DIGITAL GIGAswitch GS2000 Line Card

Router Management

Part Number: AA-R8REA-TE

November 1997

This manual describes how to configure, monitor, and manage a GIGAswitch GS2000 router.

Revision/Update Information: Software and Version This is a new manual. GIGAswitch GS2000 Version 2.0 Digital Equipment Corporation makes no representations that the use of its products in the manner described in this publication will not infringe on existing or future patent rights, nor do the descriptions contained in this publication imply the granting of licenses to make, use, or sell equipment or software in accordance with the description.

Possession, use, or copying of the software described in this publication is authorized only pursuant to a valid written license from DIGITAL or an authorized sublicensor.

© Digital Equipment Corporation 1997. All rights reserved. Printed in U.S.A

The following are trademarks of Digital Equipment Corporation: clearVISN, DEChub, DIGITAL, GIGAswitch, and the DIGITAL logo.

The following are third-party trademarks:

UNIX is a registered trademark in the United States and other countries, licensed exclusively through X/Open Company Ltd.

All other trademarks and registered trademarks are the property of their respective holders.

Contents

Preface

Overview
Purpose of This Manualxiii
Intended Audience
Organizationxiv
Associated Documentsxv
Conventions
Correspondence
Documentation Commentsxviii
Online Services
How to Order Additional Documentation xix

1 Introduction

Overview
Introduction
In This Chapter
Router Features and Protocols
Understanding Network Interfaces and Ports
Configuring Routing on VLANs
Enabling Routing Globally
Enabling Routing on a VLAN
Configuring IP on a VLAN Interface
Starting and Terminating Console Sessions
Starting and Terminating Local Sessions
Starting and Terminating Remote Sessions1-10
Obtaining an IP Address Remotely Using BootP1-11
Accessing CLI Prompts and the Events Log1-12
Accessing the Main Prompt
Accessing the Config Prompt
Accessing the Monitor Prompt
Accessing the Events Log

Editing Entries On The Command Line	1-14
Switching Between Processes	1-15
Entering Commands and Command Shortcuts	1-16
Entering Subsystem Commands	1-16
Displaying Help	1-18
Dynamic Command Configuration	1-19

2 Configuring VSDs and VLAN Interfaces

Overview	
Introduction	. 2-1
In This Chapter	. 2-1
VLAN Secure Domains	. 2-2
Default VSD.	. 2-2
Routing Between VSDs	. 2-3
Enabling Routing Globally	. 2-4
Accessing the VSD Config Prompt	. 2-5
Creating a VSD	
Modifying a VSD	. 2-7
Deleting a VSD	. 2-7
Listing VSD Information	. 2-7
Exiting the VSD Config Prompt	. 2-8

3 Configuring and Monitoring the IP Interface

Overview
Introduction
In This Chapter
Enabling IP
Enabling Routing
Accessing the IP Configuration Process
Configuring Addresses
Adding an IP Address
Changing an IP Address
Deleting an IP Address
Listing an IP Address
Configuring the Internal IP Address
Setting the Internal IP Address
Listing the Internal IP Address
Deleting the Internal IP Address
Configuring a Router ID
Setting the Router ID Default IP Address
Listing the Router ID Default IP Address

Deleting the Router ID Default IP Address	
Configuring a Static Route.	
Adding a Route	. 3-9
Changing a Route	. 3-9
Deleting a Route	. 3-9
Listing a Route	. 3-9
Configuring Routing	3-10
Setting the Routing Table Size	3-10
Listing the Routing Table Size	3-10
Configuring Access Controls	3-11
Adding Access Controls	3-11
Deleting Access Controls	3-13
Moving Access Controls	3-13
Listing Access Controls	3-13
Enabling Access Controls	3-13
Configuring Enhanced Proxy ARP	3-15
Overview	3-15
Communicating on a LAN	3-15
Communicating on a Routed LAN	3-15
Communicating on a VLAN	3-16
Configuring Hosts for Enhanced Proxy ARP	3-16
Enabling Enhanced Proxy ARP	3-18
Disabling ARP Routing	3-19
Setting Enhanced Proxy ARP	3-19
Adding Enhanced Proxy ARP Subnets	3-20
Deleting Enhanced Proxy ARP Subnets	3-20
Configuring BootP Forwarding	
Enabling BootP Forwarding	
Disabling BootP Forwarding	3-21
Listing BootP Forwarding	
Configuring a BootP Server	
Adding a BootP Server	
Deleting a BootP Server	
Listing a BootP Server	
Configuring Broadcast Addresses	
Setting Broadcast Addresses.	
Listing Broadcast Addresses	
Configuring a Default Gateway	
Setting Default Network Gateway	
Deleting Default Network Gateway	
Configuring a Default Subnet Gateway	
Setting Default Subnet Gateways	
Deleting Default Subnet Gateways	
Configuring Directed Broadcast	
Enabling Directed Broadcast	3-26

Disabling Directed Broadcast 3-26	
Configuring a Filtered Route	
Adding a Filter	
Deleting a Filter	
Listing a Filter	
Configuring Path Splitting	
Enabling Path Splitting	
Disabling Path Splitting 3-28	
Configuring Reassembly Size 3-29	
Setting Reassembly Size	
Listing Reassembly Size	
Configuring UDP Broadcast Forwarding	
Advantages of UDP Forwarding 3-30	
Adding a UDP Broadcast Server	
Deleting a UDP Broadcast Server	
Disabling UDP Broadcast Forwarding	
Enabling UDP Broadcast Forwarding	
Examples of Configuring UDP Broadcast Forwarding	
Listing UDP Broadcast Forwarding	
Configuring New Software	
Setting the IP Host-Only Default Network Gateway	
Deleting the IP Host-Only Default Network Gateway	
Setting the IP Host-Only Default Subnet Gateway	
Deleting the IP Host Only Default Subnet Gateway	
Listing IP Protocols	
Monitoring IP	
Monitoring IP Access Control	
Monitoring ICMP Counters	
Monitoring IP Interface Addresses	
Monitoring IP Routing Table Contents	
Monitoring IP Routing Destinations	
Monitoring IP Routing Paths	
Monitoring IP Static Routes	
Monitoring IP Parameters	
Monitoring IP Forwarding Statistics	

4 Configuring and Monitoring the RIP Interface

Overview	l
Introduction	l
In This Chapter	l
Configuring RIP	2
Enabling RIP	2
Disabling RIP 4-2	2

RIP Limitations	4-3
Enabling RIP Flags	4-4
Customizing RIP	4-5
Setting RIP Broadcasts	4-6
Converting from RIP to OSPF	4-6
Configuring Accept RIP Routes	4-7
Adding Accept RIP Route	
Deleting Accept RIP Route	
Listing Accept RIP Route	
Configuring RIP to Override Default Routes	4-8
Configuring RIP to Override Default and Static Routes	
Enabling RIP Override Routes	
Configuring Receiving RIP, Dynamic Nets/Subnets	
Enabling RIP Reception on an Interface	
Disabling RIP Reception on an Interface	
Enabling Receiving Dynamic Nets	
Disabling Receiving Dynamic Nets	
Enabling Receiving Dynamic Subnets	
Disabling Receiving Dynamic Subnets	
Configuring Sending of Routes in RIP	
Enabling Sending Default Routes in RIP	
Disabling Sending Default Routes in RIP	
Enabling Sending Net Routes	
Disabling Sending Net Routes	
Enabling Sending Poisoned Reverse Routes	
Disabling Sending Poisoned Reverse Routes	
Enabling Sending Subnet Routes	
Disabling Sending Subnet Routes.	
Enabling Sending Static Routes	
Disabling Sending Static Routes	

5 Configuring and Monitoring the OSPF Interface

Overview
Introduction
In This Chapter
Configuring the OSPF Protocol
Enabling the OSPF Protocol
Disabling the OSPF Routing Protocol
Configuring Attached OSPF Areas
Setting OSPF Areas
Deleting OSPF Areas
Listing OSPF Areas
Adding Ranges to OSPF Areas

Deleting Ranges from OSPF Areas
Configuring Routing Interfaces
Setting OSPF Interfaces
Deleting OSPF Interfaces. 5-8
Listing OSPF Interfaces
Enabling OSPF Interfaces
Disabling OSPF Interfaces
Configuring Nonbroadcast Interface Parameters
Setting Nonbroadcast Network Interface Parameters
Deleting Nonbroadcast Network Interface Parameters
Listing Nonbroadcast Network Interface Parameters
Adding Neighbors to Nonbroadcast Networks
Deleting Neighbors from Nonbroadcast Networks
Listing Neighbors from Nonbroadcast Networks
Configuring AS Boundary Routing
Enabling AS Boundary Routing
Disabling AS Boundary Routing
Configuring For Routing Protocol Comparisons
Configuring OSPF Virtual Links
Setting OSPF Virtual Links
Deleting OSPF Virtual Links
Listing OSPF Virtual Links
Enabling OSPF Virtual Links
Disabling OSPF Virtual Links
Configuring OSPF Router IDs
Example Configuration Procedure for OSPF
Listing OSPF Configuration Information
Monitoring OSPF
Monitoring OSPF Advertisements
Example of Router Links Advertisement. 5-26
Monitoring OSPF Areas
Monitoring AS External Advertisements
Monitoring OSPF Databases
Monitoring OSPF Dump Routing Tables
Monitoring OSPF Interface Statistics and Parameters
Monitoring OSPF Neighbors
Monitoring OSPF Router Routes
Monitoring OSPF Link State Advertisement Size
Monitoring OSPF Statistics
Monitoring OSPF Traceroute Addresses

6 Configuring and Monitoring the ARP Interface

Overview
Introduction
In This Chapter
ARP Address Translation Overview
Accessing ARP
Configuring ARP Entries
Adding an ARP Entry
Changing an ARP Entry
Deleting an ARP Entry
Configuring ARP Auto-Refresh
Enabling ARP Auto-Refresh
Disabling Auto-Refresh
Listing ARP Configuration Data
Listing ARP
Listing ARP Configuration
Listing ARP Entries
Setting the ARP Refresh Timer
Monitoring ARP
Clearing the ARP Cache
Monitoring the ARP Cache
Monitoring ARP Interfaces
Monitoring ARP Protocols
Monitoring ARP Statistics

A DIGITAL Trace Facility

Overview	1
Introduction	1
In This Appendix	1
DIGITAL Trace Facility	2
Tracepoints	2
Events	4
Session Trace Buffer Parameters	4
Trace Data Loss	5
Accessing DTF	5

B Command Line Interface Quick Reference

verviewB	-1
IntroductionB	-1

C Counters

Overview	
Introduction	
In This Appendix	
Packet Counter Overview	
Router Packet Overview	
Supported Counters	
Interface Counters	
Bridge Port Counters	
Counter Relationships C-8	

Index

Figures

1-1	Physical Interfaces	1-4
1-2	Logical Interfaces and Bridge Ports	1-5
1-3	VLAN Logical Interfaces	1-7
1-4	GIGAswitch GS2000 Installation Menu	. 1-10
3-1	UDP Broadcast Forwarder Example	. 3-33
5-1	OSPF Areas Configured Using Virtual Links	. 5-16
6-1	ARP Physical MAC Address Broadcast.	6-3
C-1	Packet Flow	C-3

Tables

1-1	Console Connection Methods	. 1-9
2-1	Create VSD Command Options.	. 2-3
3-1	IP Access Control Examples	3-12
A-1	Router Tracepoints.	A-3
B-1	ARP Config Commands	. B- 2
B-2	ARP Monitor Commands	. B- 2
B-3	IP Config Commands	. B- 3
B-4	IP Monitor Commands.	. B-5
B-5	OSPF Config Commands.	. B-6
B-6	OSPF Monitor Commands.	. B- 7
B-7	RIP Config Commands	. B-8

Preface

Overview

Purpose of This Manual

This manual provides instructions for configuring, monitoring, and managing the DIGITAL GIGAswitch GS2000 router.

Intended Audience

This manual is intended for persons who install, configure, and manage computer networks. Although experience with computer networking hardware and software is helpful, you do not need programming experience to configure, monitor, and manage GIGAswitch GS2000 routers.

Organization

This manual is organized as follows:

Section	Description
Chapter 1	Provides general information about the GIGAswitch GS2000 router products and an overview of operational basics that are common to many of the configuration and management tasks described throughout the manual.
Chapter 2	This chapter describes how to configure a VLAN Interface (VI).
Chapter 3	This chapter discusses how to configure and monitor your router using IP protocol.
Chapter 4	This chapter discusses how to configure your router using RIP protocol.
Chapter 5	This chapter discusses how to configure and monitor your router using OSPF protocol.
Chapter 6	This chapter discusses how to configure and monitor your router using ARP protocol.
Appendix A	This appendix discusses how to configure and monitor your router using the DIGITAL Trace Facility.
Appendix B	This appendix provides a list of all router CL commands.
Appendix C	This appendix provides an overview of the counters and the effect of packets on counter as packets flow through the router.

Associated Documents

Associated Documents

The following documents provide information relating to the GIGAswitch GS2000 module. To order printed copies, see *How to Order Additional Documentation*. For online copies, browse your CD, or link to our DIGITAL Network Products Home Page (see *Online Services*).

Title and Order Number	Description
DIGITAL GIGAswitch GS2000 Line Card Installation EK-DEFGC-IN	Describes the GIGAswitch GS2000 line card, including features, installation, and configuration information.
DIGITAL GIGAswitch GS2000 Line Card Management AA-R8RD*-TE	Provides instructions for configuring, managing, and monitoring a GIGAswitch GS2000 module.
GIGAswitch/ATM System Installation and Service AA-QCV7*-TE	Describes how to install and service the GIGAswitch/ATM system.
GIGAswitch/ATM 5-Slot System Installation and Service EK-DAGWG-IN	Describes how to install and service the GIGAswitch/ATM 5-slot system.
GIGAswitch/FDDI System Installation and Service Guide EK-GGSVA-IN	Describes how to install and service the GIGAswitch/FDDI system.
DIGITAL ATM Modular PHY Cards Installation EK-DAGGM-IN	Provides installation and operating guidelines for installing, verifying, and removing ATM modular PHY cards. Describes cabling and LED information.
clearVISN Installation	Provides pre- and post-installation information, as well as actual installation procedures for each application .
clearVISN Overview	Provides an overview of clearVISN, an explanation of each application, and descriptions of all concepts necessary to understand and use the application efficiently.

Associated Documents

Title and Order Number	Description
clearVISN User's Guide	Provides information for starting each application, configuring them, and general use information.
OPEN DECconnect Applications Guide	Provides information to help plan and install networking systems based on DIGITAL
EC-G6387-42	OPEN DECconnect System and networking products.
Event Logging System Messages Guide	Describes messages logged by the Event Logging System.
Bridge and Extended LAN Reference	Describes how bridges are used to create extended local area networks (LANs). The descriptions include the use of bridges in extended LAN configurations, information on LAN interconnections, overall bridge operation, spanning tree, bridge management, and solving bridge-related problems in a network.

Conventions

Conventions

This manual uses the following conventions:

Convention	Description	
Special Type	This special type in examples indicates system output.	
Boldface	Boldface type indicates user input.	
Boldface Italics	Boldface type in italics indicates variables for which the user or the system supplies a value	
<u>Bo</u> ldface <u>u</u> nderscore	Underscored boldface characters indicate the least number of characters you must enter to identify a command. The underscored characters are referred to as command shortcuts. For example, the commands for listing users is list users , and can be entered as l u . Similarly, the command for viewing error statistics is <u>error</u> and can be entered as er .	
Return	Indicates that you should press the Return key.	
Ctrl/keystroke	Indicates you should press the key specified by <i>keystroke</i> while holding down the Control key. For example, Ctrl/P indicates you should press the P key while holding down the Control key.	

Correspondence

Correspondence

Documentation Comments

If you have comments or suggestions about this document, send them to the Network Products Business Organization.

Attn.: Documentation Project Manager

E-MAIL: doc_quality@lkg.mts.dec.com

Online Services

To locate product-specific information, refer to the Digital Equipment Corporation Network Products Business Home Page on the World Wide Web. The web page is located at the following addresses:

North America:	http://www.networks.digital.com
Europe:	http://www.networks.europe.digital.com
Asia Pacific:	http://www.networks.digital.com.au

How to Order Additional Documentation

How to Order Additional Documentation

To Order:	Contact:
By Telephone	USA (except Alaska, New Hampshire, and Hawaii):
	1-800-DIGITAL (1-800-344-4825)
	Alaska, New Hampshire, and Hawaii: 1-603-884-6660
	Canada: 1-800-267-6215
Electronically (USA only)	Dial 1-800-DEC-DEMO (For assistance, call 1-800-DIGITAL)
By Mail	DIGITAL EQUIPMENT CORPORATION
(USA and Puerto Rico)	P.O. Box CS2008 Nashua, New Hampshire 03061
	(Place prepaid orders from Puerto Rico with the local DIGITAL subsidiary: 809-754-7575)
By Mail (Canada)	DIGITAL EQUIPMENT of CANADA LTD. 940 Belfast Road
	Ottawa, Ontario, Canada K1G 4C2 Attn.: A&SG Business Manager
Internationally	DIGITAL EQUIPMENT CORPORATION
	Attn.: A&SG Business Manager c/o local DIGITAL subsidiary or approved distributor
Internally	U.S. Software Supply Business (SSB) DIGITAL EQUIPMENT CORPORATION 10 Cotton Road Nashua, New Hampshire 03063

To order additional documentation, use the following information:

Chapter 1

Introduction

Overview

Introduction

This chapter describes the features of the DIGITAL GIGAswitch GS2000 router, and the basics that are common to many of the tasks described in the following chapters.

In This Chapter

The following topics are covered in this chapter.

Торіс	Page
Router Features and Protocols	1-2
Understanding Network Interfaces and Ports	1-3
Configuring Routing on VLANs	1-8
Starting and Terminating Console Sessions	1-9
Accessing CLI Prompts and the Events Log	1-12
Editing Entries On The Command Line	1-14
Switching Between Processes	1-15
Entering Commands and Command Shortcuts	1-16
Displaying Help	1-18
Dynamic Command Configuration	1-19

These topics are common to most of the procedures described throughout this manual and are frequently referenced by those procedures. For example, you must start a console session and access a CLI prompt before you begin to configure a network interface. Similarly, once logged on, you may want to display Help information about command options you can use. **Router Features and Protocols**

Router Features and Protocols

The GIGAswitch GS2000 router is available as a preloaded factory-installed feature.

The GIGAswitch GS2000 module is designed for LAN backbones and highperformance workgroups supporting bridging, VLAN and routing capabilities.

The GIGAswitch GS2000 router option provides the following features:

- Supports level 3 IP routing while maintaining unicast bridging performance
- Supports dynamic IP interface management
- Supports IP routing for a maximum of 32 VLANs
- Routing between ATM emulated LANs
- Eliminates the need for expensive external routers
- Supports multiple filtering options, including filtering based on network, host address, or application (for example, File Transfer Protocol (FTP))

The GIGAswitch GS2000 router supports the following routing protocols:

- Routing Information Protocol (RIP)
- Open Shortest Path First (OSPF)

Understanding Network Interfaces and Ports

GIGAs witch GS2000 architectural design applies different definitions to the terms interface and port. The design further distinguishes among three types of interface: physical, logical, and VSD.

Physical Interface

A physical interface is the physical point on the module to which a network transmission medium (cable or fiber, for example) is connected. Physical interfaces on the module include FDDI and ATM. FDDI and ATM physical interfaces are identified by a unique number adjacent to each interface on the module's front panel. Figure 1-1 shows the physical interfaces on the front panel of a GIGAswitch GS2000 module.

Figure 1-1: Physical Interfaces

Logical Interface

A logical interface is an abstract connection point between a physical interface and a bridge port. The FDDI physical interface is associated with one logical interface. An ATM physical interface is associated with one to sixteen logical interfaces, each of which is the connection point to either an ATM emulated LAN (ELAN), or an ATM bridge tunnel. Each logical interface is identified by a unique number. Figure 1-2 shows examples of logical interfaces on a GIGAswitch GS2000 module.

Bridge Port

A bridge port is an abstract connection point to a transparent bridge. The transparent bridge forwards data to, or receives data from, another bridge port, based on the MAC address associated with the data. Each bridge port on a module is identified by a unique number. The port number has a value that is the same as the logical interface with which it is associated. Figure 1-2 shows a GIGAswitch GS2000 module that includes one port from the FDDI interface, one port from an ELAN interface, and one port from an ATM bridge tunnel interface.

Figure 1-2: Logical Interfaces and Bridge Ports

LKG-10698-97WI

Interface and Bridge Port Numbering Scheme

Each physical and logical interface is assigned an interface number. For FDDI interfaces, the physical interface number printed on the module's front panel is the same as the logical interface number. For an ATM interface, the physical interface number (2) is the same as only one of the sixteen ATM logical interface numbers (2 through 17).

A bridge port number has a value as that of its associated logical interface. For example, FDDI logical interface number 1 is associated with FDDI bridge port number 1. Similarly, ATM logical interface number 15 has a bridge port number of 15, and so on. Refer to Figure 1-2 for an example of interface and port numbering schemes.

VLANs and VLAN Secure Domains

A VLAN is a group of bridge ports logically-linked to define a LAN on one or more GIGAswitch GS2000s. This network configuration scheme enables you to configure a set of devices so they logically appear to be on the same LAN segment, although they may be physically on different segments.

A VLAN Secure Domain (VSD) is a logical set of one or more VLANs that operates with one spanning tree. A VLAN consists of a set of distinct bridge ports. Each set of bridge ports is isolated from other ports on the same switch by blocking all unicast and multicast traffic between VSDs. GIGAswitch GS2000 modules presently support one VLAN per VSD, but the VSD concept provides for expanded support of multiple VLANs within a single VSD.

VLAN Logical Interface

A VLAN logical interface is an abstract connection between a VLAN and a router, enabling you to connect multiple VLANs through the router. Figure 1-3 shows examples of VLAN logical interfaces on a GIGAswitch GS2000 module.

Figure 1-3: VLAN Logical Interfaces

= VLAN Logical Interface

Configuring Routing on VLANs

Configuring Routing on VLANs

To configure the GIGAswitch GS2000 router to operate on a VLAN, you enable routing globally, then enable routing on a VLAN, and then configure IP to run on a VLAN. The following sections provide an overview on how to configure routing on VLANs.

Enabling Routing Globally

To operate a GIGAswitch GS2000 router on a VLAN, you must first enable routing globally. The router is initially configured with routing globally disabled. Issuing the *enable router* command and answering **yes** to the prompt, the router automatically invokes a restart. Upon completing the *enable router* command, the router firmware adds an associated 32 routing interfaces called VLAN Interfaces (VIs).

Enabling Routing on a VLAN

Once the router is enabled, 32 VIs are created on the router. You can then select any one of the 32 VIs and associate that VI with a VLAN. Each VI is associated with one VLAN. The default is to associate a newly created VLAN with the first available VI.

IP routing protocols for the GIGAswitch GS2000 module operate only on VLAN interfaces, but they operate the same as they do on all other LAN interfaces, such as FDDI or ATM. VLAN Interfaces, just like other LAN interfaces, have unique network interface numbers which are automatically generated. A GIGAswitch GS2000 module, for example with 17 interfaces, assigns the 32 VI network interfaces as interfaces 18 through 49.

Configuring IP on a VLAN Interface

To configure IP to run on a VLAN interface, you only have to specify the interface number that corresponds to the VI. You can configure IP on a VI although the VI is not associated with a VLAN, however, IP is not active until you associate the VI with a VLAN.

When specifying the network interface, you supply an IP address, subnet mask and the IP protocols you want to enable. The IP address and subnet mask you specify for a VI must be valid for the IP subnet connected to the bridge ports in the VI's associated VSD.

Starting and Terminating Console Sessions

Starting and Terminating Console Sessions

The module console is the terminal from which you configure, monitor, and manage a GIGAswitch GS2000 module. The terminal operates as either a local or a remote console. Local consoles access only those modules where the console is attached to the console part of a GIGAswitch GS2000 module. Remote consoles can access modules located on the network.

NOTE

If you do not have a BootP server, a local console is required for initial configuration of the switch software, and may be required when upgrading to a new version. A remote console can be used after initial configuration, if either IP routing or TCP/IP Host Services is enabled.

A maximum of two remote consoles can establish a session with a module at the same time.

Consoles are connected to either a GIGAswitch GS2000 console port or any GIGAswitch GS2000 module network interface (FDDI, ATM, ELAN, or ATM Bridge Tunnel). Whether the session is a local or a remote session depends on the type of port through which you are establishing the connection. Table 1-1 lists the connection methods available, and the type of session (local or remote) you establish through the connection.

Table 1-1: Console Connection Methods

Method of Connection	Type of Session Established	
Through console port	Local Console session	
Through a network server using Telnet	Remote Console session	

All methods of connection provide in-band management.

The following instructions assume your terminal is already connected and configured for access to GIGAswitch GS2000 modules. Refer to the GIGAswitch GS2000 installation and configuration documentation for information about how to connect a console to a console port. Refer to the *Management* guide for information on how to configure the GIGAswitch GS2000 for Telnet and OBM connections.

