Debug Command Reference

O Digital Equipment Corporation 1995.
All Rights Reserved.

The products and specifications, configurations, and other technical information regarding the products
contained in this manual are subject to change without notice. All statements, technical information, and
recommendations contained in this manual are believed to be accurate and reliable but are presented without
warranty of any kind, express or implied, and users must take full responsibility for their application of any
products specified in this amual.

This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in
accordance with the instruction manual for this device, may cause interference to radio communications. This
equipment has been tested and found to comply with the limits for a Class A computing device pursuant to
Subpart J of Part 15 of FCC Rules, which are designptbiade reasonable protection against such
interference when operated in a commercial environment. Operation of this equipment in a residential area is
likely to cause interference, in which case users at their own expense will be required to take whatever
measures may be required to correct the interference.

Possession, use, or copying of the software described in this publication is authorized only pursuant to a valid
written license from Digital or an authorized sublicensor.

Digital Equipment Corporation makes no representations that the use of its products in the manner described
in this publication will not infringe on existing or future patent rights, nor do the descriptions contained in
this publication imply the granting of licenses to make, use, or sell equipment or software in accordance with
the description.

The following are trademarks of Digital Equipment Corporation: DDCMP, DEC, DECnet, DECNIS,
DECserver, DECsystem, DECwindows, Digital, DNA, OpenVMS, ULTRIX, VAX, VAXstation, VMS,
VMScluster, and the DIGITAL logo.

Portions of this document is used with permission of Cisco Systems, Incorporated. Copy@§it €1995,
Cisco Systems, Inc.

The following third-party software may be included with your product and will be subject to the software
license agreement:

CiscoWorks software and documentation are based in part on HP OpenView under license from the Hewlett-
Packard Company. HP OpenView is a trademark of the Hewlett-Packard Company. Copyright © 1992, 1993
Hewlett-Packard Company.

The Cisco implementation of TCP header compression is an adaptation of a program developed by the
University of California, Berkeley (UCB) gsart of UCB’s public domain version of the UNIX operating
system. All rights reserved. Copyright © 1981, Regents of the University of California.

Network Time Protocol (NTP). Copyright © 1992, David L. Mills. The University of Delaware makes no
representations about the suitability of this software forpampose.

Point-to-Point Protocol. Copyright 8989, Carnegie-M#&n University. All rights reserved. The name of the
University may not be used to endorse or promote products derived from this software without specific prior
written permission.

The Cisco implementation GIN3270 is an adaptation of the tn3270, curses, amddap programs
developed by the University of California, Berkeley (UCB) as part of UCB’s public domain version of the
UNIX operating system. All rights reservediyright © 181-1988, Rgents of the University of California.

Cisco incorporates Fastmac software in some Token Ring products. Fastmac software is licensed to Cisco by
Madge Networks Limited.

XRemote is a trademark of Nebvrk ComputingDevices, Inc. Copyright © 1989, Network Computing
Devices, Inc., Mountain View, California. NCD makes no representations about the suitability of this
software for any purpose.

The X Window System is a trademark of the Massachusetts Institute of Technabpgyigt © 1987,
Digital Equipment Corporation, Maynard, Massachusetts, and the Massachusetts Institute of Technology,
Cambridge, Massachusetts. All rights reserved.

THESE MANUALS AND THE SOFTWARE OF THE ABOVE-LISTED SUPPLIERS ARE PROVIDED
“AS 1S” WITH ALL FAULTS. DIGITAL AND THE ABOVE-NAMED SUPPLIERS DISCLAIM ALL
WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING THOSE OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE OR ARISING FROM A COURSE OF DEALING, USAGE,
OR TRADE PRACTICE.

IN NO EVENT SHALL DIGITAL OR ITS SUPPLIERS BE LIABLE FOR ANY INDIRECT, SPECIAL,
CONSEQUENTIAL, OR INCIDENTAL DAMAGES, INCLUDING, WITHOUT LIMITATION, LOST
PROFITS OR LOSS OR DAMAGE TO DATA ARISING OUT OF THE USE OR INABILITY TO USE
THIS MANUAL, EVEN IF DIGITAL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES.

Notice of Restricted Rights:

Use, duplication, or disclosure by the Government is subject to restrictions as set forth in subparagraph (c) of
the Commercial Computer Software - Restricted Rights clause at FAR §52.227-19 and subparagraph
(c)(1)(ii) of the Rights in Technical Data and Computer Software clause at DFARS §252.227-7013. The
information in this manual is subject to change without notice.

Access Without Compromise, Catalyst, CD-PAC, CiscoFusion, CiscoWorks, HyperSwitch, Internetwork
Operating System, 10S, Netscapint and Click Internetorking, SMARTnet The Packet UniverCD
Workgroup Diretor, and Workgroup Stacke trademarks, and Cisco, Cisco Systems and the Cisco logo are

registered trademarks of Cisco Systems, Inc. All gtheducts or services mentioned in these danimare
the trademarks, service marks, registered trademarks, or registered service marks of their respective owners.

IR OF CONTENTS

About This Manual

Chapter 1

Chapter 2

XXi
Audience and Scope xxi
Document Organization and Use xxi

Document Conventions xxii

Using Debug Commands 1-1
Entering Debug Commands 1-1

Using the Debug ? Command 1-2
Using the Debug All Command 1-2
Generating Debug Command Output 1-2

Redirecting [2bugging and Error Meage Output 1-3
Enabling Message Logging 1-3
Setting the Message Logging Levels 1-3
Limiting the Types of Logging Messages Sent to the Console 1-4
Logging Messages to an Internal Buffer 1-4
Limiting the Types of Logging Messages Sent to Another Monitor
Logging Messages to a UNIX Syslog Server 1-5
Limiting Messages to a Syslog Server 1-5

Debug Commands 2-1
debug apple arp 2-2

debug apple domain 2-4
debug apple errors 2-6
debug apple events 2-8
debug apple nbp 2-13
debug apple packet 2-16
debug apple remap 2-18
debug apple routing 2-20
debug apple zip 2-22
debug arp 2-24

debug atm errors 2-26
debug atm events 2-27
debug atm packet 2-30
debug bri 2-32

debug broadcast 2-34
debug cdp 2-37

Table of Contents v

debug channel events 2-38
debug channel packets 2-40
debug cins esis events 2-42
debug cins esis packets 2-43
debug clns events 2-45
debug clns igrp packets 2-47
debug clns packet 2-49
debug clns routing 2-50
debug compress 2-51

debug decnet adj 2-52
debug decnet connects 2-54
debug decnet events 2-56
debug decnet packet 2-57
debug decnet routing 2-58
debug dialer 2-60

debug dspu activation 2-62
debug dspu packet 2-64
debug dspu state 2-66
debug dspu trace 2-68
debug eigrp fsm 2-70

debug eigrp packet 2-72
debug frame-relay 2-74
debug frame-relay events 2-77
debug frame-relay Imi 2-78
debug frame-relay packets 2-81
debug ip dvmrp 2-83

debug ip eigrp 2-86

debug ipicmp 2-88

debug ip igmp 2-92

debug ip igrp events 2-93
debug ip igrp transaction 2-95
debug ip mpacket 2-97
debug ip mrouting 2-99
debug ip ospf events 2-101

vi Debug Command Reference

debug ip packet 2-102

debug ip pim 2-106

debug ip rip 2-109

debug ip routing 2-111

debug ip security 2-113
debug ip tcp driver 2-115
debug ip tcp driver-pak 2-117
debug ip tcp transactions 2-119
debug ipx ipxwan 2-121
debug ipx packet 2-123
debug ipx routing 2-125
debug ipx sap 2-127

debug isdn-event 2-132

debug isdm921 2-136

debug isdm931 2-142

debug isis adj packets 2-146
debug isis spf statistics 2-147
debug isis update-packets 2-149
debug lapb 2-151

debug lat packet 2-155
debug lexrcmd 2-157

debug Inm events 2-160
debug Inmllc 2-162

debug Inm mac 2-165

debug local-ack state 2-167
debug netbios-name-cache2-169
debug packet 2-172

debug ppp 2-175

debug gllc error 2-184

debug gllc event 2-185

debug gllc packet 2-186
debug gllc state 2-187

debug gllc timer 2-188

debug gllc x25 2-189

Table of Contents vii

debug rif 2-190

debug sdic 2-193

debug sdic local-ack 2-197
debug sdllc 2-199

debug serial interface 2-201
Debug Serial Interface for Frame Relay Encapsulation 2-201
Debug Serial Interface for HDLC 2-202
Debug Serial Interface for HSSI 2-203
Debug Serial Interface for ISDN Basic Rate2-204
Debug Serial Interface for an MK5025 Device?2-205
Debug Serial Interface for SMDS Encapsulatio@2-205

debug serial packet 2-207
Debug Serial Packet for SMDS EncapsulatioB-207

debug source-bridge 2-208
debug source event 2-211
debug span 2-216

debug sse 2-219

debug standby 2-221
debug stun packet 2-223
debug tftp 2-226

debug tokenring 2-227
debug vines arp 2-229
debug vines echo 2-231
debug vines ipc 2-232
debug vines netrpc 2-234
debug vines packet 2-236
debug vines routing 2-238
debug vines service 2-240
debug vines state 2-242
debug vines table 2-243
debug x25 all 2-244
debug x25 events 2-249
debug x25vc 2-250
debug xns packet 2-251
debug xns routing 2-252

viii Debug Command Reference

Appendix A

X.25 Cause and Diagnostic Codes A-1
X.25 Cause Codes A-2

X.25 Diagnostic Codes A-4

Appendix B
ISDN Switch Types, Codes, and Values B-1

Table of Contents ix

LIST

Figure 1-1

Figure 2-1

Figure 2-2

Figure 2-3

Figure 2-4

Figure 2-5

Figure 2-6

Figure 2-7

Figure 2-8

Figure 2-9
Figure 2-10
Figure 2-11
Figure 2-12
Figure 2-13
Figure 2-14
Figure 2-15
Figure 2-16
Figure 2-17
Figure 2-18
Figure 2-19
Figure 2-20
Figure 2-21
Figure 2-22
Figure 2-23
Figure 2-24
Figure 2-25
Figure 2-26
Figure 2-27
Figure 2-28
Figure 2-29
Figure 2-30
Figure 2-31
Figure 2-32
Figure 2-33

OF FIGURES

Example Debug Broadcast Output 1-2

Sample Debug Apple ARP Output 2-2

Sample Debug Apple Domain Output 2-4

Debug Apple Errors Output 2-6

Sample Debug Apple Events Output with Discovery Mode State Changes 2-9
Sample Debug Apple Events Output Showing Seed Coming Up by Itself 2-11
Debug Apple Events Output Showing Nonseed with No Seed 2-11
Sample Debug Apple Events Output Showing Compatibility Conflict 2-11
Sample Debug Apple NBP Output 2-14

Sample Debug Apple Packet Output 2-16

Sample Debug Output 2-18

Sample Debug Apple Routing Output 2-20

Sample Debug Apple ZIP Output 2-22

Sample Debug ARP Output 2-24

Sample Debug ATM Errors Output 2-26

Sample Debug ATM Events Output 2-27

Sample Debug ATM Packet Output 2-30

Sample Debug BRI Packets Output 2-32

Sample Debug Broadcast Output 2-34

Sample Debug CDP Output 2-37

Sample Debug Channel Events Output 2-38

Sample Debug Channel Packets Output 2-40

Sample Debug CLNS ESIS Events Output 2-42

Sample Debug CLNS ESIS Packets Output 2-43

Sample Debug CLNS Events Output 2-45

Sample Debug CLNS IGRP Packets Output 2-47

Sample Debug CLNS Packet Output 2-49

Sample Debug CLNS Routing Output 2-50

Sample Debug Compress Output 2-51

Sample Debug DECnet Adj Output 2-52

Sample Debug DECnet Connects Output 2-54

Sample Debug DECnet Events Output 2-56

Sample Debug DECnet Packet Output 2-57

Sample Debug DECnet Routing Output 2-58

List of Figures xi

Figure 2-34
Figure 2-35
Figure 2-36
Figure 2-37
Figure 2-38
Figure 2-39
Figure 2-40
Figure 2-41
Figure 2-42
Figure 2-43
Figure 2-44
Figure 2-45
Figure 2-46
Figure 2-47
Figure 2-48
Figure 2-49
Figure 2-50
Figure 2-51
Figure 2-52
Figure 2-53
Figure 2-54
Figure 2-55
Figure 2-56
Figure 2-57
Figure 2-58
Figure 2-59
Figure 2-60
Figure 2-61
Figure 2-62
Figure 2-63
Figure 2-64
Figure 2-65
Figure 2-66
Figure 2-67

Sample Debug DSPU Activation Output 2-62
Sample Debug DSPU Packet Output 2-64
Sample Debug DSPU State Output 2-66

Sample Debug DSPU Trace Output 2-68
Sample Debug EIGRP FSM Output 2-70
Sample Debug EIGRP Packet Output 2-72
Sample Debug Frame-Relay Output 2-74
Sample Debug Frame-Relay Events Output 2-77
Sample Debug Frame-Relay LMI Output 2-78
Sample Debug Frame-Relay Packets Output 2-81
Sample Debug IP DVMRP Output 2-83

Sample Debug IP DVMRP Detail Output 2-84
Sample Debug IP EIGRP Output 2-86

Sample Debug IP ICMP Output 2-88

Sample Debug IP IGMP Output 2-92

Sample Debug IP IGRP Events Output 2-93
Sample Debug IP IGRP Transaction Output 2-95
Sample Debug IP Mpacket Output 2-97

Sample Debug IP Mrouting Output 2-99

Sample Debug IP OSPF Events Outpu2-101
Sample Debug IP Packet Outpu2-103

Sample Debug IP PIM Output 2-106

Sample Debug IP RIP Output 2-109

Sample Debug IP Routing Output 2-111

Sample Debug IP Security Output 2-113

Sample Debug IP TCP Driver Output 2-115
Sample Debug IP TCP Driver-Pak Output 2-117
Sample Debug IP TCP Output 2-119

Sample Debug IPX IPXWAN Output 2-121
Sample Debug IPX Packet Outpuf2-123

Sample Debug IPX Routing Output 2-125
Sample Debug IPX SAP Output 2-127

Sample Debug ISDN-Event Output—Call Setup Outgoing Call 2-132
Sample Debug ISDN-Event Output—Call Setup Incoming C&+133

Xii

Debug Command Reference

Figure 2-68 Sample Debug ISDN-Event Output—Call Teardown by Far End 2-133

Figure 2-69 Sample Debug ISDN-Event Output—Call Teardown Local Side 2-133

Figure 2-70 Sample Debug ISDN-Event—Call Screening Normal Disconnezi134

Figure 2-71 Sample Debug ISDN-Event—Call Screening Call Rejection 2-134

Figure 2-72 Sample Debug ISDN-Event Display—Called Party Subaddress 2-135

Figure 2-73 ~ Sample Debug ISDN-Q921 Output for Outgoing Call 2-137

Figure 2-74 Sample Debug ISDN-Q921 Output for Gtgp Message on a DMS-100 Switch2-137
Figure 2-75 Debug ISDN-Q921 Output for Incoming Call 2-138

Figure 2-76 ~ Sample Debug ISDN-Q931 Output—Call Setup Procedure for an Outgoing Q&al42
Figure 2-77 Sample Debug ISDN-Q931 Output—Call Setup Procedure for an Incoming Qall43
Figure 2-78 Sample Debug ISDN-Q931 Output—Call Teardown Procedure fhenNetwork 2-143
Figure 2-79 Sample Debug ISDN-Q931 Output—Call Teardown Procedure fhenRouter 2-143
Figure 2-80 Sample Debug ISIS Adj Packets Outpu-146

Figure 2-81 Sample Debug ISIS SPF Statistics Outp-147

Figure 2-82 Sample Debug ISIS Update-Packets Outp@-149

Figure 2-83 Sample Debug LAPB Output 2-151

Figure 2-84 Sample Debug LAT Packet Output2-155

Figure 2-85 Sample Debug LEX Rcmd Output 2-157

Figure 2-86 Sample Debug LNM Events Output 2-160

Figure 2-87 Sample Debug LNM LLC Output 2-162

Figure 2-88 Sample Debug LNM MAC Output 2-165

Figure 2-89 Sample Debug Local-Ack State Outpu2-167

Figure 2-90 Sample Debug NetBIOS-Name-Cache Output 2-169

Figure 2-91 Sample Debug Packet Output 2-172

Figure 2-92 Sample Debug PPP Packet Output 2-176

Figure 2-93 Partial Debug PPP Packet Outpu-177

Figure 2-94 Sample Debug PPP Negotiation Outpu2-178

Figure 2-95 Sample Debug PPP Output with Packet and Negotiation Options Enabled 2-180
Figure 2-96 ~ Sample Debug PPP Negotiation Output When No Response |Is Dete2té81

Figure 2-97 Sample Debug PPP Output When No Response Is Detected (with Negotiation and Packet
Enabled) 2-181

Figure 2-98 Sample Debug PPP Error Outpu2-182
Figure 2-99 Sample Debug PPP CHAP Output 2-183
Figure 2-100 Sample Debug QLLC Error Output 2-184

List of Figures xiii

Figure 2-101 Sample Debug Qllc Event Output 2-185

Figure 2-102 Sample Debug QLLC Packet Output 2-186

Figure 2-103 Sample Debug Qllc Event Output 2-187

Figure 2-104 Sample Debug QLLC Timer Output 2-188

Figure 2-105 Sample Debug QLLC X25 Output 2-189

Figure 2-106 =~ Sample Debug RIF Output 2-190

Figure 2-107 Sample Debug SDLC Output 2-193

Figure 2-108 Sample Debug SDLC Local-Ack Output 2-198

Figure 2-109 Sample Debug SDLLC Output 2-199

Figure 2-110 Sample Debug Serial Interface Output for HDLC 2-202
Figure 2-111 Sample Debug Serial Packet Output for SMD3-207
Figure 2-112 Sample Debug Source-Bridge Output in TCP Environme®t208
Figure 2-113 Sample Debug Source-Bridge Output in Direct Encapsulation Environm2t209
Figure 2-114 Sample Debug Source Event Output 2-211

Figure 2-115 Sample Debug Span Output for an IEEE BPDU Packe{216
Figure 2-116 Sample Debug Span Output 2-217

