT_CIkFwdRstL X__RUN
b
Je—b—| —|c|e— .
SromOE_L \ /\
ClkFwdRst_H romin N\ / o min =\
—>»| C | —>| d j=—
internal ClkFwdRst
~
TestStat_H M\, """ """ ——-—-
— -
external Clks A /]
|

End of BiST

7.1.1 Power Sequencing and Reset State for Signal Pins

Power sequencing and avoiding potential failure mechanisms is described in Section

9.3.

The reset state for the signal pins is listed in Table 7-2.

Table 7-2 Signal Pin Reset State

BiST Fails

BiST Passes
FM-06486B.FH8

Signal Reset State Signal Reset State
Bcache

BcAdd_H[23:4] Tristated

BcCheck _H[15:0] Tristated BcTagInClk_H NA (input)
BcData_H[127:0] Tristated BcTagOE_L Tristated
BcDatalnClk_HJ[7:0] NA (input) BcTagOutClk_x Tristated
BcDataOE_L Tristated BcTagParity H Tristated
BcDataOutClk_x[3:0] Tristated BcTagShared_H Tristated
BcDataWr_L Tristated BcTagValid_H Tristated
BcLoad_L Tristated BcTagWr_L Tristated
BcTag_H[42:20] Tristated BcVref NA (I_DC_REF)
BcTagDirty H Tristated

System Interface

IRQ_H[5:0] NA (input) SysDatalnCIk_H[7:0] NA (input)
SysAddin_L[14:0] NA (input) SysDatalnValid_L NA (input)
SysAddInClk_L NA (input) SysDataOutClk_L[7:0] Tristated

Alpha 21264/EV6 Hardware Reference Manual

Initialization and Configuration

7-3

Power-Up Reset Flow and the Reset_L and DCOK_H Pins

Table 7-2 Signal Pin Reset State (Continued)

Signal Reset State Signal Reset State

SysAddOut_L[14:0] Initially, during power-up reset, SysDataOutValid_L NA (input)
state is not defined. If not during
power-up, preserves previous state.
Then, after the clock forward reset
period (as the external clocks
start), signal driven to NZNOP
until the reset state machine enters
RUN, when it is driven to NOP.

SysAddOutCIk_L Tristated SysFillvalid_L NA (input)
SysCheck_L[7:0] Tristated SysVref NA (I_DC_REF)
SysData_L[63:0] Tristated

Clocks

ClkFwdRst_H NA (input) FrameCIk_x NA (input)
Clkin_H NA (input) PLL_VDD NA (I_DC_REF)
ClkIn_L

EV6CIk_H NA (input)

EV6CIk_L

Miscellaneous

DCOK_H Must be deasserted until dc voltagéck_H NA (input)
reaches proper operating level.

PliIBypass_H NA (input) Tdi_H NA (input)

Reset L NA (input) Tdo_H Unspecified

SromCIlk_H Tristated TestStat H Tristated

SromData_H NA (input) Tms_H NA (input)

SromOE_L Tristated Trst L NA (input)

In addition, as power is being rampédRieset Lmust be asserted — this allows the
21264/EV6 to reset internal state. Once the target voltage levels are attained, systems
should asselDCOK_H. This indicates to the 21264/EV6 that internal logic functions
can be evaluated correctly and that ffmver-up sequencghould be continued. Prior to
DCOK_H being asserted, the logic internal to the 21264/EV6 is being reset and the
internal clock network is running (either clocked by the PLL VCO, which is at a nomi-
nal speed, or blkin_H, if the PLL is bypassed).

The reset state machine is in state WAIT_SETTLE.

7.1.2 Clock Forwarding and System Clock Ratio Configuration

WhenDCOK_H is asserted, the 21264/EV6 samples several pins and latches in some
initialization state, including the value of the PLLgy divisor, which specifies the

ratio of the system clock to the internal clock (see Section 7.11.2.3), and enables the
charge pump on the phase-locked loop.

7-4 Initialization and Configuration Alpha 21264/EV6 Hardware Reference Manual

Power-Up Reset Flow and the Reset_L and DCOK_H Pins

Table 7-3 summarizes the pins and the suggested/required initialization state. Most of
this information is supplied by placing (switch-selectable or hardwired) weak pull-ups
or pull-downs on theRQ_H pins. ThelRQ_H pins are sampled on the rising edge of
DCOK_H, during which time the 21264/EV6 is in reset and is not generating any sys-
tem activity. During normal ogration, thdRQ_H pins supply interrupt requests to the
21264/EV6.

It is possible to disable the 21264/EV6 PLL and source GCLK directly f@ikin_ x.

This mode is selected vRIIBypass_H The 21264/EV6 still produces a divided-down
clock onEV6CIK_x; this output clock, which tracks GCLK, can be used in a feedback
loop to generate a locked input clock via an external PLL. The input clock can be
locked against a slower speed systeffiemence clock.

Table 7-3 Pin Signal Names and Initialization State

Signal Name Sample Time Function Value

PliBypass_H Continuous input Sele@lkin_x onto GCLK instead of internal0 Bypas$
PLL. 1 UsePLL

ClkFwdRst_H Sampling method — —
according to

IRQ_H[4]
Reset L Continuous input — —
IRQ_H[5] Rising edge of Select 1:1 FrameClk mode. 0 Sample with
DCOK_H Internal FrameClk can be generated two ways:FrameCIlk_H
1 By samplingFrameClk_H. Used if L g@gélﬁoay of

FrameClk_H is slower tharClkin_H .

2 Asadirect copy oEV6CIk_H. Used if
FrameClk_H is the same frequency as
Clkin_H oris DC.

Alpha 21264/EV6 Hardware Reference Manual Initialization and Configuration 7-5

Power-Up Reset Flow and the Reset_L and DCOK_H Pins

Table 7-3 Pin Signal Names and Initialization State (Continued)

Signal Name Sample Time Function Value
IRQ_H[4] Rising edge of Select method of samplinglkFwdRst Hto 0 Sample with External
DCOK_H produce internal CIkFwdRst — either with FrameCIk_x
external or internal copy dframeClk_x. 1 Sample with Internal
Frameclk

IRQ_H[3:0] Rising edge of Select Yy, divisor value. This is the divide- IRQ_H[3:0] Divisor
DCOK_H down factor between GCLK ar@V6CIk_x.

0011 3

When the PLL is in use and the 21264/EV6 8100 4

ramped-up to full speed, the VCO adjusts ir0101 5

order to phase-align (and rate-match) 0110 6

EV6CIk_x to Clkin_x. When the PLL is not 0111 7

in use, andClkin_ x is bypassed onto GCLK, 0000 8

EV6CIk_x is slower tharClkin_ x by the 1000 9

divisor Y gjy. 1001 10
1010 11
1011 12
1100 13
1101 14
1110 15
1111 16
DCOK _H Continuous input When deasserted, initializes the internal —

21264/EV6 reset state machine and keeps the
PLL internal oscillator running at a nominal
speed. Assertion, which implies power to the
21264/EV6 is good, causes configuration
information to be sampled.

1 The maximum permissible instantaneous chang@lkin_ x frequency is 333 MHz (to prevent cur-
rent spikes).

7.1.3 PLL Ramp Up

After the configuration is loaded through tHRQ_H pins, the next phase in the power

up flow is the internal PLL ramp up sequence. Ramping up of the PLL is required to
guarantee that the dynamic change in frequency will not cause the supply on the 21264/
EV6 to fall due to the supply loop inductance. Clock control circuitry steps GCLK from
power-up/reset clocking to 1/ir6operating frequency, to % operating frequency, and
finally normal operating frequency.

After the assertion dDCOK_H, the 21264/EV6 waits for the deassertionRdset_L

from the system while the PLL attempts to achieve a lock. The PLL internal ramp
dividers are set to divide down the input clock by 16 and the PLL attempts to achieve
lock against an effdaive input frequency o€lkin_x/16. Once lock is achieved, the
actual internal frequency (GCLK) GSIkin_x*(Y g, divisor value)/16. There should be

a minimum delay of 100 ms between the assertioBGOK_H and the deassertion of
Reset_Lto allow for this locking The reset state machine is in the WAIT_NOMINAL
state.

After the deassertion dReset_L, the reset state machine goes into the RAMP1 state.
The 21264/EV6 ramps the internal frequency, by changingffestive input fre-
guency of the PLL tcCIkIn_ x/2 for a sufficient lock interval (about 20s). The state

7-6 Initialization and Configuration Alpha 21264/EV6 Hardware Reference Manual

Power-Up Reset Flow and the Reset_L and DCOK_H Pins

machine then goes into the RAMP2 state, changing the effective input frequency to
CIkIn/1 for an additional lock interval (about 23). The lock periods are generated by
the internal duration counter, which is driven by GCLK. The counter counts 4108
GCLK cycles during theClkin_x/2 lock interval. Note that GCLK is produced by the
output of the PLL, which is locking to an input clock which is 1/2 of the operating fre-
guency — therefore, the 4108 cycle intervahstitutes a 12-2Qs interval when the
operating frequency is 400-666 MHz. Then, the counter counts 8205 GCLK cycles
during theClkln_ x/1 lock interval.

7.1.4 BiST and SROM Load and the TestStat H Pin

The 21264/EV6 uses the deassertio€tfFwdRst_H (which must be deasserted for a
minimum of oneFrameClk_H cycle and then reasserted) to begin built-in self-test
(BiST). The reset state machine goes into the WAIT_BiST state. Details on BiST are
givenin Chapter 11. The power-up BiST lasts approximately 700,000 cycles. The result
of the self-test is made available on thestStat_Hpin. The pin is forced low by the
system reset. It is then forced high during BiST.

As BiST completes, th@estStat Hpin is held low for 16 GCLK cycles. Then, if BiST
succeeds, the pin remains low. Otherwise, it is asserted. After successfully completing
BiST, the 21264/EV6 then performs the SROM load sequence (described in Chapter
11). After the SROM load sequence is finished, the 21264/EV6 deas&rensOE_L.

7.1.5 Clock Forward Reset and System Interface Initialization

After the deassertion @romOE_L, the reset state machine enters the
WAIT_ClkFwdRstl state, where the 21264/EV6 waits for the system to deassert
ClkFwdReset_H. The 21264/EV6 samples the deasserting eddelkfFwdReset H

to take synchronous actions. It uses this synchronous event to reset the clock forward-
ing interface, start the outgoing clocks, and deassert internal reset. The chip then waits
264 cycles before issuing commands. The reset state machine is then in RUN and the
21264/EV6 begins fetching code at address 0x780.

Table 7—4 lists signals relevant to the power-up flow, provides a short description of
each, and any relevant constraints.

Table 7-4 Power-Up Flow Signals and Their Constraints

Signal Name

Description Constraint

CIkIn_x

PLL_VDD
VDD

DCOK_H

Differential clocks that are inputs taClocks must be running befoRCOK_H
PLL or are bypassed onto GCLK is asserted.
directly

VDD supply to PLL PLL_VDD mustleadvDD.

VDD supply to the 21264/EV6 chip—
logic (except PLL)

Logic signal to the 21264/EV6 that—
the VDD supply is good

Alpha 21264/EV6 Hardware Reference Manual Initialization and Configuration 7-7

Fault Reset Flow

Table 7-4 Power-Up Flow Signals and Their Constraints (Continued)

Signal Name

Description Constraint

Reset L

ClkFwdRst_H
Deassertion #1

ClIkFwdRst_H
Deassertion #2

RESET pin asserted by SYSTEM t&Reset_Lmust be asserted prior to

the 21264/EV6 DCOK_H and must remain asserted for at
least 100 ms aftaddCOK_H is asserted.
This allows for PLL settling time. Deasser-
tion of Reset_Lcauses the 21264/EV6 to
ramp divisors to their final value and begin
BiST.

Signal asserted by SYSTEM to syrElkFwdRst_H must be deasserted after

chronously commence built-in selfPLL has achieved its lock in its final divi-

test and SROM load sor value (about 21s). The deassertion
causes built-in self-test to begin on an inter-
nal clock cycle that corresponds to one
framing clock cycle afte€lkFwdRst_H is
deassertedClkFwdRst_H can be asserted
after one frame clock cycle. See Figure 7—
1.

Signal asserted by SYSTEM to ini-CIkFwdRst_H must be deasserted when

tialize and reset clock forwarding the Chox has loaded configuration informa-

interfaces tion. This occurs as the first part of the
serial ROM load, after BiST is run. Once
CIkFwdRst_H is deasserted, the interface
is initialized and can receive probe requests
from the 21264/EV6.

7.2 Fault Reset Flow

The fault reset sequence of operation is triggered by the assertion©the/dRst H
signal line. Figure 7—2 shows the fault reset sequence of operation. The reset state
machine is initially in RUN stateClkFwdRst_H is asserted by the system, which
causes the state machine to transition to the WAIT_FAULT_RESET state.

The 21264/EV6 internally resets a minimum amount of internal state. Notffihets
of that reset on the IPRs in Table 7-5

Table 7-5 Effect on IPRs After Fault Reset

IPR After Reset
PAL_BASE Maintained (not reset)
|_CTL Bit value = 3 (both Icaches are enabled)

PCTX[FPE] Set

WRITE_MANY Cleared (That is, the WRITE_MANY chain is initialized and the Bcache is
turned off.)

EXC_ADDR Set to an address that is close to the PC

The 21264/EV6 then waits faClkFwdRst_H to deassert twice:

* One deassert to transition directly to the WAIT_CIkFwdRst1 state without perform-
ing any BiST

* One deassert to initialize the clock forwarding ifitee

7-8 Initialization and Configuration Alpha 21264/EV6 Hardware Reference Manual

Energy Star Certification and Sleep Mode Flow

The 21264/EV6 then begins fetching code at PAL_BASE + 0x780.

Figure 7-2 shows the fault reset sequence of operation. In Figure 7-2, note the follow-
ing symbols for constraints and information:

Constraints:

A Min =1 FrameClk_x cycle

Information:

Approximately 264 GCLK cycles

Approximately 264 GCLK cycles for external framing clock to be sampled and captured
1FrameClk_x cycle plus 2 GCLK cycles

NextFrameCIk_x rising edge

3 FrameClk_x cycles

Approximately 264 GCLK cycles to prevent first command from appearing too early

«Q ™" o O T 9

Figure 7-2 Fault Reset Sequence of Operation

* internal clks aligned

= |=-e
state RUN X_WAIT FAULT RESET X WAIT_CIkFwdRst0 X WAIT CIkFwdRstl RUN
| a } b—>| <— c —>] le— g —>|
SromOE_L \;r_/\
ClkFwd RSI_H —/ no min _/ no min\
—>| A | —>| f |-
internal CIkFwdRst / \
external Clks \ /

FM-06488B.Al4

7.3 Energy Star Certification and Sleep Mode Flow

The 21264/EV6 is Energy Star compliant. Energy Star is a program administered by the
Environmental Protection Agency to reduce energy consumption. For compliance, a
computer must automatically enter a low power sleep mode using 30 watts or less after
a specified period of inactivity. When the system is awakened, the user shall be
returned automatically to the same situation that existed prior to entering sleep mode.

During normal operation, the 21264/EV6 encounters inactive periods and enters a
mode that saves the entire active processor state to memory.

The PALcode is responsible for saving all necessary state to DRAM and flushing the
caches.

The sleep mode sequence of operations is triggered by the PALcode twice performing a
HW_MTPR to the Ibox SLEEP IPR. The first write prevents the assertion of
ClkFwdRst_H from fault-resetting the chip.

The PALcode then informs the system, in an implementation-dependent way, that it
may asserClkFwdRst_H.

Alpha 21264/EV6 Hardware Reference Manual Initialization and Configuration 7-9

Energy Star Certification and Sleep Mode Flow

On the second HW_MTPR to the SLEEP IPR, the PLL begins to ramp down and the
21264/EV6 can then respond to tGékFwdRst_H that was asserted by the system,
causing the outgoing clocks from the 21264/EV6 to stop.

The PLL ramp-down sequence takes exactly the same amount of time as the ramp up
sequence described in Section 7.1.3. The same internal duration counter is used and the
reset state machine transitions through the DOWN1, DOWN2, and DOWN3 states
which have similar PLL divisor ratios and clock speeds to the RAMP2, RAMP1, and
WAIT_NOMINAL states.

After the PLL has finished ramping down, the reset state machine enters the
WAIT_INTERRUPT state. Note theffects of the entrynto that state on the IPRs
listed in Table 7—6.

Table 7-6 Effect on IPRs After Transition Through Sleep Mode

IPR Effects After Transition Through Sleep Mode
PAL_BASE Maintained (not reset)
|_CTL Bit value = 3 (both Icaches are enabled)

PCTX[FPE] Set

WRITE_MANY Cleared (That is, the WRITE_MANY chain is initialized and the Bcache is
turned off.)

Note that Interrupt enables are maintained during sleep mode, enabling the 21264/EV6
to wake up. The 21264/EV6 waits for either an unmasked clock interrupt or an
unmasked device interrupt from the system.

When an enabled interrupt occurs, the PLL ramps back to full frequency. Subsequent to
that, the 21264/EV6 performs a built-in self-initialization (BiSl), a shortened built-in
self-test, which initializes the internal arrayed structures. The SROM is not reloaded.
Instead, the 21264/EV6 begins fetching code from the system at address PAL_BASE +
0x780.

Figure 7—3 shows the sleep mode sequence of operations. In Figure 7-3, note the fol-
lowing constraint and informational symbols:

Constraints:
A Min =1 FrameCIk_x cycle
Informational symbols:

Approximately 264 GCLK cycles for external framing clock to be sampled and captured
NextFrameClk_x rising edge

1FrameClk_x cycle

3FrameClk_x cycles

Approximately 264 GCLK cycles to prevent first command from appearing too early
Approximately 8192 GCLK cycles for BiSI

-~ 0O QO O T Q©

7-10 Initialization and Configuration Alpha 21264/EV6 Hardware Reference Manual

Warm Reset Flow

Figure 7-3 Sleep Mode Sequence of Operation

*imemal clks
= |=b e I
state RUN X _powni X pownz X Downs XWAIT_INTR RAMPL RAMP2 WAIT_CIkFwdRst0 WAIT_BiSIX WAIT_ClkFwdRst1 RUN
|Je—a—a| —c |<—
SLEEPIPR _/___/\ | e
Wake-up interrupt /\
SromOE_L \ [
CkFwdRst H /7 o min / nomin\
—| A || d |
TestStat_H /\
internal CIkFwdRst / \
external Clks \ /

FM-06487A.Al4

Table 7—7 describes each signal and constraint for the sleep mode sequence.

Table 7—7 Signals and Constraints for the Sleep Mode Sequence

Signal Name

Description Constraint

CIkFwdRst_H Signal asserted by the system to ClkFwdRst_H must be asserted by the system
initialize and reset clock forwardingwhen entering sleep mode. The system deasserts
interfaces ClkFwdRst_H no sooner than orferameCIk_H

cycle after sourcing an interrupt to the 21264/
EV6.

Forwarded clocks Bit clocks forwarded to/from the Clocks stop running undeZlkFwdRst_H.
21264/EV6

System interrupt Asynchronous interrupt which —

causes the 21264/EV6 to exit sleep
mode

7.4 Warm Reset Flow

The warm reset sequence of operation is teiggl by the assertion of theset Lsig-

nal line. The reset state machine is initially in RUN state. The 21264/EV6 then, by
default, ramps down the PLL (similar to the sleep flow sequence) and the reset state
machine ends up in the WAIT_RESET state.

Note the effects of entry into that state on the IPRs listed in Table 7-8.

Table 7-8 Effect on IPRs After Warm Reset

IPR Effects After Warm Reset
PAL_BASE Cleared
|_CTL Cleared

PCTX[FPE] Set

WRITE_MANY Cleared (Thatis, the WRITE_MANY chain is initialized and the Bcache is
turned off.)

Alpha 21264/EV6 Hardware Reference Manual Initialization and Configuration 7-11

Array Initialization

The 21264/EV6 waits untiReset_Lis deasserted before transitioning from the
WAIT_RESET state. The 21264/EV6 ramps up the PLL until the state machine enters
the WAIT_CIlkFwdRstO state. Note that the system must asd&RwdRst_H before

the state machine enters the WAIT_ClkFwdRstO state. Then, similarly to the other
flows, SromOE_L is asserted and the system waits for the deassertion of
ClkFwdRst_H.

On the deassertion @lkFwdRst_H, the 21264/EV6 prforms BiST and the SROM
loading procedure.

After BiST and SROM loading have complete&®tomOE_L deasserts and the 21264/
EV6 waits forCIkFwdRst_H to deassert before starting the external clocks and, like
the other flows, waits for 264 cycles before starting instructions.

7.5 Array Initialization

The following arrays are initialized by BiST:

* |cache and Icache tag
e Dcache, Dcache tag, and Duplicate Dcache tag
e Branch history table

The external second-level cache (Bcache) is disabladdset L

The Bcache must be initialized by PALcode before it is enabled.

7.6 Initialization Mode Processing

7-12

The initialization mode allows the 21264/EV6 to generate and manipulate cache blocks
before the system interface has been initialized. Within the 21264/EV6, the Cbox con-
figuration registers are divided into the WRITE_ONCE and the WRITE_MANY shift
register chains (see Sections 5.4.3 and 5.4.4). The WRITE_ONCE chain is loaded from
the SROM during reset processing, and contains information such as the clock forward-
ing setup values. The WRITE_MANY chain can be written many times using MTPR
instructions.

The WRITE_MANY chain contains the following CSRs that are important to initializa-
tion mode, which must be set to the values in Table 7-9 to initialize the Bcache.

Table 7-9 WRITE_MANY Chain CSR Values for Bcache Initialization

WRITE_MANY Chain CSRs Required Value at Initialization Mode

BC_ENABLE 1
The duplicate bits for BC_ENABLE in [14:12] must
be 0 during initialization mode.

BC_SIZE[3:0] The exact size or maximum size of the Bcache
INVAL_TO_DIRTY_ENABLE[1:0] 1
SET_DIRTY_ENABLE[2:0] 0
INIT_MODE 1

Initialization and Configuration Alpha 21264/EV6 Hardware Reference Manual

Initialization Mode Processing

Table 7-9 WRITE_MANY Chain CSR Values for Bcache Initialization

WRITE_MANY Chain CSRs Required Value at Initialization Mode
EVICT_ENABLE 0

BC_WRT_STS[3:0] 0

BC_BANK_ENABLE 0

Except for INIT_MODE, all the CSR registers have been described in earlier sections.
When asserted, INIT_MODE has the following behavior:

e Cache block updates to the Dcache set the block to the Clean state.
J Updates to the Bcache use the BC_WRT_STS[3:0] bits.
* WrVictimBIk command generation to the system interface are squashed.

Using the INVAL_TO_DIRTY_ENABLE and INIT_MODE registers, initialization
code loaded from the SROM can generate and delete blocks inside the 21264/EV6
without system interaction. This behavior is very useful for initialization and startup
processing, when the system interfaces are not fully functional. Figure 7—4 shows a
code example for initializing Bcache.

Figure 7-4 Example for Initializing Bcache
Reset chip and load Icache with this code

set init_mode ;now all WrVictims are ignored
;bc_enable_a 1
;zeroblk_enable_a 1
;set_dirty enable_a 0
;init_mode_a 1
;enable_evict a 0
;bc wit sts a 0
;bc_bank_enable_a 0
;bc_size a 15

;now all writes to Bcache actually invalidate
the Bcache. (ff space was needed for scratch
pad, the status bits could just as

well be Valid)
for 2 X b c_size ;This loop generates legal ECC data, and
{ WH64 address } ;invalidate tags which are written to the

:Bcache for all but the final 64KB of address.

tumn_off_bcache: ;bc_enable_a 0
jinit_mode_a 0
jbc_size a 0
;zeroblk_enable_a 1
;enable_evict a
;set_dirty_enable_a 0
;bc_bank_enable_a 0
bc_wrt sts a 0

Alpha 21264/EV6 Hardware Reference Manual Initialization and Configuration 7-13

External Interface Initialization

SweepMemory: \Write good parity/ecc to memory by
; writing a all memory locations. This is
;done by WH64 of memory addresses

tum_on_bcache: ;bc_enable_a 0
jbc_size a Actual Bcache size
;zeroblk_enable_a 3
;set_dirty_enable_a 6
jnit_mode_a 0
;enable_evict a 0
bc writ sts a 0
;bc_bank enable_a 0

for 2 X b c_size ;This loop generates legal ECC data, and

{ WH64 address } ;invalidate tags which are written to the

:Bcache for all but the final 64KB of address.
for 2 X d cache size
{ ECB address } ;and cleans up the Dcache also.
(done)

In addition to initialization, the dynamic programming ability of the WRITE_MANY
chain provides the basic tools to build various other software flows such as dynamically
changing the Bcache enable/size parameters for performance testing.

7.7 External Interface Initialization

After reset, the system iatface is in the default configuration dictated by the reset state
of the IPR bits that select the configuration options.

The response to system infidce commands and internally generated memory accesses
is determined by this default configuration. System environments that are not compati-
ble with the default configuration must use the SR@che load feature timitially

load and execute a PALcode program to configure the external system interface unit
IPRs as needed.

7.8 Internal Processor Register Power-Up Reset State

Many IPR bits are not initialized by reset. They are located in error-reporting registers
and other IPR states. They must be initialized by initialization PALcode. Tables 7-5, 7—
6, and 7-8, list the effects on IPRs by fault reset, transition through sleep mode, and
warm reset, respectively. Table 7-10 lists the state of all internal processor registers
(IPRs) immediately following power-up reset. The table also specifies which registers
need to be initialized by poar-up PALcode.

Table 7-10 Internal Processor Registers at Power-Up Reset State

Mnemonic Register Name Reset State Comments
Ibox IPRs

ITB_TAG ITB tag array write X —
ITB_PTE ITB PTE array write X —

7-14 Initialization and Configuration Alpha 21264/EV6 Hardware Reference Manual

Internal Processor Register Power-Up Reset State

Table 7-10 Internal Processor Registers at Power-Up Reset State (Continued)

Mnemonic Register Name Reset State Comments
ITB_IAP ITB invalidate-all (ASM=0) X —
ITB_IA ITB invalidate all X Must be written to in PALcode.
ITB_IS ITB invalidate single X —
EXC_ADDR Exception address X —
IVA_FORM Instruction VA format X —
IER_CM Interrupt enable current mode X Must be written to in PALcode.
SIRR Software interrupt request X —
ISUM Interrupt summary X —
HW_INT_CLR Hardware interrupt clear X Must be cleared in PALcode.
EXC_SUM Exception summary X —
PAL_BASE PAL base address Cleared —
|_CTL Ibox control IC_EN =3 All other bits are cleared on reset.
|_STAT Ibox status X Must be cleared in PALcode.
IC_FLUSH Icache flush X —
CLR_MAP Clear virtual-to-physical map X —
SLEEP Sleep mode X —
PCTX Ibox process context PCTX[FPE] is set. All other bits are X.
PCTR_CTL Performance counter control X Must be cleared in PALcode.
Ebox IPRs
CcC Cycle counter X Must be cleared in PALcode.
CC_CTL Cycle counter control X Must be cleared in PALcode.
VA Virtual address X —
VA_FORM Virtual address format X —
VA_CTL Virtual address control X Must be cleared in PALcode.
Mbox IPRs
DTB_TAGO DTB tag array write O Cleared —
DTB_TAG1 DTB tag array write 1 Cleared —
DTB_PTEO DTB PTE array write O Cleared —
DTB_PTE1 DTB PTE array write 1 Cleared —
DTB_ALTMODE DTB alternate processor mode X PALcode must initialize.
DTB_IAP DTB invalidate all process X —

ASM =0
DTB_IA DTB invalidate all process X Must be written to in PALcode.
DTB_ISO DTB invalidate single (array 0) —

Alpha 21264/EV6 Hardware Reference Manual

Initialization and Configuration 7-15

IEEE 1149.1 Test Port Reset

Table 7-10 Internal Processor Registers at Power-Up Reset State (Continued)

Mnemonic Register Name Reset State Comments

DTB_IS1 DTB invalidate single (array 1) X —

DTB_ASNO DTB address space number 0 Cleared —

DTB_ASN1 DTB address space number 1 Cleared —

MM_STAT Memory management status X —

M_CTL Mbox control Cleared —

DC_CTL Dcache control DC_CTL[7:2] are cleared at reset.
DC_CTLJ[1:0] are set at power up.

DC_STAT Dcache status X Must be cleared in PALcode.

Cbox IPRs

C_DATA Chox data X Must be read in PALcode.

C_SHFT Cbox shift control X —

7.9 |EEE 1149.1 Test Port Reset

SignalTrst_L must be asserted when powering up the 21264/Bv4. L must not be
deasserted prior to assertion@ECOK_H. Trst_L can remain asserted during normal
operation of the 21264/EV6.

7.10 Reset State Machine

The state diagram in Figure 7-5 summarizes how the 21264/EV6 transitions into run-
ning code. Each state is described in Table 7-11. Table 7-11 describes outputs and
approximate state transition equations. Note that there are implicit transitions from
each state to an appropriate down-ramp state viReset Lis asserted.

7-16 Initialization and Configuration Alpha 21264/EV6 Hardware Reference Manual

Reset State Machine

Figure 7-5 21264/EV6 Reset State Machine State Diagram

PLL Ramp Up
Reset_L RAMP1 Counter
deasserted [2,4]F finished

WAIT
DCOK_H NOM'N/_B\L Counter
asserted [16,32]1 finished
WAIT_CIkFwd
RstO
Counter
finished ClkFwdRst_H Out of
Reset_L Reset_L deasserted Sleep
asserted deasserted Mode

Out of

Enabled EAULT
Interrupt RESET*
Reset_L BiST BiSI
WAIT asserted finished finished
INTERRUPT
ClkFwdRst_H
asserted WAIT_ClkFwd
fNumbers in"[,]" are Rstl
Xdiv and Zdiv divisors,
respectively
Counter Counter *No BIST/BIS| ClkFwdRst_H
finished & finished & on recovery from Fault deasserted
Sleep Mode not Sleep Mode Reset

PLL Ramp Down

Counter Counter
DOWN3 finished finished

Sleep Mode
or Reset_L
asserted

[16,32]t

LKG-10982A-98WF

Table 7-11 21264/EV6 Reset State Machine State Descriptions

State Name Description

COLD Chip cold. Transitioned to WAIT_SETTLE with assertionRéset_L PLL_VDD, and
VDD.

WAIT_SETTLE PLL_VDD asserted; PLL at minimum frequency.

WAIT_NOMINAL Triggered by assertion obCOK_H. PLL achieves a lock at g, and Z;, divisors equal
16 and 32, respectively.

Alpha 21264/EV6 Hardware Reference Manual Initialization and Configuration 7-17

Reset State Machine

Table 7-11 21264/EV6 Reset State Machine State Descriptions (Continued)

State Name Description

RAMP1 Triggered byReset_L deassertion; ¥, and Zy;, divisors are changed to 2 and 4, respec-
tively, increasing the internal GCLK frequency. An internal duration counter is initial-
ized to count 4108 GCLK cycles.

RAMP2 Triggered by the duration counter reaching 4108 cycles, thg a\d Zy;, divisors are

WAIT_CIKFwdRSstO

WAIT_BiST

WAIT_BiSI

WAIT_CIkFwdRst1

RUN

WAIT_RESET

FAULT_RESET

DOWN1

changed to 1 and 2, respectively, and the frequency is increased. The duration counter is
reloaded to count 8205-cycles.

Triggered by the duration counter reaching 8205 cycles (or by the deassertion of
Reset_Lwhile in the WAIT_RESET state). 21264/EV6 asse8tesmOE_L and waits

for SYSTEM to deasse€lkFwdReset H The deassertion must be synchronous to a
falling edge ofFrameCIlk_H. 21264/EV6 uses this deassertion to begin BiST and

SROM load at a predictable time. 21264/EV6 samples and generates an internal, aligned
copy of FrameCIk_H, and, in turn, uses this clock to samlékFwdReset H

BiST and SROM load is started. The SROM first loads the Write-once chain and then
reads the number of bits of Icache data to load.

This state is entered when 'waking up' from sleep mode. 21264/EV6 receives an external
interrupt, ramps the PLL, synchronously samples a transitio@laRwdReset_H, and

runs built-in self-initialization to clear the internal caches. Built-in self-test is not per-
formed and the SROM is not loaded.

Entered when the appropriate amount of BiST and SROM loading has been completed.
21264/EV6 deasser&omOE_L and waits for SYSTEM to deassé&tkFwdReset_H.

The deassertion must be synchronous to a rising edgeanfieClk_H. 21264/EV6 uses

this synchronous event to reset the clock forwarding interface and deassert internal reset.
21264/EV6 subsequently begins running code (either preloaded in the SROM or located
in memory) and begins system transactions.

Chip is running software, interface is reset, and system transactions can be processed.
From power-up, the Icache sets are enabled and contain bootstrap code loaded from the
SROM; 21264/EV6 executes code from Icache. From wake-up, the Icache sets are dis-
abled and 21264/EV6 fetches and executes code from DRAM.

Triggered by duration counter reaching 264 cycles, or videset_Lis asserted when in
WAIT_INTERRUPT state. 21264/EV6 waits in this state uRtdset_Lis deasserted, at
which point, the PLL starts to ramp up again.

ClkFwdResetis asserted while the 21264/EV6 is running. The 21264/EV6 internally
resets a minimum amount of internal state, waits for clock forward reset deassertion, and
begins fetching code at PAL_BASE + 0x780.

21264/EV6 was in a state in which GCLK was at its highest speedRasdt_Lwas

asserted. Internal chip functions are reset and the internal duration counter is setto 8205
cycles. The purpose of this sequence is to down-ramp the clocks in anticipation of power
being removed. If power is not removed (that is, reset is being toggled), 21264/EV6
ramps the clocks back to the original speed.

This state is also entered when software writes the |_CTL internal processor register to
sleep mode.

7-18 Initialization and Configuration Alpha 21264/EV6 Hardware Reference Manual

Phase-Lock Loop (PLL) Functional Description

Table 7-11 21264/EV6 Reset State Machine State Descriptions (Continued)

State Name Description

DOWNZ2 Triggered by duration counter reaching 8205 cycles, the PLL ramps GCLK frequency
down by the first divider ratio (¥, and Zy;, equal 2 and 4, respectively). This has the
effect of halving the GCLK frequency. The duration counter is set to 4108 cycles.

DOWN3 Triggered by duration counter reaching 4108 cycles, the PLL ramps frequency down by
the second divider ratio (3, and Z;;, equal 16 and 32, respectively). This has the
effect of reducing the frequency by a factor of 16 (of the original frequency). The inter-
nal counter is set to 264 cycles.

WAIT_INTERRUPT Triggered by duration counter reaching 264 cycles, the 21264/EV6 waits for either an
unmasked clock interrupt or unmasked device interrupt from system. The interrupts are
wired to the interrupt request and enable internal registers. When an enabled interrupt
occurs, the PLL ramps back to full frequency. Subsequent to that, the built-in self-init
(BiSl) initializes arrayed structures. The SROM is not reloaded; instead, the 21264/EV6
begins fetching code from the SYSTEM.

7.11 Phase-Lock Loop (PLL) Functional Description

The PLL multiplies the clock frequency of afféirential input reference clock and
aligns the phase of its output to that differentigbiit clock. Thus, the 21264/EV6 can
communicate synchronously on clock boundaries with clock periods that are defined by

the system.

7.11.1 Differential Reference Clocks

A skew-controlled, ac-coupled differential clock is provided to the PLL by way of
Clkin_x . CIkIn_x are input signals to a differential amplifier. The frequency of
Clkin_x can range from 80 MHz to 200 MHEZIKIn_ x can be sourced by a variety of
components that include PECL fanout parts or system PClidn_ x are also the pri-
mary clock source for the 21264/EV6 when in PLL bypass mode.

7.11.2 PLL Output Clocks
The following sections summarize the PLL output clocks.

7.11.2.1 GCLK

The PLL provides an output clock, GCLK, withfeequency that can range from 400
MHz to 666.7 MHz under full-speed conditions. GCLK is the nominal onchip clock
that is distributed to the entire 21264/EV6 chip.

7.11.2.2 Differential 21264/EV6 Clocks

TheEV6CIKk_x output pads provide an external test point to measure the PLL phase
alignment. They do not provide a clock sourE&/6CIlk_x are square-wave signals
that drive rail-to-rail continually from 0 to 2.3 volts.

7.11.2.3 Nominal Operating Frequency

Under normal operating conditions, the frequency of the PLL output clock, GCLK, is a
simple function of the Y;, divider value.

Alpha 21264/EV6 Hardware Reference Manual Initialization and Configuration 7-19

Phase-Lock Loop (PLL) Functional Description

Table 7-12 shows the allowab@kin_ x frequencies for a given operating frequency
of the 21264/EV6 and the g, divider. For example, to set the 21264/EV6 GCLK fre-
guency to 500 MHz with &lkin_ x frequency of 166.7 MHz, the system must select a
Y 4iv divider of 3 by placing the value 003bn pinsIRQ_H[3:0] .

Table 7-12 Differential Reference Clock Frequencies in Full-Speed Lock

GCLK Reference Clock Frequency (MHz) for Y g, Dividers L
Period (ns) Frequency (MHz) 23 4 5 6 7 8
25 400 133.3 100 80 — — —
2.4 416.7 138.9 104.2 83.3 — — —
23 434.8 144.9 108.7 87.0 — — —
2.2 454.5 151.2 113.6 90.9 — — —
21 476.2 158.7 119.0 95.2 — — —
2.0 500 166.7 125.0 100 83.3 — —
1.9 526.3 175.4 131.6 105.3 87.7 — —
1.8 555.6 185.2 138.9 1111 92.6 — —
1.7 588.2 196.1 147.1 117.6 98.0 84.0 —
1.6 625 — 156.3 125.0 104.2 89.3 —
15 666.7 — 166.7 133.3 111.1 95.2 83.3

1 Dividers 9 through 16 are out of range for the 21264/EV6 and reserved for future use. Valid reference
clock (ClkIn_x) frequencies for the 21264/EV6 are specified in the range from 80 to 200. Divider
values that are out of that range are displayed as a dash “—".

2 Dividers of 1 and 2 are to be used only in a PLL test mode.

7.11.2.4 Power-Up/Reset Clocking

During the power-up/reset sequence, when not in PLL bypass mode, there may be a
period of time wherClkin_ x is not yet running, but there is a voltage BhL_VDD.

The signaDCOK_H is deasserted until power is good throughout the system. The
10% to 90% rise time oDCOK_H should be less than 2 ns. The deasserted state of
DCOK_H and the presence &fLL_VDD causes the PLL to generate a global clock
that is distributed throughout the 21264/EV6 with a frequency range of 1 MHz to 666.7

MHz. The presence of the global clock during this period avoids permanent damage to
the 21264/EV6.

7.11.2.5 IDDQ Testing and ZERO_POWER Mode

The 21264/EV6 must be able to measure leakage current (IDDQ) on the die while a test
program is being executed. During the leakage test, the PLL must draw only leakage
current. The following steps are used to perform the leakage test:

1. The 21264/EV6 is placed in a state where it can execute instructions following a
cold reset.

7-20 Initialization and Configuration Alpha 21264/EV6 Hardware Reference Manual

Phase-Lock Loop (PLL) Functional Description

2. The PLL is then deselected by asserttiBypass H and power is removed from
thePLL_VDD pin so that the PLL stops. The 21264/EV6 is in ZERO_POWER
mode during this final state.

This test also requires that all PLL output-only and 1/O signals do not switch state, and
therefore do not draw any operating power.

Alpha 21264/EV6 Hardware Reference Manual Initialization and Configuration 7-21

8

Error Detection and Error Handling

This chapter gives an overview of the 21264/EV6 error detection and error handling
mechanisms, and is organized as follows:

Data error corretion code

Icache data or tag parity error

Dcache tag parity error

Dcache data correctable ECC error

Dcache store second error

Dcache duplicate tag parity error

Bcache tag parity error

Bcache data correctable ECC error
Memory/system port data correctable ECC error
Bcache data correctable ECC error on a probe
Double-bit fill errors

Error case summary

Table 8—1 summarizes the 21264/EV6 error detection.

Table 8-1 21264/EV6 Error Detection Mechanisms

Component

Error Detection Mechanism

Bcache tag
Bcache data array

Dcache tag array

Parity protected.
Quadword-ECC protected.
Parity protected.

Dcache duplicate tag array ~ Parity protected.

Dcache data array

Icache tag array

Icache data array

Quadword-ECC protected, however this mode of operation is only supported in
systems that have ECC enabled on both the system and Bcache ports.

Parity protected.
Parity protected.

System port data bus Quadword-ECC protected.

Alpha 21264/EV6 Hardware Reference Manual Error Detection and Error Handling 8-1

Data Error Correction Code

8.1 Data Error Correction Code

Table 8-2

The 21264/EV6 supports a quadword error correction code (ECC) for the system data
bus. ECC is generated by the 21264/EV6 for all memory write transactions
(WrVictimBIk) emitted from the 21264/EV6 and for all probe data. ECC is also checked
on every memory read transaction for single-bit correction and double-bit error
detection. Bcache data is checked for fills to the Dcache and Icache.

The 21264/EV6 ECC implementation corrects single bit errors in hardware.

I/0 write transaction data will not have a valid ECC (the ECC bits must be ignored by
the system). Also, ECC checking is not performed on 1/O read data.

Error detection and correction can be enabled/disabled by way of Mbox IPR
DC_CTL[DCDAT_ERR_EN].

Table 8—2 shows the ECC code.