Starting and Terminating Console Sessions

Starting and Terminating Local Sessions

To start a local console session through a console port, perform the following steps.

Step	Action
1	Turn on the power to your terminal. A menu similar to the one shown in Figure 1-4 is displayed.
2	Enter 5 (Go to Local Console) and press Return. A Local Console session is established and the Main Process prompt (Main>) is displayed.
	NOTE: If ID and password prompting is enabled by the switch administrator, you are prompted for your ID and password before the Main Process prompt is displayed.

To terminate a console session, enter **logout** at the Main prompt (Main>) and press Return.

Figure 1-4: GIGAswitch GS2000 Installation Menu

GIGAswitch GS2000 GIGAswitch GS2000 INSTALLATION MENU [1] Restart with Factory Defaults [2] Restart with Current Settings [3] Show Current Settings [4] Configure IP ... [5] Configure Out-of-Band Port ... [6] Go to Local Console [7] Product-Specific Options ... Enter selection:

Starting and Terminating Remote Sessions

Remote console sessions can be established only after configuring the appropriate network connections. You can start and terminate remote sessions by accessing the OBM port or by BootP, as described in the following section. Also refer to the *Management* guide for additional information about how to do so.

Starting and Terminating Console Sessions

To start a console session through a network server, perform the following steps.

Step	Action
1	Access the network operating system prompt from your terminal.
2	Enter <u>tel</u> net <i>ip-address</i> , where <i>ip-address</i> is the address for the module you want to access if attempting to do so through a module's network interface)FDDI or ATM) or the module's console port.
3	Press Return. The Main Process prompt (Main>) is displayed. NOTE: If ID and password prompting is enabled by the switch administrator, you are prompted for your ID and password before the Main Process prompt is displayed.

To terminate a console session, enter **logout** at the Main Process prompt (Main>) and press Return. The network operating system prompt is displayed.

Obtaining an IP Address Remotely Using BootP

If you have a BootP or DHCP server configured on your network and your GIGAswitch GS2000 is not assigned an IP address, the GIGAswitch GS2000 takes advantage of BootP client software to automatically obtain an IP address for itself during power up or restart. Refer to the vendor's BootP or DHCP documentation for configuration information.

A GIGAswitch GS2000 (as a BootP client) that does not have an IP address assigned, sends out a BootP (broadcast) request to a BootP or DHCP server. When the server replies with an IP address, the GIGAswitch GS2000 configures the IP address for HST dynamically. This IP address is stored permanently, so power-cycling the switch does not have any impact on the IP address. To change the IP address, you use the configuration menu.

An IP address is required for the GIGAs witch GS2000 if you plan to manage it using an SNMP tool such as clearVISN.

Accessing CLI Prompts and the Events Log

Accessing CLI Prompts and the Events Log

The initial steps for most of the tasks discussed throughout this document involve accessing the CLI prompts (Main, Config, and Monitor) and the Events Log. Instructions about how to access the prompts are presented here, rather than repeating them for each task covered later in this manual.

Only one user at a time can access each of these prompts or the log. If another user attempts to access the same prompt you are currently using, the message Output Redirected is displayed and you are returned to the previous prompt you were using. If, for example, you access the Monitor prompt from the Main prompt and another user then accesses the Monitor prompt, the message Output Redirected is displayed and you are returned to the Main prompt and another user then accesses the Monitor prompt, the message Output Redirected is displayed and you are returned to the Main prompt. The user who accessed the prompt you were using receives all redirected output from those tasks you initiated, but that did not yet display on your screen. Any task you initiated is completed, unless the user to whom the output is redirected cancels it.

Accessing the Main Prompt

The Main process is automatically initiated, and the Main process prompt (Main>) is displayed, each time you start a console session.

Accessing the Config Prompt

Step	p Action	
1	At the Main process prompt (Main>) enter Config.	
2	Press Return. The Config prompt (Config>) is displayed.	
3	If the prompt is not displayed, press Return a second time.	

To access the Config process, perform the following steps.

Accessing the Monitor Prompt

To access the Monitor process, perform the following steps.

Step	Action
1	At the Main process prompt (Main>) enter Monitor.
2	Press Return. The Monitor prompt (Monitor>) is displayed.
3	If the prompt is not displayed, press Return a second time.

Accessing CLI Prompts and the Events Log

Accessing the Events Log

To access the Events Log, perform the following steps.

Step	Action
1	At the Main process prompt (Main>) enter Events .
2	Press Return. Output from the Event Log is displayed, if it is configured to do so. (No prompt is displayed.) Refer to the <i>Management</i> guide for information about configuring and monitoring the Event Logging System.

Editing Entries On The Command Line

Editing Entries On The Command Line

Use the BACKSPACE key to delete the last character typed in on the command line. Use Ctrl/U to delete all the characters entered on the command line, allowing you to re-enter a command.

You can also use the command line recall feature on a VT terminal or VT terminal emulator, if the bit setting used to define characters is set to seven (7). Command line recall enables you to use the up and down arrows on your keyboard to redisplay commands previously entered. The up arrow displays successively earlier command line entries. The down arrow displays more recent entries.

Switching Between Processes

Switching Between Processes

You can switch from one process to another without exiting. For example, you can switch from the Monitor> process to the Config> process by entering:

Monitor> config

However, to exit from any process, enter exit or Ctrl/P.

The Ctrl/P key combination is called the intercept character. You can change the intercept character, if necessary.

Changing the Intercept Character

The intercept character is used to return to the Main process from another process. The default intercept character is Ctrl/P. To change the intercept character, perform the following steps.

Step	Action
1	At the Main prompt, enter intercept .
2	Press Return. The following message is displayed. Enter character []:
3	Enter the desired character (x , for example).
4	Press Return. The intercept character is changed.

Example Main>intercept x

Entering Commands and Command Shortcuts

You perform tasks by entering commands at a process prompt. For example, if you want to view a list of all users, you must access the Config process and enter **list users** at the Config process prompt. Similarly, if you want to view error statistics for the network, you access the Monitor process and enter **error** at the Monitor prompt.

Most tasks can also be initiated by entering only part of a command as a shortcut, rather than entering the whole command. In the following chapters, that portion of the command that can be entered as a shortcut is indicated with an underscore. For example, the commands for listing users is shown as **list users**, and can be entered at the Config prompt as **l u**. Similarly, the command for viewing error statistics is shown as **error** and can be entered at the Monitor prompt as **err**.

You can obtain help at any of the process (Main, Config, or Monitor) prompts and at any of the lower-level prompts (IP Config>, VSD Config>, and so on) by typing ?, followed by Return. Refer to the Displaying Help section for a detailed description of displaying shortcuts using help.

Entering Subsystem Commands

Although the CLI is tree-structured, you can bypass that structure when you are familiar with the commands for various subsystems. For example, if you are at the Monitor (Monitor>) prompt, you can check ARP hardware configuration information without going first to the ARP console prompt (ARP>). At the Monitor prompt, enter:

Monitor> arp h

The monitor prompt remains, but the data displayed is from the ARP console subsystem. This shortcut allows you to execute a single command for a subsystem without leaving the Monitor or Config prompt.
Entering Commands and Command Shortcuts

You can also use this shortcut to enter commands for other subsystems without leaving the current subsystem. For example, while at the IP Config> prompt, you can find out about ARP contents by entering:

IP Config> config arp list all

Note

You cannot use this shortcut to execute a Config command while at the Monitor prompt. Nor can you execute a Monitor command while at the Config prompt. In either of these cases you must enter the Config or Monitor component first, then enter the desired command.

Displaying Help

Displaying Help

You can obtain help at any of the process (Main, Config or Monitor) prompts and at any of the lower-level prompts (IP Config>, OSPF Config>, and so on) by typing ?, followed by Return. Help is displayed as a list of the commands available at that prompt level. Use ? (help) to list the commands that are available from the current prompt level. You can also enter a ? after a specific command name to list its options.

Dynamic Command Configuration

Dynamic Command Configuration

The GIGAswitch GS2000 router supports some dynamic configuration commands. However, only a subset of commands for the GIGAswitch GS2000 are dynamic. A dynamic command takes effect immediately and does not require you to restart a router after the command is issued.

The GIGAswitch GS2000 router supports some dynamic configuration commands. However, only a subset of commands for the module are dynamic. A dynamic command takes effect immediately and does not require you to restart a router after the command is issued.

The GIGAswitch GS2000 provides full support of dynamic command configuration for IP and RIP protocols and no support for OSPF protocol.

The following limitation applies to dynamic command configuration:

• Once IP is enabled, it cannot be dynamically disabled. However, you can remove all the IP addresses or disable all the VIs.

Chapter 2

Configuring VSDs and VLAN Interfaces

Overview

Introduction

A VLAN is a group of bridge ports logically linked to define a LAN on one or more modules. This network configuration scheme enables you to configure a set of devices so they logically appear to be on the same LAN segment, although they may be physically on different segments. You can create a maximum of 32 VLANs per DIGITAL GIGAswitch GS2000 module.

This chapter focuses on configuring VSDs for routing. For a detailed description of how to create, modify, and delete VSDs, refer to the *DIGITAL GIGAswitch GS2000 Line Card Management* manual.

In This Chapter

This chapter discusses the following topics

Торіс	Page
VLAN Secure Domains	2-2
Routing Between VSDs	2-3

VLAN Secure Domains

VLAN Secure Domains

A VLAN Secure Domain (VSD) is a logical set of one or more VLANs that operates with one spanning tree. The resulting configuration is a set of distinct bridge ports isolated from other ports on the same module by blocking all unicast and multicast traffic between VSDs.

Default VSD

All bridge ports on a GIGAswitch GS2000 module are, by default, members of a default VSD. The default VSD is numbered VSD 1 and is assigned the name "DEFAULT."

When more than one GIGAswitch GS2000 modules is resident in a DIGITAL GIGAswitch system, all ports on all GIGAswitch GS2000 modules are, by default, members of the same (default) VSD. Ports that are members of the default VSD operate as a traditional bridge without VLANs. When you create a new VSD as described in the Routing Between VSDs section, the ports you assign as members of the new VSD are removed from the default VSD. Conversely, when a VSD is deleted, all ports that were members of the VSD automatically become members of the default VSD.

Routing Between VSDs

Routing on a GIGAswitch GS2000 is accomplished using VSDs. Since there is currently only one VLAN in each VSD, these terms are identical and can be used interchangeably. The **routing interface** qualifier associated with the **create vsd** command establishes routing on a VI. The routing interface qualifier is available after routing is globally enabled.

Table 2-1 provides a list of VSD commands with the router qualifiers.

VSD Command	Parameters	Description
VSD Config> create vsd	[name vsd-name] [ports port-list] [tag VNbus-tag]* [routing-interface] (any interface-number)]	Enables routing on a VSD as it is created. The <i>any</i> keyword associates the next available VSD with the newly created VLAN interface.
VSD Config> modify vsd (vsd-number vsd-name)	<pre>[name new-name] [ports port-list] [tag VNbus-tag]* [routing-interface] (any none interface-number)]</pre>	Enables or disables routing on an existing VSD. The <i>none</i> keyword disassociates the VSD from any VLAN interface.
VSD Config> delete vsd (vsd-number vsd-name)		Associated VSD ports return to the default VSD, the VSD name is deleted. Disassociates the VSD from the VLAN Interface (VI), but does not delete the VI.
VSD Config> list vsd (vsd-number vsd-name) list all		Displays the specified VSD number, name, ports, and the network interface number.

 Table 2-1: Create VSD Command Options

* Not applicable, use default value.

Enabling Routing Globally

To operate a GIGAswitch GS2000 router on a VLAN, you must first enable routing globally. The router is initially configured with routing globally disabled. Issuing the *enable router* command and answering **yes** to the prompt, the router automatically invokes a restart. To enable routing globally, perform the following steps:

Step	Action
1	At the Main process prompt (Main>), enter: <u>c</u> onfig
2	Press Return. The Config prompt (Config>) is displayed.
3	At the Config> prompt, enter: <u>en</u> able <u>r</u> outing
4	Press Return. The following is displayed and requires action: Enable RIP listening after restart [No]? Default Gateway [0.0.0.0]?
	When the box reboots the MAC address assigned to the interface associated with the HST address may be different from the one currently being used. Therefore you may need to flush the ARP cache on your host before you can reconnect via Telnet.
	WARNING This will invoke an automatic RESTART Are you sure you want to do this (Yes or No): ${f Yes}$
	System Restart
	After the system is restarted, the GIGAswitch GS2000 Installation Menu appears.
	Routing on your GIGAswitch GS2000 is now enabled.

Accessing the VSD Config Prompt

To configure a VI for IP routing, you must access the VSD Config> prompt with routing enabled. To access the VSD prompt with routing enabled, perform the following steps:

Step	Action
1	At the Main> prompt, enter:
	<u>c</u> onfig
2	Press Return. The Config prompt (Config>) is displayed.
3	At the Config> prompt, enter:
	<u>v</u> lans
4	Press Return. The VSD Config prompt (VSD Config>) is displayed.

Creating a VSD

Once you have enabled routing and entered the VSD Config process, you are now ready to create a VSD. The following example creates a VSD named **test**, assigning bridge ports **1-12**, using the default VNbus tag value, and assigning the next available VLAN Interface (VI) using the **any** keyword.

Step	Action
1	At the VSD Config> prompt, enter:
	<u>cr</u> eate <u>v</u> sd
2	Press Return. The following is displayed:
	VSD Name: [] test
	Bridge Ports (range 1-24): []? 1-12
	VNbus tag (range 66-128): [] <return></return>
	Routing over VI (none, any, or one of 27-56): [any]?
	VSD 2 created.
3	At the VSD Config> prompt, enter:
	<u>e</u> xit
4	Press Return. The Config> prompt is displayed and you have successfully created a VI.
4	Press Return. The Config> prompt is displayed and you have

NOTE

The *Routing over VI (none, any, or one of 27-56): [any]?* parameter is only displayed when routing is enabled.

Modifying a VSD

You can modify a VSD name or list of assigned ports. To modify a VSD name, perform the following steps:

Step	Action
1	To modify a VSD name, at the VSD Config> prompt, enter: <u>m</u> odify <u>v</u> sd <i>number</i> <u>n</u> ame <i>new-nam</i> e
2	To modify the ports assigned to a VSD, at the VSD Config> prompt, enter: <u>modify vsd number ports new-port-list</u>
3	To modify the VSD using more than one command option (for example, the name and port list enter: <u>modify vsd number name new-name ports new-port-list</u>
4	Press Return. The VSD is modified according to the changes you entered.

Deleting a VSD

To delete a VSD, perform the following steps:

Step	Action
1	At the VSD Config> prompt, enter:
	<u>d</u> elete <u>v</u> sd <i>number</i>
	or
	<u>d</u> elete <u>v</u> sd <i>name</i>
2	Press Return. The VSD is deleted.

Listing VSD Information

To list information about VSDs that are created, perform the following steps:

Step	Action
1	At the VSD Config> prompt, enter: <u>l</u> ist <u>a</u> ll
2	Press Return. All the VSDs and their associated number, name, ports, and IFC are displayed.

Exiting the VSD Config Prompt

You exit the VSD Config prompt to return to the router configuration prompt. For example, to return to the router configuration prompt (Config>) from the VSD Config> prompt, enter **exit** and then press Return.

Chapter 3

Configuring and Monitoring the IP Interface

Overview

Introduction

This chapter provides instructions on how to configure and monitor the IP protocol for a GIGAswitch GS2000 logical interface.

In This Chapter

This chapter discusses the following topics:

Configuring Addresses3-Configuring the Internal IP Address3-Configuring a Router ID3-Configuring a Static Route3-Configuring Routing3-Configuring Access Controls3-Configuring Enhanced Proxy ARP3-Configuring BootP Forwarding3-Configuring a BootP Server3-	Pag
Configuring the Internal IP Address3-Configuring a Router ID3-Configuring a Static Route3-Configuring Routing3-Configuring Access Controls3-Configuring Enhanced Proxy ARP3-Configuring BootP Forwarding3-Configuring a BootP Server3-	3-3
Configuring a Router ID3-Configuring a Static Route3-Configuring Routing3-Configuring Access Controls3-Configuring Enhanced Proxy ARP3-Configuring BootP Forwarding3-Configuring a BootP Server3-	esses 3-5
Configuring a Static Route3-Configuring Routing3-Configuring Access Controls3-Configuring Enhanced Proxy ARP3-Configuring BootP Forwarding3-Configuring a BootP Server3-	ternal IP Address 3-7
Configuring Routing3-Configuring Access Controls3-Configuring Enhanced Proxy ARP3-Configuring BootP Forwarding3-Configuring a BootP Server3-	tter ID 3-8
Configuring Access Controls3-Configuring Enhanced Proxy ARP3-Configuring BootP Forwarding3-Configuring a BootP Server3-	ic Route 3-9
Configuring Enhanced Proxy ARP3-Configuring BootP Forwarding3-Configuring a BootP Server3-	ng 3-10
Configuring BootP Forwarding3-Configuring a BootP Server3-	ss Controls 3-11
Configuring a BootP Server 3-	aced Proxy ARP 3-15
	P Forwarding 3-21
Configuring Broadcast Addresses 3-	tP Server 3-22
6 6	lcast Addresses 3-23
Configuring a Default Gateway 3-	ault Gateway 3-24
Configuring a Default Subnet Gateway 3-	ault Subnet Gateway 3-25

Торіс	Page
Configuring Directed Broadcast	3-26
Configuring a Filtered Route	3-27
Configuring Path Splitting	3-28
Configuring Reassembly Size	3-29
Configuring UDP Broadcast Forwarding	3-30
Configuring New Software	3-35
Monitoring IP	3-38
Monitoring IP Access Control	3-39
Monitoring IP Interface Addresses	3-42
Monitoring IP Routing Table Contents	3-43
Monitoring IP Routing Destinations	3-45
Monitoring IP Routing Paths	3-46
Monitoring IP Static Routes	3-48
Monitoring IP Parameters	3-49
Monitoring IP Forwarding Statistics	3-50

Enabling IP

Enabling IP

To enable the internet protocol (IP), you must start a console session, access the Main and Configuration processes (as described in Chapter 1), enable routing (which initiates a restart), access the IP Configuration process, then assign an IP address.

Once you start a console session, the Main process is automatically initiated, and the Main prompt (Main>) is displayed.

Enabling Routing

To access and configure IP, you must first enable routing. To enable routing, perform the following steps:

Step	Action
1	At the Main prompt (Main>), enter: <u>config</u>
2	Press Return. The Config prompt (Config>) is displayed.
3	At the Config> prompt, enter: enable routing
4	Press Return. The following is displayed and requires action: Enable RIP listening after restart [No]? Default Gateway 0.0.0.0? After restart, the MAC address assigned to the interface
	associated with the HST IP address may be different from the one currently being used. Therefore you may need to flush the ARP cache on your host before you can reconnect via Telnet.
	WARNING This will invoke an automatic RESTART
	Are you sure you want to do this (Yes or [No]): Yes System Restart
	After the system is restarted, the GIGAswitch GS2000 Installation Menu appears.
	Routing on your GIGAs witch GS2000 is now enabled.

Enabling IP

Accessing the IP Configuration Process

To access the IP Configuration process, perform the following steps:

Step	Action
1	At the Main> prompt, enter:
	<u>c</u> onfig
2	Press Return. The config> prompt is displayed.
3	At the Config> prompt, enter:
	ip
4	Press Return. The IP Config> prompt is displayed.

Configuring Addresses

Configuring Addresses

Adding an IP Address

To enable the IP protocol, you must assign at least one IP address to any of the router's VLAN interfaces (VI). Use the **add address** command to assign an IP address to a VI. To add interface addresses, perform the following steps:

Step	Action	
1	At the IP Config> prompt, enter:	
	add address interface-number ip-address address-mask	
2	Press Return. The specified IP address is assigned to the specified VIs.	

A VI does not receive or transmit IP packets until it has at least one IP address and has an associated VLAN.

You must specify an IP address together with its subnet mask. For example, if the address is on a class B network, using the third byte for subnetting, the mask is 255.255.255.0. Use the list devices command to obtain the appropriate interface-number.

Example: IP Config> add address 31 128.185.123.22 255.255.0

Multiple IP addresses can be added to the same interface as long as the restrictions listed below are met.

Restrictions

The limitations to assigning an IP address to subnets are:

- Only one address is allowed in each subnet.
- Each subnet can appear on only one interface.

Configuring Addresses

Changing an IP Address

To change an IP address, at the IP Config> prompt, enter:

change address old-ip-address new-ip-address new-subnet-mask

Deleting an IP Address

To delete an IP address, at the IP Config> prompt, enter:

delete address ip-address

Listing an IP Address

To list an IP address, at the IP Config> prompt, enter:

list address

This command prints the IP interface addresses that were assigned to the router, along with their configured broadcast formats.

Configuring the Internal IP Address

Configuring the Internal IP Address

Setting the Internal IP Address

This command sets the internal IP address that belongs to the router as a whole, and not any particular interface. DIGITAL recommends setting the internal IP address because ping, traceroute and tftp packets sent by the router use the internal IP address. To set the internal IP address, perform the following steps:

Step	Action	
1	At the IP Config> prompt enter:	
	set internal-ip-address ip-address	
2	Press Return.	

This address is always reachable regardless of the state of the interfaces. When the internal IP address is not configured, the default router IP address is the router ID. If the router ID is not configured, the router uses the first IP address in the router's configuration.

Example: IP Config> set internal-ip-address 142.82.10.1

Listing the Internal IP Address

To list the internal IP address, at the IP Config> prompt, enter:

<u>l</u>ist <u>ad</u>dress

Deleting the Internal IP Address

To delete the internal IP address, at the IP Config> prompt, enter:

set internal-ip-address 0.0.0.0

Configuring a Router ID

Configuring a Router ID

Setting the Router ID Default IP Address

This command sets the default IP address used by the router when sourcing various kinds of IP traffic. To set the router ID, perform the following steps:

Step	Action	
1	At the IP Config> prompt enter:	
	<u>s</u> et <u>router</u> -id <i>ip-address</i>	
2	Press Return.	

This address is of particular importance. For example, the source address in pings, traceroute, and TFTP packets sent by the router are set to the router ID. In addition, the OSPF router ID is set to the configured router ID.

The router ID must match one of the configured IP interface addresses of the router. If not, it is ignored. When ignored, or just not configured, the default IP address of the router (and its OSPF router ID) is set to the first IP address in the router's configuration.

NOTE

Configuring a router ID may cause the router's OSPF router ID to change. If this happens, link state advertisements originated by the router before the router ID change persist until they age out (possibly as long as 30 minutes). This may cause an increase in link state database size.

Example: IP Config> set router-id 128.185.120.209

Listing the Router ID Default IP Address

To list the router ID, at the IP Config> prompt, enter:

<u>l</u>ist <u>ad</u>dress

Deleting the Router ID Default IP Address

To delete the router ID, at the IP Config> prompt, enter:

set router-id 0.0.0.0

Configuring a Static Route

Configuring a Static Route

Adding a Route

This command adds static network/subnet routes to the router's IP configuration. To add a route, perform the following steps:

Step	Action	
1	At the IP Config> prompt, enter:	
	add <u>r</u> oute ip-network/subnet ip-mask next-hop-address cost	
2	Press Return.	

When dynamic routing information is not available for a particular destination, static routes are used. The destination is specified by an IP address (*ip-network/subnet*) with an address mask (ip-mask). For example, if the destination is a subnet of a class B network, and the third byte of the IP address is used as the subnet portion, the address mask is set to 255.255.255.0.

The route to the destination is specified by the IP address of the *next hop* and the *cost* of routing the packet to the destination. The next hop must be on the same subnet as one of the router's directly connected interfaces.

Example: IP Config> add route 17.0.0.0 255.0.0.0 128.185.123.22 6

Changing a Route

To change a route, at the IP Config> prompt, enter:

change route destination new-mask new-first-hop-address new-cost

Deleting a Route

To delete a route, at the IP Config> prompt, enter:

delete route destination-mask

Listing a Route

To list a route, at the IP Config> prompt, enter:

<u>list ro</u>ute

This command displays the list of static network/subnet routes that were configured. It also lists any configured default gateways.

Configuring Routing

Configuring Routing

Setting the Routing Table Size

This command sets the size of the router's IP routing table. The default size is 768 entries. To set the routing table size, perform the following steps:

Step	Action	
1	At the IP Config> prompt enter:	
	<u>set routing table-size</u> number	
2	Press Return.	

Setting the routing table size too small causes dynamic routing information to be discarded. Setting the routing table size too large wastes router memory resources.

Example: IP Config> set routing table-size 1000

Listing the Routing Table Size

To list the routing table size, at the IP Config> prompt, enter:

<u>l</u>ist<u>s</u>ize

This command displays the routing table size, reassembly buffer size, and the route cache size.