Figure 2-117 Sample Debug SSE Output2-219

Figure 2-118 Sample Debug Standby Output 2-221

Figure 2-119 Sample Debug STUN Packet Output 2-224

Figure 2-120 Sample Debug TFTP Output 2-226

Figure 2-121 ~ Sample Debug Token Ring Output2-227

Figure 2-122 Sample Debug VINES ARP Output 2-229

Figure 2-123 Sample Debug VINES Echo Output2-231

Figure 2-124 Sample Debug VINES IPC Output 2-232

Figure 2-125 Sample Debug VINES NetRPC Output 2-234

Figure 2-126 ~ Sample Debug VINES Packet Output 2-236

Figure 2-127 Sample Debug VINES Routing Output 2-238

Figure 2-128 Sample Debug VINES Routing Verbose Outpu2-238
Figure 2-129 Sample Debug VINES Service Output = 2-240

Figure 2-130 Sample Debug VINES Table Output 2-243

Figure 2-131 Sample Debug X25 All Output 2-245

Figure 2-132 Sample Debug X25 Events Output2-249

Figure 2-133 Sample Debug X25 VC Output 2-250

Figure 2-134 Sample Debug XNS Packet Output. 2-251

xiv. Debug Command Reference

Figure 2-135 Sample Debug XNS Routing Output 2-252

List of Figures xv

LIST

Table 1-1

Table 2-1

Table 2-2

Table 2-3

Table 2-4

Table 2-5

Table 2-6

Table 2-7

Table 2-8

Table 2-9
Table 2-10
Table 2-11
Table 2-12
Table 2-13
Table 2-14
Table 2-15
Table 2-16
Table 2-17
Table 2-18
Table 2-19
Table 2-20
Table 2-21
Table 2-22
Table 2-23
Table 2-24
Table 2-25
Table 2-26
Table 2-27
Table 2-28
Table 2-29
Table 2-30
Table 2-31
Table 2-32
Table 2-33

OF TABLES

Message Logging Kevordsand Levels 1-4

Debug Apple NBP Field Descriptions—Part 1 2-14
Debug Apple NBP Field Descriptions—Part 2 2-15
Debug Apple Packet Field Descriptions—Part 1~ 2-17
Debug Apple Packet Field Descriptions—Part 2 2-17
Debug Apple Routing Field Descriptions—Part 1 2-21
Debug Apple Routing Field Descriptions—Part 2 2-21
Debug ATM Events Field Descriptions 2-28

Debug ATM Packet Field Descriptions 2-31

Debug Broadcast Field Descriptions 2-35

Channel Packets Field Descriptions 2-40

Debug Compress Field Descriptions 2-51

Debug DECnet Connects Field Descriptions 2-54
Debug Dialer Message Descriptions for DDR 2-60
Debug DSPU Activation Field Descriptions 2-63
Debug DSPU Packet Field Descriptions 2-64

Debug DSPU State Field Descriptions 2-67

Debug DSPU Trace Field Descriptions 2-69

Debug EIGRP Packet Field Descriptions 2-73

Debug Frame-Relay Field Descriptions 2-74

Debug Frame-Relay LMI Field Descriptions—Part 1 2-79
Debug Frame-Relay LMI Field Descriptions—Part 2 2-79
Debug Frame-Relay LMI Field Descriptions—Part 3 2-80

Debug Frame-Relay Packets Field Descriptions 2-82
Internet Multicast Addresses 2-84

Debug IP EIGRP Field Descriptions 2-87
Debug IP ICMP Field Descriptions—Part 1 2-89
Debug IP ICMP Field Descriptions—Part 2 2-90
Debug IP Mpacket Field Descriptions 2-97
Debug IP Packet Field Descriptions 2-103
Security Actions 2-103

Debug IP Security Field Descriptions 2-114
Debug IP TCP Driver Field Descriptions2-115
Debug TCP Driver-Pak Field Descriptions2-118

List of Tables xvii

Table 2-34 Debug IP TCP Field Descriptions2-119

Table 2-35 Debug IPX Packet Field Descriptions 2-124

Table 2-36 Debug IPX Routing Field Descriptions 2-125

Table 2-37 Debug IPX SAP Field Descriptions—Part 12-129

Table 2-38 Debug IPX SAP Field Descriptions—Part 22-130

Table 2-39 Debug IPX SAP Field Descriptions—Part 3-131

Table 2-40 Debug ISDN-Event Field Descriptions2-134

Table 2-41 Debug ISDN-Q921 Field Descriptions 2-138

Table 2-42 Debug ISDN-Q931 Call Setup Procedure Field Descriptio2s143
Table 2-43 Debug ISDN-Event Field Descriptions2-148

Table 2-44 Debug LAPB Field Descriptions 2-152

Table 2-45 Debug LAT Packet Field Descriptions 2-155

Table 2-46 Debug LAT Packet Field Descriptions 2-156

Table 2-47 Debug LNM LLC Field Descriptions 2-163

Table 2-48 Debug LNM MAC Field Descriptions 2-166

Table 2-49 Debug Local-Ack State Field Descriptions 2-168

Table 2-50 Debug NetBIOS-Name-Cache Field Description2-170

Table 2-51 Debug Packet Field Descriptions2-172

Table 2-52 Debug PPP Packet Field Description2-176

Table 2-53 Debug PPP Negotiation Field Descriptions 2-178

Table 2-54 Debug PPP Error Field Descriptions 2-182

Table 2-55 Debug PPP CHAP Field Descriptions2-183

Table 2-56 Debug QLLC X.25 Field Descriptions 2-189

Table 2-57 Debug RIF Field Descriptions—Part 1 2-190

Table 2-58 Debug RIF Field Descriptions—Part 2 2-192

Table 2-59 Debug SDLC Field Descriptions for a Frame Output Evegt194
Table 2-60 Debug SDLC Field Descriptions Unique to a Frame Input Eve?t195
Table 2-61 Debug SDLC Field Descriptions for a Timer Even2-196

Table 2-62 Debug SDLC Local-Ack Debugging Levels 2-197

Table 2-63 Debug SDLC Local-Ack Field Descriptions2-198

Table 2-64 Debug SDLLC Field Descriptions 2-200

Table 2-65 Debug Serial Interface Field Descriptions for HDL2-202

Table 2-66 ~ Debug Serial Interface Error Messages for HDLQ-203

Table 2-67 Debug Serial Interface Message Descriptions for ISDN Basic Rat204

xviii Debug Command Reference

Table 2-68 Debug Serial Interface Message Descriptions for &b5025Device 2-205
Table 2-69 Debug Source Event Field Descriptions 2-211

Table 2-70 Debug Span Field Descriptions for an IEEE BPDU Packet 2-216
Table 2-71 Debug Span Field Descriptions for a DEC BPDU Packet 2-217
Table 2-72 Debug Standby Field Descriptions 2-222

Table 2-73 Debug STUN Packet Field Description2-224

Table 2-74 Debug TFTP Field Descriptions 2-226

Table 2-75 Debug Token Ring Field Descriptions—Part 1 2-228

Table 2-76 ~ Debug Token Ring Field Descriptions—Part 2 2-228

Table 2-77 Debug Token Ring Field Descriptions—Part 3 2-228

Table 2-78 Debug VINES ARP Field Descriptions 2-230

Table 2-79 Debug VINES Echo Field Descriptions 2-231

Table 2-80 VINES IPC Field Descriptions 2-233

Table 2-81 Debug VINES NetRPC Field Descriptions2-235

Table 2-82 Debug VINES Packet Field Descriptions2-236

Table 2-83 Debug VINES Service Field Descriptions—Part 2-241

Table 2-84 Debug VINES Service Field Descriptions—Part 2-241

Table 2-85 Debug VINES Table Field Descriptions2-243

Table 2-86 Debug X25 All Field Descriptions 2-245

Table 2-87 Debug X25 All PS and PR Field Description-247

Table 2-88 Debug X25 All Field Descriptions for Packets Representing Tunneled PVC Actidtp47
Table 2-89 Debug XNS Packet Field Descriptions 2-251

Table 2-90 Debug XNS Routing Field Descriptions2-253

Table A-1 Annex E International Problem Diagnostic Code Differences A-1
Table A-2 Cause Code Descriptions for CLEAR REQUEST Packets A-3
Table A-3 Cause Code Descriptions for RESET REQUEST Packets A-3
Table A-4 Cause Code Descriptions for RESTART Packets A-4

Table A-5 X.25 Diagnostic Field Code Descriptions A-4

Table B-1 Supported ISDN Switch Types B-1

Table B-2 ISDN Cause Code Fields B-2

Table B-3 ISDN Cause Values B-2

Table B-4 ISDN Bearer Capability Values B-5

Table B-5 Progres®escription Field Values B-5

List of Tables xix

About This Manual

This section introduces thgebug Command Referenpablication audience and scope,
organization, use, and conventions.

Audience and Scope

This publication addresses the network or system administrator who maintains a Cisco gateway,
router, or bridge running Internetwork Operating System (I0S) Release 10 and earlier software.

Readers should know how to configure a Cisco router and should be familiar with the protocols and
media their routers are configuredstagpport. Readers must also be aware of their network topology.

Document Organization and Use

TheDebug Command Referengeablication provides information about usidebugcommands to
troubleshoot Cisco network servers. This manual is most effective when used in conjunction with the
Troubleshooting Internetworking Systemblication.

Chapter 1, “Using Debug Commands,” explains how you elgleug commands; use theebug ?
anddebug allcommands; and generate and redidettugcommand output. It is important thatu
read this chapter first before proceeding to Chapter 2, “Debug Commands.”

Chapter 2, “Debug Commands,” presents reference information on commands you use to debug your
internetwork. The chapter includes command function descriptions, sample output displays, and
explanations of these displays.

Appendix A, “X.25 Cause and Diagnostic Codes,” lists the codes that can appear in output from the
debug x25 debug x25-eventsanddebug x25-vccommands.

Appendix B, “ISDN Switch Types, Codes, and Values,” listsstingportedswitch types. It also
contains the cause codes, cause values, bearer capability valyasgreds values that can appear
in output from thedebug isdn-q921 debug isdn-q931 anddebug isdn-evencommands.

About This Manual xxi

Document Conventions

Document Conventions

The command descriptions in this manual use these conventions:

XXii

Commands and keywords arebioldface.
Filenames, directory names, and arguments for whictsypply vdues are intalics.
Elements in square brackets ([]) are optional.

Alternative but required keywords are grouped in braces ({ }) and are separated by vertical bars

()-

A string is defined as a nonquoted set of characters. For example, when setting up a community
string for SNMP to “public,” do not use quotes around the string osttivey will be set to
“public.”

The samples use these conventions:

Terminal sessions are printed iacgeen font.
Information you enter is in eoldface screen font.
Nonprinting characters are shownaingle brackets (< >).

Informaton the system displays is irsereen font; default responses are in square brackets ([]).

This publication also uses the following conventions:

Note Meansreader take noteNotes contain helpfiduggesbns, or reference to materials not
covered in this manual.

equipment damage or loss of data.

g Caution Meansreader be carefulln this situation, you might do something that could result in

Debug Command Reference

Document Conventions

The following illustration explains the fields on a typical command reference page:

Command name

Brief description of
command usage

Command syntax

List of command
arguments and keywords

Descriptions of
arguments and keywords

Default configuration or value

Mode in which
command is entered

Guidelines about use and
operation of the command
or related commands

Example of using the command

Other commands to reference
for related information; all
commands are in the same
chapter except those followed
by a t; see the index to

locate these commands

router bgp

—>» router bgp

\ 4

Use the router bgp global configuration command to configure the
Border Gateway Protocol (BGP) routing process. Use the no router
bgp command to remove the routing process.

Y» router bgp autonomous-system

\

no router bgp autonomous-system

Syntax Description

autonomous-system Identifies the router to other BGP

routers and tags the routing information
/ passed along.

Y

\

\ 4

Default
No BGP autonomous systems are specified.

Command Mode
Global configuration

Usage Guidelines

This command allows you to set up a distributed routing core that
automatically guarantees the loop-free exchange of routing information
between autonomous systems (AS).

Example
The following example configures a BGP process for AS 120.

\ 4

N,
> router bgp 120

Related Commands

neighbor
network
timers bgp

IP Routing Protocols Commands 17-99

About This Manual

S2822

XXiii

CHAPTER g

Using Debug Commands

This chapter explains how you udebug commands to diagnose and resolve internetworking
problems. Specifically, it covers the following topics:

® Enteringdebugcommands

® Using thedebug ?command

® Using thedebug allcommand
® Generating debugging output
® Redirecting debugging output

Caution Because debugging output is assigned high priority in the CPUgsrdtean render the
A system unusable. For this reason, onlydeteug commands to troubleshoot specific problems or
during troubleshooting sessions with Cisco technical support staff. Moreover, it is besiebuge
commands during periods of lower network traffic and fewer uBeisugging during these periods
decreases the likelihood that increadetiugcommand processing overhead will affect system use.

Entering Debug Commands

All debugcommands are entered while in privileged EXEC mode and aebsty commands do
not take any arguments. For example, to enablde¢hag broadcasttommand, enter the following
in privleged EXEC mode at the command line:

debug broadcast

To turn off thedebug broadcastcommand, in privileged EXEC mode, enter tieeform of the
command at the command line:

no debug broadcast
Alternately, in privileged EXEC mode, you can enterduhdebugform of the command:
undebug broadcast

To display the state of each debugging option, enter the following at the command line in privileged
EXEC mode:

show debugging

Using Debug Commands 1-1

Using the Debug ? Command

Using the Debug ? Command

To list and briefly describe all of the debugging command options, enter the following command in
privileged EXEC mode at the command line:

debug ?

Using the Debug All Command

To enable all system diagnostics, enter the following command in privileged EXEC mode at the
command line:

debug all

Theno debug allcommand turns off all diagnostic output. Using tieedebug allcommand is a
convenient way to ensure that you have not accidentally leftl@ioyg commands turned on.

Caution Because debugging output takes priority over other network traffic, and because the

A debug allcommand generates more output than any dlegcommand, it can severely diminish
the router’s performance or even render it unusable. In virtually all cases, it is best to use more
specificdebug commands.

Generating Debug Command Output

Enabling adebugcommand can result in output similar to the example shown in Figure 1-1 for the
debug broadcastcommand.

Figure 1-1 Example Debug Broadcast Output
router# debug broadcast

EthernetO: Broadcast ARPA, src 0000.0c00.6fa4, dst ffff.ffff.ffff,
type 0x0800, data 4500002800000000FF11EAT7B, len 60

Serial3: Broadcast HDLC, size 64, type 0x800, flags 0x8F00
Serial2: Broadcast PPP, size 128

Serial7: Broadcast FRAME-RELAY, size 174, type 0x800, DLCI 7a

The router continues to generate such output until you enter the correspamdiglgugcommand
(in this caseno debug broadcast

If you enable alebugcommand and no output is displayed, consider the following possibilities:

® The router may not be properly configured to generate the type of traffic you want to monitor.
Use thewrite terminal command to check its configuration.

® Even if the router is properly configured, it may not generate the type of traffic you want to
monitor during the particular period that debugging is turned on. Depending on the protocol you
are debugging, you can use commands such as the T@RglPommand to generate network
traffic.

1-2 Debug Command Reference

Redirecting Debugging and Error Message Output

Redirecting Debugging and Error Message Output

By default, the network server sends the output filetmug commands and system error messages
to the console terminal. If you use this default, monitor debugging output using a virtual terminal
connection, rather than the console port.

To redirect debugging output, use thgging command options within configuration mode.

Possible destinations include the console terminal, virtual terminals, internal buffer, and UNIX hosts
running a syslog server. The syslog format is compatible with 4.3 BSD UNIX and its derivatives.

Note Be aware that the debugging destination you use affects system overhead. Logging to the
console produces very high overhead, whereas logging to a virtual terminal produces less overhead.
Logging to a syslog server produces even less, and logging to an internal buffer produces the least
overhead of any method.

To configure message logging, you need to be in configuration command mode. To enter this mode,
use theconfigure terminal command at the EXEC prompt.

The following sections describe how to select redirection options witloglyéng router
configuration command.

Enabling Message Logging

To enable message logging to all supported destinations other than the console, entewihg:foll
logging on
The default condition ikgging on

To direct logging to the console terminal only and disable logging output to other destinations, enter
the following command:

no logging on

Setting the Message Logging Levels

You can set the logging levels when logging messages to the following:
® Console

® Monitor

® Syslog server

Table 1-1 lists and briefly describes the logging levels and corresponding keywords you can use to
set the logging levels for these types of messages. The highest level of message is level 0,
emergencies. The lowest level is level 7, debugging, which aptags the greatest amount of
messages. For information about limiting these messages, see sections later in this chapter.

Using Debug Commands 1-3

Redirecting Debugging and Error Message Output

Table 1-1 Message Logging Keywords and Levels

Level Keyword Description Syslog Definition
0 emergencies System is unusable. LOG_EMERG

1 alerts Immediate action is needed. LOG_ALERT

2 critical Critical conditions exist. LOG_CRIT

3 errors Error conditions exist. LOG_ERR

4 warnings Warning conditions exist. LOG_WARNING
5 notification Normal, but significant, conditions exist. LOG_NOTICE

6 informational Informational messages. LOG_INFO

7 debugging Debugging messages. LOG_DEBUG

Limiting the Types of Logging Messages Sent to the Console

To limit the types of messages that are logged to the console, usgghmg consolerouter
configuration command. The full syntax of this command follows:

logging consoldevel
no logging console

Thelogging consolecommand limits the logging messages displayed on the console terminal to
messages up to and including the specified severity level, which is specified dyetlaegument.

Thelevelargument can be one of the keywords listed in Table 1-1. They are listed in order from the
most severe level to the least severe.

Theno logging consoleommand disables logging to the console terminal.

Example

The following example sets console logging of messages detheyginglevel, which is the least
severe level and will display all logging messages:

logging console debugging

Logging Messages to an Internal Buffer

The default logging device is the console; all messages are displayed on the console unless otherwise
specified.

To log messages to an internal buffer, usédbging bufferedrouter configuration command. The
full syntax of this command follows:

logging buffered
no logging buffered

Thelogging bufferedcommand copies logging messages to an internal buffer instead of writing
them to the console terminal. The buffer is circular in nature, so newer messages overwrite older
messages. To display the messages that are logged in the buffer, use the privileged EXEC command
show logging The first message displayed is the oldest message in the buffer.