64-Bit Data and Check Bit ECC Code

CBO
CB1
CcB2
CB3
CcB4
CB5
CB6
CcB7

11 1111 1111 2222 2222 2233 3333 3333 4444 4444 4455 5555 5555 6666 CCCC CCCC

0123 4567 8901 2345 6789 0123 4567 8901 2345 6789 0123 4567 8901 2345 6789 0123 0123 4567

0111
1110
1001
1100
0011
0000
1111
1111

0100
1010
1001
0111
1111
0000
1111
1111

1101 0010 0111 0100 1101 0010 1000 1011 0010 1101 1000 1011 0010 1101 1000 0000
1010 1000 1110 1010 1010 1000 1110 1010 1010 1000 1110 1010 1010 1000 0100 0000
0110 0101 1001 1001 0110 0101 1001 1001 0110 0101 1001 1001 0110 0101 0010 0000
0001 1100 1100 0111 0001 1100 1100 0111 0001 1100 1100 0111 0001 1100 0001 0000
0000 0011 0011 1111 0000 0011 0011 1111 0000 0011 0011 1111 0000 0011 0000 1000
1111 1111 0000 0000 1111 1111 0000 0000 1111 1111 0000 0000 1111 1111 0000 0100
0000 0000 0000 0000 1111 1111 1111 1111 0000 0000 0000 0000 1111 1111 0000 0010
0000 0000 0000 0000 1111 1111 0000 0000 1111 1111 1111 1111 0000 0000 0000 0001

8.2

Icache Data or Tag Parity Error

The following actions are performed when an Icache data or tag pariby occurs.

1. When the hardware detects an error during an Icache read transaction, it traps and
replays the instructions that were fetched during the error, then flushes the entire
Icache so the re-fetched instructions do not come directly from the Icache.

|_STAT[TPE] or |_STAT[DPE] is set.
When enabled, a machine check (MCHK) is posted.

8.3 Dcache Tag Parity Error

8-2

The primary copies of the Dcache tags are used only when servicing 21264/EV6-gener-
ated load and store instructions.There are correctable and uncorrectable forms of this
error. If an issued load or store instruction detects a Dcache tag parity error, the following
actions are erformed:

1. MM_STAT[DC_TAG_PERR]is set.
2. A Dstream fault (DFAULT) is taken.
3. The virtual address associated with the error is available in the VA register.

Error Detection and Error Handling Alpha 21264/EV6 Hardware Reference Manual

Dcache Data Single-Bit Correctable ECC Error

4. The PALcode flushes the error block by temporarily disabling
DC_CTL[DCTAG_PAR_EN] and evicting the block using two HW_LD instruc-
tions. The onchip duplicate tag provides the correct victim address and cache
coherence state.

If a retried load instruction detects the Dcache tag parity error, the merafagence
may have already been retired, so the EXC_ADDR is not available. In this case, the
error is uncorrectable and the Mbox performs the following actions:

e Either DC_STAT[TPERR_PO] or DC_STAT[TPERR_P1]is set, indicating the
source of the error.

* When enabled, a machine check (MCHK) is posted. The MCHK is taken when not
in PALmode.

8.4 Dcache Data Single-Bit Correctable ECC Error

The following operations may cause Dcache data ECC errors:
* Load instructions

e Stores of less than quadword length

* Dcache victim read transactions

The hardware flow used for Dcache data ECC errors depends on the event that
caused the error.

8.4.1 Load Instruction

Loads that read data from the Dcache may do so either in the same cycle as the Dcache
tag probe (typical case) or in some subsequent cycle (load-queue retry). The hardware
functional flows for these two error cases differ slightly.

When a load instruction reads the Dcache data array in the same cycle asdh&yag
if an ECC error occurs on the LSD ECC error detectors, then the dhaps retiring
instructions and does not resume retiring until after hardware recovers from the error.

If an ECC error occurs on the LSD ECC error detectors, when a load instruction reads
the Dcache tag array before it reads the Dcache data array, then the load instruction may
have already been retired. In either case:

* Theincorrect data is written into the load instruction’s destination register;
however, the load queue retains the state associated with the load instruction.

* A consumer of the load instruction’s data may be issued before the error is
recognized; however, the Ibox will invoke a replay trap at an instruction that is
older than (or equal to) any instruction that consumes the load instruction’s data,
and then stalls the replayed Istream in the map stage of the pipeline until the error is
corrected.

* Given a READ_ERR read-type from the Mbox for the error load instruction, the
Cbox scrubs the block in the Dcache by evicting the block into the victim buffer
(thereby scrubbing it) and writing it back into the Dcache as follows:

— C_STAT[DSTREAM_DC_ERR] s set.

Alpha 21264/EV6 Hardware Reference Manual Error Detection and Error Handling 8-3

Dcache Store Second Error

C_ADDR contains bits [19:6] of the Dcache address of the block that contains
the error (bits [42:20] of the physical address are not updated).

— DC_STAT[ECC_ERR_LD] is set.
— The load queue retries the load and rewrites the register.

— A corrected read data (CRD) error interrupt is posted, when enabled.

Note: Errors in speculative load instructions cause a CRD erreriapt
to be posted but the data is not scrubbed by hardware. The PALcode
cannot perform a scrub because C_STAT is zero and C_ADDR does not
contain the address of the error.

8.4.2 Store Instruction (Quadword or Smaller)

A store instruction that is a quadword or smaller could invoke a Dcache ECC error,
since the original quadword must be read to calculate the new check bits.

* The Mbox scrubs the original quadword and replays the write transaction.
* DC_STAT[ECC_ERR_ST]is set.

* Acorrected read data (CRD) error interrupt is posted, when enabled.

8.4.3 Dcache Victim Extracts

* Dcache victims with an ECC error are scrubbed as they are written into the
victim data buffer.

* No status is logged.

* No exception is posted.

8.5 Dcache Store Second Error

A second store instructioarror is logged when it occurs closehied the first.
Neither error is corrected.

* DC_STAT[ECC_ERR_ST]is set.
e DC_STAT[SEQ] s set.

* When enabled, a machine check (MCHK) is posted. The MCHK is taken when not
in PALmode.

8.6 Dcache Duplicate Tag Parity Error

The Dcache duplicate tag has th@rrectversion of the Dcache coherence state for the
21264/EV6, allowing it to be used for aect tay/status data when the Dcache tags gen-
erate a parity error. These tags are parity protected also; however, the Dcache duplicate
tag cell is designed to be much more tolerant of sofors. The parity generators for the
duplicate tags are enabled whenever the Cbox performs a physically-indexed read
transaction of eight locations in the tagay. If an error is generated, the fmlving

actions are taken:

* Dcache duplicate tag parity errors are not rezrable.

8-4 Error Detection and Error Handling Alpha 21264/EV6 Hardware Reference Manual

Bcache Tag Parity Error

« C_STAT[DC_PERR]is set.

e C_ADDR contains bits [42:6] of the Dcache duplicate tag address of the block that
contains the error.

* When enabled, a machine check (MCHK) is posted. The MCHK is taken when not
in PALmode.

8.7 Bcache Tag Parity Error
The Bcache tag parity is checked on all Bcache tag referencédisding references
invoked by system probes. If an error is detected, the following actions are taken:
e Bcache tag parity errors are not recoverable.
* C_STAT[BC_PERR]is set.

e C_ADDR contains bits [42:6] of the Bcache address of the block that contains the
error.

* When enabled, a machine check (MCHK) is posted. The MCHK is taken when not
in PALmode.

8.8 Bcache Data Single-Bit Correctable ECC Error

The following actions may trigger Bcache data ECC errors:

* |cache fill, data possibly used by Icache

e Dcache fill, data possibly used by load instruction

e Bcache victim during an ECB instruction or during a Dcache/Bcache miss

The recovery mechanism depends on the action that triggeremrire

8.8.1 Icache Fill from Bcache

For an Icache fill, the LSD ECC checkers detect the error, and bad Icache data parity is
generated for the octaword that contains the quadword in error. If an error is detected,
the following actions are taken:

e The hardware flushes the Icache.
e C_STAT[ISTREAM_BC_ERR]is set.

e C_ADDR contains bits [42:6] of the Bcache fill address of the block that contains
the error.

e C_SYNDROME_O0[7:0] and C_SYNDROME_1[7:0] contain the syndrome of
quadword 0 and 1, respectively, of the octaword subblock that contains the error.

* A machine check (MCHK) is posted and taken immediately. The PALcode machine
check handler grforms a scribing operation as described in Section D.36 to
ensure that the origination point of the error isrected.

Note: A corrected read data (CRD) error interrupt is also posted in case this error
is in a speculative path and the MCHK is removed. The CRD PALcode
reads the status, to detect this condition, and scrubs the block. In the normal
MCHK flow, the PALcode clears the pending CRD error.

Alpha 21264/EV6 Hardware Reference Manual Error Detection and Error Handling 8-5

Bcache Data Single-Bit Correctable ECC Error

8.8.2 Dcache Fill from Bcache

If the quadword irerror is not used to satisfy a loaustruction, a hardware recovery

flow is not invoked. The quadword ierror, and its ssociated check bits, are written

into the Dcache. However, status is logged as shown in the bulleted list below, and a
corrected read data (CRD) error interruppissted, when enabled. PALcode may elect

to correct the error by scrubbing the block. If the error is not corrected by PALcode
when it occurs, the error will be detected and corrected by a later load/victim operation.

If the quadword irerror is used to satisfy a loadstruction, then the flow is very simi-
lar to that used for a Dcache ECC error. The LSD ECC checker detects the error and the
21264/EV6 performs the following actions:

* The load instruction’s destination register is written with incorrect data; however,
the load queue will retain the state associated with the load instruction.

* A consumer of the load instruction’s data may be issued before the error is
recognized. The Ibox will invoke a replay trap at an instruction that is older than (or
equal to) any instruction that consumes the load instruction’s data. The 21264/EV6
then stalls the replayed Istream in the map stage of the pipeline, until the error is
corrected.

* With a READ_ERR read type from the Mbox for the load instructioriiror, the
Cbox scrubs the block in the Dcache by evicting the block into the victim buffer
and writing it back into the Dcache.

« C_STAT[DSTREAM_BC_ERR]is set.

e C_ADDR contains bits [42:6] of the Bcache fill address of the block that contains
the error.

e C_SYNDROME_O0[7:0] and C_SYNDROME_1[7:0] contain the syndrome of
guadword 0 and 1, respectively, of the octaword subblock that contains the error.

* The load queue retries the load instruction and rewrites the register.

* DC_STAT[ECC_ERR_LD] s set.

* Acorrected read data (CRD) error interrupt is posted, when enabled.

Note: Errors in speculative load instructions cause a CRD error to be posted but
the data is not scrubbed by hardware. The PALcode cannot perform a scrub

operation because C_STAT is zero and C_ADDR does not contain the
address of the block in error.

8.8.3 Bcache Victim Read

A victim from the Bcache is written directly to thgstem port, without correction. The
ECC parity checker on the LSD detects the error and postsraated read data (CRD)
error interrupt. The Cbox error register is not updated.

8.8.3.1 Bcache Victim Read During a Dcache/Bcache Miss

While the Bcache is servicing a Dcache miss and that Bcache access is also a miss, and
an error occurs during that Bcache data access, the Cbox does not latch the error infor-
mation. However, the Mbox correction state machine is activated and it invokes a CRD
error despite the fact that no ¢ection is performed.

8-6 Error Detection and Error Handling Alpha 21264/EV6 Hardware Reference Manual

Memory/System Port Single-Bit Data Correctable ECC Error

The Bcache access error is written out to memory and is subsequently detected and cor-
rected by the next consumer of the data.

* No correction is made.

* No status is logged (C_STAT = 0).

e A CRD errorinterrupt is posted, when enabled.
8.8.3.2 Bcache Victim Read During an ECB Instruction

A victim from the Bcache that occurs while an ECB instruction is being executed is
written directly to the system port without correction. No Cbox registers are set and no
exception is taken.

8.9 Memory/System Port Single-Bit Data Correctable ECC Error

The following actions may cause memory/system port data ECC errors:
* |cache fill-data possibly used by Icache
* Dcache fill-data possibly used by a load instruction

The recovery mechanism depends on the event that caused the error.

8.9.1 Icache Fill from Memory

For an Icache fill the LSD ECC generators detect the error, and bad Icache data
parity is generated for the octaword that contains the quadword in error.

e The hardware flushes the Icache.
e C_STAT[ISTREAM_MEM_ERR]is set.

e C_ADDR contains bits [42:6] of the system memory fill address of the block that
contains the error.

e C_SYNDROME_O0[7:0] and C_SYNDROME_1[7:0] contain the syndrome of
guadword 0 and 1, respectively, of the octaword subblock that contains the error.

* A machine check (MCHK) is posted and taken immediately. The PALcode machine
check handler grforms a scribing operation as described in Section D.36 to
ensure that the origination point of the error isrected.

Note: Also, a corrected read data (CRD) erropissted, when enabled, in case
this error is in a speculative path and the MCHK is removed. The CRD
error PALcode reads the status to detect thisdition and scrubs the block.
In the normal MCHK flow, the PALcode clears the pending CRD error.

8.9.2 Dcache Fill from Memory

If the quadword irerror is not used to satisfy a loaustruction, no hardware

recovery flow is invoked. The quadword in error, and its associated check bits, are writ-
ten into the Dcache. However, status is logged as shown in the bulleted list below and a
corrected read data (CRD) error interruppissted, when enabled. PALcode may

choose to coect the error by scibbing the block. If the error is not corrected by PAL-
code at the time, the error will be detected and corrected bydivimdim operation.

Alpha 21264/EV6 Hardware Reference Manual Error Detection and Error Handling 8-7

Bcache Data Single-Bit Correctable ECC Error on a Probe

If the quadword irerror is used to satisfy a loadstruction, then the flow is very simi-
lar to that used for a Dcache ECC error:

The load instruction’s destination register is written with incorrect data; however,
the load queue will retain the state associated with the load instruction.

A consumer of the load instruction’s data may be issued before the error is
recognized; however, the lbox will invoke a replay trap at an instruction that is
older than (or equal to) any instruction that consumes the load instruction’s data.
The Ibox stalls the replayed Istream in the map stage of the pipeline until the error
is corrected.

With a READ_ERR read type from the Mbox for the load instructioriror, the
Cbox scrubs the block in the Dcache by evicting the block into the victim buffer
and writing it back into the Dcache.

C_STAT[DSTREAM_MEM_ERR] is set.

C_ADDR contains bits [42:6] of the system memory fill address of the block that
contains the error.

C_SYNDROME_0[7:0] and C_SYNDROME_1[7:0] contain the syndrome of
guadword 0 and 1, respectively, of the octaword subblock that contains the error.

The load queue retries the load instruction and rewrites the register.
DC_STAT[ECC_ERR_LD] is set.

A corrected read data (CRD) error interrupt is posted, when enabled.

Note: Errors in speculative load instructions cause a CRD error to be posted but

the data is not scrubbed by hardware. The PALcode cannot scrub the data
because C_STAT is zero, and C_ADDR does not have the address of the
block with the error.

8.10 Bcache Data Single-Bit Correctable ECC Error on a Probe

The probed processor extracts the block from its Bcache, signaling a corrected read
data (CRD) error and latching error infornaat. The single-bit ECC detected error data

is not corrected by the probed processor, but is forwarded to the requesting processor.
The requesting processor then detects a related systegnréil as a result of this sys-

tem probe transaction.

No hardware correction is performed.
C_STAT[PROBE_BC_ERR] is set.

C_ADDR contains bit [42:6] of the Bcache address of the block that contains the
error.

C_SYNDROME_Q[7:0] and C_SYNDROME_1[7:0] contain the syndrome of
quadword 0 and 1, respectively, of the octaword subblock that contains the error.

A CRD error interrupt is posted, when enabled.

The PALcode on the probed processor may choose to scrub the error, though it will
probably be scrubbed by the requesting processor.

8-8 Error Detection and Error Handling Alpha 21264/EV6 Hardware Reference Manual

Double-Bit Fill Errors

8.11 Double-Bit Fill Errors

Double-biterrors for fills are detected, but not corrected, in thie@4/EV6. The fol-
lowing events may cause a double-bit fill error:

* Icache fill from Bcache

* Dcache fill from Bcache

* |cache fill from memory

e Dcache fill from memory

If an error is detected, the following actions are taken:
e C_STAT is setto DOUBLE_BIT_ERROR.

* When enabled, a machine check (MCHK) is posted. The MCHK is taken when not
in PALmode.

* A double-bit fill error from memory, marked by the data's corresponding ECC,
when written to cache, also writes the corresponding ECC to cache. Any consumer
of that error (such as another CPU) also consumes the corresponding ECC value.

8.12 Error Case Summary

Table 8—3 summarizes the various error cases and their ramifications.

Table 8-3 Error Case Summary

Hardware PALcode
Error Exception Status Action Action
Icache data or tag parity MCHK ISTAT[TPE] or ISTAT[PDE] Uncorrectable Log as MCHK
error
Dcache tag parity error DFAULT MM_STAT[DC_TAG_PERR] — Evict with two
(onissue) VA[address] HW_LDs and
log as CRD
Dcache tag parity error MCHK?! DC_STAT[TPERR_POQ] or — Log as MCHK
(on retry) DC_STAT[TPERR_P1]
Dcache single-bit ECC CRD DC_STAT[ECC_ERR_LD] Corrected and Log as CRD
error on load C_STATIDSTREAM_DC_ERR]C_ scrubbed
ADDR[bits [19:6] of the error
address. [42:20] not updated.]
Dcache single-bit ECC CRD DC_STAT[ECC_ERR_LD] C_STAT None Log as CRD
error on contains zero
speculative load
Dcache single-bit ECC CRD DC_STAT[ECC_ERR_ST] Corrected andLog as CRD
error on small store scrubbed
Dcache single-bit ECC None None Corrected andNone
error on victim read scrubbed
Dcache second error on MCHK! DC_STAT[SEO] No correction Log as MCHK
store on either store
Dcache duplicate tag parl\/ICHKl C_STAT[DC_PERR] Uncorrectable Log as MCHK
ity error C_ADDR|error address]

Alpha 21264/EV6 Hardware Reference Manual Error Detection and Error Handling 8-9

Error Case Summary

Table 8-3 Error Case Summary (Continued)

Hardware PALcode
Error Exception Status Action Action
Bcache tag parity error MCHK C_STAT[BC_PERR]C_ADDRJerrorUncorrectable Log as MCHK

Bcache single-bit error MCHK
on Icache fill and CRD?
Bcache single-bit error CRD

on Dcache fill

Bcache victimread on CRD
Dcache/Bcache miss

Bcache victim read on None
ECB

Memory single-bit error MCHK
on Icache fill and CRD¥

Memory single-bit error CRD
on Dcache fill

Bcache single-bit error CRD

on a probe hit

Bcache double-bit error MCHK1®
on Icache fill

Bcache double-bit error MCHK1®
on Dcache fill

Memory double-bit error MCHK?!
on Icache fill

Memory double-bit error MCHK?!
on Dcache fill

address]

C_STAT[ISTREAM_BC_ERR]
C_ADDR|error address]
C_SYNDROME_O
C_SYNDROME_1

DC_STAT[ECC_ERR_LD]
C_STAT[DSTREAM_BC_ERR]
C_ADDR|error address]
C_SYNDROME_O
C_SYNDROME_1

DC_STAT[ECC_ERR_LD]
C_STAT contains 0

None

C_STAT[ISTREAM_MEM_ERR]
C_ADDR|error address]
C_SYNDROME_O
C_SYNDROME_1

DC_STAT[ECC_ERR _LD]
C_STATIDSTREAM_MEM_ERR]
C_ADDR|error address]
C_SYNDROME_O
C_SYNDROME_1

C_STAT[PROBE_BC_ERR]
C_ADDRJerror addres§]
C_SYNDROME_O
C_SYNDROME_1

C_STAT[DOUBLE_BIT_ERROR]
C_STAT[DOUBLE_BIT_ERROR]

C_STAT[DOUBLE_BIT_ERROR]

C_STAT[DOUBLE_BIT_ERROR]

Icache flushed

Corrected and
scrubbed in
Dcaché

None

None

Icache flushed

Corrected and
scrubbed in
Dcaché

None

None

None

None

None

Scrub error as
described in
Section D.36.
Log as CRD

Scrub error as
described in
Section D.36.
Log as CRD

Log as CRD

None

Scrub error as
described in
Section D.36.
Log as CRD

Scrub error as
described in
Section D.36.
Log as CRD

May scrub error
as described in
Section D.36.
Log as CRD

Log as MCHK
Log as MCHK

Log as MCHK

Log as MCHK

1
2
3

but is corrected by PALcode during the scrub operation.

8-10

Error Detection and Error Handling

Machine check taken in native mode. It is deferred while in PALmode.
CRD error posted in case the machine check is down a speculative path.

For a single-bit error on a non-target quadword, the error is not corrected in hardware,

The contents of C_ADDR may not be accurate when there is heavy cache fill traffic.

Alpha 21264/EV6 Hardware Reference Manual

9

Electrical Data

This chapter describes the electrical characteristics of the 21264/EV6 ancifadet
pins. The chapter contains both ac and dc electrical characteristics and power supply
considerations, and is organized as follows:

¢ Electrical characteristics
¢ DC characteristics
e Power supply sequencing

¢ AC characteristics

9.1 Electrical Characteristics

Table 9-1 lists the maximum electrical ratings for the 21264/EV6.

Table 9-1 Maximum Electrical Ratings

Characteristics

Ratings

Storage temperature

Junction temperature

-58 t0 +125 C (67 F to 257 F)
°@Cto 100 C (32 Fto 212 F)

Maximum dc voltage on signal pins VDD + 400 mV
Minimum dc voltage on signal pins VSS-400 mV
Maximum power @ indicated VDD
for the following frequencies: Frequency Peak Power
466 MHz 82.0W @ 2.30 VVDD
500 MHz 91.0W @ 2.30 VVDD
550 MHz 100.0 W @ 2.30 V VDD
575 MHz 107.5W @ 2.35 VVDD
600 MHz 109.0 W @ 2.30 V VDD
Notes: Stresses above those listed under the given maximum electrical ratings may

cause permanent device failure. Functionality at or above these
limits is not implied. Exposure to these limits for extended periods of time
may affect device reliability.

Power data is preliminary and based on measurements from a limited set of

material.

Alpha 21264/EV6 Hardware Reference Manual

Electrical Data 9-1

DC Characteristics

9.2 DC Characteristics

This section contains the dc characteristics for the 21264/EV6. The 21264/EV6 pins
can be divided into 10 distinct electrical signal types. The mapping between these sig-
nal types and the package pins is shown in Chapter 3. Table 9-2 shows the signal types.

Table 9-2 Signal Types

Signal Type Description

|_ DC_POWER Supply voltage pin¥ DD/PLL_VDD)

|_ DC_REF Input dc reference pin

I|_DA Input differential amplifier receiver

|_ DA _CLK Input differential amplifier clock receiver

O_0OD Open-drain output driver

O_OD_TP Open-drain driver for test pins

O_PP Push-pull output driver

O_PP_CLK Push-pull output clock driver

B_DA _OD Bidirectional differential amplifier receiver — open-drain
B_DA PP Bidirectional differential amplifier receiver — push-pull

DC Switching Characteristics for Each Signal Type
Tables 9-3 through 9—-12 show the dc switching characteristics of each signal type.

Notes for Tables 9—3 to 9-12
The following notes apply to Tables 9-3 to 9-12.

1. The differential voltage, Vdiff, is the absolutdfdrence between the diffeméal
input pins.

2. Delta Vg|as is defined as the open-circuit differential voltage on the appropriate

differential pairs. Testa@ndition for these inputs are to let the input network self
bias and measure the open circuit voltage. The test load muasfL.beohm. In nor-
mal operation, these inputs are coupled with a 680-pF capacitor.

3. Functional operation of the 21264/EV6 with less than/&@D andVSS pins con-
nected is not implied.

4. The testload is a 50-ohm resistor to VDD/2. The resistor can be connected to the
21264/EV6 pin by a 50-ohm transmission line of any length.

5. DC test conditions set the minimum swing required. These dc limits set the trip
point precision.

6. Input pin capacitance values include 2.0 pF added for package capacitance.

9-2 Electrical Data Alpha 21264/EV6 Hardware Reference Manual

DC Characteristics

Note: Current out of a 21264/EV6 pin is represented by a — symbol while a +
symbol indicates current flowing into a 21264/EV6 pin.

Table 9-3 VDD (I_DC_POWER)

Parameter Symbol Description Test Conditions Minimum Maximum

VDD Processor core supply voltage — 21V 2.3V

Power (sleep) Processor power required (sleep) @ VDD =2.3 19 Wt
Note 3

PLL_VDD PLL supply voltage — 3.135V 3.465 Vc

PLL_IDD PLL supply current (running) Freq =600 MHz — 25 mA

1 power measured at 37.5 MHz while running the “Ebox aliveness test.”

Table 9-4 Input DC Reference Pin (I_DC_REF)

Parameter
Symbol Description Test Conditions Minimum Maximum
VREF DC input reference voltage — 600 mV VDD - 650 mV

1] Input current VSV <VDD — 150pA

Table 9-5 Input Differential Amplifier Receiver (I_DA)

Parameter
Symbol Description Test Conditions Minimum Maximum
VL Low-level input voltage Note 5 — VREF — 200 mV
V4 High-level input voltage — VREF +200mV —
[1] Input current VSV VDD — 150 pA
Cin Input-pin capacitance Freq =10 MHz — 5.7 pF
Note 6

Table 9-6 Input Differential Amplifier Clock Receiver (I_DA_CLK)

Parameter

Symbol Description Test Conditions Minimum Maximum

V gift Differential input voltage — 200 mv Notel —

|AVgas| Open-circuit differential E+1pA — 50 mV
Note 2

[1] Input current VSV <VDD — 150 pA

CiNn Input-pin capacitance Freq =10 MHz — 5.0 pF

Note 6

Alpha 21264/EV6 Hardware Reference Manual Electrical Data 9-3

DC Characteristics

Table 9-7 Open-Drain Output Driver (O_OD)

Parameter

Symbol Description Test Conditions Minimum Maximum
VoL Low-level output voltage dL =70 mA — 400 mV
loz | High impedance output current 0<V<VDD — 150
Cob Open-drain pin capacitance Freq =10 MHz — 5.7 pF

Note 6

Table 9-8 Bidirectional, Differential Amplifier Receiver, Open-Drain Output Driver (B_DA_OD)

Parameter
Symbol Description Test Conditions Minimum Maximum
VL Low-level input voltage Note 5 — VREF -200 mv
ViH High-level input voltage — VREF +200mV —
VoL Low-level output voltage d. =70 mA — 400 mV
[1] Input current VSV <VDD — 150 At
CiNn Input-pin capacitance Freq =10 MHz — 5.7 pF
Note 6

1 Measurement taken with output driver disabled.

Table 9-9 Open-Drain Driver for Test Pins (O_OD_TP)

Parameter

Symbol Description Test Conditions Minimum Maximum
VoL Low-level output voltage dL =15 mA — 400 mV

[oz | High-impedance output current 0<V<VDD — 156
Cop_TP Pin capacitance Freq =10 MHz — 5.2 pF

Note 6

Table 9-10 Bidirectional, Differential Amplifier Receiver, Push-Pull Output Driver (B_DA_PP)

Parameter
Symbol Description Test Conditions Minimum Maximum
VL Low-level input voltage — — VREF — 200 mV
V4 High-level input voltage — VREF +200 mV —
VoL Low-level output voltage dL =6 mA — 400 mV
VoH High-level output voltage dy=-6mA VDD -400mV —
1] Input current VSEV<<VDD — 150 pAl
Cin Input-pin capacitance Freq =10 MHz — 6.0 pF
Note 6

1 Measurement taken with output driver disabled.

9-4 Electrical Data Alpha 21264/EV6 Hardware Reference Manual

Power Supply Sequencing and Avoiding Potential Failure Mechanisms

Table 9-11 Push-Pull Output Driver (O_PP)

Parameter

Symbol Description Test Conditions Minimum Maximum

VoL Low-level output voltage dL =40 mA — 500 mV

VoH High-level output voltage dL=—-40 mA VDD -500mV —

| oz | High-impedance output current 0<V<VDD — 156
Cob Open-drain pin capacitance Freq = 10 MHz — 6.0 pF

Note 6

Table 9-12 Push-Pull Output Clock Driver (O_PP_CLK)

Parameter

Symbol Description Test Conditions Minimum Maximum
VoL Low-level output voltage Note 4 — VDD/2 -325mV
VoH High-level output voltage Note 4 VDD/2 +325mV —
[loz | High-impedance output 0<V<VDD — 40 mAL

current

1 Measured value includes current from onchip termination structures.

9.3 Power Supply Sequencing and Avoiding Potential Failure Mech-
anisms

Before the power-on sequencing can ocsystems should ensure tH2€EOK_H is

deasserted anldeset_Lis asserted. Then, systems ramp power to the 21264/EV6
PLL_ VDD @ 3.3V and the 21264/EV6 power plan&D @ 2.2 V, not to exceed

2.3 V under any circumstances), wit.L_VDD leadingVDD. Systems should

supply differential clocks to the 21264/EV6 @lkin_H andClkin_L . The clocks

should be running as power is supplied.

When enabling the power supply inputs in a system, three failure mechanisms must be

avoided:

1. Bidirectional signal buses must not conflict during power-up. A conflict on these
buses can generate high current conditions, which can compromise the reliability of

the associated chips.

2. Similarly, input receivers should not see intermediate voltage levels that can also
generate high current conditions, which can compromise the reliability of the

receiving chip.

3. Finally, no CMOS chip should see an input voltage that is higher than its internal
VDD. In such a condition, a reasonable level of charge can be injected into the bulk

of the die. This condition can expose the chip to a posifeedback latchup
condition.

The 21264/EV6 addresses those three failure mechanisms by disabling all of its outputs
and bidrectional pins (with three exceptions) until the assertioBDGOK_H. The
three exceptions aredo_H, EV6CIk_L , andEV6CIk_H.Tdo_H is used only in the

Alpha 21264/EV6 Hardware Reference Manual Electrical Data 9-5

AC Characteristics

tester environment and does not need to be disaB¢@8Clk_L andEV6CIk_H are
outputs that are both generated and consumed by the 21264/EVeyDsracks for
both the producer and consumer.

On the push-pull intdaces:

* Disabling all output drivers leaves the output signal at the DC bias point of the ter-
mination network.

e Disabling the bidirectional drivers leaves the other consumers of the bus as the bus
master.

On the open-drain interfaces:

* Disabling all output drivers leaves the output signal at the voltage of the open-drain
pull-up.

* Disabling all bidirectional drivers leaves the other consumers of the bus as the bus
master.

To avoid failure mechanism number two, systems must sequence and control external
signal flow in such a way as to avoid zero differential into #1264/EV6 input

receivers (I_DA, 1 DA CLK,B_DA OD,B_DA PP, and B_DA PP). Finally, to

avoid failure mechanism number three, systems must sequence input and bidirectional
pins (I_DA,|_DA CLK,B_DA OD,B_DA PP, and|_DC_REF) such that the 21264/
EV6 does not see a voltage above its VDD.

In addition, as power is being rampédRieset _Lmust be asserted — this allows the
21264/EV6 to reset internal state. Once the target voltage levels are attained, systems
should asselDCOK_H. This indicates to the 21264/EV6 that internal logic functions
can be evaluated correctly and that flmver-up sequencghould be continued. Prior to
DCOK_H being asserted, the logic internal to the 21264/EV6 is being reset and the
internal clock network is running (either clocked by the VCO, which is at a nominal
speed, or byCIkIn_H , if the PLL is bypassed).

The reset state machine is in state WAIT_SETTLE.

9.4 AC Characteristics

Abbreviations:

The following abbreviations apply to Table 9-13:
e TSU = Setup time

e Duty cycle = Minimum clock duty cycle

e TDH = Hold time

* Slew rate = referenced to signal edge

AC Test Conditions:

The following conditions apply to the measurements that are listed in Table 9-13:
* VDDisinthe range between 2.1 V and 2.3 V.
e SysVrefis VDD/2 \olts.

* BcVrefis 0.75 Volts.

9-6 Electrical Data Alpha 21264/EV6 Hardware Reference Manual

AC Characteristics

e The input voltage swing is Vref £ 0.40 Volts.

e All output skew data is based on simulation into a 50-ohm transmission line that is
terminated with 50 ohms to VDD/2 for Bcache timing, and with 50 ohms to VDD
for all other timing.

Timings are measured at the pins as follows:

For open-drain outputs, timing is measured tg &VVery)/2. Where g, iS

the offchip termination voltage for system signals.

— For non-open-drain outputs, timing is measured tg Wq)/2.

— For all inputs other than type |_DA_CLK, timing is measured to the point
where the input signal crosses VREF.

— Fortype | DA CLK inputs, timing is measured when the voltage on the com-

plementary inputs is equal.

Table 9-13 AC Specifications

Signal Name Type Reference Signal TSU ! TDH? TSkew Duty Cycle TSlew
SysAddin_L[14:0 I_DA SysAddInCIk_L 400 ps 400ps NA NA 1.0V/ns
SyskFillValid_L I_DA SysAddInCIk_L 400 ps 400ps NA NA 1.0V/ns
SysDatalnValid_L I_DA SysAddInCIk_L 400 ps 400ps NA NA 1.0V/ns
SysDataOutValid_L I_DA SysAddInCIk_L 400 ps 400ps NA NA 1.0V/ns
SysAddInCIk_L I_DA NA NA NA NA 45-55% 1.0 V/ns
SysAddOut_L[14:0] 0_OD SysAddoutClk_L NA NA +300ps NA NA
SysAddOutCIk_L O_OD EV6CIk_x NA NA +400 ps 45-55% NA
SysData_L[63:0] B_DA_OD SysDatalnClk_H[7:0] 400 ps 400ps NA NA 1.0V/ns
SysDataOutClk_L[7:0]* NA NA +300psS NA NA
SysCheck_L[7:0] B_DA_OD SysDatalnClk_H[7:0] 400 ps 400ps NA NA 1.0V/ns
SysDataOutClk_L[7:0]* NA NA +300ps NA NA
SysDatalnCIk_H[7:0] I_DA NA NA NA NA 45-55% 1.0 V/ns
SysDataOutClk_L[7:0] O_0OD EV6CIk_x NA NA +400 ps 45-55% NA
BcAdd_H[23:4] O_PP BcTagOutClk_x NA NA +300ps® NA —
BcDataOE_L O_PP B(:DataOutCIk_x[S:O]7 45-55% —
BcLoad_L O_PP 38-63% —
BcDataWr L O_PP 40-60% —
BcData_H[127:0] B_DA PP BcDataOutClk_x[3:0]'° NA NA +300p8 45-55% 1.0 Vins
38-6396 NA
40-609% NA
BcDatalnClk_H[7:0] 400 ps 400ps NA NA NA
BcDatalnClk_H[7:0] I_DA NA NA NA NA 45-55%
BcDataOutClk_H[3:0] O_PP EV6CIk_x NA NA +400 ps
BcDataOutClk_L[3:0] O_PP EV6CIk_x NA NA +400 ps
BcTag_H[42:20] B_DA_PP BcTagInClk_H 400 ps 400ps NA NA 1.0V/ns
BcTagDirty_H B_DA_PP BcTagInClk_H 400 ps 400ps NA NA 1.0V/ns

Alpha 21264/EV6 Hardware Reference Manual

Electrical Data 9-7

AC Characteristics

Table 9-13 AC Specifications (Continued)

Signal Name Type Reference Signal TSU ' TDH? TSkew Duty Cycle TSlew
BcTagParity H B_DA_PP BcTagInClk_H 400 ps 400ps NA NA 1.0V/ns
BcTagShared_H B_DA_PP BcTagInClk_H 400 ps 400ps NA NA 1.0V/ns
BcTagValid_H B_DA_PP BcTagInClk_H 400 ps 400ps NA NA 1.0V/ns
BcTagValid_H B_DA_PP BcTagOutClk_x NA NA +300p¢ 45-55% NA
BcTagDirty_H B_DA_PP 38-63% NA
BcTagShared_H B_DA PP 40-60% NA
BcTagParity H B_DA PP

BcTagOE_L O_PP

BcTagWr_L O_PP

BcTagInClk_H I_DA NA NA NA NA 45-55%

BcTagOutClk_x O_PP EV6CIk_x NA NA +400 ps

IRQ_H[5:0] |_DA DCOK_H 10nd! 10nd! NA NA 100 mV/ns
Reset_112 I_DA NA NA NA NA 100 mV/ns
DCOK_H13 I_DA NA NA NA NA 100 mV/ns
PlIBypass_H“* |_DA NA NA NA NA 100 mV/ns
Clkin_x15 |_DA_CLK NA NA NA 40-60%® 1.0 V/ns
FrameClk_x7 |_DA_CLK CIkIn_x 400ps 400ps NA NA 1.0 Vins
EV6CIk_x18 O_PP_CLK CIkIn_x NA NA +1.0ns YDivt5% NA
EV6CIk_x1° Cycle Compression Specification: See Note 19

ClkFwdRst_H I_DA FrameCIk_x 400 ps 400ps NA NA 1.0 Vins
SromData_H I_DA SromCIk_H 20ns 2.0ns NA 100 mV/ns
SromOE_L 0_0OD EV6CIk_x NA NA +2.0ns

SromClk_H?%° 0_OD EV6CIK_x NA NA +7.0ns

Tms_H I_DA Tck_H 20ns 2.0ns NA NA 100 mV/ns
Trst L2t I_DA Tk _H NA NA NA NA 100 mV/ns
Tdi_H I_DA Tck_H 20ns 2.0ns NA NA 100 mV/ns
Tdo_H 0_0D Tek_H NA NA +70ns NA NA

Tck_H I_DA IEEE 1149.1 Port NA NA NA 45-55% 100 mV/ns

Freq. = 5.0 MHz Max.

TestStat_H O_0OD EV6CIK_x NA NA +4.0ns NA NA

1
2

The TSU specified for all clock-forwarded signal groups is with respect to the associated clock.
The TDH specified for all clock-forwarded signal groups is with respect to the associated clock.

3 The TSkew value applies only when the SYS_CLK_DELAY[0:1] entry in the Cbox WRITE_ONCE
chain (Table 5-23) is set to zero phases of delay between forwarded clock out and address/data.

The TSkew specified foBysData_Lsignals is only with respect to the associated clock.

9-8 Electrical Data Alpha 21264/EV6 Hardware Reference Manual

AC Characteristics

These signals should be reference@®tdagOutCIk_x when measuring TSkew, provided that
BcTagOutClkl_x andBcDataOutClk_x have no programmed offset.

6 The TSkew value applies only when the BC_CLK_DELAY]0:1] entry in the Cbox WRITE_ONCE
chain (Table 5-23) is set to zero phases of delay for Bcache clock.

The TSkew specified foBcAdd_H signals is only with respect to the associated clock.

The duty cycle for 2.5X single data mode 2 GCLK phases high and 3 GCLK phases low.
The duty cycle for 3.5X single data mode 3 GCLK phases high and 4 GCLK phases low.
10 The TSkew specified foBcData_H signals is only with respect to the associated clock pair.

1 IRQ_H[5:0] must have their TSU and TDH times reference®®@OK_H during power-up to ensure
the correct Y divider and resultingV6CIk_x duty cycle. When the 21264/EV6 is executing instruc-
tionsIRQ_HI[5:0] act as normal asynchronous pins to handle interrupts.

7
8
9

12 Reset_Lis an asynchronous pin. It may be asserted asynchronously.

13 DCOK_H is an asynchronous pin. Note the minimum slew rate on the assertion edge.

14 PlIBypass_Hmay not switch whelClkin_ x is running. This pin must either be deasserted during
power-up or the 21264/EV6 core power pWD pins) indicating the 21264/EV6’s internal PLL will

be used. Note that it is illegal to us#Bypass_Hasserted during power-up unles€klin_x is
present.

15 See Section 7.11.1 for a discussiorkIin_ x as it relates to operating the 21264/EV6’s internal PLL
versus running the 21264/EV6 in PLL bypass mddiéln_ x has specific input jitter requirements to
ensure optimum performance of the internal 21264/EV6 PLL.

16 1nPLL bypass mode, duty cycle deviation from 50%-50% directly degrades device operating fre-
qguency.
17 The TSU and TDH ofrrameClk_x are referenced to the deasserting edgélafn_ x.

18 This signal is a feedback to the internal PLL and may be monitored for overall 21264/EV6 jitter. It can
also be used as a feedback signal to an external PLL when in PLL bypass mode. Proper termination of
EV6CIk_x is imperative.

19 The cycle or phase cannot be more than 5% shorter than the nominal. Do not confuse this measure-
ment with duty cycle.

20 The period forSromClk_H is 256 GCLK cycles.

21 WhenTrst_L is deasserted;ms_H must not change statérst L is asserted asynchronously but
may be deasserted synchronously.

Alpha 21264/EV6 Hardware Reference Manual Electrical Data 9-9

10

Thermal Management

This chapter describes the 21264/EV6 thermal management and thermal design
considerations, and is organized as follows:

* Operating temperature
* Heat sink specifications

e Thermal design considerations

10.1 Operating Temperature

The 21264/EV6 is specified to operate when the temperature at the center of the heat
sink (Tg) is as shown in Table 10-1. Temperatugesfiould be measured at the center of
the heat sink, between the two package studs. The GRAFOIL pad is énfacd mate-

rial between the package and the heat sink.

Table 10-1 Operating Temperature at Heat Sink Center (T,)

Te Frequency
76.9 C 466 MHz
75.° C 500 MHz
72.7 C 550 MHz
715 C 575 MHz
70.3 C 600 MHz
Note: Compaq recommends using the heat sink because it greatly improves the

ambient temperature requirement.

Alpha 21264/EV6 Hardware Reference Manual Thermal Management 10-1

Operating Temperature

Table 10-2 lists the values for the center of heat-sink-to-ambégaj {or the 21264/
EV6 587-pin PGA. Tables 10-3 through 10-7 show the allowaplgvithout
exceeding) at various airflows.