Configuring Access Controls

Adding Access Controls

To add access controls, perform the following steps:

Step	Action		
1	At the IP Config> prompt, enter:		
	<u>a</u> dd <u>access</u> -control type <i>ip-source source-mask ip-dest dest-mask</i> first-protocol last-protocol first-port last-port		
2	Press Return. Before add access control takes effect, you must:		
	• Enter the set access-control on command.		
	• Add at least one access control.		
	• Reboot the module. All subsequent add access-control commands will take effect immediately.		

Enabling access controls will reduce the IP forwarding performance. This reduction is approximately 10 percent and is constant regardless of the length or order of the access control list.

This command adds an IP access control entry to the end of theglobal IP access control list. Each entry must be assigned the following: type, IP source, source mask, IP destination, and destination mask. The type must be either inclusive (I) or exclusive (E). The *ip-source* and *ip-destination* fields are in the form of IP addresses in dotted decimal notation. Optionally, you may specify an IP protocol number range with the *first-protocol* and *last-protocol* fields, which are an inclusive range of IP protocols that match this entry. If a range of protocols was specified which include TCP and UDP protocol numbers, you may specify a TCP and UDP destination port number range with the *first-port* and *last-port* fields, which are an inclusive range of TCP and UDP protocol numbers this entry.

Table 3-1 provides examples of setting up IP access controls.

Table 3-	1: IP	Access	Control	Examples
----------	-------	--------	---------	----------

Command	Description
IP Config> <u>a</u> dd <u>access</u> -control <u>i</u> nclusive 0.0.0.0 0.0.0.0 192.67.67.20 255.255.255.255 6 6 25 25	Allows any host to send packets to the SMTP TCP socket on 192.67.67.20.
IP Config> <u>a</u> dd <u>access</u> -control <u>exclusive</u> 150.150.1.0 255.255.255.0 150.150.2.0 255.255.255.0 0 255 0 65535	Prevents any host on subnet 1 of Class B network 150.150.0.0 from sending packets to hosts on subnet 2 of Class B network 150.150.0.0 (assuming a 1-byte subnet mask).
IP Config> <u>a</u> dd <u>access</u> -control <u>i</u> nclusive 0.0.0.0 0.0.0.0 0.0.0.0 0.0.0.0 17 17 520 520	Allows the router to send and receive all RIP packets.
IP Config> <u>a</u> dd <u>access</u> -control <u>i</u> nclusive 0.0.0.0 0.0.0.0 0.0.0.0 0.0.0.0 89 89	Allows the router to send and receive all OSPF packets.
IP Config> <u>a</u> dd <u>access</u> -control <u>i</u> nclusive 0.0.0.0 0.0.0.0 0.0.0.0 0.0.0.0 0 255 0 65535	This is the wildcard inclusive entry which allows the router to send and receive all IP packets.

If IP access control is enabled, you must be careful with packets that the router originates and receives. Be sure not to filter out the RIP or OSPF packets being sent or received by the router. The easiest way to do this is to add a wildcard inclusive entry as the last in the access control list. Alternately, you can add specific entries for RIP or OSPF, or both, perhaps with restrictive addresses and masks. Note that some OSPF packets are sent to the class D multicast addresses 224.0.0.5 and 224.0.0.6, which is important if address checking is being done for routing protocols.

Deleting Access Controls

To delete an access control, at the IP Config> prompt, enter:

delete access-control record-number

Moving Access Controls

To move an access control, at the IP Config> prompt, enter:

move access-control from# to#

This command places record number *from#* immediately after record number *to#*. After you move the records, they are immediately renumbered to reflect the new order.

Listing Access Controls

To list access controls, at the IP Config> prompt, enter:

list access-controls

This command prints the configured access control mode (enabled or disabled) and the list of configured access control records. Each record is listed with its record number. This record number can be used to reorder the list with the IP **move access-control** command.

Enabling Access Controls

The IP access control system allows the IP forwarder to control packet forwarding based on source and destination IP addresses, IP protocol number, and destination port number for the TCP and UDP protocols. This can control access to particular classes of IP addresses and services. To set access control, perform the following steps:

Step	Action	
1	At the IP Config> prompt enter:	
	<u>s</u> et <u>ac</u> cess-control <u>on</u>	
2	Press Return.	

Enabling access controls will reduce the IP forwarding performance. This reduction is approximately 10 percent and is constant regardless of the length or order of the access control list.

The IP access control system is based on one global ordered list of inclusive and exclusive access control entries. If access control is enabled, each IP packet being forwarded, or received is subject to the access control list. Each entry in the list may be inclusive or exclusive, permitting or denying forwarding.

If access controls are enabled and the access control entry list is empty, all packets will be included. If access controls are enabled and the entry list is not empty, all packets not included by an entry in the list will be dropped (excluded).

For each received packet, the headers are compared to all specified fields in each entry in the list in turn. If the entry matches the packet and the entry is inclusive, the packet is forwarded. If the entry is exclusive, the packet is dropped. If no entry matches after going through the entry list the packet is dropped.

Each entry has an IP address mask and result pair for both the source and destination IP addresses. An address is logically "AND-ed" with the mask, and compared to the result. For example, a mask of 255.0.0.0 with a result of 26.0.0.0 matches any address with 26 in the first byte. A mask of 255.255.255.255 with a result 192.67.67.20 matches only the IP host 192.67.67.20. A mask of 0.0.0.0 with a result of 0.0.0.0 is a wildcard, and matches any IP address.

Each entry may also have an optional IP protocol number range. This applies to the protocol byte in the IP header. Any IP packet with a protocol value within the specified range matches. A range of 0 to 255 matches all IP packets. The commonly used protocol numbers are 1 for ICMP, 6 for TCP, 17 for UDP, and 89 for OSPF.

Each entry may also have an optional port number range. This applies only to TCP and UDP packets because the port number is part of the TCP and UDP headers. Any TCP or UDP packet with a destination port number within the specified range matches (TCP and UDP use the same port numbers). A range of 0 to 65535 disables port filtering. Some commonly used port numbers are 21 for FTP, 23 for Telnet, 25 for SMTP, 513 for rlogin, and 520 for RIP.

Configuring Enhanced Proxy ARP

Overview

Enhanced proxy ARP is a method of communicating IP packets between two hosts in different subnets on the same LAN without requiring a router to forward the packets. Enhanced proxy ARP routers use a modified form of RFC 1027 to overcome the restrictions associated with RFC 1027.

Enhanced proxy ARP does not require the *sender IP address* field to be in a directly connected subnet, and the *sender IP address* and *target IP address* fields do not have to be in the same natural network.

Enhanced proxy ARP provides modified RFC 1027 functionality that includes communicating on a LAN, communicating on an extended LAN, and communicating on a VLAN.

Communicating on a LAN

Enhanced proxy ARP allows hosts on the same LAN to communicate directly, regardless of the network or subnet the hosts are assigned. This is accomplished by configuring the hosts to ARP for all destination addresses. In this configuration, hosts can communicate directly with other hosts without a router. Enhanced proxy ARP allows hosts to communicate without a router in subnets that are not in the same natural network.

Communicating on a Routed LAN

Separate LANs connected by a router form an extended LAN. When hosts on different LANs communicate over an extended LAN, then the router connecting them will proxy for the sender host and respond to the ARP request regardless of the destination network.

Enhanced proxy ARP on a routed LAN also provides indirect proxy (proxy-on-behalf) and compliments ICMP redirects with ARP-response redirects.

Indirect Proxy

A router that has ARP routing enabled and proxy-on-behalf enabled (refer to the section titled (Setting Enhanced Proxy ARP on page 3-19) can optionally issue ARP responses on behalf of routers that are not running proxy ARP. When an ARP request is received and the output interface is the same as the input interface and the next hop is a router, then the receiving router issues an ARP response with the next hop router's MAC address in the *sender hardware address* field instead of its own address.

ARP Redirect

When enhanced proxy ARP is enabled, an unsolicited ARP response is sent whenever an Internet Control Message Protocol (ICMP) redirect is sent. ICMP redirect is ignored because hosts check to determine the gateway issuing the redirect is the gateway the host is using for forwarding, but enhanced proxy ARP does not use a gateway and ICMP redirect is ignored.

The unsolicited ARP response maps the destination IP address to the MAC address of the redirected router. This eliminates the problem of ICMP redirects being ignored by hosts with ARP enabled (RFC 1027).

Communicating on a VLAN

Enhanced proxy ARP can be used on VLAN environments to ensure that packets flowing between two hosts in different subnets or networks on different ports of a GIGAswitch GS2000 but in the same VLAN will be switched instead of routed.

For example, host A and host B are configured on different ports in different IP subnets of the same VLAN and both have ARP enabled. Host A is connected to host B through an enhanced proxy ARP routing GIGAs witch GS2000. Normally, IP packets between host A and host B are routed by the GIGAs witch GS2000, but with ARP routing enabled, the hosts send packets directly to each other's MAC address using the switch capabilities of the GIGAs witch GS2000, thus improving performance.

Configuring Hosts for Enhanced Proxy ARP

To communicate directly over a LAN environment using enhanced proxy ARP, you must configure hosts to ARP for all destination addresses. The following sections describe how to configure common operating systems for ARP routing.

Windows NT Hosts

To configure a Windows NT host, perform the following steps:

Step	Action	
1	Log in as the administrator.	
2	From the Control Panel, select the Network icon.	
3	Choose TCP/IP network from the list box and click the Configure button.	
4	Change the gateway address to be your local IP address.	
5	Click on the OK button. The configuration is complete.	

Windows 95 Hosts

To configure a Windows 95 host, perform the following steps:

Step	Action	
1	From the Control Panel, click on the Network icon.	
2	Highlight the TCP/IP icon from the list box in the Configuration tab and click on the <u>P</u> roperties button. The TCP/IP Properties window appears.	
3	From the TCP/IP Properties window, click on the Gateway tab. Remove any existing gateway addresses in the <u>Installed gatways box</u> .	
4	Enter the gateway address to be your local IP address and click on the \underline{A} dd button.	
5	Click on the OK button. The configuration is complete.	

DIGITAL UNIX and LINUX Hosts

Modify the /etc/routes file and add the following entry where *n* is the IP address of the host.

/etc/route add default n.n.n.n 0

MIPS ULTRIX Hosts

Use the /etc/route program to add a default route into the routing table (insert the line in /etc/rc.local to ensure it is executed at startup) where *n* is the IP address.

/etc/route add default n.n.n.n 0

Windows 3.1 PATHWORKS Hosts

To configure Windows 3.1 PATHWORKS hosts, perform the following steps:

Step	Action	
1	Edit the cfg*.tpl file currently being used. To determine the correct cfg file, access the pathworks directory and open the select.ini file.	
2	In the cfg*.tpl file, replace "TCPIPGATEWAY=" with 0.0.0.0.	
3	Save the file and restart the system.	

Windows NT 4.0 DHCP Servers

The DHCP server, NT 4.0 Service Pack 2, supports configuring hosts with their own address as the default gateway. To enable this feature for all clients in a scope, add the following value to the registry, where *n.n.n.n* is the subnet for the scope.

```
HKEY_LOCAL_MACHINE\
SYSTEM\
CurrentControlSet\
Services\
DHCPServer\
Configuration\
Subnets\
n.n.n.n\
SwitchedNetworkFlag=1
(REG_DWORD)
```

NOTE

Enable the DHCP server function before you install the NT Service Pack 2 to ensure that the DHCP server DLL's and images are upgraded from the Service Pack.

Enabling Enhanced Proxy ARP

Enabling enhanced proxy ARP globally enables enhanced proxy ARP on all LAN interfaces running IP that have not been disabled with the **set enhanced-proxy-arp off** command.

To enable enhanced proxy ARP, perform the following steps:

Step	Action
1	At the IP Config> prompt, enter:
	<u>en</u> able enhanced-proxy-arp
2	Press Return. Enhanced proxy ARP is enabled.

Disabling ARP Routing

To disable enhanced proxy ARP on all LAN interfaces running IP, at the ${\tt IP}$ Config> prompt enter:

disable enhanced-proxy-arp

Setting Enhanced Proxy ARP

When enhanced proxy ARP is enabled or disabled, it enables or disables all LAN interfaces running IP. You can also selectively set a specific interface to enable or disable enhanced proxy ARP.

To set an interface to disable enhanced proxy ARP, perform the following steps:

Step	Action
1	At the IP Config> prompt, enter:
	<u>s</u> et enhanced-proxy-arp <u>of</u> f
	Interface number [0]? 25
2	Press return. Enhanced proxy ARP is disabled on interface 25.

Setting a specific interface to re-enable enhanced proxy ARP sets enhanced proxy ARP and sets the router's operating parameters, including whether proxy-on-behalf should be enabled on the interface. Normally, proxy-on-behalf is disabled by default.

To set an interface to enable enhanced proxy ARP, perform the following steps:

Step	Action
1	At the IP Config> prompt, enter:
	<u>s</u> et enhanced-proxy-arp <u>on</u>
	Interface number [0]? 25
	Proxy ARP on behalf of other Routers [Yes]?
2	Press Return. Enhanced proxy ARP is enabled on interface 25.

Adding Enhanced Proxy ARP Subnets

This command is used to prevent enhanced proxy ARP routing for destinations in certain subnets. For example, a LAN configured with subnets A, B, and C has a router in subnet A that does not have an address in subnet C. When an ARP request is sent by a host in subnet B to a host in subnet C, the router will initiate an ARP request destined to the host in subnet C.

NOTE

Adding enhanced proxy ARP subnets can be accomplished on VLAN interfaces only.

To add enhanced proxy ARP subnets to the router, perform the following steps:

Step	Action
1	At the IP Config> prompt, enter:
	<u>a</u> dd enhanced-proxy-arp <u>s</u> ubnet
	Which net is this subnet for [0]? 25
	Subnet number [0.0.0.0]? 16.39.180.0
	Subnet mask [255.0.0.0]? 255.255.255.0
2	Press Return. An enhanced proxy ARP subnet is added to interface 25, as an example.

Deleting Enhanced Proxy ARP Subnets

To delete enhanced proxy ARP subnets, at the IP Config> prompt enter:

delete enhanced-proxy-arp subnet

Configuring BootP Forwarding

Configuring BootP Forwarding

Enabling BootP Forwarding

This command turns on BootP packet forwarding. To use BootP forwarding, you must also add one or more BootP servers with the **add BootP-server** command. To enable BootP forwarding, perform the following steps:

Step	Action
1	At the IP Config> prompt, enter:
	<u>en</u> able <u>b</u> ootp-forwarding
2	Press Return.
3	Enter the maximum number of application hops you want the BootP request to go. This is the maximum number of BootP relay agents that can forward the packet. This is <i>not</i> the maximum number of IP hops to the BootP server. A typical value for this parameter is 1.
4	Enter the number of seconds you want the client to retry before the BootP request is forwarded. A typical value for this parameter is 0.

Disabling BootP Forwarding

To disable BootP forwarding, at the IP Config> prompt, enter:

disable bootp-forwarding

Listing BootP Forwarding

To list BootP forwarding, at the IP Config> prompt, enter:

<u>list b</u>ootp

This command indicates whether BootP forwarding is enabled or disabled.

Configuring a BootP Server

Configuring a BootP Server

Adding a BootP Server

BootP is a bootstrap protocol used by a diskless workstation to learn its IP address and the location of its boot file and boot server. This command adds a BootP server to a network configuration. To add a BootP server, perform the following steps:

Step	Action
1	At the IP Config> prompt, enter:
	<u>a</u> dd <u>b</u> ootp-server <i>server-ip-address</i>
2	Press Return.

Acting as a bootp relay agent, your router accepts and forwards BootP requests to the BootP server.

NOTE

Before the **list all** command can display the BootP server address, you must enable BootP forwarding with the **enable BootP forwarding** command.

Example: IP Config> add bootp-server 128.185.123.22

Deleting a BootP Server

To delete a BootP server, at the IP Config> prompt, enter:

delete bootp-server server-ip-address

Listing a BootP Server

To list BootP servers, at the IP Config> prompt, enter:

<u>list b</u>ootp

This command displays a list of configured BootP servers.

Configuring Broadcast Addresses

Configuring Broadcast Addresses

Setting Broadcast Addresses

This command specifies the IP broadcast format that the router uses when broadcasting packets out a particular interface. IP broadcasts are most commonly used by the router when sending RIP update packets. To set a broadcast address, perform the following steps:

Step	Action
1	At the IP Config> prompt enter:
	set broadcast-address ip-address style fill-pattern
2	Press Return.

The *style* parameter can take either the value **local-wire** or the value **network**. Local-wire broadcast addresses are either all ones (255.255.255.255) or all zeros (0.0.0.0). Network style broadcasts begin with the network and subnet portion of the IP interface address.

You can set the *fill-pattern* parameter to either 1 or 0. This indicates whether the rest of the broadcast address (other than the network and subnet portions, if any) is set to all ones or all zeros.

When receiving, the router recognizes all forms of the IP broadcast address.

Examples: IP Config> set broadcast-address 192.9.1.11 local-wire 1

IP Config> set broadcast-address 192.9.1.11 network 0

Listing Broadcast Addresses

To list broadcast addresses, at the IP Config> prompt, enter:

<u>l</u>ist <u>all</u>

This command displays a list of broadcast addresses.

Configuring a Default Gateway

Configuring a Default Gateway

Setting Default Network Gateway

Routers send packets having unknown destinations (destinations not present in the routing table) toward the default gateway. A default gateway is configured in the router by specifying the next hop to use to get to the default gateway and the cost of sending packets to the default gateway. To set the default network gateway, perform the following steps:

Step	Action
1	At the IP Config> prompt enter:
	<u>s</u> et <u>d</u> efault <u>n</u> etwork-gateway <i>gateway-ip-address cost</i>
2	Press Return.

Deleting Default Network Gateway

To delete the default network gateway, at the IP Config> prompt, enter:

delete default network-gateway
Configuring a Default Subnet Gateway

Configuring a Default Subnet Gateway

Setting Default Subnet Gateways

There can be a default subnet gateway configured for each subnetted network that the router knows. When the router attempts to forward a packet to a destination belonging to the subnetted network, but that destination cannot be found in the routing table, the packet is forwarded instead to the default subnet gateway.

Configuring default subnet gateways is the same as configuring the preceding default network gateway. The only difference is that you must specify the subnetted network on the command line.

To set the default subnet gateway, perform the following steps:

Step	Action
1	At the IP Config> prompt enter:
	<u>set default subnet-gateway subnetted-network</u> subnet-gateway-ip-address cost
	Example: IP Config>
	set default subnet-gateway 128.0.0.0 128.185.123.22 2
2	Press Return.

Deleting Default Subnet Gateways

To delete the default subnet gateway, at the IP Config> prompt, enter:

delete default subnet-gateway subnetted-network

Configuring Directed Broadcast

Configuring Directed Broadcast

Enabling Directed Broadcast

This command enables the forwarding of IP packets whose destination is a nonlocal (for example, remote LAN) broadcast address. To enable directed broadcast, perform the following steps:

Step	Action	
1	At the IP Config> prompt, enter:	
	<u>en</u> able <u>dir</u> ected-broadcast	
2	Press Return.	

With directed broadcast, the packet is originated by the source host as a unicast where it is then forwarded as a unicast to a destination subnet and exploded into a broadcast. These packets can be used to locate network servers. This command enables both the forwarding and exploding of directed broadcasts. The IP packet forwarder never forwards link-level broadcasts, unless they correspond to class D IP addresses. The default setting for this feature is enabled.

NOTE

Forwarding and exploding cannot be implemented separately. Also, the router does not forward subnet-wide IP broadcasts.

Disabling Directed Broadcast

To disable directed broadcast, at the IP Config> prompt, enter:

disable directed-broadcast

Configuring a Filtered Route

Configuring a Filtered Route

Adding a Filter

This command designates an IP network/subnet to be filtered. To add a filter, perform the following steps:

Step	Action
1	At the IP Config> prompt, enter:
	<u>a</u> dd <u>f</u> ilter <i>ip-address ip-mask</i>
2	Press Return.

IP packets are not forwarded to filtered networks/subnets, nor is routing information disseminated concerning such destinations. Packets destined for filtered network/ subnets are simply discarded.

You must specify a filtered network/subnet together with its subnet mask. For example, to filter a subnet of a class B network, using the third byte for subnetting, the mask is 255.255.255.0.

Using the filter mechanism is more efficient than IP access controls, although not as flexible. Filters also affect the operation of the IP routing protocols, unlike access controls.

Example: IP Config> add filter 127.0.0.0 255.0.0.0

Deleting a Filter

To delete a filter, at the IP Config> prompt, enter:

delete filter ip-address ip-mask

Listing a Filter

To list a filter, at the IP Config> prompt, enter:

<u>l</u>ist <u>f</u>ilter

This command displays the networks/subnets that are filtered.

Configuring Path Splitting

Configuring Path Splitting

Enabling Path Splitting

Path splitting allows packets to be routed to their destination address through any one of four equal-cost paths. When the GIGAswitch GS2000 receives a packet with a new destination address, it assigns a path to the packet based on the destination address. All the packets with the same destination address are then forwarded using the assigned path.

If IP access controls are enabled, then the source address, destination address, protocol type and destination part number (for UDP and TCP protocol types) are all used when determining the path. Packets with the same values for all of these fields will use the same path. The default setting for path splitting is set to disable.

To enable path splitting, perform the following steps:

Step	Action
1	At the IP Config> prompt, enter: <u>en</u> able <u>pa</u> th-splitting
2	Press Return.

Disabling Path Splitting

To disable path splitting, perform the following steps:

Step	Action	
1	At the IP Config> prompt, enter:	
	<u>di</u> sable <u>pa</u> th-splitting	
2	Press Return.	

Configuring Reassembly Size

Configuring Reassembly Size

Setting Reassembly Size

This command configures the size of the buffers that are used for the reassembly of fragmented IP packets. The default size is 12000. To set the reassembly size, perform the following steps:

Step	Action
1	At the IP Config> prompt enter:
	<u>s</u> et <u>re</u> assembly-size <i>number</i>
2	Press Return.

Example: IP Config> set reassembly-size 12000

Listing Reassembly Size

To list the reassembly buffer size, at the IP Config> prompt, enter:

<u>l</u>ist<u>s</u>ize

This command displays the routing table size, and the reassembly buffer size.

Configuring UDP Broadcast Forwarding

User datagram protocol (UDP) broadcast forwarding provides controlled application level functionality that forwards local broadcasts to other specified nodes or networks by using UDP ports. Controlled forwarding is accomplished by forwarding specific broadcasts to specified networks or hosts.

Advantages of UDP Forwarding

Without UDP forwarding, an IP router cannot broadcast outside of the current broadcast domain. With UDP forwarding, you can selectively broadcast to other networks outside of the broadcast domain.

Some client applications search for servers by broadcasting the request. Most of these broadcasts are link layer broadcasts in the same network as the server. A typical example is a NetBIOS Name Server running over TCP/IP services. As the network grows and network components such as bridges and routers are being added, users no longer need to be constrained to local servers. Users can now reach the server outside the broadcast domain using UDP forwarding.

The following sections describe how to add and delete UDP broadcast forwarding and how to disable and enable UDP broadcast forwarding.

Adding a UDP Broadcast Server

Adding a UDP broadcast server automatically enables the udp port being added. To add UDP broadcast forwarding, perform the following steps:

Step	Action
1	At the IP Config> prompt enter:
	<u>add br</u> oadcast-forwarder <u>u</u> dp <i>udp-port-number interface-number</i> <i>destination-ip-address</i>
2	Press Return. UDP broadcast forwarding for the associated port is now added to the list.

Specifying **all** for the interface number includes all interface numbers to the specified UDP port and destination IP address.

Example: IP Config> add br u 25 all 124.24.10.0

Deleting a UDP Broadcast Server

To delete UDP broadcast server, at the IP Config> prompt enter:

<u>del</u>ete <u>br</u>oadcast-forwarder <u>u</u>dp *udp-port-number interface-number destination-ip-address*

Specifying **all** for the destination IP address deletes broadcast forwarding for all IP addresses with the specified UDP port number and interface number.

Example: IP Config> del br u 259 all

Specifying *all* for the interface number deletes *only* the add command entry and specified UDP port and destination IP address that used **all** as the interface number. Previous UDP add command entries for that port prior to the delete command entry are not affected.

Example:

In the following example, CLI entry 1 adds broadcast forwarding to UDP port 25, interface 9, with a destination IP address of 124.35.13.0. CLI entry 2 uses a different UDP port and interface number, but the destination address is the same. CLI entry 3 adds broadcasting on all interfaces on UDP port 25 to destination IP address 124.35.13.0. CLI entry 4 deletes only CLI entry 3 parameters. CLI entry 1 parameters are not affected and broadcast forwarding on UDP port 25, interface 9 remains active.

CLI Entry	IP Config> Command
1	add br u 25 9 124.35.13.0
2	add br u 26 7 124.35.13.0
3	add br u 25 all 124.35.13.0
4	del br u 25 all 124.35.13.0

Disabling UDP Broadcast Forwarding

To disable UDP broadcast forwarding, perform the following steps:

Step	Action	
1	At the IP Config> prompt enter:	
	<u>dis</u> able <u>br</u> oadcast-forwarding <u>u</u> dp <i>udp-port interface-number</i>	
	Note: the default interface is all.	
2	Press Return. UDP broadcast forwarding is now disabled.	