Theno logging bufferedcommand cancels the use of the buffer and writes messages to the console
terminal (the default).

1-4 Debug Command Reference

Redirecting Debugging and Error Message Output

Limiting the Types of Logging Messages Sent to Another Monitor

To limit the level of messages logged to the terminal lines (monitors), ukstieg monitor
router configuration command. The full syntax of this command follows:

logging monitor level
no logging monitor

Thelogging monitor command limits the logging messages displayed on terminal lines other than
the console line to messages with a level up to and including the spenitgument. Théevel
argument is one of the keywords listed in Table 1-1. To display logging messages on a terminal
(virtual console), use the privileged EXEC commgardhinal monitor .

Theno logging monitor command disables logging to terminal lines other than the console line.

Example

The following example sets the level of messages displayed on monitors other than the console to
notification:

logging monitor notification

Logging Messages to a UNIX Syslog Server

To log messages to the syslog server host, udedhing router configuration command. The full
syntax of this command follows:

loggingip-address
no loggingip-address

Thelogging command identifies a syslog server host to receive logging messag@s-ablaeess
argument is the IP address of the host. By issuing this command more than once, you build a list of
syslog servers that receive logging messages.

Theno loggingcommand deletes the syslog server with the specified address from the list of
syslogs.

Limiting Messages to a Syslog Server

To limit how many messages are sent to the syslog servers, lsgding trap router configuration
command. The full syntax of this command follows:

logging trap level
no logging trap

Thelogging trap command limits the logging messages sent to syslog servers to messages with a
level up to and including the specifieeVelargumentThelevelargument is one of the keywords
listed in Table 1-1.

To send logging messages to a syslog server, specify its host address leigigitteecommand.
The default trap level imformational .

Theno logging trap command disables logging to syslog servers.

The current software generates four categories of syslog messages:

® Error messages about software or hardware malfunctions, displayecabtiselevel.

® Interface up/down transitions and system restart messages, displayeddatifidetion level.

Using Debug Commands 1-5

Redirecting Debugging and Error Message Output

® Reload requests and low-process stack messages, displayethfdrthational level.
® Output from thedebugcommands, displayed at tHebugginglevel.

The privileged EXEC commarghow loggingdisplays the addresses and levels associated with the
current logging setup. The command output also includes ancillary statistics.

Example of Setting Up a UNIX Syslog Daemon

To set up the syslog daemon on a 4.3 BSD UNIX systertude a line such as the following in the
file /etc/syslog.conf

local7.debugging /usr/adm/logs/tiplog

Thelocal7 keywordspecifies the logging facility to be used.

The debuggingkeywordspecifies the syslog level. See Table 1-1 for other keywords that can be
listed.

The UNIX system sends messages at or above this level to the specified file, in this case
/usr/adm/logs/tiplogThe file must already exist, and the syslog daemon must have permission to
write to it.

1-6 Debug Command Reference

CHAPTER

Debug Commands

This chapter contains an alphabetical listing ofdebugcommands. Documentation for each
command includes a brief description of its use, command syntax, usage guidelines, sample output,
and a description of that output.

Output formats vary with eaadlebugcommand. Some generate a single line of output per packet,
whereas others generate multiple lines of output per packet. Some generate large amounts of output;
others generate only occasional output. Some generate lines of text, and others generate information
in field format. Thus, the way thdebugcommands are documented also varies. For example, for
debugcommands that generate lines of text, the output is described line by limebtor

commands that generate output in field format, tables are used to describe the fields.

By default, the network server sends the output frontéieig commands to the console terminal.
Sending output to a terminal (virtual console) produces less overhead than sending it to the console.
Use the privileged EXEC commaterminal monitor to send output to a terminal. For more
information about redirecting output, see the “Using Debug Commands” chapter.

Debug Commands 2-1

debug apple arp

debug apple arp

Use thedebug apple arpEXEC command to enable debugging of the AppleTalk Address
Resolution Protocol (AARP). Theo form of this command disableebugging output.

debug apple arp[type numbdr
no debug apple arp[type numbdr

Syntax Description
type (Optional) Interface type

number (Optional) Interface number

Command Mode
EXEC

Usage Guidelines

This command is helpful when you experience problems communicating with a node on the network
you control (a neighbor). If thedebug apple arpdisplay indicates that the router is receiving AARP
probes, you can assume that the problem does not reside at the physical layer.

Sample Display
Figure 2-1 shows samptiebug apple arpoutput.

Figure 2-1 Sample Debug Apple ARP Output
router## debug apple arp

Ether0: AARP: Sent resolve for 4160.26

Ether0: AARP: Reply from 4160.26(0000.0c00.0453) for 4160.154(0000.0c00.8ea9)
Ether0: AARP: Resolved waiting request for 4160.26(0000.0c00.0453)

Ether0: AARP: Reply from 4160.19(0000.0c00.0082) for 4160.154(0000.0c00.8ea9)
Ether0: AARP: Resolved waiting request for 4160.19(0000.0c00.0082)

Ether0: AARP: Reply from 4160.19(0000.0c00.0082) for 4160.154(0000.0c00.8ea9)

Explanations for representative lines of output in Figure 2-1 follow.

2-2 Debug Command Reference

debug apple arp

The following line indicates that the router has requested the hardware MAC address of the host at
network address 4160.26:

Ether0: AARP: Sent resolve for 4160.26

The following line indicates that the host at network address 4160.26 has replied, giving its MAC
address (0000.0c00.0453). For completeness, the message also shows the network address to which
the reply was sent and its hardware MAC address (also in parentheses).

Ether0: AARP: Reply from 4160.26(0000.0c00.0453) for 4160.154(0000.0c00.8ea9)

The following line indicates that the MAC address request is complete:

Ether0: AARP: Resolved waiting request for 4160.26(0000.0c00.0453)

Debug Commands 2-3

debug apple domain

debug apple domain

Use thedebug apple domain EXEC command to enable debugging of the AppleTalk domain
lookups. Theno form of this command disables debugging output.

debug apple domain
no debug apple domain

Syntax Description
This command has no arguments or keywords.

Command Mode
EXEC

Usage Guidelines

Use thedebug apple domaincommand to observe activity between domains and subdomains. Use
this command in conjunction with tdebug apple remapcommand to observe interaction between
remapping and domain activity. Messages are displayed when the state of a domain changes, such
as creating a new domain, deleting a domain, updating a domain, and creating domain neighbors.

Sample Display
Figure 2-2 shows samptkebug apple domaimoutput intermixed with output from tldebug apple
remap command; the two commands show related events.

Figure 2-2 Sample Debug Apple Domain Output
router# debug apple domain

AT-REMAP: RemapProcess for net 3000 domain Domain 1
AT-REMAP: ReshuffleRemaplList for subdomain 1
AT-REMAP: Could not find a remap for cable 3000-3001
AT-DOMAIN: Disabling Domain 1 [Domain 1]

AT-DOMAIN: Disabling interface Ethernetl

AT-DOMAIN: atdomain_DisablePort for Ethernetl
AT-DOMAIN: CleanUpDomain for domain 1 [Domain 1]
AT-DOMAIN: CleanSubDomain for inbound subdomain 1
AT-REMAP: Remap for net 70 inbound subdomain 1 has been deleted
AT-DOMAIN: DeleteAvRemaplList for inbound subdomain 1
AT-DOMAIN: DeleteRemapTable for subdomain 1
AT-DOMAIN: DeleteAvRemaplList for inbound subdomain 1
AT-DOMAIN: CleanSubDomain for outbound subdomain 1
AT-DOMAIN: DeleteRemapTable for subdomain 1
AT-REMAP: Remap for net 50 outbound subdomain 1 has been deleted
AT-DOMAIN: DeleteAvRemaplList for outbound subdomain 1
AT-DOMAIN: DeleteAvRemaplList for outbound subdomain 1
AT-DOMAIN: CleanUpDomain for domain 1 [Domain 1]
AT-DOMAIN: CleanSubDomain for inbound subdomain 1
AT-DOMAIN: DeleteRemapTable for subdomain 1
AT-DOMAIN: DeleteAvRemaplList for inbound subdomain 1
AT-DOMAIN: CleanSubDomain for outbound subdomain 1
AT-DOMAIN: DeleteRemapTable for subdomain 1
AT-DOMAIN: DeleteAvRemaplList for outbound subdomain 1

2-4 Debug Command Reference

debug apple domain

Most lines of output in Figure 2-2 are from tthebug apple domaincommand and are
self-explanatory.

Related Commands
debug apple remap

Debug Commands 2-5

debug apple errors

debug apple errors

Use thedebug apple errorsEXEC command to display errors occurring in the AppleTalk network.
Theno form of this command disableebugging output.

debug apple errors[typenumbetf
no debug apple errorgtype numbdr

Syntax Description

type (Optional) Interface type

number (Optional) Interface number

Command Mode
EXEC

Usage Guidelines
In a stable AppleTalk network, tliezbug apple errorscommand produces little output.

To solve encapsulatigeroblems, enabldebug apple errorsanddebug apple packetogether.

Sample Display
Figure 2-3 shows samptiebug apple errorsoutput when a router igdught up with a zone that
does not agree with the zone list of other routers on the network.

Figure 2-3 Debug Apple Errors Output
router## debug apple errors

%AT-3-ZONEDISAGREES: Ethernet0: AppleTalk port disabled; zone list incompatible with
4160.19
%AT-3-ZONEDISAGREES: Ethernet0: AppleTalk port disabled; zone list incompatible with
4160.19
%AT-3-ZONEDISAGREES: Ethernet0: AppleTalk port disabled; zone list incompatible with
4160.19

As Figure 2-3 suggests, a single error message indicates zone list incompatibility; this message is
sent out periodically until the condition is correctediebug apple errorsis turned off.

Most of the other messages thabug apple errorscan generate are obscure or indicate a serious
problem with the AppleTalk network. Some of these other messages follow.

2-6 Debug Command Reference

debug apple errors

In the following message, RTMPRsp, RTMPReq, ATP, AEP, ZIP, ADSP, or SNMP could replace
NBP, and “llap dest not for us” could replace “wrong encapsulation”:

Packet discarded, src 4160.12-254,dst 4160.19-254,NBP,wrong encapsulation

In the following message, in addition to invalid echo packet, other possible errors are unsolicited
AEP echo reply, unknown echo function, invalid ping packet, unknown ping function, and bad
responder packet type.

EthernetO: AppleTalk packet error; no source address available

AT: pak_reply: dubious reply creation, dst 4160.19
AT: Unable to get a buffer for reply to 4160.19

Processing error, src 4160.12-254,dst 4160.19-254,AEP, invalid echo packet

Thedebug apple errorscommand can print out additional messages when other debugging
commands are also turned on. When you turn ondetthg apple errorsanddebug apple events
the following message can be generated:

Proc err, src 4160.12-254,dst 4160.19-254,ZIP,NetInfo Reply format is invalid

In the preceding message, in addition to Netinfo Reply format is invalid, other possible errors are
NetinfoReplynot for me, NetinfoReply ignored, NetinfoReply for operational geoied,
NetIinfoReplyfrom invalid port, unexpected NetinfoReply ignored, cannot establish primary zone,
no primary has been set up, primary zone invalid, net information mismatch, multicast mismatch,
and zones disagree.

When you turn on botbebug apple errorsanddebug apple nbp the following message can be
generated:

Processing error, ...,NBP,NBP name invalid
In the preceding message, in addition to NBP name invalid, other possible errors are NBP type
invalid, NBP zone invalid, not operational, error handling brrq, error handling proxy, NBP fwdreq

unexpected, No route to srcnet, Proxy to Z8ine, Zone “*” from extended net, No zone info for
“*" and NBP zone unknown.

When you turn on botbebug apple errorsanddebug apple routing the following message can
be generated:

Processing error, ...,RTMPReq, unknown RTMP request

In the preceding message, in additiout&known RTMP request, other ilsle errors are RTMP
packet header bad, RTMP cable mismatch, routed RTMP data, RTMP bad tuple, and Not Req or Rsp.

Debug Commands 2-7

debug apple events

debug apple events

Use thedebug apple event&£XEC command to display information about AppleTalk special

events, neighbors becoming reachable/unreachable, and interfaces going up/down. Only significant
events (for example, neighbor and route changes) are loggedo Taven of this command disables
debugging output.

debug apple event$type numbgr
no debug apple eventftype numbdr

Syntax Description

type (Optional) Interface type

number (Optional) Interface number

Command Mode
EXEC

Usage Guidelines

Thedebug apple eventgommand is useful for solving AppleTalk network problems because it
provides an overall picture of the stability of thewmtk. In a stable network, tleebug apple
eventscommand does not return any information. If the command generates numerous messages,
those messages can indicate possible sources of the problems.

When configuring or making changes to a router or interface for AppleTalk, edethlg apple
events Doing so alerts you to the progress of the changes or to any errors that mifjhAiso use
this command periodically when you suspectvwogk problems.

Thedebug apple eventgommand is also useful to determine whether network flapping (hodes
toggling online and offline) is occurring. If flapping is excessive, look for routers thatopport
254 networks.

When you enabldebug apple eventsyou will see any messages that the configuration command
apple event-loggingnormally displays. Turning otebug apple eventshowever, does not cause
apple event-loggingo be maintained inonvolatile memoryOnly turning orapple event-logging
explicitly stores it in nonvolatile memory. Furthermoregpble event-loggings already enabled,
turning on or offdebug apple eventsloes not affecapple event-logging

Sample Display
Figure 2-4 shows samptiebug apple eventoutput that describes a nonseed router coming up in
discovery mode.

2-8 Debug Command Reference

debug apple events

Figure 2-4 Sample Debug Apple Events Output with Discovery Mode State Changes

router# debug apple events

Discovery Et herO0: AT: Resetting interface address filters
%AT- 5- | NTRESTART: Ether0: AppleTalk port restarting; protocol restarted
mode state .
h Et her Ik state ¢ ;lunknown -> restarting
changes Et herO Appl eTal k state restarting -> probing

%AT- 6- ADDRUSED: Et her 0: Appl eTal k node up; using address 65401. 148

Et her 0: Appl eTal k state changed; [pr obing -> acquiri ng]

%AT- 6- ACQUI REMODE: Ether0: AT port initializing; acquiring net configuration
Et her0: Appl eTal k state changed; |acquiring -> restarting
Et her0: Appl eTal k state changed; |restarting -> |line down
Et her 0: Appl eTal k state changed; |l ine down -> restarting
Et her 0: Appl eTal k state changed; |restarting -> probing
%AT- 6- ADDRUSED: Et her 0: Appl eTal k node up; using address 4160. 148

Et her 0: Appl eTal k state changed; [pr obing -> acquiri ng]

YAT- 6- ACQUI REMCDE: Et her0: AT port initializing; acquiring net configuration
Et her 0: Appl eTal k state changed; [acqui ring -> requesting zones]

Et her0: AT: Resetting interface address filters

%AT- 5- | NTRESTART: Ether0: AppleTal k port restarting; protocol restarted

Et her 0: Appl eTal k state changed; [r equesting zones -> verifyi ng]

AT: Sent GetNetlnfo request broadcast on EthernetO

Et her 0: Appl eTal k state changed; |verifying -> checking zones
Et her 0: Appl eTal k state changed; |checking zones -> operational

S2542

As Figure 2-4 shows, thedebug apple event€ommand is useful in tracking the discovery mode
state changes through which an interface progresses. When no problems are encountered, the state
changes progress as follows:

Line down
Restarting
Probing (for its own address [node ID] using AARP)

1

2

3

4 Acquiring (sending out GetNetfo requests)

5 Requesting zones (the list of zones for its cable)
6

Verifying (that the router’s configuration is correct. If not, a port configuration mismatch is
declared.)

7 Checking zones (to make sure its list of zones is correct)
8 Operational (participating in routing)
Explanations for individual lines of output in Figure 2-4 follow.

The following message indicates that a port is set. In this case, the zone multicast address is being
reset:

Ether0O: AT: Resetting interface address filters

The following messages indicate that the router is changing to restarting mode:

%AT-5-INTRESTART: EtherO: AppleTalk port restarting; protocol restarted
Ether0O: AppleTalk state changed; unknown -> restarting

The following message indicates that the router is probing in the startup rangeaknaimbers
(65280-65534) taliscover its network number:

Ether0O: AppleTalk state changed; restarting -> probing

Debug Commands 2-9

debug apple events

The following message indicates that the router is enabled as a nonrouting node using a provisional
network number within its startup range ofwetk numbes. This type of message only appears if

the network address the router will use differs from its configured address. This is always the case
for a discovery-enabled router; it is rarely the case for a nondiscovery-enabled router.

%AT-6-ADDRUSED: Ether0: AppleTalk node up; using address 65401.148
The following messages indicate that the router is sending out GetNetInfo requests to discover the
default zone name and the actual network number range in which its network number can be chosen:

Ether0: AppleTalk state changed; probing -> acquiring
%AT-6-ACQUIREMODE: Ether0: AT port initializing; acquiring net configuration

Now that the router has acquired the cable configuration information, the following message
indicates that it restarts using that information:

Ether0O: AppleTalk state changed; acquiring -> restarting

The following messages indicate that the router is probing for its actual network address:

Ether0O: AppleTalk state changed; restarting -> line down
Ether0O: AppleTalk state changed; line down -> restarting
Ether0: AppleTalk state changed; restarting -> probing

The following message indicates that the router has foundtaal aetwork address to use:
%AT-6-ADDRUSED: Ether0: AppleTalk node up; using address 4160.148
The following messages indicate that the router is sending out GetNetInfo requests to verify the

default zone name and the actual network number range from whichvitsrketumber can be
chosen:

Ether0: AppleTalk state changed; probing -> acquiring
%AT-6-ACQUIREMODE: Ether0: AT port initializing; acquiring net configuration

The following message indicates that the router is requesting the list of zones for its cable:

Ether0: AppleTalk state changed; acquiring -> requesting zones

The following messages indicate that the router is sending out GetNetInfo requests to make sure its
understanding of the configuration is correct:

Ether0O: AppleTalk state changed; requesting zones -> verifying
AT: Sent GetNetlInfo request broadcast on Ethernet0

The following message indicates that the router is rechecking its list of zones for its cable:

Ether0: AppleTalk state changed; verifying -> checking zones

The following message indicates that the router is now fully operational as a routing node and can
begin routing:

Ether0O: AppleTalk state changed; checking zones -> operational

Figure 2-5 shows samptiebug apple eventoutput that describes a nondiscovery-enabled router
coming up when no other router is on the wire.