Table 10-2 g.a at Various Airflows for 21264/EV6

Airflow (linear ft/min) 100 200 400 800 1000
B.awith heat sink type 11C/W) 2.0 1.2 0.65 0.40 0.37
B.awith heat sink type 29C/W) 1.4 0.78 0.45 0.33 0.31
B.awith heat sink type 3(°c/w) —0.38 —

1 Heat sink type 3 has a 80 mm80 mmx 15 mm fan attached.

Table 10-3 Maximum T for 21264/EV6 @ 466 MHz with Various Airflows

Airflow (linear ft/min) 100 200 400 800 1000
Maximum T, with heat sink type 19C) — — 26.9 46.1 484
Maximum T, with heat sink type 29C) — — 42.3 51.5 53.1
Maximum T, with heat sink type 3(°C) — 477 —

1 Heat sink type 3 has a 80 mm80 mmx 15 mm fan attached.

Table 10-4 Maximum T for 21264/EV6 @ 500 MHz with Various Airflows

Airflow (linear ft/min) 100 200 400 800 1000
Maximum T, with heat sink type 1°9C) — — 21.2 419 44.4
Maximum T, with heat sink type 2°9C) — — 37.8 477 49.4
Maximum T, with heat sink type 3(°C) —43.6 —

1 Heat sink type 3 has a 80 mm80 mmx 15 mm fan attached.

Table 10-5 Maximum T , for 21264/EV6 @ 550 MHz with Various Airflows

Airflow (linear ft/min) 100 200 400 800 1000
Maximum T, with heat sink type 1°9C) — — — 36.3 39.1
Maximum T, with heat sink type 2°9C) — — 31.8 42.7 44.5
Maximum T, with heat sink type 3(°C) —38.2—

1 Heat sink type 3 has a 80 mm80 mmx 15 mm fan attached.

Table 10-6 Maximum T , for 21264/EV6 @ 575 MHz with Various Airflows

Airflow (linear ft/min) 100 200 400 800 1000
Maximum T, with heat sink type 19C) — — — 33.5 36.4
Maximum T, with heat sink type 29C) — — 28.8 40.2 42.1
Maximum T, with heat sink type 3(°C) —35.4—

1 Heat sink type 3 has a 80 mm80 mmx 15 mm fan attached.

10-2 Thermal Management Alpha 21264/EV6 Hardware Reference Manual

Heat Sink Specifications

Table 10-7 Maximum T , for 21264/EV6 @ 600 MHz with Various Airflows

Airflow (linear ft/min) 100 200 400 800 1000
Maximum T, with heat sink type 1°9C) — — — 30.7 33.7
Maximum T, with heat sink type 2°9C) — — 25.8 37.7 39.6
Maximum T, with heat sink type 3(°C) — 32.7—

1 Heat sink type 3 has a 80 mm80 mmx 15 mm fan attached.
10.2 Heat Sink Specifications

Three heat sink types are specified. The mounting holes for all three are in line with the
cooling fins.

Figure 10-1 shows the heat sink type 1, along with its approximate dimensions.

Figure 10-1 Type 1 Heat Sink

80.5 mm 25.jmm
(3.17 in) Lo

Y

e e el el e e e e e a e e a e

R

32.5mm
(1.280 in)

FM-06119.Al14

Alpha 21264/EV6 Hardware Reference Manual Thermal Management 10-3

Heat Sink Specifications

Figure 10-2 shows the heat sink type 2, along with its approximate dimensions.

Figure 10-2 Type 2 Heat Sink

< 81.0 mm
(3.191in)

W

| d |
\
81.0 mm | 25.4 mm
(3.191n) (L.0in)
| A ¢

(

= O
|
.

O

R

44.5 mm
(1.75)

|
VCUUUUUUUUPDULUUUYUUUUUUUUU l

FM-06120.A14

Figure 10-3 shows heat sink type 3, along with its approximate dimensions.

The cooling fins of heat sink type 3 are cross-cut. Also, an 8080 mmx 15 mm
fan is attached to heat sink type 3.

10-4 Thermal Management Alpha 21264/EV6 Hardware Reference Manual

Thermal Design Considerations

Figure 10-3 Type 3 Heat Sink

80.0 mm
(3.151in)
71.5 mm
(2.815in)

;é}‘f (] ““4

25.4 mm
(2.0in)

40.0 mm T R
(1.575in)] H

27.3mm }: =[x
L (1.075in) : = HH

Y

80.0 mm
(3.151in)

71.5 mm e S — B
(2.815in)

Fan Fan

1 L \ 1
(1.62in) ; | | |

I

T ; \ —— \
ooy B
[l St iy = i By s e iy

70.65 mm
< (2.815in) >

FM-06121.A14

10.3 Thermal Design Considerations

Follow these guidelines for printed circuit board (PCB) component placement:

e Orient the 21264/EV6 on the PCB with the heat sink fins aligned with the airflow
direction.

* Avoid preheating ambient air. Place the 21264/EV6 on the PCB so that inlet air is
not preheated by any other PCB components.

* Do not place other high power devices in the vicinity of the 21264/EV6.

Do not restrict the airflow across the 21264/EV6 heat sink. Placement of other devices
must allow for maximum system airflow in order to maximize the performance of the
heat sink.

Alpha 21264/EV6 Hardware Reference Manual Thermal Management 10-5

11

Testability and Diagnostics

This chapter describes the 21264/EV6 user-oriented testability and diagnostic features.
These features include automatic pvwip self-test, Icachiaitialization from external
serial ROMs, and the serial diagnostic terminal port.

The boundary-scan register, which is another testability and diagnostic feature, is listed
in Appendix B. The boundary-scan register is compatible with IEEE Standard 1149.1.

This chapter is organized as follows:

e Testpins

e SROM/serial diagnostic terminal port

* |EEE 1149.1 port

e TestStat H pin

* Power-up self-test aniditialization

* Notes on IEEE 1149.1 operation and compliance

The 21264/EV6 has several manufacturing test features that are used only by the fac-
tory, and they are beyond the scope of this chapter.

11.1 Test Pins

The 21264/EV6 test access ports include the IEEE 1149.1 test access port, a dual-pur-
pose SROM/Serial diagnostic terminal port, and a test status output pin. Table 11-1 lists
the test access port pins.

Table 11-1 Dedicated Test Port Pins

Pin Name Type Function

Tms_H Input IEEE 1149.1 test mode select

Tdi_H Input IEEE 1149.1 test data in

Trst_ L Input IEEE 1149.1 test logic reset

Tck _H Input IEEE 1149.1 test clock

Tdo_H Output IEEE 1149.1 test data output
SromData_H Input SROM data/Diagnostic terminal data input

Alpha 21264/EV6 Hardware Reference Manual Testability and Diagnostics 11-1

SROM/Serial Diagnostic Terminal Port

Table 11-1 Dedicated Test Port Pins (Continued)

Pin Name Type Function

SromCIlk_H Output SROM clock/Diagnostic terminal data output
SromOE_L Output SROM enable/Diagnostic terminal enable
TestStat H Output BiST status/timeout output

11.2 SROM/Serial Diagnostic Terminal Port

This port supports two functions. During power-up, it supports automatic initialization
of the Cbox configuration registers and the Icache from the system serial ROMs. After
power-up, it supports a serial diagnostic terminal.

11.2.1 SROM Load Operation

The following actions are performed while the SROM is loaded:

* TheSromOE_L pin supplies the output enable as well as the reset to the serial
ROM. (Refer to the serial ROM specifications for details.) The 21264/EV6 asserts
this signal low for the duration of the Icache load from the serial ROM. When the
load has been completed, the signal remains deasserted.

e TheSromCIk_H pin supplies the clock to the SROM that causes it to advance to
the next bit. Simultaneously, it causes the existing data oStbmData_ H pin to
be shifted into an internal shift register. The cycle time of this clock is 256 times the
CPU clock rate. (If the FASTROM flag is set, the rate is 16 times the CPU clock
rate.) The hold time o&romData_His 2* CPU cycle time with respect to
SromCIk_H.

e TheSromData_H pin reads data from the SROM.

Every data and tag bit in Icache is loaded by that sequence.
11.2.2 Serial Terminal Port

After the SROM data is loaded into the Icache, the three SROM interface signals can be
used as a software UART and the pins become parallel I/0 pins that can drive a system
debug or diagnostic terminal by using an ifitee such as R&2.

The serial line interface is automatically enabled if BremOE_L pin is wired to the
following pins:

* An active high enable RS422 (or 26LS32) driver, drivingStmmData_H
* An active high enable RS422 (or 26LS31) receiver, driven f@enomClk_H

After reset,SromCIk_H is driven from the Ibox | _CTL[SL_XMIT_BIT]. This register

is cleared during reset, so it starts driving as a 0, but it can be written by software. The
data becomes available at the pin after the HW_MTPR instruction that wrote the
SL_XMIT_BIT is retired.

11-2 Testability and Diagnostics Alpha 21264/EV6 Hardware Reference Manual

IEEE 1149.1 Port

On the receive side, while in native mode, any transition on the Ibox |_CTL
[SL_RCV_BIT], driven from theéSromData_H pin, results in a trap to the PALcode
interrupt handler. When in PALmode, all interrupts are blocked. Thertiapt routine

then begins sampling the |_CTL [SL_RCV_BIT] under a software timing loop to input
as much data as needed, using the chosen serial line protocol.

11.3 IEEE 1149.1 Port

The IEEE 1149.1 Test Access Port consists offidle H, Tdo_H, Tms_H, Tck_H,
andTrst_L pins. These pins access the IEEE 1149.1 mandated public test features as
well as several private chip manufacturing test features.

The port meets all requirements of the standard except that there are no pull-ups on the
Tdi_H, Tms_H, andTrst_L pins, as required by the present standard.

The scope of 1149.1 compliant features on the 21264/EV6 is limited to the board level
assembly verification test. The systems that do not intend to drive this port must termi-
nate the port pins as follows: pull-ups @di_H andTms_H, pull-downs onTck_H
andTrst L.

The port logic consists of the usual standard compliant components, nhamely, the TAP
Controller State Machine, the Instruction Register, and the Bypass Register.

The Bypass Register provides a short shift path through the chip’s IEEE 1149.1 logic. It
is generally useful at the board level testing. It consists of a 1-bit shift register.

The Instruction Register holds test instructions. On the 21264/EV6, this register is 5
bits wide. Table 11-2 describes the supported instructions. The instruction set supports
several public and private instructions. The public instructions operate and produce
behavior compliant with the standard. The private instructions are used for chip manu-
facturing test and must not be used outside of chip manufacturing.

Table 11-2 IEEE 1149.1 Instructions and Opcodes

Opcode Instruction Operation/Function

00xxx Private These instructions are for factory test use only. The user must
01xxx not load them as they may have a harmful effect on the

10xxx 21264/EV6.

11000 SAMPLE IEEE 1149.1 SAMPLE instruction.

11001 HIGHZ IEEE 1149.1 HIGHZ instruction.

11010 CLAMP IEEE 1149.1 CLAMP instruction.

11011 EXTEST IEEE 1149.1 EXTEST instruction.

11100 Private These instructions are for factory test use only. The user must
11101 not load them as they may have a harmful effect on the

11110 21264/EV6.

11111 BYPASS IEEE 149.1 BYPASS instruction.

Figure 11-1 shows the TAP controller state machine state diagram. The SigeaH
controls the state transitions that occur with the rising clock edge. TAP state machine
states are decoded and used for initiating various actions for testing.

Alpha 21264/EV6 Hardware Reference Manual Testability and Diagnostics 11-3

TestStat H Pin

Figure 11-1 TAP Controller State Machine

Test Logic
Reset

‘E Run-Test/Idle 1 Select-DR-Scan L

)\

Select-IR-Scan

{

Values
shown
are for
TMS.

Scan Sequence Scan Sequence

MK145508.Al14

11.4 TestStat H Pin

TheTestStat_Hpin serves two purposes. During power-up, it indicates BiST pass/falil
status. After power-up, it indicates the 21264/EV6 timeout event.

The system reset forcdgstStat Hto low. Tbox forces it high during the internal BiST
and array iitialization operations. During result egction (DoResult state), the Thox
drives it low for 16 cycles. After that, the pin remains low if the BiST has passes, other-
wise, it is asserted high and remains high until chip is reset again. Figure 11-2 pictori-
ally shows the behavior of the pin during the power-up openat

Note: A system designer may sample fhestStat_H pin on the first rising edge
of theSromCIk_H pin to determine BiST results. After the power-up dur-
ing the normal chip operation, whenever the 21264/EV6 does not retire an
instruction for 2K CPU cycles, the pin is asserted high for 3 CPU cycles.

11-4 Testability and Diagnostics Alpha 21264/EV6 Hardware Reference Manual

Power-Up Self-Test and Initialization

Figure 11-2 TestStat_H Pin Timing During Power-Up Built-In Self-Test (BiST)

ClkFwdRst_H — \ / _/
Thox_Reset_A_L /

TBox Reset Engine \dle X DoBist X_DoResult X DoSROM X \dle

TestStat_H / \ / BiSTResult X_BiSTResult OR T

LKG-10950A-98WF

Figure 11-3 TestStat_H Pin Timing During Built-In Self-Initialization (BiSlI)

Thox_Rst A L1 /

TBox Reset Enginel idle X DoMfgSelfinit X \dle
TestStat_H / \ / TimeOut
ClkFwdRst H —\ / _/

LKG-10951A-98WF

11.5 Power-Up Self-Test and Initialization

Upon powering up, the 21264/EV6 automatically performs the self-test of all major
embedded RAM arrays and then loads the Cbox configuration registers and the instruc-
tion cache from the system SROM. The chip’s internal logic is held in reset during
these operations. See Chapter 9 for sequencing of power-up operations.

11.5.1 Built-in Self-Test

The power-up self-test isgpformed on thénstruction cache and tagrays, the data
cache and tag arrays, the triplicate tag arrays, and the various Rraykdocated in the
branch history table logic. The p@rup self-test lasts for approximately 700,000 CPU
cycles. The result of self-test is made available as Pass/Fail status testi$tat H

pin (see Section 11.4).

The result of self-test is also available in an IPR bit. Software can read this status
through IPR |_CTL(23) (0 = pass, 1 =fail). See Chapter 5.

The power-up BiST leaves all bits in all arrays initialized to zeroes. The instruction
cache and the tag are reinitialized as part of the SROM initialization step. This is
detailed in Section 11.5.2.

11.5.2 SROM Initialization

Power-upinitialization on the 21264/EV6 is diffrent from preious generation Alpha
systems in two aspects. First, inthe 21264/EV6 systems, the presence of serial ROMs
is mandatory as initialization of several Cbox configuration registers depends on them.
Second, it is possible to skip or partially fill Icache from serial ROMs. Figure 11-4
shows the map of the data in serial ROMs.

Alpha 21264/EV6 Hardware Reference Manual Testability and Diagnostics 11-5

Power-Up Self-Test and Initialization

In the SROM represented in Figure 11-4, the length for fields Cbox Config
Data(0,n) plus MBZ(m,0) must equal 367 bits. (If Cbox Config Data(0,n) is
(0,366), MBZ would be zero.)

For the 21264/EV6, Cbox Config Data is 303 bits; the valuenfar 302.
Therefore, the value MBZ field is:
MBZ(m,0) = 367 minus 303 =64 = (63,0)

Tables 11-3 and 5-23 describe the details of the Icache and Cbox bit fields, respec-
tively. Note that fetch_count(1,0) must be 3, which guarantees that the SROM never
partially loads an Icachielock.

Figure 11-4 SROM Content Map

fetch [0](0,192

,n) MBZ(m,0)
(first block) —

(last block)

fetch[j-l](O,lgT) fetch[j](O,lQT) fetch_count(lT,O) Cbox Config Data(0

11.5.2.1 Serial Instruction Cache Load Operation

All Icache bits, including each block’s tag, address space number (ASN), address space
match (ASM), and valid and branch history bits are loaded serially frifohip serial

ROMs. Once the serial load has been invoked by the chip reset sequence, the cache is
loaded from the lower to the higher addresses.

The serial Icache fill invoked by the chip reset sequence operates internally at a fre-

GCLK
guency of o5

Table 11-3 lists the Icache bit fields in an SROM line. Fetch bits are listed in the order
of shift direction (to down and to right). In Table 11-3:

Bit Type Meaning

c Disp_add carry

i Instruction

iq Iqueue predecodes
tr Trouble bits

dv Destination valid
ea Ea_src

par-MBZ Must be zero

The load occurs at the rate of 1 bit per 256 CPU cycles. The chip outputs a 50% duty
cycle clock on thesromClk_H pin.

The serial ROMs can contain enough Alpha code to complete the configuration of the
external interface (for example, set the timing on the external cache RAMs, and diag-
nose the path between the CPU chip and the real ROM).

11-6 Testability and Diagnostics Alpha 21264/EV6 Hardware Reference Manual

Notes on IEEE 1149.1 Operation and Compliance

The instruction cache lines are loaded in the reverse order. If the fetch_count(9,0) is
zero, then, no instruction cache lines are loaded. Since the valid bits are already cleared
by the BiST operation, the first instruction fetch is missed in the instruction cache and
the chip seeks instructions from the offchip memory.

Table 11-3 Icache Bit Fields in an SROM Line

Fetch Bit Icache Data Fetch Bit Icache Data Fetch Bit Icache Data

0 par-MBZ 86 par-MBZ 172 Ip_train

1 c[3] 87 c[0] 173:175 Ip_src(2:0)

2:27 i[3](25,20,24,19,23,18,22,188:113 i[0](25,20,24,19,3,18,22,17176:181 Ip_idx(14:9)
,21,16:0) 21,16:0)

28 c[2] 114 c[1] 182:186 Ip_idx(8:4)

29:42 i[2](25,20,24,19, 115:128 i[1] (25,20,24,19, 187 Ip_idx(15)
23,18,22,17,21,16:12) 23,18,22,17,21,16:12)

43 parity 129 parity 188:192 Ip_ssp[4:0]

44:55 i[2](11:0) 130:141 i[1](11:0) — —

56 dv[3] 142 dv[0] — —

57:59 iq[3](2:0) 143:145 iq[0](2:0) — —

60:65 i[3](26:31) 146:151 i[0](26:31) — —

66,68 ea[3](2:0) 152:154 ea[0](2:0) — —

69 av[2] 155 dv[1] — —

70,72 iq[2](2:0) 156:158 iq[1](2:0) — —

73:78 i[2](26:31) 159:164 i[1](26:31) — —

79:81 eal2](2:0) 165:167 ea[1](2:0) — —

82:85 tr(7:4) 168:171 tr(0:3) — —

Refer to the Alpha Motherboards Software Developer’s Kit (SDK) for example C code
that calculates the predecode values of a serial Icache load.

11.6 Notes on IEEE 1149.1 Operation and Compliance

1. IEEE 1149.1 port pins on the 21264/EV6 are not pulled up or pulled down on the

chip. The necessary pull-up or pull-down function must be implemented on the
board.

2. Tms_H should not change whefrst_L is being deasserted.

References

IEEE Std. 1149.1-1998 Test Access Port and Boundary Scan Architecture
See Appendix B for a listing of the Boundary-Scan Register.

Alpha 21264/EV6 Hardware Reference Manual Testability and Diagnostics 11-7

A

Alpha Instruction Set

This appendix provides a summary of the Alpha instruction set and describes the
21264/EV6 IEEE floating-point conformance. It is organized as follows:

e Alpha instruction summary

* Reserved opcodes

* |EEE floating-point instructions

* VAX floating-point instructions

* Independent floating-point instructions
e Opcode summary

* Required PALcode function codes

* |EEE floating-point conformance

A.1 Alpha Instruction Summary

This section contains a summary of all Alpha architecture instructions. All values are in
hexadecimal radix. Table A—1 describes the contents of the Format and Opcode col-
umns that are in Table A-2.

Table A-1 Instruction Format and Opcode Notation

Instruction Format Opcode
Format Symbol Notation Meaning
Branch Bra 00 oo0is the 6-bit opcode field.
Floating-point F-P oo.fff oo0is the 6-bit opcode field.
fff is the 11-bit function code field.
Memory Mem 00 oo0is the 6-bit opcode field.
Memory/func- Mfc oo.ffff oois the 6-bit opcode field
tion code ffff is the 16-bit function code in the dis-
placement field.
Memory/ Mbr 00.h 0o0is the 6-bit opcode field.
branch h is the high-order 2 bits of the displace-

ment field.

Alpha 21264/EV6 Hardware Reference Manual Alpha Instruction Set A-1

Alpha Instruction Summary

Table A-1 Instruction Format and Opcode Notation (Continued)

Instruction Format Opcode
Format Symbol Notation Meaning
Operate Opr oo.ff oo0is the 6-bit opcode field.
ff is the 7-bit function code field.
PALcode Pcd 00 oois the 6-bit opcode field; the particular

PALcode instruction is specified in the
26-bit function code field.

Quialifiers for operate instructions are shown in Table A—-2. Qualifiers for IEEE and
VAX floating-point instructions are shown in Tables A-5 and A—6, respectively.

Table A—2 Architecture Instructions

Mnemonic Format Opcode Description

ADDF F-P 15.080 Add F_floating
ADDG F-P 15.0A0 Add G_floating
ADDL Opr 10.00 Add longword
ADDL/V — 10.40 —

ADDQ Opr 10.20 Add quadword
ADDQ/V — 10.60 —

ADDS F-P 16.080 Add S_floating
ADDT F-P 16.0A0 AddT_floating
AMASK Opr 11.61 Architecture mask
AND Opr 11.00 Logical product
BEQ Bra 39 Branch if= zero
BGE Bra 3E Branch it zero

BGT Bra 3F Branch if > zero

BIC Opr 11.08 Bit clear

BIS Opr 11.20 Logical sum

BLBC Bra 38 Branch if low bit clear
BLBS Bra 3C Branch if low bit set
BLE Bra 3B Branch if<zero

BLT Bra 3A Branch if < zero

BNE Bra 3D Branch if# zero

BR Bra 30 Unconditional branch
BSR Mbr 34 Branch to subroutine

A-2 Alpha Instruction Set Alpha 21264/EV6 Hardware Reference Manual

Alpha Instruction Summary

Table A—2 Architecture Instructions (Continued)

Mnemonic Format Opcode Description

CALL_PAL Pcd 00 Trap to PALcode

CMOVEQ Opr 11.24 CMOVE if= zero

CMOVGE Opr 11.46 CMOVE it zero

CMOVGT Opr 11.66 CMOVE if > zero

CMOVLBC Opr 11.16 CMOVE if low bit clear

CMOVLBS Opr 11.14 CMOVE if low bit set

CMOVLE Opr 11.64 CMOVE ifs zero

CMOVLT Opr 11.44 CMOVE if < zero

CMOVNE Opr 11.26 CMOVE if # zero

CMPBGE Opr 10.0F Compare byte

CMPEQ Opr 10.2D Compare signed quadword equal

CMPGEQ F-P 15.0A5 Compare G_floating equal

CMPGLE F-P 15.0A7 Compare G_floating less than or equal

CMPGLT F-P 15.0A6 Compare G_floating less than

CMPLE Opr 10.6D Compare signed quadword less than or
equal

CMPLT Opr 10.4D Compare signed quadword less than

CMPTEQ F-P 16.0A5 Compare T_floating equal

CMPTLE F-P 16.0A7 Compare T_floating less than or equal

CMPTLT F-P 16.0A6 Compare T_floating less than

CMPTUN F-P 16.0A4 Compare T_floating unordered

CMPULE Opr 10.3D Compare unsigned quadword less than or
equal

CMPULT Opr 10.1D Compare unsigned quadword less than

CPYS F-P 17.020 Copy sign

CPYSE F-P 17.022 Copy sign and exponent

CPYSN F-P 17.021 Copy sign negate

CVTDG F-P 15.09E Convert D_floating to G_floating

CVTGD F-P 15.0AD Convert G_floating to D_floating

CVTGF F-P 15.0AC Convert G_floating to F_floating

CVTGQ F-P 15.0AF Convert G_floating to quadword

CVTLQ F-P 17.010 Convert longword to quadword

CVTQF F-P 15.0BC Convert quadword to F_floating

Alpha 21264/EV6 Hardware Reference Manual Alpha Instruction Set A-3

Alpha Instruction Summary

A-4

Table A—2 Architecture Instructions (Continued)

Mnemonic Format Opcode Description

CVTQG F-P 15.0BE Convert quadword to G_floating
CVTQL F-P 17.030 Convert quadword to longword
CVTQS F-P 16.0BC Convert quadword to S_floating
CVTQT F-P 16.0BE Convert quadword to T_floating
CVTST F-P 16.2AC Convert S floating to T_floating
CVTTQ F-P 16.0AF Convert T_floating to quadword
CVTTS F-P 16.0AC ConvertT_floatingto S_floating
DIVF F-P 15.083 Divide F_floating

DIVG F-P 15.0A3 Divide G_floating

DIVS F-P 16.083 Divide S_floating

DIVT F-P 16.0A3 Divide T_floating

ECB Mfc 18.E800 Evict cache block

EQV Opr 11.48 Logical equivalence

EXCB Mfc 18.0400 Exception barrier

EXTBL Opr 12.06 Extract byte low

EXTLH Opr 12.6A Extract longword high

EXTLL Opr 12.26 Extract longword low

EXTQH Opr 12.7A Extract quadword high

EXTQL Opr 12.36 Extract quadword low

EXTWH Opr 12.5A Extract word high

EXTWL Opr 12.16 Extract word low

FBEQ Bra 31 Floating branch # zero

FBGE Bra 36 Floating branch ¥ zero

FBGT Bra 37 Floating branch if zero

FBLE Bra 33 Floating branch i zero

FBLT Bra 32 Floating branch if gero

FBNE Bra 35 Floating branch i# zero
FCMOVEQ F-P 17.02A FCMOVE iEzero

FCMOVGE F-P 17.02D FCMOVE i¢ zero

FCMOVGT F-P 17.02F FCMOVE if > zero

FCMOVLE F-P 17.02E FCMOVE ik zero

FCMOVLT F-P 17.02C FCMOVE if < zero

Alpha Instruction Set

Alpha 21264/EV6 Hardware Reference Manual

Alpha Instruction Summary

Table A—2 Architecture Instructions (Continued)

Mnemonic Format Opcode Description

FCMOVNE F-P 17.02B FCMOVE if # zero

FETCH Mfc 18.8000 Prefetch data

FETCH_M Mfc 18.A000 Prefetch data, modify intent

FTOIS F-P 1C.78 Floating to integer move, S_floating
FTOIT F-P 1C.70 Floating to integer move, T_floating
IMPLVER Opr 11.6C Implementation version

INSBL Opr 12.0B Insert byte low

INSLH Opr 12.67 Insert longword high

INSLL Opr 12.2B Insert longword low

INSQH Opr 12.77 Insert quadword high

INSQL Opr 12.3B Insert quadword low

INSWH Opr 12.57 Insert word high

INSWL Opr 12.1B Insert word low

ITOFF F-P 14.014 Integer to floating move, F_floating
ITOFS F-P 14.004 Integer to floating move, S_floating
ITOFT F-P 14.024 Integer to floating move, T_floating
JMP Mbr 1A.0 Jump

JSR Mbr 1A1 Jump to subroutine
JSR_COROUTINE Mbr 1A.3 Jump to subroutine return

LDA Mem 08 Load address

LDAH Mem 09 Load address high

LDBU Mem 0A Load zero-extended byte

LDF Mem 20 Load F_floating

LDG Mem 21 Load G_floating

LDL Mem 28 Load sign-extended longword
LDL_L Mem 2A Load sign-extended longword locked
LDQ Mem 29 Load quadword

LDQ L Mem 2B Load quadword locked

LDQ U Mem 0B Load unaligned quadword

LDS Mem 22 Load S_floating

LDT Mem 23 Load T_floating

LDWU Mem oC Load zero-extended word

Alpha 21264/EV6 Hardware Reference Manual

Alpha Instruction Set

Alpha Instruction Summary

Table A—2 Architecture Instructions (Continued)

Mnemonic Format Opcode Description

MAXSB8 Opr 1C.3E Vector signed byte maximum
MAXSW4 Opr 1C.3F Vector signed word maximum
MAXUBS8 Opr 1C.3C Vector unsigned byte maximum
MAXUW4 Opr 1C.3D Vector unsigned word maximum
MB Mfc 18.4000 Memory barrier

MF_FPCR F-P 17.025 Move from FPCR

MINSB8 Opr 1C.38 Vector signed byte minimum
MINSW4 Opr 1C.39 Vector signed word minimum
MINUBS8 Opr 1C.3A Vector unsigned byte minimum
MINUW4 Opr 1C.3B Vector unsigned word minimum
MSKBL Opr 12.02 Mask byte low

MSKLH Opr 12.62 Mask longword high

MSKLL Opr 12.22 Mask longword low

MSKQH Opr 12.72 Mask quadword high

MSKQL Opr 12.32 Mask quadword low

MSKWH Opr 12.52 Mask word high

MSKWL Opr 12.12 Mask word low

MT_FPCR F-P 17.024 Move to FPCR

MULF F-P 15.082 Multiply F_floating

MULG F-P 15.0A2 Multiply G_floating

MULL Opr 13.00 Multiply longword

MULL/V 13.40

MULQ Opr 13.20 Multiply quadword

MULQ/V 13.60

MULS F-P 16.082 Multiply S_floating

MULT F-P 16.0A2 Multiply T_floating

ORNOT Opr 11.28 Logical sum with complement
PERR Opr 1C.31 Pixel error

PKLB Opr 1C.37 Pack longwords to bytes
PKWB Opr 1C.36 Pack words to bytes

RC Mfc 18.E000 Read and clear

RET Mbr 1A.2 Return from subroutine

A-6 Alpha Instruction Set Alpha 21264/EV6 Hardware Reference Manual

Alpha Instruction Summary

Table A—2 Architecture Instructions (Continued)

Mnemonic

Format

Opcode Description

RPCC
RS
S4ADDL
S4ADDQ
S4SUBL
S4SUBQ
SSADDL
S8ADDQ
S8SUBL
S8SUBQ
SEXTB
SEXTW
SLL
SQRTF
SQRTG
SQRTS
SQRTT
SRA
SRL
STB
STF
STG
STL
STL_C
STQ
STQ C
STQ U
STS
STT
STW
SUBF
SUBG

Alpha 21264/EV6 Hardware Reference Manual

Mfc
Mfc
Opr
Opr
Opr
Opr
Opr
Opr
Opr
Opr
Opr
Opr
Opr
F-P
F-P
F-P
F-P
Opr
Opr
Mem
Mem
Mem
Mem
Mem
Mem
Mem
Mem
Mem
Mem
Mem
F-P
F-P

18.C000 Read process cycle counter

18.F000
10.02
10.22
10.0B
10.2B
10.12
10.32
10.1B
10.3B
1C.00
1C.01
12.39
14.08A
14.0AA
14.08B
14.0AB
12.3C
12.34
OE
24
25
2C
2E
2D
2F
OF
26
27
0D
15.081
15.0A1

Read and set

Scaled add longword by 4
Scaled add quadword by 4
Scaled subtract longword by 4
Scaled subtract quadword by 4
Scaled add longword by 8
Scaled add quadword by 8
Scaled subtract longword by 8
Scaled subtract quadword by 8
Sign extend byte

Sign extend word

Shift left logical

Square root F_floating
Square root G_floating
Square root S_floating
Square root T_floating

Shift right arithmetic

Shift right logical
Store byte

Store F_floating

Store G_floating
Store longword

Store longword conditional
Store quadword

Store quadword conditional
Store unaligned quadword
Store S_floating

Store T_floating
Store word

Subtract F_floating

Subtract G_floating

Alpha Instruction Set

Reserved Opcodes

Table A—2 Architecture Instructions (Continued)

Mnemonic Format Opcode Description

SUBL Opr 10.09 Subtract longword

SUBL/V 10.49

SUBQ Opr 10.29 Subtract quadword
SUBQ/V 10.69

SUBS F-P 16.081 Subtract S_floating

SUBT F-P 16.0A1 Subtract T_floating
TRAPB Mfc 18.0000 Trap barrier

UMULH Opr 13.30 Unsigned multiply quadword high
UNPKBL Opr 1C.35 Unpack bytes to longwords
UNPKBW Opr 1C.34 Unpack bytes to words
WH64 Mfc 18.F800 Write hint — 64 bytes
WMB Mfc 18.4400 Write memory barrier

XOR Opr 11.40 Logical difference

ZAP Opr 12.30 Zero bytes

ZAPNOT Opr 12.31 Zero bytes not

A.2 Reserved Opcodes

This section describes the opcodes that are reserved in the Alpha architecture. They can
be reserved for Compag or for PALcode.

A.2.1 Opcodes Reserved for Compaq
Table A-3 lists opcodes reserved for Compag.

Table A-3 Opcodes Reserved for Compaqg

Mnemonic Opcode Mnemonic Opcode
OPCO1 01 OPCO05 05
OPCO02 02 OPCO06 06
OPCO03 03 OPCO7 07
OPC04 04 — —

A-8 Alpha Instruction Set Alpha 21264/EV6 Hardware Reference Manual

IEEE Floating-Point Instructions

A.2.2 Opcodes Reserved for PALcode

Table A—4 lists the 21264/EV6-specific instructions. See Chapter 2 for more
information.

Table A—4 Opcodes Reserved for PALcode

21264/EV6 Architecture

Mnemonic Opcode Mnemonic Function

HW_LD 1B PAL1B Performs Dstream load instructions.

HW_ST 1F PAL1F Performs Dstream store instructions.

HW_REI 1E PAL1E Returns instruction flow to the program
counter (PC) pointed to by EXC_ADDR
internal processor register (IPR).

HW_MFPR 19 PAL19 Accesses the Ibox, Mbox, and Dcache
IPRs.

HW_MTPR 1D PAL1D Accesses the Ibox, Mbox, and Dcache
IPRs.

A.3 IEEE Floating-Point Instructions

Table A-5 lists the hexadecimal value of the 11-bit function code field for the IEEE
floating-point instructions, with and without qualifiers. The opcode for these
instructions is 16

Table A-5 |IEEE Floating-Point Instruction Function Codes

Mnemonic None /IC M /D /U /uc /UM /UD
ADDS 080 000 040 0CO 180 100 140 1CO
ADDT 0AOQ 020 060 OEO 1A0 120 160 1EO
CMPTEQ 0A5 — — — — — — —
CMPTLT 0A6 — — — — — — —
CMPTLE 0A7 — — — — — — —
CMPTUN 0A4 — — — — — — —
CVTQS 0BC 03C 07C OFC — — — —
CVTQT OBE 03E 07E OFE — — — —

See — — — — — — —
CVTST below

See — — — — — — —
CVTTQ below
CVTTS 0AC 02C 06C OEC 1AC 12C 16C 1EC
DIVS 083 003 043 0C3 183 103 143 1C3
DIVT 0A3 023 063 OE3 1A3 123 163 1E3
MULS 082 002 042 0C2 182 102 142 1C2

Alpha 21264/EV6 Hardware Reference Manual Alpha Instruction Set A-9

IEEE Floating-Point Instructions

Table A-5 IEEE Floating-Point Instruction Function Codes (Continued)

MULT 0A2 022 062 OE2 1A2 122 162 1E2
SQRTS 08B 00B 04B 0CB 18B 10B 14B 1CB
SQRTT OAB 02B 06B OEB 1AB 12B 16B 1EB
SUBS 081 001 041 0C1 181 101 141 1C1
SUBT 0Al 021 061 OEl 1A1 121 161 1E1
Mnemonic /SU /SUC /SUM /SUD /SUI /SUIC /SUIM /SUID
ADDS 580 500 540 5CO0 780 700 740 7CO
ADDT 5A0 520 560 5EO0 7A0 720 760 7EO
CMPTEQ 5A5

CMPTLT 5A6

CMPTLE 5A7

CMPTUN 5A4

CVTQS 7BC 73C 77C 7FC
CVTQT 7BE 73E 77E 7FE
CVTTS 5AC 52C 56C 5EC 7AC 72C 76C 7EC
DIVS 583 503 543 5C3 783 703 743 7C3
DIVT 5A3 523 563 5E3 7A3 723 763 7E3
MULS 582 502 542 5C2 782 702 742 7C2
MULT 5A2 522 562 5E2 TA2 722 762 7E2
SQRTS 58B 50B 54B 5CB 78B 70B 74B 7CB
SQRTT 5AB 52B 56B 5EB 7AB 72B 76B 7EB
SUBS 581 501 541 5C1 781 701 741 7C1
SUBT 5A1 521 561 5E1 7A1 721 761 7E1
Mnemonic None /S

CVTST 2AC 6AC

Mnemonic None /C v IvC ISV /ISVC /SVI /SVIC
CVTTQ OAF 02F 1AF 12F 5AF 52F TAF 72F
Mnemonic D IVD /ISVD /SVID M VM /ISVM /ISVIM
CVTTQ OEF 1EF SEF 7TEF 06F 16F 56F 76F

A-10 Alpha Instruction Set

Alpha 21264/EV6 Hardware Reference Manual

VAX Floating-Point Instructions

Programming Note:

In order to use CMPTxx with software completion trap handling, it is necessary to
specify the /SU IEEE trap mode, even though an underflow trap is not possible. In order
to use CVTQS or CVTQT with software completion trap handling, it is necessary to
specify the /SUI IEEE trap mode, even though an underflow trap is not possible.

A.4 VAX Floating-Point Instructions

Table A—6 lists the hexadecimal value of the 11-bit function code field for the VAX
floating-point instructions. The opcode for these instructions ig.15

Table A—6 VAX Floating-Point Instruction Function Codes

Mnemonic None IC U /uc IS ISC /SU /sucC
ADDF 080 000 180 100 480 400 580 500
ADDG 0AO 020 1A0 120 4A0 420 5A0 520
CMPGEQ 0A5 4A5

CMPGLE 0A7 4A7

CMPGLT 0A6 4A6

CVTDG 09E 01E 19E 11E 49E 41E 59E 51E
CVTGD 0AD 02D 1AD 12D 4AD 42D 5AD 52D
CVTGF 0AC 02C 1AC 12C 4AC 42C 5AC 52C
CVTGQ See below

CVTQF 0BC 03C

CVTQG OBE 03E

DIVF 083 003 183 103 483 403 583 503
DIVG 0A3 023 1A3 123 4A3 423 5A3 523
MULF 082 002 182 102 482 402 582 502
MULG 0A2 022 1A2 122 4A2 422 5A2 522
SQRTF 08A 00A 18A 10A 48A 40A 58A 50A
SQRTG 0AA 02A 1AA 12A 4AA 42A 5AA 52A
SUBF 081 001 181 101 481 401 581 501
SUBG 0Al1 021 1A1 121 4A1 421 5A1 521
Mnemonic None IC v IvC IS ISC ISV /ISVC
CVTGQ 0AF 02F 1AF 12F 4AF 42F 5AF 52F

A.5 Independent Floating-Point Instructions

Table A—7 lists the hexadecimal value of the 11-bit function code field for the floating-
point instructions that are not directly tied to IEEE or VAX floating point. The opcode
for the following instructions is 14

Alpha 21264/EV6 Hardware Reference Manual Alpha Instruction Set A-11

Opcode Summary

Table A—-7 Independent Floating-Point Instruction Function Codes

Mnemonic None N ISV
CcPYS 020 — —
CPYSE 022 — —
CPYSN 021 — —
CVTLQ 010 _ _
cvToL 030 130 530
FCMOVEQ 02A — —
FCMOVGE 02D — —
FCMOVGT 02F — —
FCMOVLE 02E — —
FCMOVLT 02C — —
MF_FPCR 025 — —
MT_FPCR 024 _ _

A.6 Opcode Summary

Table A-8 lists all Alpha opcodes from 00 (CALL_PAL) through 3F (BGT). In the
table, the column headings that appear over the instructions have a granulakigy of 8
The rows beneath the Offset column supply the individual hexadecimal number to
resolve that granularity.

If an instruction column has a 0 in the right (low) hexadecimal digit, replace that 0 with
the number to the left of the backslash (\) in the Offset column on the instruction’s row.
If an instruction column has an 8 in the right (low) hexadecimal digit, replace that 8
with the number to the right of the backslash in the Offset column.

For example, the third row (2/A) under theg@&olumn contains the symbol INTS*,
representing the all-integer shift instructions. The opcode for those instructions would
then be 124 because the 0in 10 is replaced by the 2 in the Offset column. Likewise, the
third row under the 1§ column contains the symbol JSR*, representing all jump
instructions. The opcode for those instructions is 1A because the 8 in the heading is
replaced by the number to the right of the backslash in the Offset column. The
instruction format is listed under the instruction symbol.

Table A-8 Opcode Summary

Offset 00 08 10 18 20 28 30 38
0/8 PAL* LDA INTA* MISC* LDF LDL BR BLBC
(pal) (mem) (op) (mem) (mem) (mem) (br) (br)
1/9 Res LDAH INTL* \PAL\ LDG LDQ FBEQ BEQ
(mem) (op) (mem) (mem) (br) (br)
2IA LDBU Res INTS* JSR* LDS LDL_L FBLT BLT
(op) (mem) (mem) (mem) (br) (br)

A-12 Alpha Instruction Set Alpha 21264/EV6 Hardware Reference Manual

Required PALcode Function Codes

Table A—-8 Opcode Summary (Continued)

Offset 00 08 10 18 20 28 30 38

3/B Res LDQ_U INTM* \PAL\ LDT LDQ L FBLE BLE
(mem) (op) (mem) (mem) (br) (br)

4/C LDWU Res ITFP* FPTI* STF STL BSR BLBS
(mem) (mem) (br) (br)

5/D Res STW FLTV* \PAL\ STG STQ FBNE BNE
(op) (mem) (mem) (br) (br)

6/E Res STB FLTI* \PAL\ STS STL C FBGE BGE
(op) (mem) (mem) (br) (br)

7IF Res STQ U FLTL* \PAL\ STT STQ_C FBGT BGT
(mem) (op) (mem) (mem) (br) (br)

Table A-9 explains the symbols used in Table A-8.

Table A-9 Key to Opcode Summary Used in Table A-8

Symbol Meaning

FLTI* IEEE floating-point instruction opcodes

FLTL* Floating-point ogerate instruction opcodes
FLTV* VAX floating-point instruction opcodes

FPTI* Floating-point to integer register move opcodes
INTA* Integer arithmetic instruction opcodes

INTL* Integer logical instruction opcodes

INTM* Integer multiply instruction opcodes

INTS* Integer shift instruction opcodes

ITFP* Integer to floating-point register move opcodes
JSR* Jump instruction opcodes

MISC* Miscellaneous instruction opcodes

PAL* PALcode instruction (CALL_PAL) opcodes
\PAL\ Reserved for PALcode

Res Reserved for Compaq

A.7 Required PALcode Function Codes

Table A-10 lists opcodes required for all Alpha implementations. The notation used is
oo.ffff, whereoois the hexadecimal 6-bit opcode afffl is the hexadecimal 26-bit
function code.