Enabling UDP Broadcast Forwarding

To enable UDP broadcast forwarding, at the IP Config> prompt enter:

enable broadcast-forwarding udp udp-port interface-number

Examples of Configuring UDP Broadcast Forwarding

In the following two examples, IP networks N1 through N5 are configured on VLAN Interfaces (VIs). You want networks N1, N2, and N3 to forward broadcast messages to network N4, but not to network N5.

Both examples provide two methods of configuring a UDP forwarder with the same results.

Example 1

To configure UDP forwarding, issue an add command to broadcast from all networks to network N4, using UDP port 200. Next, disable network N5 from broadcasting messages to other networks. The following steps and Figure 3-1 provide an example of this configuration.

Step	Action
1	At the IP Config> prompt enter:
	add broadcast-forwarder udp 200 all network 4 ip-address This command adds and enables all interfaces. (See Figure 3-1A)
2	At the IP Config> prompt enter: <u>disable broadcast-forwarding udp 200 5</u> This command disables interface N5. (See Figure 3-1B)

Example 2

To configure UDP forwarding, issue an add command to broadcast from networks N1, N2, and N3 to network N4, using UDP port 200. The following steps provide an example of this configuration:

Step	Action	
1	At the IP Config> prompt enter:	
	<u>add br</u> oadcast-forwarder <u>u</u> dp 200 1 <i>network 4 ip-address</i>	
	This command adds and enables N1 interface.	
2	At the IP Config> prompt enter:	
	<u>add br</u> oadcast-forwarder <u>u</u> dp 200 2 <i>network 4 ip-address</i>	
	This command adds and enables N2 interface.	
3	At the IP Config> prompt enter:	
	<u>add br</u> oadcast-forwarder <u>u</u> dp 200 3 <i>network 4 ip-address</i>	
	This command adds and enables N3 interface.	

Listing UDP Broadcast Forwarding

To list broadcast forwarding, at the IP Config> prompt, enter:

list broadcast-forwarding

This command displays the protocol, port, interface, state, and destination of the broadcast forwarder.

Configuring New Software

Configuring New Software

When you configure your router, you can configure it to accommodate future software upgrades. The DIGITAL GIGAswitch GS2000 modules allow you to upgrade your module remotely to the latest release using TFTP. To accomplish an upgrade, the module may require a gateway IP address, which can be configured at any time.

When routing is enabled, the primary method to define the default gateway when performing a load or reload command is by using the IP Config> set default network-gateway command (preferred method), or as arguments to the load or reload commands. However, when using the DIGITAL clearVISN Flashloader or Recovery Manager applications, the default gateway cannot be specified on clearVISN.

If you cannot use the IP Config> set default network-gateway command, the IP Config> set ip-host-only-default network-gateway command can be used to define a gateway address. This method can only used when performing a software upgrade or a restore of configuration information. During the upgrade or restore process, routing protocols such as, RIP and OSPF are not enabled.

For additional information regarding software upgrade procedures, refer to the *DIGITAL GIGAswitch GS2000 Line Card Management* guide.

Setting the IP Host-Only Default Network Gateway

To load new software to your router, the IP host-only default network gateway and subnet gateway commands may be required in conjunction with installing new software. To set the IP host-only default network gateway, perform the following steps:

Step	Action	
1	At the IP Config> prompt enter:	
	<u>s</u> et <u>ip-host-only-default n</u> etwork-gateway <i>ip-address</i>	
2	Press Return.	

Deleting the IP Host-Only Default Network Gateway

To delete the IP host-only default network gateway, at the IP Config> prompt, enter:

delete ip-host-only-default network-gateway

Configuring New Software

Setting the IP Host-Only Default Subnet Gateway

To set the IP host-only default subnet gateway, perform the following steps:

Step	Action
1	At the IP Config> prompt enter:
	<u>s</u> et <u>ip-host-only-default s</u> ubnet-gateway <i>ip-address</i>
2	Press Return.

Deleting the IP Host Only Default Subnet Gateway

To delete IP host-only default subnet gateway, at the ${\tt IP}$ <code>Config></code> prompt, enter:

<u>d</u>elete <u>ip-host-only-default s</u>ubnet-gateway

Listing IP Protocols

Listing IP Protocols

This command displays the configured state of the IP routing protocols (OSPF and RIP) along with whether ARP subnet routing is enabled or disabled. To list the configured routing protocols, perform the following steps:

Step	Action
1	At the IP Config> prompt, enter: <u>list pr</u> otocols
2	Press Return.

Monitoring IP

This section describes tasks you can perform to monitor your router's IP protocol. To access the IP Monitor process, perform the following steps:

Step	Action
1	At the Main prompt (Main>) enter: <u>m</u> onitor
2	Press Return. The Monitor prompt (Monitor>) is displayed.
3	If the prompt is not displayed, press Return a second time.
4	At the Monitor> prompt, enter:
5	Press Return. The IP> prompt is displayed.

From the IP> prompt, you can perform specific tasks to determine IP parameters, statistics, routing destinations, routing table contents, interface addresses, and routing paths.

Monitoring IP Access Control

Monitoring IP Access Control

You can monitor the router's access control system to determine which IP addresses and services your router is configured to handle. To display the access control list, perform the following steps:

Step	Action
1	At the IP> prompt, enter: access
2	– Press Return. The access control list is displayed.

Bea

End

Bea

End

Example

```
IP> access
Access control currently enabled
Access control run 8 times, 7 cache hits
List of access control records:
```

	Ту	Source	Mask	Destination	Mask	Pro	Pro	Prt	Prt	Invoc
0	I	0.0.0.0	00000000	111.67.67.21	FFFFFFFF	6	6	25	25	0
1	Е	151.151.1.0	FFFFFF00	150.150.2.0	FFFFFFFF	0	255	0	655	0
2	I	0.0.0.0	00000000	0.0.0.0	00000000	89	89	0	655	27

The Invoc column above contains the number of times an access control lookup match occurred for the associated filter. The invoc counter increments when the access control list is searched and the associated filter is the first matching entry.

The invoc counter can increment more than once per packet or not at all (when the result has been cached). Therefore, the entry does not necessarily represent the number of packets that were forwarded or terminated on a match for the associated filter.

Monitoring ICMP Counters

Monitoring ICMP Counters

Internet Control Message Protocol (ICMP) is a part of IP that handles error and control messages, including an echo request/reply function to test whether a destination is reachable and responding. ICMP provides error, status and administrative messages that are incorporated into the data field of an IP packet. To display the list of ICMP counters, perform the following steps:

Step	Action
1	At the IP> prompt, enter:
	<u>ic</u> mp-counters
2	Press Return. A list of ICMP counters are displayed.

Example

IP> icmp-counters

ICMP counters	Receive	Transmit
Total number of messages	15	17
Number of errors	0	0
Destination Unreachable	0	0
Time Exceeded	0	2
Parameter Problem	0	0
Source Quench	0	0
Redirect	0	0
Echo request	13	0
Echo reply	0	13
Timestamp request	1	0
Timestamp reply	0	1
Address Mask request	1	0
Address Mask reply	0	1

Monitoring ICMP Counters

Field	Description
Total number of messages	Total number of ICMP messages sent and received
Number of errors	Generic errors, such as buffer allocation errors, detected by the router.
Destination Unreachable	Used by the router or the destination host and is invoked if a router encounters problems reaching the destination network specified in the IP destination address. Also, the destination host can invoke this if an identified higher-level protocol is not available on the host or if a specified port is not available.
Time Exceeded	Initiated by the router when the time-to-live value becomes zer or if a timer expires during reassembly of a fragmented datagram
Parameter Problem	Initiated by a host or the router if it encounters problems processing any part of an IP header
Source Quench	Flow and congestion control that is used if the router has insufficient buffer space for queuing incoming datagrams
Redirect	Invoked by the router and sent to the source host and is used to provide routing management information
Echo request	A PING message sent to any IP address to determine the state of the internet or a network segment.
Echo reply	A PING message sent by a host in response to an echo request.
Timestamp request	This is used by the router and hosts to determine the delay incurred when delivering packets through a network
Timestamp reply	Timestamp values sent by a host in response to a timestamp request.
Address Mask request	Used by a host to obtain a subnet mask used on the host's network. The requesting host can send the request directly to a router or broadcast it.
Address Mask reply	A reply from an address mask agent host or any authoritative originator of the address mask on the network containing the network's subnet mask.

Monitoring IP Interface Addresses

Monitoring IP Interface Addresses

You can display a list of your router's IP interface addresses. Each address in the list contains an interface type, interface mask, and status. To display IP interface addresses, perform the following steps:

Step	Action
1	At the IP> prompt, enter:
	<u>in</u> terface
2	Press Return. IP interface addresses are displayed.

Example

IP> interface

Ifc	Name	IP Addresses(es)	Mask(s)	Status
25	VLAN/25	128.185.123.22	255.255.255.0	Down
56	VLAN/56	128.185.124.23	255.255.255.0	Up

Monitoring IP Routing Table Contents

Monitoring IP Routing Table Contents

You can display the contents of the IP routing table and determine the protocol type, destination network, destination mask, cost, age, and next hop for each entry, as well as the routing table size. To display the IP routing table, perform the following steps:

Step	Action
1	At the IP> prompt, enter:
	<u>d</u> ump
2	Press Return. IP routing table information is displayed.

Example

IP > dump

Туре	Destination Net	Mask	Cost	Age	Next hop
Stat*	0.0.0.0	00000000	0	0	16.20.48.254
Sbnt	16.0.0.0	FF000000	1	0	16.20.48.254
SPF*	16.20.0.0	FFFF0000	1	1	VLAN/26

Туре	Cost	Age	Next hop
Stat	0	0	16.20.48.254

Routing table size: 768 nets (67584 bytes), 4 nets known

Monitoring IP Routing Table Contents

Field	Description	
Туре	Indicates how the route was derived.	
(route type)	• Sbnt — Indicates that the network is subnetted; such an entry is a placeholder only.	
	• Dir — Indicates a directly connected network or subnet.	
	• RIP — Indicates the route was learned through the RIP protocol.	
	• Del — Indicates the route was deleted.	
	• Loc1 — Indicates the local interface address.	
	• Stat — Indicates a statically configured route.	
	• Fltr — Indicates a routing filter.	
	• SPF — Indicates that the route is an OSPF intra-area route.	
	• SPIA — Indicates that the route is an OSPF inter-area route.	
	• SPE1, SPE2 — Indicates OSPF external routes (types 1 and 2, respectively).	
	• Rnge — Indicates a route type that is an active OSPF area address range and is not used in forwarding packets.	
Destination Net	IP destination network/subnet.	
Masks	IP address mask.	
Cost	Route cost.	
Age	For RIP routes, the time that has elapsed since the routing table entry was last refreshed.	
Next hop	Displays either the VLAN transmit interface, indicating the next hop exists, or the II address of the next hop for static routes.	
	An asterisk (*) after the route type indicates that the route has a static or directly connected backup. A percent sign (%) after the route type indicates that RIP updat are always accepted for this network/subnet.	

A number in parentheses at the end of the column indicates the number of equal-cost routes to the destination. The first hops belonging to these routes can be displayed with the IP route command.

Monitoring IP Routing Destinations

Monitoring IP Routing Destinations

You can determine if IP routing destinations exist for a specific IP destination. To determine if a specific IP destination exists, perform the following steps:

Step	Action
1	At the IP> prompt, enter: <u>route ip-destination-address</u>
2	Press Return. IP routing table information is displayed.

Example

IP> route 128.185.232.0

Destination:	128.185.232.0	
Mask:	255.255.255.0	
Route type:	RIP	
Distance:	3	
Age:	1	
Tag	0	
Next hop(s):	128.185.146.4	(VLAN/15)

Monitoring IP Routing Paths

Monitoring IP Routing Paths

You can display the entire IP routing path to a given destination, hop by hop, using traceroute. Traceroute sends out three probes and prints the IP address of the responder, together with the round-trip time associated with the response. To display IP routing paths, perform the following steps:

Step	Action	
1	At the IP> prompt, enter:	
	traceroute ip-destination-address	
2	Press return. IP destination area address, packet size and the results of the traceroute are displayed	

Example

IP> traceroute 128.185.142.239

TRA	ACEROUTE 128.185.124.110:	56 data bytes
1	l 128.185.142.7 16 ms 0 ms	0 ms
2	2 128.185.123.22 16 ms 0 m	s 16 ms
3	3 * * *	
4	1 * * *	
5	5 128.185.124.110 16 ms ! 0	ms ! 0 ms

Field	Description
Traceroute	Displays the destination area address and the size of the packet being sent to that address.
1	Displays the first trace showing the destination's NSAP and the amount of time it took the packet to arrive at the destination. The packet is traced three times.
Destination unreachable	Indicates that no route to the destination is available.
3 * * * 4 * * *	Indicates that the router is expecting some form of response from the destination, but the destination is not responding.

Monitoring IP Routing Paths

The traceroute is done whenever the destination is reached, an ICMP Destination Unreachable is received, or the path length reaches 32 router hops.

When a probe receives an unexpected result, several indications can be displayed. They are:

Probe Result	Description	
! N	Indicates that an ICMP Destination Unreachable (net unreachable) was received.	
! H	Indicates that an ICMP Destination Unreachable (host unreachable) was received.	
!P	indicates that an ICMP Destination Unreachable (protocol unreachable) was received. Since the probe is a UDP packet sent to a strange port, a port unreachable is expected.	
I	indicates that the destination was reached, but the reply sent by the destination was received with a TTL of 1. This usually indicates an error in the destination, prevalent in some versions of UNIX. The destination is inserting the probe's TTL in its replies. This unfortunately leads to a number of lines consisting solely of asterisks before the destination is finally reached.	

Monitoring IP Static Routes

Monitoring IP Static Routes

You can display a list of configured static routes, including filtered routes, default gateways and default subnet gateways using static routes. To display static routes, perform the following steps:

Step	Action
1	At the IP> prompt, enter: <u>st</u> atic
2	Press return. Static routes are displayed.

Example

IP> static

Net	Mask	Cost	Next hop
0.0.0.0	0.0.0	1	128.185.123.18
128.185.0.0	255.255.0.0	1	128.185.123.22
192.9.10.0	255.255.255.0	10	128.185.123.22

Field	Description
Net	Indicates the network address of the route.
Mask	Indicates the subnet mask of the IP address.
Cost	Indicates the cost of using this route.
Next hop	Indicates the next router a packet passes through that uses this route.

Each static route's destination is specified by an address-mask pair. Default gateways appear as static routes to destination 0.0.0.0. Default subnet gateways also appear as static routes to the entire IP subnetted network.

Monitoring IP Parameters

Monitoring IP Parameters

You can display a list of configured sizes of specific IP parameters. To display IP parameter sizes, perform the following steps:

Step	Action
1	At the IP> prompt, enter: <u>si</u> zes
2	Press Return. IP parameter sizes are displayed.

Example IP> sizes

Routing table size	(#entries):	768
Table entries used	(#entries):	3
Reassembly buffer size	(bytes):	12000
Largest reassembled pkt	(bytes):	0

Field	Description
Routing table size	Indicates the configured number of entries that the routing table maintains.
Table entries in use	Indicates the number entries used from the routing table.
Reassembly buffer size	Indicates the configured size of the reassembly buffer that is used to reassemble fragmented IP packets.
Largest reassembled packet	Indicates the largest IP packet that this router reassembled.

Monitoring IP Forwarding Statistics

Monitoring IP Forwarding Statistics

You can display the statistics related to the IP forwarding process, including a count of routing errors, along with the number of packets that were dropped due to congestion. To display IP forwarding statistics, perform the following steps:

Step	Action	
1 At the IP> prompt, enter:		
	<u>co</u> unters	
2	Press Return. IP forwarding statistics are displayed.	

Example

IP> counters

Receive:

	Total	(ipInReceives)	0
	Dropped, Header Error	(ipInHdrErrors)	0
	Dropped, Unknown Protocol	(ipInUnknownProtos)	0
	Dropped, Internal Error	(ipInDiscards)	0
	To be Forwarded	(ipForwDatagrams)	0
	Terminated	(ipInDelivers)	0
5	Fransmit:		
	Generated	(ipOutRequests)	0
	Dropped, No Route	(ipOutNoRoutes)	0
	Total		0
ł	Reassembly:		
	Requests	(ipReasmReqds)	0
	Successful	(ipReasmOKs)	0
	Failed	(ipReasmFails)	0

(Continued on next page)

Monitoring IP Forwarding Statistics

0

0

Fragmentation: Successful (ipFragOKs) Failed (ipFragFails) Created (ipFragCreates) 0

Routing errors

Routing table overflow	0
Net unreachable	2539
Bad subnet number	0
Bad net number	0
Unhandled broadcast	0
Unhandled multicast	0
Unhandled directed broadcast	0
Attempted forward of LL broadcast	4048

Packets discarded through filter 0 IP multicasts accepted: 0

Ifc	Name	IP input-packet overflow error	rs
25	VLAN/25		0
26	VLAN/26		0
			0
56	VLAN/56		0

Monitoring IP Forwarding Statistics

Field	Description
Receive Group	Received packets that were dropped, terminated or forwarded
Transmit Group	Transmitted packets that were generated, dropped or forwarded
Reassembly Group	Packets that were reassembled successfully, failed or requested
Fragmentation Group	Packets that were fragmented successfully, failed or created
Routing table overflow	Lists the number of routes that were discarded due to the routing table being full.
Net unreachable	Indicates the number of packets that were not forwarded due to unknown destinations. This does not count the number of packets that were forwarded to the authoritative router (default gateway).
Bad subnet number	Counts the number of packets or routes that were received for illegal subnets (all ones or all zeros).
Bad net number	Counts the number of packets or routes that were received for illegal IP destinations (for example, class E addresses).
Unhandled broadcast	Counts the number of (nonlocal) IP broadcasts received (these are not forwarded).
Unhandled multicast	Counts the number of IP multicasts that were received but whose address was not recognized by the router (these are discarded).
Unhandled directed broadcast	Counts the number of directed (nonlocal) IP broadcasts received when forwarding of these packets is disabled.
Attempted forward of LL broadcast	Counts the number of packets that are received having nonlocal IP addresses but were sent to a link level broadcast address. These are discarded.
Packets discarded through filter	Counts the number of received packets that were addressed to filtered networks/subnets. These are discarded silently.
IP multicast accepted	Counts the number of IP multicasts that were received and successfully processed by the router.
IP input packet overflows	Counts the number of packets that were discarded due to congestion at the forwarder's input queue. These counts are sorted by the receiving interface

Chapter 4

Configuring and Monitoring the RIP Interface

Overview

Introduction

Routing Information Protocol (RIP) is a distance-vector protocol (based on the Bellman-Ford technology) that allows routers to exchange information about destinations for computing routes throughout the network. Destinations may be networks or a special destination used to convey a default route.

Bellman-Ford algorithms make each router periodically broadcast its routing tables to all its neighbors. Then a router knowing its neighbors' tables can decide to which destination neighbor to forward a packet.

In This Chapter

This chapter discusses the following topics:

Торіс	Page
Configuring RIP	4-2
Configuring Accept RIP Routes	4-7
Configuring RIP to Override Default Routes	4-8
Configuring RIP to Override Default and Static Routes	4-9
Configuring Receiving RIP, Dynamic Nets/Subnets	4-11
Configuring Sending of Routes in RIP	4-13

Enabling RIP

When configuring the RIP, you can specify which set of routes the router advertises or accepts on each IP interface, or both. You can also specify how RIP information affects static routing. Since RIP uses broadcast messages for its routing updates, the format of the IP broadcast address must also be specified when using the RIP protocol. To enable RIP, perform the following steps:

Step	Action	
1	At the IP Config> prompt, enter:	
	<u>en</u> able <u>ri</u> p	
2	Press Return. The RIP protocol is now enabled.	

When the RIP protocol is enabled, use the **enable/disable sending** commands to configure its routing update sending behavior. Its routing update receiving behavior is defined by the enable/disable receiving and enable/disable override commands.

Example: IP Config> enable rip

Disabling RIP

To disable RIP, at the IP Config> prompt, enter:

<u>di</u>sable <u>ri</u>p

RIP Limitations

RIP is primarily intended for use in homogeneous networks of moderate size. Because of this, RIP has the following limitations:

- Autonomous system (AS) diameter limitation of 15 hops.
- RIP's metric (hop count) cannot adequately describe variations in a path's characteristics, sometimes resulting in sub optimal routing.
- Slow to find new routes when the network changes. This search consumes considerable bandwidth, and in extreme cases, exhibits a slow convergence behavior referred to as a *count* to infinity.

NOTE

All bridging router interfaces running RIP must have the same subnet mask.

Enabling RIP Flags

By default, RIP advertises all network and subnet routes on all interfaces of the router. Once RIP is enabled, you can configure what it listens to and what it advertises by setting the various RIP flags. These flags are configured on a per-IP-interface basis. The following commands can enable or disable the various flags:

Flag Type	Command Syntax
Sending net routes	enable sending net-routes disable sending net-routes
Sending subnet routes	enable sending subnet-routes disable sending subnet-routes
Sending static routes	enable sending static-routes disable sending static-routes
Sending default-routes	enable sending default-routes disable sending default-routes
Receiving RIP	enable receiving rip disable receiving rip
Receiving dynamic nets	enable receiving dynamic nets disable receiving dynamic nets
Receiving dynamic subnets	enable receiving dynamic subnets disable receiving dynamic subnets
Overriding default	enable override default disable override default
Overriding static routes	enable override static-routes disable override static-routes

Customizing RIP

In IP, you can customize RIP with a number of configurable flags. Most flags take effect on a specified IP interface address. These flags control sending and receiving RIP information about each router interface.

The set of routes sent out from a particular address is the union of the routes selected by setting any of the following four flags. Subnet-level routes are sent only when the destination subnet is a member of the same IP network as the sending address.

Send Flag Name	Description
Send Net Routes	Sends all network-level routes.
Send Subnet Routes	Sends appropriate subnet-level routes.
Send Default Routes	Advertises a default route if the router itself has a default route.
Send Static and Direct Routes	Advertises all directly connected networks and statically configured routes.

The following flags control how information received by RIP is incorporated into the router's routing tables. Certain flag settings allow RIP routes to override static routing information, but only if the RIP metric is better than the static route's metric.

Receive Flag Name	Description
Override Default	RIP packets received on this IP interface may override the router's default gateway.
Override Static Routes	RIP packets received on this IP interface may override any of the router's statically configured routing information.
Disable RIP Receive	RIP packets received on this IP interface are ignored.
Receive Dynamic Net Routes	When not set, the router accepts RIP updates only for those networks that are specified in an add accept-rip-route command.
Receive Dynamic Subnets	When not set, the router accepts RIP updates only for those subnets that are specified in an add accept-rip- route command

Setting RIP Broadcasts

The RIP protocol uses IP broadcast when sending its routing updates. Since there are different formats of IP broadcast in use, you must specify which broadcast format to use. You specify IP broadcast format on a per-interface basis by using the following command procedures:

Step	Action	
1	At the IP Config> prompt, enter: <u>set broadcast-address</u> <i>ip-interface-address</i>	
2	Select either local-wire or network from the following prompt: Use a NET or LOCAL-WIRE style address NETWORK?	
3	Select whether you want the rest of the broadcast address filled with either ones or zeroes from the following prompt: Fill pattern for wildcard part of address (0 or 1) 0?	
4	Press Return. The RIP broadcast is now enabled.	

Converting from RIP to OSPF

To convert your autonomous system (AS) from RIP to OSPF, install OSPF on one router at a time, leaving RIP running. Gradually, all your internal routes shift from being learned through RIP to being learned by OSPF (OSPF routes have precedence over RIP routes). If you want to have your routes look exactly as they did under RIP (in order to check that the conversion is working properly), use hop count as your OSPF metric. This is done by assigning the cost of each OSPF interface to 1.

The size of your OSPF system must be estimated when the protocol is enabled. This size estimate should reflect the final size of the OSPF routing domain.

After installing OSPF on your routers, turn on AS boundary routing in all those routers that still need to learn routes through other protocols (RIP, and statically configured routes). Keep the number of these AS boundary routers to a minimum.

Finally, you can disable the receiving of RIP information about all those routers that are not AS boundary routers.

Configuring Accept RIP Routes

Configuring Accept RIP Routes

Adding Accept RIP Route

Adding accept RIP route allows an interface to accept a RIP route when RIP route filtering is enabled for an interface. To add accept RIP route, perform the following steps:

Step	Action	
1	At the IP Config> prompt, enter:	
	add accept-rip-route ip-network/subnet	
2	Press Return.	