2-10 Debug Command Reference

debug apple events

Figure 2-5 Sample Debug Apple Events Output Showing Seed Coming Up by Itself

rout er# debug appl e events

Et hernet1l: AT: Resetting interface address filters
%AT- 5- | NTRESTART: Et hernetl1: AppleTal k port restarting; protocol restarted
Et hernet 1: Appl eTal k state changed; unknown -> restarting
Et hernet 1: Appl eTal k state changed; restarting -> probing
%AT- 6- ADDRUSED: Et hernet1: Appl eTal k node up; using address 4165.204
Et hernet 1: Appl eTal k state changed; probing -> verifying
AT: Sent GetNetlnfo request broadcast on Ethernetl
Et hernet 1: Appl eTal k state changed; verifying -> operational
Indicates a nondiscovery- |°/d\T- 6- ONLYROUTER: Et hernet1: AppleTal k port enabl ed; no nei ghbors found ‘

enabled router with no

other router on the wire
As Figure 2-5 shows, a nondiscovery-enabled router can come up when no other router is on the
wire; however, it must assume that its configuration (if accurate syntactically) is correct, because no
other router can verify it. Notice that the last line in Figure 2-5 indicates this situation.

S2543

Figure 2-6 shows samptiebug apple eventoutput that describes a discovery-enabled router
coming up when there is no seed router on the wire.

Figure 2-6 Debug Apple Events Out put Showing Nonseed with No Seed
router# debug apple events

Ether0O: AT: Resetting interface address filters

%AT-5-INTRESTART: Ether0: AppleTalk port restarting; protocol restarted
Ether0O: AppleTalk state changed; unknown -> restarting

Ether0: AppleTalk state changed; restarting -> probing
%AT-6-ADDRUSED: Ether0: AppleTalk node up; using address 65401.148
Ether0: AppleTalk state changed; probing -> acquiring

AT: Sent GetNetlInfo request broadcast on Ether0

AT: Sent GetNetlInfo request broadcast on Ether0

AT: Sent GetNetlInfo request broadcast on Ether0

AT: Sent GetNetlInfo request broadcast on Ether0

AT: Sent GetNetlInfo request broadcast on Ether0

As Figure 2-6 shows, when you attempt to bring up a nonseed router without a seed router on the
wire, it never becomes operational; instead, it hangs in the acquiring mode and continues to send out
periodic GetNdhfo requests.

Figure 2-7 shows samptiebug apple eventsutput when a nondiscovery-enabled router is brought
up on an AppleTalk internetwork that is in compatibility mode (set up to accommodate extended as
well as nonextended AppleTalk) and the router has violated inbesrietompatibility.

Figure 2-7 Sample Debug Apple Events Output Showing Compatibility Conflict

router# debug apple events

EO: AT: Resetting interface address filters

%AT- 5- | NTRESTART: EO: AppleTal k port restarting; protocol restarted
EO: AppleTal k state changed; restarting -> probing

%AT- 6- ADDRUSED: EO: Appl eTal k node up; using address 41.19

EO: Appl eTal k state changed; probing -> verifying

Indlqates . AT: Sent GetNetlnfo request broadcast on Ethernet0
configuration |%’\T- 3- ZONEDI SAGREES: EO: AT port disabled; zone list inconpatible with 41.19
mismatch AT: Config error for EO, prinmary zone invalid 2
N
2]

EO: Appl eTal k state changed; verifying -> config m snatch

Debug Commands 2-11

debug apple events

The three configuration command lines that follow indicate the part of the router’s configuration that
caused the configuration mismatch shown in Figure 2-7:

lestat(config)#int e O
lestat(config-if)#apple cab 41-41
lestat(config-if)#apple zone Marketign

The router shown in Figure 2-7 had been configured with a cable range of 41-41 ingt@atDof
which would have been accurate. Additionally, the zone name was configured incorrectly; it should
have been “Marketing,” rather than being misspelled as “Marketign.”

2-12 Debug Command Reference

debug apple nbp

debug apple nbp

Use thedebug apple nbpEXEC command to display debugging output from the Name Binding
Protocol (NBP) routines. Theo form of this command disables debugging output.

debug apple nbp[type numbdr
no debug apple nbptype humbgr

Syntax Description

type (Optional) Interface type

number (Optional) Interface number

Command Mode
EXEC

Usage Guidelines

To determine whether the router is receiving NBP lookups from a node on the AppleTalk network,
enabledebug apple nbpat each node between the router and the node in question to determine
where the problem lies.

Note Because thdebug apple nbpcommand can generate many messages, use it only when the
router’s CPU utilization is less than 50 percent.

Debug Commands 2-13

debug apple nbp

Sample Display
Figure 2-8 shows samptiebug apple nbpoutput.

Figure 2-8 Sample Debug Apple NBP Output
router# debug apple nbp

AT: NBP ctrl = LkUp, ntuples = 1, id = 77
AT: 4160.19, skt 2, enum 0, name: =:ciscoRouter@Low End SW Lab
AT: LkUp =:ciscoRouter@Low End SW Lab

AT: NBP ctrl = LkUp-Reply, ntuples =1, id = 77
AT: 4160.154, skt 254, enum 1, name: lestat.Ether0O:ciscoRouter@Low End SW Lab

AT: NBP ctrl = LkUp, ntuples =1, id = 78

AT: 4160.19, skt 2, enum 0, name: =:IPADDRESS@Low End SW Lab
AT: NBP ctrl = LkUp, ntuples =1, id = 79

AT: 4160.19, skt 2, enum 0, name: =:IPGATEWAY@Low End SW Lab
AT: NBP ctrl = LkUp, ntuples = 1, id = 83

AT: 4160.19, skt 2, enum 0, name: =:ciscoRouter@Low End SW Lab
AT: LkUp =:ciscoRouter@Low End SW Lab

AT: NBP ctrl = LkUp, ntuples =1, id = 84
AT: 4160.19, skt 2, enum 0, name: =:IPADDRESS@Low End SW Lab

AT: NBP ctrl = LkUp, ntuples = 1, id = 85
AT: 4160.19, skt 2, enum 0, name: =:IPGATEWAY@Low End SW Lab
AT: NBP ctrl = LkUp, ntuples = 1, id = 85
AT: 4160.19, skt 2, enum 0, name: =:IPGATEWAY@Low End SW Lab

The first three lines in Figure 2-8 describe an NBP lookup request:

AT: NBP ctrl = LkUp, ntuples =1, id = 77
AT: 4160.19, skt 2, enum 0, name: =:ciscoRouter@Low End SW Lab
AT: LkUp =:ciscoRouter@Low End SW Lab

Table 2-1 describes the fields in the first line of output shown in Figure 2-8.

Table 2-1 Debug Apple NBP Field Descriptions—Part 1

Field Description

AT: NBP Indicates that this message describes an AppleTalk NBP packet.
ctrl = LkUp Identifies the type of NBP packet. Possible values include

LkUp—NBP Iookup request.
LkUp-Reply—NBP lokup reply.

ntuples =1 Indicatethe number of name-address pairs in th&lpaequest packet.
Range: 1-3tuples.

id=77 Identifies an NBP lookup request value.

Table 2-2 describes the fields in the second line of output shown in Figure 2-8.

2-14 Debug Command Reference

debug apple nbp

Table 2-2 Debug Apple NBP Field Descriptions—Part 2

Field Description

AT: Indicates that this message describes an AppleTalk packet.

4160.19 Indicates the network address of the requester.

skt 2 Indicates the internet socket address of the requester. The responder will

send the NBP lookupeply to this socket address.

enum 0 Indicates the enumerator field. Used to identify multiple names
registered on a single socket. Each tuple is assigned its own enumerator,
incrementing from O for the first tuple.

name: =:ciscoRouter@Low End Indicates the entity name for which a network address has been
SW Lab requested. The AppleTalk entity name includes thoseponents:

Object (in this case, a wildcard character {ndicating that the
requester is requesting name-address pairs for all objects of the specified
type in the specified zone)

Type (in this case, ciscoRouter)
Zone (in this case, Low End SW Lab)

The third line in Figure 2-8 essentially reiterates the information in the two lines above it, indicating
that a lookup request has been made regarding name-addre$srgl objects of the ciscoRouter
type in the Low End SW Lab zone.

Because the router is defined as an object of type ciscoRouter in zone Low End SW Lab, the router
sends an NBP lookup reply in response to this NBP lookup request. The following two lines of
output from Figure 2-8 show the router’s response:

AT: NBP ctrl = LkUp-Reply, ntuples =1, id = 77
AT: 4160.154, skt 254, enum 1, name: lestat.Ether0O:ciscoRouter@Low End SW Lab

In the first line, ctrl = kUp-Reply identifies this NBP packet as an NBP lookup request. same
value in the id field (id = 77) associates this lookup reply with the previous lookup request. The
second line indicates that the network address associated with the router’s entity name
(lestat.EtherO:ciscoRouter@Low End SW Lab) is 4160.154. The fact that no other entity
name/network address is listed indicates that the responder only &howtsitself as an object of
type ciscoRouter in zone Low End SW Lab.

Debug Commands 2-15

debug apple packet

debug apple packet

Use thedebug apple packeEXEC command to display per-packet debugging output. The output
reports information online when a packet is received or a transmit is attemptech fohen of this
command disables debugging output.

debug apple packef{type numbdr
no debug apple packeftype numbdr

Syntax Description

type (Optional) Interface type

number (Optional) Interface number

Command Mode
EXEC

Usage Guidelines

With this command, you can monitor the types of packets being slow switched. It displays at least
one line of debugging output per AppleTalk packet processed.

When invoked in conjunction with ttdebug apple routing debug apple zip anddebug apple
nbp commands, thdebug apple packecommand adds protocol processing information in
addition to generic packet details. It also reports successful completion or failure information.

When invoked in conjunction with trdebug apple errorscommand, thelebug apple packet
command reports packet-level problems, such as those concerning encapsulation.

Note Because thdebug apple packettommand can generate many messages, use it only when
the router’'s CPU utilization is less than 50 percent.

Sample Display
Figure 2-9 shows samptiebug apple packebutput.

Figure 2-9 Sample Debug Apple Packet Output
router# debug apple packet

Ether0: AppleTalk packet: enctype SNAP, size 60, encaps000000000000000000000000
AT: src=Ethernet0:4160.47, dst=4160-4160, size=10, 2 rtes, RTMP pkt sent

AT: ZIP Extended reply rcvd from 4160.19

AT: ZIP Extended reply rcvd from 4160.19

AT: src=Ethernet0:4160.47, dst=4160-4160, size=10, 2 rtes, RTMP pkt sent

Ether0: AppleTalk packet: enctype SNAP, size 60, encaps000000000000000000000000
Ether0: AppleTalk packet: enctype SNAP, size 60, encaps000000000000000000000000

Table 2-3 describes the fields in the first line of output shown in Figure 2-9.

2-16 Debug Command Reference

debug apple packet

Table 2-3 Debug Apple Packet Field Descriptions—Part 1

Field Description

Ether0: Name of the interfadierough which the router received the
packet

AppleTalk packet Indication that this is an AppleTalk packet

enctype SNAP Encapsulation type for the packet

size 60 Size of the packet (in bytes)

encaps000000000000000000000000 Encapsulation

Table 2-4 describes the fields in the second line of output shown in Figure 2-9.

Table 2-4 Debug Apple Packet Field Descriptions—Part 2

Field Description

AT: Indication that this is an AppleTalk packet

src = Ethernet0:4160.47 Namethé interface sending the packet and its AppleTalk address
dst = 4160-4160 Cable range of the packet's destination

size = 10 Size of the packet (in bytes)

2 rtes Indication that two routes in the routing table link these two addresses
RTMP pkt sent The type of packet sent

The third line in Figure 2-9 indicates the type of packet received and its source AppleTalk address.
This message is repeated in the fourth line because AppleTalk hosts can send multiple replies to a
given GetNeinfo request.

Debug Commands 2-17

debug apple remap

debug apple remap

Use thadebug apple remapgEXEC command to enable debugging of the AppleTalk reoapips.
Theno form of this command disableebugging output.

debug apple remap
no debug apple remap

Syntax Description
This command has no arguments or keywords.

Command Mode
EXEC

Usage Guidelines

Use thedebug apple remapcommand with thelebug apple domaincommand to observe activity
between domains and subdomains. Messagesdetiimg apple remapare displayed when a
particular remapping function occurs, such as creating remaps or deleting remaps.

Sample Display
Figure 2-10 shows samplebug apple remapoutput intermixed with output from tldebug apple
domain command; the two commands show related events.

Figure 2-10 Sample Debug Output

router# debug apple remap
router# debug apple domain

AT-REMAP: RemapProcess for net 3000 domain Domain 1
AT-REMAP: ReshuffleRemaplList for subdomain 1
AT-REMAP: Could not find a remap for cable 3000-3001
AT-DOMAIN: Disabling Domain 1 [Domain 1]

AT-DOMAIN: Disabling interface Ethernetl

AT-DOMAIN: atdomain_DisablePort for Ethernetl
AT-DOMAIN: CleanUpDomain for domain 1 [Domain 1]
AT-DOMAIN: CleanSubDomain for inbound subdomain 1
AT-REMAP: Remap for net 70 inbound subdomain 1 has been deleted
AT-DOMAIN: DeleteAvRemaplList for inbound subdomain 1
AT-DOMAIN: DeleteRemapTable for subdomain 1
AT-DOMAIN: DeleteAvRemaplList for inbound subdomain 1
AT-DOMAIN: CleanSubDomain for outbound subdomain 1
AT-DOMAIN: DeleteRemapTable for subdomain 1
AT-REMAP: Remap for net 50 outbound subdomain 1 has been deleted
AT-DOMAIN: DeleteAvRemaplList for outbound subdomain 1
AT-DOMAIN: DeleteAvRemaplList for outbound subdomain 1
AT-DOMAIN: CleanUpDomain for domain 1 [Domain 1]
AT-DOMAIN: CleanSubDomain for inbound subdomain 1
AT-DOMAIN: DeleteRemapTable for subdomain 1
AT-DOMAIN: DeleteAvRemaplList for inbound subdomain 1
AT-DOMAIN: CleanSubDomain for outbound subdomain 1
AT-DOMAIN: DeleteRemapTable for subdomain 1
AT-DOMAIN: DeleteAvRemaplList for outbound subdomain 1

2-18 Debug Command Reference

debug apple remap

Most lines of output in Figure 2-10 are from thebug apple domaincommand. The output from
thedebug apple remapcommand is self-explanatory.

Related Command
debug apple domain

Debug Commands 2-19

debug apple routing

debug apple routing

Use thedebug apple routingEXEC command to enable debugging output from the Routing Table
Maintenance Protocol (RTMP) routines. Theeform of this command disables debugging output.

debug apple routing[type numbgr
no debug apple routing[type numbdr

Syntax Description

type (Optional) Interface type

number (Optional) Interface number

Command Mode
EXEC

Usage Guidelines

This command can be used to monitor acquisition of routes, aging of routing table entries, and
advertisement of known routes. It also reports conflicting network numbers on the same network if
the network is misconfigured.

Note Because thdebug apple routingcommand can generate many messages, use it only when
the router’s CPU utilization is less than 50 percent.

Sample Display
Figure 2-11 shows sampikebug apple routingoutput.

Figure 2-11 Sample Debug Apple Routing Output
router# debug apple routing

AT: src=Ethernet0:4160.41, dst=4160-4160, size=19, 2 rtes, RTMP pkt sent
AT: src=Ethernet1:41069.25, dst=41069, size=427, 96 rtes, RTMP pkt sent
AT: src=Ethernet2:4161.23, dst=4161-4161, size=427, 96 rtes, RTMP pkt sent
AT: Route ager starting (97 routes)

AT: Route ager finished (97 routes)

AT: RTMP from 4160.19 (new 0,0ld 94,bad 0,ign 0, dwn 0)

AT: RTMP from 4160.250 (new 0,0ld 0,bad 0,ign 2, dwn 0)

AT: RTMP from 4161.236 (new 0,0ld 94,bad 0,ign 1, dwn 0)

AT: src=Ethernet0:4160.41, dst=4160-4160, size=19, 2 rtes, RTMP pkt sent

Explanations for representative lines of tlebug apple routingoutput in Figure 2-11 follow.

Table 2-5 describes the fields in the first line of sandigleug apple routingoutput.

2-20 Debug Command Reference

debug apple routing

Table 2-5 Debug Apple Routing Field Descriptions—Part 1

Field Description

AT: Indicates that this is AppleTalk debugging output

src = Ethernet0:4160.41 Indicates the source raunterface and network address for the RTMP
update packet

dst = 4160-4160 Indicates the destination network address for the RTMP update packet

size = 19 Shows the size of this RTMRket (in bytes)

2 rtes Indicates that this RTMP update packet includes information on two
routes

RTMP pkt sent Indicates that this type of message describes an RTMP update packet

that the router has sent (rather than one that it has received)

The following two messages indicate that the ager has started and finished the aging process for the
routing table and that this table contains 97 entries.

AT: Route ager starting (97 routes)
AT: Route ager finished (97 routes)

Table 2-6 describes the fields in the following linedebug apple routingoutput.

AT: RTMP from 4160.19 (new 0,0ld 94,bad 0,ign 0, dwn 0)

Table 2-6 Debug Apple Routing Field Descriptions—Part 2

Field Description

AT: Indicates that this is AppleTalk dedping output

RTMP from 4160.19 Indicatabe source address of th& RP update the router received

new 0 Shows the number of routes in this RTMP update packet that the router did
not already know about

old 94 Shows the number of routes in this RTMP update packet that the router
already knew about

bad 0 Shows the number of routes the other router indicates have gone bad

ign 0 Shows the number of routes the other router ignores

dwn 0 Shows the number of poisoned tuples included in this packet

Debug Commands 2-21

debug apple zip

debug apple zip

Use thedebug apple zipEXEC command to display debugging output from the Zone Information
Protocol (ZIP) routines. Theo form of this command disable&bugging output.

debug apple zip[type numbdr
no debug apple zipgtype numbdr

Syntax Description

type (Optional) Interface type

number (Optional) Interface number

Command Mode
EXEC

Usage Guidelines

This command reports significant events such as the discovery of new zones and zone list queries.
It generates information similar to that generateddiyug apple routing but generates it for ZIP
packets instead of RTMP packets.