Table A-10 Required PALcode Function Codes

Mnemonic Type Function Code
DRAINA Privileged 00.0002
HALT Privileged 00.0000
IMB Unprivileged 00.0086

Alpha 21264/EV6 Hardware Reference Manual Alpha Instruction Set A-13

IEEE Floating-Point Conformance

A.8 IEEE Floating-Point Conformance

The 21264/EV6 supports the IEEE floating-poineoations defined in thAlpha Sys-

tem Reference ManudRevision8 and therefore also from thdpha Architecture Ref-
erence Manual, Fourth EditiorSupport for a complete implementation of the IEEE
Standard for Binary Floating-Point Arithmetic (ANSI/IEEE Standard 754 1985) is pro-
vided by a combination of hardware and software. The 21264 provides several hard-
ware features to facilitate complete support of the IEEE standard.

The 21264/EV6 provides the following hardware features to facilitate complete support
of the IEEE standard:

* The 21264/EV6 implements precise exception handling in hardware, as denoted by
the AMASK instruction returning bit 9 set. TRAPB instructions are treated as
NOPs and are not issued.

* The 21264/EV6 accepts both Signaling and Quiet NaNs as input operands and
propagates them as specified by the Alpha architecture. In addition, the 21264/EV6
delivers a canonical Quiet NaN when an operation is required to produce a NaN
value and none of its inputs are NaNs. Encodings for Signaling NaN and Quiet
NaN are defined by thAlpha Architecture Reference Manual, Fourth Edition

* The 21264/EV6 accepts infinity operands and implements infinity arithmetic as
defined by the IEEE standard and thkpha Architecture Reference Manual,
Fourth Edition

* The 21264/EV6 implements SQRT for single (SQRTS) and double (SQRTT) preci-
sion in hardware.

Note: In addition, the 21264 also implements the VAX SQRTF and SQRTG
instructions.

* The 21264 implements the FPCR[DNZ] bit. When FPCR[DNZ] is set, denormal
input operand traps can be avoided for arithmetic operations that include the /S
gualifier. When FPCR[DNZ] is clear, denormal input operands for arithmetic oper-
ations produce an unmaskable denormal trap. CPYSE/CPYSN, FCMOVxx, and
MF_FPCR/MT_FPCR are not arithmetic operations, and pass denormal values
without initiating arithmetic traps.

* The 21264/EV6 implements the following disable bits in the floating-point control
register (FPCR):

— Underflow disable (UNFD)

— Overflow disable (OVFD)

— Inexact result disable (INED)

— Division by zero disable (DZED)
— Invalid operation disable (INVD)

If one of these bits is set, and an instruction with the /S qualifier set generates the
associated exception, the 21264/EV6 produces the IEEE nontrapping result and
suppresses the trap. These nontrapping responses include correctly signed
infinity, largest finite number, and Quiet NaNs as specified by the IEEE

standard.

A-14 Alpha Instruction Set Alpha 21264/EV6 Hardware Reference Manual

IEEE Floating-Point Conformance

The 21264/EV6 will not produce a Denormal result for the underflow exception.
Instead, a true zero (+0) is written to the destination register. In the 21264/EV6, the
FPCR underflow to zero (UNDZ) bit must be set if the underflow disable (UNFD)

bit is set. If desired, trapping on underflow can be enabled by the instruction and the
FPCR, and software may compute the Denormal value as defined in the IEEE stan-
dard.

The 21264/EV6 records floating-point exception information in two places:

* The FPCR status bits record the occurrence of all exceptions that are detected,
whether or not the corresponding trap is enabled. The status bits are cleared only
through an explicit clear command (MT_FPCR); hence, the exception information
they record is a summary of all exceptions that have occurred since the last time
they were cleared.

e |f an exception is detected and the corresponding trap is enabled by the instruction,
and is not disabled by the FPCR control bits, the 21264/EV6 will record the
condition in the EXC_SUM register and initiate an arithmetic trap.

The following items apply to Table A-11:

* The 21264/EV6 traps on a Denormal input operand for all arithmetic operations
unless FPCR[DNZ] = 1.

* Input operand traps take precedence over arithmetic result traps.
* The following abbreviations are used:

Inf: Infinity

QNaN: Quiet NaN

SNaN: Signalling NaN

CQNaN: Canonical Quiet NaN

For IEEE instructions with /S, Table A-11 lists all exceptional input and output
conditions recognized by the 21264, along with the result and exception generated
for each condition.

Table A-11 Exceptional Input and Output Conditions

21264/EV6 Hardware
Alpha Instructions Supplied Result Exception

ADDx SUBXx INPUT

Inf operand *Inf (none)
QNaN operand QNaN (none)
SNaN operand QNaN Invalid Op
Effective subtract of two Inf operands CQNaN Invalid Op
ADDx SUBx OUTPUT

Exponent overflow +Inf or tMAX Overflow
Exponent underflow +0 Underflow
Inexact result Result Inexact
MULX INPUT

Alpha 21264/EV6 Hardware Reference Manual Alpha Instruction Set A-15

IEEE Floating-Point Conformance

Table A-11 Exceptional Input and Output Conditions (Continued)

21264/EV6 Hardware

Alpha Instructions Supplied Result Exception

Inf operand *Inf (none)
QNaN operand QNaN (none)
SNaN operand QNaN Invalid Op
0 * Inf CQNaN Invalid Op
MULXx OUTPUT (same as ADDXx)

DIVx INPUT

QNaN operand QNaN (none)
SNaN operand QNaN Invalid Op
0/0 or Inf/Inf CQNaN Invalid Op
A/0 (A not 0) *Inf Div Zero
Allnf +0 (none)

Inf/A *Inf (none)

DIVx OUTPUT (same as ADDXx)

SQRTx INPUT

+Inf operand +Inf (none)
QNaN operand QNaN (none)
SNaN operand QNaN Invalid Op
-A (A not0) CQNaN Invalid Op
-0 -0 (none)
SQRTx OUTPUT

Inexact result root Inexact

CMPTEQ CMPTUN INPUT

Inf operand True or False (none)
QNaN operand False for EQ, True for UN (none)
SNaN operand False for EQ,True for UN Invalid Op
CMPTLT CMPTLE INPUT

Inf operand True or False (none)
QNaN operand False Invalid Op
SNaN operand False Invalid Op
CVTIi INPUT

Inf operand 0 Invalid Op
QNaN operand 0 Invalid Op

A-16 Alpha Instruction Set Alpha 21264/EV6 Hardware Reference Manual

IEEE Floating-Point Conformance

Table A-11 Exceptional Input and Output Conditions (Continued)

21264/EV6 Hardware

Alpha Instructions Supplied Result Exception
SNaN operand 0 Invalid Op
CVTfi OUTPUT

Inexact result Result Inexact
Integer overflow Truncated result Invalid Op
CVTif OUTPUT

Inexact result Result Inexact
CVTIf INPUT

Inf operand *Inf (none)
QNaN operand QNaN (none)
SNaN operand QNaN Invalid Op

CVT{f OUTPUT (same as ADDx)

FBEQ FBNE FBLT FBLE FBGT FBGE
LDS LDT

STSSTT

CPYS CPYSN

FCMOVX

See Section 2.14 for information about the floating-point control register (FPCR).

Alpha 21264/EV6 Hardware Reference Manual Alpha Instruction Set A-17

B

21264/EV6 Boundary-Scan Register

This appendix contains the BSDL description of the 21264/EV6 boundary-scan regis-

ter.

B.1 Boundary-Scan Register

The Boundary-Scan Register (BSR) on the 21264/EV6 is 367 bits long. It is accessed
by the three public (SAMPLE, EXTEST, CLAMP) instructions. The register operation
for the public instructions is compliant with the IEEE 1149.1 standard.

The boundary-scan register covers all input, output, and bidirectional pins with the
exception of the compliance enable pins and pins that are power-supply-type or analog
in nature. The BSDL for the boundary-scan register is given in Section B.1.1.

B.1.1 BSDL Description of the Alpha 21264/EV6 Boundary-Scan Register

-- alpha21264.bsdl

--The BSDL Description for EV6's IEEE 1149.1 Circuits

Revision History
--Rev Date

Description

-- 1.0 Aug 98 First external release

entity Alpha_21264 is-- (ref B.8)

generic (PHYSICAL_PIN_MAP :string := "PGA_EV6");-- (ref B.8.2)

port (-- (ref B.8.3)
TestStat_H
SromOE_L
SromCIk_H
SromData_H
Reset_L
IRQ_H
DcOk_H
NoConnect_0
NoConnect_1
PliBypass_H
FrameCIk_H
FrameCIk_L
ClkFwdRst_H
BcCheck_H
BcData_H
SysData_L
SysCheck_L

Alpha 21264/EV6 Hardware Reference Manual

out bit

:out bit

:out bit

iin bit

iin bit

iin bit_vector (0 to 5)

Jlinkage bit ; -- Compliance enable input
Jlinkage bit . - nlc

Jlinkage bit . - nlc

Jlinkage bit

:linkage bit

Jlinkage bit

iin bit

linout bit_vector (0 to 15);
;inout bit_vector (0 to 127);
linout bit_vector (0 to 63) ;
:inout bit_vector (0 to 7)

21264/EV6 Boundary-Scan Register

Boundary-Scan Register

Spare_6 Jlinkage bit_vector (0 to 7) ;
BcDatalnClk_H iin bit_vector (0 to 7) ;
SysDataOutClk_L :out bit_vector (0 to 7) ;
Spare_7 Jlinkage bit_vector (0 to 7) ;
SysDatalnCIk_H iin bit_vector (0 to 7) ;
BcDataOutClk_L :out bit_vector (0 to 3) ; -- JWB corrected
BcDataOutClk_H :out bit_vector (0 to 3) ; -- JWB corrected
Clkin_H Jlinkage bit ; -- Oscillator
Clkin_L linkage bit ; -- Oscillator
PLL_VDD Jlinkage bit ;
EV6CIk_H linkage bit ;
EV6CIk_L :linkage bit ;
Spare_4 Jlinkage bit ;
Spare_5 Jlinkage bit ;
BcTag_H :inout bit_vector (20 to 42);
BcVref linkage bit ;
BcTagInClk_H iin bit ; -- Name in model: BcTagClkin_H
BcTagParity_H :inout it ;
BcTagShared_H :inout bit ;
BcTagDirty_H iinout bit ;
BcTagValid_H inout bit ;
BcTagOutClk_L :out bit ;
BcTagOutClk_H :out bit ;
BcTagOE_L :out bit ;
BcTagWr_L :out bit ;
BcDataWr_L out bit ;
BcLoad_L out bit ;
BcDataOE_L out bit ;
BcAdd_H :out bit_vector (4 to 23) ;
SysAddOut_L :out bit_vector (0 to 14) ;
SysAddin_L iin bit_vector (0 to 14) ;
SysAddInClk_L iin bit ;
SysAddOutClk_L :out bit ; --JWB added
SysVref :linkage bit ; --JWB added
SysFillvalid_L iin bit ;
SysDatalnValid_L iin bit
SysDataOutValid_L iin bit ;
Spare_0 Jlinkage bit ;== nlc
MiscVref linkage bit -
Spare_2 Jlinkage bit ;- nlc
Tdi_H iin bit
Tdo_H :out bit
Trst_L iin bit ;
Tck_H iin bit ;
Tms_H iin bit |
VSS:linkage bit_vector (0 to 103);
VDD Jlinkage bit_vector (0 to 93));
use STD_1149 1 1994.all ;-- (ref B.8.4)
attribute COMPONENT_CONFORMANCE of Alpha_21264: entity is "STD_1149_1_1993";
attribute PIN_MAP of Alpha_21264 : entity is PHYSICAL_PIN_MAP ;
constant PGA_EV6 : PIN_MAP_STRING = " " &
"SysAddin_L : (BD30, BC29, AY28, BE29, AW27, BA27, BD28, BE27, "&
" AY26, BC25, BB24, AV24, BD24, BE23, AW23), "&
"SysAddInClk_L BB26, "&
"SysVref BA25, "&
"SysFillValid_L BC23, "&

B-2 21264/EV6 Boundary-Scan Register Alpha 21264/EV6 Hardware Reference Manual

"SysAddOut_L

"SysAddOutClk_L
"SysData_L

"SysCheck_L
"SysDatalnCIlk_H
"Spare_6

"SysDataOutClk_L
"SysDatalnValid_L
"SysDataOutValid_L

"BcAdd_H

"BcDataOE_L
"BcLoad_L
"BcDataWr_L
"BcData_H

"BcCheck_H

"BcDatalnCIk_H
"Spare_7
"BcDataOutClk_L
"BcDataOutClk_H
"BcTag_H

"BcTagValid_H
"BcTagDirty_H
"BcTagShared_H
"BcTagParity_H
"BcTagOE_L
"BcTagWr_L
"BcTagInClk_H
"BeVref
"BcTagOutClk_L
"BcTagOutClk_H
"IRQ_H

Boundary-Scan Register

: (AW33, BE39, BD36, BC35, BA33, AY32, BE35, AV30, "&
BB32, BA31, BE33, AW29, BC31, AV28, BB30), "&
BD34, "&
: (F14 , G13 , F12 , H12 , H10 , G7 , F6 , K8 , "&
M6 , N7 ,P6 ,T8 ,V8 ,V6 , W7 ,Y6 ,"&
AB8 , AC7 , AD8 , AE5 , AH6 , AH8 , AJ7 , AL5 , "&
AP8 , AR7 , AT8 , AV6 , AV10, AW11, AV12, AWI13, "&
F32 , F34 , H34 , G35 , F40 , G39 , K38 , J41 , "&
M40 , N39 , P40 , T38 , V40 , W41 , W39 , Y40 , "&
AB38, AC39, AD38, AF40, AH38, AJ39, AL41, AK38, "&
AN39, AP38, AR39, AT38, AY38, AV36, AW35, AV34),"&
(L7 , AA5 | AK8 , BA13, L39 , AA41l, AM40, AY34),"&

: (D8 , P4 |, AF6 , AY6 , E37 , R43 , AG41, AV40),"&

:(E9 , R5 , AG5 , BA7 , D38 , T42 , AG39, AW41),"&

1 (G11 , U7 , AG7 , AY8 , H36 , R41 , AH40, AW39),"&

BD22, &

BB22, "&

: (B28 , E27 , A29 , G27 , C29 , F28 , B30 , D30 ,"&
C31 , H28 , G29 , A33 , E31 , D32 , B34 , A35 /&

B36 , H30 , C35 , E33), "&
A27 , "&
F26 , "&
D26 , "&

:(B10,D10,A5 ,C5 ,C3 ,E3 ,H6 ,E1 &
J3 , K2 ,L3 ,M2 , T2 ,Ul ,V2 ,Y4 &
ACl1 , AD2 , AE3 , AG1 , AK2 , AL3 , AR1 , AP2 &
AY2 , BB2 , AW5 , BB4 , BB8 , BE5 , BB10, BE7 ,"&
G33 , C37 , B40 , C41 , C43 , E43 , G41 , F44 &
K44 |, N41 , M44 , P42 , U43 , V44 , Y42 |, AB44 "&
AD42, AE43, AF42, AJ45, AK42, AN45, AP44, AN4l "&
AW45, AU41, AY44, BA43, BC43, BD42, BB38, BE4l ,"&
Ci1,A7 ,C9 ,B6 ,B4 ,D4 ,G5 ,D2 &
H4 ,Gl1 ,N5 , L1 ,N1I ,U3 ,W5 ,wl &
AB2 , AC3 , AD4 , AF4 , AJ3 , AK4 , AN1 , AM4 "&
AUS5 , BA1 , BA3 , BC3 , BD6 , BA9 , BC9 , AY12 "&
A39 , D36 , A41 , B42 , D42 , D44 , H40 , H42 &
G45 , L43 , L45 , N45 , T44 , U45 , W45 | AA43 "&
ACA43, AD44, AE41, AG45, AK44, AL43, AM42, AR45 "&
AP40, BA45, AV42, BB44, BB42, BC41l, BA37, BD40),"&

: (F2 , AB4 , AT2 , BC11, M38 , AB42, AU43, BC37 ,"&
M8 , AA3 , AW1 , BD10, E45 , AC45, AT44, BB36),"&

:(E7 , R3 , AH2 , BC5 , F38 , U39 , AH44, AY40),"&

:(F8 , T4 , AJ1 , BD4 , E39 , V38 , AJ43, BA39),"&

(K4 |, AV4 | K42 , AT42), "&
:(J5 , AU3 , J43 , AR43), "&
: (E13 , H16 , A1l , B12 , D14 , E15 , A13 , G17 &
C15 , H18 , D16 , Bi6 , C17 , Al7 , E19 , B18 /&
A19 , F20 , D20 , E21 , C21 , D22 , H22), "&
B24 , "&
c23 , "&
G23 , "&
B22 , "&
H24 , "&
: E25, "&
G19 , &
F18 , "&
D24 , &
. C25 , "&
1 (BA15, BE13, AW17, AV18, BC15, BB16), "&

Alpha 21264/EV6 Hardware Reference Manual 21264/EV6 Boundary-Scan Register B-3

Boundary-Scan Register

"Reset_L . BD16, "&
"SromData_H : BC17, "&
"SromCLK_H © AW19, "&
"SromOE_L : BE17, "&
"Tms_H . BD18, "&
"Tck_H : BE19, "&
"Trst_L 1 AY20, '&
"Tdi_H : BA21, "&
"Tdo_H . BB20, "&
"TestStat_H : BA1L9, &
"Clkin_H : AM8 , "&
"Clkin_L : AN7 "&
"FrameClk_H : AV1e6, "&
"FrameClk_L : AWI15, "&
"PliBypass_H : BD12, '&
"NoConnect_0 : BB14, "&
"NoConnect_1 . BD2 , "&
"ClkFwdRst_H : BE11, "&
"EV6CIk_H : AMS6 "&
"EV6CIk_L : AL7 , "&
"Spare_4 : AT4 "&
"Spare_5 : AR3 "&
"PLL_VDD : AV8 , "&
"Spare_0 : BC21, "&
"MiscVref : AV22, "&
"Spare_2 : BE9 , "&
"DCOK_H : AY18, "&

"VSS: (C1 , w3 , AR5, G9 , E17 , G25 , C33 , AA39, "&

' BA41, R45 , J1 , AG3 , BA5 , AW9 , BAl7, AW25, "&
BC33, AE39, A43 , AA45, R1 , AN3 , C7 , C19 , "&
BE25, E35 , AL39, G43 , AE45, AA1 , AW3 , J7 , "&
E11 , BC19, C27 , BA35, AU39, N43 , AL45, AEl , "&
BE3 , R7 , BAll, A21 , BC27, A37 , BC39, W43 , "&
AU45, AL1 , ES , AA7 , C13 , G21 , E29 , G37 , "&
E41 , AG43, BC45, AUl , L6 , AE7 , BC13, AW21, "&
BA29, AW37, L41 , AN43, BC1 , U5 , AU7 , Al5 , "&
BE21, A31 , BE37, U4l , AW43, A3 , AC5 , AW7 , "&
G15 , E23 , G31 , C39 , AC4l1, BE43, G3 , AJ5 , "&
BC7 , AY14, BA23, AW31, J39 , AJ41, C45 , N3 , "&
AN5 , A9 , BE15, A25 , BE31, R39 , AR41, J45), "&

"VDD (B2 ,Vv4 , AP6 , D12 , B20 , H26 , BD32, AM38, "&

' BB40, Y44 , H2 , AH4 , AT6 , BB12, H20 , AV26, "&
D34 , AV38, F42 , AF44, P2 , AP4 , BB6 , B14 , "&
AV20, BD26, BB34, BD38, M42 , AM44, Y2 , AY4 , "&
B8 , H14 , BD20, D28 , F36 , D40 , V42 , Av44, "&
AF2 , D6 , P8 , AV14, F22 , BB28, AY36, K40 , "&
AH42, BD44, AM2 , K6 , Y8 , BD14, AY22, F30 , "&
B38 , T40 , AP42, AV2 , T6 , AF8 , F16 , A23 , "&
AY30, H38 , AB40, AY42, AB6 , BD8 , AY1l6, F24 , "&
B32 , P38 , AD40, B44 , F4 , AD6 , F10 , D18 , "&
AY24, H32 , Y38 , AK40, H44 , M4 , AK6 , AY10, "&
BB18, B26 , AV32, AF38, AT40, P44) "

constant numeric_EV6 : PIN_MAP_STRING = " " &
"SysAddIn_L . (559 , 536 , 468 , 580 , 445 , 490 , 558 , 579 , "&
" 467 , 534 , 511 , 421 , 556 , 577 , 443), "&
"SysAddInClk_L © 512 "&
"SysVref © 489 "&
"SysFillValid_L : 533, "&

B-4 21264/EV6 Boundary-Scan Register Alpha 21264/EV6 Hardware Reference Manual

"SysAddOut_L

"SysAddOutClk_L
"SysData_L

"SysCheck_L
"SysDatalnCIlk_H
"Spare_6
"SysDataOutClk_L
"SysDatalnValid_L
"SysDataOutValid_L
"BcAdd_H

"BcDataOE_L
"BcLoad_L
"BcDataWr_L
"BcData_H

"BcCheck_H

"BcDatalnCIk_H
"Spare_7
"BcDataOutClk_L
"BcDataOutClk_H
"BcTag_H

"BcTagValid_H
"BcTagDirty_H
"BcTagShared_H
"BcTagParity_H
"BcTagOE_L
"BcTagWr_L
"BcTagInClk_H
"BeVref
"BcTagOutClk_L
"BcTagOutClk_H
"IRQ_H

Boundary-Scan Register

1 (448 , 585 , 562 , 539 , 493 , 470 , 583 , 424 , "&
515 , 492 , 582 , 446 , 537 , 423 , 514), "&
561 , "&
: (118 , 140 , 117 , 161 , 160 , 137 , 114 , 189 , "&
204 , 213 , 220 , 237 , 253 , 252 , 261 , 268 , "&
285, 293 , 301 , 308 , 332 , 333 , 341, 356 , "&
381 , 389 , 397 , 412 , 414 , 437 , 415 , 438 , "&
127 , 128 , 172 , 151 , 131 , 153 , 190 , 183 , "&
207 , 214 , 223 , 238 , 255 , 263 , 262 , 271 , "&
286 , 294 , 302 , 319 , 334 , 342 , 359 , 350 , "&
374 , 382 , 390 , 398 , 473 , 427 , 449 , 426),"&
1 (197 , 276 , 349 , 483 , 198 , 279 , 367 , 471),"&
: (70 , 219 , 316 , 457 , 107 , 232 , 327 , 429)"&
(93 , 228 , 324, 480 , 85 , 240 , 326 , 452)&
: (139 , 245, 325 , 458 , 173 , 231 , 335 , 451),"&
555 , "&
510 , "&
1 (35 102 , 14 , 147 , 58 , 125,36 , 81, "&
59 , 169, 148 , 16 , 104,82 ,38 , 17, "&
39 , 170, 61 , 105), "&
13 "&
124 "&
79 "&
(26 , 71,2 46 , 45 ,90 , 159,89 ,"&
179 , 186 , 195 , 202 , 234 , 242 , 250 , 267 , "&
290 , 298 , 307 , 322 , 346 , 355 , 386 , 378 , "&
455 , 500 , 434 , 501 , 503 , 568 , 504 , 569 , "&
150 , 62 ,41 ,64 ,65 , 110, 154 , 133 , "&
193 , 215, 209 , 224 , 248 , 257 , 272 , 289 , "&
304 , 312 , 320 , 345, 352 , 377 , 385 , 375 , "&
454 , 407 , 476 , 498 , 543 , 565 , 518 , 586 , "&
49 , 3 ,48 ,24 ,23 ,68 , 136,67, "&
158 , 134 , 212 , 194 , 210 , 243 , 260 , 258 , "&
282 , 291 , 299 , 315, 339 , 347 , 370 , 363 , "&
404 , 477 , 478 , 523 , 547 , 481 , 526 , 460 , "&
19 ,8 ,20 ,42 ,87 ,8 ,175, 176, "&
156 , 200 , 201 , 217 , 241 , 249 , 265 , 280 , "&
296 , 305 , 311, 329 , 353 , 360 , 368 , 393 , "&
383 , 499 , 430 , 521 , 520 , 542 , 495 , 564),"&
1 (112 , 283 , 394 , 527 , 206 , 288 , 408 , 540 , "&

205 , 275 , 432 , 549 , 111 , 297 , 401 , 517),"&

Alpha 21264/EV6 Hardware Reference Manual

© (92 , 227 , 330 , 524 , 130 , 246 , 337 , 474)"&
: (115, 235 , 338 , 546 , 108 , 254 , 344 , 496),"&
1 (187 , 411 , 192 , 400), "&
: (180 , 403 , 184 , 392), "&
(95 , 163 , 5 27 , 73 ,9% ,6 , 142, "&
51 ,164 ,74 ,29 ,52 ,8 , 98 ,30 ,"&
9 , 121,76 ,99 ,54 , 77 , 166), "&
33 , "&
55 , "&
145 "&
32 , "&
167 , "&
101 "&
143 , "&
120 , "&
7”8, "&
56 , "&
1 (484 , 572 , 440 , 418 , 529 , 507), "&

21264/EV6 Boundary-Scan Register

B-5

Boundary-Scan Register

"Reset_L 652, "&
"SromData_H : 530, &
"SromCLK_H T 441, &
"SromOE_L . 574, "&
"Tms_H : 553, &
"Tck_H : 575, &
"Trst_L T 464 &
"Tdi_H 1487, &
"Tdo_H : 509 , &
"TestStat_H © 486 , &
"Clkin_H : 365, &
"Clkin_L . 373, &
"FrameClk_H T 417 &
"FrameClk_L : 439 "&
"PliBypass_H : 550 , &
"NoConnect_0 : 506 , &
"NoConnect_1 . 545, &
"ClkFwdRst_H : 571, &
"EV6CIk_H : 364, &
"EV6CIk_L : 357, &
"Spare_4 : 395, &
"Spare_5 : 387, &
"PLL_VDD ©413, &
"Spare_0 : 532, "&
"MiscVref © 420 , "&
"Spare_2 : 570 , "&
"DCOK_H T 463, "&
&

"VSS : (44 , 259,38, 138,97 , 146 , 60 , 278 , "
' 497 , 233 , 178 , 323 , 479 , 436 , 485 , 444 | "
538 , 310 , 21 , 281, 226 , 371, 47 , 53 ,
578 , 106 , 358 , 155 , 313 , 274 , 433 , 181 ,
94 , 531,57 , 494 , 406 , 216 , 361 , 306 ,
567 , 229 , 482 , 10 , 535, 18 , 541 , 264 ,
409 , 354 , 91 , 277 , 50 , 144 , 103 , 152 ,
109 , 328 , 544 , 402 , 196 , 309 , 528 , 442 ,
491 , 450 , 199 , 376 , 522 , 244 , 405 , 7 ,
576 , 15 , 584 , 247 , 453 , 1 , 292 , 435 ,
141 , 100 , 149 , 63 , 295 , 587 , 135, 340 ,
525 , 461 , 488 , 447 , 182 , 343 , 66 , 211 ,
372 , 4 , 573, 12 , 581, 230, 391 , 185)"
"VDD (22 , 251,38 ,72 ,31 , 168 , 560 , 366 , "
' 519 , 273 , 157 , 331 , 396 , 505 , 165 , 422 ,
83 , 428 , 132, 321, 218 , 379 , 502 , 28 ,
419 , 557 , 516 , 563 , 208 , 369 , 266 , 456 , "
25 , 162 ,554 ,80 , 129, 8 , 256 , 431 ,
314 , 69 , 221 , 416 , 122 , 513 , 472 , 191 ,
336 , 566 , 362 , 188 , 269 , 551 , 465 , 126 , "
40 , 239 , 384 , 410 , 236 , 317, 119 , 11 ,
469 , 174 , 287 , 475 , 284 , 548 , 462 , 123 , "
37 , 222,303, 43 , 113, 300, 116 , 75 ,
466 , 171 , 270 , 351 , 177 , 203 , 348 , 459 , "
508 , 34 , 425 , 318 , 399 , 225) "

I I I S I S T A I S I S S

attribute PORT_GROUPING of Alpha_21264 : entity is-- (Ref B.8.8. See Note 4.
"Differential_Voltage ((CLKIN_H), (CLKIN_L))" ;

attribute TAP_SCAN_CLOCK of Tck_H : signal is (5.0e6, LOW);

attribute TAP_SCAN_IN of Tdi_H : signal is TRUE;
attribute TAP_SCAN_OUT of Tdo_H : signal is TRUE;

B-6 21264/EV6 Boundary-Scan Register Alpha 21264/EV6 Hardware Reference Manual

attribute TAP_SCAN_MODE
attribute TAP_SCAN_RESET of Trst_L :

Boundary-Scan Register

of Tms_H : signal is TRUE;

signal is TRUE;

attribute COMPLIANCE_PATTERNS of Alpha_21264 : entity is -- (Ref B.8.10). See Note 4.
"(DcOk_H), (1) ;

attribute INSTRUCTION_LENGTH of Alpha_21264 : entity is 5 ;

attribute INSTRUCTION_OPCODE of Alpha_21264 : entity is

"EXTEST (11011),"&-- No longer mandated to be (00000)!
"SAMPLE (11000),"&-- JWB changed "PRELOAD" to "SAMPLE"
"CLAMP (11010),"&

"HIGHZ (11001),"&

"DIE_ID (11110),"&

"BYPASS (11111)"

attribute INSTRUCTION_CAPTURE of Alpha_21264 :
attribute INSTRUCTION_PRIVATE of Alpha_21264 :

entity is "00001" ;
entity is "Private"; -- See Note 4.

attribute REGISTER_ACCESS of Alpha_21264 : entity is-- (ref B.8.13)
"BOUNDARY (EXTEST, SAMPLE)," &-- Redundant. Added for completeness
"BYPASS (BYPASS, HIGHZ, CLAMP)," &-- ditto
"DIE_ID[32] (DIE_ID)";

attribute BOUNDARY_LENGTH of Alpha_21264 : entity is 367 ;

attribute BOUNDARY_REGISTER of Alpha_21264 : entity is

-- scan cell safe cntrl disable disable

- cell type port function | cell value state

R B e

" 366 (BC_2, TestStat_H, OUTPUT2, x), "& -
" 365 (BC_2, SromOE_L, OUTPUT2, X), "& --
" 364 (BC_2, SromClk_H, OUTPUT2, x), "& -
" 363 (BC_2, SromData_H, INPUT, X), "& -
" 362 (BC_3, reset_L, INPUT, X), "& -
" 361 (BC_3, IRQ_H(5), INPUT, X), "& -
" 360 (BC_3, IRQ_H(4), INPUT, X), "& -
" 359 (BC_3, IRQ_H(3), INPUT, X), "& -
" 358 (BC_3, IRQ_H(2), INPUT, X), "& -
" 357 (BC_3, IRQ_H(1), INPUT, X), "& -
" 356 (BC_3, IRQ_H(0), INPUT, X), "& -
" 355 (BC_3, ClkFwdRst_H, INPUT, X), "& -
" 354 (BC_2, BcCheck_H(3), BIDIR, x, 339, 0, z), "& -

" 353 (BC_2, BcCheck_H(11), BIDIR, x, 339, O, z), "& -

" 352 (BC_2, SysCheck_L(3), BIDIR, X, 336, O, WEAK1), "& --

" 351 (BC_2, BcData_H(31), BIDIR, x, 339, O, z), "& --

" 350 (BC_2, BcData_H(95), BIDIR, x, 339, O, z), "& --

" 349 (BC_2, SysData_L(31), BIDIR, X, 336, O, WEAK1), "& --

" 348 (BC_2, BcData_H(30), BIDIR, x, 339, O, z), "& --

" 347 (BC_2, BcData_H(94), BIDIR, x, 339, O, z), "& --

" 346 (BC_2, SysData_L(30), BIDIR, X, 336, O, WEAK1), "& --

" 345 (BC_2, BcData_H(29), BIDIR, x, 339, O, z), "& --

" 344 (BC_2, BcData_H(93), BIDIR, x, 339, O, z), "& --

" 343 (BC_2, SysData_L(29), BIDIR, X, 336, O, WEAK1), "& --

" 342 (BC_2, BcData_H(28), BIDIR, x, 339, O, z), "& --

" 341 (BC_2, BcData_H(92), BIDIR, x, 339, O, z), "& --

" 340 (BC_2, SysData_L(28), BIDIR, X, 336, O, WEAK1), "& --

" 339 (BC_3, * CONTROL, 0), "& -- bccelld
" 338 (BC_3, BcDatalnClk_H(3), INPUT, X), "& -

" 337 (BC_2, SysDataOutClk_L(3), OUTPUT2, x), "& -

Alpha 21264/EV6 Hardware Reference Manual

21264/EV6 Boundary-Scan

Register

B-7

Boundary-Scan Register

B-8

" 336
" 335

" 333
" 332
" 331

" 329
" 328
" 327
" 326
" 325
" 324
" 323
" 322
" 321
" 320
" 319
" 318
" 317
" 316
" 315
" 314
" 313
" 312
" 311
" 310
" 309
" 308
" 307
" 306
" 305
" 304
" 303
" 302
" 301
" 300
" 299
" 298
" 297
" 296
" 295
" 294
" 293
" 292
" 291
" 290
" 289
" 288
" 287
" 286
" 285
" 284
" 283
" 282
" 281

" 279
" 278

BC_3,
BC_3,
BC_2,
BC_2,
BC_2,
BC_2,
BC_2,
BC_2,
BC_2,
BC_2,
BC_2,
BC_2,
BC_2,
BC_2,
BC_2,
BC_2,
BC_2,
BC_2,
BC_2,
BC_2,
BC_2,
BC_2,
BC_2,
BC_2,
BC_2,
BC_2,
BC_2,
BC_2,
BC_2,
BC_2,
BC_2,
BC_3,
BC_3,
BC_2,
BC_3,
BC_3,
BC_2,
BC_2,
BC_2,
BC_2,
BC_2,
BC_2,
BC_2,
BC_2,
BC_2,
BC_2,
BC_2,
BC_2,
BC_2,
BC_2,
BC_2,
BC_2,
BC_2,
BC_2,
BC_2,
BC_2,
BC_2,
BC_2,
BC_2,

*
’

SysDatalnCIk_H(3),
BcData_H(27),
BcData_H(91),
SysData_L(27),
BcData_H(26),
BcData_H(90),
SysData_L(26),
BcData_H(25),
BcData_H(89),
SysData_L(25),
BcData_H(24),
BcData_H(88),
SysData_L(24),
BcDataOutClk_L(1),
BcDataOutClk_H(1),
BcCheck_H(2),
BcCheck_H(10),
SysCheck_L(2),
BcData_H(23),
BcData_H(87),
SysData_L(23),
BcData_H(22),
BcData_H(86),
SysData_L(22),
BcData_H(21),
BcData_H(85),
SysData_L(21),
BcData_H(20),
BcData_H(84),
SysData_L(20),

*
’

BcDatalnClk_H(2),

SysDataOutCIk_L(2), OUTPUT2, x

*
’

SysDatalnCIk_H(2),
BcData_H(19),
BcData_H(83),
SysData_L(19),
BcData_H(18),
BcData_H(82),
SysData_L(18),
BcData_H(17),
BcData_H(81),
SysData_L(17),
BcData_H(16),
BcData_H(80),
SysData_L(16),
BcCheck_H(1),
BcCheck_H(9),
SysCheck_L(1),
BcData_H(15),
BcData_H(79),
SysData_L(15),
BcData_H(14),
BcData_H(78),
SysData_L(14),
BcData_H(13),
BcData_H(77),

CONTROL, 0
INPUT, X
BIDIR, X, 339,
BIDIR, X, 339,
BIDIR, X, 336,
BIDIR, X, 339,
BIDIR, X, 339,
BIDIR, X, 336,
BIDIR, X, 339,
BIDIR, X, 339,
BIDIR, X, 336,
BIDIR, X, 339,
BIDIR, X, 339,
BIDIR, X, 336,
OUTPUTZ2, x
OUTPUT2, x
BIDIR, X, 305,
BIDIR, X, 305,
BIDIR, X, 302,
BIDIR, X, 305,
BIDIR, X, 305,
BIDIR, X, 302,
BIDIR, X, 305,
BIDIR, X, 305,
BIDIR, X, 302,
BIDIR, X, 305,
BIDIR, X, 305,
BIDIR, X, 302,
BIDIR, X, 305,
BIDIR, X, 305,
BIDIR, X, 302,
CONTROL, 0
INPUT, X
CONTROL, 0
INPUT, X
BIDIR, X, 305,
BIDIR, X, 305,
BIDIR, X, 302,
BIDIR, X, 305,
BIDIR, X, 305,
BIDIR, X, 302,
BIDIR, X, 305,
BIDIR, X, 305,
BIDIR, X, 302,
BIDIR, X, 305,
BIDIR, X, 305,
BIDIR, X, 302,
BIDIR, X, 273,
BIDIR, X, 273,
BIDIR, X, 270,
BIDIR, X, 273,
BIDIR, X, 273,
BIDIR, X, 270,
BIDIR, X, 273,
BIDIR, X, 273,
BIDIR, X, 270,
BIDIR, X, 273,
BIDIR, X, 273,

21264/EV6 Boundary-Scan Register

), "& -- sccell0

) & -
0, z), "& --
0, z), "& --
0, WEAK1), "& --
0, z), "& --
0, z), "& --
0, WEAK1), "& --
0, z), "& --
0, z), "& --
0, WEAK1), "& --
0, z), "& --
0, z), "& --
0, WEAK1), "& --
) & -
) & -
0, z), "& -
0, z), "& -
0, WEAK1), "& --
0, z), "& --
0, z), "& --
0, WEAK1), "& --
0, z), "& --
0, z), "& --
0, WEAK1), "& --
0, z), "& --
0, z), "& --
0, WEAK1), "& --
0, z), "& --
0, z), "& --
0, WEAK1), "& --
), "& -- bccelll
) "& -
) "& -
), "& -- sccelll
) & -
0, z), "& --
0, z), "& --
0, WEAK1), "& --
0, z), "& --
0, z), "& --
0, WEAK1), "& --
0, z), "& --
0, z), "& --
0, WEAK1), "& --
0, z), "& --
0, z), "& --
0, WEAK1), "& --
0, z), "& -
0, z), "& -
0, WEAK1), "& --
0, z), "& --
0, z), "& --
0, WEAK1), "& --
0, z), "& --
0, z), "& --
0, WEAK1), "& --
0, z), "& --
0, z), "& --

Alpha 21264/EV6 Hardware Reference Manual

Boundary-Scan Register

" 277 (BC_2, SysData_L(13), BIDIR, X, 270, 0, WEAKL), "& -

" 276 (BC_2, BcData_H(12), BIDIR, X, 273, 0, Z) & -

" 275 (BC_2, BcData_H(76), BIDIR, X, 273, 0, Z) & -

" 274 (BC_2, SysData_L(12), BIDIR, X, 270, 0, WEAKL), "& -

" 273 (BC_3, *, CONTROL, 0), "& - becell2
" 272 (BC_3, BeDatainClk_H(1), INPUT, x), "& -
" 271 (BC_2, SysDataOutClk_L(1), OUTPUT2, x), "& -
" 270 (BC_3, *, CONTROL, 0), "& - sccell2
" 269 (BC_3, SysDatanClk_H(1), INPUT, x), "& -
" 268 (BC_2, BcData H(11), BIDIR, X, 273, 0, Z) & -

" 267 (BC_2, BcData_H(75), BIDIR, X, 273, 0, Z) & -

" 266 (BC_2, SysData_L(11), BIDIR, X, 270, 0, WEAKL), "& -

" 265 (BC_2, BcData_H(10), BIDIR, X, 273, 0, Z) & -

" 264 (BC_2, BcData_H(74), BIDIR, X, 273, 0, Z) & -

" 263 (BC_2, SysData_L(10), BIDIR, X, 270, 0, WEAKL), "& -

" 262 (BC_2, BcData_H(9) , BIDIR, X, 273, 0, Z) & -

" 261 (BC_2, BcData_H(73), BIDIR, X, 273, 0, Z) & -

" 260 (BC_2, SysData_L(9), BIDIR, X, 270, 0, WEAKL), "& -
" 259 (BC_2, BcData_H(8) , BIDIR, X, 273, 0, Z) & -

" 258 (BC_2, BcData_H(72), BIDIR, X, 273, 0, Z) & -

" 257 (BC_2, SysData_L(8), BIDIR, X, 270, 0, WEAKL), "& -
" 256 (BC_2, BcDataOutClk_L(0), OUTPUT2, x), "& -
" 255 (BC_2, BcDataOutClk_H(0), OUTPUT2, x L& -
" 254 (BC_2, BcCheck H(0), BIDIR, X, 239, 0, Z), "& -

" 253 (BC_2, BcCheck H(8), BIDIR, X, 239, 0, Z), "& -

" 252 (BC_2, SysCheck_L(0), BIDIR, X, 236, 0, WEAKL), "& -
" 251 (BC_2, BcData_H(7) , BIDIR, X, 239, 0, Z) & -

" 250 (BC_2, BcData H(71), BIDIR, X, 239, 0, Z) & -

" 249 (BC_2, SysData_L(7), BIDIR, X, 236, 0, WEAKL), "& -
" 248 (BC_2, BcData_H(6) , BIDIR, X, 239, 0, Z) & -

" 247 (BC_2, BcData_H(70), BIDIR, X, 239, 0, Z) & -

" 246 (BC_2, SysData_L(6), BIDIR, X, 236, 0, WEAKL), "& -
" 245 (BC_2, BcData_H(5) , BIDIR, X, 239, 0, Z) & -