You can list of networks/subnets that are already entered using the list rip-routesaccept command. You can enable the input filtering of RIP routes on a per-IP-interface basis. This is done separately for network-level routes (for example, a route to 10.0.0.0) and for subnet-level routes (for example, a route to 128.185.0.0). To enable input filtering of network-level routes on an IP interface, use the disable dynamic nets command. To enable input filtering of subnet-level routes, use the disable dynamic subnets command.

Example: IP Config> add accept-rip-route 10.0.0.0

Deleting Accept RIP Route

To delete an accept-rip-route, at the IP Config> prompt, enter:

delete accept-rip-route net-number

Listing Accept RIP Route

To list an accept-rip-route, at the IP Config> prompt, enter:

list rip-routes-accept

The list RIP routes accept command displays the set of routes that the RIP routing protocol always accepts. See the IP configuration commands **enable/disable receiving dynamic nets/subnets** for more information.

Configuring RIP to Override Default Routes

Configuring RIP to Override Default Routes

This command configures the conditions under which the router originates a RIP default route, and the cost that will be used when originating the default. To set the originate RIP default, perform the following steps:

Step	Action	
1	At the IP Config> prompt enter:	
	<u>s</u> et <u>or</u> iginate-rip-default	
	Always originate default route? [No]: yes	
	Originate default if OSPF routes available? [No]:	
	Originate default of cost [1]?	
2	Press Return.	

Prompt	Description
Always originate default route? [No]:	With the send default routes flag enabled, <i>Yes</i> sets the router to always advertise a RIP default route whether there is a route in the routing table or not. <i>No</i> enables the following prompt.
Originate default if OSPF routes available? [No]:	With the send default routes flag enabled, <i>Yes</i> sets the router to always advertise a RIP default route when OSPF routes are available. <i>No</i> only advertises a default route if the send default routes flag is enabled.
Originate default of cost [1]?	Selects the metric for the RIP default route. The range is from 0 to 16 with a default of 1.
Configuring RIP to Override Default and Static Routes

Configuring RIP to Override Default and Static Routes

Enabling RIP Override Routes

Enabling RIP Override Default

This command enables received RIP information to override the router's default gateway. It is invoked on a per-IP-interface basis. To enable the override default, perform the following steps:

Step	Action
1	At the IP Config> prompt, enter:
	<u>en</u> able <u>ov</u> erride default <i>gateway-ip-interface-address</i>
2	Press Return. When the enable override default command is invoked, default RIP routes received on the interface with a specified IP interface address overwrite the router's current default gateway, providing the cost of the new default is cheaper.

Example: IP Config> enable override default 128.185.123.22

Disabling RIP Override Default

To disable the RIP override default, at the IP Config> prompt, enter:

disable override default gateway- ip-interface-address

Configuring RIP to Override Default and Static Routes

Enabling RIP Override Static Routes

This command enables received RIP information to override some of the router's statically configured routing information. It is invoked on a per-IP-interface basis. To enable overriding of static routes, perform the following steps:

Step	Action
1	At the IP Config> prompt, enter:
	<u>en</u> able <u>ov</u> erride <u>s</u> tatic-routes <i>ip-interface-address</i>
2	Press Return. When the enable override static routes command is invoked, RIP routing information received on the interface with a specified IP interface address overwrite statically configured network/ subnet routes providing the cost of the RIP information is cheaper.

Example: IP Config> enable override static-routes 128.185.123.22

Disabling RIP Override Static Routes

To disable RIP overriding of static routes, at the IP Config> prompt, enter:

disable override static-routes ip-interface-address

Configuring Receiving RIP, Dynamic Nets/Subnets

Configuring Receiving RIP, Dynamic Nets/Subnets

Enabling RIP Reception on an Interface

This command modifies the processing of RIP updates that are received on a particular interface. To enable receiving RIP, perform the following steps:

Step	Action
1	At the IP Config> prompt, enter: enable receiving rip ip-interface-address
	<u>en</u> able <u>re</u> ceiving <u>rip</u> <i>ip-interjace-address</i>
2	Press Return.

This command is enabled by default.

If you invoke the disable receiving RIP command, no RIP updates are accepted on interface ip-interface-address.

Example: IP Config> enable receiving rip 128.185.123.22

Disabling RIP Reception on an Interface

To disable RIP reception, at the IP Config> prompt, enter:

disable receiving rip ip-interface-address

Enabling Receiving Dynamic Nets

This command modifies the processing of RIP updates that are received on a particular interface. To enable receiving dynamic nets, perform the following steps:

Step	Action
1	At the IP Config> prompt, enter:
	<u>en</u> able <u>re</u> ceiving <u>dv</u> namic <u>n</u> et <i>ip-interface-address</i>
2	Press Return.

This command is enabled by default.

If you invoke the disable receiving dynamic nets command, RIP updates received on interface ip-interface-address cannot accept any network-level routes unless they were previously specified in an add accept-rip-route command.

Example: enable receiving dynamic nets 128.185.123.22

Configuring Receiving RIP, Dynamic Nets/Subnets

Disabling Receiving Dynamic Nets

To disable receiving dynamic nets, at the IP Config> prompt, enter:

disable receiving dynamic net ip-interface-address

Enabling Receiving Dynamic Subnets

This command modifies the processing of RIP updates that are received on a particular interface. To enable receiving dynamic subnets, perform the following steps:

Step	Action
1	At the IP Config> prompt, enter:
	<u>en</u> able <u>re</u> ceiving <u>dy</u> namic <u>s</u> ubnets <i>ip-interface-address</i>
2	Press Return.

This command is enabled by default.

Example: IP Config> enable receiving dynamic subnets 128.185.123.22

Disabling Receiving Dynamic Subnets

To disable receiving dynamic nets, at the IP Config> prompt, enter:

disable receiving dynamic subnet ip-interface-address

If you invoke the disable receiving dynamic subnets command, RIP updates received on interface *ip-interface-address* cannot accept any subnet-level routes unless they were previously specified in an **add accept-rip-route** command.

Configuring Sending of Routes in RIP

Enabling Sending Default Routes in RIP

This command determines the contents of RIP updates that are sent out a particular interface. To enable sending default routes, perform the following steps:

Step	Action
1	At the IP Config> prompt, enter:
	<u>en</u> able <u>s</u> ending <u>d</u> efault-routes <i>ip-interface-address</i>
2	Press Return.

The effect of the enable sending command is cumulative. Each separate enable sending command specifies that a certain set of routes is advertised from a particular interface. A route is included in a RIP update only if it was included by at least one of the enable sending commands. The enable sending default-routes command specifies that the default route (if one exists) is included in RIP updates sent out interface *ip-interface-address*.

Example: IP Config> enable sending default-routes 128.185.123.22

NOTE

Some settings of the enable sending commands are redundant. For example, if you invoke enable sending net routes and enable sending subnet routes for a particular interface, there is no need to also specify enable sending static routes (because each static route is either a network-level or subnet route). By default, when you first enable RIP, sending net routes and sending subnet routes are enabled for each interface, while sending static routes and sending default are disabled.

Disabling Sending Default Routes in RIP

To disable sending default routes, at the IP Config> prompt, enter:

disable sending default-routes ip-interface-address

Enabling Sending Net Routes

This command determines the contents of RIP updates that are sent out a particular interface. To enable sending net routes, perform the following steps:

Step	Action
1	At the IP Config> prompt, enter:
	<u>en</u> able <u>s</u> ending <u>n</u> et-routes <i>ip-interface-address</i>
2	Press Return.

The effect of the enable sending command is cumulative. Each separate enable sending command specifies that a certain set of routes is advertised from a particular interface. A route is included in an RIP update only if it was included by at least one of the enable sending commands. The enable sending network-routes command specifies that all network-level routes are included in RIP updates sent out interface *ip*-*interface-address*. A network-level route is a route to a single class A, B, or C IP network.

Example: IP Config> enable sending net-routes 128.185.123.22

Disabling Sending Net Routes

To disable sending net routes, at the IP Config> prompt, enter:

disable sending net-routes ip-interface-address

Enabling Sending Poisoned Reverse Routes

This command determines the contents of RIP updates that are sent out a particular interface. To enable sending poisoned reverse routes, perform the following steps:

Step	Action
1	At the IP Config> prompt, enter:
	<u>en</u> able <u>s</u> ending <u>p</u> oisoned-reverse-routes <i>ip-interface-address</i>
2	Press Return.

The effect of the enable sending command is cumulative. Each separate enable sending command specifies that a certain set of routes is advertised from a particular interface. A route is included in an RIP update only if it was included by at least one of the enable sending commands. The enable sending poisoned-reverse-routes command specifies that all routes learned on this interface are sent out at a cost of 16. A network-level route is a route to a single class A, B, or C IP network.

Example: IP Config> enable sending poisoned-reverse-routes 128.185.123.22

Disabling Sending Poisoned Reverse Routes

To disable sending poisoned-reverse-routes, at the IP Config> prompt, enter:

disable sending poisoned-reverse-routes ip-interface-address

Enabling Sending Subnet Routes

This command determines the contents of RIP updates that are sent out a particular interface. To enable sending subnet routes, perform the following steps:

Step	Action
1	At the IP Config> prompt, enter:
	<u>en</u> able <u>s</u> ending <u>su</u> bnet-routes <i>ip-interface-address</i>
2	Press Return.

The effect of the enable sending command is cumulative. Each separate enable sending command specifies that a certain set of routes is advertised through a particular interface. A route is included in a RIP update only if it was included by at least one of the enable sending commands. The enable sending subnet routes command specifies that all subnet routes are included in RIP updates sent out interface ip-interface-address. However, a subnet route is included only if ip-interface-address connects directly to a subnet of the same IP subnetted network.

Example: IP Config> enable sending subnet-routes 128.185.123.22

Disabling Sending Subnet Routes

To disable sending subnet routes, at the IP Config> prompt, enter:

disable sending subnet-routes ip-interface-address

Enabling Sending Static Routes

This command determines the contents of RIP updates that are sent out a particular interface. To enable sending subnet routes, perform the following steps:

Step	Action
1	At the IP Config> prompt, enter:
	<u>en</u> able <u>s</u> ending <u>st</u> atic-routes <i>ip-interface</i> -address
2	Press Return.

The effect of the enable sending command is cumulative. Each separate enable sending command specifies that a certain set of routes is advertised through a particular interface. A route is included in a RIP update only if it was included by at least one of the enable sending commands. The enable sending static routes command specifies that all statically configured and directly connected routes are included in RIP updates sent out interface ip-interface-address.

Example: IP Config> enable sending static-routes 128.185.123.22

Disabling Sending Static Routes

To disable sending static routes, at the IP Config> prompt, enter:

disable sending static-routes ip-interface-address

Chapter 5

Configuring and Monitoring the OSPF Interface

Overview

Introduction

The Open Shortest Path First (OSPF) protocol is a link state dynamic routing protocol that detects and learns the best routes to (reachable) destinations. OSPF can quickly perceive changes in the topology of an autonomous system, and after a short convergence period, calculate new routes.

Each router running the OSPF protocol has a database describing a map of the routing domain. This database is identical in all participating routers. From this database, the IP routing table is built through the construction of a shortest-path tree, with the router itself as root. The routing domain refers to an autonomous system (AS) running the OSPF protocol, which allows you to split the AS into regions called *areas*. These areas are a collection of contiguous networks, and the topology of any one area is hidden from that of the other areas, significantly reducing routing traffic.

In This Chapter

This chapter discusses the following topics:

Торіс	Page
Configuring the OSPF Protocol	5-3
Configuring Attached OSPF Areas	5-4
Configuring Routing Interfaces	5-7
Configuring Nonbroadcast Interface Parameters	5-10
Configuring AS Boundary Routing	5-12
Configuring For Routing Protocol Comparisons	5-13
Setting OSPF Virtual Links	5-14

Торіс	Page
Enabling OSPF Virtual Links	5-15
Configuring OSPF Router IDs	5-17
Example Configuration Procedure for OSPF	5-18
Listing OSPF Configuration Information	5-21
Monitoring OSPF	5-24
Monitoring OSPF Advertisements	5-25
Monitoring OSPF Areas	5-29
Monitoring AS External Advertisements	5-30
Monitoring OSPF Databases	5-32
Monitoring OSPF Dump Routing Tables	5-34
Monitoring OSPF Interface Statistics and Parameters	5-36
Monitoring OSPF Neighbors	5-38
Monitoring OSPF Router Routes	5-39
Monitoring OSPF Link State Advertisement Size	5-41
Monitoring OSPF Statistics	5-42
Monitoring OSPF Traceroute Addresses	5-45

Configuring the OSPF Protocol

Configuring the OSPF Protocol

Enabling the OSPF Protocol

OSPF configuration is done through the protocol's own configuration console. The OSPF routing protocol is enabled on an interface-by-interface basis. Each OSPF interface is assigned a cost. Also, an estimate of the OSPF database's size must be given, and the interaction between OSPF and RIP must be defined. Size estimates for the OSPF link state database tells the router software approximately how much memory to reserve for OSPF. Use the following procedures to initially configure OSPF.

To enable OSPF, perform the following steps:

Step	Action
1	At the config> prompt, enter: ospf
2	Press Return. The OSPF Config> prompt is displayed.
3	At the OSPF Config> prompt, enter: <u>enable ospf routing protocol</u>
4	Enter the total number of AS external routes imported into the OSPF routing domain. Example: Estimated # external routes[0]? 200
5	Enter the total number of OSPF routers in the routing domain. Example: Estimated # OSPF routers [0]? 60 OSPF Config> The OSPF protocol is enabled.

Once the OSPF protocol is enabled, proceed to Configuring Attached OSPF Areas.

Disabling the OSPF Routing Protocol

To disable the OSPF routing protocol, at the OSPF Config> prompt, enter:

disable ospf routing protocol

Configuring Attached OSPF Areas

Configuring Attached OSPF Areas

Setting OSPF Areas

The next step in the configuration process is setting the parameters that define the OSPF areas that are directly attached to the router. If no areas are defined, the router software assumes that all the router's directly attached networks belong to the backbone area (area ID 0.0.0.0).

To set the parameters for an OSPF area, perform the following steps:

Step	Action
1	At the OSPF Config> prompt enter:
	<u>s</u> et <u>a</u> rea
2	Enter the area number.
	Example: Area number [0.0.0.0]? 1.1.2.2
3	Enter the authentication type.
	Example: Authentication type [1]? 1
4	Enter whether the area is a stub area.
	Example: Is this a stub area? (Yes or No): \mathbf{y}
5	Enter a stub default cost.
	Example: Stub default cost [0]:
6	Enter import summaries.
	Example: Import summaries? y
	OSPF Config>

Configuring Attached OSPF Areas

Where:

- Area number is the OSPF area ID number, which is a contiguous group of networks defined by a list of address ranges, each indicated by a combination of the IP address and address mask. A network belongs to an area if its address is in the list.
- Authentication type (security scheme) to be used in the area. A 1 indicates a simple password; a 0 indicates that no authentication is necessary.
- Stub area designation. If you designate YES:
 - Disables external routes from being flooded into the router. The area does not receive any AS external link advertisements, reducing the size of the area's OSPF database and decreasing memory usage for external routers in the stub area.
 - You cannot configure virtual links through a stub area.
 - You cannot configure a router within the stub area as an AS boundary router.
- **Import summaries** (inter-area routes) allows summary routes to be flooded into the router.

External Routing in Stub Areas. You cannot configure the backbone as a stub area. External routing in stub areas is based on a default route. Each border area router attaching to a stub area originates a default route for this purpose. The cost of this default route is also configurable in the OSPF set area command.

Deleting OSPF Areas

To delete an area, at the OSPF Config> prompt, enter:

<u>de</u>lete <u>a</u>rea *area#*

Listing OSPF Areas

To list an area, at the OSPF Config> prompt, enter:

<u>li</u>st <u>ar</u>ea

Configuring Attached OSPF Areas

Adding Ranges to OSPF Areas

Once you have defined attached OSPF areas, you can add a range of addresses to the area. OSPF areas are defined in terms of address ranges. External to the area, a single route is advertised for each address range. For example, if an OSPF area consists of all subnets of the class B network 128.185.0.0, it is defined as consisting of a single address range. The address range is specified as an address of 128.185.0.0 with a mask of 255.255.0.0. Outside of the area, the entire subnetted network is advertised as a single route to network 128.185.0.0. To add range addresses to defined OSPF areas using the above example, perform the following steps:

Step	Action
1	At the OSPF Config> prompt, enter:
	<u>a</u> dd <u>r</u> ange area# ip-address mask
2	Press Return.

Example: OSPF Config> add range 0.0.0.2 128.185.0.0 255.255.0.0

Deleting Ranges from OSPF Areas

To delete a range of areas, at the OSPF Config> prompt, enter:

delete range area# ip-address

Configuring Routing Interfaces

Configuring Routing Interfaces

Setting OSPF Interfaces

The **set interface** command adds an OSPF interface or changes an existing one. This command can be used only when the interface is disabled. It is used with the **enable interface** command.

When setting OSPF interfaces to routers attached to common network segments, you must enter the same values for the following parameters:

- Hello interval
- Dead router interval
- Authentication key (if an authentication type of 1 [simple password] is used)

To set the OSPF parameters for the router's interfaces, perform the following steps:

Step	Action
1	At the OSPF Config> prompt, enter: <u>set interface</u>
2	Enter the IP address. Example: Interface IP address [0.0.0.0]? 16.24.11.251
3	Enter the remaining values when prompted. Attaches to area [0.0.0.0]? Retransmission Interval (in seconds) [5]? Transmission Delay (in seconds) [1]? Router Priority [1]? Hello Interval (in seconds) [10]? Dead Router Interval (in seconds) [40]? Type Of Service 0 cost [1]? Authentication Key []? auth_key Retype Auth. Key []? auth_key OSPF Config>

Configuring Routing Interfaces

Deleting OSPF Interfaces

To delete an interface, at the OSPF Config> prompt, enter:

delete interface ip-address

This command can be used only when the interface is disabled or when dynamic management is disabled.

Listing OSPF Interfaces

To list an interface, at the OSPF Config> prompt, enter:

<u>li</u>st <u>i</u>nterface

Example:

OSPF Config>list interface

- - Interface configuration - -

IP address	Sta	Area	Cost	Rtrns	TrnsDly	Pri	Hello	Dead
16.24.11.251	Ena	1.1.2.2	1	5	1	1	10	40

- - Authentication Keys - -

IP Address	АиТуре	Key (Hex/Ascii)
128.185.138.21		0x617574685F6B6579 "Auth_key"

Configuring Routing Interfaces

Field	Description
IP address	An IP address is displayed for each interface, together with configured parameters.
Sta	
Area	The OSPF area to which the interface attaches.
Cost	The TOS 0 cost (or metric) associated with the interface.
Rtrns	The retransmission interval, which is the number of seconds between retransmissions of unacknowledged routing information.
TrnsDly	The transmission delay, which is an estimate of the number of seconds it takes to transmit routing information over the interface (it must be greater than 0).
Pri	The interface's router priority, which is used when selecting the designated router.
Hello	The number of seconds between Hello Packets sent out the interface.
Dead	The number of seconds after Hellos cease to be heard that the router is declared down.

Enabling OSPF Interfaces

The **enable interface** command is a dynamic command that activates an OSPF interface and starts sending and receiving packets over it. This command is used with the **set interface** command, and once the interface is set, you can dynamically enable it using the enable command.

To enable an OSPF interface, perform the following steps:

Step	Action
1	At the OSPF Config> prompt, enter:
	<u>en</u> able <u>i</u> nterface <i>ip-address</i>
2	Press Return. The specified OSPF interface is enabled.

Example: OSPF Config> enable interface 16.24.11.251

Disabling OSPF Interfaces

To disable the interface, at the OSPF Config> prompt, enter:

disable interface ip-address

Configuring Nonbroadcast Interface Parameters

Configuring Nonbroadcast Interface Parameters

Setting Nonbroadcast Network Interface Parameters

If the router is connected to a nonbroadcast, multiaccess network, such as an X.25 PDN, you have to configure parameters to help the router discover its OSPF neighbors. This configuration is necessary only if the router is eligible to become the designated router of the nonbroadcast network.

To configure a router for a nonbroadcast network, perform the following steps:

Step	Action
1	At the OSPF Config> prompt, enter: <u>set non-broadcast</u>
2	Enter the IP address. Example: Interface IP address [0.0.0.0]? 128.185.138.19
3	Enter the Poll Interval. Example: Poll Interval [120]? OSPF Config>

Then configure the IP addresses of all other OSPF routers that are attached to the nonbroadcast network. For each router configured, you must also specify its eligibility to become the designated router.

Deleting Nonbroadcast Network Interface Parameters

To delete a nonbroadcast network interface, at the OSPF Config> prompt, enter:

delete non-broadcast ip-address

Listing Nonbroadcast Network Interface Parameters

To list a nonbroadcast network description, at the OSPF Config> prompt, enter:

list non-broadcast network description

This command lists all information related to interfaces connected to nonbroadcast networks. For each nonbroadcast interface, as long as the router is eligible to become the designated router on the attached network, the polling interval is displayed with a list of the router's neighbors on the nonbroadcast network.

Configuring Nonbroadcast Interface Parameters

Adding Neighbors to Nonbroadcast Networks

You can add neighbors to nonbroadcast networks. If the router is connected to a nonbroadcast, multiaccess network, such as an X.25 PDN, you have to use this command to help the router discover its OSPF neighbors. This configuration is only necessary if the router is eligible to become the designated router of the nonbroadcast network. Configure the IP addresses of all other OSPF routers that are attached to the nonbroadcast network. For each router configured, you must also specify its eligibility to become designated router. To add neighbors to OSPF areas, perform the following steps:

Step	Action	
1	At the OSPF Config> prompt, enter: <u>a</u> dd <u>n</u> eighbor	
2	Press Return.	
3	You will then be prompted for: Interface IP address [0.0.0.0]? 128.185.138.19 IP address of neighbor [0.0.0.0]? 128.185.138.21 Can that router become Designated Router on the net [Yes]?	

Deleting Neighbors from Nonbroadcast Networks

To delete a neighbor, at the OSPF Config> prompt, enter:

delete neighbor ip-address ip-address-of-neighbor

Listing Neighbors from Nonbroadcast Networks

To list a neighbor, at the OSPF Config> prompt, enter:

<u>li</u>st <u>ne</u>ighbor

This command lists all configured OSPF IP addresses, their configured neighbors, and whether the neighbor is eligible to be a designated router (DR).

Configuring AS Boundary Routing

Configuring AS Boundary Routing

Enabling AS Boundary Routing

To import routes learned from other protocols (RIP, and statically configured information) into the OSPF domain, enable AS boundary routing. You must do this even if the only route you want to import is the default route (destination 0.0.0.0).

When enabling AS boundary routing, you are asked which external routes you want to import. You can choose to import, or not to import, routes belonging to several categories. Independent of the external categories, you can also configure whether or not to import subnet routes into the OSPF domain. This configuration item defaults to OFF (subnets not imported).

The metric type used in importing routes determines how the imported cost is viewed by the OSPF domain. When comparing two type 2 metrics, only the external cost is considered in picking the best route. When comparing two type 1 metrics, the external and internal costs of the route are combined before making the comparison.

To enable AS boundary, perform the following steps:

Step	Action
1	At the OSPF Config> prompt, enter:
	<u>en</u> able <u>a</u> s boundary
2	Enter the remaining values when prompted.
	Import RIP routes? [No]:
	Import static routes? [No]:
	Import direct routes? [No]: y
	Import subnet routes? [No]:
	Always originate default route? [No]: ${f y}$
	Originate as type 1 or 2 [2]?
	Default route cost [1]?
	Default forwarding address [0.0.0.0]?
	OSPF Config>

Disabling AS Boundary Routing

To disable as boundary routing, at the OSPF Config> prompt, enter:

disable as boundary routing

Configuring For Routing Protocol Comparisons

Configuring For Routing Protocol Comparisons

If you use a routing protocol in addition to OSPF, or when you change your routing protocol to OSPF, you must set the routing protocol comparison.

OSPF has a 4-level route hierarchy. The **set comparison** command tells the router where the RIP/static routes fit in the OSPF hierarchy. The two lower levels consist of the OSPF internal routes. OSPF intra-area and inter-area routes take precedence over information obtained from any other sources, all of which are located on a single level.

To set the routing protocol comparison, perform the following steps:

Step	Action		
1	At the OSPF Config> prompt, enter:		
	<u>s</u> et <u>c</u> omparison		
2	Enter the external comparison type.		
	Example: Compare to type 1 or 2 externals [2]? 1		
	OSPF Config>		

To put the RIP/static routes on the same level as OSPF external type 1 routes, set the comparison to 1. To put the RIP/static routes on the same level as OSPF external type 2 routes, set the comparison to 2. The default setting is 2.

Example: Suppose the comparison is set to 2. In this case, when RIP routes are imported into the OSPF domain, they are imported as type 2 externals. All OSPF external type 1 routes override received RIP routes, regardless of metric. However, if the RIP routes have a smaller cost, the RIP routes override OSPF external type 2 routes.