You can use hdebug apple zipcommand to determine whether a ZIP storm is taking place in the
AppleTalk network. You can detect the existence of a ZIP storm when you see that no router on a
cable has the zone name corresponding to a network number that all the routers have in their routing
tables.

Sample Display
Figure 2-12 shows samptiebug apple zipoutput.

Figure 2-12 Sample Debug Apple ZIP Output
router# debug apple zip
AT: Sent GetNetlInfo request broadcast on Ether0
AT: Recvd ZIP cmd 6 from 4160.19-6
AT: 3 query packets sent to neighbor 4160.19
AT: 1 zones for 31902, ZIP XReply, src 4160.19
AT: net 31902, zonelen 10, name US-Florida

Explanations of the lines of output shown in Figure 2-12 follow.

2-22 Debug Command Reference

debug apple zip

The first line indicates that the router has received an RTMP update that includes a new network
number and is now requesting zone information:

AT: Sent GetNetlInfo request broadcast on Ether0
The second line indicates that the neighbor at address 4160.19 replies to the zone request with a
default zone:

AT: Recvd ZIP cmd 6 from 4160.19-6
The third line indicates that the routesponds with three queries to the neighbor at network address
4160.19 for other zones on the network:

AT: 3 query packets sent to neighbor 4160.19
The fourth line indicates that the neighbor at network addE33.19 responds with a ZIP extended
reply, indicating that one zone has been assignediworie 31902:

AT: 1 zones for 31902, ZIP XReply, src 4160.19
The fifth line indicates that the router responds that the zone name of n818&XisUS-Florida,
and the zone length of that zone name is 10:

AT: net 31902, zonelen 10, name US-Florida

Debug Commands 2-23

debug arp

debug arp
Use thedebug arpEXEC command to display information on Address Resolution Protocol (ARP)
transactions. Thao form of this command disables debugging output.

debug arp
no debug arp

Syntax Description
This command has no arguments or keywords.

Command Mode
EXEC

Usage Guidelines

Use this command when some nodes on a TCP/IP network are responding, but others are not. It
shows whether the router is sending ARPs and whether it is receiving ARPs.

Sample Display
Figure 2-13 shows samptiebug arp output.

Figure 2-13 Sample Debug ARP Output
router# debug arp

IP ARP: sent req src 131.108.22.7 0000.0c01.e117, dst 131.108.22.96 0000.0000.0000
IP ARP: rcvd rep src 131.108.22.96 0800.2010.b908, dst 131.108.22.7

IP ARP: rcvd req src 131.108.6.10 0000.0c00.6fa2, dst 131.108.6.62

IP ARP: rep filtered src 131.108.22.7 aa92.1b36.a456, dst 255.255.255.255 ffff.ffff. ffff

IP ARP: rep filtered src 131.108.9.7 0000.0c00.6b31, dst 131.108.22.7 0800.2010.b908

In Figure 2-13, each line of output represents an ARP packet that the router sent or received.
Explanations for the individual lines of output follow.

The first line indicates that the router at IP address 131.108.22.7 and MAC #&ffie8s01.e117

sent an ARP request for the MAC address of the host at 131.108.22.96. The series of zeros
(0000.0000.0000) following this address indicate that the router is currently unaware of the MAC
address.

IP ARP: sent req src 131.108.22.7 0000.0c01.e117, dst 131.108.22.96 \
0000.0000.0000

The second line indicates that the router at IP address 131.108.22.7 receives a reply from the host at
131.108.22.96 indicating that its MAC addres88§0.2010.b908:

IP ARP: rcvd rep src 131.108.22.96 0800.2010.b908, dst 131.108.22.7

The third line indicates that the router receives an ARP request from the host at 131.108.6.10
requesting the MAC address for the host at 131.108.6.62:

IP ARP: rcvd req src 131.108.6.10 0000.0c00.6fa2, dst 131.108.6.62

2-24 Debug Command Reference

debug arp

The fourth line indicates that another host on the network attempted to send the router an ARP reply
for the router’s own address. The router ignores such bogus replies. Usually, this can happen if
someone is running a bridge in parallel with the router and is allowing ARP to be bridged. It
indicates a network misconfiguration.

IP ARP: rep filtered src 131.108.22.7 aa92.1b36.a456, dst 255.255.255.255 \
linRiiRii

The fifth line indicates that another host on the network attempted to inform the router that it is on
network 131.108.9.7, but the router does not know that thabnleis attached to a diffent router
interface. The remote host (probably a PC or an X terminal) is misconfigured. If the router were to
install this entry, it would deny service to the real machine on the proper cable.

IP ARP: rep filtered src 131.108.9.7 0000.0c00.6b31, dst 131.108.22.7 \
0800.2010.b908

Debug Commands 2-25

debug atm errors

debug atm errors

Use thedebug atmerrors EXEC command to display Asynchronous Transfer Mode (ATM) errors.
Theno form of this command disableebugging output.

debug atm errors
no debug atm errors

Syntax Description
This command has no arguments or keywords.

Command Mode
EXEC

Sample Display
Figure 2-14 shows samptiebug atm errors output.

Figure 2-14 Sample Debug ATM Errors Output

router## debug atm errors
ATM(ATM2/0): Encapsulation error, link=7, host=836CA86D.

The line of output in Figure 2-14 indicates that a packet was routed to the ATM interface, but no
static map was set up to route that packet to the proper virtual circuit.

2-26 Debug Command Reference

debug atm events

debug atm events

Use thedebug atmeventsEXEC command to display ATM events. Tin@form of this command
disables debugging output.

debug atm events
no debug atm events

Syntax Description
This command has no arguments or keywords.

Command Mode
EXEC

Usage Guidelines

This command displays ATM events that occur on the ATM interface processor and is useful for
diagnosing problems in an ATM network. It provides an overall picture of the stability of the
network. In a stable network, tdebug atm eventcommand does not return any information. If

the command generates numerous messages, the messages can indicate the possible source of
problems.

When configuring or making changes to a router or interface for ATM, edableg atm events
Doing so alerts you to the progress of the changes or to any errors that might result. Also use this
command periodically when you suspect network problems.

Sample Display
Figure 2-15 shows samptiebug atm eventoutput.

Figure 2-15 Sample Debug ATM Events Output

router# debug atm events

ATM events debugging is on
RESET(ATM4/0): PLIM type is 1, Rate is 100Mbps
aip_disable(ATM4/0): state=1
config(ATM4/0)
aip_love_note(ATM4/0): asr=0x201
aip_enable(ATM4/0)
aip_love_note(ATM4/0): asr=0x4000
aip_enable(ATM4/0): restarting VCs: 7
aip_setup_vc(ATM4/0): vc:1 vpi:1 vei:l
aip_love_note(ATM4/0): asr=0x200
aip_setup_vc(ATM4/0): vc:2 vpi:2 vci:2
aip_love_note(ATM4/0): asr=0x200
aip_setup_vc(ATM4/0): vc:3 vpi:3 vci:3
aip_love_note(ATM4/0): asr=0x200
aip_setup_vc(ATM4/0): vc:4 vpi:4 vci:4
aip_love_note(ATM4/0): asr=0x200
aip_setup_vc(ATM4/0): vc:6 vpi:6 vci:6
aip_love_note(ATM4/0): asr=0x200
aip_setup_vc(ATM4/0): vc:7 vpi:7 vci:7
aip_love_note(ATM4/0): asr=0x200
aip_setup_vc(ATM4/0): vc:11 vpi:11 vei:11
aip_love_note(ATM4/0): asr=0x200

Debug Commands 2-27

debug atm events

Table 2-7 describes significant fields in the output shown in Figure 2-15.

Table 2-7 Debug ATM Events Field Descriptions
Field Description
PLIM type Indicates the interface rate in Mbps. Possible values are

1 = TAXI(4B5B) 100 Mbps
2 = SONET 155 Mbps
3 = E3 34 Mbps

state Indicates current state of the AIP. Possible values are
1 = An ENABLE will be issued soon
0 = The AIP will remain shut down

asr Defines a bitmask, which indicates actions or completions to commands. Valid
bitmask values are
0x0800 = AIP crashed, reload may be required.
0x0400 = AIP detected a carrier state change.
0x0n00 = Command completion status. Command completion status codes are
n = 8 Invalid PLIM detected
n =4 Command failed
n =2 Command completed successfully
n = 1 CONFIG request failed
n =0 Invalid value

Explanations for representative lines of output in Figure 2-15 follow.

The following line indicates that the ATM Interface Processor (AIP) was reset. The PLIM TYPE
detected was 1, so the maximum rate is set to 100 Mbps.

RESET(ATM4/0): PLIM type is 1, Rate is 100Mbps
The following line indicates that the ATM Interface Processor (AIP) was gigéataown
command, but the current configuration indicates that the AIP should be up:

aip_disable(ATM4/0): state=1

The following line indicates that a configuration command has been completed by the AIP:

aip_love_note(ATM4/0): asr=0x201

The following line indicates that the AIP was givenashutdown command to take it out of
shutdown:

aip_enable(ATM4/0)
The following line indicates that the AIP detected a carrier state change. It does not indicate that the
carrier is down or up, only that it has changed:

aip_love_note(ATM4/0): asr=0x4000

The following line of output indicates that the AIP enable function is restarting all PVCs
automatically:

aip_enable(ATM4/0): restarting VCs: 7

2-28 Debug Command Reference

debug atm events

The following lines of output indicate that PVC 1 was set up and a successful completion code was
returned:

aip_setup_vc(ATM4/0): vc:1 vpi:l vei:l
aip_love_note(ATM4/0): asr=0x200

Debug Commands 2-29

debug atm packet

debug atm packet

Use thedebug atmpacket EXEC command to display per-packet debugging output. The output
reports information online when a packet is received or a transmit is attemptech fohen of this
command disables debugging output.

debug atm packet
no debug atm packet

Syntax Description
This command has no arguments or keywords.

Command Mode
EXEC

Usage Guidelines

Thedebug atm packetcommand displays all process-level ATM packets for both outbound and
inbound packets. This command is useful for determining whether packets are being received and
transmitted correctly.

For transmitted packets, the information is displayed only after the protocol data unit (PDU) is
entirely encapsulated and a next hop virtual circuit (VC) is found. If information is not displayed,
the address translation probably failed during encapsulation. When a next hop VC is found, the
packet is displayed exactly as it will be presented on the wire. Having a display indicates the packets
are properly encapsulated for transmission.

For received packets, information is displayed for all incoming frames. The display can show
whether the transmitting station properly encapsulates the frames. Because all incoming frames are
displayed, this information is useful when performing back-to-back testing and corrupted frames
cannot be dropped by an intermediary ATM switch.

Thedebug atm packetcommand also displays the initial bytes of the actual PDU in hexadecimal.
This information can be decoded only by qualified support or engineering personnel.

Note Because thdebug atm packetcommand generates a significant amount of output for every
packet processed, use it only when traffic on the network is low, so othgtyam the system is
not adversely affected.

Sample Display
Figure 2-16 shows samptiebug atm packetoutput.

Figure 2-16 Sample Debug ATM Packet Output

router# debug atm packets

ATM packets debugging is on

router#

ATM2/0(0): VCD: 0x1,DM: 1C00, MUX, ETYPE: 0800,Length: 32

4500 002E 0000 0000 0209 92ED 836C A26E FFFF FFFF 1108 006D 0001 0000 0000
A5CC 6CA2 0000 000A 0000 6411 76FF 0100 6C08 00OFF FFFF 0003 E805 DCFF 0105

2-30 Debug Command Reference

debug atm packet

Table 2-8 describes significant fields shown in Figure 2-16.

Table 2-8 Debug ATM Packet Field Descriptions

Field Description

ATM2/0 Indicates the interface that generated this packet.

(O) Indicates an output packet. (I) would mean receive packet.

VCD: Oxn Indicates thevirtual circuit associated with this packet, wherie some value.

DM: Oxnnnn Indicates the descriptor mode bits on output only, whamnis a hexadecimal
value.

ETYPE:n Shows the Ethernet type for this packet.

Length:n Shows the total length of the packet including the ATM header(s).

The following two lines of output are the binary data, which are the contents of the protocol PDU
before encapsulation at the ATM:

4500 002E 0000 0000 0209 92ED 836C A26E FFFF FFFF 1108 006D 0001 0000 0000
A5CC 6CA2 0000 000A 0000 6411 76FF 0100 6C08 O0OFF FFFF 0003 E805 DCFF 0105

Debug Commands 2-31

debug bri

debug bri

Use thedebug bri EXEC command to display debugging information on Integrated ServigialD
Networks (ISDN) Basic Rate Interface (BRI) routing activity. Mbdorm of this command disables
debugging output.

debug bri
no debug bri

Syntax Description
This command has no arguments or keywords.

Command Mode
EXEC

Usage Guidelines

Thedebug bricommand indicates whether the ISDN code is enabling and disabling the B-channels
when attempting an outgoing call. This command is available for the low-end poodieicts that
have a multi-BRI network interface module installed.

Note Because thdebug bri command generates a significant amount of output, use it only when
traffic on the IP network is low, so other activity on the system is not adversely affected.

Sample Display
Figure 2-17 shows samptiebug bri output.

Figure 2-17 Sample Debug BRI Packets Output
Router# debug bri

Basic Rate network interface debugging is on
BRI: write_sid: wrote 1B for subunit 0, slot 1.
BRI: write_sid: wrote 15 for subunit 0, slot 1.
BRI: write_sid: wrote 17 for subunit 0, slot 1.
BRI: write_sid: wrote 6 for subunit O, slot 1.
BRI: write_sid: wrote 8 for subunit O, slot 1.
BRI: write_sid: wrote 11 for subunit 0, slot 1.
BRI: write_sid: wrote 13 for subunit 0, slot 1.
BRI: write_sid: wrote 29 for subunit 0, slot 1.
BRI: write_sid: wrote 1B for subunit 0, slot 1.
BRI: write_sid: wrote 15 for subunit 0, slot 1.
BRI: write_sid: wrote 17 for subunit 0, slot 1.
BRI: write_sid: wrote 20 for subunit 0, slot 1.
BRI: Starting Power Up timer for unit = 0.

BRI: write_sid: wrote 3 for subunit O, slot 1.
BRI: Starting T3 timer after expiry of PUP timeout for unit = 0, current state is F4.
BRI: write_sid: wrote FF for subunit 0, slot 1.
BRI: Activation for unit = 0, current state is F7.
BRI: enable channel B1

BRI: write_sid: wrote 14 for subunit 0, slot 1.

2-32 Debug Command Reference

debug bri

%LINK-3-UPDOWN: Interface BRIO: B-Channel 1, changed state to up
%LINK-5-CHANGED: Interface BRIO: B-Channel 1, changed state to up.!!!
BRI: disable channel B1

BRI: write_sid: wrote 15 for subunit 0, slot 1.

%LINK-3-UPDOWN: Interface BRIO: B-Channel 1, changed state to down
%LINK-5-CHANGED: Interface BRIO: B-Channel 1, changed state to down
%LINEPROTO-5-UPDOWN: Line protocol on Interface BRIO: B-Channel 1, changed state to down

Explanations for individual lines of output from Figure 2-17 follow.

The following line indicates that an internal command was written to the interface controller. The
subunit identifies the first interface in the slot:

BRI: write_sid: wrote 1B for subunit 0, slot 1.

The following line indicates that the power-up timer was started for the named unit:

BRI: Starting Power Up timer for unit = 0.

The following lines indicate that the channel or the protocol on the interface changed state:

%LINK-3-UPDOWN: Interface BRIO: B-Channel 1, changed state to up
%LINK-5-CHANGED: Interface BRIO: B-Channel 1, changed state to up.!!!
%LINEPROTO-5-UPDOWN: Line protocol on Interface BRIO: B-Channel 1, changed state to down

The following line indicates that the channel was disabled:

BRI: disable channel B1

Lines of output not described are for use by support staff only.

Related Commands

debug isdn-event
debug isdn-q921
debug isdn-q931

Debug Commands 2-33

debug broadcast

debug broadcast

Use thedebug broadcastEXEC command to display information on MAC broadcast packets. The
no form of this command disables debugging output.

debug broadcast
no debug broadcast

Syntax Description
This command has no arguments or keywords.

Command Mode
EXEC

Usage Guidelines

Depending on the type of interface and the type of encapsulation used on that interidelethe
broadcastcommand can produce ade range of messages.

Sample Display
Figure 2-18 shows samptiebug broadcastoutput. Notice how similar it is to thdebug packet
output.

Figure 2-18 Sample Debug Br oadcast Output
router# debug broadcast
EthernetO: Broadcast ARPA, src 0000.0c00.6fa4, dst ffff.ffff.ffff, type 0x0800,
data 4500002800000000FF11EA7B, len 60
Serial3: Broadcast HDLC, size 64, type 0x800, flags 0x8F00

Serial2: Broadcast PPP, size 128
Serial7: Broadcast FRAME-RELAY, size 174, type 0x800, DLCI 7a

Table 2-9 describes significant fields shown in Figure 2-18.

2-34 Debug Command Reference

debug broadcast

Table 2-9 Debug Broadcast Field Descriptions

Field Description

Ethernet0 Name of Ethernet interface that received the packet.

Broadcast Indication that this packet was a broadcast packet.