" 244 (BC_2, BcData_H(69), BIDIR, X, 239, 0, Z) & -

" 243 (BC_2, SysData_L(5), BIDIR, X, 236, 0, WEAKL), "& -
" 242 (BC_2, BcData_H(4) , BIDIR, X, 239, 0, Z) & -

" 241 (BC_2, BcData_H(68), BIDIR, X, 239, 0, Z) & -

" 240 (BC_2, SysData_L(4), BIDIR, X, 236, 0, WEAKL), "& -
" 239 (BC_3, *, CONTROL, 0), "& - becelld
" 238 (BC_3, BcDatanClk_H(0), INPUT, x), "& -
" 237 (BC_2, SysDataOutClk_L(0), OUTPUT2, x), "& -
" 236 (BC_3, *, CONTROL, 0), "& - sccell3
" 235 (BC_3, SysDatainClk_H(0), INPUT, x) & -
" 234 (BC_2, BcData_H(3) , BIDIR, X, 239, 0, Z) & -

" 233 (BC_2, BcData_H(67), BIDIR, X, 239, 0, Z) & -

" 232 (BC_2, SysData_L(3), BIDIR, X, 236, 0, WEAKL), "& -
" 231 (BC_2, BcData_H(2) , BIDIR, X, 239, 0, Z) & -

" 230 (BC_2, BcData_H(66), BIDIR, X, 239, 0, Z) & -

" 229 (BC_2, SysData_L(2), BIDIR, X, 236, 0, WEAKL), "& -
" 228 (BC_2, BcData_H(1) , BIDIR, X, 239, 0, Z), & -

" 227 (BC_2, BcData_H(65), BIDIR, X, 239, 0, Z) & -

" 226 (BC_2, SysData_L(1), BIDIR, X, 236, 0, WEAKL), "& -
" 225 (BC_2, BcData_H(0) , BIDIR, X, 239, 0, Z), & -

" 224 (BC_2, BcData_H(64), BIDIR, X, 239, 0, Z) & -

" 223 (BC_2, SysData_L(0), BIDIR, X, 236, 0, WEAKL), "& -
" 222 (BC_2, BcTag_H(20), BIDIR, X, 208, 0, Z) & -

" 221 (BC_2, BcTag_H(21), BIDIR, X, 208, 0, Z) & -

" 220 (BC_2, BcTag_H(22), BIDIR, X, 208, 0, Z) & -

" 219 (BC_2, BcTag_H(23), BIDIR, X, 208, 0, Z) & -

Alpha 21264/EV6 Hardware Reference Manual 21264/EV6 Boundary-Scan Register B-9

Boundary-Scan Register

218 (BC_2,
217 (BC_2,
216 (BC_2,
215 (BC_2,
214 (BC_2,
213 (BC_2,
212 (BC_2,
211 (BC_2,
210 (BC_2,
209 (BC_2,
208 (BC_3,
207 (BC_3,
206 (BC_2,
205 (BC_2,
204 (BC_2,
203 (BC_2,
202 (BC_2,
201 (BC_2,
200 (BC_2,
199 (BC_2,
198 (BC_2,
197 (BC_2,
196 (BC_2,
195 (BC_2,
194 (BC_2,
193 (BC_2,
192 (BC_2,
191 (BC_2,
190 (BC_2,
189 (BC_2,
188 (BC_2,
187 (BC_2,
186 (BC_2,
185 (BC_2,
184 (BC_2,
183 (BC_2,
182 (BC_2,
181 (BC_2,
180 (BC_2,
179 (BC_2,
178 (BC_2,
177 (BC_2,
176 (BC_2,
175 (BC_2,
174 (BC_2,
173 (BC_2,
172 (BC_2,
171 (BC_2,
170 (BC_2,
169 (BC_2,
168 (BC_2,
167 (BC_2,
166 (BC_2,
165 (BC_2,
164 (BC_2,
163 (BC_2,
162 (BC_2,
161 (BC_2,
160 (BC_2,

BcTag_H(24),
BcTag_H(25),
BcTag_H(26),
BcTag_H(27),
BcTag_H(28),
BcTag_H(29),
BcTag_H(30),
BcTag_H(31),
BcTag_H(32),
BcTag_H(33),

*
’

BcTagInClk_H,
BcTag_H(34),
BcTag_H(35),
BcTag_H(36),
BcTag_H(37),
BcTag_H(38),
BcTag_H(39),
BcTag_H(40),
BcTag_H(41),
BcTag_H(42),
BcTagParity_H,
BcTagShared_H,
BcTagDirty_H,
BcTagValid_H,
BcTagOutCIk_L,
BcTagOutCIk_H,
BcTagOE_L,
BcTagWr_L,
BcDataWr_L,
BcLoad_L,
BcDataOE_L,
BcAdd_H(4),
BcAdd_H(5),
BcAdd_H(6),
BcAdd_H(7),
BcAdd_H(8),
BcAdd_H(9),
BcAdd_H(10),
BcAdd_H(11),
BcAdd_H(12),
BcAdd_H(13),
BcAdd_H(14),
BcAdd_H(15),
BcAdd_H(16),
BcAdd_H(17),
BcAdd_H(18),
BcAdd_H(19),
BcAdd_H(20),
BcAdd_H(21),
BcAdd_H(22),
BcAdd_H(23),
SysData_L(32),
BcData_H(96),
BcData_H(32),
SysData_L(33),
BcData_H(97),
BcData_H(33),
SysData_L(34),

BIDIR, X, 208,
BIDIR, X, 208,
BIDIR, X, 208,
BIDIR, X, 208,
BIDIR, X, 208,
BIDIR, X, 208,
BIDIR, X, 208,
BIDIR, X, 208,
BIDIR, X, 208,
BIDIR, X, 208,
CONTROL, 0
INPUT, X
BIDIR, X, 208,
BIDIR, X, 208,
BIDIR, X, 208,
BIDIR, X, 208,
BIDIR, X, 208,
BIDIR, X, 208,
BIDIR, X, 208,
BIDIR, X, 208,
BIDIR, X, 208,
BIDIR, X, 208,
BIDIR, X, 208,
BIDIR, X, 208,
BIDIR, X, 208,
OUTPUT2, x
OUTPUT2, x
OUTPUT2, x
OUTPUT2, x
OUTPUT2, x
OUTPUT2, x
OUTPUT2, x
OUTPUT2, x
OUTPUT2, x
OUTPUT2, x
OUTPUT2, x
OUTPUT2, x
OUTPUTZ2, x
OUTPUTZ2, x
OUTPUTZ2, x
OUTPUTZ2, x
OUTPUTZ2, x
OUTPUTZ2, x
OUTPUTZ2, x
OUTPUTZ2, x
OUTPUTZ2, x
OUTPUTZ2, x
OUTPUTZ2, x
OUTPUTZ2, x
OUTPUTZ2, x
OUTPUTZ2, x
OUTPUTZ2, x
BIDIR, X, 150,
BIDIR, X, 153,
BIDIR, X, 153,
BIDIR, X, 150,
BIDIR, X, 153,
BIDIR, X, 153,
BIDIR, X, 150,

B-10 21264/EV6 Boundary-Scan Register

O 00 0o o oo oo
N NN NNNNNNN

O 000 o o o oo
N N N NNNNNN

o o
- - p -
N N
N N
— b

Alpha 21264/EV6 Hardware Reference Manual

WEAKL), "
. Z)"
. Z)"
WEAKL), "
. Z)"
. Z)"
WEAKL), "

BRI RS R R

S R I IR - QPP

Boundary-Scan Register

159 (BC_2, BcData_H(98), BIDIR, x, 153, 0, Z) & -
158 (BC_2, BcData_H(34), BIDIR, x, 153, 0, Z) & -
157 (BC_2, SysData_L(35), BIDIR, x, 150, 0 WEAK1), "& -
156 (BC_2, BcData_H(99), BIDIR, x, 153, 0, Z) & -
155 (BC_2, BcData_H(35), BIDIR, x, 153, 0, Z) & -
154 (BC_3, SysDatalnClk_H(4), INPUT, x), "& -
153 (BC_3, *, CONTROL, 0), "& - sccelld
152 (BC_2, SysDataOutClk_L(4), OUTPUT2, x), "& -
151 (BC_3, BcDatainClk_H(4), INPUT, x), "& -
150 (BC_3, *, CONTROL, 0), "& - becelld
149 (BC_2, SysData_L(36), BIDIR, X, 150, 0, WEAKL), "& -
148 (BC_2, BcData_H(100), BIDIR, x, 153, 0, Z), "& -
147 (BC_2, BcData_H(36), BIDIR, x, 153, 0, Z) & -
146 (BC_2, SysData_L(37), BIDIR, x, 150, 0, WEAKL), "& -
145 (BC_2, BcData_H(101), BIDIR, x, 153, 0, Z), "& -
144 (BC_2, BcData_H(37), BIDIR, x, 153, 0, Z) & -
143 (BC_2, SysData_L(38), BIDIR, X, 150, 0, WEAKL), "& -
142 (BC_2, BcData_H(102), BIDIR, x, 153, 0, Z), "& -
141 (BC_2, BcData_H(38), BIDIR, x, 153, 0, Z) & -
140 (BC_2, SysData_L(39), BIDIR, x, 150, 0, WEAKL), "& -
139 (BC_2, BcData_H(103), BIDIR, x, 153, 0, Z), "& -
138 (BC_2, BcData_H(39), BIDIR, x, 153, 0, Z) & -
137 (BC_2, SysCheck_L(4), BIDIR, X, 150, 0, WEAKI), "& -
136 (BC_2, BcCheck H(12), BIDIR, x, 153, 0, Z), "& -
135 (BC_2, BcCheck H(4), BIDIR, x, 153, 0, Z), "& -
134 (BC_2, BcDataOutClk_H(2), OUTPUT2, x), "& -
133 (BC_2, BcDataOutClk_L(2), OUTPUT2, x), "& -
132 (BC_2, SysData_L(40), BIDIR, x, 119, 0, WEAKL), "& -

" 131 (BC_2, BcData_H(104), BIDIR, x, 116, 0, Z), "& -
130 (BC_2, BcData_H(40), BIDIR, x, 116, 0, Z) & -
129 (BC_2, SysData_L(41), BIDIR, x, 119, 0, WEAKL), "& -
128 (BC_2, BcData_H(105), BIDIR, x, 116, 0, Z), "& -
127 (BC_2, BcData_H(41), BIDIR, x, 116, 0, Z) & -
126 (BC_2, SysData_L(42), BIDIR, X, 119, 0, WEAKL), "& -
125 (BC_2, BcData_H(106), BIDIR, x, 116, 0, Z), "& -
124 (BC_2, BcData_H(42), BIDIR, x, 116, 0, Z) & -
123 (BC_2, SysData_L(43), BIDIR, x, 119, 0, WEAKL), "& -
122 (BC_2, BcData_H(107), BIDIR, x, 116, 0, Z), "& -
121 (BC_2, BcData_H(43), BIDIR, x, 116, 0, Z) & -
120 (BC_3, SysDatalnClk_H(5), INPUT, x) & -
119 (BC_3, *, CONTROL, 0), "& - sccells
118 (BC_2, SysDataOutClk_L(5), OUTPUT2, x), "& -
117 (BC_3, BcDatainClk_H(5), INPUT, x), "& -
116 (BC_3, *, CONTROL, 0), "& - becells
115 (BC_2, SysData_L(44), BIDIR, X, 119, 0, WEAKL), "& -
114 (BC_2, BcData_H(108), BIDIR, x, 116, 0, Z), "& -
113 (BC_2, BcData_H(44), BIDIR, x, 116, 0, Z) & -
112 (BC_2, SysData_L(45), BIDIR, x, 119, 0, WEAKL), "& -
111 (BC_2, BcData_H(109), BIDIR, x, 116, 0, Z), "& -
110 (BC_2, BcData_H(45), BIDIR, x, 116, 0, Z) & -
109 (BC_2, SysData_L(46), BIDIR, x, 119, 0, WEAKL), "& -
108 (BC_2, BcData_H(110), BIDIR, x, 116, 0, Z), "& -
107 (BC_2, BcData_H(46), BIDIR, x, 116, 0, Z) & -
106 (BC_2, SysData_L(47), BIDIR, x, 119, 0, WEAKL), "& -
105 (BC_2, BcData_H(111), BIDIR, x, 116, 0, Z), "& -
104 (BC_2, BcData_H(47), BIDIR, x, 116, 0, Z) & -
103 (BC_2, SysCheck_L(5), BIDIR, X, 119, 0, WEAKI), "& -

" 102 (BC_2, BcCheck H(13), BIDIR, x, 116, 0, Z), "& -

" 101 (BC_2, BcCheck H(5), BIDIR, x, 116, 0, Z), "& -

Alpha 21264/EV6 Hardware Reference Manual 21264/EV6 Boundary-Scan Register B-11

Boundary-Scan Register

" 100
" 99
" 98
" 97
" 96
" 95
" 94
" 93
" 92
"9l
" 90
" 89
" 88
" 87
" 86
" 85
" 84
" 83
" 82
" 81
" 80
" 79
" 78
"7
" 76
" 75
" 74
" 73
"T2
"7l
" 70
" 69
" 68
" 67
" 66
" 65
" 64
" 63
" 62
" 61
" 60
" 59
" 58
" 57
" 56
" 55
" 54
" 53
" 52
" 51
" 50
" 49
" 48
" 47
" 46
" 45
" 44
" 43
" 42

BC_2,
BC_2,
BC_2,
BC_2,
BC_2,
BC_2,
BC_2,
BC_2,
BC_2,
BC_2,
BC_2,
BC_2,
BC_3,
BC_3,
BC_2,
BC_3,
BC_3,
BC_2,
BC_2,
BC_2,
BC_2,
BC_2,
BC_2,
BC_2,
BC_2,
BC_2,
BC_2,
BC_2,
BC_2,
BC_2,
BC_2,
BC_2,
BC_2,
BC_2,
BC_2,
BC_2,
BC_2,
BC_2,
BC_2,
BC_2,
BC_2,
BC_2,
BC_2,
BC_2,
BC_2,
BC_2,
BC_3,
BC_3,
BC_2,
BC_3,
BC_3,
BC_2,
BC_2,
BC_2,
BC_2,
BC_2,
BC_2,
BC_2,
BC_2,

SysData_L(48),
BcData_H(112),
BcData_H(48),
SysData_L(49),
BcData_H(113),
BcData_H(49),
SysData_L(50),
BcData_H(114),
BcData_H(50),
SysData_L(51),
BcData_H(115),
BcData_H(51),

SysDatalnCIk_H(6),

*
’

SysDataOutClk_L(6), OUTPUT2,

BcDatalnCIk_H(6),

*
’

SysData_L(52),
BcData_H(116),
BcData_H(52),
SysData_L(53),
BcData_H(117),
BcData_H(53),
SysData_L(54),
BcData_H(118),
BcData_H(54),
SysData_L(55),
BcData_H(119),
BcData_H(55),
SysCheck_L(6),
BcCheck_H(14),
BcCheck_H(6),

BcDataOutClk_H(3),
BcDataOutClk_L(3),

SysData_L(56),
BcData_H(120),
BcData_H(56),
SysData_L(57),
BcData_H(121),
BcData_H(57),
SysData_L(58),
BcData_H(122),
BcData_H(58),
SysData_L(59),
BcData_H(123),
BcData_H(59),

SysDatalnCIk_H(7),

*
’

SysDataOutClk_L(7), OUTPUT2,

BcDatalnCIk_H(7),

*
’

SysData_L(60),
BcData_H(124),
BcData_H(60),

SysData_L(61),
BcData_H(125),
BcData_H(61),

SysData_L(62),
BcData_H(126),

B-12 21264/EV6 Boundary-Scan

BIDIR, X, 87,
BIDIR, X, 84,
BIDIR, X, 84,
BIDIR, X, 87,
BIDIR, X, 84,
BIDIR, X, 84,
BIDIR, X, 87,
BIDIR, X, 84,
BIDIR, X, 84,
BIDIR, X, 87,
BIDIR, X, 84,
BIDIR, X, 84,
INPUT, X
CONTROL, O
X
INPUT, X
CONTROL, O
BIDIR, X, 87,
BIDIR, X, 84,
BIDIR, X, 84,
BIDIR, X, 87,
BIDIR, X, 84,
BIDIR, X, 84,
BIDIR, X, 87,
BIDIR, X, 84,
BIDIR, X, 84,
BIDIR, X, 87,
BIDIR, X, 84,
BIDIR, X, 84,
BIDIR, X, 87,
BIDIR, X, 84,
BIDIR, X, 84,
OUTPUT2, x
OUTPUT2, x
BIDIR, X, 53,
BIDIR, X, 50,
BIDIR, X, 50,
BIDIR, X, 53,
BIDIR, X, 50,
BIDIR, X, 50,
BIDIR, X, 53,
BIDIR, X, 50,
BIDIR, X, 50,
BIDIR, X, 53,
BIDIR, X, 50,
BIDIR, X, 50,
INPUT, X
CONTROL, O
X
INPUT, X
CONTROL, O
BIDIR, X, 53,
BIDIR, X, 50,
BIDIR, X, 50,
BIDIR, X, 53,
BIDIR, X, 50,
BIDIR, X, 50,
BIDIR, X, 53,
BIDIR, X, 50,
Register

0, WEAK1), "& --
0, z), "& -
0, z), "& -
0, WEAK1), "& --
0, z), "& -
0, z), "& -
0, WEAK1), "& -
0, z), "& -
0, z), "& -
0, WEAK1), "& -
0, z), "& -
0, z), "& -
), & -
), "& -- sccell6
), "& -
), "& -
), "& -- bccellé
0, WEAK1), "& -
0, z), "& -
0, z), "& -
0, WEAK1), "& -
0, z), "& -
0, z), "& -
0, WEAK1), "& -
0, z), "& -
0, z), "& -
0, WEAK1), "& -
0, z), "& -
0, z), "& -
0, WEAK1), "& --
0, z), "& -
0, z), "& -
) & -
) & -
0, WEAK1), "& -
0, z), "& -
0, z), "& -
0, WEAK1), "& --
0, z), "& -
0, z), "& -
0, WEAK1), "& -
0, z), "& -
0, z), "& -
0, WEAK1), "& -
0, z), "& -
0, z), "& -
), & -
), "& -- sccell7
), "& -
), "& -
), "& -- bccell7
0, WEAK1), "& -
0, z), "& -
0, z), "& -
0, WEAK1), "& -
0, z), "& -
0, z), "& -
0, WEAK1), "& --
0, z), "& -

Alpha 21264/EV6 Hardware Reference Manual

Boundary-Scan Register

" 41 (BC_2, BcData_H(62), BIDIR, x, 50, 0O, z), "& -
" 40 (BC_2, SysData_L(63), BIDIR, x, 53, 0, WEAK1), "& --
" 39 (BC_2, BcData_H(127), BIDIR, x, 50, O, z), "& -
" 38 (BC_2, BcData_H(63), BIDIR, x, 50, 0O, z), "& -
" 37 (BC_2, SysCheck_L(7), BIDIR, x, 53, 0, WEAK1), "& --
" 36 (BC_2, BcCheck H(15), BIDIR, x, 50, O, z), "& -
" 35 (BC_2, BcCheck H(7), BIDIR, x, 50, O, z), "& -
34 (BC_2, SysAddOut_L(0), OUTPUT2, x), "& -
" 33 (BC_2, SysAddOut_L(1), OUTPUT2, x), "& -
" 32 (BC_2, SysAddOut_L(2), OUTPUT2, x), "& --
" 31 (BC_2, SysAddOut_L(3), OUTPUT2, x), "& --
" 30 (BC_2, SysAddOut_L(4), OUTPUT2, x), "& -
" 29 (BC_2, SysAddOut_L(5), OUTPUT2, x), "& --
" 28 (BC_2, SysAddOut_L(6), OUTPUT2, x), "& -
" 27 (BC_2, SysAddOut_L(7), OUTPUT2, x), "& -
" 26 (BC_2, SysAddOutCIk_L, OUTPUT2, x), "& -
" 25 (BC_2, SysAddOut_L(8), OUTPUT2, x), "& -
24 (BC_2, SysAddOut_L(9), OUTPUT2, x), "& --
" 23 (BC_2, SysAddOut_L(10), OUTPUT2, x), "& -
" 22 (BC_2, SysAddOut_L(11), OUTPUT2, x), "& -
21 (BC_2, SysAddOut_L(12), OUTPUT2, x), "& -
" 20 (BC_2, SysAddOut_L(13), OUTPUT2, x), "& -
19 (BC_2, SysAddOut_L(14), OUTPUT2, x), "& -
18 (BC_3, SysAddin_L(0), INPUT, X), "& -
17 (BC_3, SysAddIn_L(1), INPUT, X), "& -
16 (BC_3, SysAddin_L(2), INPUT, X), "& -
15 (BC_3, SysAddIn_L(3), INPUT, X), "& -
14 (BC_3, SysAddin_L(4), INPUT, X), "& -
13 (BC_3, SysAddIn_L(5), INPUT, X), "& -
12 (BC_3, SysAddIn_L(6), INPUT, X), "& -
"11 (BC_3, SysAddin_L(7), INPUT, X), "& -
10 (BC_3, SysAddin_L(8), INPUT, X), "& -
"9 (BC_3, SysAddInCIk_L, INPUT, X), "& --
"8 (BC_3, SysAddin_L(9), INPUT, X), "& -
"7 (BC_3, SysAddin_L(10), INPUT, X), "& -
"6 (BC_3, SysAddin_L(11), INPUT, X), "& -
"5 (BC_3, SysAddin_L(12), INPUT, X), "& -
"4 (BC_3, SysAddin_L(13), INPUT, X), "& -
"3 (BC_3, SysAddin_L(14), INPUT, X), "& -
"2 (BC_3, SysFillvalid_L, INPUT, X), "& -
"1 (BC_3, SysDatalnValid_L, INPUT, X), "& --
"0 (BC_3, SysDataOutValid_L, INPUT, X)

attribute DESIGN_WARNING of Alpha_21264: entity is

"1. IEEE 1149.1 circuits on Alpha 21264/EV6 are designed primarily to support "&
testing in off-line module manufacturing environment. The SAMPLE/PRELOAD"&
instruction support is designed primarily for supporting interconnection"&
verification test and not for at-speed samples of pin data. "&

"2. TDO is Open-Drain signal. "&

"3. Add comment on port pin electrical characteristics: "&

"4. Comment out if compiler does not support this statement. "

end Alpha_21264;

Alpha 21264/EV6 Hardware Reference Manual 21264/EV6 Boundary-Scan Register B-13

C

Serial Icache Load Predecode Values

See the Alpha Motherboards Software Developer’s Kit (SDK) for information.

Alpha 21264/EV6 Hardware Reference Manual Serial Icache Load Predecode Values C-1

D

PALcode Restrictions and Guidelines

D.1 Restriction 1 : Reset Sequence Required by Retire Logic and

reset:

Mapper

For convenience of implementation, the Ibox retire logic done status bits are not initial-
ized during reset. Instead, as shown in the example below, the first batch of valid
instructions sweeps through inum-space and initializes these bits. The 80 status bits
(one for each inflight instruction) must be marked not done by the first 80 instructions
mapped after reset, and later marked done when those instructions are retired. There-
fore, the first 20 fetch blocks must contain four valid instructions each, and must not
contain any retire logic NOP instructions.

** (1) Initialize 80 retirator "done" status bits and

** the integer and floating mapper destinations.

** (2) Do A MTPR ITB_IA, which tums on the mapper source
** enables.

** (3) Create a map stall to complete the ITB_IA.

*k

* State after execution of this code:

*k

Ffofo#

retirator initialized
destinations mapped
source mapping enabled
itb flushed

** The PALcode need not assume the following since the SROM is not
** required to do these:

*k
*k
*k

*k

*

I

dtb flushed
dtb_asn0 0
dtb_asnl 0
dtb_alt mode 0

** |nitialize retirator and destination map, doing 80 retires.

*

addq r31,r3L,r0 f* initialize Int. Reg. 0%
addqg r31,r31r1 f* initialize Int. Reg. 1*
addt 31,310 [* initialize F.P. Reg. 0%
mult 31,311 f* initialize F.P. Reg. 1*/
addq r31,r3Lr2 f* initialize Int. Reg. 2*/
addq r31,r31r3 f* initialize Int. Reg. 3*

Alpha 21264/EV6 Hardware Reference Manual PALcode Restrictions and Guidelines D-1

Restriction 1 : Reset Sequence Required by Retire Logic and Mapper

addt 31,312 [* initidize F.P. Reg. 2*/
mult 31,313 [initidlize F.P. Reg. 3*
addg r31,r31r4 [* initidize Int. Reg. 4%
addg r31,r31r5 f* initidize Int. Reg. 5%
addt 31,314 [* initidlize F.P. Reg. 4*
mult 31,315 [initidlize F.P. Reg. 5%
addg r31,r31,r6 f* initidize Int. Reg. 6%
addg 31,3117 [* initidize Int. Reg. 7%/
addt 31,3116 [* initidlize F.P. Reg. 6*
mult 31,317 [* initidlize F.P. Reg. 7*/
addg r31,r31,r8 [* initidize Int. Reg. 8%
addg r31,r31,9 f* initidize Int. Reg. 9%/
addt 31,3118 [* initidlize F.P. Reg. 84
mult 31,319 [initidlize F.P. Reg. 9%
addg r31,r31r10 [initiize Int. Reg. 10%
addg r31,r31r11 [initiize Int. Reg. 11%
addt 31,3110 [* initidlize F.P. Reg. 10%
mult 31,3111 f* initidize F.P. Reg. 11*
addg r31,r31r12 [initiize Int. Reg. 12*/
addg r31,r31,r13 [initiize Int. Reg. 13*
addt 31,3112 [* initidize F.P. Reg. 12*/
mult 31,3113 f* initidize F.P. Reg. 13*
addg r31,r31r14 [initidize Int. Reg. 14*
addg r31,r31r15 [initidize Int. Reg. 15*
addt 31,3114 [* initidize F.P. Reg. 14*
mult 31,3115 f* initidize F.P. Reg. 15*
addg r31,r31r16 [initiize Int. Reg. 16/
addg r31,r31,r17 [initidize Int. Reg. 17%/
addt 31,3116 [* initidlize F.P. Reg. 16*/
mult 31,3117 [* initidize F.P. Reg. 17%/
addg r31,r31,r18 [initidize Int. Reg. 18
addg r31,r31,r19 [initidize Int. Reg. 19*%
addt 31,3118 [* initidlize F.P. Reg. 18*
mult f31,f31,f19 [* initidize F.P. Reg. 19*/
addg r31,r31,r20 [* initiize Int. Reg. 20
addg r31,r31,r21 [initiize Int. Reg. 21%
addt 31,3120 [* initidlize F.P. Reg. 20*
mult 31,3121 [* initidize F.P. Reg. 21*
addg r31,r31,r22 [initiize Int. Reg. 22*
addg r31,r31,r23 [initiize Int. Reg. 23*
addt 31,3122 [* initidize F.P. Reg. 22*
mult 31,f31,f23 [* initidize F.P. Reg. 23*
addg r31,r31,r24 [initiize Int. Reg. 24*
addg r31,r31,r25 [initidize Int. Reg. 25*
addt 31,3124 [* initidize F.P. Reg. 24*
mult f31,f31,f25 [* initidize F.P. Reg. 25*
addg r31,r31,r26 [initiize Int. Reg. 26

D-2 PALcode Restrictions and Guidelines Alpha 21264/EV6 Hardware Reference Manual

Restriction 1 : Reset Sequence Required by Retire Logic and Mapper

addg
addt
mult

addg
addg
addt
mult

addg
addt
addg
addg

addg
addg
addg
addq

addg
addg
addg
addg

addqg
addg
addg
addg

addg
addg
addg
addg

r31,r31,r27 [initiize Int. Reg. 27%
31,f31,f26 f* initialize F.P. Reg. 26*
f31,f31,f27 [* initidize F.P. Reg. 27%
r31,r31,r28 [initiize Int. Reg. 28*
r31,r31,r29 [initiize Int. Reg. 29/
31,f31,f28 [* initidlize F.P. Reg. 28
31,f31,f29 [* initidize F.P. Reg. 29*/
r31,r31,r30 [initiize Int. Reg. 30
31,f31,f30 f* initialize F.P. Reg. 30*
r31,r31,10 /* initialize retirator 63*/
r31,r31,10 /* initialize retirator 64*/
r31,r31,10 /* initialize retirator 65*/
r31,r31,10 /* initialize retirator 66*/
r31,r31,10 /* initialize retirator 67*/
r31,r31,10 /* initialize retirator 68*/
r31,r31,10 /* initialize retirator 69*/
r31,r31,10 /* initialize retirator 70%/
r31,r31,10 /* initialize retirator 71*/
r31,r31,10 /* initialize retirator 72*/
r31,r31,10 /* initialize retirator 73*/
r31,r31,10 /* initialize retirator 74*/
r31,r31,10 /* initialize retirator 75*/
r31,r31,10 /* initialize retirator 76*/
r31,r31,10 /* initialize retirator 77*/
r31,r31,10 /* initialize retirator 78*/
r31,r31,10 /* initialize retirator 79*/
r31,r31,10 /* initialize retirator 80*/

f* stop deleting*/

mitpr
mitpr
mitpr
mitpr

I

r3LEV6__ITB IA /* flush the ITB (SCRBRD=4) ** this also

turns on mapper source enables **+/
r31EV6__DTB_IA f flush the DTB (SCRBRD=7)*
r3LEV6__VA CTL F* clear VA _CTL (SCRBRD=5)*
r31,EV6__M CTL f* clear M_CTL (SCRBRD=6)*

** Create a stall outside the IQ until the mtpr EV6__ITB_IA retires.

** \We can use DTB_ASNx even though we dont seem to follow the restriction on
** scoreboard bits (4-7).It's okay because there are no real dstream

** operations happening.

*

mipr r31LEV6__DTB_ASNO /* clear DTB_ASNO (SCRBRD=4) creates a map-

stall under the above mtpr to SCRBRD=4%/

mipr r3LEV6__DTB_ASN1 /* clear DTB_ASN1 (SCRBRD=7)
mipr r3LEV6__CC_CTL I clear CC_CTL (SCRBRD=5)"
mipr r31,EV6_ DTB_ALT_MODEF clear DTB_ALT MODE (SCRBRD=6)

i fF

MAP_SHADOW_REGISTERS

The shadow registers are mapped. This code may be done by the SROM

Alpha 21264/EV6 Hardware Reference Manual PALcode Restrictions and Guidelines D-3

Restriction 1 : Reset Sequence Required by Retire Logic and Mapper

or the PALcode, but it must be done in the manner and order below.

*k
*k
* |t assumes that the retirator has been initialized, that the

** non-shadow registers are mapped, and that mapper source enables are on.
*k

*k

*k

Source enables are on. For fault-reset and wake from sleep, we need to
ensure we are in the icache so we dont fetch junk that touches the

** shadow sources before we write the destinations. For normal reset,

* we are already in the icache. However, so this macro is useful for

* all cases, force the code into the icache before doing the mapping.

*%

** Assume for fault-reset, and wake from sleep case, the exc addr is

* stored in rl.

*
addg r31,r31,0 f* nop*/
addg r31,r31,0 f* nop*/
addg r31,r31,0 f* nop*/
br r31, tchO f* fetch in next block*/
align 3

nxt0: Ida r0,0x0086(r31) [* load | CTL..."
mipr rOEV6__|_CTL f*SDE=2, IC_EN=3 (SCRBRD=4)*/
br r31, nxtl /¥ continue executing in next block*/
tchO: br r31, tchl [* fetch in next block*/

nxtl: mtpr r3LEV6_IER_CM /¥ clear IER_CM (SCRBRD=4) creates a map-stall
under the above mtpr to SCRBRD=4*/

addg r31,r31,0 f* nop*/

br r31, nxt2 /¥ continue executing in next block*/
tchl: br 31, tch2 [* fetch in next block*/
nxt2: addgq r31,r31,0 [+ 1st buffer fetch block for above map-

stall*/

addg r31,r31,0 f* nop*/

br r31, nxt3 f* continue executing in next block*/
tch2: br r31, tch3 [* fetch in next block*/
nxt3: addgq r31,r31,0 ¥ 2nd buffer fetch block for above map-stall*/

addg r31,r31,0 f* nop*/

br r31, nxt4 f* continue executing in next block*/
tch3: br 31, tch4 [* fetch in next block*/
nxt4: addgq r31,r31,0 ¥ need 3rd buffer fetch block to get correct

SDE hit for next fetch block*/

addg r31,r31,0 f* nop*/

br 31, nxt5 f* continue executing in next block*/
tchd: br r31, tch5 [* fetch in next block*/
nxt5: addg r31,r31r4 f* initialize Shadow Reg. 0%

addg r31,r31r5 [* initialize Shadow Reg. 1*

br r31, nxt6 f* continue executing in next block*/
tch5: br 31, tch6 [* fetch in next block*/
nxt6: addgq r31,r31r6 f* initialize Shadow Reg. 2¥

addg r31,r31r7 f* initialize Shadow Reg. 3%

br r31, nxt7 f* continue executing in next block*/
tch6: br 31, tch7 [* fetch in next block*/
nxt7: addg r31,r31,r20 f* initialize Shadow Reg. 4%

D-4 PALcode Restrictions and Guidelines Alpha 21264/EV6 Hardware Reference Manual

Restriction 1 : Reset Sequence Required by Retire Logic and Mapper

addg r31,r31,r21 /¥ initiaize Shadow Reg. 5%

br r31, nxi8 /¥ continue executing in next block*/
tch7: br 31, tch8 [* fetch in next block*/
nxt8: addgq r31,r31,r22 [* initidlize Shadow Reg. 6%

addg r31,r31,r23 /¥ initiaize Shadow Reg. 7%

br r31, nxt9 /¥ continue executing in next block*/
tch8: br 131, nxt0 /¥ go back to 1st block and start executing*/
nxto:
f
** INIT_WRITE_MANY
*%

** \Write the cbox write many chain, initializing the bcache configuration.

*k

** This code is on a cache block boundary,

**%

** % the bcache is iniiaized OFF for the bumin test **
*

*

** Because we aligned on and fit into a icache block, and because sbe=0,
** and because we do an mb at the beginning (which blocks further progress
* until the entire block has been fetched in), we don't have to

* fool with pulling this code in before executing it.

*

#undef bc_enable_a
#undef init_ mode_a
#undef bc size a

#undef zeroblk _enable_a
#undef enable_evict a
#undef set_dirty_enable_a
#undef bc_bank enable_a
#undef bc wrt sts a

#define bc_enable_a 0
#define init_ mode_a 0
#define bc_size a 0
#define zeroblk_enable a 1
#define enable_evict a 0
#define set dirty enable_a 0
#define bc_bank enable a 0
#define bc_wrt_sts a 0
loadwm:
Ida rl, WRITE_MANY_CHAIN_H(r31)
sl rl, 32, r1 f* data<35:32> */
LDLI(rl, WRITE_MANY_CHAIN_L, r1) [* data<31:.00> */
addg r31,6,0 [* shift in 6x 6-bits*/
mb f* wait for all istream/dstream to complete®/

br r31, bceshf

align 6
beeshfmtpr r1,EV6_ DATA f* shift in 6 bits*/
subg 01,0 /* decrement RO¥/
beg r0,bccend /* done if RO is zero¥
si rl,6,r1 f* align next 6 bits*/

Alpha 21264/EV6 Hardware Reference Manual PALcode Restrictions and Guidelines D-5

Restriction 1 : Reset Sequence Required by Retire Logic and Mapper

br r31,bceshf f* continue shifting*/
beccendmtpr r31EV6__EXC_ADDR + 16* dummy IPR write - sets SCBD bit 4 *
addg r31,r31,0 f* nop*/
addg r31,r31r1 f* nop*/
mipr r31,EV6__EXC_ADDR + 16 /¥ also a dummy IPR write -
f* stalls until above write
f* retires*/
beq r31, bcenxt f* predicts fall through in PALmode*/
br 131, 4 f* fools ibox predictor into infinite loop*/
addg r31,r31r1 f* nop*/
beenxtaddg 131,410 f* load PCTX.... X
mipr rO,EV6__PROCESS CONTEXT ... FPE=1 (SCRBRD=4)*/
Ida r0,DC_CTL_INIT_K(r31) /* load DC_CTL....*
mipr O EV6__DC_CTL f* ...ECC_EN=0, FHIT=0, SET_EN=3
/¥ (SCRBRD=6)*/
addg r31,r31,0 f* nop*/
addg r31,r31r1 f* nop*/
Ida r0,0xff61(r31) F RO = ~ff6l (superpage) */
zap r0,0xfc,r0 /¥ PTE protection for DTB write in next
block*/
mipr r31,EV6__DTB_TAGO / write DTB_TAGO (SCRBRD=2,6)*/
mipr r31,EV6__DTB_TAG1 / write DTB_TAG1 (SCRBRD=1,5)*
mipr rOEV6__DTB_PTEO /* wiite DTB_PTEO (SCRBRD=0,4)*/
mipr rOEV6__DTB_PTE1 f* wite DTB_PTE1 (SCRBRD=3,7)%/
mpr r3L,EV6__SIRR [* clear SIRR (SCRBRD=4)*
Ida r0,0x08FF(r31) f* load FPCR....*
sl r0,52,10 f*initlal FPCR value*/
itoft rO, fO /¥ nop itoftr0,fO ; value = 0x8FF0000000000000%
mt_fpcr fO * nop mt_fpcrf0,f0,fQ do the load*/
Ida r0,0x2086(r31) f* load | CTL...*/
Idah r0,0x0050(r0) [+ ...TB_MB_EN=1, CALL PAL R23=1, SL XMIT=1,
[+ SBE=0, SDE=2, IC_EN=3%
mipr rOEV6__|_CTL /¥ value = 0x0000000000502086 (SCRBRD=4)*
mipr r31,EV6__CC I* clear CC (SCRBRD=5)*
lda r0,0x001F(r31) f* write-one-to-clear bits in HW_INT_CLR,
[* |_STAT and DC_STAT¥
sl r0,28,10 /¥ value = 0x00000001F0000000*/
mipr O EV6__HW_INT_CLR/* clear bits in HW_INT_CLR (SCRBRD=4)*/
mipr O EV6__| STAT f* clear bits in |_STAT
SCRBRD=4) creates a map-stall
f* under the above mtpr to SCRBRD=4*
Ida r0,0x001F(r31) f* value = 0x000000000000001F
mipr rOEV6__DC_STAT /* clear bits in DC_STAT (SCRBRD=6)*
addg r31,r31,0 f* nop*/
mipr 31, EV6__PCTR_CTL /* 1st buffer fetch block for above map-stall
[* and 1st clear PCTR_CTL (SCRBRD=4)*/
bis r31,1,10 /¥ set up value for demon write*/
bis r31,1,10 /¥ set up value for demon write*/
mulghv r31,r31,10 F* nop*/

D-6 PALcode Restrictions and Guidelines Alpha 21264/EV6 Hardware Reference Manual

Restriction 1 : Reset Sequence Required by Retire Logic and Mapper

mipr r3L,EV6__PCTR_CTL / 2nd buffer fetch block for above map-stall
/¥ and 2nd clear PCTR_CTL (SCRBRD=4)*
bis r31,1,10 /¥ set up value for demon write*/
bis r31,1,10 /¥ set up value for demon write*/
mulg r31,r31,0 f* nop*/
Ida r0,0x780(r31) [this is new initialization stuff to
preventt/
mb
whint 0 f* ldfst below from going off-chip */
mb
bis r31,1,10 /¥ set up value for demon write*/

Idog p r1,0x780(r31) f* flush Pipe 0 LD logic*/
Idqg p r0,0x788(r31) f* flush Pipe 1 LD logic*/
mb f* wait for LD's to complete*/
mb f* wait for LD's to complete*/

stg p rl1,0x780(r31) f* flush Pipe 0 ST logic*/
stg p r0,0x788(r31) f flush Pipe 1 ST logic*/

bis r31, 32, 10 f* load loop count of 32*/
jsr_init_loop:
bsr r31,jsr_init_loop_nxt f* JSR to PC+4*
jsr_init_loop_nxt:
stg p rl1,0x780(r31) f* flush Pipe 0 ST logic*/
subg 01,0 f* decrement loop count/
beq rOjsr_init_done / done?¥
br r31,jsr_init_loop # continue loop*/
jsr_init_done:
Ida r0,0x03FF(r31) f* create FP one..... */
sl r0,52,10 [...value = 0x3FF0000000000000 */
itoft r0,f0 /¥ put it into FO reg */
addg r31,r31r1 f* nop (also clears R1) */
mult f0,f0,f0 f* flush mul-pipe */
addt f0,f0,f0 f* flush add-pipe */
divt f0,f0,f0 /¥ flush div-pipe */
sgrit fO,f0 f* flush div-pipe */
cvtgt fO,f0 F* flush add-pipe (integer logic) *
perr r31,r31,10 f* flush MVI logic */
maxuw4 r31,r31,10 F flush MVI logic */
pkwb r31,r0 f* flush MVI logic */
rc (0] [* clear interrupt flag*/
addg r31,r31r1 f* nop (also clears R1)*
addg r31,r31r1 f* nop (also clears R1)*
addg r31,r31r1 f* nop (also clears R1)*

i

* This palbase init exists for the rare cases

* when this code is loaded into upper memory.

* That is the case when this code is loaded

* and executed in memory on a system that has
* already been initialized. This technique

* can sometimes be used to debug snippets of

Alpha 21264/EV6 Hardware Reference Manual PALcode Restrictions and Guidelines

D-7

Restriction 2 : No Multiple Writers to IPRs in Same Scoreboard Group

* this code.
*
br r31,palbase_init
palbase_init:
br r0, br60 f* 10 <- current location */
bré0: Ida rl, (EntryPoint-bré0)(r0) /# rl <- location of codebase *
mipr rl, EV6__PAL BASE /* set up pal base register */

bis 131, 2, 10
mipr 10, EV6_ VA CTL

bis 131, 8, 10
mipr 10, EV6_M_CTL

br r0, jmpO
jmp0: addg 0, (jmpl-mp0+1), r0
hw_rets/imp(r0)

jmp2:

Ida rl, 1(r31) frl < cc_ctl enable bit */

sl r, 32, r1

mipr rl, EV6__CC CTL /* Enable/clear the cycle counter. */
I

** Now initialize the dcache to allow the
** minidebugger so save gpr's
*

D.2 Restriction 2 : No Multiple Writers to IPRs in Same Scoreboard
Group

For convenience of implementation, only one explicit writer (HW_MTPR) to IPRs that
are in the same group can appear in the same fetch block (octaword-aligned octaword).
Multiple explicit writers to IPRs that are not in the same scoreboard group can appear.
If this restriction is violated, the IPR readers might not see the in-order state. Also, the
IPR might ultimately end up with a bad value.