Configuring OSPF Virtual Links

Configuring OSPF Virtual Links

Setting OSPF Virtual Links

To maintain backbone connectivity you must have all of your backbone routers interconnected either by permanent or virtual links. Virtual links may be configured between any two area border routers that share a common nonbackbone and nonstub area. Virtual links must be configured in each of the link's two endpoints.

NOTE

If you are configuring an area border router (ABR) that does not directly attach to the backbone area, you must create a virtual link and an area 0.0.0.0.

The **set virtual-link** command adds an OSPF virtual link interface or changes an existing one. This command is used when the interface is disabled. It is used with the **enable interface** command.

To set a virtual link, perform the following steps:

Step	Action
1	At the OSPF Config> prompt, enter:
	<u>s</u> et <u>v</u> irtual-link
2	Enter the remaining values when prompted.
	Virtual endpt. (Router ID) [0.0.0.0]? 128.185.138.21
	Link's transit area [0.0.0.1]?
	Retransmission Interval (in seconds) [10]?
	Transmission Delay (in seconds) [5]?
	Hello Interval (in seconds) [30]?
	Hello Interval (in seconds) [30]?
	Dead Router Interval (in seconds) [180]?
	Authentication Key []? 3-14159
	OSPF Config>

Configuring OSPF Virtual Links

Deleting OSPF Virtual Links

To delete a virtual link, at the OSPF Config> prompt, enter:

<u>d</u>elete <u>v</u>irtual-link

This command can be used only when the interface is disabled or when dynamic management is disabled.

Listing OSPF Virtual Links

To list a virtual link, at the OSPF Config> prompt, enter:

<u>li</u>st <u>v</u>irtual-link

This command lists all virtual links that were configured with this router as endpoint. **Virtual endpoint** indicates the OSPF router ID of the other endpoint. **Transit area** indicates the nonbackbone area through which the virtual link is configured. Virtual links are considered treated by the OSPF protocol similarly to point-to-point networks. The other parameters listed in the command (Rtrns, TrnsDly, Hello and Dead) are maintained for all interfaces.

Enabling OSPF Virtual Links

The enable OSPF virtual-link command is a dynamic command that activates an OSPF interface and starts sending and receiving packets over it. This command is used with the **set virtual-link** command, and once the virtual link is set, you can dynamically enable it using the enable command.

Figure 5-1 illustrates an OSPF routing domain with areas configured with virtual links. Although the backbone area within the domain must be contiguous, you can configure areas that are not physically contiguous using virtual links, as shown.

To enable an OSPF interface, perform the following step:

Step	Action
1	At the OSPF Config> prompt, enter:
	<u>en</u> able <u>v</u> irtual-link <i>ip-address</i>

Example: OSPF Config> enable virtual-link 16.24.11.251

Disabling OSPF Virtual Links

To disable the virtual link, at the OSPF Config> prompt, enter:

disable virtual-link ip-address

Configuring OSPF Virtual Links

Configuring OSPF Router IDs

Configuring OSPF Router IDs

Every router in an OSPF routing domain must be assigned a 32-bit router ID. The current OSPF implementation sets the OSPF router ID to be the address of the first OSPF interface appearing in the router's configuration.

The OSPF router ID can also be explicitly set by the using the Config> **ip set router id** command. In this case, the router ID must still be one of the router's IP interface addresses.

To set an OSPF router ID using the **set router id** command, perform the following steps:

Step	Action
1	At the OSPF Config> prompt, enter:
	<u>ex</u> it
	The Config> prompt appears.
2	At the Config> prompt, enter:
	<u>i</u> p <u>s</u> et <u>router</u> -id <i>ip-interface-address</i>
	Example: <u>s</u> et <u>router</u> -id 128.185.138.21
3	To return to OSPF, at the Config> prompt, enter:
	<u>o</u> spf

Example Configuration Procedure for OSPF

Example Configuration Procedure for OSPF

The following example demonstrates the configuration of OSPF on a router.

In this example, each parameter that has a default value is given that value. For parameters that have no default (for example, addresses), the procedure uses an arbitrary value.

The following steps summarize the procedure you can use to configure the OSPF protocol on router interfaces. You may have to change the values or parameters given here according to your network setup.

NOTE

You must restart the router for these values to take effect.

Example Configuration Procedure for OSPF

To configure OSPF on the router, perform the following steps:

Step	Action	Configuration Script
1	Enable the OSPF protocol.	Config> ospf Open SPF-Based Routing Protocol configuration console OSPF Config> enable ospf Estimated - external routes [0]? 200 Estimated - OSPF routers [0]? 60
2	Define the attached OSPF areas.	OSPF Config> set area Area number [0.0.0.0]? 1.1.2.2 Authentication Type [0]? 1 Is this a stub area [No]?
3	Set the OSPF interface.	OSPF Config> set interface Interface IP address [0.0.0.0]? 16.24.11.251 Attaches to area [0.0.0.0]? Retransmission Interval (in seconds) [5]? Transmission Delay (in Seconds) [1]? Router Priority [1]? Hello Interval (in seconds) [10]? Dead Router Interval (in seconds) [40]? Type of Service 0 cost [1]? Authentication key []? auth_key Retype Auth. Key []? auth_key
4	Enable the interface.	OSPF Config> enable interface 16.24.11.251
5	Set nonbroadcast interface parameters.	OSPF Config> set non-broadcast Interface IP address [0.0.0.0]? 128.185.138.19 Poll interval [120]?
6	Add a neighbor.	OSPF Config> add neighbor Interface IP Address [0.0.0.0]? 128.185.138.19 IP Address of Neighbor [0.0.0.0]? 128.185.138.21 Can the router become Designated Router on this net [yes]?

Step	Action	Configuration Script
7	Enable AS	OSPF Config> enable as boundary
	boundary	Import RIP routes? [No]:
	routing.	Import static routes? [No]:
		Import direct routes? [No]: yes
		Import subnet routes? [No]:
		Always originate default route? [No]:
		Originate as type 1 or 2 [2]?
		Default route cost [1]?
		Default forwarding address [0.0.0.0]?
8	Configure for	OSPF Config> set comparison
routing protocol comparisons.	Compare to type 1 or 2 externals [2]?	
9 Set up virtual links.	OSPF Config> set virtual	
	links.	Virtual endpoint (Router ID) [0.0.0.0]? 128.185.138.21
		Link's transit area [0.0.0.1]?
		Retransmission Interval (in seconds) [10]?
		Transmission Delay (in seconds) [5]?
		Hello Interval (in Seconds) [30]?
		Dead Router Interval (in seconds) [180]?
		Authentication Key []? 3-14159
10	Set the OSPF	OSPF Config> exit
	router ID.	Config> ip set router-id 128.185.138.21
11	Return to OSPF.	Config> ospf

Example Configuration Procedure for OSPF

Listing OSPF Configuration Information

Listing OSPF Configuration Information

Once your router has been configured for OSPF, you can display your router's configuration information by using the **list all** command.

To determine the type of configuration information that can be displayed, perform the following steps:

Step	Action
1	At the OSPF Config> prompt, enter:
	<u>li</u> st <u>al</u> l
2	Press Return.

Listing OSPF Configuration Information

Example

схатріе									
OSPF Config> list all Global Configuration									
	OSPF Prot	ocol:	Ena	abled					
	# AS ext.	routes:	200)					
	Estimated	# routers:	60						
	External	comparison:	Тур	pe 2					
	AS bounda	ry capability	: Ena	abled					
	Import ex	ternal routes	: DIF	2					
	Orig. def	ault route:	No	(0,0.0.	0.0)				
	Default r	oute cost:	(1	type 2)					
	Default f	orward addr:	0.0	0.0.0					
		Area	Configurat	ion					
Area ID	AuType	Stub?	Default-	cost	Import-sum	marie	s?		
1.1.2.2	1=Simple-	pass No	N/A		N/A	1			
		A	rea Ranges						
Area ID	Address	Mask		Adver	tise?				
1.1.2.2	128.185.0	.0 255.255	.0.0	Yes					
		Interfa	ce configu:	ration -					
IP address	Sta	Area	Cost	Rtrns	TrnsDly	Pri	Hello	Dead	
16.24.11.251	Ena	1.1.2.2	1	5	1	1	10	40	

(Continued on next page)

Listing OSPF Configuration Information

- - Authentication Keys - -

IP Address	АиТуре	Key (Hex/Ascii)	
128.185.138.21		0x617574685F6B6579	"Auth_key"

- - Virtual link configuration - -

Virtual endpoint	Sta	Transit Area	Rtrns	TrnsDly	Hello	Dead
128.185.138.21	Dis	0.0.1	10	5	30	180

- - NBMA configuration - -

Interface Addr	Poll Interval
128.185.138.19	120

- - Neighbor configuration - -

Neighbor Addr	Interface Address	DR eligible?
128.185.138.19	128.185.138.21	yes
128.185.138.17	128.185.138.21	no
138.185.139.19	128.185.139.21	no

Monitoring OSPF

This section describes tasks you can perform to monitor your router's OSPF protocol.

 Step
 Action

 1
 At the Main prompt (Main>) enter: monitor

 2
 Press Return. The Monitor prompt (Monitor>) is displayed.

 3
 If the prompt is not displayed, press Return a second time.

 4
 At the Monitor> prompt, enter: protocol ospf The ospf> prompt is displayed.

To access the Monitor process, perform the following steps:

From the OSPF> prompt, you can perform specific tasks to determine OSPF parameters, routes, advertisements, database summaries, routing tables, and interface addresses.

Monitoring OSPF Advertisements

You can display the contents of a link state advertisement contained in the OSPF database. For a summary of the router's advertisements, use the **database** command.

To display OSPF advertisements, perform the following steps:

Step	Action
1	At the OSPF> prompt, enter:
	<u>ad</u> vertisement ls-type link-state-id advertising-router area-id
2	Press Return. The router's link state advertisements are displayed.

A link state advertisement is defined by its link state type, link state ID, and its advertising router. There is a separate link state database for each OSPF area. Providing an area ID on the command line tells the software which database you want to search. Listed below are different kinds of advertisements that depend on the value given for link state type:

- Router links Contain descriptions of a single router's interface.
- Network links Contain the list of routers attached to a particular interface.
- Summary nets Contain descriptions of a single inter-area route.
- Summary AS boundary routers Contain descriptions of the route to an AS boundary router in another area.
- AS external nets Contain descriptions of a single route.

NOTE

Link state IDs, advertising routers (specified by their router IDs), and area IDs take the same format as IP addresses. For example, the backbone area can be entered as 0.0.0.0.

Example of Router Links Advertisement

The following example shows an expansion of a router links advertisement. The router's ID is 128.185.184.11. It is an AS boundary router and has three interfaces to the backbone area (all of cost 1). Multicast routing was enabled. Detailed field descriptions are provided with the example shown.

This command was also enhanced in two ways. First, when displaying router-LSAs and network-LSAs, the reverse cost of each router-to-router link and router-to-transitnetwork link is displayed, as well as the previously displayed forward cost. This is done because routing of multicast datagrams whose source lies in different areas/ASs is based on reverse cost instead of forward cost. In those cases where there is no reverse link (which means that the link is never used by the Dijkstra), the reverse cost is shown as 1-way.

In addition, the LSA's OSPF options are displayed in the same manner as they were displayed in the detailed OSPF neighbor command.

New group-membership-LSAs can also be displayed. An example follows. The "LS destination" of each group-membership-LSA is a group address. A router originates a group-membership-LSA for each group that has members on one or more of the router's attached networks. The group-membership-LSA for the group lists those attached transit networks having group members (the type "2" vertices), and when there are members belonging to one or more attached stub networks, or if the router itself is a member of the multicast group, a type "1" vertex whose ID is the router's OSPF router ID is included.

OSPF> advertisement 1 128.185.184.11 0.0.0.0

```
LS age:
          173
LS options: E
LS type: 1
LS destination (ID): 128.185.184.11
LS originator: 128.185.184.11
LS sequence no: 0x80000047
LS checksum: 0x122
LS length:
               60
Router type: ASBR,W
# router ifcs: 3
             Link ID:
                              128.185.177.31
             Link Data:
                              128.185.177.11
               Interface type: 2
                 No. of metrics: 0
                 TOS 0 metric: 3 (0)
              Link ID:
                              128.185.142.40
              Link Data:
                               128.185.142.11
```

```
Interface type: 2
    No. of metrics: 0
    TOS 0 metric: 4 (0)
Link ID: 128.185.184.0
Link Data: 255.255.0
Interface type: 3
    No. of metrics: 0
    TOS 0 metric: 1
```

Field	Description
LS age	Indicates the age of the advertisement in seconds. This field is common to all advertisements.
LS options	Indicates the optional OSPF capabilities supported by the piece of the routing domain described by the advertisement, denoted by any combination of:
	E — processes type 5 externals
	T — can route based on TOS
	MC — can forward IP multicast datagrams
	This field is common to all advertisements.
LS type	Classifies the advertisement and dictates contents: 1 (router links advertisement), 2 (network link advertisement), 3 (summary link advertisement), 4 (summary ASBR advertisement), and 5 (AS external link).
LS destination	Identifies what is being described by the advertisement. Depends on the advertisement type. For router links and ASBR summaries, it is the OSPF router ID. For network links, it is the IP address of the network's designated router. For summary links and AS external links, it is a network/subnet number. For groupmembership advertisements, it is a particular multicast group. This field is common to all advertisements.
LS originator	OSPF router ID of the originating router. This field is common to all advertisements.
LS sequence number	Distinguishes separate instances of the same advertisement. A signed 32-bit integer, starting at 0x80000001, and increments by 1each time the advertisement is updated. This field is common to all advertisements.
LS checksum	A checksum of advertisement contents, used to detect data corruption. This field is common to all advertisements.

LS length	The size of the advertisement in bytes. This field is common to all advertisements.
Router type	Indicates the level of functionality of the router. ASBR is an AS boundary router, ABR is an area border router, and W indicates that the router is a wildcard multicast receiver. This field is used only in router link advertisements.
# Router ifcs	The number of router interface described in the advertisement. This field is used only in router link advertisements.
Link ID	Indicates what the interface connects to. Depends on interface type. For interfaces to routers (point-to-point links), the link ID is the neighbor's router ID. For interfaces to transit networks, it is the IP address of the network designated router. For interfaces to stub networks, it is the network's network/subnet number. Each link in the router advertisement is described by the Link ID, Link Data, and Interface type fields.
Link Data	Indicates 4 bytes of extra information concerning the link. It is either the IP address of the interface (for interfaces to point-to-point networks and transit networks), or the subnet mask (for interfaces to stub networks). Each link in the router advertisement is described by the Link ID, Link Data, and Interface type fields.
Interface type	One of the following: 1 (point-to-point connection to another router), 2 (connection to transit network), 3 (connection to stub network), or 4 (virtual link). Each link in the router advertisement is described by the Link ID, Link Data, and Interface type fields.
No of metrics	The number of nonzero TOS values for the metrics are provided for this interface.
TOS 0 metric	Cost of the interface. The reverse cost of the link is given in parentheses (derived from another advertisement). If there is no reverse link, 1-way is displayed. Each link can also be assigned a separate cost for each IP Type of Service (TOS). This is described by the No. of metrics and TOS 0 metric fields (the router currently does not route based on TOS, and only looks at the TOS 0 cost).
Monitoring OSPF Areas

Monitoring OSPF Areas

You can display the statistics and parameters for all OSPF areas attached to the router, by performing the following steps:

Step	Action		
1	At the OSPF> prompt, enter:		
	area		
2	Press Return. The router's attached areas are displayed.		
2	—		

Example

In the following example, the router attaches to a single area (the backbone area). A simple password scheme is being used for the area's authentication. The router has three interfaces attaching to the area, and has found four transit networks, seven routers, and no area border routers when doing the SPF tree calculation for the backbone.

OSPF> **area** Area ID Authentication #ifcs #nets #:

Area ID	Authentication	#ifcs	#nets	#rtrs	#brdrs
0.0.0.0	Simple-pass	3	4	7	0

Field	Description
#ifcs	Indicates the number of router interfaces attached to the particular area. These interfaces are not necessarily functional.
#nets	Indicates the number of transit networks that were found while doing the SPF tree calculation for this area.
#rtrs	Indicates the number of routers that were found when doing the SPF tree calculation for this area.
#brdrs	Indicates the number of area border routers that were found when doing the SPF tree calculation for this area.

Monitoring AS External Advertisements

Monitoring AS External Advertisements

You can display the AS external advertisements belonging to the OSPF routing domain. One line is printed for each advertisement. Each advertisement is defined by the following three parameters: its link state type (always 5 for AS external advertisements), its link state ID (called the LS destination), and the advertising router (called the LS originator).

To display AS external advertisements, perform the following steps:

Step	Action	
1	At the OSPF> prompt, enter:	
	<u>as</u> -external	
2	Press Return. The router's AS external advertisements are displayed.	

Example

OSPF> as-external

Туре	LS destination	LS originator	Seqno	Age	Xsum
5	0.0.0.0	128.185.123.22	0x80000084	430	0x41C7
5	128.185.131.0	128.185.123.22	0x80000080	450	0x71DC
5	129.9.0.0	128.185.126.24	0x80000080	676	0x324A
5	134.216.0.0	128.185.123.22	0x80000082	451	0x505A
5	192.26.100.0	128.185.126.24	0x80000080	21	0xDEE8

advertisements: 133

Checksum total: 0x43CC41

Monitoring AS External Advertisements

Field	Description		
Туре	Always 5 for AS external advertisements.		
LS destination	Indicates an IP network/subnet number. These network numbers belong to other autonomous systems.		
LS originator	Advertising router.		
Seqno, Age, Xsum	It is possible for several instances of an advertisement to be present in the OSPF routing domain at any one time. However, only the most recent instance is kept in the OSPF link state database (and printed by this command). The LS sequence number (Seqno), LS age (Age), and LS checksum fields (Xsum) are compared to see which instance is most recent. The LS age field is expressed in seconds. Its maximum value is 3600.		
# advertisements	Indicates the total number of AS external advertisements.		
Checksum total	The 32-bit sum (carries discarded) of the individual advertisement's LS checksum fields. This information can be used to quickly determine whether two OSPF routers have synchronized databases.		

Monitoring OSPF Databases

Monitoring OSPF Databases

You can display a description of the contents of a particular OSPF area's link state database. AS external advertisements are omitted from the display. A single line is printed for each advertisement. Each advertisement is defined by the following three parameters: its link state type (called Type), its link state ID (called the LS destination), and the advertising router (called the LS originator).

To display a particular database, perform the following steps:

Step	Action	
1	At the OSPF> prompt, enter:	
	<u>da</u> tabase <i>area-id</i>	
2	Press Return. The area's link state database is displayed.	

Example

OSPF> database 0.0.0.0

Туре	LS destination	LS originator	Seqno	Age	Xsum
1	128.185.123.22	128.185.123.22	0x80000084	442	0xCE2D
1	128.185.136.39	128.185.126.39	0x80000082	469	0x5045
2	128.285.125.40	128.185.129.40	0x80000049	457	0xA31
2	128.185.129.40	128.185.129.40	0x80000001	1623	0x12C9
6	224.0.2.6	128.185.184.11	0x8000003	376	0x2250

```
# advertisements: 14
Checksum total: 0x4BBC2
```

5-32 Configuring and Monitoring the OSPF Interface

Monitoring OSPF Databases

Field	Description
Туре	Separate LS types are numerically displayed: type 1 (router links advertisements), type 2 (network links advertisements), type 3 (network summaries), type 4 (AS boundary router summaries), and type 6 (group-membership-LSAs).
LS destination	Indicates what is being described by the advertisement.
LS originator	Advertising router.
Seqno, Age, Xsum	It is possible for several instances of an advertisement to be present in the OSPF routing domain at any one time. However, only the most recent instance is kept in the OSPF link state database (and printed by this command). The LS sequence number (Seqno), LS age (Age) and LS checksum fields (Xsum) are compared to see which instance is most recent. The LS age field is expressed in seconds. Its maximum value is 3600.
# advertisements	Indicates the total number of advertisements in the area database.
Checksum total	The 32-bit sum (carries discarded) of the individual advertisement's LS checksum fields. This information can be used to quickly determine whether two OSPF routers have synchronized databases.

NOTE

When comparing multicast-capable to nonmulticast routers, the above database checksum (and also # advertisements) will not necessarily match, because nonmulticast routers do not handle or store group-membership LSAs.

Monitoring OSPF Dump Routing Tables

Monitoring OSPF Dump Routing Tables

You can display all the routes that were calculated by OSPF and are now present in the routing table. Its output is similar in format to the IP console's dump routing tables command.

To display the routing tables, perform the following steps:

Step	Action	
1	At the OSPF> prompt, enter:	
	<u>d</u> ump	
2	Press Return. The OSPF routing tables are displayed.	

Example

OSPF> dump

Туре	Dest net	Mask	Cost	Age	Next hop (s)
Sbnt	16.0.0.0	FF000000	1	0	None
SPF	16.24.8.0	FFFFFF00	2	2	20.24.12.230
SPF*	20.24.12.0	FFFFFF00	1	1	Eth/1
Sbnt	21.0.0.0	FF000000	1	0	None
Dir*	21.24.166.0	FFFFFF00	1	0	Eth/5

Routing table size: 76 nets (55296 bytes), 5 nets known

Monitoring OSPF Dump Routing Tables

Field	Description
Туре	Indicates destination type. Net indicates that the destination is a network. All other destinations are covered by the OSPF routers command.
	• Sbnt — Indicates that the network is subnetted; such an entry is a placeholder only.
	• Dir — Indicates a directly connected network or subnet.
	• RIP — Indicates the route was learned through the RIP protocol.
	• Del — Indicates the route was deleted.
	• Stat — Indicates a statically configured route.
	• SPF — Indicates that the route is an OSPF intra-area route.
	• SPIA — Indicates that it is an OSPF inter-area routes.
	• SPE1, SPE2 — Indicates OSPF external routes (types 1 and 2 respectively).
	• Rnge — Indicates a route type that is an active OSPF area address range and is not used in forwarding packets.
Dest net	Destination host or network.
Mast	Displays the entry's subnet mask.
Cost Age	Displays the route cost.
Next hop (s)	Address of the next router on the path toward the destination host. A number in parentheses at the end of the column indicates the number of equal-cost routes to the destination. The first hops belonging to these routes can be displayed with the IP console's route command.

Monitoring OSPF Interface Statistics and Parameters

Monitoring OSPF Interface Statistics and Parameters

You can display statistics and parameters related to OSPF interfaces. If no arguments are given, a single line is printed summarizing each interface. If an interface's IP address is given, detailed statistics for that interface are displayed.

To display OSPF interface statistics and parameters, perform the following steps:

Step	Action
1	At the OSPF> prompt, enter: interface
	or
	interface ip-address
2	Press Return. The OSPF interface statistics and parameters are displayed.

Example

OSPF> interface

Ifc Address	Phys	assoc. Area	Туре	State	#nbrs	#adjs
16.24.8.251	Eth/1	0.0.0.0	Brdcst	64	1	1
16.24.11.251	Eth/1	0.0.0.0	Brdcst	64	1	1
17.1.1.251	Eth/2	0.0.0.0	Brdcst	64	0	0
25.24.13.251	Eth/3	0.0.0.0	Brdcst	64	0	0
18.1.1.251	Eth41	0.0.0.0	Brdcst	64	0	0
16.24.10.251	Eth/0	0.0.0.0	Brdcst	64	0	0
135.24.10.251	Eth/0	0.0.0.0	Brdcst	64	0	0

Ifc Address	assoc. Area	Туре	State	#nbrs	#adjs
128.185.123.22	0.0.0.0	Brdcst	64	0	0
128.185.124.22	0.0.0.0	Brdcst	64	0	0
128.185.125.22	0.0.0.0	Brdcst	64	6	2

Monitoring OSPF Interface Statistics and Parameters

Field	Description
Ifc Address	Interface IP address.
Phys	The physical interface.
Assoc Area	Attached area ID.
Туре	Can be either Brdcst (broadcast, for example, an Ethernet interface), P-P (a point- to-point network, for example, a synchronous serial line), Multi (nonbroadcast, multi-access, for example, an X.25 connection), or VLink (an OSPF virtual link).
State	Can be one of the following: 1 (down), 2 (looped back), 4 (waiting), 8 (point-to-point), 16 (DR other), 32 (backup DR), or 64 (designated router).
#nbrs	Number of neighbors. This is the number of routers whose hellos were received, plus those that were configured.
#adjs	Number of adjacencies. This is the number of neighbors in state Exchange or greater. These are the neighbors with whom the router has synchronized or is in the process of synchronization.

Monitoring OSPF Neighbors

Monitoring OSPF Neighbors

You can display statistics and parameters related to OSPF neighbors. If no arguments are given, a single line is printed summarizing each neighbor. If a neighbor's IP address is given, detailed statistics for that neighbor are displayed.

To display OSPF neighbor statistics and parameters, perform the following steps:

Step	Action
1	At the OSPF> prompt, enter: <u>n</u>eighbor
	or
	<u>n</u> eighbor <i>ip-address</i>
2	Press Return. OSPF neighbor statistics are displayed.