ARPA Indication that this packet uses ARPA-style encapsulation. Possible

encapsulation styles vary deying onthe media command mode
(MCM) and encapsulation style, as follows:

Ethernet (MCM)

Encapsulation Style
APOLLO

ARP

ETHERTALK

ISO1

1ISO3

LLC2
NOVELL-ETHER
SNAP

FDDI (MCM)

Encapsulation Style
APOLLO

ISO1

1ISO3

LLC2

SNAP

Serial (MCM)

Encapsulation Style
BFEX25

BRIDGE

DDN-X25
DDNX25-DCE
ETHERTALK
FRAME-RELAY
HDLC

HDH

LAPB

LAPBDCE
MULTI-LAPB

PPP
SDLC-PRIMARY
SDLC-SECONDARY
SLIP

SMDS

STUN

X25

X25-DCE

Debug Commands 2-35

debug broadcast

Field Description
Token Ring (MCM)

Encapsulation Style

3COM-TR
1ISO1
1ISO3
MAC
LLC2
NOVELL-TR
SNAP
VINES-TR
src 0000.0c00.6fa4 MAC address of the node generating the packet.
dst ffff.ffff.ffff.ffff MAC address of the destination node for the packet. This address is
always the MAC broadcast address.
type k0800 Packetype (IP in this case).
data ... First 12 bytes of the datagram following the MAC header.
len 60 Length of the message that the interface received from the wire (in
bytes).
size 128 Length of the message that the interface received from the wire (in
bytes).
flags OX8F00 HDLC or PPP flags field.
DLCI 7a The DLCI number on Frame Relay.

2-36 Debug Command Reference

debug cdp

debug cdp

Use thedebug cdpEXEC command to enable debugging of Cisco Discovery Protocol (CDP). The
no form of this command disables debugging output.

debug cdp{packets|adjacency| event$
no debug cdp{ packets| adjacency|eventg

Syntax Description

packets Enables packet-related debugging output.
adjacency Enables adjacency-relatdébugging output.
events Enables output related related to error messages, such as

detecting a bad checksum.

Command Mode
EXEC

Usage Guidelines

Usedebug cdpcommands to display information about CDP packet activity, activity between CDP
neighbors, and various CDP events.

Sample Display
Figure 2-19 shows a composite sample output filebug cdppackets debug cdpadjacency and
debug cdp events

Figure 2-19 Sample Debug CDP Output

router## debug cdp packets
CDP packet info debugging is on
router# debug cdp adjacency
CDP neighbor info debugging is on
router# debug cdp events

CDP events debugging is on

CDP-PA: Packet sent out on Ethernet0
CDP-PA: Packet received from gray.cisco.com on interface EthernetO

CDP-AD: Deleted table entry for violet.cisco.com, interface EthernetO
CDP-AD: Interface Ethernet2 coming up

CDP-EV: Encapsulation on interface Serial2 failed

The messages displayed égbug cdpcommands are self-explanatory.

Debug Commands 2-37

debug channel events

debug channel events

Thedebug channel event&XEC command displays processing events that occur on the channel
adapter interfaces of all installed adapters. This command is valid for the Cisco 7000 series routers
only. Theno form of this command disables debugging output.

debug channel events
no debug channel events

Syntax Description
This command has no arguments or keywords.

Command Mode
EXEC

Usage Guidelines

This command displays Channel Interface Processor (CIP) events that occur on the CIP interface
processor and is useful for diagnosing problems in an IBM channel attach network. It provides an
overall picture of the stability of the network. In a stable networkdétrig channel events

command does not return any information except for a statistic message (cip_love_letter)
transmitted every ten seconds. If the command generates numerous messages, they can indicate the
possiblesource of the problems.

When configuring or making changes to a router or interface that supports IBM channel attach,
enabledebug channel eventsDoing so alerts you to the progress of the changes or to any errors
that might result. Also use this command periodically when you suspect network problems.

Sample Display
Figure 2-20 shows samptiebug channel eventsutput.

Figure 2-20 Sample Debug Channel Events Output

Router# debug channel events

Channel3/1: love letter received, bytes 3308

Channel3/0: love letter received, bytes 3336

cip_love_letter: recieved I, but no cip_info

Channel3/0: cip_reset(), state administratively down

Channel3/0: cip_reset(), state up

Channel3/0: sending nodeid

Channel3/0: sending command for vc 0, CLAW path C700, device CO

Explanations for individual lines of output from Figure 2-20 follow.
The following line indicates that data was received on the CIP:

Channel3/1: love letter received, bytes 3308

The following line indicates that the interface is enabled, but there is no configuration for it. It does
not normally indicate a problem, just that the route processor (RP) got statistics from the CIP but has
no place to store them.

cip_love_letter: recieved I, but no cip_info

2-38 Debug Command Reference

debug channel events

The following line indicates that the CIP is being reset to an administrative down state:

Channel3/0: cip_reset(), state administratively down

The following line indicates that the CIP is being reset to an administrative up state:
Channel3/0: cip_reset(), state up
The following line indicates that the node id is being sent to the CIP. This information is the same

as the "Local Node" information under thigow extended channel slot/port subchannels
command. The CIP needs this information to send to the host mainframe.

Channel3/0: sending nodeid
The following line indicates that a CLAW subchannel command is being sent from the RP to the

CIP. The value vc 0 indicates that the CIP will use virual circuit number O with this device. The
virual circuit number will also show up when using tiebug channel packet€ommand.

Channel3/0: sending command for vc 0, CLAW path C700, device CO

Debug Commands 2-39

debug channel packets

debug channel packets

Use thedebug channel packet&XEC command to display per-packet debugging output. The
output reports information when a packet is received onanrd is attempted. Theo form of this
command disables debugging output.

debug channel packets
no debug channel packets

Syntax Description
This command has no arguments or keywords.

Command Mode
EXEC

Usage Guidelines

Thedebug channel packetsommand displays all process-level Channel Interface Processor (CIP)
packets for both outbound and and inbound packets. You will need to disable fast switching and
autonomous switching to obtain debugging output. This command is useful for determining whether
packets are received or transmitted correctly.

This command is valid for the Cisco 7000 series routers only.

Sample Display
Figure 2-21 shows samptiebugchannel packetsoutput.

Figure 2-21 Sample Debug Channel Packets Output
Router# debug channel packets

Channel packets debugging is on

(Channel3/0)-out size = 104, vc = 0000, type = 0800, src 198.92.0.11, dst 198.92.1.58

(Channel3/0)-in size = 48, vc = 0000, type = 0800, src 198.92.1.58, dst 198.92.15.197
(Channel3/0)-in size = 48, vc = 0000, type = 0800, src 198.92.1.58, dst 198.92.15.197
(Channel3/0)-out size = 71, vc = 0000, type = 0800, src 198.92.15.197, dst 198.92.1.58
(Channel3/0)-in size = 44, vc = 0000, type = 0800, src 198.92.1.58, dst 198.92.15.197

Table 2-10 provides explanations for individual lines of output from Figure 2-21.

Table 2-10 Channel Packets Field Descriptions

Field Description

(Channel3/0) The interface slot and port.

in/ out In is a packet from the mainframe to the router.

Out is a packet from the router to the mainframe.

size = The number of bytes in the packet, including internal overhead.

ve = A value from 0-511that maps to thelaw interface configuration
command. This information is from the MAC layer.

2-40 Debug Command Reference

debug channel packets

Field Description

type = The encapsulation type in the MAC layer. The va8@®hdicates an
IP datagram.

src The origin, or source, of the packet, as opposed to the previous hop
address.

dst

The destination of the packet, as opposed to the next hop address.

Debug Commands 2-41

debug clns esis events

debug clns esis events

Use thedebug cins esis evenEEXEC command to display uncommon End System-to-Intermediate
System (ES-IS) events, including previously unknown neighbors, neighbors that have aged out, and
neighbors that have changed roles (ES to IS, for examplendfoem of this command disables
debugging output.

debug clns esis events
no debug clns esis events

Syntax Description
This command has no arguments or keywords.

Command Mode
EXEC

Sample Display
Figure 2-22 shows samptiebug clns esis eventsutput.

Figure 2-22 Sample Debug CLNS ESIS Events Output
router# debug cins esis events

ES-IS: ISH from aa00.0400.2c05 (Ethernetl), HT 30
ES-IS: ESH from aa00.0400.9105 (Ethernetl), HT 150
ES-IS: ISH sent to All ESs (Ethernetl): NET 49.0001.AA00.0400.6904.00, HT 299, HLEN 20

Explanations for individual lines of output from Figure 2-22 follow.

The following line indicates that the router received a hello packet (ISH) from the IS at MAC address
aa00.0400.2c05 on the Ethernetl interface. The hold(@meumber of seconds to consider this
packet valid before deleting it) for this packet is 30 seconds.

ES-IS: ISH from aa00.0400.2c05 (Ethernetl), HT 30
The following line indicates that the router received a hello packet (ESH) from the ES at MAC
address aa00.04®1.05 on the Hternetl interface. The hold time is 150 seconds.

ES-IS: ESH from aa00.0400.9105 (Ethernetl), HT 150
The following line indicates that the router sent an IS hello packet on the EthernetO interface to all

ESs on the network. The router’'s NET address is 49.0001.AA00.6904.00, the hold time for this
packet is 299 seconds, and the header length of this packet is 20 bytes.

ES-IS: ISH sent to All ESs (Ethernetl): NET 49.0001.AA00.0400.6904.00, HT 299, HLEN 20

2-42 Debug Command Reference

debug clIns esis packets

debug cIns esis packets

Use thedebug clns esis packet& XEC command to enable display information on End
System-to-Intermediate System (ES-IS) packets that the router has received and senfoithe
of this command disabletebugging output.

debug clns esis packets
no debug clns esis packets

Syntax Description
This command has no arguments or keywords.

Command Mode
EXEC

Sample Display
Figure 2-23 shows samptiebug clns esis packetsutput.

Figure 2-23 Sample Debug CLNS ESIS Packets Output
router# debug clns esis packets

ES-IS: ISH sent to All ESs (Ethernet0): NET
47.0005.80ff.ef00.0000.0001.5940.1600.8906.4023.00, HT 299, HLEN 33
ES-IS: ISH sent to All ESs (Ethernetl): NET
47.0005.80ff.ef00.0000.0001.5940.1600.8906.4023.00, HT 299, HLEN 34
ES-IS: ISH from aa00.0400.6408 (Ethernet0), HT 299

ES-IS: ISH sent to All ESs (Tunnel0): NET
47.0005.80ff.ef00.0000.0001.5940.1600.0906.4023.00, HT 299, HLEN 34
1S-1S: ESH from 0000.0c00.bda8 (Ethernet0), HT 300

Explanations for individual lines of output from Figure 2-23 follow.

The following line indicates that the router has sent an IS hello packet on EthernetO to all ESs on the
network. This hello packet indicates that the router’'s NET is
47.0005.80ff.ef00.0000.0001.5940.160@82023.00. The hold time for this packet is

299 seconds. The packet header is 33 bytes in length.

ES-IS: ISH sentto All ESs (Ethernet0): NET 47.0005.80ff.ef00.0000.0001.5940.1600.8906.4023.00, HT 299, HLEN 33
The following line indicates that the router has sent an IS hello packet on Ethernetl to all ESs on the
network. This hello packet indicates that the router's NET is

47.0005.80ff.ef00.0000.0001.5940.160@82023.00. The hold time for this packet is
299 seconds. The packet header is 33 bytes in length.

ES-IS:ISH sentto AllESs (Ethernetl): NET 47.0005.80ff.ef00.0000.0001.5940.1600.8906.4023.00, HT 299, HLEN 34

The following line indicates that the router received a hello packet on EthernetO from an
intermediate system, @8.0400.6408. The hold time for this packet is 299 seconds.

ES-IS: ISH from aa00.0400.6408 (Ethernet0), HT 299

Debug Commands 2-43

debug cins esis packets

The following line indicates that the router has sent an IS hello packet on TunnelO to all ESs on the
network. This hello packet indicates that the router's NET is
47.0005.80ff.ef00.0000.0001.5940.160@82023.00. The hold time for this packet is

299 seconds. The packet header is 33 bytes in length.

ES-IS: ISH sent to All ESs (Tunnel0): NET 47.0005.80ff.ef00.0000.0001.5940.1600.8906.4023.00, HT 299, HLEN 34

The following line indicates that on Ethernet0, the router received a hello packet from an end system
with an SNPA of 0000.0c00.bda8. The hold time for this packet is 300 seconds.

1S-1S: ESH from 0000.0c00.bda8 (Ethernet0), HT 300

2-44 Debug Command Reference

debug cIns events

debug clns events

Use thedebug clns event&XEC command to display CLNS events that are occurring at the router.
Theno form of this command disableebugging output.

debug ciIns events
no debug clns events

Syntax Description
This command has no arguments or keywords.

Command Mode
EXEC

Sample Display
Figure 2-24 shows samptiebug clns event®utput.

Figure 2-24 Sample Debug CLNS Events Output
router# debug cIns events

CLNS: Echo PDU received on Ethernet3 from 39.0001.2222.2222.2222.00!
CLNS: Sending from 39.0001.3333.3333.3333.00 to 39.0001.2222.2222.2222.00
via 2222.2222.2222 (Ethernet3 0000.0c00.3a18)
CLNS: Forwarding packet size 117
from 39.0001.2222.2222.2222.00
to 49.0002.0001.AAAA.AAAA.AAAA.00
via 49.0002 (Ethernet3 0000.0c00.b5a3)
CLNS: RD Sent on Ethernet3 to 39.0001.2222.2222.2222.00 @ 0000.0c00.3a18,
redirecting 49.0002.0001.AAAA.AAAA.AAAA.00 to 0000.0c00.b5a3

Explanations for individual lines of output from Figure 2-24 follow.

The following line indicates that the router received an echo PDU on Ethernet3 from source network
service access point (NSAP) 39.0001.2222.2222.2222.00. The exclamation guoénérad of the
line has no significance.

CLNS: Echo PDU received on Ethernet3 from 39.0001.2222.2222.2222.00!

The following lines indicate that the router at source NSAP 39.0001.3333.3333.3333.00 is sending
a CLNS echo packet to destination NSAP 39.0001.2222.2222.2222.00 via an IS with system ID
2222.2222.2222. The packet is being sent on the Ethernet3 interface, with a MAC address of
0000.0c00.3a18.

CLNS: Sending from 39.0001.3333.3333.3333.00 to 39.0001.2222.2222.2222.00
via 2222.2222.2222 (Ethernet3 0000.0c00.3a18)

The following lines indicate that a CLNS echo packet 117 bytes in size is being sent from source
NSAP 39.0001.2222.2222.2222.00 to destion NSAP 49.002.0001.AAAA.AAAA.AAAA.00

via the router at NSAP 49.0002. The packet is being forwarded on the Ethernet3 interface, with a
MAC address of 0000.0c00.b5a3.

CLNS: Forwarding packet size 117
from 39.0001.2222.2222.2222.00
to 49.0002.0001.AAAA.AAAA.AAAA.00
via 49.0002 (Ethernet3 0000.0c00.b5a3)

Debug Commands 2-45

debug clns events

The following lines indicate that the router sent a redirect packet on the Ethernet3 interface to the
NSAP 39.0001.2222.2222.2222.00 at MAC address 0000.0c00.3a18 to indicate that NSAP
49.0002.0001.AAAAAAAA.AAAA.O00 can be reached at MAC address 0000.0c00.b5a3.

CLNS: RD Sent on Ethernet3 to 39.0001.2222.2222.2222.00 @ 0000.0c00.3a18,
redirecting 49.0002.0001.AAAA.AAAA.AAAA.00 to 0000.0c00.b5a3

2-46 Debug Command Reference

debug cins igrp packets

debug cIns igrp packets

Use thedebug clns igrp packetsEXEC command to display debugging information on all
ISO-IGRP routing activity. Thao form of this command disables debugging output.

debug cins igrp packets
no debug clns igrp packets

Syntax Description
This command has no arguments or keywords.

Command Mode

EXEC

Sample Display
Figure 2-25 shows samptiebug clns igrp packetsoutput.

Figure 2-25

router#

ISO-IGRP:
ISO-IGRP:
ISO-IGRP:
ISO-IGRP:
ISO-IGRP:
ISO-IGRP:
ISO-IGRP:
ISO-IGRP:
ISO-IGRP:
ISO-IGRP:
ISO-IGRP:
ISO-IGRP:
ISO-IGRP:

Sample Debug CLNS IGRP Packets Output

debug cIns igrp packets

Hello sent on Ethernet3 for DOMAIN_greenl
Received hello from 39.0001.3333.3333.3333.00, (Ethernet3), ht 51
Originating level 1 periodic update

Advertise dest: 2222.2222.2222

Sending update on interface: Ethernet3

Originating level 2 periodic update

Advertise dest: 0001

Sending update on interface: Ethernet3

Received update from 3333.3333.3333 (Ethernet3)
Opcode: area

Received level 2 adv for 0001 metric 1100

Opcode: station

Received level 1 adv for 3333.3333.3333 metric 1100

Explanations for individual lines of output from Figure 2-25 follow.

The following line indicates that the router is sending a hello packet to advertise its existence in the
DOMAIN_greenl domain:

ISO-IGRP:

Hello sent on Ethernet3 for DOMAIN_greenl

The following line indicates that the router received a hello packet from a certaiorkeervice
access point (NSAP) on the Ethernet3 interface. The hold time for this information is 51 seconds.

ISO-IGRP:

Received hello from 39.0001.3333.3333.3333.00, (Ethernet3), ht 51

The following lines indicate that the router is generating a Level 1 update to advertise reachability
to destination NSAP 2222.2222.2222 and that it is sending that update to all systems that can be
reached through the Ethernet3 interface:

ISO-IGRP:
ISO-IGRP:
ISO-IGRP:

Originating level 1 periodic update
Advertise dest: 2222.2222.2222
Sending update on interface: Ethernet3

Debug Commands 2-47

debug clns igrp packets

The following lines indicate that the router is generating a Level 2 update to advertise reachability

to destination area 1 and that it is sending that update to all systems that can be reached through the
Ethernet3 interface:

ISO-IGRP: Originating level 2 periodic update
ISO-IGRP: Advertise dest: 0001
ISO-IGRP: Sending update on interface: Ethernet3

The following lines indicate that the router received an update from NSABR.333.3333 on
Ethernet3. This update indicated the area the router at this NSAP could reach.

ISO-IGRP: Received update from 3333.3333.3333 (Ethernet3)
ISO-IGRP: Opcode: area

The following lines indicate that the router received an update advertising that the source of that
update can reach area 1 with a metric of 1100. A station opcode indicates that the update included
system addresses.

ISO-IGRP: Received level 2 adv for 0001 metric 1100
ISO-IGRP: Opcode: station

2-48 Debug Command Reference

debug clns packet

debug cins packet

Use thedebug clns packetEXEC command to display information about packet receipt and
forwarding to the next interface. The form of this command disableebugging output.

debug cIns packet
no debug clns packet

Syntax Description
This command has no arguments or keywords.