D.3 Restriction 4 : No Writers and Readers to IPRs in Same Score-
board Group

This restriction is made for the convenience of microprocessor implementation.

An explicit reader of an IPR in a particular scoreboard group cannot follow an explicit
writer (HW_MTPR) to an IPR in that same scoreboard group within one fetch block
(octaword-aligned octaword). Also within one fetch block, an implicit reader of an IPR
in a particular scoreboard group cannot follow an explicit writer (HW_MTPR) to an
IPR in that scoreboard group. This restriction covers writes to DTB_PTE or DTB_TAG
followed by LD, ST, or any memory operation, including all types of JMP instructions
and HW_RET instructions that do not have the STALL bit set.

D-8 PALcode Restrictions and Guidelines Alpha 21264/EV6 Hardware Reference Manual

Guideline 6 : Avoid Consecutive Read-Modify-Write-Read-Modify-Write

D.4 Guideline 6 : Avoid Consecutive Read-Modify-Write-Read-
Modify-Write

Avoid consecutive read-modify-writeead-modify-write sequences to IPRs in the same
scoreboard group.

The latency between the first write and the second read is determined by the retire
latency of the IPR. For convenience of implementation, the latency between the time
when the read is issued and when the final write is issued depends on the run-time con-
tents of the issue queue. It is somewhere between four and nine cycles, even if there is
no data dependency between the read and write.

D.5 Restriction 7 : Replay Trap, Interrupt Code Sequence, and STF/
ITOF

On an Mbox replay trap, the 21264/EV6 Ibox guarantees that the refetched load or store
instruction that caused the trap is issued before any newer load or store instructions. For
load and integer store instructions, this is a consequence of the natural operation of the
issue queue. The refetchatstruction enters the age-prioritized queue ahead of newer
load and store instructions and does not have any dependencies on dirty registers.

Because there is no overhead time for checking these register dependencies (thatis, it is
known upon enqueueing that there are no dirty registers), the queue will issue the
refetched instruction in priority order. For floating-point store instructions, there is nor-
mally some overhead associated with checking the floating-point source register dirty
status, so the store instruction would normally wait before being issued. This would
have the undesired consequence of allowing newer load and store instructions to be
issued out of order. A deadlock can occur if issuing the instructions out-of-order causes
the floating-point store instruction to continually replay the trap. To avoid the deadlock
on a floating-point store instruction replay trap, the source register dirty status is not
checked (the source register is assumed to be clean because the store instruction was
issued previously).

The hardware mechanism that keeps track of replayed floating-point store instructions,
and cancels the dirty register check, requires some software restrictions to guarantee
that it is applied appropriately to the replayed instruction and not to other floating-point
store instructions. The hardware mechanism marks the position in the fetch block (low
two bits of the PC) where the replay trap occurred. This action cancels the dirty float-
ing-point source register check of the next valid instruction enqueued to the integer
gueue (integer, all load and store, and ITOF instructions) that has the same position in
the fetch block (normally the replayed STF). If the PC is somehow diverted to a PAL-
code flow, this hardware might inadvertently cancel the register check of some other
STF (or ITOF) instruction. Fortunately, there are a minimal number of reasons why the
PC might be diverted during a replay trap. They are interrupts and ITB fills.

The following PALcode example shows that an STF or ITOF instruction, in a given
position in a fetch block, must be preceded by a valid instruction that is issued out of
the integer queue in the same position in an earlier fetch block. Acceptable instruction
classes include load, integer store, and integer operate instructions that do not have R31
as a destination or branch.

Alpha 21264/EV6 Hardware Reference Manual PALcode Restrictions and Guidelines D-9

Restriction 9 : PALmode Istream Address Ranges

Bad_interrupt_flow_entry:

ADDQ R31,R31,R0

STF Fa,(Rb) ; This STF might not undergo a dirty source register
; check and might give wrong results

ADDQ R31,R31,R0

ADDQ R31,R31,R0

Good_interrupt_flow_entry:

ADDQ R31,R31,RO; Enables FP dirty source register
; check for (PC[1:0] == 00)

ADDQ R31,R31,R0; Enables FP dity source register
; check for (PC[1:0] == 01)

ADDQ R31,R31,R0; Enables FP dirty source register
; check for (PC[1:.0] == 10)

ADDQ R31,R31,R0; Enables FP dirty source register
; check for (PC[1:.0] == 11)

ADDQ R31,R31,R0

STF Fa,(Rby This STF will successfully undergo

; a dirty source register check

ADDQ R31,R31,R0O

ADDQ R31,R31,R0O

D.6 Restriction 9 : PALmode Istream Address Ranges

PALmode[physical] Istream addresses must ensure proper sign extension for the
selected value of |_CTL[VA_48]. When |_CTL[VA_48] s clear, indicating 43-bit vir-
tual address format, PALmode[physical] Istream addresses must sign-extend address
bits above bit 42 although the physical address range is 44 bits. An illegal address can
only be generated by a PALmode JSR-type instruction or a HW_RET instruction
returning to a PALmode address.

D.7 Restriction 10: Duplicate IPR Mode Bits

The virtual address size is selectable by programming IPR bits |_CTL[VA_48]

and VA_CTL[VA 48]. These bit values should usually be equal when operating in
native (virtual) mode. The |_CTL[VA 48] bit determines the DTB double3/double4
PALcode entry, the JSR mispredict comparison width, the VPC address generation
width, the Istream ACYV limits, and the IVA_FORM format selection. The

VA _CTL[VA_48] bit determines the VA_FORM format selection and the Dstream
ACYV limits. IPR mode bits |_CTL[VA_FORM_32] and VA_CTL[VA_FORM_32]
should be consistent when executing in native mode.

D.8 Restriction 11: Ibox IPR Update Synchronization

When updating any Ibox IPR, a return to native (virtual) mode should use the HW_RET
instruction with the associated STALL bit set to ensure that the updated IPR value
affects all hstructions following the return path. The new IPR value takes effect only
after the associated HW_MTPR instruction is retired.

For update to some IPR fields with propagation delay, such as |_CTL[SDE] and
PCTX[FPE], synchronization as described in Section D.32 is the preferred method of
synchronization.

D-10 PALcode Restrictions and Guidelines Alpha 21264/EV6 Hardware Reference Manual

Restriction 12: MFPR of Implicitly-Written IPRs EXC_ADDR, IVA_FORM, and

D.9 Restriction 12: MFPR of Implicitly-Written IPRs EXC_ADDR,
IVA_FORM, and EXC_SUM

Implicitly written IPRs are non-renamed hardware registers that must be available for
subsequent traps. After any trap to PALcode, hardware protects the values from a sec-
ond implicit write by locking these registers and delaying subsequent trapsédea
(limited time). Their values can be read reliably by a HW_MFPR within the first four
instructions of a PALcode flow and prior to any taken branch in that PALcode flow,
whichever is earlier. These instructions should not include PALmode trapping instruc-
tions. After the delimiting instruction defined above retires, these registers are unlocked
and may change due to new exception conditions.

If a second exception occurs before the registers are unlocked, it will be either delayed
or forced to replay trap (a non-PALmode trap) until the register has been unlocked.
After being unlocked, a subsequent new path exception condition will be allowed to
reload the register and trap to PALcode. The 21264/EV6 may complete execution of the
first PALcode flow, encountering the second exception condition before the delimiting
instruction is retired, hence the need for the locking mechanism to ensure visibility of
the initial register value.

The VA_FORM, VA, and MM_STAT registers are not included in this list of protected
IPRS. See Section D.24 for a description of how to protect these IPRs from subsequent
implicit writers.

D.10 Restriction 13 : DTB Fill Flow Collision

Two DTB fill flows might collide such that the HW_MTPR’s in the second fill could be
issued before all of the HW_MTPR’s in the first PALcode flow are retired. This can be
prevented by putting appropriate software scoreboard barriers in the PALcode flow.

D.11 Restriction 14 : HW_RET

There can be no HW_RET in the first fetch block of a PALcode routine, other

than CALL_PAL routines. With a HW_RET in the first fetch block of a PALcode rou-
tine, the HW_RET will be mispredicted and the JISR/RETURN stack could lose its syn-
chronization.

D.12 Guideline 16 : JSR-BAD VA

A JSR memory format instruction that generates a bad VA (IACV) trap requires PAL-
code assistance to determine the correct etxaee@ddress. If the

EXC_SUM[BAD_IVA]is set, bits [63,1] of the exception address are valid in the VA
IPR and not the EXC_ADDR as usual. The PALmode bit, however, is always located in
EXC_ADDR][0] and must be combined, if necessary, by PALcode to determine the full
exception address.

D.13 Restriction 17:MTPR to DTB_TAGO/DTB_PTEO/DTB_TAG1/
DTB_PTE1

These four write operations must be executed atomically, that is, either all four must be
retired or none of them may be retired.

Alpha 21264/EV6 Hardware Reference Manual PALcode Restrictions and Guidelines D-11

Restriction 18: No FP Operates, FP Conditional Branches, FTOI, or STF in Same

D.14 Restriction 18: No FP Operates, FP Conditional Branches,
FTOI, or STF in Same Fetch Block as HW_MTPR

No FP operate instructions (includingg®FPCR), FP conditional branches, FTOI reg-
ister move instructions, or FP store instructions are allowed in the same fetch block as
any HW_MTPR instructions. This includes ADDx/MULX/DIVx/SQRTx/FPCondition-
alBranch/STx/FTOIx, wherg is any applicable FP data type, but does not include
LDX/ITOFxX.

D.15 Restriction 19: HW_RET/STALL After Updating the FPCR by
way of MT_FPCR in PALmode

FPCR updating occurs in hardware based on the retirement of a nontrapping version of
MT_FPCR (in PALcode). Use a HW_RET/STALL after the nontrapping MT_FPCR to
achieve minimum latency (four cycles) between the retiring of the MT_FPCR and the
first FLOP that uses the updated FPCR.

D.16 Guideline 20 :1 _CTL[SBE] Stream Buffer Enable

The |_CTL[SBE] bits should not be enabled when running with the Icache disabled to
avoid potentially long fill delays. When the Icache is disabled, the only method of sup-
plying instructions is by way of a stream hit. If the fill is returned in non-sequential
wrap order, the stream will continue fetching through the entire page while waiting for
a hit. Normally the data will be found in the cache.

D.17 Restriction 21: HW_RET/STALL After HW_MTPR ASNO/ASN1

There must be a scoreboard bit-to-register dependency chain to prevent HW_MTPR
ASNO or HW_MTPR ASN1 from being issued while any of scoreboard bits [7:4] are
set. The following example contains a code sequence thatas the dependency chain.

:Assume Ra holds value to write to ASNO/ASN1
HW_MFPR RO, VA, SCBD<7,6,5,4>

XOR RO, RO, RO

BIS RO, R9, R9

BIS R31, R31, R31

HW_MTPR R9, ASNO, SCBD<4>

HW_MTPR R9, ASN1, SCBD<7>

This sequence guarantees, through the register dependency on RO, that neither
HW_MTPR are issued before scoreboard bits [7:4] are cleared. In addition, there must
be a HW_RET/STALL aftera HW_MTPR ASNO/HW_MTPR ASNL1 pair. Finally,

these two writes must be executed atomically, that is, either both must be retired or nei-
ther may be retired.

D.18 Restriction 22: HW_RET/STALL After HW_MTPR IS0/IS1

There must be a scoreboard bit-to-register dependency chain to prevent either
HW_MTPR IS0 or HW_MTPR IS1 from issuing instructions whéay of scoreboard
bits [7:4] are set. The following example contains a code sequencertets the
dependency chain.

HW_MFPR RO, VA, SCBD<7,6,54>R0

D-12 PALcode Restrictions and Guidelines Alpha 21264/EV6 Hardware Reference Manual

Restriction 23: HW_ST/P/CONDITIONAL Does Not Clear the Lock Flag

XOR RO, RO, RO

BIS RO, R9, R9

BIS R31 R31, R31
HW_MTPR R9, ISO, SCBD<6>
HW_MTPR R9, IS1, SCBD<7>

This sequence guarantees, through the register dependency on RO, that neither
HW_MTPR are issued before scoreboard bits [7:4] are cleared. There must be a
HW_RET/STALL after an HW_MTPR ISO/HW_MTPR IS1 pair. Also, these two

writes must be executed atomically, that is, either both must be retired or neither may be
retired.

D.19 Restriction 23: HW_ST/P/CONDITIONAL Does Not Clear the
Lock Flag

A HW_ST/P/CONDITIONAL will notclear the lock flag such that a successive store-
conditional (either STx_C or HW_ST/C) might succeed even in the absence of a load-
locked instruction. In the 21264/EV6, a store-conditional is forced to fail if there is an
intervening memory operation between the store-conditional and its address-matching
LDxL. The following example shows the memory operations.

LDU/QIF/GIS/T
STUQIFIGISIT
LDQ U (not to R31)
STQ U

Absent from this list are HW_LD (any type), HW_ST (any type), ECB, and WH64.
Their absence implies that they wilbtforce a subsequent store-conditional instruction
to fail. PALcodemustinsert a memory operation from the above list aftera HW_ST/
CONDITIONAL in order to force a future store-conditional to fail if it was not pre-
ceded by a load-locked operation:

HW_LDxL

XK

HW_ST/C > RO

Bxx RO, try_again

STQ ; Force next ST/C to fail if no preceding LDxL
HW_RET

D.20 Restriction 24: HW_RET/STALL After HW_MTPR IC_FLUSH,
IC_FLUSH_ASM, CLEAR_MAP

There must be a HW_RET/STALL aftera HW_MTPR IC_FLUSH, IC_FLUSH_ASM, or
CLEAR_MAP. The Icache flush associated with these instructions will not occur until
the HW_RET/STALL occurs and all outstanding Istream fetches have been completed.

Also, there must be a guarantee that the HW_MTPR IC_FLUSH or HW_MTPR
IC_FLUSH_ASM will not be retired simultaneously with the HW_RET/STALL. This
can be ensured by inserting a conditional branch between the two (BNE R31, 0 cannot
be mispredicted in PALmode), or by ensuring at least 10 instructions between the
MTPR instruction and the HW_RET/STALL containing at least one instruction in each
guad aligned group with a valid destination. Finally, the HW_RET/STALL that is used
for CLEAR_MAP cannot trigger a cache flush. That is, if both a CLEAR_MAP and
IC_FLUSH are desired, there must be two HW_RET/STALLS, one following each
HW_MTPR.

Alpha 21264/EV6 Hardware Reference Manual PALcode Restrictions and Guidelines D-13

Restriction 25: HW_MTPR ITB_IA After Reset

D.21 Restriction 25: HW_MTPR ITB_IA After Reset

An HW_MTPR ITB_IA is required in the reset PALcode to initialize the ITB. Itis also
required that PALcode not be exited, even via a mispredicted path until this
HW_MTPR ITB_IA has been retired. PALmode can change temporarily after fetching
a HW_RET, regardless of the STALL qualifier, down a mispredicted path leading to use
of the ITB before it is actually initialized.

Unexpected instruction fetch and execution can occur following misprediction of any
memory format control instruction (JMP, JSR, RET, JSR_CO, or HW_JMP, HW_JSR,
HW_RET, HW_JSR_CO regardless of the STALL qualifier), or after any mispredicted
conditional branch instruction. If the unexpected instruction flow contains a HW_RET
instruction, PALmode may be exited prematurely.

One way to ensure that PALmode is not exited is to place the HW_MTPR ITB_IA at
least 80 instructions before any possible HW_RET instruction can be encountered via
any fetch path. Since memory format control instructions can mispredict to any cache
location, they should also be avoided within these 80 instructions.

D.22 Guideline 26: Conditional Branches in PALcode

To avoid pollution of the branch predictors and improve overall branch prediction accu-
racy, conditional branch instructions in PALcode will be predicted to not be taken. The
only exception to this rule are conditional branches within the first cache fetch (up to
four instructions) of all PALcode flows except CALL_PAL flows. Conditional branches
should be avoided in this window.

D.23 Restriction 27: Reset of ‘Force-Fail Lock Flag’ State in PALcode

A virtual mode load or store is required in PALcode before the execution of any load-
locked or store-conditional instructions. The virtual-mode load or store may not be a
HW_LD, HW_ST, LDx_L, ECB, or WH64.

D.24 Restriction 28: Enforce Ordering Between IPRs Implicitly Writ-
ten by Loads and Subsequent Loads

Certain IPRs, which are updated as a result of faulting memory operations, require soft-
ware assistance to maintain ordering against newer instructions. Consider the following
code sequence:

HW_MFPR IPR_MM_STAT
LDQ rx, (y)

These instructions would typically be issued in-order. The HW_MFPR is data-ready
and both instructions use a lower subcluster. However, the HW_MFPRs (and
HW_MTPRSs) respond to certain resoarbusy indications and are not issued when the
Mbox informs the Ibox that a certain set of resources (store-bubbles) are busy. The LDs
respond to a different set of res@earbusy indications (load-bubbles) and could be

issued around the HW_MFPR in the presence of the former. Software assistance is
required to enforce the issue order. One sure way to enforce the issue order is to insert
an MB instruction before the first load that occurs after the HW_MFPR MM_ STAT.

D-14 PALcode Restrictions and Guidelines Alpha 21264/EV6 Hardware Reference Manual

Guideline 29 : JSR, JMP, RET, and JSR_COR in PALcode

The VA, VA_FORM, and DC_CTL registers require a similar constraint. All LOAD
instructions except HW_LD might modify any or all of these registers. HW_LD does
not modify MM_ STAT.

D.25 Guideline 29 : JSR, JMP, RET, and JSR_COR in PALcode

Unprivileged JSR, JMP, RET, and JSR_COR instructions will always mispredict when
used in PALcode. In addition, HW_RET to a PALmode target will always mispredict
since the JSR stack only predicts native-mode return addresses. HW_RET to a native-
mode target uses the JSR stack for prediction and should usually be used when exiting
PALmode in order to maintain JSR stack alignment since all PALmode traps also push
the value of the EXC_ADDR on the JSR stack.

Privileged versions of the JSR type instructions (HW_JSR,HW_JMP,HW_JSR_COR)
can be used both within PALmode or to exit PALmode and generate a predicted target
based on their hint bits and the current processor PALmode state.

D.26 Restriction 30 : HW_MTPR and HW_MFPR to the Cbox CSR

External bus activity must be isolated from writes and reads to the Cbox CSR. This
requires that all Dstream and Istream fills must be avoiageti after the HW_MTPR/
HW_MFPR updates are completed. An MB instruction can block Dstream activity, but
blocking all Istream fills, including prefetches, requires more extensive code. The fol-
lowing code example blocks all Istream fill requests and stalls instruction fetch until
after the desired MTPR/MFPR action is completed. This code disables Istream
prefetching by way of a HW_MTPR to |_CTL[SBE], IC_FLUSH, and
HW_RET_STALL sequence.

ALIGN_FETCH_BLOCK
sys__chox:

mb

hw_mfpr p6, EV6__| CTL
Ida p4, ~XFCFF(r31)
and 6, p4, p4

she off offset = <sys cbox _sbe off done - sys chox sbe off>

hw_mtpr p4, EV6__| CTL

br p6, sys chox she off
sys__chox_she off:

addq p6, #<sbe off offset+1>, p6

bsr 31, .

ALIGN_FETCH_BLOCK <"x47FF041F>; align

hw_mtpr r31, EV6__IC_FLUSH

bne r31, .

PVC_JSR sbe_off

hw_ret_stall (p6)

PVC JSR she off, dest=1
sys__cbox_she off done:

br r31, sys_chox touchl

ALIGN_CACHE_BLOCK
sys__cbox_overl:

addq 131, #11, p6

addq 31, r31, p7

Alpha 21264/EV6 Hardware Reference Manual

; quiet the dstream
; (40L) get i ct

; mask for clearing SBE bits

; clear SBE bits

; (4,0L) wite new i ctl

; past stall in palmode

; stack push

; (4,0L) eliminate prefetches
; pvc #24
; synch and flush

; use ret, pop stack

; br stops predictor

; now pull in the next block

; block 1
; initialize shift count (11x)
: intialize shift data

PALcode Restrictions and Guidelines D-15

Restriction 30 : HW_MTPR and HW_MFPR to the Cbox CSR

sys__cbox touchl:

sys__cbox_over2:

sys__chox_touch2:

sys__cbox_over3:

sys__chox _touch3:

sys__cbox_over4:

sys__chox_touch4:

sys__cbox_overs:

sys__chox_touchb:

sys__cbox_over6:

sys__cbox_touch6:

sys__cbox_overr:

sys__cbox_touch7:

sys__cbox_overs:

sys__cbox_touch8:

br r31, sys chox_over2

br r31, sys cbox touch2

hw_mtpr 131, EV6__SHIFT_CONTROL

subq p6, #1, p6
br r31, sys chox _over3
br r31, sys chox touch3

hw_mtpr r31, <EV6__MM_STAT ! 64 >
bis p5, #1, p5
br r31, sys chox_overd

br r31, sys chox touch4
hw_mfpr p4, EV6__DATA

bis r31, r31, r31

br r31, sys chox_overs
br r31, sys chox_touch5
and p4, #'x3F, p4

br r31, sys chox_over6
br r31, sys chox_touch6
beq p6, sys chox_over8
bis r31, r31, r31

br r31, sys chox_over7
br r31, sys chox_touch7
bis p7, r31, p20

sl p7, #6, p7

br r31, sys chox_over2
br r31, sys _chox touch8
beq r31, sys__chox cbox done
PVC_VIOLATE <1006>

br 31, -4

bis r31, r31, r31

br r31, sys_chox overl

sys__cbox_cbox_done:

hw_mfpr p6, EV6__|_CTL

lda p4, <3@EV6_| CTL_SBE_S>(131)

or p6, p4, p4
bis 131, 131, 131

D-16 PALcode Restrictions and Guidelines

; go to block 2
; touch block 2

; block 2
; (6,0L) shift in 6 bits
; decrement shift count
; go to block 3

; touch block 3

; block 3
; (6,0L) wait for shift
; return in pal mode
; go to block 4

; touch block 4

; block 4
; (6,0L) read chox data
; hop
; go to block 5

; touch block 5

; block 5
; Clean to <5.0>
: accumulate shift data
; go to block 6

; touch block 6

; block 6

: branch if done
; hop
; go to block 7

; touch block 7

; block 7
; save before shifting
; shit data 6 bits left
; do next shift

; touch block 8

; block 8
; predict not taken

; predict back to infinite loop

’

; how start executing the shifts

; now restore i _ctl
; (40L) get i ct
; sbe bits
; set SBE hits

Alpha 21264/EV6 Hardware Reference Manual

Restriction 31 : | _CTL[VA_ 48] Update

hw_mtpr p4, EV6__|_CTL ; (40L) restore i ctl

PVC JSR chox, bsr=1, dest=1
hw_ret stall (p5) ; return to caller with stall

D.27 Restriction 31 : | _CTL[VA 48] Update

The VA _48 virtual address format cannot be changed while executing a JSR, JMP,
GOTO, JSR_COROUTINE, or HW_RET instruction. A simple method of ensuring
that the address does not change is to write |_CTL twice, in two separate fetch blocks,
with the same data. The second write will stall the pipeline and ensure that the mode
cannot change, even down a mispredicted path, while a following JSR type instruction
might be using the address comparison logic.

D.28 Restriction 32 : PCTR_CTL Update

The performance counter must not be left in a state nearflow. If counting is dis-

abled, the counters may produce multiple overflow signals if the counter output is not
updated due to the counter being disabled. A repeated overflow signal with counters
disabled can block other incoming interrupt requests while the overflow state persists.
To avoid this situation, reads or writes to the counters should not leave a value near
overflow. In normal operation, with counters enabled, a counter overflow will produce
an overflow pulse, clear the counter, and produce a performance counter interrupt.
Interrupts can only be blocked for one cycle.

D.29 Restriction 33 : HW_LD Physical/Lock Use

The HW_LD physical/lock instruction must be one of the first three instructions in a
guad-instruction aligned fetch block. A pipelieeror can occur if the HW_LIphysi-
cal/lock is fetched as the fourth instruction of the fetch block.

D.30 Restriction 34 : Writing Multiple ITB Entries in the Same PAL-
code Flow

Before a PALcode flow writes multiple ITB entries, additional scoreboard bits should
be set to avoid possible corruption of the TAG IPR prior to final update in the ITB. The
addition of scoreboard bits 0 and 4 to the standard scoreboard bit 6 for ITB_TAG will
prevent subsequent HW_MTPR ITB_TAG writes from changing the staging register
TAG value prior to retirement of the HW_MTPR ITB_PTE that triggers the final ITB
update.

D.31 Guideline 35:HW_INT_CLR Update

When writing the HW_INT_CLR IPR to clear interrupt requests, it may be necessary to
write the same value twice in distinct fetch blocks to ensure that the interrupt request is
cleared before exiting PALcode. A second write will cause a scoreboard stall until the
first write retires, creating a convenient synchronization with the PALmode exit.

Alpha 21264/EV6 Hardware Reference Manual PALcode Restrictions and Guidelines D-17

Restriction 36 : Updating | _CTL[SDE]

D.32 Restriction 36 : Updating | CTL[SDE]

A software interlock is required between updates of the |_CTL[SDE] and a subsequent
instruction fetch that may use any destination registers. A suggested method of ensuring
this interlock is to use two MTPR |_CTL instructions in separate fetch blocks, followed
by three more fetch blocks of non-NOP instructions.

D.33 Restriction 37 : Updating VA _CTL[VA 48]

A software interlock is required between updates of the VA_CTL[VA_48] and follow-

ing LD or ST instructions. This is necessary since the VA_CTL update will not occur
until the HW_MTPR VA_CTL instruction retires. A sufficient method of ensuring this
interlock is to write the VA_CTL with the same data in two successive fetch blocks,
causing a mapper stall. The dependant LD or ST instructions can be placed in any loca-
tion of the second fetch block.

D.34 Restriction 38 : Updating PCTR_CTL

When updating the PCTR_CTL, it may be necessary to write the update value twice. If
the counter being updated isrcently disabled by way of the respective |_CTL or

PCTX bits, the value must be written twice to ensure that the counter overflow is prop-
erly cleared. The overflow bit is conditionally latched using the same write enable as
the counter update, so an additional write of the counter value will ensure that the over-
flow logic accuratelyreflects the ddition of the new counter value plus the input condi-
tions. The new update value must not be within one cycle efftow (within 16 for

SLO, within 4 for SL1) as required by Section D.28.

D.35 Guideline 39: Writing Multiple DTB Entries in the Same PAL
Flow

If a PALcode flow intends to write multiple DTB entries (as would occur in a double
miss), it must take care to keep subsequent HW_MTPR DTB_TAGXx writes from cor-
rupting the staging register TAG values prior to retirement of the HW_MTPR
DTB_PTEX, which triggers the final DTB update.

For example, in the double miss DTB flow, the following code could be used to hold up
the return to the single miss flow (the numbers in parentheses are the scoreboard bits):

hw_mtpr 4, EV6__DTB_TAGO ; (286) write tag0
hw_mtpr 4, EV6__DTB_TAG1 ; (1&5) write tag 1
hw_mtpr 5, EV6__DTB_PTEO ; (0&4) write pteO
hw_mtpr 5, EV6__DTB_PTE1 i (3&7) write ptel
bis r31, r31, r31 ; force new fetch block
bis r31, r31, r31

bis r31, r31, r31

hw_mtpr r31, <EV6__MM_STAT ! ~x80> ; (7) wait for pte write
hw_ret (r6) ; retun to single miss

D-18 PALcode Restrictions and Guidelines Alpha 21264/EV6 Hardware Reference Manual

Restriction 40: Scrubbing a Single-Bit Error

D.36 Restriction 40: Scrubbing a Single-Bit Error

On Bcache and Memory single bit errors on Icache fills, the hardwasééds the

Icache, but the PALcode must scrub the block in the Bcache and memory. On Bcache
and Memory single bit errors on Dcache fills, the hardware scrubs the Dcache as long
as the error was on a target quadword, but the PALcode must scrub the Dcache for non-
target quadwords, and must in gzal scrub the block in the Bcache and memory.

The scrub consists of reading each quadword in the block, with at least one exclusive
access load/store to ensure the corrected data will be scrubbed in Bcache and memory.
The scrub itself causes a CRD to be flagged, whichésuidd by the PALcode before
exiting to native mode.

; Sample code for scrubbing a single bit error.

; Since we only have the block address, and the hardware only corrects

target quadwords, we read each quadword.

; In order to ensure eviction to bcache and memory, a store

is needed to mark the block dirty. An exclusive access is
used to ensure we scrub in main memory. Virtual access is
used because of restrictions in use of hw_ld/hw_st lock
instructions.

; After the scrub, read the cbox chain again.
; The scrub will cause a crd, but will get cleared with a write
; to hw_int_clr.

Current state:
5 base of crd logout frame

hw_ldg/p r4, MCHK_CRD__C_ADDR(t5) ; get address back
bis 131, r31, r31
bis r31, r31, r31
bis r31, r31, r31

hw_mtpr r31, EV6__DTB_IA ; (7,11) flush dtb
Ida 120, ~x3301(r31) ; set WE, RE

bis 131, r31, r31

bis 131, r31, r31

hw_mtpr r31, <EV6__MM_STAT ! ~x80> ; wait for retire

si 4, #13, 16 ; shit byte offset

sl 16, #£V6__DTB PTEO_PFN_S, r6 ; shift into position

bis 16, 120, r6 ; produce pte

hw_mtpr r4, EV6__DTB_TAGO ; (2&6,0L) write tag0
hw_mtpr 4, EV6__DTB_TAG1 ; (1&5,1L) write tagl
hw_mtpr 6, EV6__DTB_PTEO ; (0&4,0L) write pteO
hw_mtpr 6, EV6__DTB_PTE1 ; (3&7,1L) write ptel
mb ; Quiet before we start

bis 131, r31, r31
bis 131, r31, r31
bis 131, r31, r31

Idq 16, ~x00(r4) ; reread the bad block QW #0
Idg 16, ~x08(r4) ; reread the bad block QW #1
Idq 16, ~x10(r4) ; reread the bad block QW #2
Idq 16, ~x18(r4) ; reread the bad block QW #3

Alpha 21264/EV6 Hardware Reference Manual PALcode Restrictions and Guidelines D-19

Restriction 41: MTPR ITB_TAG, MTPR ITB_PTE Must Be in the Same Fetch Block

Idg 16, "x20(r4) ; re-read the bad block QW #4

Idg 16, "x28(r4) ; re-read the bad block QW #5

Idg 16, "x30(r4) ; re-read the bad block QW #6

mb ; no other mem-ops till done

Ido | 16, "x38(r4) ; re-read the bad block QW #7

stg c 16, "x38(r4) ; now store it to force scrub

mb

and 6, 131, r6 ; consumer of above

beq 16, sys_crd_scrub_done ; these 2 lines......

br 131, 4 ;Stop pre-fetching
sys__crd_scrub_done:

bsr r7, sys_chox ; clean the cbox error chain

bis 131, r31, r31

hw_mtpr r31, EV6__DTB_IA ; (7,10) flush dtb
bis 131, r31, r31
bis 131, r31, r31
bis 131, r31, r31

hw_mtpr 31, <EV6__MM_STAT ! "x80> ; wait for retire
bis 31, #1, 7 ;getal

sl 7, #EV6_ HW_INT_CLR__CR__S, r7 ; shift into position
hw_mtpr r7, EV6__ HW_INT_CLR ; (4,00) clear crd

Ida r7, EV6__DC_STAT_WI1C CRD(r31) : WIC bits
hw_mtpr r7, EV6__DC_STAT ; (6,00)
bis 131, r31 131

bis 131, r31 131

hw_mtpr r31, <EV6__MM_STAT ! ~x50> ; stall il they retire

D.37 Restriction 41: MTPR ITB_TAG, MTPR ITB_PTE Must Be in the
Same Fetch Block

Write the ITB_TAG and ITB_PTE registers in the same fetch block. This avoids a
mispredict path write of invalid data to the ITB_TAG register.

D.38 Restriction 42: Updating VA _CTL, CC_CTL, or CC IPRs

When writing to the VA_CTL, CC_CTL, or CC IPRs, write the same value twice in dis-
tinct fetch blocks. This ensures that the instruction is retired before any mispredict from
a younger branch, DTB miss trap, or hw_ret_stall.

D.39 Restriction 43: No Trappable Instructions Along with
HW_MTPR
There are two parts to this restriction:

1. There cannot be any mispredictable/trappable instructions together with an
HW_MTPR in the current fetch block.

2. There cannot be any mispredictable/trappable instructions in the previous fetch
block.

D-20 PALcode Restrictions and Guidelines Alpha 21264/EV6 Hardware Reference Manual

Restriction 44: Restriction: Virtual Operation Required in Every PALcode Excep-

D.40 Restriction 44: Restriction: Virtual Operation Required in Every
PALcode Exception Flow

When a PALcode exception occurs, either clear any possible pending locks with a vir-
tual operation before executing a HW_RET back to the user, or prevent a load on a
returned speculative path with a code sequence such as follows:

mb ; Allow hw_ret to fire
ALIGN_FETCH_BLOCK <"x47FF041F>

mulg rx, #1, x ; Hold up load

mulg rx, #1, x ; Hold up load

HW_MTPR p6, <EV6__MM_STAT ! "x44> ; Hold up load

PVC VIOLATE <43> ; lgnore Retriction 43 violation
hw_ret (p5) ; HW_RET will mispredict

before a speculative load issues.

D.41 Restriction 45: No HW_JMP or JMP Instructions in PALcode
Do not include HW_JMP or JMP instructions in PALcode; use HW_RET instead.

HW_JMP always predicts in PALmode, and may mispredict to random cache blocks.
This may cause speculative code to begin executing in PALmode and may have unex-
pected side effects such as I/O stream references.

HW_RET always predicts in native mode, and when it mispredicts, it avoids specula-
tive execution in PALmode.

D.42 Restriction 46: Avoiding Live Locks in Speculative Load CRD
Handlers

Speculative load CRD handlers that release from the interrupt without scrubbing a
cache block could gter from the bllowing live-lock condition:
1. Aninitial error on a speculative load forces a CRD interrupt.

2. The CRD releases without scrubbing the block. A speculative load in the shadow of
the hw_ret (or hw_ret_stall) touches a Dcache location that has the single-bit error,
forcing a CRD.

3. The CRD handler is entered again immediately.
4. Goto (2).

This problem can be avoided if all jumps in the CRD handler path for speculative loads
use the following sequence:

mb ; make sure hw_ret goes

ALIGN_FETCH_BLOCK <"x47FF041F>

mulq p6, #1, p6 ; Hold up loads

mulq p6, #1, p6 ; Hold up loads
hw_mtpr p6, <EV6__MM_STAT | "x44> ; Hold up loads

PVC _VIOLATE<43> ; Ignore restriction 43
hw_ret_stall (p23) ; Return

Alpha 21264/EV6 Hardware Reference Manual PALcode Restrictions and Guidelines D-21

Restriction 47: Cache Eviction for Single-Bit Cache Errors

This sequence prevents speculative loads from issuing in the shadow of the
hw_ret_stall. Note that it is a violation of restriction 4 to have in the same fetch block a
MTPR that specifies scoreboard bit 2 (an explicit writer in the memory operation

group) and a HW_RET (an implicit reader in the memorgi@gtion group). Under nor-

mal circumstances, the intention would be for a HW_RET to wait until the MTPR

issues, and that can only be enforced bytipgtthe two instructions in dfierent fetch

blocks. In this case, the intention is for the HW_RET to iskatorethe MTPR. The
hardware does not enforce the scoreboarding when the two instructions are in the same
fetch block, and thus the HW_RET can issue and mispredict before any speculative
loads (which are held up by the MTPR) can issue.

D.43 Restriction 47: Cache Eviction for Single-Bit Cache Errors

A live lock can occur if issuing instructions out-of-order causes a floating-point store
instruction (with sberr) to replay trap.

A hardware mechanism exists that keeps track of replayed floating-point store instruc-
tions, and cancels the dirty register check. See Section D.5 for more details.

If the floating-point store instruction has an sberr and the CRD_HANDLER is entered/
exited before the instruction is replayed, the mechanism will Icsektof the nstruc-

tion. When the instruction is replayed, the dirty register check is not canceled, and a
replay trap occurs, causing the floating-point store instruction to continually replay the
trap until the sberr is evicted from cache. The sberr will not evict, because the floating-
point store instruction is killed by the replay trap. Killed instructions are not scrubbed
by the Error Recovery Machine, and CBOX_ERR[C_ADDR] may not contain the
address of the sherr. Because CBOX_ERR[C_ADDR] is not guaranteed, the
CRD_HANDLER might not evict the sberr.

If "CBOX_ERR[C_ADDR]" has not changed when the CRD_HANDLER is re-
entered, or "CBOX_ERR[C_STAT] == 0x0", all cache locations should be evicted to
avoid the live lock described above.

; Sample code for evicting cache.

; This method loads a 64K block, then exits the CRD_HANDLER

;. to check if the sberr has been evicted. If not it loads the next 64K block.
; In the sample code below,

; sx is a shadow register

; Idi is a macro that loads a 64-bit constant into the specified register

full_scrub:
hw_Idg/p s5, 104(r31)
i sl, 200 ; Loop dec value
i s2, ~x1C0 ; Start offset
i s3, ”x10000 ; Block size (64K -> size of dcache)
i s4, 2000000 ; 2X bcache size

addq s3,85,55
ble s5, s4, <+4>

bis 131, 131, s5
hw_stg/p s5, 104(r31)
subq s5, s2, sb

mb

D-22 PALcode Restrictions and Guidelines

; Skip next instruction if ADDR
. le. 2X bcache
; Set ADDR = 0x0
; Store ADDR for next pass thru

; Make sure no speculative loads

Alpha 21264/EV6 Hardware Reference Manual

Restriction 48: MB Bracketing of Dcache Writes to Force Bad Data ECC and Force

happen in the CRD handler

align 4, NOP_OPCODE i
bbc 131, <+4> v
br 131, <-4> ; \Y
align 4, NOP_OPCODE ; Make sure no speculative loads
happen in the CRD handler

next_reread:
; weeeeess four cache blocks

; Evict dcache by prefetching to all dcache indexes.

; use 'hw_Idl r31 xxxx Normal Prefetch

; Do not use 'hw_ldg/p r31 xxx' Prefetch,

; Evict Next because this will always access the same set in dcache.

hw_ldl/p r31,"x1CO(s5) ; Re-read the bad block QW #0
hw_ldl/p r31,”x180(s5) ; Re-read the bad block QW #0
hw_ldl/p r31,7x140(s5) ; Re-read the bad block QW #0
hw_ldl/p r31,7x100(s5) ; Re-read the bad block QW #0
hw_ldl/p r31,”xCO(s5) ; Re-read the bad block QW #0
hw_ldl/p r31,”x80(s5) ; Re-read the bad block QW #0
hw_ldl/p r31,7x40(s5) ; Re-read the bad block QW #0
hw_ldl/p r31,”x00(s5) ; Re-read the bad block QW #0
subq s5, sl, sb ; Decrement addr

subq s3, sl, s3 ;. Decrement counter

ble s3, <.+4>

br 131, next_reread

bsr S7, sys_chox ; Read and clean chox error ipr

D.44 Restriction 48: MB Bracketing of Dcache Writes to Force Bad
Data ECC and Force Bad Tag Parity

Writes to DC_CTL[F_BAD_DECC] and DC_CTL[DCDAT_ERR_EN] must be brack-
eted by MB instructions to quiesce the memory system. The Istream must also be qui-
esced before and during the sequence, as described in Section D.26.

Alpha 21264/EV6 Hardware Reference Manual PALcode Restrictions and Guidelines D-23

E

21264/EV6-to-Bcache Pin Interface

This appendix provides the pin interface between the 21264/EV6 and Bcache SSRAMSs.

E.1 Forwarding Clock Pin Groupings

Table E-1 lists the correspondance between the clock signals for the 21264/EV6 and
Bcache (late-write non-bursting and dual-data rate) SSRAMSs.

Table E-1 Bcache Forwarding Clock Pin Groupings

Pad and Pin

Input Clock

Output Clocks

BcData_H[71:64,7:0]
BcCheck _HI[8,0]
BcData_H[79:72,15:8]
BcCheck H[9,1]
BcData_H[87:80,23:16]
BcCheck_H[10,2]
BcData_H[95:88,31:24]
BcCheck H[11,3]
BcData_H[103:96,39:32]
BcCheck_H[12,4]
BcData_H[111:104,47:40]
BcCheck_H[13,5]
BcData_H[119:112,55:48]
BcCheck_H[14.6]
BcData_H[127:120,63:56]
BcCheck _H[15,7]

BcDatalnClk_H[0]
BcDatalnClk_HJ[0]
BcDatalnClk_HJ[1]
BcDatalnClk_HJ[1]
BcDatalnClk_HI[2]
BcDatalnClk_HI[2]
BcDatalnClk_HI[3]
BcDatalnClk_HJ[3]
BcDatalnClk_H[4]
BcDatalnClk_H[4]
BcDatalnClk_HI[5]
BcDatalnClk_HI[5]
BcDatalnClk_HI[6]
BcDatalnClk_HI[6]
BcDatalnClk_H[7]
BcDatalnClk_H[7]

BcDataOutClk_x[0]
BcDataOutClk_x[0]
BcDataOutClk_x[0]
BcDataOutClk_x[0]
BcDataOutCIk x[1]
BcDataOutClk_x[1]
BcDataOutCIk x[1]
BcDataOutClk_x[1]
BcDataOutClk x[2]
BcDataOutClk_x[2]
BcDataOutClIk x[2]
BcDataOutClk_x[2]
BcDataOutClIk x[3]
BcDataOutClk_x[3]
BcDataOutClIk x[3]
BcDataOutClk_x[3]

BcTag_H[42:20] BcTagInClk_H BcTagOutClk_x
BcTagParity H BcTagInClk_H BcTagOutClk_x
BcTagShared_H BcTagInClk_H BcTagOutClk x
BcTagDirty H BcTagInClk_H BcTagOutClk_ x
BcTagValid_H BcTagInClk_H BcTagOutClk_x

Alpha 21264/EV6 Hardware Reference Manual

21264/EV6-to-Bcache Pin Interface

E-1

Late-Write Non-Bursting SSRAMs

E.2 Late-Write Non-Bursting SSRAMs

Table E-2 provides the data pin connections between late-write non-bursting SSRAMs
and the 21264/EV6 or the system board. Table E-3 provides the same information for
the tag pins.