Example

OSPF> neighbor

Neighbor addr	Neighbor ID	State	LSrxl	DBsum	LSreq	Ifc
128.185.125.39	128.185.136.39	128	0	0	0	Eth/1

Field	Description
Neighbor addr	Displays the neighbor's address.
Neighbor ID	Displays the neighbor's OSPF router ID.
Neighbor State	Can be one of the following: 1 (Down), 2 (Attempt), 4 (Init), 8 (2-Way), 16 (ExStart), 32 (Exchange), 64 (Loading), or 128 (Full).
LSrxl	Displays the size of the current link state retransmission list for this neighbor.
DBsum	Displays the size of the database summary list waiting to be sent to the neighbor.
LSreq	Displays the number of more recent advertisements that are being requested from the neighbor.
Ifc	Displays the interface shared by the router and the neighbor.

Monitoring OSPF Router Routes

Monitoring OSPF Router Routes

You can display all router routes that were calculated by OSPF and are now present in the routing table. With the dump routing tables command, the Net field indicates that the destination is a network. The routers command covers all other destinations.

To display OSPF router routes, perform the following steps:

Step	Action
1	At the OSPF> prompt, enter:
	<u>r</u> outers
2	Press Return. OSPF multicast routing statistics are displayed.

Example

OSPF> routers

DType	RType	Destination	Area	Cost	Next hop(s)
BR	SPF	20.24.12.230	0.0.0.0	1	20.24.12.230
Fadd	SPF	20.24.12.230	0.0.0.0	1	0.0.0.2
1 4444	011	201211221200	0101010	-	0101012
BR	SPF	16.24.8.251	0.0.0.0	2	20.24.12.230
ASBR	SPIA	19.24.9.252	0.0.0.0	3	20.24.12.230

Monitoring OSPF Router Routes

Field	Description
DType	Indicates destination type. Net indicates that the destination is a network, ASBR indicates that the destination is an AS boundary router, and BR indicates that the destination is an area border router, and Fadd indicates a forwarding address (for external routes).
RType	Indicates route type and how the route was derived. SPF indicates that the route is an intra-area route (comes from the Dijkstra calculation); SPIA indicates that it is an inter-area route (comes from considering summary link advertisements).
Destination	Destination router's OSPF ID. For type D entries, one of the router's IP addresses is displayed (which corresponds to a router in another AS).
Area	Always displayed as 0.0.0.0.
Cost	Displays the route cost.
Next hop	Address of the next router on the path toward the destination host. A number in parentheses at the end of the column indicates the number of equal-cost routes to the destination.

Monitoring OSPF Link State Advertisement Size

Monitoring OSPF Link State Advertisement Size

You can display the number of link state advertisements (LSA) currently in the link state database, categorized by type.

To display the number of LSAs in the database, perform the following steps:

Step	Action
1	At the OSPF> prompt, enter:
	<u>si</u> ze
2	Press Return. OSPF LSAs are displayed.

Example

OSPF > size

#	Router-LSAs:	7
#	Network-LSAs:	6
#	Summary-LSAs:	14
#	Summary Router-LSAs:	2
#	AS External-LSAs:	44
#	Group-membership-LSAs:	21
#	Intra-area routes:	2
#	Inter-area routes:	1
#	Type 1 external routes	3
#	Type 2 external routes	1

Monitoring OSPF Statistics

Monitoring OSPF Statistics

You can display statistics generated by the OSPF routing protocol. The statistics indicate how well the implementation is performing, including its memory and network utilization. Many of the fields displayed are confirmation of the OSPF configuration.

To display OSPF statistics, perform the following steps:

Step	Action
1	At the OSPF> prompt, enter:
	<u>st</u> atistics
2	Press Return. OSPF statistics are displayed.

Example

OSPF> statistics

S/W version:	2.0
OSPF Router ID:	128.185.184.11
External comparison:	Type 2
AS boundary capability:	Yes
Import external routes:	EGP RIP STA DIR SUB
Orig. default route:	No (0,0.0.0.0)
Default route cost:	(1, Type 2)
Default forward. addr:	0.0.0

(continued on next page)

Monitoring OSPF Statistics

Attached areas:	2	Estimated # external routes:	300
Estimated # OSPF routers:	100	Estimated heap usage:	76000
OSPF packets rcvd:	60822	OSPF packets rcvd w/ errs:	28305
Transit nodes allocated:	1728	Transit nodes freed:	1715
LS adv. allocated:	7394	LS adv. freed:	7313
Queue headers alloc:	224	Queue headers avail:	224
# Dijkstra runs:	391	Incremental summ. updates:	0
Incremental VL updates:	0	Buffer alloc failures:	0
Multicast pkts sent:	49487	Unicast pkts sent:	557
LS adv. aged out:	0	LS adv. flushed:	521
Incremental ext. updates:	0		

Field	Description
S/W version	Displays the current OSPF software revision level.
OSPF Router ID	Displays the router's OSPF ID.
External comparison	Displays the external route type used by the router when importing external routes.
AS boundary capability	Displays whether external routes are imported.
Import external routes	Displays which external routes are imported.
Orig default route	Displays whether the router will advertise an OSPF default route. If the value is Yes and a nonzero number is displayed in parentheses, then a default route is advertised only when a route to the network exists.
Default route cost	Displays the cost and type of the default route (if advertised).
Default forward addr	Displays the forwarding address specified in the default route (if advertised).
Attached areas	Indicates the number of areas that the router has active interfaces to.

Monitoring OSPF Statistics

Estimated heap usage	Rough indication of the size of the OSPF link state database (in bytes).
Transit nodes	Allocated to store router links and network links advertisements.
LS adv	Allocated to store summary link and AS external link advertisements.
Queue headers	Form lists of link state advertisements. These lists are used in the flooding and database exchange processes; if the number of queue headers allocated is not equal to the number freed, database synchronization with some neighbor is in progress.
# Dijkstra runs	Indicates how many times the OSPF routing table was calculated from scratch.
Incremental summ updates, Incremental VL updates	Indicate that new summary link advertisements caused the routing table to be partially rebuilt.
Buffer alloc failures	Indicate buffer allocation failures. The OSPF system recovers from temporary lack of packet buffers.
Multicast pkts sent	Covers OSPF hello packets and packets sent during the flooding procedure.
Unicast pkts sent	Covers OSPF packet retransmissions and the database exchange procedure.
LS adv. aged out	Counts the number of advertisements that have hit 60 minutes. Link state advertisements are aged out after 60 minutes. Usually, they are refreshed before this time.
LS adv. flushed	Indicates number of advertisements removed (and not replaced) from the link state database.
Incremental ext. updates	Displays the number of changes to external destinations that are incrementally installed in the routing table.

Monitoring OSPF Traceroute Addresses

Monitoring OSPF Traceroute Addresses

You can display the entire OSPF routing path to a given destination, hop by hop using traceroute. Traceroute sends out three probes and prints the IP address of the responder, with the round-trip time associated with the response.

To display OSPF routing paths, perform the following steps:

Step	Action
1	At the OSPF> prompt, enter: <u>traceroute</u> <i>ip-destination-address</i>
2	Press Return. The OSPF destination area address and packet size is displayed.

Example

OSPF> traceroute 128.185.142.239

```
TRACEROUTE 128.185.124.110: 56 data bytes

1 128.185.142.7 16 ms 0 ms 0 ms

2 128.185.123.22 16 ms 0 ms 16 ms

3 * * *

4 * * *

5 128.185.124.110 16 ms ! 0 ms ! 0 ms
```

Field	Description
Traceroute	Displays the destination area address and the size of the packet being sent to that address.
1	Displays the first trace showing the destination's NSAP and the amount of time it took the packet to arrive at the destination. The packet is traced three times.
Destination unreachable	Indicates that no route to the destination is available.
3 * * * 4 * * *	Indicates that the router is expecting some form of response from the destination, but the destination is not responding.

The traceroute is done whenever the destination is reached, an ICMP Destination Unreachable is received, or the path length reaches 32 router hops.

When a probe receives an unexpected result, several indications can be displayed. They are:

Probe Result	Description
! N	Indicates that an ICMP Destination Unreachable (net unreachable) was received.
! H	Indicates that an ICMP Destination Unreachable (host unreachable) was received.
! P	indicates that an ICMP Destination Unreachable (protocol unreachable) was received. Since the probe is a UDP packet sent to a strange port, a port unreachable is expected.
ŗ	indicates that the destination was reached, but the reply sent by the destination was received with a TTL of 1. This usually indicates an error in the destination, prevalent in some versions of UNIX. The destination is inserting the probe's TTL in its replies. This unfortunately leads to a number of lines consisting solely of asterisks before the destination is finally reached.

Chapter 6

Configuring and Monitoring the ARP Interface

Overview

Introduction

The Address Resolution Protocol (ARP) is a low-level protocol that dynamically maps network layer addresses to physical medium access control (MAC) addresses. ARP allows the source host or GIGAswitch GS2000 router to find the MAC address of the destination host on the same network segment, given only the network layer address of the destination system.

For a detailed description of configuring ARP, see the *DIGITAL GIGAswitch GS2000 Line Card Management* guide.

In This Chapter

This chapter discusses the following topics:

Торіс	Page
ARP Address Translation Overview	6-3
Accessing ARP	6-4
Configuring ARP Entries	6-5
Configuring ARP Auto-Refresh	6-6
Listing ARP Configuration Data	6-7
Setting the ARP Refresh Timer	6-8
Monitoring ARP	6-9
Clearing the ARP Cache	6-10
Monitoring the ARP Cache	6-11

Торіс	Page
Monitoring ARP Interfaces	6-12
Monitoring ARP Protocols	6-13
Monitoring ARP Statistics	6-14

ARP Address Translation Overview

ARP Address Translation Overview

When a router translates a network layer address to a physical address, first the router accesses the ARP (translation) cache for the physical MAC address that corresponds to that network layer address. If the cache does not contain the physical MAC address, then the router broadcasts an ARP request to all hosts requesting a response from the host with the correct physical MAC address. The destination host with the correct physical MAC address to the router. The router sends the packet to the destination host and enters the physical MAC address into the translation cache for future use. Figure 6-1 illustrates how a router translates a network address to a physical address.

Figure 6-1: ARP Physical MAC Address Broadcast

Accessing ARP

Accessing ARP

To access the ARP configuration commands, perform the following step:

Step	Action
1	At the Config> prompt enter:
	<u>ar</u> p
2	Press Return. The ARP Config> prompt is displayed.

Configuring ARP Entries

Configuring ARP Entries

Adding an ARP Entry

ARP cache contains a list of MAC addresses that map to network layer addresses. To add a MAC address translation entry to the ARP cache, perform the following steps:

Step	Action	
1	At the ARP Config> prompt, enter:	
	<u>a</u> dd <u>e</u> ntry <i>interface-number ip-address mac-addr</i>	
2	Press Return. The ARP updates its database with the new data.	

Changing an ARP Entry

To change a MAC address translation entry in the ARP cache, at the ARP Config> prompt, enter:

change entry interface-number ip-address mac-addr

The hardware address parameter (mac-addr) is the address of the node being changed.

Deleting an ARP Entry

To delete a MAC address translation entry from the ARP cache, at the ARP Config> prompt, enter:

delete entry interface-number ip-address

The ARP deletes the entry from its database.

Configuring ARP Auto-Refresh

Configuring ARP Auto-Refresh

The auto-refresh function is the router's capability to send an ARP request based on the entry in the translation cache before the entry is deleted due to aging. An entry is deleted when its age reaches the refresh time value. The request is sent directly to the hardware address in the current translation instead of a broadcast. If auto-refresh is enabled, an ARP request is sent in this manner before the refresh timer is allowed to expire.

Enabling ARP Auto-Refresh

To enable ARP auto-refresh, perform the following steps:

Step	Action
1	At the ARP Config> prompt, enter: enable auto-refresh
	enable auto-refresh
2	Press Return.

Disabling Auto-Refresh

To disable ARP auto-refresh, at the ARP Config> prompt, enter:

disable auto-refresh

Listing ARP Configuration Data

Listing ARP Configuration Data

Listing ARP

The contents of the router's ARP configuration are stored in SRAM. The list command displays the current timeout settings for the refresh timer, whether auto refresh is enabled/disabled and any configure entries.

To list the ARP configuration data, perform the following steps:

Step	Action
1	At the ARP Config> prompt, enter:
	<u>l</u> ist <u>a</u> ll
2	Press Return. The ARP's configuration contents are displayed.

Listing ARP Configuration

To list the configuration for the ARP refresh timer and whether auto refresh is enabled/ disabled, at the ARP Config> prompt, enter:

<u>list c</u>onfig

Listing ARP Entries

To list the ARP entries in nonvolatile memory, at the ARP Config> prompt, enter:

<u>list entry</u>

Setting the ARP Refresh Timer

Setting the ARP Refresh Timer

Setting the ARP refresh timer changes the timeout value used for aging ARP entries. To change the timeout value for the refresh timer, enter the timeout value in minutes. A setting of zero (0) turns off (disables) aging ARP entries.

To set the ARP refresh timer, perform the following steps:

Step	Action		
1	At the ARP Config> prompt, enter:		
	<u>s</u> et <u>r</u> efresh-timer <i>timeout-value</i>		
2	Press Return. The ARP's refresh time is set.		

Monitoring ARP

Monitoring ARP

The following sections describe tasks you can perform to monitor your router's ARP protocol. To access the Monitor process, perform the following steps:

Step	Action		
1	At the Main prompt (Main>) enter: <u>m</u> onitor.		
2	Press Return. The Monitor prompt (Monitor>) is displayed.		
3	If the prompt is not displayed, press Return a second time.		
4	At the Monitor> prompt, enter: protocol <u>a</u>rp . The ARP> prompt is displayed.		

From the ARP Monitor> prompt, you can perform specific tasks to determine ARP statistics, ARP cache, and ARP-configured networks and protocols.

Clearing the ARP Cache

Clearing the ARP Cache

You can flush the ARP cache for a given network interface. The clear command can be used to force the deletion of bad translations.

To clear a particular interface, enter the interface number as part of the command. To obtain the interface number, use the Config> **list devices** command.

To clear ARP cache, perform the following steps:

Step	Action
1	At the ARP> prompt, enter: clear <i>ifc-#</i>
	<u>cr</u> cal ye-
2	Press Return. The ARP cache for the specified interface is cleared.

Example

ARP> clear 15

Monitoring the ARP Cache

Monitoring the ARP Cache

You can display the ARP cache for a given interface/protocol combination. To display the ARP cache for a particular interface, enter the interface number as part of the command. To obtain the interface number, use the Config>list devices command.

If the protocol is other than IP, HST for example, than the protocol number must also be given. This causes the console to display the hardware address to protocol address mappings stored in that database.

To display ARP cache, perform the following steps:

Step	Action	
1	At the ARP> prompt, enter:	
	<u>d</u> ump ifc-# optional-protocol-#	
2	Press Return. The ARP cache for the specified interface is displayed.	

Example

ARP> dump 15

Hardware Address	IP Address	Refresh
02-07-01-00-00-01	192.9.1.2	5

Monitoring ARP Interfaces

Monitoring ARP Interfaces

You can display the interfaces registered with ARP. The hardware command lists each ARP-registered interface, and displays each interface's hardware address space (Hardware AS) and local hardware address. Hardware addresses are displayed in hexadecimal.

To display ARP interfaces, perform the following steps:

Step	Action
1	At the ARP> prompt, enter:
	<u>h</u> ardware
2	Press Return. ARP-registered interfaces are displayed.

Example

ARP> hardware

Ifc	Interface	Hardware AS	Hardware Address
0	VNbus/0	1	00-00-F8-00-00-01
1	Eth/1	1	02-07-01-00-00-02
15	VLAN/15	1	00-00-F8-00-00-20
16	VLAN/16	1	00-00-F8-00-00-21

Monitoring ARP Protocols

Monitoring ARP Protocols

Example

ARP> protocol

You can display the protocol addresses registered with ARP. This command displays the interfaces, protocol name, protocol number, protocol address space (in hexadecimal), and local protocol addresses.

To display ARP protocol addresses, perform the following steps:

1 At the ARP> prompt, enter:		
	<u>p</u> rotocol	
2	Press Return. ARP-registered interfaces and protocol addresses are displayed.	

Interfaces	Protocol	(num)	AS	Protocol Address (es)
15 VLAN/15	IP	(0)	0800	192.9.1.1 18.124.0.11

Monitoring ARP Statistics

Monitoring ARP Statistics

You can display a variety of statistics about the operation of the GIGAs witch GS2000 router with ARP enabled.

To display ARP statistics, perform the following steps:

Step	Action
1	At the ARP> prompt, enter: <u>statistics</u>
2	Press Return. ARP statistics are displayed.

Example

ARP> statistics

ARP input packet overflows

Ifc	Net	Count
0	VNbus/0	0
1	Eth/1	0
15	VLAN/15	0
16	VLAN/16	0

ARP cache meters

Ifc	Prot	Max	Cur	Cnt	Alloc	Refresh:tot	Failure	TMOs:Refresh
0	4	1	1	1	1	0	0	0
1	0	2	2	12	12	0	0	0
2	4	1	1	1	1	0	0	0

Monitoring ARP Statistics

Field	Description
ARP input packet overflow	Displays counters that represent the number of ARP packets discarded on input because the ARP layer was too busy. The counts shown are per interface.
ARP cache meters	Consists of a variety of meters on the operation of the ARP cache. The counts shown are all per protocol, per interface.
Ifc	Displays the interface numbers.
Prot	Displays the protocol numbers.
Max	Displays the all-time maximum length hash chain.
Cur	Displays the current maximum length hash chain.
Cnt	Displays the count of entries currently active.
Alloc	Displays the count of entries created.
Refresh:Tot	Displays the number of refresh requests sent for this network interface and protocol.
Failure	Displays the number of auto-refresh attempt failures due to unavailability of internal resources. This count is not related to whether or not an entry was refreshed.
TMOs:Refresh	Displays the count of entries deleted due to a timeout of the refresh timer.

Appendix A DIGITAL Trace Facility

Overview

Introduction

This appendix provides an overview of the DIGITAL trace facility (DTF) version 3.0 and describes what information can be traced over the interfaces in DIGITAL GIGAswitch GS2000 routers having active tracepoints.

In This Appendix

The following topics are covered in this chapter:

Торіс	Page
DIGITAL Trace Facility	A-2
Accessing DTF	A-6

DIGITAL Trace Facility

DIGITAL Trace Facility

The GIGAswitch GS2000 router supports DIGITAL Trace Facility (DTF) operating in TCP/IP networks. DTF is a host-based utility that traces packets as they pass through the protocol layers within a router and displays the decoded packet on the host or records the trace data in a file for later analysis. DTF includes facilities for:

- filtering certain packet types at the source
- filtering the output using regular expressions
- performing validity check on packets
- displaying the output in full, brief or raw formats.

The GIGAswitch GS2000 performs all packet forwarding and bridging in its fast-path processor (FP), with only terminating and multicast packets sent to the application processor (AP) for processing. There are no DTF tracepoints in the FP which means that forwarded and bridged packets will not be traced. Router and bridge control packets (and all protocol control packets) are either terminating or are multicast and are processed by the AP and are traceable. By removing the forwarded packets from the traced data the GIGAswitch GS2000 can capture more control packets on any one tracepoint.

The points within a router that can be traced are known as *tracepoints*. Each tracepoint defines a number of *events* (up to 64) and each packet that is traced through the tracepoint is marked with one of these events by the router.

Tracepoints

Tracing occurs through tracepoints that are usually positioned in the transmit and receive routines of the protocol modules in the router. Each tracepoint has a name and state and when a packet passes through an active tracepoint, the packet is copied and queued to the DTF module in the GIGAswitch GS2000, which transmits it to the host where the DTF utility resides.

Each protocol module within the router may have zero or more tracepoints. For example, a tracepoint of *ATM INTERFACE Atm/** traces all ATM interfaces (of LANE or EBT type) whose names match the wildcard string Atm/*. Table A-1 summarizes the DTF tracepoints for the GIGAswitch GS2000 router.
DIGITAL Trace Facility

Tracepoint	Filters	Description
ATM interface <i>name</i>	tx, rx, aarptx, aarprx, apltx, aplrx, arptx, arprx, dntx, dnrx, iptx, iprx, ipxtx, ipxrx, ipv6tx, ipv6rx, moptx, moprx, ositx, osirx, xnstx, xnsrx	Traces all packets received by the AP on the ATM interface and all packets transmitted over that interface that originated from the router.
FDDI interface name	tx, rx, arptx, aarprx, apltx, aplrx, arptx, arprx, dntx, dnrx, iptx, iprx, ipxtx, ipxrx, ipv6tx, ipv6rx, moptx, moprx, ositx, osirx, xnstx, xnsrx	Traces all packets received by the AP on the FDDI interface and all packets transmitted over that interface that originated from the router.
VLAN interface name	tx, rx, aarptx, aarprx, apltx, aplrx, arptx, arprx, dntx, dnrx, iptx, iprx, ipxtx, ipxrx, ipv6tx, ipv6rx, moptx, moprx, ositx, osirx, xnstx, xnsrx	Traces all packets received by the AP on the VLAN interface and all packets transmitted over that interface that originated from the router.
IGMP interface <i>name</i>	tx, rx	Traces all IGMP packets transmitted and received by the IGMP module on the AP over the specified interface.
IP interface name	tx, rx, icmptx, icmprx, ospftx, ospfrx, tcptx, tcprx, udptx, udprx,	Traces all packets transmitted and received by the IP module on the AP over the specified interface. All IP packets received on the AP are traced by this tracepoint, however not all IP packets transmitted by the AP pass through this tracepoint. In particular most IP packets originated by the routing control protocols such as RIP and OSPF are sent directly to the data-link drivers and bypass this tracepoint. Packets originated by the UDP (other than RIP) and TCP based protocols do pass through this tracepoint.
OSPF interface <i>name</i>	tx, rx	Traces all packets transmitted and received by the OSPF module on the AP over the specified interface.
Event subsystem subsystem- list	trace, info, error, always	Traces all the ELS messages. The instance <i>name</i> is a list of ELS subsystems whose messages are traced. By default, all message types are traced and the filters can be used to restrict the trace to messages of a particular type.
		<u>Note:</u> Wildcards (*) cannot be used with this comand.

Table A-1: Router Tracepoints

DIGITAL Trace Facility

Events

When DTF initially connects to the router, it optionally instructs the router to filter the packets passing through the specified tracepoint to trace the events that match the events specified in the events list file located on the DTF host system.

When you run DTF on a host system, it uses a transport protocol to connect to the router you want to trace and also sends the parameters to use for the trace session. Events at the activated tracepoints are transmitted back to the host system for analysis (either live display, or recorded in a trace file for later analysis).

Events can be either traced or blocked. By default, all specified events are traced unless otherwise blocked by prefixing the event name with the exclamation point (!) character in the events list file. The special event name, denoted with as asterisk (*), is used to mean all events. If a filter list (event list) is not specified, then DTF assumes all events are traced. If a filter list is specified, then DTF uses the filter list to block the events before processing the list.

Session Trace Buffer Parameters

Session trace buffer parameters are forwarded to the GIGAswitch GS2000 by the host system at the start of the trace session. These parameters determine how much router resources are allocated to the trace session and how much of the data passing through the tracepoints is captured. The following is a list of session parameters sent to the GIGAswitch GS2000.

Parameter	Description	
Buffer Count	Specifies the number of trace buffers used to capture trace da during the session. The larger number of trace buffers that a used results in the less trace data lost.	
Buffer Size	Specifies the size (in bytes) of the trace buffers. This value determines the size of the data packet that can be traced.	
Capture Size	Specifies the number of bytes in the data packet that is copied into the trace buffer.	

DIGITAL Trace Facility

Trace Data Loss

Trace data loss occurs when there are not enough trace buffers available to trace the next data packet. To minimize the effect of trace data loss, use the following guidelines which are listed in order of effectiveness:

- Use filters to reduce the amount of data being traced.
- Increasing the buffer count allows more trace data to be buffered within the router.
- Reducing the capture size increases the packets that can be contained in each trace buffer.
- Increasing the buffer size increases buffering available to the trace system.
- Record the results instead of displaying them.

Accessing DTF

DTF version 3.0 software is included with the clearVISN Router Configurator software. It is in the install-directory/tools/supported/dtf/ subdirectory.

The latest versions of the DTF documentation and installation kits for each host platform are available over the Internet, and can be downloaded from the following World Wide Web locations:

- http://www.networks.digital.com
- http://www.networks.europe.digital.com (Europe)
- http://www.networks.digital.com.au (Asia Pacific)

Use the search feature to find the DTF Installation Kit.