Command Mode
EXEC

Sample Display
Figure 2-26 shows samptiebug clns packebutput.

Figure 2-26 Sample Debug CLNS Packet Output
router## debug cIns packet

CLNS: Forwarding packet size 157
from 47.0023.0001.0000.0000.0003.0001.1920.3614.3002.00 STUPI-RBS
to 47.0005.80ff.ef00.0000.0001.5940.1600.8906.4017.00
via 1600.8906.4017 (Ethernet0 0000.0c00.bda8)
CLNS: Echo PDU received on EthernetO from 4
7.0005.80ff.ef00.0000.0001.5940.1600.8906.4017.00!
CLNS: Sending from 47.0005.80ff.ef00.0000.0001.5940.1600.8906.4023.00 to
47.0005.80ff.ef00.0000.0001.5940.1600.8906.4017.00
via 1600.8906.4017 (Ethernet0 0000.0c00.bda8)

Explanations for individual lines of output from Figure 2-26 follow.

In the following lines, the first line indicates that a Connectionless Network Service (CLNS) packet
of size 157 bytes is being forwarded. The second line indicates the network service access point
(NSAP) and system name of the source of the packet. The third line indicates the destBaton

for this packet. The fourth line indicates the next-hygtem ID, interface, and SNPA of the router
interface used to forward this packet.

CLNS: Forwarding packet size 157
from 47.0023.0001.0000.0000.0003.0001.1920.3614.3002.00 STUPI-RBS
to 47.0005.80ff.ef00.0000.0001.5940.1600.8906.4017.00
via 1600.8906.4017 (Ethernet0 0000.0c00.bda8)

In the following lines, the first line indicates that the router received an Echo PDU on the specified
interface from the source NSAP. The secadnd Indicates which source NSAP is used to send a
CLNS packet to the destination NSAP, as shown on the third lindotirth line indicates the

next-hop system ID, interface, and SNPA of the router interface used to forward this packet.

CLNS: Echo PDU received on EthernetO from 47.0005.80ff.ef00.0000.0001.5940.1600.8906.4017.00!
CLNS: Sending from 47.0005.80ff.ef00.0000.0001.5940.1600.8906.4023.00 to
47.0005.80ff.ef00.0000.0001.5940.1600.8906.4017.00

via 1600.8906.4017 (Ethernet0 0000.0c00.bda8)

Debug Commands 2-49

debug clns routing

debug clns routing

Use thedebug clns routingEXEC command to display debugging information of all
Connectionless Network Service (CLNS) routing cache updates and activities involving the CLNS
routing table. Thao form of this command disables debugging output.

debug clns routing
no debug clns routing

Syntax Description
This command has no arguments or keywords.

Command Mode
EXEC

Sample Display
Figure 2-27 shows samptiebug clns routingoutput.

Figure 2-27 Sample Debug CLNS Routing Output
router# debug cins routing

CLNS-RT: cache increment:17

CLNS-RT: Add 47.0023.0001.0000.0000.0003.0001 to prefix table, next hop 1920.3614.3002
CLNS-RT: Aging cache entry for: 47.0023.0001.0000.0000.0003.0001.1920.3614.3002.06
CLNS-RT: Deleting cache entry for: 47.0023.0001.0000.0000.0003.0001.1920.3614.3002.06

Explanations for individual lines of output from Figure 2-27 follow.

The following line indicates that a change to the routing table has resulted in an addition to the
fast-switching cache:

CLNS-RT: cache increment:17
The following line indicates that a specific prefix route was added to the routing table, and indicates
the next-hop system ID to that prefix route. In other words, when the router receives a packet with

the prefix 47.0023.0001.0000.0000.0003.0001 in that packet’s destinatiossdtdferwards that
packet to the router with the MAC address 1920.3614.3002.

CLNS-RT: Add 47.0023.0001.0000.0000.0003.0001 to prefix table, next hop 1920.3614.3002

The following lines indicate that the fast-switching cache eotrg certain network service access
point (NSAP) has been invalidated and then deleted:

CLNS-RT: Aging cache entry for: 47.0023.0001.0000.0000.0003.0001.1920.3614.3002.06
CLNS-RT: Deleting cache entry for: 47.0023.0001.0000.0000.0003.0001.1920.3614.3002.06

2-50 Debug Command Reference

debug compress

debug compress

Use thedebug compres€EXEC command to display compression information. icnéorm of this
command disables debugging output.

debug compress
no debug compress

Syntax Description
This command has no arguments or keywords.

Command Mode
EXEC

Sample Display
Figure 2-28 shows samptiebug compresutput.

Figure 2-28 Sample Debug Compress Output

router# debug compress
DECOMPRESS xmt_paks 5 rcv_sync 5
COMPRESS xmt_paks 10 version 1
COMPRESS xmt_paks 11 version 1
DECOMPRESS xmt_paks 6 rcv_sync 6
COMPRESS xmt_paks 12 version 1
COMPRESS xmt_paks 13 version 1
DECOMPRESS xmt_paks 7 rcv_sync 7
COMPRESS xmt_paks 14 version 1
COMPRESS xmt_paks 15 version 1

Table 2-11 describes significant fields shown in Figure 2-28.

Table 2-11 Debug Compress Field Descriptions

Field Description

COMPRESS xmt_paks The sequence count of this frame is modul@@5f zero only occurs on
initialization). This value is part of the compression header sent with each frame.

DECOMPRESS xmt_paks The sequence count in the compression header received with this frame.

DECOMPRESS rcv_sync The received mtd sequence count, which is verified againsBEOMPRESS

xmt_paks count. If these counts do not match, a Link Adeessdure, Balanced
(LAPB) reset will occur. On LAPB reset, a compression reinitialization occurs.
Compression iieitialization initializes the dictionaries and xmt_paks and rcv_sync
counts.

Debug Commands 2-51

debug decnet adj

debug decnet adj

Use thedebug decnetadj EXEC command to display debugging information on DECnet
adjacencies. Theo form of this command disables debugging output.

debug decnefadi
no debug decnetdj

Syntax Description
This command has no arguments or keywords.

Command Mode
EXEC

Sample Display
Figure 2-29 shows samptiebug decnetadj output.

Figure 2-29 Sample Debug DECnet Adj Output

router# debug decnet adj

DECnet adjacencies debugging is on

router#

DNET-ADJ: Level 1 hello from 1.3

DNET-ADJ: sending hellos

DNET-ADJ: Sending hellos to all routers on interface Ethernet0, blksize 1498
DNET-ADJ: Level 1 hello from 1.3

DNET-ADJ: 1.5 adjacency initializing

DNET-ADJ: sending triggered hellos

DNET-ADJ: Sending hellos to all routers on interface Ethernet0, blksize 1498
DNET-ADJ: Level 1 hello from 1.3

DNET-ADJ: 1.5 adjacency up

DNET-ADJ: Level 1 hello from 1.5

DNET-ADJ: 1.5 adjacency down, listener timeout

Explanations for representative lines of output in Figure 2-29 follow.

The following line indicates that the router is sending hellos to all routers on this segment, which in
this case is Ethernet O:

DNET-ADJ: Sending hellos to all routers on interface Ethernet0, blksize 1498
The following line indicates that the router has heard a hello from address 1.5 and is creating an
adjacency entry in its table. The initial state of this adjacency witlibalizing.

DNET-ADJ: 1.5 adjacency initializing
The following line indicates that the router is sending an unscheduled (triggered) hello as a result of
some event, such as new adjacency being heard:

DNET-ADJ: sending triggered hellos

The following line indicates that the adjacency with 1.5 is now up, or active:

DNET-ADJ: 1.5 adjacency up

2-52 Debug Command Reference

debug decnet adj

The following line indicates that the adjacency with 1.5 has timed out, because no hello has been
heard from adjacency 1.5 in the time interval originally specified in the hello from 1.5:

DNET-ADJ: 1.5 adjacency down, listener timeout

The following line indicates that the router is sending an unscheduled hello, as a result of some
event, such as the adjacency state changing:

DNET-ADJ: hello update triggered by state changed in dn_add_adjacency

Debug Commands 2-53

debug decnet connects

debug decnet connects

Use thedebug decnet connect&XEC command to display debugging information of all connect
packets that are filtered (permitted or denied) by DECnet access listso Tdren of this command
disables debugging output.

debug decnet connects
no debug decnet connects

Syntax Description
This command has no arguments or keywords.

Command Mode
EXEC

Usage Guidelines

When using connect packet filtering, it may be helpful to usddheet access-grouponfiguration
command to apply the following basic access list:

access-list 300 permit 0.0 63.1023
access-list 300 permit 0.0 63.1023 eq any

You can then log all connect packets transmitted on interfaces to which you applied this list, in order
to determine those elements on which your connect packets must be filtered.

Sample Display
Figure 2-30 shows samptkebug decnet connectsutput.

Figure 2-30 Sample Debug DECnet Connects Output
router# debug decnet connects
DNET-CON: list 300 item #2 matched src=19.403 dst=19.309 on EthernetO: permitted
srcname="RICK" srcuic=[0,017]

dstobj=42 id="USER"

Table 2-12 describes significant fields shown in Figure 2-30.

Table 2-12 Debug DECnet Connects Fi eld Descriptions

Field Description

DNET-CON: Indicates that this isdebug decnet connectpacket

list 300 item #2 matched Indicates that a packet matched the second item in access list 300
src =19.403 Indicates the source DECnet address for the packet

dst = 19.309 Indicates the destination DECxd#ress for the packet

on Ethernet0: Indicates the router interface on which the access list filtering the

packet was applied

permitted Indicates that the access list permitted the packet

2-54 Debug Command Reference

debug decnet connects

Field Description

srcname = “RICK” Indicates the originator user of the packet

srcuic = [0,017] Indicates the source UIC of the packet

dstobj = 42 Indicates that DECnet object 42 is the destination
id="USER” Indicates the access user

Note Packet password and account information is not logged idebheg decnet connects

message, nor is it displayed by #teow acces&EXEC command. If you specifyasswordor
accountinformation in your access list, they can be viewed by anyone with access to your router’s
configuration.

Debug Commands 2-55

debug decnet events

debug decnet events

Use thaedebug decnetventsEXEC command to display debugging information on DECnet events.
Theno form of this command disableebugging output.

debug decnekvents
no debug decnetvents

Syntax Description
This command has no arguments or keywords.

Command Mode
EXEC

Sample Display
Figure 2-31 shows samptiebug decnekeventsoutput.

Figure 2-31 Sample Debug DECnet Events Output
router# debug decnet events

DNET: Hello from area 50 rejected - exceeded ‘max area' parameter (45)
DNET: Hello from area 50 rejected - exceeded ‘max area' parameter (45)

Explanations for representative lines of output in Figure 2-31 follow.

The following line indicates that the router received a hello from a router whose area was greater
than the max-area parameter with which this router was configured:

DNET: Hello from area 50 rejected - exceeded 'max area' parameter (45)

The following line indicates that the router received a hello from a router whose node ID was greater
than the max-node parameter with which this router was configured:

DNET: Hello from node 1002 rejected - exceeded 'max node' parameter (1000)

2-56 Debug Command Reference

debug decnet packet

debug decnet packet

Use thedebug decnet packeEXEC command to display debugging information on DECnet packet
events. Theno form of this command disables debugging output.

debug decnet packet
no debug decnet packet

Syntax Description
This command has no arguments or keywords.

Command Mode
EXEC

Sample Display
Figure 2-32 shows samptiebug decnet packebutput.

Figure 2-32 Sample Debug DECnet Packet Output
router# debug decnet packet

DNET-PKT: src 1.4 dst 1.5 sending to PHASEV
DNET-PKT: Packet fwded from 1.4 to 1.5, via 1.5, snpa 0000.3080.cf90, TokenRingO

Explanations for individual lines of output from Figure 2-32 follow.

The following line indicates that the router is sending a converted packet addressed to node 1.5 to
Phase V:

DNET-PKT: src 1.4 dst 1.5 sending to PHASEV

The following line indicates that the router forwarded a packet from node 1.4 to node 1.5. The packet
is being sent to the next hop of 1.5 whose subnetwork point of attachment (MAC address) on that
interface is 0000.3080.cf90.

DNET-PKT: Packet fwded from 1.4 to 1.5, via 1.5, snpa 0000.3080.cf90, TokenRingO

Debug Commands 2-57

debug decnet routing

debug decnet routing

Use thedebug decnet routingEXEC command to display all DECnet routing-related events
occurring at the router. Theo form of this command disables debugging output.

debug decnet routing
no debug decnet routing

Syntax Description
This command has no arguments or keywords.

Command Mode
EXEC

Sample Display
Figure 2-33 shows samptiebug decnet routingoutput.

Figure 2-33 Sample Debug DECnet Routing Output
router# debug decnet routing

DNET-RT: Received level 1 routing from 1.3 on EthernetO at 1:16:34
DNET-RT: Sending routes

DNET-RT: Sending normal routing updates on EthernetO

DNET-RT: Sending level 1 routing updates on interface EthernetO
DNET-RT: Levell routes from 1.5 on EthernetO: entry for node 5 created
DNET-RT: route update triggered by after split route pointers in dn_rt_input
DNET-RT: Received level 1 routing from 1.5 on Ethernet 0 at 1:18:35
DNET-RT: Sending L1 triggered routes

DNET-RT: Sending L1 triggered routing updates on Ethernet0

DNET-RT: removing route to node 5

Explanations for individual lines of output from Figure 2-33 follow.

The following line indicates that the router has received a level 1 update on interface Ethernet O:

DNET-RT: Received level 1 routing from 1.3 on EthernetO at 1:16:34

The following line indicates that the router is sending its scheduled updates on interface Ethernet 0:

DNET-RT: Sending normal routing updates on EthernetO

The following line indicates that the route will send an unscheduled update on this interface as a
result of some event. In this case, the unscheduled update is a result of a new entry created in the

interface’s routing table.

DNET-RT: route update triggered by after split route pointers in dn_rt_input

2-58 Debug Command Reference

debug decnet routing

The following line indicates that the router sent the unscheduled update on Ethernet O:

DNET-RT: Sending L1 triggered routes
DNET-RT: Sending L1 triggered routing updates on Ethernet0

The following line indicates that the router removed the entry for node 5 because the adjacency with
node 5 timed out, or the route to node 5 through a next-hop router went away:

DNET-RT: removing route to node 5

Debug Commands 2-59

debug dialer

debug dialer
Use thedebug dialer EXEC command to display debugging information about the packets that are
received on a Frame Relay interface. Tibform of this command disables debugging output.

debug dialer
no debug dialer

Syntax Description
This command has no arguments or keywords.

Command Mode
EXEC

Usage Guidelines

Table 2-13 describes the error messages thateheg dialercommand can generate for a serial
interface being used as a V.25bis dialer for dial-on-demand routing (DDR).

Table 2-13 Debug Dialer Message Descript ions for DDR
Message Descr iption
Serial 0: Dialer result XXXXXXXXX This message displays the result returned from the V.25bis

dialer. It is useful in debugging if calls are failing. On some
hardware platforms, this message cannot be displayed due to
hardware limitations. Possible values forxkexxxxxxwariable
depend on the V.25bis device with which the router is
communicating.

Serial 0: No dialer string defined. This message is displayed when a packet is received that should

Dialing cannot occur. cause a call to be placed. However, there is no dialer string
configured, so dialing cannot occur. This message usually
indicates a configuration problem.

Serial 0: Attempting to diatxxxxxxxxx This message indicates that a packet has been received that
passes the dial-on-demand access lists. That packet causes
dialing of a phone number. Thaxxxxxxxxariable is the
number being called.

Serial 0: Unable to diadxxxxxxxxx This message is displayed if for some reason, the phone call
could not be placed. This might be due to a lack of merdty,
output queues, or other problems.

Serial 0: disconnecting call This message is displayed when the router attempts to hang up a
call.

Serial 0: idle timeout One of these three messages is displayed when their
corresponding dialer timer expires. They are mostly

)] o informational, but are useful whelebugging a disconnected
Serial 0: wait for carrier timeout call or call failure.

Serial 0: re-enable timeout

When DDR is enabled on the interface, information concerning the cause of any calls (called Dialing
cause) may be displayed.

2-60 Debug Command Reference

debug dialer

The following line of output for an IP packet lists the name of the DDR interface and the source and
destination addresses of the packet:

Dialing cause: SerialO: ip (s=131.108.1.111 d=131.108.2.22)
The following line of output for a bridged packet lists the DDR interface and the type of packet (in

hexadecimal). For information on these packet types, see the “Ethernet Type Codes,” appendix of
theRouter Products Command Referepeblication.

Dialing cause: Seriall: Bridge (0x6005)

Debug Commands 2-61

debug dspu activation

debug dspu activation

Use thedebug dspu activationEXEC command to display information on downstream physical
unit (DSPU) activation. Theo form of this command disables debugging output.

debug dspu activationf[namé
no debug dspu activationnamg

Syntax Description

name (Optional) A host or PU name designation.

Command Mode
EXEC

Usage Guidelines

Thedebug dspu activationcommand displays all DSPU activation traffic. To restrict the output to
a specific host or physical unit (PU), include the host or PU name argument. You cannot turn off
debugging output for an individual PU if that PU has not been nameddelblig dspu activation
command.

Sample Display
Figure 2-34 shows samptiebug dspu activationoutput. Not all intermediate numbers are shown
for the “activated” and “deactivated” logical unit (LU) address ranges.

Figure 2-34 Sample Debug DSPU Activation Output

router# debug dspu activation
DSPU: LS HOST3745 connected
DSPU: PU HOST3745 activated
DSPU: LU HOST3745-2 activated
DSPU: LU HOST3745-3 activated

DSPU: LU HOST3745-253 activated
DSPU: LU HOST3745-254 activated

DSPU: LU HOST3745-2 deactivated
DSPU: LU HOST3745-3 deactivated

DSPU: LU HOST3745-253 deactivated
DSPU: LU HOST3745-254 deactivated
DSPU: LS HOST3745 disconnected
DSPU: PU HOST3745 deactivated

Table 2-14 describes significant fields in the output shown in Figure 2-34.

2-62 Debug Command Reference

debug dspu act ivation

Table 2-14 Debug DSPU Act ivation Field Descriptions

Field Description

DSPU Downstream PU debug message.