Data Pin Usage

Table E-2 Late-Write Non-Bursting SSRAMs Data Pin Usage

21264/EV6 Signal Name or Board Connection Late-Write SSRAM Data Pin Name
BcAdd_H[21:4] SA_H[17:0]
BcDataOutClk_H[3:0] CK_H

Set from board to 1/2 the 21264/EV6 core voltage CK L
BcData_H[127:0]/BcCheck_H[15:0] DQx

BcDataWr_L SW_L

Unconnected Tck H

Unconnected Tdo H

Unconnected Tms_H

Unconnected Tdi_H

From board, pull down to VSS G L

From board, pull down to VSS SBL

From board, pull down to VSS d@dcDataOE_L SS_L (Vender dependent)

Tag Pin Usage
Unused Bcache tag pins should be pulled to ground through a 200-ohm resistor.

Table E-3 Late-Write Non-Bursting SSRAMs Tag Pin Usage

21264/EV6 Signal Name or Board Connection Late-Write SSRAM Tag Pin Name
BcAdd_H[22:6] SA_H[16:0]

BcTag_H[42:20] DQx

BcTagOE_L or from board, pull down to VSS SS_L (Vender dependent)
BcTagWr_L SW_L

From board, pull down to VSS SBL

BcTagOutClk_H CK_H

Set from board to 1/2 the 21264/EV6 core voltage CK_L
Set from board to 1/2 the 21264/EV6 core voltage VREF1_H

VREF2_H
Set from board (implementation dependent) ZQ H
BcTagValid_H DQx
BcTagDirty H DQx

E-2 21264/EV6-to-Bcache Pin Interface Alpha 21264/EV6 Hardware Reference Manual

Dual-Data Rate SSRAMs

Table E-3 Late-Write Non-Bursting SSRAMs Tag Pin Usage (Continued)

21264/EV6 Signal Name or Board Connection Late-Write SSRAM Tag Pin Name

BcTagShared_H DQx
Unconnected TMS _H
Unconnected TDI_H
Unconnected TCK_H
Unconnected TDC_H

E.3 Dual-Data Rate SSRAMs

Table E—4 provides the data pin connections between dual-data rate SSRAMs and the
21264/EV6 or the system board. Table E-5 provides the same information for the tag
pins.

Data Pin Usage

Table E-4 Dual-Data Rate SSRAM Data Pin Usage

21264/EV6 Signal Name or Board Connection Dual-Data Rate SSRAM Data Pin Name

BcAdd_H[21:4] SA_H[17:0]
BcData_H[33:20])/ DQx
BcCheck H[15:0]

BcLoad L LD_L (B1)
BcDataWr_L R/W_L(B2)
From board, pulled up to VDD LBO_L
From board, pulled down to VSS QL
BcDatalnClk_H CQ_H
BcDataOutClk_H CK_H
BcDataOutCIk_L CK L

Set from board to 1/2 the 21264/EV6 core volW¥REF1_H
age VREF2_H
Set from board (implementation-dependent) ZQ_H
Unconnected or terminated CQ L
From board, pulled up to VDD TCK_H
Unconnected TDO_H
From board, pulled up to VDD TMS_H
From board, pulled up to VDD TDI_H
Unconnected or pulled down to VSS TRST_L
BcDataOE_L OE_L (G_L)

From board, pulled down to VSS

SD/DD_L (B3)

Alpha 21264/EV6 Hardware Reference Manual

21264/EV6-to-Bcache Pin Interface

E-3

Dual-Data Rate SSRAMSs

Tag Pin Usage

Unused Bcache tag pins should be pulled to ground through a 200-ohm resistor.

Table E-5 Dual-Data Rate SSRAMs Tag Pin Usage

21264/EV6 Signal Name or Board Connection Dual-Data Rate SSRAM Tag Pin Name

BcAdd_H[23:6] SA_H[17:0]
BcTag_H[33:20] DQx
BcTagOE_L LD_L (B1)
BcTagWr_L R/W_L (B2)
From board, pulled up to VDD LBO L
From board, pulled down to VSS QL
SA[19:18]
BcTagInClk_H CQ_H
BcTagOutClk_H CK_H
BcTagOutClk_L CK L
Set from board to 1/2 core voltage VREF1_H
VREF2_H
Set from board (implementation-dependent) ZQ H
BcTagValid_H DQx
BcTagDirty H DQx
BcTagShared_H DQx
BcTagParity H DQx
Unconnected or terminated CQ L
From board, pulled up to VDD TCK_H
Unconnected TDO_H
From board, pulled up to VDD TMS _H
From board, pulled up to VDD TDI_H
Unconnected TRST_L
From board, pulled down to VSS OE_L(G_L)
From board, pulled up to VDD SD/DD_L (B3)

E-4 21264/EV6-to-Bcache Pin Interface Alpha 21264/EV6 Hardware Reference Manual

Glossary

This glossary provides definitions for specific terms and acronyms associated with the
Alpha 21264/EV6 microprocessor and chips in general.

abort

The unit stops the operation it is performing, without saving statusetfopmn some
other operation.

address space number (ASN)

An optionally implemented register used to reduce the need for invalidation of cached
address translations for process-specific addresses when a context switch occurs. ASNs
are processor specific; the hardware makes no attempt to maintain coherency across
multiple processors.

address translation

The process of mapping addresses from one address space to another.

ALIGNED
A datum of size 2**N is stored in memory at a byte address that is a multiple of 2**N
(that is, one that has N low-order zeros).
ALU
Arithmetic logic unit.
ANSI
American National Standards Institute. An organization that develops and publishes
standards for the computer industry.
ASIC
Application-specific integrated circuit.
ASM
Address space match.
ASN
Seeaddress space number.
assert
To cause a signal to change to its logical true state.
AST

Seeasynchronous system trap.

Alpha 21264/EV6 Hardware Reference Manual Glossary -1

asynchronous system trap (AST)

A software-simulated interrupt to a user-definedtimoe. ASTs enable a user process to

be notified asynchronously, with respect to that process, of the occurrence of a specific
event. If a user process has defined an AST routine for an event, the system interrupts
the process and executes the AST routine when that event occurs. When the AST rou-
tine exits, the system resumes execution of the process at the point where it was inter-

rupted.

bandwidth
Bandwidth is often used to express the rate of data transfer in a bus or an I/O channel.
barrier transaction

A transaction on the external interface as a result of an MB (memory barrier) instruc-

tion.
Bcache
Seesecond-level cache.
bidirectional
Flowing in two directions. The buses are bidirectional; thagrgboth input and output
signals.
BiSI
Built-in self-initialization.
BiST
Built-in self-test.
bit
Binary digit. The smallest unit of data in a binary notation system, designated as 0 or 1.
bit time
The total time that a signal conveys a single valid piece of information (specified in ns).
All data and commands are associated with a clock and the receiver’s latch on both the
rise and fall of the clock. Bit times are a multiple of the 21264/EV6 clocks. Systems
must produce a bit time identical to 21264/EV6’s bit time. The bit time is one-half the
period of the forwarding clock.
BIU

Bus interface unitSeeCbox.
Block exchange

Memory feature that improves bus bandwidth by paralleling a cache victim write-back
with a cache miss fill.

board-level cache

See second-level cache.

Glossary -2 Alpha 21264/EV6 Hardware Reference Manual

boot

Short for bootstrap. Loading an operating system into memory is called booting.

BSR
Boundary-scan register.

buffer
An internal memory area used for temporary storage of data records during input or
output operations.

bugcheck
A software condition, usually the response to software’s detection of an “internal incon-
sistency,” which results in the execution of the system bugcheck code.

bus
A group of signals that consists of many transmission lines or wires. It interconnects
computer system components to provide communications paths for addresses, data, and
control information.

byte

Eight contiguous bits starting on an addressable byte boundary. The bits are numbered
right to left, O through 7.

byte granularity

Memory systems are said to have byte granularity if adjacent bytes can be written con-
currently and independently by different processes or processors.

cache
Seecache memory.
cache block

The smallest unit of storage that can be allocated or manipulated in a cache. Also
known as a cache line.

cache coherence

Maintaining cache coherence requires that when a processor accesses data cached in

another processor, it must not receive incorrect data and when cached data is modified,
all other processors that access that data receive modified data. Schemes for maintain-
ing consistency can be implemented in hardware or software. Also called cache consis-

tency.

cache fill
An operation that loads an entire cache block by using multiple read cycles from main
memory.

cache flush

An operation that marks all cache blocks as invalid.

Alpha 21264/EV6 Hardware Reference Manual Glossary -3

cache hit

The status returned when a logic unit probes a cache memory and finds a valid cache
entry at the probed address.

cache interference

The result of an operation that adversely affects the mechanisms and procedures used to
keep frequently used items in a cache. Such interference may cause frequently used
items to be removed from a cache or incur significant overhead operations to ensure
correct results. Either action hampers performance.

cache line

Seecache block.
cache line buffer

A buffer used to store a block of cache memory.
cache memory

A small, high-speed memory placed between slower main memory and the processor. A
cache increases effective memory transfer rates and processor speed. It contains copies
of data recently used by the processor and fetches several bytes of data from memory in
anticipation that the processor will access the next sequential series of bytes. The
21264/EV6 microprocessor contains two onchip internal cad®esalsavrite-through

cache and write-back cache.

cache miss

The status returned when cache memory is probed with no valid cache entry at the
probed address.

CALL_PAL instructions

Special instructions used to invoke PALcode.
Cbox

External cache and system interface unit. Controls the Bcache and the system ports.
central processing unit (CPU)

The unit of the computer that is responsible for interpreting and executing instructions.

CISC
Complex instruction set computing. An instruction set that consists of a large number
of complex instructionsContrast withRISC.

clean
In the cache of a system bus node, refers to a cache line that is valid but has not been
written.

clock

A signal used to synchronize the circuits in a computer.

Glossary —4 Alpha 21264/EV6 Hardware Reference Manual

clock offset (or clkoffset)

The delay intentionally added to the forwarded clock to meet the setup and hold
requirements at the Receive Flop.

CMOS

Complementary metal-oxide semiconductor. A silicon device formed by a process that
combines PMOS and NMOS semiconductor material.

conditional branch instructions

Instructions that test a register for positive/negative ozmo/nonzero. They can also
test integer registers for even/odd.

control and status register (CSR)

A device or controller register that resides in the processor’s I/O space. The CSR ini-
tiates device activity and records its status.

CPI
Cycles per instruction.
CPU
Seecentral processing unit.
CSR
Seecontrol and status register.
cycle
One clock interval.
data bus
A group of wires that carry data.
Dcache
Data cache. A cache reserved for storage of data. The Dcache does not contain instruc-
tions.
DDR
Dual-data rate. A dual-data rate SSRAM can provide data on both the rising and falling
edges of the clock signal.
denormal
An IEEE floating-point bit pattern that represents a number whose magnitude lies
between zero and the smallest finite number.
DIP

Dual inline package.

Alpha 21264/EV6 Hardware Reference Manual Glossary -5

direct-mapping cache

A cache organization in which only one address comparison is needed to locate any
data in the cache, because any block of main memory data can be placed in only one
possible position in the cache.

direct memory access (DMA)

dirty

dirty victim

DMA

DRAM

DTB

DTL

dual issue

ECC

ECC error

ECL

EEPROM

Glossary -6

Access to memory by an I/O device that does not require processor intervention.

One status item for a cache block. The cache block is valid and has been written so that
it may differ from the copy in system main memory.

Used in reference to a cache block in the cachesyfssem bus node. The cache block
is valid but is about to be replaced due to a cache block resource conflict. The data must
therefore be written to memory.

Seedirect memory access.

Dynamic random-access memory. Read/write memory that mustfteshed (read
from or written to) periodically to maintain the storage of information.

Data translation buffeAlso defined a®stream translation buffer.

Diode-transistor logic.

Two instructions are issued, in parallel, during the same microprocessor cycle. The
instructions use different resources and so do not conflict.

Error correction code. Code and algorithms used by logic to facilitate error detection
and corredbn. See alsd&CC error.

An error detected by ECC logic, to indicate that data (or the protected “entity”) has
been corrupted. The error may bextable (soft error) or uncorrectable (hard error).

Emitter-coupled logic.

Electrically erasable programmable read-only memory. A memory device that can be
byte-erased, written to, and read fro@ontrast withFEPROM.

Alpha 21264/EV6 Hardware Reference Manual

external cache

Seesecond-level cache.

FEPROM
Flash-erasable programmable read-only memory. FEPROMSs can be bank- or bulk-
erasedContrast withEEPROM.

FET
Field-effect trasistor.

FEU
The unit within the 21264/EV6 microprocessor that performs floating-point calcula-
tions.

firmware

Machine instructions stored in nonvolatile memaory.
floating point

A number system in which the position of the radix point is indicated by the exponent
part and another part represents the significant digits or fractional part.

flush
Seecache flush.
forwarded clock

A single-ended dierential sgnal that is aligned with its associated fields. The for-
warded clock is sourced and aligned by the sender with a period that is two times the bit
time. Forwarded clocks must be 50% duty cycle clocks whose rising and falling edges
are aligned with the changing edge of the data.

FPGA

Field-programmable gate array.
FPLA

Field-programmable logiarray.
FQ

Floating-point issue queue.
framing clock

The framing clock defines the start of a transmission either from the system to the
21264/EV6 or from the 21264/EV6 to the system. The framing clock is a power-of-2
multiple of the 21264/EV&CLK frequency, and is usually the system clock. The
framing clock and the input oscillator can have the same frequency. The
add_frame_select IPR sets that ratio of bit times to framing clock. The frame clock
could have a period that is four times the bit time with a add_frame_select of 2X.
Transfers begin on the rising and falling edge of the frame clock. This is useful for sys-
tems that have system clocks with a period too small to perform the synchronous reset

Alpha 21264/EV6 Hardware Reference Manual Glossary -7

of the clock forward logic. Additionally, the framing clock can have a period that is
less than, equal to, or greater than the time it takes to send a full four cycle command/
address.

GCLK
Global clock within the 21264/EV6.
granularity

A characteristic of storage systems that defines the amount of data that can be read and/
or written with a single instruction, or read and/or written independently.

hardware interrupt request (HIR)
An interrupt generated by a peripheral device.

high-impedance state

An electrical state of high resistance to current flow, which makes the device appear not
physically connected to the circuit.

hit
Seecache hit.
Icache

Instruction cache. A cache reserved for storage of instructions. One of theatkeeeof
primary cache (located on the 21264/EV6) used to store instructions. The Icache con-
tains 8KB of memory space. It is a direct-mapped cache. Icache blocks, or lines, con-
tain 32 bytes of instruction stream data with associated tag as well as a 6-bit ASM field
and an 8-bit branch history field per block. Icache does not contain hardware for main-
taining cache coherency with memory and is unaffected by the invalidate bus.

IDU

A logic unit within the 21264/EV6 microprocessor that fetches, decodes, and issues
instructions. It also controls the microprocessor pipeline.

IEEE Standard 754

A set of formats and operations that apply to floating-point numbers. The formats cover
32-, 64-, and 80-bit operand sizes.

IEEE Standard 1149.1

A standard for the Test Access Port and Boundary Scan Architecture used in board-
level manufacturing test procedures.

Inf
Infinity.
INT nn

The term INThn, wherennis one of 2, 4, 8, 16, 32, or 64, refers to a data field sizerof
contiguous NATURALLY ALIGNED bytes. For example, INT#fers to a NATU-
RALLY ALIGNED longword.

Glossary -8 Alpha 21264/EV6 Hardware Reference Manual

interface reset

A synchronously received reset signal that is used to preset and start the clock forward-
ing circuitry. During this reset, all forwarded clocks are stopped and the presettable
count values are applied to the counters; then, some number of cycles later, the clocks
are enabled and are free running.

Internal processor register (IPR)

Special registers that are used to configure options or report status.

IOWB

I/O write buffer.
IPGA

Interstitial pin grid array.
IQ

Integer issue queue.
ITB

Instruction translation buffer.
JFET

Junction field-effect transistor.
latency

The amount of time it takes the system to respond to an event.
LCC

Leadless chip carrier.
LFSR

Linear feedback shift register.
load/store architecture

A characteristic of a machine architecture where data items are first loaded into a pro-
cessor register, operated on, and then stored back to memory. No operations on memory
other than load and store are provided by the instruction set.

longword (LW)

Four contiguous bytes starting on an arbitrary byte boundary. The bits are numbered
from right to left, O through 31.

LQ
Load queue.
LSB

Least significant bit.

Alpha 21264/EV6 Hardware Reference Manual Glossary -9

machine check

An operating system action triggered by certain system hardware-detrobes that
can be fatal to system operation. Once triggered, machine check handler software ana-
lyzes the error.

MAF
Miss address file.
main memory

The large memory, external to the microprocessor, used for holding most instruction
code and data. Usually built from cost-effective DRAM memory chips. May be used in
connection with the microprocessor’s intergaches and an external cache.

masked write

A write cycle that only updates a subset of a nominal data block.

MBO
Seemust be one.

Mbox
This section of the processor unit performs address translationfacs to the
Dcache, and performs several other functions.

MBZ

Seemust be zero.
MESI protocol

A cache consistency protocol with full support for multiprocessing. The MESI protocol
consists of four states that define whether a block is modified (M), exclusive (E), shared
(S), or invalid (1).

MIPS

Millions of instructions per second.
miss

Seecache miss.
module

A board on which logic devices (such as transistors, resistors, and memory chips) are
mounted and connected to perform a specific system function.

module-level cache

Seesecond-level cache.
MOS

Metal-oxide semiconductor.
MOSFET

Metal-oxide semiconductor field-effect traistor.

Glossary -10 Alpha 21264/EV6 Hardware Reference Manual

MSI
Medium-scale integration.
multiprocessing

A processing method that replicates the sequential computer and interconnects the col-
lection so that each processor can execute the same fiergedt program at the same
time.

must be one (MBO)
A field that must be supplied as one.
must be zero (MBZ)

A field that is reserved and must be supplied as zero. If examined, it must be assumed to
be UNDEFINED.

NaN

Not-a-Number. An IEEE floating-point bit pattern that represents something other than
a number. This comes in two forms: signaling NaNs (for Alpha, those with an initial
fraction bit of 0) and quiet NaNs (for Alpha, those with an initial fraction bit of 1).

NATURALLY ALIGNED
SeeALIGNED.
NATURALLY ALIGNED data

Data stored in memory such that the address of the data is evenly divisible by the size of
the data in bytes. For example, an ALIGNED longword is stored such that the address
of the longword is evenly divisible by 4.

NMOS

N-type metal-oxide semiconductor.
NVRAM

Nonvolatile random-access memory.
OBL

Observability linear feedback shift register.
octaword

Sixteen contiguous bytes starting on an arbitrary byte boundary. The bits are numbered
from right to left, O through 127.

OpenVMS Alpha operating system
The version of the open VMS operating system for Alpha platforms.
operand

The data or register upon which an operationasformed.

Alpha 21264/EV6 Hardware Reference Manual Glossary -11

output mux counter

PAL

PALcode

PALmMode

parameter

parity

PGA

pipeline

PLA

PLCC

PLD

PLL

PMOS

PQ

Glossary -12

Counter used to select the output mux that drives address and data. It is reset with the
Interface Reset and incremented by a copy of the locally generated forwarded clock.

Privileged architecture librargee alsdPALcode.See alsdProgrammable array logic
(hardware). A device that can be programmed by a process that blows individual fuses
to create a circuit.

Alpha privileged architecture library code, written to support Alpha microprocessors.
PALcode implements architecturally defined behavior.

A special environment for running PALcode routines.

A variable that is given a specific value that is passed to a program before execution.

A method for checking the accuracy of data by calculating the sum of the number of
ones in a piece of binary data. Even parity requires the correct sum to be an even num-
ber, odd parity requires the correct sum to be an odd number.

Pin grid array.

A CPU design technique whereby multiple instructions are simultaneously overlapped
in execution.

Programmable logic array.

Plastic leadless chip carrier or plastic-leaded chip carrier.

Programmable logic device.

Phase-locked loop.

P-type metal-oxide semiconductor.

Probe queue.

Alpha 21264/EV6 Hardware Reference Manual

PQFP
Plastic quad flat pack.
primary cache

The cache that is the fastest and closest to the processor. The first-level caches, located
on the CPU chip, composed of the Dcache and Icache.

program counter

That portion of the CPU that contains the virtual address of the next instruction to be
executed. Most current CPUs implement the program counter (PC) as a register. This
register may be visible to the programmer through the instruction set.

PROM

Programmable read-only memory.
pull-down resistor

A resistor placed between a signal line and a negative voltage.
pull-up resistor

A resistor placed between a signal line to a positive voltage.

QNaN
Quiet Nan. See NaN.
guad issue
Four instructions are issued, in parallel, during the same microprocessor cycle. The
instructions use different resources and so do not conflict.
guadword
Eight contiguous bytes starting on an arbitrary byte boundary. The bits areemedhb
from right to left, O through 63.
RAM
Random-access memory.
RAS
Row address select.
RAW

Read-after-write.
READ_BLOCK

A transaction where the 21264/EV6 requests that an external logic unitrisidhdata.
read data wrapping

System feature that reduces apparent memory latency by allow@thdata cycles to
differ theusual low-to-high sequence. Requires cooperation between the 21264/EV6
and external hardware.

Alpha 21264/EV6 Hardware Reference Manual Glossary -13

read stream buffers

Arrangement whereby each memory module independently prefetches DRAM data
prior to an actual read request for that data. Reduces average memory latency while
improving total memory bandwidth.

receive counter

Counter used to enable the receive flops. Itis clocked by the incoming forwarded clock
and reset by the Interface Reset.

receive mux counter

The receive mux counter is preset to a selectable starting point and incremented by the
locally generated forward clock.

register
A temporary storage or control location in hardware logic.

reliability
The probability a device or system will not fail to perform its intended functions during
a specified time interval when operated under stated conditions.

reset
An action that causes a logic unit to interrupt the task it is performing and go to its ini-
tialized state.

RISC
Reduced instruction set computing. A computer with an instruction set that is paired
down and reduced in complexity so that most can &dgrmed in a mgle processor
cycle. High-level compilers synthesize the more complex, least frequently used instruc-
tions by breaking them down into simpler instructions. This approach allows the RISC
architecture to implement a small, hardware-assisted instruction set, thus eliminating
the need for microcode.

ROM
Read-only memory.

RTL
Register-transfer logic.

SAM
Serial access memory.

SBO
Should be one.

SBZ
Should be zero.

scheduling

The process of ordering instruction execution to obtain optimenfopmance.

Glossary -14 Alpha 21264/EV6 Hardware Reference Manual

SDRAM
Synchronous dynamic random-access memaory.
second-level cache

A cache memory provided outside of the microprocessor chip, usually located on the
same module. Also called board-level, external, or module-lexehe.

set-associative

A form of cache organization in which the location of a data block in main memory
constrains, but does not completely determine, its location in the cache. Set-associative
organization is a compromise between direct-mapped organization, in which data from
a given address in main memory has only one possible cache location, and fully asso-
ciative organization, in which data from anywhere in main memory can be put any-
where in the cache. An*fway set-associative” cache allows data from a given address

in main memory to be cached in anymfocations.

SIMM

Single inline memory module.
SIP

Single inline package.
SIPP

Single inline pin package.
SMD

Surface mount device.
SNaN

Signaling NaN.SeeNan.
SRAM

SeeSSRAM.
SROM

Serial read-only memory.
SSI

Small-scale integration.
SSRAM

Synchronous static random-access memaory.
stack

An area of memory set aside for temporary dgttarage or for procedure and interrupt
service linkages. A stack uses the last-in/first-out concept. As items are added to
(pushed on) the stack, the stack pointer decrements. As items are retrieved from
(popped off) the stack, the stack pointer increments.

Alpha 21264/EV6 Hardware Reference Manual Glossary -15

STRAM
Self-timed random-access memory.
superpipelined

Describes a pipelined machine that has a larger number of pipe stages and more com-
plex scheduling and contrdiee alsgipeline.

superscalar

Describes a machine architecture that allows multiple independent instructions to be
issued in parallel during a given clock cycle.

system clock

The primary skew controlled clock used throughout the interface components to clock
transfer between ASICs, main memory, and I/O bridges.

tag

The part of a cache block that holds the address information used to determine if a
memory operation is a hit or a miss on that cache block.

target clock
Skew controlled clock that receives the output of the RECEIVE MUX.

B
Translation buffer.
tristate
Refers to a bused line that has three stdtash, low, and high-impedance.
TTL
Transistor-transistor logic.
UART

Universal asynchronous receiver-transmitter.
UNALIGNED

A datum of size 2**N stored at a byte address that is not a multiple of 2**N.
unconditional branch instructions

Instructions that change the flow of program control without regard to any condition.
Contrast withconditional branch instructions.

UNDEFINED

An operation that may halt the processor or cause it to lose information. Only privileged
software (that is, software running in kernel mode) can trigger an UNDEFINED opera-
tion. (This meaning only applies when the word is written in all upper case.)

Glossary -16 Alpha 21264/EV6 Hardware Reference Manual

UNPREDICTABLE

UVPROM

VAF

valid

VDF

VHSIC

victim

Results or occurrences that do not disrupt the basic operation of the processor; the pro-
cessor continues to execute instructions in its normal manner. Privileged or unprivi-
leged software can trigger UNPREDICTABLE results or occurrences. (This meaning
only applies when the word is written in all upper case.)

Ultraviolet (erasable) programmable read-only memory.

Seevictim address file.

Allocated. Valid cache blocks have been loaded with data and may return cache hits
when accessed.

Seevictim data file.

Very-high-speed integrated circuit.

Used in reference to a cache block in the cachesyfsdem bus node. The cache block
is valid but is about to be replaced due to a cache block resource conflict.

victim address file

The victim address file and the victim data file, together, form an 8-entry buffer used to
hold information for transactions to the Bcache and main memory.

victim data file

virtual cache

VLSI

VPC

VRAM

The victim address file and the victim data file, together, form an 8-entry buffer used to
hold information for transactions to the Bcache and main memory.

A cache that is addressed with virtual addresses. The tag of the cache is a virtual
address. This process allowselit addresing of the cache without having to go
through the translation buffer making cache hit times faster.

Very-large-scale integration.

Virtual program counter.

Video random-access memory.

Alpha 21264/EV6 Hardware Reference Manual Glossary -17

WAR
Write-after-read.
word

Two contiguous bytes (16 bits) starting on an arbitrary byte boundary. The bits are num-
bered from right to left, O through 15.

write-back

A cache management technique in which write operation data is written into cache but
is not written into main memory in the same operation. This may result in temporary
differences between cache data and main memory data. Smiceuhit must maintain
coherency between cache and main memory.

write-back cache

Copies are kept of any data in the region; read and write operations may use the copies,
and write operations use additional state to determine whether there are other copies to
invalidate or update.

WRITE_BLOCK

A transaction where the 21264/EV6 requests that an external logic unit process write
data.

write data wrapping

System feature that reduces apparent memory latency by allowing write data cycles to
differ theusual low-to-high sequence. Requires cooperation between the 21264/EV6
and external hardware.

write-through cache

A cache management technique in which a write operation to cache also causes the
same data to be written in main memory during the same operation. Copies are kept of
any data in aregion; read operations may use the copies, but write operations update the
actual data location and either update or invalidate all copies.

Glossary -18 Alpha 21264/EV6 Hardware Reference Manual

Numerics

21264/EV6, features of1-3

32 BYTE_IO Chox CSR
defined 5-33

A

Abbreviations Xxix
binary multiples xix
register accessxix

AC characteristics 9-6

Address conventionsxx

Aggregate mode performance counting—17
Aligned convention xx

Alpha instruction summargy A-1

AMASK instruction values 2-37

ARITH synchronous trap 6-14

B

B_DA_OD pin typge 3-3, 9-2
values foy 9-4

B_DA_PP pin type 3-3, 9-2
values for 9-4

BC_BANK_ENABLE Cbox CSR 4-5Q 5-38

7-13

BC_BPHASE_LD VECTOR Cbox CSR4-45
defined 5-37

BC_BURST_MODE_ENABLE Cbox CSR4-50
defined 5-34

BC_CLEAN_VICTIM Cbox CSR 4-23
defined 5-33

BC_CLK_DELAY Cbox CSR 4-45
defined 5-34

BC_CLK _LD_VECTOR Chox CSR 4-45
defined 5-37

BC_CLKFWD_ENABLE Cbox CSR 4-47
defined 5-34

Alpha 21264/EV6 Hardware Reference Manual

Index

BC_CLOCK_OUT Chox CSR 4-45
BC_CPU_CLK_DELAY Chox CSR 4-44, 4-45

defined 5-37
BC_CPU_LATE_WRITE_NUM Cbhox CSR
defined 5-34
BC_DDM_FALL_EN Cbox CSR 4-47
defined 5-35
BC_DDM_RISE_EN Cbox CSR4-47
defined 5-35
BC_DDMF_ENABLE Cbox CSR 4-47
defined 5-34
BC_DDMR_ENABLE Cbox CSR 4-47
defined 5-34

BC_ENABLE Cbox CSR 4-50 5-38 7-12
BC_FDBK_EN Cbox CSR 4-45
defined 5-37
BC_FRM_CLK Cbox CSR 4-47
defined 5-34
BC_LAT_DATA_PATTERN Cbox CSR 4-47
defined 5-34
BC_LAT_TAG_PATTERN Cbox CSR 4-47
defined 5-34
BC_LATE_WRITE_NUM Cbox CSR 4-48
defined 5-34
BC_LATE_WRITE_UPPER Cbox CSR
defined 5-34
BC_PENTIUM_MODE Chox CSR 4-50
defined 5-34
BC_PERR error status in C_STAT5-40
BC_RCV_MUX_CNT_PRESET Cbox CSR
defined 5-34
BC_RCV_MUX_PRESET_CNT Cbox CSR4-48
BC_RD_RD_BUBBLE Chox CSR
defined 5-33
BC_RD_WR_BUBBLES Cbox CSR4-49
defined 5-33
BC_RDVICTIM Chox CSR 4-23 4-26
defined 5-33

Index—1

BC_SIZE Chox CSR 4-5Q 5-38 7-12

BC_SJ BANK_ENABLE Chox CSR
defined 5-33

BC_TAG_DDM_FALL_EN Chox CSR 4-47
defined 5-34

BC_TAG_DDM_RISE_EN Chox CSR4-47
defined 5-34

BC_WR_RD_BUBBLES Cbox CSR4-49
defined 5-33

BC_WR_WR_BUBBLE Cbox CSR 4-52
defined 5-33

BC_WRT_STS Cbox CSR5-38 7-13

Bcache
banking 4-52
bubbles on the data bust—49
clocking, 4-44
control ping 4-50
data read transactionst—47
data single-bit correctable ECC eryo8-5

data single-bit correctable ECC error on a probe

8-8
data write transactions4—48
error case summary for8—10
filling Dcache erroy 8-6
filling Icache errof 8-5
forwarding clock pin groupings E-1
maximum clock ratip 4-42
port, 4-42
port ping 4-43
programming the size pf4-50
setting clock period 4-45
structure of 4—6
tag parity errors 8-5
tag read transactions4—47

victim read during an ECB instruction error

8—7

victim read during Dcache/Bcache miss efror

8-6
victim read erroy 8-6
BcAdd_H signal ping 3-3, 4-43
characteristics 4-50
BcCheck_H signal pins 3—-3, 4-43
BcData_H signal pins 3—-3, 4-43
BcDatalnClk_H signal pins 3-3, 4-43
using 4-52
BcDataOE_L signal pin 3—4, 4-43
BcDataOutClk_x signal pins3—4, 4-43
BcDataWr_L signal pin 3—4, 4-43
BcLoad_L signal pin 3—4, 4-43
BcTag_H signal pins 3—4, 4-43
BcTagDirty_H signal pin 3—4, 4-43
BcTagInClk_H signal pin 3—4, 4-43
using 4-52
BcTagOE_L signal pin 3—4, 4-43

Index—2

BcTagOutClk_x signal pins 3—4, 4-43
BcTagParity_H signal pin 3—4, 4-43
BcTagShared_H signal pin3—4, 4—44
BcTagValid_H signal pin 3—4, 4—44
BcTagWr_L signal pin 3-4, 4-44
BcVref signal pin 3-4, 4-44

Bidirectional differential amplifier receiver -
open-drain. See B_DA OD

Bidirectional differential amplifier receiver -
push-pull. See B_DA PP

Binary multiple abbreviationsxix

BiST. See Built-in self-test

Bit notation conventions xx

Bounder-scan registerB—1

Branch history table, initialized by BiST7-12

Branch mispredication, pipeline abort delay from

2-16
Branch predictar 2—-3

BSDL description of the boundary-scan register

B-1
Built-in self-test 11-5
load, 7-7

C

C_ADDR Chbhox read register fie)Jd5—-40
C_DATA Cbox data register5-31

at power-on reset stgte/—16
C_SHFT Cbox shift register5-32

at power-on reset stgte/—16
C_STAT Cbox read register fie]d5—-40

C_STS Cbox read register figldb—40

C_SYNDROME_O Cbox read register figldb—40
C_SYNDROME_1 Cbox read register figldb—40

Cache block states4—9

response to 21264/EV6 commandé-11
transitions 4-10

Cache coherengy4-8
CALL_PAL entry points 6-12
Caution convention xx

Alpha 21264/EV6 Hardware Reference Manual

Cbox

data register C_DATA 5-31
described 2-11, 4-3

duplicate Dcache tag array2—11
duplicate Dcache tag array witM—14
HW_MTPR and HW_MFPR to CSRD-15
I/O write buffer, 2-11

internal processor register$—-3
probe queug 2-11

read register 5-40

shift register C_SHFT 5-32

victim address file 2—-11
WRITE_MANY chain, 5-37
WRITE_MANY chain example 5-38
WRITE_ONCE chaipn 5-32

CC cycle counter register5—3
at power-on reset state/—15
CC_CTL cycle counter control registeb—4
at power-on reset state/—15
CFR_EV6CLK_DELAY Cbox CSR, defingd5-36
CFR_FRMCLK_DELAY Chox CSR, defined5-36
CFR_GCLK_DELAY Cbox CSR, defingd5-36
ChangeToDirtyFail, SysDc commandi—-11, 4-12,
4-13
ChangeToDirtySuccess, SysDc commani-11,
4-12 4-13
Choice predictar 2-5
ChxToDirty, 21264/EV6 command4-12
CLAMP public instruction B-1
Clean cache block state4—9
Clean/Shared cache block staté-10
CleanToDirty, 21264/EV6 comman#-22, 4-39
system probes, with4-41
CleanVictimBlk, 21264/EV6 command4—-22 4-39
ClkFwdRst_H signal pin 3—4, 4-30
with system initialization 7-7
ClkIn_x signal ping 3—4
Clock forwarding 7-4
CLR_MAP clear virtual-to-physical map register
5-20
at power-on reset state/—15
CMOV instruction, special cases,0R-26
COLD reset machine stater—17

Commands

21264/EV6 to system4-19
system to 21264/EV,6 4-26
when to NXM, 4-38

Alpha 21264/EV6 Hardware Reference Manual

Conventions Xix

abbreviations xix
address xx
aligned xx

bit notation xx
caution xx

data units xxi

do not carg xxi
externa) xxi

field notation xxi
note Xxi
numbering xxi
ranges and extentsxxi
register figures xxii
signal names xxii
unaligned xx

X, Xxi

CTAG, 4-14

D

Data cache. See Dcache

Data merging

load instructions in 1/0 address spac2-27
store instructions in 1/0O address spac-29

Data transfer commands, system-28

Data types

floating point support 1-2
integer supported 1-2
supported 1-1

Data units conventign xxi

Data wrap 4-36
double-pumped 4-37
interleaveq 4-37
DATA_VALID_DLY Cbox CSR, defined 5-37

dc

characteristics of 9-2

input pin capacitance defined®-2

test load defined 9-2

voltage on signal pins9-1
DC_CTL Dcache control registe5—29

at power-on reset stgte/—16
error correction and 8-2

DC_PERR error status in C_STAT5—-40

DC_STAT Dcache status registeb—30
at power-on reset stgte/—16

Index-3

Dcache

describeg 2-12

duplicate tag parity erroys8—4
duplicate tags with 4-14
error case summary for8—9
fill from Bcache error 8-6

fill from memory errors 8-7
initialized by BiST, 7-12
pipelined 2-16

single-bit correctable ECC error8-3
store second errpr8—4

tag parity errors 8-2

victim extracts 8-4

Dcache data single-bit correctable ECC eryo8s-3
Dcache tag, initialized by BiST 7-12

DCOK_H signal pin 3—-4
power-on reset floy 7-1
DCVIC_THRESHOLD Cbox CSR, defined5-33

DFAULT fault, 6-13

Differential 21264/EV6 clocks 7—19
Differential reference clocks7-19
Dirty cache block state 4-10
Dirty/Shared cache block statel—10
Do not care conventignxxi
Double-bit fill errors 8-9

DOWNI1 reset machine stater—18
DOWNZ2 reset machine stater—19
DOWNS3 reset machine stater—19

Dstream translation buffer2—13
See also DTB

DSTREAM_BC_ERR error status in C_STAT
5-40

DSTREAM_DC_ERR error status in C_STAT
5-40

DSTREAM_MEM_ERR error status in C_STAT
5-40

DTAG. See Duplicate Dcache tag array

DTB entries, writing multiple in same PAL flow
D-18

DTBfill, 6-14
DTB, pipeline abort delay with 2—-16

DTB_ALTMODE alternate processor mode register

5-26
at power-on reset state/—15
DTB_ASNO address space number register O
at power-on reset state/—16
DTB_ASNO address space number register$627
DTB_ASNL1 address space number registerist27
at power-on reset state/—16

Index—4

DTB_IA invalidate-all process register5—26
at power-on reset stgte/r—15

DTB_IAP invalidate-all (ASM=0) process register

5-26

at power-on reset stgte/—15

DTB_IS0 invalidate single (array 0) registeb—26
at power-on reset stgte/—15

DTB_IS1 invalidate single (array 1) registeb—26
at power-on reset stgte/—16

DTB_PTEO array write O register
at power-on reset stgte/—15
MTPR to, D-11

DTB_PTEO array write register,05-24

DTB_PTEL array write 1 register5—24
at power-on reset stgte/—15
MTPR to, D-11

DTB_TAGO array write O register5-24
at power-on reset stgte/r—15
MTPR to, D-11

DTB_TAG1 array write 1 register5-24
at power-on reset stgte/r—15
MTPR to, D-11

DTBM_DOUBLE_3 fault 6-13

DTBM_DOUBLE_4 fault 6-13
DTBM_SINGLE fault, 6-13

Dual-data rate SSRAM pin assignments—3
DUP_TAG_ENABLE Chox CSR, defingd5-33
Duplicate Dcache tag array2—11

Duplicate Dcache, initialized by BiST7-12
Duplicate tag array, Cbox copy. See CTAG
Duplicate tag stores, Bcachel—7

E

Ebox
cycle counter control register CC_CT15-4
cycle counter register CC5-3
described 2—-8
executed in pipeling 2-16
internal processor registerd-1
slotting, 2-18
subclusters 2—-18
virtual address control register VA_CTL5—-4
virtual address format register VA_FORNM5—-6
virtual address registers5—4

ECB instruction, external interface referencé-5

ECC

64-bit data and check bit code8—2

Dcache data single-bit correctable ero-3

for system data bys8-2

memory/system port single-bit correctable
errors 8-7

store instructions 8—4

Alpha 21264/EV6 Hardware Reference Manual

ENABLE_EVICT Cbox CSR 4-23 5-38

ENABLE_PROBE_CHECK Cbox CSR
defined 5-34

ENABLE_STC_COMMAND Cbox CSR, defined

5-34

Energy star certification 7-9

Error case summayry8-9

Error correction code. See ECC

Error detection mechanisms$3-1

EV6CIk_x signal ping 3-5

Evict, 21264/EV6 command4-13 4-22, 4-39

EVICT_ENABLE Cbox CSR 7-13

EXC_ADDR exception address registes—8

after fault reset 7—-8
at power-on reset state/—15

EXC_SUM exception summary registeb—14
at power-on reset state/—15
Exception and interrupt logjc2-8

Exception condition summayyA-15

External cache and system interface unit. See Chox
External convention xxi

External interface initialization 7-14

EXTEST public instruction B-1

F

F31

load instructions with 2—-22
retire instructions with 2—-22

Fast data disable moded—33

Fast data mode 4-3Q 4-31

FAST_MODE_DISABLE Cbox CSR 4-30
defined 5-33

Fault reset flow 7-8

Fault reset sequence of operatipris-9

FAULT_RESET reset machine statg—18

Fbox

described 2-10
executed in pipeling 2-16

FEN fault 6-13
FetchBIk, 21264/EV6 command4—22 4—-39
system probes, with4-41
FetchBlkSpec, 21264/EV6 command—22, 4—-39
Field notation conventign xxi
Floating-point arithmetic trap, pipeline abort delay
with, 2-16