Appendix B

Command Line Interface Quick Reference

Overview

Introduction

This appendix lists all the GIGAs witch GS2000 router commands at the command line interface (CLI) level using a command tree format. The following tables list the **Config** and **Monitor** commands:

To Find	Refer To
ARP Config Commands	Table B-1
ARP Monitor Commands	Table B-2
IP Config Commands	Table B-3
IP Monitor Commands	Table B-4
OSPF Config Commands	Table B-5
OSPF Monitor Commands	Table B-6
RIP Config Commands	Table B-7

To Configure ARP	Use These Commands
Auto-Refresh	<u>di</u> sable <u>a</u> uto-refresh
	<u>en</u> able <u>a</u> uto-refresh
Entry	<u>a</u> dd <u>e</u> ntry interface number protocol-type ip-address mac-addr
	<u>ch</u> ange <u>e</u> ntry interface number protocol-type ip- address mac-addr
	<u>d</u> elete <u>e</u> ntry <i>interface number ip-address</i>
	<u>l</u> ist <u>e</u> ntry
List	<u>l</u> ist <u>a</u> ll
	<u>l</u> ist <u>c</u> onfig
Refresh Timer	<u>s</u> et <u>r</u> efresh-timer <i>timeout</i> value

Table B-1: ARP Config Commands

Table B-2: ARP Monitor Commands

To Monitor ARP	Use These Commands
Clear	<u>cl</u> ear <i>ifc #</i>
Dump	<pre>dump ifc # optional protocol #</pre>
Hardware	<u>h</u> ardware
Protocol	<u>p</u> rotocol
Statistics	statistics

To Configure IP	Use These Commands
Access Control	<u>a</u> dd <u>access</u> -control type ip-source source-mask ip-dest dest-mask first-protocol last-protocol first-port last-port
	<u>de</u> lete <u>access</u> -control <i>record-number</i>
	<u>l</u> ist <u>ac</u> cess-controls
	move access-control from# to#
	<u>s</u> et <u>ac</u> cess-control <u>on</u>
Address	<u>a</u> dd <u>ad</u> dress interface-number ip-address address-mask
	<u>c</u> hange <u>a</u> ddress old ip-address new ip-address new subnet mask
	<u>de</u> lete <u>ad</u> dress <i>ip-address</i>
	<u>l</u> ist <u>ad</u> dress
Enable Enhanced	<u>dis</u> able <u>enhanced-proxy-arp</u>
Proxy ARP	<u>en</u> able <u>enhanced-proxy-arp</u>
	<u>s</u> et <u>enhanced-proxy-arp</u> <u>of</u> f
	<u>s</u> et <u>enhanced-proxy-arp</u> <u>on</u>
Add Enhanced	<u>a</u> dd <u>enhanced-proxy-arp</u> <u>s</u> ubnet
Proxy ARP	<u>de</u> lete <u>enhanced-proxy-arp</u> <u>s</u> ubnet
BootP	disable bootp-forwarding
Forwarding	enable bootp-forwarding
	<u>l</u> ist <u>b</u> ootp
BootP Server	add bootp-server server-ip-address
	<u>delete b</u> ootp-server server-ip-address
	<u>list b</u> ootp
Broadcast Forwarder	add broadcast-forwarder udp udp-port interface number destination ip-address
	delete broadcast-forwarder udp udp-port interface number destination ip-address
	<u>dis</u> able <u>br</u> oadcast-forwarding udp <i>udp-port interface</i> number
	<u>en</u> able <u>br</u> oadcast-forwarding udp <i>udp-port interface</i> number
	list broadcast-forwarding

Table B-3: IP Config Commands

To Configure IP	Use These Commands
Cache Size	<u>l</u> ist <u>s</u> izes <u>s</u> et <u>c</u> ache-size <i>number</i>
Default Network Gateway	<u>d</u> elete <u>d</u> efault <u>n</u> etwork-gateway <u>s</u> et <u>d</u> efault <u>n</u> etwork-gateway <i>gateway ip-address</i>
Default Subnet Gateway	<u>d</u> elete <u>d</u> efault <u>s</u> ubnet-gateway <i>subnetted-network</i> <u>s</u> et <u>d</u> efault <u>s</u> ubnet-gateway <i>subnetted-network</i>
Directed Broadcast	<u>dis</u> able <u>dir</u> ected-broadcast <u>en</u> able <u>d</u> irected-broadcast
Filter	<u>a</u> dd <u>f</u> ilter <i>ip-address ip-mask</i> <u>de</u> lete <u>f</u> ilter <i>destination</i> <u>l</u> ist <u>f</u> ilter
Internal IP Address	<u>s</u> et <u>in</u> ternal-ip-address <i>ip-address</i>
IP host only default network gateway	<u>d</u> elete <u>ip-host-only-default n</u> etwork gateway <u>s</u> et <u>ip-host-only-default n</u> etwork gateway <i>IP-address</i>
IP host only default subnet gateway	<u>d</u> elete <u>ip-host-only-default s</u> ubnet gateway <u>s</u> et <u>ip-host-only-default s</u> ubnet gateway <i>IP-address</i>
Reassembly Size	<u>l</u> ist <u>s</u> ize <u>s</u> et <u>re</u> assembly-size <i>number</i>
RFC925 Routing	<u>dis</u> able <u>rf</u> c925-routing <u>en</u> able <u>rf</u> c925-routing
Route	<u>a</u> dd <u>r</u> oute ip-network/subnet ip-mask next-hop cost <u>c</u> hange <u>r</u> oute destination new-mask new-first-hop new- cost <u>de</u> lete <u>r</u> oute destination <u>l</u> ist <u>ro</u> ute
Routing Table Size	<u>list s</u> ize <u>s</u> et <u>routing</u> table-size

To Configure IP	Use These Commands
Router ID	<u>l</u> ist <u>all</u> <u>s</u> et <u>route</u> r-id <i>IP-address</i>

Table B-4: IP Monitor Commands

To Monitor IP	Use These Commands
Access	access
Counters	<u>co</u> unters
Dump	dump
ICMP-counters	<u>ic</u> mp-counters
Interface	<u>in</u> terface
Route	route IP-destination-address
Sizes	sizes
Static	<u>st</u> atic
Traceroute	traceroute IP-destination-address

To Configure OSPF	Use These Commands
Area	<u>de</u> lete <u>a</u> rea <i>area#</i>
	<u>li</u> st <u>ar</u> ea
	<u>s</u> et <u>a</u> rea
AS Boundary	<u>di</u> sable <u>a</u> s boundary routing
	<u>en</u> able <u>a</u> s boundary
Comparison	<u>s</u> et <u>c</u> omparison
Interface	<u>d</u> elete <u>i</u> nterface <i>IP-address</i>
	<u>d</u> isable <u>i</u> nterface <i>IP-address</i>
	<u>en</u> able <u>i</u> nterface <i>IP-address</i>
	<u>li</u> st <u>i</u> nterface
	<u>s</u> et <u>i</u> nterface <i>IP-address</i>
Neighbor	add neighbor IP-address IP-address of neighbor
	<u>de</u> lete <u>ne</u> ighbor <i>IP-address IP-address of neighbor</i>
	<u>li</u> st <u>ne</u> ighbor
Nonbroadcast	<u>de</u> lete <u>no</u> n-broadcast <i>IP-address</i>
	<u>li</u> st <u>no</u> n-broadcast network description
	<u>s</u> et <u>n</u> on-broadcast <i>IP-address</i>
OSPF Routing	<u>di</u> sable <u>o</u> spf routing protocol
Protocol	<u>en</u> able <u>o</u> spf routing protocol
Range	<u>a</u> dd <u>r</u> ange area# IP-address Mask
	<u>de</u> lete <u>r</u> ange <i>area# IP-address</i>
Virtual Link	<u>d</u> elete <u>v</u> irtual-link
	<u>di</u> sable <u>v</u> irtual-link <i>IP-address</i>
	<u>en</u> able <u>v</u> irtual-link <i>IP-address</i>
	<u>li</u> st <u>v</u> irtual-link
	<u>s</u> et <u>v</u> irtual-link

Table B-5: OSPF Config Commands

To Monitor OSPF	Use These Commands
Advertisement	<u>ad</u> vertisement ls-type link-state-id advertising- router area-id
Area	area
AS External	<u>as</u> -external
Database	<u>da</u> tabase <i>area-id</i>
Dump	<u>d</u> ump
Interface	interface <i>ip-address</i>
Neighbor	<u>ne</u> ighbor <i>ip-address</i>
Routers	<u>r</u> outers
Size	size
Statistics	<u>st</u> atistics
Traceroute	traceroute IP-destination-address

Table B-6: OSPF Monitor Commands

To Configure RIP	Use These Commands
Accept RIP Route	<u>a</u> dd <u>accept</u> -rip-route <i>ip-network/subnet</i> <u>de</u> lete <u>accept</u> -rip-route <i>net-number</i> <u>l</u> ist <u>r</u> ip-routes-accept
Broadcast Address	set broadcast-address <i>ip-interface-address</i>
Originate RIP Default	<u>s</u> et <u>o</u> riginate-rip-default
Override Default	<u>dis</u> able <u>ov</u> erride default <i>gateway address</i> <u>en</u> able <u>ov</u> erride default <i>gateway address</i>
Override Static Routes	<u>dis</u> able <u>ov</u> erride <u>s</u> tatic-routes <i>ip-address</i> <u>en</u> able <u>ov</u> erride <u>s</u> tatic-routes <i>ip-address</i>
Receiving RIP	<u>dis</u> able <u>re</u> ceiving <u>r</u> ip <i>ip-address</i> <u>en</u> able <u>re</u> ceiving <u>r</u> ip <i>ip-address</i>
Receiving Dynamic Nets	<u>dis</u> able <u>re</u> ceiving <u>dy</u> namic <u>n</u> ets <i>ip-address</i> <u>en</u> able <u>en</u> able <u>re</u> ceiving <u>dy</u> namic <u>n</u> ets <i>ip-address</i>
Receiving Dynamic Subnets	<u>dis</u> able <u>re</u> ceiving <u>dy</u> namic <u>s</u> ubnets <i>ip-address</i> <u>en</u> able <u>re</u> ceiving <u>dy</u> namic <u>s</u> ubnets <i>ip-address</i>
RIP	<u>di</u> sable <u>ri</u> p <u>en</u> able <u>ri</u> p
Sending Default Routes	<u>dis</u> able <u>s</u> ending <u>d</u> efault-routes <i>ip-address</i> <u>en</u> able <u>s</u> ending <u>d</u> efault-routes <i>ip-address</i>
Sending Net Routes	<u>dis</u> able <u>s</u> ending <u>n</u> et-routes <i>ip-address</i> <u>en</u> able <u>s</u> ending <u>n</u> et-routes <i>ip-address</i>
Sending Poisoned Reverse Routes	<u>dis</u> able <u>s</u> ending <u>p</u> oisoned-reverse-routes <i>ip-address</i> <u>en</u> able <u>s</u> ending <u>p</u> oisoned-reverse-routes <i>ip-address</i>
Sending Subnet Routes	<u>dis</u> able <u>s</u> ending <u>su</u> bnet-routes <i>ip-address</i> <u>en</u> able <u>s</u> ending <u>su</u> bnet-routes <i>ip-address</i>
Sending Static Routes	<u>dis</u> able <u>s</u> ending <u>st</u> atic-routes <i>ip-interface-address</i> <u>en</u> able <u>s</u> ending <u>st</u> atic-routes <i>ip-interface-address</i>

Table B-7: RIP Config Commands

Appendix C

Counters

Overview

Introduction

This appendix provides an overview of the counters and the effect of packets on counters as packets flow through the router.

In This Appendix

The following topics are covered in this chapter:

Торіс	Page
Packet Counter Overview	C-2
Router Packet Overview	C-5
Supported Counters	C-6

Packet Counter Overview

Packet Counter Overview

The module contains packet counters that allow you to observe the amount and types of traffic being processed. The counters keep track of sent and received traffic, in categories that indicate how many packets have reached various outcomes (terminated, dropped, bridged, routed, flooded, fragmented, and so on).

Packet counters exist at four internal layers to help the user trace packets as they flow within the module:

- Logical interfaces
- Bridge ports
- VLAN interfaces
- IP router

When a packet is received by an entity within a layer, the packet is either dropped, processed, or passed on to one or more entities within the next layer. Dropped packets cause an error counter within that layer to increment. In some situations, such as bridge ports and interfaces, entities are tightly coupled and dropped packets can increment error counters in two layers. The effects of the packets are not seen in counters at any layers it does not reach. Packets that are successfully processed at a layer increment non-error counters within that layer. Packets sent to the next layer increment non-error counters in that subsequent layer as well.

Figure C-1 illustrates the four layers and shows the relationships between logical interfaces, bridge ports, VIs, and the IP router. The figure shows which counters are incremented for a typical path a packet can take within a module.

Packet Counter Overview

Figure C-1: Packet Flow

Packet Counter Overview

Packets arriving at the module enter the physical interface and can then travel through each of the four layers. Physical interfaces are the connection jacks for cables, and have a one-to-one or one-to-many (in the case of an ATM physical interface) relationship with interfaces. Logical interfaces, shown as circles in Figure C-1, are the lowest layer where counters are used. All packets received and sent are counted by logical interface counters. Error counters for interfaces can catch some basic types of errors appropriate to the level of decoding the packet has undergone at this point (for example, a bad FCS) or other errors that are not necessarily associated with a specific higher-level protocol (for example, buffer overflow). If such an error is detected on an interface, the packet being sent or received is discarded, and the appropriate interface error counter is incremented. Otherwise, it is passed to a bridge port (where bridging runs on all interfaces).

Packets arriving at a bridge port (dark triangle in Figure C-1) are first subject to the effects of bridging. They may be dropped for numerous reasons (destination address filtering, STP port state, and so on), each causing a single bridge error or a dropped packet counter to increment for that port. If a packet is not dropped, its destination address determines whether it is unicast to another port, flooded out all ports, terminated, and/or delivered to routing. If the packet is bridged out other ports, the bridge attempts to translate and enqueue the packet for sending, if necessary. A failure in this process causes a packet to be dropped and the error counter to be incremented for the received port. A success means that the packet is sent out other ports and counted by them as well. If a received packet is not dropped or sent out by bridging, it is terminated (such as an STP BPDU) and/or submitted to routing.

VLAN interfaces (VIs) receive all packets destined to routing. VIs are paired one-toone with VLANs, which are groups of bridge ports. VIs submit packets for routing on behalf of any ports within their VLAN. VI receive counters keep track of the total number of packets submitted to routing from their VLAN. Outbound packets sent by routing also go through a VI for transmission on a VLAN. VI transmit counters increment once for each packet sent by routing, although multiple packets may be sent on one or more ports (whose counters are incremented as well). Packets sent or received on VIs cannot be dropped by the VI. All errors, overflows, and so on, are detected and counted in other layers.

Packets reaching the router may be terminated and are counted by routing. The module IP counters count transmitted, received, and error packets across all VIs and do not display this information on a per-VI basis.

Router Packet Overview

Router Packet Overview

The module offers two primary services: bridging and routing. Routing is layered on top of bridging and packets destined for routing are subject to the effects of bridging. For example, routed packets can be dropped due to a user-defined protocol filter on a bridge port and these packets are counted as being received by bridging, but not by routing.

In addition to the packets sent to the router, the router can generate packets to send out. For example, the router is capable of generating a Ping request for another node on the network. In this situation, the Ping packets are counted by IP counters, VI transmit counters, interface transmit counters and bridge port transmit counters.

Packets destined to the router are terminated by the router. You can filter packets by enabling a filter to suppress packets destined to a network or subnet, or by disabling a protocol type. In this situation, only the interface and bridge port receive packet counters are affected.

Supported Counters

Supported Counters

This section provides a brief description of interface counters, bridge port counters and the relationship between both counter types.

For a complete definition of interface counters and bridge port counters, refer to the *DIGITAL GIGAswitch GS2000 Line Card Management* manual.

Interface Counters

The following table describes each interface counter (IC) associated with the module. Interface counters IC1A, IC2A, IC3A and IC4A are identical to IC1, IC2 IC3 and IC4, except the "A" counters represent VI counters.

Interface Counter Number	Interface Counter Name
IC1, IC1A	Unicast packets received
IC2, IC2A	Multicast packets received
IC3, IC3A	Unicast packets transmitted
IC4, IC4A	Multicast packets transmitted
IC5	Input overflow drops
IC6	Input error drops
IC7	Input unknown protocol drops
IC8	Input congestion control drops
IC9	Output overflow drops
IC10	Output error drops

Supported Counters

Bridge Port Counters

The following table describes each module bridge port counter (BC).

Counter Number	Counter Name
BC1	Port restarts
BC2	Total frames received by interface
BC3	IP frames fragmented
BC4	IP frames not fragmented
BC5	Frames submitted to bridging
BC6	Frames submitted to routing
BC7	Frames with unknown destination address
BC8	Frames causing learning transactions
BC9	Source address filter drops
BC10	Destination address filter drops
BC11	Protocol filter drops
BC12	Address rate limiting drops
BC13	Protocol rate limiting drops
BC14	Input buffer overflow drops
BC15	Input queue overflow drops
BC16	Source or destination port blocked drops
BC17	Terminating queue overflows
BC18	Fragmentation queue overflows
BC19	Translate flood queue overflows
BC20	Translation failures
BC21	Frames sent by bridging
BC22	Transmit queue overflows
BC23	Transmit errors
BC24	Too big to send on port drops

Supported Counters

Counter Relationships

Some simple relationships exist between interface counters, bridge port counters, and VI counters. For a given packet in Figure C-1, the following relationships exist.

Receive Relationships

The sum of unicast and multicast packets received on an interface is the total of all received packets. It is expressed as:

IC1 + IC2 = BC2

Some packets received on an interface may be dropped before being submitted to bridging. It is expressed as:

 $BC2 \ge BC5$

Some packets submitted to bridging will be submitted to routing. The rest are either dropped or bridged. It is expressed as:

 $BC5 \ge BC6$

The packets submitted to routing by a port's VI may represent only a portion of the packets received by that VI since the VI's VLAN may contain other ports. It is expressed as:

 $BC6 \le IC1A + IC2A$

Transmit Relationships

Some packets sent by bridging may be dropped at the interface layer. It is expressed as:

 $IC3 + IC4 \le BC21$

Index

Α

Accept RIP route deleting 4-7 listing 4-7 Access controls adding 3-11 deleting 3-13 listing 3-13 moving 3-13 setting 3-13 Adding accept RIP route 4-7 access controls 3-11 ARP entry 6-5 BootP server 3-22 Enhanced proxy ARP subnets 3-20 filters 3-27 IP address 3-5 routes 3-9 UDP broadcast forwarding 3-30 Address Resolution Protocol 6-1 overview 6-3 ARP accessing 6-4 cache 6-11 clearing cache 6-10 dump 6-11 enabling 6-4 entries 6-7 hardware 6-12 monitoring interfaces 6-12 protocol 6-13 statistics 6-14 ARP auto-refresh disabling 6-6 enabling 6-6 ARP contents 6-7 ARP entry adding 6-5 changing 6-5 deleting 6-5

ARP refresh timer 6-8 ARP timers 6-7 Autonomous system 4-3, 4-6

В

BootP forwarding disabling 3-21 enabling 3-21 Listing 3-21 BootP server adding 3-22 deleting 3-22 listing 3-22 Bridge port defined 1-5 Bridge port versus interface numbering 1-6 Broadcast address listing 3-23 setting 3-23

С

Changing ARP entry 6-5 IP address 3-6 routes 3-9 Counters 3-50

D

Default network gateway deleting 3-24 setting 3-24 Default subnet gateway deleting 3-25 setting 3-25 Deleting accept RIP route 4-7 access controls 3-13 ARP entry 6-5 BootP server 3-22 default network gateway 3-24

default subnet gateway 3-25 Enhanced proxy ARP subnets 3-20 filters 3-27 internal IP address 3-7 IP address 3-6 IP host-only default subnet gateway 3-36 router ID 3-8 routes 3-9 UDP broadcast forwarding 3-31 **DIGITAL Trace Facility** accessing A-6 events A-4 overview A-1, C-1 Session Trace Buffer Parameters A-4 trace data loss A-5 tracepoints A-2 Directed broadcast disabling 3-26 enabling 3-26 Disabling ARP auto-refresh 6-6 BootP forwarding 3-21 directed broadcast 3-26 Enhanced proxy ARP 3-19 override static routes 4-10 path splitting 3-28 receiving dynamic nets 4-12 receiving dynamic subnets 4-12 receiving RIP 4-11 **RIP 4-2** sending default routes 4-13 sending net routes 4-14 sending poisoned reverse routes 4-15 sending static routes 4-16 sending subnet routes 4-15 UDP broadcast forwarding 3-32 DTF see DIGITAL Trace Facility A-1 Dump 3-43 Dynamic commands 1-19

Ε

Enabling ARP 6-4

ARP auto-refresh 6-6 BootP forwarding 3-21 directed broadcast 3-26 Enhanced proxy ARP 3-18 override default 4-9 override static routes 4-10 path splitting 3-28 receiving dynamic nets 4-11 receiving dynamic subnets 4-12 receiving RIP 4-11 **RIP 4-2 RIP** flags 4-4 sending default routes 4-13 sending net routes 4-14 sending poisoned reverse routes 4-14 sending static routes 4-16 sending subnet routes 4-15 UDP broadcast forwarding 3-32 Enhanced Proxy ARP 3-15 Enhanced proxy ARP communicating on a LAN 3-15 communicating on a VLAN 3-16 communicating on an extended LAN 3-15 configuring ARP hosts 3-16 disabling 3-19 enabling 3-18 **ICMP** redirect 3-16 indirect proxy 3-15 setting 3-19 Enhanced proxy ARP subnets adding 3-20 deleting 3-20

F

Filters adding 3-27 deleting 3-27 listing 3-27

ICMP Counters 3-40 ICMP redirect 3-16 Indirect proxy 3-15 Interface versus bridge port numbering 1-6 Internal IP address 3-7 deleting 3-7 setting 3-7 IP accessing the configuration process 3-4 adding an address 3-5 changing an address 3-6 enabling 3-3 monitoring 3-38 IP access 3-39 IP forwarding statistics 3-50 IP host-only default network gateway setting 3-35 IP host-only default subnet gateway deleting 3-36 setting 3-36 IP interface addresses 3-42 **IP** parameters 3-49 IP routing destinations 3-45 IP routing paths 3-46 IP routing table contents 3-43 IP static routes 3-48

L

Listing accept RIP route 4-7 ARP 6-7 ARP entries 6-7 ARP timers 6-7 BootP forwarding 3-21 BootP server 3-22 broadcast address 3-23 filters 3-27 internal IP address 3-7 IP address 3-6 protocols 3-37 reassembly size 3-29 router ID 3-8 routes 3-9 routing table size 3-10 Logical interface defined 1-4

Μ

Monitoring ARP cache 6-10 to 6-11 ARP interfaces 6-12 ARP protocol 6-13 ARP statistics 6-14 **ICMP** Counters 3-40 IP 3-38 IP access 3-39 IP forwarding statictics 3-50 IP interface addresses 3-42 **IP** parameters 3-49 IP routing destinations 3-45 IP routing paths 3-46 IP routing table contents 3-43 IP static routes 3-48 Moving access controls 3-13

Ν

Network Interfaces defined 1-3

0

Originate RIP default 4-8 Override default disabling 4-9 enabling 4-9 Override static routes disabling 4-10 enabling 4-10

Ρ

Path Splitting disabling 3-28 enabling 3-28 Physical interface defined 1-3 Ports defined 1-3 Protocols listing 3-37

R

Reassembly size listing 3-29 setting 3-29 Receiving dynamic nets disabling 4-12 enabling 4-11 Receiving dynamic subnets disabling 4-12 enabling 4-12 Receiving RIP disabling 4-11 enabling 4-11 RIP broadcasts 4-6 converting to OSPF 4-6 customizing 4-5 disabling 4-2 enabling 4-2 enabling flags 4-4 limitations 4-3 Router ID deleting 3-8 listing 3-8 setting 3-8 Routes adding 3-9 changing 3-9 deleting 3-9 listing 3-9 Routing table size listing 3-10 setting 3-10 Routing, enabling 3-3

S

Sending default routes disabling 4-13 enabling 4-13 Sending net routes disabling 4-14 enabling 4-14 Sending posioned reverse routes disabling 4-15

enabling 4-14 Sending static routes disabling 4-16 enabling 4-16 Sending subnet routes disabling 4-15 enabling 4-15 Setting access controls 3-13 ARP refresh timer 6-8 broadcast address 3-23 default network gateway 3-24 default subnet gateway 3-25 Enhanced proxy ARP 3-19 internal IP address 3-7 IP host-only default network gateway 3-35 IP host-only default subnet gateway 3-36 originate RIP default 4-8 reassembly size 3-29 **RIP** broadcasts 4-6 router ID 3-8 routing table size 3-10

Т

Traceroute 3-46

U

UDP broadcast forwarding 3-30 adding 3-30 deleting 3-31 disabling 3-32 enabling 3-32 Upgrading software 3-35

V

Virtual LAN. See VLAN 1-6 VLAN defined 1-6 VLAN Interface 1-8 VLAN logical interface defined 1-7 VLAN Secure Domain. See VSD 1-6 VLAN Secure Domains 2-2 VSD

defined 1-6 Introduction 2-1