Floating-point control register2—35
PALcode emulation qf 6-11

Alpha 21264/EV6 Hardware Reference Manual

Floating-point execution unit. See Fbox

Floating-point instructions
IEEE, A-9
independent A-11
VAX, A-11

Floating-point issue queye2—7
Forwarding clock pin groupingsE-1
FPCR. See Floating-point control register
FQ. See Floating-point issue queue
FrameClIk_x signal pins 3-5, 4-30

G

GCLK, 7-19
Global predictoy 2—-4

H

Heat sink center temperatyrd 0-1
Heat sink specifications10-3

HW_INT_CLR hardware interrupt clear register
5-13

at power-on reset stgte/r—15

updating D-17
HW_LD PALcode instruction 6-3, A-9, D-17
HW_MFPR PALcode instructign 6—6, A—9
HW_MTPR PALcode instruction 6-6, A-9
HW_REI PALcode instruction A-9
HW_RET PALcode instruction 6-5

HW_ST PALcode instruction 6—4, A-9

I/0 address space
instruction data merging2—-29
load instruction data merging2—27
load instructions with 2-27
store instructions with 2—28
I/0O write buffer, 2—-11
defined 2-32
|_CTL Ibox control register 5-16
after fault reset 7-8
after warm reset 7-11
at power-on reset stgte/—15
PALshadow registers6-11
through sleep mode7-10
VA_48 field update D-17
I_DA pin type, 3-3, 9-2
values for 9-3
I_DA_CLK pintypg 3-3 9-2
values for 9-3
|_DC_POWER pin typg 9-2

Index-5

|_DC_REF pin type 3-3, 9-2
values for 9-3

|_STAT lbox status register5-19
at power-on reset state/—15

IACV fault, 6-13

Ibox

branch predictgr 2—-3

clear virtual-to-physical map register
CLR_MAP, 5-20

exception address register EXC_ADDR-8

exception and interrupt logjc2—-8

exception summary register EXC_SUM-14

floating-point issue queye2—7

hardware interrupt clear register HW_INT_CLR

5-13

Ibox control register |_CTl. 5-16

Ibox process context register PCT»%—-21

Ibox status register |_STAT5-19

Icache flush ASM register IC_FLUSH_ASM

5-20

Icache flush register IC_FLUSH5-20

instruction fetch logic 2-5

instruction virtual address format register
IVA_FORM, 5-9

instruction-stream translation buffe—-5

integer issue queye2—6

internal processor registerd-2

interrupt enable and current processor mode
register [ER_CM 5-10

interrupt summary register ISUM5-11

ITB invalidate single register ITB_IS5-8

ITB invalidate-all ASM (ASM=0) register
ITB_IAP, 5-7

ITB invalidate-all register ITB_IA 5-8

ITB PTE array write register ITB_PTE5S-7

ITB tag array write register ITB_TAG 57

PAL base register PAL_BASE5-15

performance counter control register
PCTR_CTL, 5-22

register rename map-6

retire logic 2-8

retire logic and mapper, required sequence for

sleep mode register SLEERB-20

software interrupt request register SIRB-11

subsections in 2—-2

virtual program counter logjc 2—2

IC_FLUSH Icache flush register
at power-on reset state/—15
IC_FLUSH_ASM Icache flush ASM register5—20

Icache

data errors 8-2
error case summary for8—9
fill from Bcache error 8-5
fill from memory erro, 8-7
flush register IC_FLUSH 5-20
initialized by BiST, 7-12
tag, initialized by BiST 7-12
IDDQ leakage current measuremgrnt-20

Index—6

IEEE 1149.1

notes for compliance to11-7
test port reset 7-16
test port, operation of 11-3

IEEE floating-point conformangeA-14
IEEE floating-point instruction opcodgsA—9

IER_CM interrupt enable and current processor mode

register 5-10
at power-on reset stgte/—15
IMPLVER instruction values 2—38

Independent floating-point function codes—11

INIT_MODE Cbox CSR 5-38 7-12

Initialization mode processing7—12

Input dc reference pin. See |_DC_REF pin type

Input differential amplifier clock receiver. See
|_DA_CLK pin type

Input differential amplifier receiver. See |_DA pin
type

Instruction fetch logic 2-5

Instruction fetch, issue, and retire unit. See Ibox

Instruction fetch, pipelined 2-14

Instruction issue rules2-16

Instruction latencies, pipelingd2—19

Instruction ordering 2-30

Instruction retire latencies, minimym2-21

Instruction retire rules
F31, 2-22
floating-point divide 2-21
floating-point square ropt2—-21
pipelined 2-21
R31, 2-22
Instruction slot, pipelined 2—14
Instruction-stream translation buffe—5

Int_Add_BcClIk internal forwarded clogk4—44,
4-47

Int_Data_BcCIk internal forwarded clockd—44,
4-49

INT_FWD_CLK clock queuge 4-30

Integer arithmetic trap, pipeline abort delay with

2-16
Integer execution unit. See Ebox

Integer issue queye2—6
pipelined 2-15

Alpha 21264/EV6 Hardware Reference Manual

Internal processor register$—1
accessing 6—7
explicitly written, 6-8
implicitly written, 6-9
ordering access6-9
paired fetch order 6—9
scoreboard bits for 6—8
used for performance countings—17

INTERRUPT interrupt 6-14
INVAL_TO_DIRTY Cbox CSR 4-23
programming 4-23
INVAL_TO_DIRTY_ENABLE Cbox CSR 5-38
7-12
InvalToDirty, 21264/EV6 command4-13 4-22,
4-39
system probes, with4—41
InvalToDirtyVic, 21264/EV6 command4-22,
4-39
IOWB. See I/O write buffer
IPRs. See Internal processor registers
IQ. See Integer issue queue
IRQ_H signal pins 3-5
Istream 2-5
Istream memory references
translation to external referenced—5
ISTREAM_BC_ERR error status in C_STAT5-40
ISTREAM_MEM_ERR error status in C_STAT
5-40
ISUM interrupt summary registers5—11
at power-on reset state/—15
ITB, 2-5
ITBfill, 6-16
ITB miss, pipeline abort delay with2—16
ITB_IA invalidate-all registey 5-8
at power-on reset state/—15
ITB_IAP invalidate-all (ASM=0) register 5-7
at power-on reset state/—15
ITB_IS invalidate single register5-8
at power-on reset state/—15
ITB_MISS fault, 6-14
ITB_PTE array write register 5—7
at power-on reset state/—14
ITB_TAG array write register 5—7
at power-on reset state/—14
IVA_FORM instruction virtual address format
registey 5-9
at power-on reset state/—15

J
JITTER_CMD Cbhox CSR, defingd5-36

Alpha 21264/EV6 Hardware Reference Manual

JMP misprediction, in PALcodeD-15

JSR misprediction

in PALcode D-15
pipeline abort delay with 2—-16

JSR_COR misprediction, in PALcodé>—-15
Junction temperature9-1

L

Late-write non-bursting SSRAM pin assignments
E-2

LDBU instruction, normal prefetch with2—-23

LDF instruction, normal prefetch with2—23

LDG instruction, normal prefetch with2—-23

LDQ instruction, prefetch with evict next2—23

LDS instruction, prefetch with modify intent2—23

LDT instruction, normal prefetch with2-23

LDWU instruction, normal prefetch with2—-23

LDx_L instructions
in-order processing for4-15
locking mechanism fqr 4-14

Load hit speculation 2—24

Load instructions
ECC with, 8-3
I/0 reference ordering 2—30
Mbox order traps 2—-31
memory reference ordering2—30
translation to external interface4d—5

Load queue, described?—13
Load-load order trap 2-31

Local predictoy 2—-4

Lock mechanism 4-14

Logic symbol, the 21264/EV,63-2
LQ. See Load queue

M

M_CTL Mbox control register 5-28
at power-on reset stgte/—16
MAF. See Miss address file

MB instruction processing 2—-32

MB, 21264/EV6 command 4-13 4-22
MB_CNT Chox CSR, operatign2-32
MBDone, SysDc command4-13

Mbox
Dcache control register DC_CTL5-29
Dcache status register DC_STAB-30
described 2-12
Dstream translation buffer2—13
DTB address space number registers 0 and 1

Index—7

DTB_ASNx, 5-27

DTB alternate processor mode register
DTB_ALTMODE, 5-26

DTB invalidate-all (ASM=0) process register
DTB_IAP, 5-26

DTB invalidate-all process register DTB_JA

5-26
DTB invalidate-single registers 0 and 1
DTB_ISx, 5-26

DTB PTE array write registers 0 and 1
DTB_PTEx 5-24
DTB tag array write registers 0 and 1
DTB_TAGx, 5-24
internal processor registerd-2, 5-3
load queue 2-13
Mbox control register M_CTl. 5-28
memory management status register
MM_STAT, 5-27
miss address file 2—13
order traps 2-31
pipeline abort delay with order trap2—16
pipeline abort delays2—-16
store queug 2-13
MBOX_BC_PRB_STALL Chox CSR, defined
5-34
MCHK interrupt, 6-14
Mechanical specifications3—18

Memory

error case summary for8—10
filling Dcache errors 8-7
filling Icache errors 8-7

Memory address space

load instructions with 2-27
merging rules 2—-29
store instructions with 2—-28

Memory barrier instructions
translation to external interfage4—5
Memory barriers 2—-32
Memory reference unit. See Mbox
MF_FPCR instruction 6-12
Microarchitecture
summarizeg 2-1
MiscVref signal pin 3-5
Miss address file 2—-13

I/0 address space load2-27
memory address space loada-27
memory address space stqres-28

MM_STAT memory management status register
5-27
at power-on reset state/—16
MT_FPCR instruction 6-12

MT_FPCR synchronous trap6—14

N
NoConnect pin type 3—-3

Index—8

Nonexistent memory
processing 4—38
NOP, 21264/EV6 command4-21

Note convention xxi

Numbering convention xxi

NXM. See Nonexistent memory
NZNOP, 21264/EV6 command4—21

O

O_OD pin type 3-3, 9-2
values for 9-4

O_OD_TP pin type 3-3, 9-2
values for 9-4

O_PP pin type 3-3, 9-2
values for 9-5

O_PP_CLK pin type 3-3, 9-2
values for 9-5

OPCDEC fault 6-13

Opcodes

IEEE floating-pointf A-9

independent floating-pointA-11

reserved for CompagqA-8

reserved for PALcode A-9

summary of A-12

VAX floating-point, A-11
Open-drain driver for test pins. See O_OD_TP
Open-drain output driver. See O_OD pin type

Operating temperaturel0-1

P

Packaging 3-19
Paired instruction fetch order6—9

PAL_BASE register 5-15
after fault reset 7-8
after warm reset 7-11
at power-on reset stgte/—15
through sleep mode7-10

PALcode

conditional branches jnD-14
described 6-1

entries points far 6-12
exception entry points6-13
guidelines for D-1
HW_LD instruction 6-3
HW_MFPR instruction 6—6
HW_MTPR instruction 6—6
HW_RET instruction 6-5
HW_ST instruction 6—4
required function codes6—3
reserved opcodes for6—3
restrictions foy D-1

PALmode environment 62

Alpha 21264/EV6 Hardware Reference Manual

PALshadow registers6-11

PCTR_CTL performance counter control counter

register
updating D-17

PCTR_CTL performance counter control register

5-22
at power-on reset state/—15
updating D-18
PCTX Ibox process context regisfeb—21
after fault reset 7—-8
after warm reset 7-11
at power-on reset state/—15
through sleep mode7-10
Performance counting
aggregate mode6-17
PGA location table 3-12
Phase-lock loop. See PLL
Physical address consideratipné—4
Pin grid array. See PGA location
Pipeline
abort delay 2-16
Dcache access2—-16
Ebox execution 2—-16
Ebox slotting 2-18
Fbox execution 2-16
instruction fetch 2-14
instruction group definitions 2—17
instruction issue rules2-16
instruction latencies 2—19
instruction retire rules 2-21
instruction slo; 2—-14
issue queug 2-15
organization 2-13
register maps 2—-15
register reads 2—-16
PLL
description 7-19
output clocks 7-19
ramp up 7-6
PLL_IDD, values for 9-3
PLL_VDD signal pin 3-5
PLL_VDD, values for 9-3
PlIBypass_H signal pin 3-5
Ports
IEEE 1149.1 11-3
serial terminal 11-2
SROM load 11-2
Power
maximum 9-1
sleep defined 9-3
Power supply sequencing-5

Alpha 21264/EV6 Hardware Reference Manual

Power-on
flow signals and constraints7—7
reset flow 7-1
self-test and initialization 11-5
timing sequence 7-3

PRB_TAG_ONLY Cbox CSR 4-28
defined 5-33

Privileged architecture library code
SeePALcode

Probe commands, systerd—26 4-40
Probe queug 2-11
PROBE_BC_ERR error status in C_STAB—40

ProbeResponse, 21264/EV6 commardd-21, 424,
4-38

Push-pull output clock driver. See O_PP_CLK
Push-pull output driver. See O_PP

R

R31

load instructions with 2—-22
retire instructions with 2—-22
speculative loads {02-25

RAMP1 reset machine stgte/—18

RAMP2 reset machine stgte/—18

Ranges and extents conventjorxi

RdBIk, 21264/EV6 command4—-38
RdBIkl, 21264/EV6 command4—-39
RdBIkMod, 21264/EV6 command4-39
RdBIkModSpec, 21264/EV6 commandi—39
RdBIkModVic, 21264/EV6 command4—-39
RdBIkSpec, 21264/EV6 commandi—38
RdBIkSpecl, 21264/EV6 commandi—39
RdBIkVic, 21264/EV6 command4—-38
RdBIkVicl, 21264/EV6 command 4—-39
RdBytes, 21264/EV6 command—39
RdLWSs, 21264/EV6 command4—39
RdAQWs, 21264/EV6 command4—39

RDVIC_ACK_INHIBIT Cbox CSR 4-25 4-26
defined 5-33
ReadBlk, 21264/EV6 command—22
system probes, with4—-41
ReadBlIkl, 21264/EV6 command4—22
ReadBlkMod, 21264/EV6 comman#i—22
system probes, with4—-41
ReadBlkModSpec, 21264/EV6 command—22
ReadBlkModVic, 21264/EV6 comman#—22

ReadBlkSpec, 21264/EV6 command—22

Index—9

ReadBIkSpecl, 21264/EV6 command—22
ReadBlkVic, 21264/EV6 command4—22
ReadBlkVicl, 21264/EV6 command4—22
ReadBytes, 21264/EV6 command—22
ReadData, SysDc command-11, 4-12 4-13
ReadDataDirty, SysDc commandi—11, 4-12 4-13
ReadDataError, SysDc command—11, 4-12 4-13

ReadDataShared, SysDc commant-11, 4-12
4-13

ReadDataShared/Dirty, SysDc commant-11,
4-12 4-13

ReadlLWs, 21264/EV6 commandi—22

ReadQWs, 21264/EV6 command—22

Register access abbreviatignsix

Register figure conventionsxxii

Register maps, pipelingd2—-15

Register rename map<—-6

Replay traps 2-31

RESET interrupt 6-14

Reset state machine
major operations gf 7—-1
Reset_L signal pin 3-5
power-on reset floy 7-1
RET misprediction, in PALcode D-15

Retire logiG 2-8, D-1

RO,n convention xix

RUN reset machine state7—18
RW,n convention xx

S

SAMPLE public instruction B-1
Scrubbing single-bit errorsD-19

|_CTL Ibox control register
updating |_CTL D-18
Second-level cache. See Bcache

Security holes
with UNPREDICTABLE results xxiii
Serial terminal port 11-2
SET_DIRTY_ENABLE Cbox CSR 4-24, 5-38
7-12
programming 4-24
SharedToDirty, 21264/EV6 commandi—22 4-39
system probes, with4-41
Signal name conventignxxii
Signal pin types, defined3-3

Index-10

Signal pins
sorted alphabetically 3—8
sorted for PGA location 3—-12
test 11-1

Single-hit error scribbing D-19
Single-bit errors in hardware, correctin@-2
SIRR software interrupt request registe&s—11
at power-on reset stgte/—15
SKEWED_FILL_MODE Cbox CSR
defined 5-33
Sleep mode
f!ovy, 7-9
timing sequence 7-11
SLEEP mode register5-20
at power-on reset stgte/—15
Spare pin type 3-3
SPEC_READ_ENABLE Cbox CSR4-23
defined 5-34
SQ. See Store queue
SROM content map 11-6
SROM initialization 11-5
SROM interface, in microarchitecture2—13
SROM line, Icache bit fields in,a11-6
SROM load 7-7
SROM load operation 11-2
SromCIk_H signal pin 3-5, 11-2
SromData_H signal pin3-5, 11-2
SromOE_L signal pin 3-5, 11-2
SSRAMs

dual-data rate pin assignmentg—3
late-write non-bursting pin assignment&—2

STC_ENABLE Cbox CSR 4-24

STCChangeToDirty, 21264/EV6 command—13
4-22 4-39

Storage temperature9—1

Store instructions

Dcache ECC errors with8—4

I/0 address spa¢e2—28

I/0 reference ordering 2—30

Mbox order traps 2—-31

memory address spac®-28
memory reference ordering2—30
translation to external interface4d—5

Store queug 2-13
Store-load order trgp2-31

STx_C instructions
in-order processing for4-15
locking mechanism fqr 4-15

SUM bit. See Summary bit
Summary bit, in FPCR 2-36

Alpha 21264/EV6 Hardware Reference Manual

Supply voltage signal pins. See |_DC_POWER pin

type
Synchronous static random-access memory. See
SSRAMs
SYS_BPHASE_LD_VECTOR Chox CSR4-18
defined 5-37
SYS_BUS_FORMAT Cbox CSR, definedb-33
SYS_BUS_SIZE Cbox CSR4-21
defined 5-33
SYS_CLK_DELAY Chox CSR, definegd5-35
SYS_CLK_LD_VECTOR Chox CSR4-18
defined 5-37
SYS_CLK_RATIO Cbox CSR, defingd5-33
SYS_CLKFWD_ENABLE Cbox CSR, defined
5-35
SYS_CPU_CLK_DELAY Cbox CSR
defined 5-37
SYS_DDM_FALL_EN Cbox CSR 4-19
defined 5-35
SYS_DDM_RD_FALL_EN Chox CSR 4-19
SYS_DDM_RD_RISE_EN Cbox CSR4-19
SYS_DDM_RISE_EN Cbox CSR4-19
defined 5-35
SYS_DDMF_ENABLE Cbox CSR 4-19
defined 5-35
SYS_DDMR_ENABLE Cbox CSR 4-19
defined 5-35
SYS_FDBK_EN Cbox CSR 4-18
defined 5-37
SYS_FRAME_LD_VECTOR Cbox CSR4-19
4-30
defined 5-37
SYS_RCV_MUX_CNT_PRESET Chox CSR-31
defined 5-35
SYS_RCV_MUX_PRESET Cbhox CSR4-33
SysAddIn_L signal pins 3-5
SysAddInClk_L signal pin 3-5
SysAddOut_L signal pins 3-5
SysAddOutCIk_L signal pin 3-5
SYSBUS_ACK_LIMIT Cbox CSR 4-25
defined 5-33
SYSBUS_FORMAT Chox CSR4-21
SYSBUS_MB_ENABLE Cbox CSR 4-23

defined 5-33
operation 2-32

SYSBUS_VIC_LIMIT Cbhox CSR 4-26
defined 5-33

SysCheck_L signal pin 3-5

SYSCLK, 4-30

Alpha 21264/EV6 Hardware Reference Manual

SysData_L signal pin 3-5
SysDatalnCIk_H signal pin3-5

SysDatalnValid_L signal pin 3-5
rules for, 4-34
SysDataOutClk_L signal pjn3-5

SysDataOutValid_L signal pjn3-5
rules for, 4-35

SysDc commands4-11
system probes, with4—41
SysDc field, system to 21264/EV6 commandé-28

SYSDC_DELAY Chox CSR 4-32
defined 5-37

SysFillvalid_L signal pin 3—6
rules for, 4-35

System clock ratio configuration7—4

System initialization 7-7

System interface clocks, programmjng—18
System port 4-16

SysVref signal pin 3-6

T

Tag parity errors 8-2

TB fill flow , 2-33 6-14

Tck_H signal pin 3-6

Tdi_H signal pin 3-6

Tdo_H signal pin 3—6

Temperatures
maximium average per frequencyl0-2
operating 10-1

Terminology Xxix

TestStat_H signal pin 3—6

purpose fory 11-4

with BiST and SROM load 7-7
Thermal design characteristicd0-5
Tms_H signal pin 3—6
Traps

load-load order 2—31

Mbox order 2-31

replay, 2-31

store-load order 2-31

Trst_L signal pin 3-6

U

UNALIGN fault, 6-13
Unaligned conventian xx

Index-11

Vv

VA virtual address register5-4
at power-on reset state/—15

VA_CTL virtual address control registets—4
at power-on reset state/—15
updating VA_48 field D-18

VA_FORM virtual address format registe5—6
at power-on reset state/—15

VAF. See Victim address file

VAX floating-point instruction opcodesA-11
VBIAS defined 9-2

VDB. See Victim data buffer
VDBFlushRequest, 21264/EV6 command-22
VDD signal pin list 3-17

VDD, values for 9-3

VDF. See Victim data file

Vdiff defined, 9-2

Victim address file
described 2-11
Victim address file, described2-11

Victim data buffer (VDB) 4-8

Virtual address suppartl-2

Virtual program counter logic 2—2

VPC. See Virtual program counter logic
VREF, values foy 9-3

VSS signal pin list 3-17

w

WAIT_BiSI reset machine state7-18
WAIT_BIST reset machine state7—18
WAIT_CIlkFwdRst0 reset machine statg—18
WAIT_ClkFwdRst1 reset machine statg—18
WAIT_INTERRUPT reset machine state/—19
WAIT_NOMINAL reset machine state 7-17
WAIT_RESET reset machine stat&-18
WAIT_SETTLE reset machine stater—17
WAKEUP interrupt 6-14

WAR, eliminating 2-6

Warm reset flow 7-11

WAW

eliminating 2-6
WNMB instruction processing 2—33
WO,n convention xx

Index—12

Wrap order
double-pumped 4-37
interleaveq 4-37

WrBytes, 21264/EV6 command4—22 4-39
Write hint instructions, translation to external
interface 4-5

WRITE_MANY chain, 5-37
example 5-38
values for Bcache initializatign7-12

WRITE_MANY register

after fault reset 7-8
after warm reset 7-11
through sleep mode7-10

WRITE_ONCE chain descriptign5—-32
Write-after-read. See WAR
Write-after-write. See WAW

WrLWs, 21264/EV6 command4-22, 4-39
WrQWs, 21264/EV6 command4—22, 4-39

WrVictimBIk, 21264/EV6 command 4-22, 4-39
system probes, with4—41

X

X convention XxXi

Alpha 21264/EV6 Hardware Reference Manual

	Table of Contents
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	A
	B
	C
	D
	E

	Figures
	Tables
	Preface
	Introduction
	1.1� The Architecture
	1.1.1� Addressing
	1.1.2� Integer Data Types
	1.1.3� Floating-Point Data Types

	1.2� 21264/EV6 Microprocessor Features

	Internal Architecture
	2.1� 21264/EV6 Microarchitecture
	2.1.1� Instruction Fetch, Issue, and Retire Unit
	2.1.1.1� Virtual Program Counter Logic
	2.1.1.2� Branch Predictor
	2.1.1.3� Instruction-Stream Translation Buffer
	2.1.1.4� Instruction Fetch Logic
	2.1.1.5� Register Rename Maps
	2.1.1.6� Integer Issue Queue
	2.1.1.7� Floating-Point Issue Queue
	2.1.1.8� Exception and Interrupt Logic
	2.1.1.9� Retire Logic

	2.1.2� Integer Execution Unit
	2.1.3� Floating-Point Execution Unit
	2.1.4� External Cache and System Interface Unit
	2.1.4.1� Victim Address File and Victim Data File
	2.1.4.2� I/O Write Buffer
	2.1.4.3� Probe Queue
	2.1.4.4� Duplicate Dcache Tag Array

	2.1.5� Onchip Caches
	2.1.5.1� Instruction Cache
	2.1.5.2� Data Cache

	2.1.6� Memory Reference Unit
	2.1.6.1� Load Queue
	2.1.6.2� Store Queue
	2.1.6.3� Miss Address File
	2.1.6.4� Dstream Translation Buffer

	2.1.7� SROM Interface

	2.2� Pipeline Organization
	2.2.1� Pipeline Aborts

	2.3� Instruction Issue Rules
	2.3.1� Instruction Group Definitions
	2.3.2� Ebox Slotting
	2.3.3� Instruction Latencies

	2.4� Instruction Retire Rules
	2.4.1� Floating-Point Divide/Square Root Early Retire

	2.5� Retire of Operate Instructions into R31/F31
	2.6� Load Instructions to R31 and F31
	2.6.1� Normal Prefetch: LDBU, LDF, LDG, LDL, LDT, LDWU, HW_LDL Instructions
	2.6.2� Prefetch with Modify Intent: LDS Instruction
	2.6.3� Prefetch, Evict Next: LDQ and HW_LDQ Instructions
	2.6.4� Prefetch with the LDx_L / STx_C Instruction Sequence

	2.7� Special Cases of Alpha Instruction Execution
	2.7.1� Load Hit Speculation
	2.7.2� Floating-Point Store Instructions
	2.7.3� CMOV Instruction

	2.8� Memory and I/O Address Space Instructions
	2.8.1� Memory Address Space Load Instructions
	2.8.2� I/O Address Space Load Instructions
	2.8.3� Memory Address Space Store Instructions
	2.8.4� I/O Address Space Store Instructions

	2.9� MAF Memory Address Space Merging Rules
	2.10� Instruction Ordering
	2.11� Replay Traps
	2.11.1� Mbox Order Traps
	2.11.1.1� Load-Load Order Trap
	2.11.1.2� Store-Load Order Trap

	2.11.2� Other Mbox Replay Traps

	2.12� I/O Write Buffer and the WMB Instruction
	2.12.1� Memory Barrier (MB/WMB/TB Fill Flow)
	2.12.1.1� MB Instruction Processing
	2.12.1.2� WMB Instruction Processing
	2.12.1.3� TB Fill Flow

	2.13� Performance Measurement Support—Performance Counters
	2.14� Floating-Point Control Register
	2.15� AMASK and IMPLVER Values
	2.15.1� AMASK
	2.15.2� IMPLVER

	2.16� Design Examples

	Hardware Interface
	3.1� 21264/EV6 Microprocessor Logic Symbol
	3.2� 21264/EV6 Signal Names and Functions
	3.3 � Pin Assignments
	3.4 � Mechanical Specifications
	3.5 � 21264/EV6 Packaging

	Cache and External Interfaces
	4.1� Introduction to the External Interfaces
	4.1.1� System Interface
	4.1.1.1� Commands and Addresses

	4.1.2� Second-Level Cache (Bcache) Interface

	4.2� Physical Address Considerations
	4.3� Bcache Structure
	4.3.1� Bcache Interface Signals
	4.3.2� System Duplicate Tag Stores

	4.4� Victim Data Buffer
	4.5� Cache Coherency
	4.5.1� Cache Coherency Basics
	4.5.2� Cache Block States
	4.5.3� Cache Block State Transitions
	4.5.4� Using SysDc Commands
	4.5.5� Dcache States and Duplicate Tags

	4.6� Lock Mechanism
	4.6.1� In-Order Processing of LDx_L/STx_C Instructions
	4.6.2� Internal Eviction of LDx_L Blocks
	4.6.3� Liveness and Fairness
	4.6.4� Implications of Executing PALcode Between a LDx_L/STx_C Sequence

	4.7� System Port
	4.7.1� System Port Pins
	4.7.2� Programming the System Interface Clocks
	4.7.3� 21264/EV6-to-System Commands
	4.7.3.1� Bank Interleave on Cache Block Boundary Mode
	4.7.3.2� Page Hit Mode

	4.7.4� 21264/EV6-to-System Commands Descriptions
	4.7.5� ProbeResponse Commands (Command[4:0] = 00001)
	4.7.6� SysAck and 21264/EV6-to-System Commands Flow Control
	4.7.7� System-to-21264/EV6 Commands
	4.7.7.1� Probe Commands (Four Cycles)
	4.7.7.2� Data Transfer Commands (Two Cycles)

	4.7.8� Data Movement In and Out of the 21264/EV6
	4.7.8.1� 21264/EV6 Clock Basics
	4.7.8.2� Fast Data Mode
	4.7.8.3� Fast Data Disable Mode
	4.7.8.4� SysDataInValid_L and SysDataOutValid_L
	4.7.8.5� SysFillValid_L
	4.7.8.6� Data Wrapping

	4.7.9� Nonexistent Memory Processing
	4.7.10� Ordering of System Port Transactions
	4.7.10.1� 21264/EV6 Commands and System Probes
	4.7.10.2� System Probes and SysDc Commands

	4.8� Bcache Port
	4.8.1� Bcache Port Pins
	4.8.2� Bcache Clocking
	4.8.2.1� Setting the Period of the Cache Clock

	4.8.3� Bcache Transactions
	4.8.3.1� Bcache Data Read and Tag Read Transactions
	4.8.3.2� Bcache Data Write Transactions
	4.8.3.3� Bubbles on the Bcache Data Bus

	4.8.4� Pin Descriptions
	4.8.4.1� BcAdd_H[23:4]
	4.8.4.2� Bcache Control Pins
	4.8.4.3� BcDataInClk_H and BcTagInClk_H

	4.8.5� Bcache Banking
	4.8.6� Disabling the Bcache for Debugging

	4.9� Interrupts

	Internal Processor Registers
	5.1� Ebox IPRs
	5.1.1� Cycle Counter Register – CC
	5.1.2� Cycle Counter Control Register – CC_CTL
	5.1.3� Virtual Address Register – VA
	5.1.4� Virtual Address Control Register – VA_CTL
	5.1.5� Virtual Address Format Register – VA_FORM

	5.2� Ibox IPRs
	5.2.1� ITB Tag Array Write Register – ITB_TAG
	5.2.2� ITB PTE Array Write Register – ITB_PTE
	5.2.3� ITB Invalidate All Process (ASM=0) Register – ITB_IAP
	5.2.4� ITB Invalidate All Register – ITB_IA
	5.2.5� ITB Invalidate Single Register – ITB_IS
	5.2.6� Exception Address Register – EXC_ADDR
	5.2.7� Instruction Virtual Address Format Register — IVA_FORM
	5.2.8� Interrupt Enable and Current Processor Mode Register – IER_CM
	5.2.9� Software Interrupt Request Register – SIRR
	5.2.10� Interrupt Summary Register – ISUM
	5.2.11� Hardware Interrupt Clear Register – HW_INT_CLR
	5.2.12� Exception Summary Register – EXC_SUM
	5.2.13� PAL Base Register – PAL_BASE
	5.2.14� Ibox Control Register – I_CTL
	5.2.15� Ibox Status Register – I_STAT
	5.2.16� Icache Flush Register – IC_FLUSH
	5.2.17� Icache Flush ASM Register – IC_FLUSH_ASM
	5.2.18� Clear Virtual-to-Physical Map Register – CLR_MAP
	5.2.19� Sleep Mode Register – SLEEP
	5.2.20� Process Context Register – PCTX
	5.2.21� Performance Counter Control Register – PCTR_CTL

	5.3� Mbox IPRs
	5.3.1� DTB Tag Array Write Registers 0 and 1 – DTB_TAG0, DTB_TAG1
	5.3.2� DTB PTE Array Write Registers 0 and 1 – DTB_PTE0, DTB_PTE1
	5.3.3� DTB Alternate Processor Mode Register – DTB_ALTMODE
	5.3.4� Dstream TB Invalidate All Process (ASM=0) Register – DTB_IAP
	5.3.5� Dstream TB Invalidate All Register – DTB_IA
	5.3.6� Dstream TB Invalidate Single Registers 0 and 1 – DTB_IS0,1
	5.3.7� Dstream TB Address Space Number Registers 0 and 1 – DTB_ASN0,1
	5.3.8� Memory Management Status Register – MM_STAT
	5.3.9� Mbox Control Register – M_CTL
	5.3.10� Dcache Control Register – DC_CTL
	5.3.11� Dcache Status Register – DC_STAT

	5.4� Cbox CSRs and IPRs
	5.4.1� Cbox Data Register – C_DATA
	5.4.2� Cbox Shift Register – C_SHFT
	5.4.3� Cbox WRITE_ONCE Chain Description
	5.4.4� Cbox WRITE_MANY Chain Description
	5.4.5� Cbox Read Register (IPR) Description

	Privileged Architecture Library Code
	6.1� PALcode Description
	6.2� PALmode Environment
	6.3� Required PALcode Function Codes
	6.4� Opcodes Reserved for PALcode
	6.4.1� HW_LD Instruction
	6.4.2� HW_ST Instruction
	6.4.3� HW_RET Instruction
	6.4.4� HW_MFPR and HW_MTPR Instructions

	6.5� Internal Processor Register Access Mechanisms
	6.5.1� IPR Scoreboard Bits
	6.5.2� Hardware Structure of Explicitly Written IPRs
	6.5.3� Hardware Structure of Implicitly Written IPRs
	6.5.4� IPR Access Ordering
	6.5.5� Correct Ordering of Explicit Writers Followed by Implicit Readers
	6.5.6� Correct Ordering of Explicit Readers Followed by Implicit Writers

	6.6� PALshadow Registers
	6.7� PALcode Emulation of the FPCR
	6.7.1� Status Flags
	6.7.2� MF_FPCR
	6.7.3� MT_FPCR

	6.8� PALcode Entry Points
	6.8.1� CALL_PAL Entry Points
	6.8.2� PALcode Exception Entry Points

	6.9� Translation Buffer (TB) Fill Flows
	6.9.1� DTB Fill
	6.9.2� ITB Fill

	6.10� Performance Counter Support
	6.10.1� Performance Counting Programming Guidelines
	6.10.1.1� Initialization
	6.10.1.2� Operation
	6.10.1.3� Enabling Aggregate Mode Data Collection

	Initialization and Configuration
	7.1� Power-Up Reset Flow and the Reset_L and DCOK_H Pins
	7.1.1� Power Sequencing and Reset State for Signal Pins
	7.1.2� Clock Forwarding and System Clock Ratio Configuration
	7.1.3� PLL Ramp Up
	7.1.4� BiST and SROM Load and the TestStat_H Pin
	7.1.5� Clock Forward Reset and System Interface Initialization

	7.2� Fault Reset Flow
	7.3� Energy Star Certification and Sleep Mode Flow
	7.4� Warm Reset Flow
	7.5� Array Initialization
	7.6� Initialization Mode Processing
	7.7� External Interface Initialization
	7.8� Internal Processor Register Power-Up Reset State
	7.9� IEEE 1149.1 Test Port Reset
	7.10� Reset State Machine
	7.11� Phase-Lock Loop (PLL) Functional Description
	7.11.1 � Differential Reference Clocks
	7.11.2 � PLL Output Clocks
	7.11.2.1 � GCLK
	7.11.2.2 � Differential 21264/EV6 Clocks
	7.11.2.3 � Nominal Operating Frequency
	7.11.2.4 � Power-Up/Reset Clocking
	7.11.2.5 � IDDQ Testing and ZERO_POWER Mode

	Error Detection and Error Handling
	8.1� Data Error Correction Code
	8.2� Icache Data or Tag Parity Error
	8.3� Dcache Tag Parity Error
	8.4� Dcache Data Single-Bit Correctable ECC Error
	8.4.1� Load Instruction
	8.4.2� Store Instruction (Quadword or Smaller)
	8.4.3� Dcache Victim Extracts

	8.5� Dcache Store Second Error
	8.6� Dcache Duplicate Tag Parity Error
	8.7� Bcache Tag Parity Error
	8.8� Bcache Data Single-Bit Correctable ECC Error
	8.8.1� Icache Fill from Bcache
	8.8.2� Dcache Fill from Bcache
	8.8.3� Bcache Victim Read
	8.8.3.1� Bcache Victim Read During a Dcache/Bcache Miss
	8.8.3.2� Bcache Victim Read During an ECB Instruction

	8.9� Memory/System Port Single-Bit Data Correctable ECC Error
	8.9.1� Icache Fill from Memory
	8.9.2� Dcache Fill from Memory

	8.10� Bcache Data Single-Bit Correctable ECC Error on a Probe
	8.11� Double-Bit Fill Errors
	8.12� Error Case Summary

	Electrical Data
	9.1� Electrical Characteristics
	9.2� DC Characteristics
	9.3� Power Supply Sequencing and Avoiding Potential Failure Mechanisms
	9.4� AC Characteristics

	Thermal Management
	10.1� Operating Temperature
	10.2� Heat Sink Specifications
	10.3� Thermal Design Considerations

	Testability and Diagnostics
	11.1� Test Pins
	11.2� SROM/Serial Diagnostic Terminal Port
	11.2.1� SROM Load Operation
	11.2.2� Serial Terminal Port

	11.3� IEEE 1149.1 Port
	11.4� TestStat_H Pin
	11.5� Power-Up Self-Test and Initialization
	11.5.1� Built-in Self-Test
	11.5.2� SROM Initialization
	11.5.2.1� Serial Instruction Cache Load Operation

	11.6� Notes on IEEE 1149.1 Operation and Compliance

	Alpha Instruction Set
	A.1� Alpha Instruction Summary
	A.2� Reserved Opcodes
	A.2.1� Opcodes Reserved for Compaq
	A.2.2� Opcodes Reserved for PALcode

	A.3� IEEE Floating-Point Instructions
	A.4� VAX Floating-Point Instructions
	A.5� Independent Floating-Point Instructions
	A.6� Opcode Summary
	A.7� Required PALcode Function Codes
	A.8� IEEE Floating-Point Conformance

	21264/EV6 Boundary-Scan Register
	B.1� Boundary-Scan Register
	B.1.1� BSDL Description of the Alpha 21264/EV6 Boundary-Scan Register

	Serial Icache Load Predecode Values
	PALcode Restrictions and Guidelines
	D.1� Restriction 1 : Reset Sequence Required by Retire Logic and Mapper
	D.2� Restriction 2 : No Multiple Writers to IPRs in Same Scoreboard Group
	D.3� Restriction 4 : No Writers and Readers to IPRs in Same Scoreboard Group
	D.4� Guideline 6 : Avoid Consecutive Read-Modify-Write-Read- Modify-Write
	D.5� Restriction 7 : Replay Trap, Interrupt Code Sequence, and STF/ ITOF
	D.6� Restriction 9 : PALmode Istream Address Ranges
	D.7� Restriction 10: Duplicate IPR Mode Bits
	D.8� Restriction 11: Ibox IPR Update Synchronization
	D.9� Restriction 12: MFPR of Implicitly-Written IPRs EXC_ADDR, IVA_FORM, and EXC_SUM
	D.10� Restriction 13 : DTB Fill Flow Collision
	D.11� Restriction 14 : HW_RET
	D.12� Guideline 16 : JSR-BAD VA
	D.13� Restriction 17:MTPR to DTB_TAG0/DTB_PTE0/DTB_TAG1/ DTB_PTE1
	D.14� Restriction 18: No FP Operates, FP Conditional Branches, FTOI, or STF in Same Fetch Block a...
	D.15� Restriction 19: HW_RET/STALL After Updating the FPCR by way of MT_FPCR in PALmode
	D.16� Guideline 20 : I_CTL[SBE] Stream Buffer Enable
	D.17� Restriction 21: HW_RET/STALL After HW_MTPR ASN0/ASN1
	D.18� Restriction 22: HW_RET/STALL After HW_MTPR IS0/IS1
	D.19� Restriction 23: HW_ST/P/CONDITIONAL Does Not Clear the Lock Flag
	D.20� Restriction 24: HW_RET/STALL After HW_MTPR IC_FLUSH, IC_FLUSH_ASM, CLEAR_MAP
	D.21� Restriction 25: HW_MTPR ITB_IA After Reset
	D.22� Guideline 26: Conditional Branches in PALcode
	D.23� Restriction 27: Reset of ‘Force-Fail Lock Flag’ State in PALcode
	D.24� Restriction 28: Enforce Ordering Between IPRs Implicitly Written by Loads and Subsequent Loads
	D.25� Guideline 29 : JSR, JMP, RET, and JSR_COR in PALcode
	D.26� Restriction 30 : HW_MTPR and HW_MFPR to the Cbox CSR
	D.27� Restriction 31 : I_CTL[VA_48] Update
	D.28� Restriction 32 : PCTR_CTL Update
	D.29� Restriction 33 : HW_LD Physical/Lock Use
	D.30� Restriction 34 : Writing Multiple ITB Entries in the Same PALcode Flow
	D.31� Guideline 35 : HW_INT_CLR Update
	D.32� Restriction 36 : Updating I_CTL[SDE]
	D.33� Restriction 37 : Updating VA_CTL[VA_48]
	D.34� Restriction 38 : Updating PCTR_CTL
	D.35� Guideline 39: Writing Multiple DTB Entries in the Same PAL Flow
	D.36� Restriction 40: Scrubbing a Single-Bit Error
	D.37� Restriction 41: MTPR ITB_TAG, MTPR ITB_PTE Must Be in the Same Fetch Block
	D.38� Restriction 42: Updating VA_CTL, CC_CTL, or CC IPRs
	D.39� Restriction 43: No Trappable Instructions Along with HW_MTPR
	D.40� Restriction 44: Restriction: Virtual Operation Required in Every PALcode Exception Flow
	D.41� Restriction 45: No HW_JMP or JMP Instructions in PALcode
	D.42� Restriction 46: Avoiding Live Locks in Speculative Load CRD Handlers
	D.43� Restriction 47: Cache Eviction for Single-Bit Cache Errors
	D.44� Restriction 48: MB Bracketing of Dcache Writes to Force Bad Data ECC and Force Bad Tag Parity

	21264/EV6-to-Bcache Pin Interface
	E.1� Forwarding Clock Pin Groupings
	E.2� Late-Write Non-Bursting SSRAMs
	E.3� Dual-Data Rate SSRAMs

	Glossary
	Index
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X