LS A link station (LS) event triggered the message.
PU A PU event triggered the message.

LU A logical unit (LU) event triggered the message.
HOST3745 Host name or PU name.

HOST3745-253

Host name or PU name #relLU address, separated by a colon.

connected
activated
disconnected
deactivated

Event that occured to trigger the message.

Related Commands

debug dspu packet
debug dspu state
debug dspu trace

Debug Commands 2-63

debug dspu packet

debug dspu packet

Use thedebug dspu packeEXEC command to display information on downstream physical unit
(DSPU) packet. Thao form of this command disableebugging output.

debug dspu packe{namé
no debug dspu packefnamé

Syntax Description

name (Optional) A host or PU name designation.

Command Mode
EXEC

Usage Guidelines

Thedebug dspu packettommand displays all DSPU packet data flowing through the router. To
restrict the output to a specific host or PU, include the host ardPt¢argument. You cannot turn
off debugging output for an individual PU if that PU has not been nameddeiig dspu packet
command.

Sample Display
Figure 2-35 shows samptiebug dspu packebutput.

Figure 2-35 Sample Debug DSPU Packet Output
router# debug dspu packet

DSPU: Rx: PU HOST3745 data length 12 data:
2D0003002BE16B80 000D0201
DSPU: Tx: PU HOST3745 data length 25 data:
2D0000032BE1EB80 000D020100850000 000C060000010000 00
DSPU: Rx: PU HOST3745 data length 12 data:
2D0004002BE26B80 000D0201
DSPU: Tx: PU HOST3745 data length 25 data:
2D0000042BE2EB80 000D020100850000 000C060000010000 00

Table 2-15 describes significant fields in the output shown in Figure 2-35.

Table 2-15 Debug DSPU Packet Field Descriptions

Field Description

DSPU: Rx: Received frame (packet) from the remote PU to the router PU.

DSPU: Tx: Transmitted frame (packet) from the router PU to the remote PU.

PU HOST3745 Host name or PU associated with the transmit or receive.

data length 12 data: Number of bytes of data, followed by up to 128 bytes of displayed data.

2-64 Debug Command Reference

debug dspu packet

Related Commands

debug dspu activation
debug dspu state
debug dspu trace

Debug Commands 2-65

debug dspu state

debug dspu state

Use thedebug dspu stateEXEC command to display information on downstream physical unit
(DSPU) finite state machine (FSM) state changesnotierm of this command disables debugging
output.

debug dspu statdnamé
no debug dspu stat¢namé

Syntax Description

name (Optional) A host or PU name designation.

Command Mode
EXEC

Usage Guidelines

Use thedebug dspu stateeommand to display only the FSM state changes. To see all FSM activity,
use the debudspu trace command You cannot turn off debugging output for an individual PU if
that PU has not been named in tledug dspu statecommand.

Sample Display
Figure 2-36 shows sampdiebug dspu stateoutput. Not all intermediate numbers are shown for the
“activated” and “deactivated” logical unit (LU) address ranges.

Figure 2-36 Sample Debug DSPU State Output

router# debug dspu state

DSPU: LS HOST3745: input=StartLs, Reset -> PendConOut
DSPU: LS HOST3745: input=ReqOpn.Cnf, PendConOut -> Xid
DSPU: LS HOST3745: input=Connect.Ind, Xid -> Connlin

DSPU: LS HOST3745: input=Connected.Ind, Connin -> Connected
DSPU: PU HOST3745: input=Actpu, Reset -> Active

DSPU: LU HOST3745-2: input=uActlu, Reset -> upLuActive
DSPU: LU HOST3745-3: input=uActlu, Reset -> upLuActive

DSPU: LU HOST3745-253: input=uActlu, Reset -> upLuActive
DSPU: LU HOST3745-254: input=uActlu, Reset -> upLuActive

DSPU: LS HOST3745: input=PuStopped, Connected -> PendDisc
DSPU: LS HOST3745: input=Disc.Cnf, PendDisc -> PendClose
DSPU: LS HOST3745: input=Close.Cnf, PendClose -> Reset
DSPU: PU HOST3745: input=T2ResetPu, Active -> Reset

DSPU: LU HOST3745-2: input=uStopLu, upLuActive -> Reset
DSPU: LU HOST3745-3: input=uStopLu, upLuActive -> Reset

DSPU: LU HOST3745-253: input=uStopLu, upLuActive -> Reset
DSPU: LU HOST3745-254: input=uStopLu, upLuActive -> Reset

Table 2-15 describes significant fields in the output shown in Figure 2-36.

2-66 Debug Command Reference

debug dspu state

Table 2-16 Debug DSPU State Field Descriptions

Field Description

DSPU Downstream PU debug message.

LS A link station (LS) event triggered the message.
PU A PU event triggered the message.

LU A logical unit (LU) event triggered the message.

HOST3745-253

Hostame or PU name and LU address.

inputsinput,

The input received by the FSM.

previous-state—> current-state

The previous state and current new state as seen by the FSM.

Related Commands

debug dspu activation
debug dspu packet
debug dspu trace

Debug Commands 2-67

debug dspu trace

debug dspu trace

Use thedebug dspu traceEXEC command to displayformafon on downstream physical unit
(DSPU) trace activity, which includes all finite state machine (FSM) activityndHerm of this
command disables debugging output.

debug dspu tracelnamé
no debug dspu trac§namé

Syntax Description

name (Optional) A host or PU name designation.

Command Mode
EXEC

Usage Guidelines

Use thedebug dspu tracecommand to display all FSM state changes. To see FSM state changes
only, use thalebugdebug dspu statecommand. You cannot turn off debugging output for an
individual PU if that PU has not been named indébug dspu tracecommand.

Sample Display
Figure 2-37 shows samptiebug dspu traceoutput.

Figure 2-37 Sample Debug DSPU Trace Output
router# debug dspu trace

DSPU: LS HOST3745 input = 0 ->(1,al)
DSPU: LS HOST3745 input = 5 ->(5,a6)
DSPU: LS HOST3745 input = 7 ->(5,a9)
DSPU: LS HOST3745 input = 9 ->(5,a28)
DSPU: LU HOST3745-2 in:0 s:0->(2,al)
DSPU: LS HOST3745 input = 19 ->(8,a20)
DSPU: LS HOST3745 input = 18 ->(8,al7)
DSPU: LU HOST3745-3 in:0 s:0->(2,al)
DSPU: LS HOST3745 input = 19 ->(8,a20)
DSPU: LS HOST3745 input = 18 ->(8,al7)
DSPU: LU HOST3745-252 in:0 s:0->(2,al)
DSPU: LS HOST3745 input = 19 ->(8,a20)
DSPU: LS HOST3745 input = 18 ->(8,al7)
DSPU: LU HOST3745-253 in:0 s:0->(2,al)
DSPU: LS HOST3745 input = 19 ->(8,a20)
DSPU: LS HOST3745 input = 18 ->(8,al7)
DSPU: LU HOST3745-254 in:0 s:0->(2,al)
DSPU: LS HOST3745 input = 19 ->(8,a20)

Table 2-17 describes significant fields in the output shown in Figure 2-37.

2-68 Debug Command Reference

debug dspu trace

Table 2-17 Debug DSPU Trace Field Descriptions

Field Description

7:23:57 Time stamp.

DSPU Downstream PU debug message.

LS A link station (LS) event triggered the message.
PU A PU event triggered the message.

LU A logical unit (LU) event triggered the message.

HOST3745-253

Hostame or PU name and LU address.

in:input s:state->(new-state
action)

String describing the falwing:
input- LU FSM input
state- Current FSM state
new-state New FSM state
action- FSM action

input=input->

(new-stateaction)

String describing the fawing:

input- PU or LS FSM input
new-state New PU or LS FSM state
action- PU or LS FSM action

Related Commands
debug dspu activation
debug dspu packet
debug dspu state

Debug Commands 2-69

debug eigrp fsm

debug eigrp fsm
Use thedebug eigrp fsmEXEC command to display debugging information about Enhanced IGRP
feasible successor metrics (FSM). Teeform of this command disables debugging output.

debug eigrp fsm
no debug eigrp fsm

Syntax Description
This command has no arguments or keywords.

Command Mode
EXEC

Usage Guidelines

This command helps you observe Enhanced IGRP feasible successor activity and to determine
whether route updates are being installed and deleted by the routing process.

Sample Display
Figure 2-38 shows samptiebug eigrp fsmoutput.

Figure 2-38 Sample Debug EIGRP FSM Output
router# debug eigrp fsm

DUAL: dual_rcvupdate(): 198.93.166.0 255.255.255.0 via 0.0.0.0 metric 750080/0
DUAL: Find FS for dest 198.93.166.0 255.255.255.0. FD is 4294967295, RD is 42949
67295 found

DUAL: RT installed 198.93.166.0 255.255.255.0 via 0.0.0.0

DUAL: dual_rcvupdate(): 192.168.4.0 255.255.255.0 via 0.0.0.0 metric 4294967295/
4294967295

DUAL: Find FS for dest 192.168.4.0 255.255.255.0. FD is 2249216, RD is 2249216
DUAL: 0.0.0.0 metric 4294967295/4294967295n0t found Dmin is 4294967295
DUAL: Dest 192.168.4.0 255.255.255.0 not entering active state.

DUAL: Removing dest 192.168.4.0 255.255.255.0, nexthop 0.0.0.0

DUAL: No routes. Flushing dest 192.168.4.0 255.255.255.0

Explanations for individual lines of output from Figure 2-38 follow.

In the first line of Figure 2-38, DUAL stands for Diffusing Updatiegbrithm. It is the basic

mechanism within Enhanced IGRP that makes the routing decisions.The next three fields are the
Internet address and mask of the destination network and the address through which the update was
received. The metric field shows the metric stored in the routing table and the metric advertised by
the neighbor sending the information. “Metric ... inaccessible” usually means thatghbarei

router no longer has a route to the destination, or the destination is in holddown.

In the following output, Enhanced IGRP is attempting to find a feasible successor for the destination.
Feasible successors are part of the DUAL loop avoidance methods. The FD field contains more loop
avoidance state information. The RD field is the reported distance, which is the metric used in
update, query or reply packets.

2-70 Debug Command Reference

debug eigrp fsm

The indented line with the “not found” message means a feasible successor (FS) was not found for
192.168.4.0 and EIGRP must start a diffusing computation. This means it begins to actively probe
(sends query packets about destination 192.168.4.0) the network looking for alternate paths to
192.164.4.0.

DUAL: Find FS for dest 192.168.4.0 255.255.255.0. FD is 2249216, RD is 2249216
DUAL: 0.0.0.0 metric 4294967295/4294967295n0t found Dmin is 4294967295

The following output indicates the route DUAL successfully installed into the routing table.
DUAL: RT installed 198.93.166.0 255.255.255.0 via 0.0.0.0

The following output shows that no routes were discovered to the destination and the route

information is being removed from the topology table.

DUAL: Dest 192.168.4.0 255.255.255.0 not entering active state.
DUAL: Removing dest 192.168.4.0 255.255.255.0, nexthop 0.0.0.0
DUAL: No routes. Flushing dest 192.168.4.0 255.255.255.0

Debug Commands 2-71

debug eigrp packet

debug eigrp packet

Use thedebug eigrp packetEXEC command to display general debugging information.nthe
form of this command disables debugging output.

debug eigrp packet
no debug eigrp packet

Syntax Description
This command has no arguments or keywords.

Command Mode
EXEC

Usage Guidelines

If a communication session is closing when it should not be, an end-to-end connection problem can
be the cause. Thadebug eigrp packetcommand is useful for analyzing the messages traveling
between the local and remote hosts.

Sample Display
Figure 2-39 shows samptiebug eigrp packetoutput.

Figure 2-39 Sample Debug EIGRP Packet Output
router# debug eigrp packet

EIGRP: Sending HELLO on Ethernet0/1
AS 109, Flags 0x0, Seq 0, Ack 0

EIGRP: Sending HELLO on Ethernet0/1
AS 109, Flags 0x0, Seq 0, Ack 0

EIGRP: Sending HELLO on Ethernet0/1
AS 109, Flags 0x0, Seq 0, Ack 0

EIGRP: Received UPDATE on Ethernet0/1 from 192.195.78.24,
AS 109, Flags 0x1, Seq 1, Ack 0

EIGRP: Sending HELLO/ACK on Ethernet0/1 to 192.195.78.24,
AS 109, Flags 0x0, Seq 0, Ack 1

EIGRP: Sending HELLO/ACK on Ethernet0/1 to 192.195.78.24,
AS 109, Flags 0x0, Seq 0, Ack 1

EIGRP: Received UPDATE on Ethernet0/1 from 192.195.78.24,
AS 109, Flags 0x0, Seq 2, Ack 0

The output shows transmission and receipt of Enhanced IGRP packets. These packet types may be
HELLO, UPDATE, REQUEST, QUERY, or REPLY packets. The sequence and acknowledgement
numbers used by the Enhanced IGRP reliable transporttalgoare shown in the output. Where
applicable, the network layer address of thigimeoring router is alsmcluded.

Table 2-18 describes significant fields in the output shown in Figure 2-39.

2-72 Debug Command Reference

debug eigrp packet

Table 2-18 Debug EIGRP Packet Field Descr iptions

Field Description

EIGRP: An Enhanced IGRP packet.

ASn Autonomous System number.

Flagsnxn A flag of 1 means the sending router is indicating to the receiving router
that this is the first packet it has sent to the receiver.
A flag of 2 is a multicast that ehld be conditionally received by routers
that have the contitionally-receive (CR) bit set. This bit gets set when
the sender of the multicast has previously sent a sequence packet
explicitly telling it to set the CR bit.

HELLO The hello packets are the neighbor digery packets. They are used to

determine if neighbors are still alive. As long as neighbors receive the
hello packets the router is sending, the neighbors validate the router and
any routing information sent. If ighbors lose the lle packets, the
receiving neighbors invalidate any routing information previously sent.
Neighbors also transmit hello packets.

Debug Commands 2-73

debug frame-relay

debug frame-relay

Use thedebug frame-relayEXEC command to display debugging information about tloiqta
that are received on a Frame Relay interface.nthierm of this command disables debugging
output.

debug frame-relay
no debug frame-relay

Syntax Description
This command has no arguments or keywords.

Command Mode
EXEC

Usage Guidelines

This command helps you analyze the packets that have been received. However, bedabsg the
frame-relay command generates a lot of output, only use it when traffic on the Frame Relay network
is less than 25 packets pecsad.

To analyze the packets that have bsemon a Frame Relay interface, use debug frame-relay
packetscommand.

Sample Display
Figure 2-40 shows samptiebug frame-relayoutput.

Figure 2-40 Sample Debug Frame-Relay Output
router# debug frame-relay

SerialO(i): dlci 500(0x7C41), pkt type 0x809B, datagramsize 24
Seriall(i): dici 1023(0xFCF1), pkt type 0x309, datagramsize 13
SerialO(i): dlci 500(0x7C41), pkt type 0x809B, datagramsize 24
Seriall(i): dici 1023(0xFCF1), pkt type 0x309, datagramsize 13
SerialO(i): dlci 500(0x7C41), pkt type 0x809B, datagramsize 24

Table 2-19 describes significant fields shown in Figure 2-40.

Table 2-19 Debug Frame-Relay Field Descriptions

Field Description

SerialO(i): Indicates that the SerialO interface has received this Frame Relay
datagram as input.

dici 500(0x7C41) Indicates the value of the data linknaztion identifier (DLCI) for this

packet in decimal (and 9922). In this case, 500 has been configured as
the multicast DLCI.

2-74 Debug Command Reference

debug frame-relay

Field

Description

pkt type 0x809B

Indicates the packet type code.
Possible supported signaling messegées follow:
0x3@—Signaling message; valid only with a DLCI of 0.
0x309—LMI message; validnly with a DLCI of 1023
Possible supported Ethernet tygles follow:
0x0201—IP on 3MB net
0x0201—Xerox ARP on 10MB nets
O0XxCC—RFC 1294 (only for IP)
0x0600—XNS
0x080—IP on 10 MB net
0x086—IP ARP
0x088—Frame Relay ARP
OxOBAD—VINES IP
OxOBAE—VINES loopback protocol
OxOBAF—VINES Echo
0x6001—DEC MOP booting protocol
0x6002—DEC MOP console protocol
0x603—DECnet Phase IV on Ethernet
0x6004—DEC LAT orEthernet
0x805—HP Probe
0x8035—RARP
0x8®8—DEC spanning tree
0x8®b—Apple EtherTalk
0x80f3—AppleTalk ARP
0x801L9—Apollo domain
0x80C4—VINES IP
0x80C5— VINES ECHO
0x8137—IPX
0x900—Ethernet loopback packet IP

Debug Commands 2-75

debug frame-relay

Field

Description

pkt type 0809B (coninued)

PossibléIDLC type codes follow:
0x1A58—IPX, standard form
OXFEFE—CLNS
OXEFEF—ES-IS
0x198—Uncompressed TCP
0x19P9—Compressed TCP
0x6%8—Serial line bridging

datagramsize 24

Indicates size of this datagram in bytes

2-76 Debug Command Reference

debug frame-relay events

debug frame-relay events

Use thedebug frame-relay eventEXEC command to display debuggimjarmaion about Frame
Relay ARP replies on networks that support a multicast channel and use dynamic addressing. The
no form of this command disables debugging output.

debug frame-relay events
no debug frame-relay events

Syntax Description
This command has no arguments or keywords.

Command Mode
EXEC

Usage Guidelines

This command is useful for identifying the cause of end-to-end connection problems during the
installation of a Frame Relay network or node.

Note Because thdebug frame-relay eventcommand does not generate much output, you can
use it at any time, even during periods of heavy traffic, without adversely affecting other users on
the system.

Sample Display
Figure 2-41 shows samptiebug frame-relay eventoutput.

Figure 2-41 Sample Debug Frame-Relay Events Output
router# debug frame-relay events

Serial2(i): reply rcvd 131.108.170.26 126
Serial2(i): reply rcvd 131.108.170.28 128
Serial2(i): reply rcvd 131.108.170.34 134
Serial2(i): reply rcvd 131.108.170.38 144
Serial2(i): reply rcvd 131.108.170.41 228
Serial2(i): reply rcvd 131.108.170.65 325

As Figure 2-41 showslebug frame-relay eventgeturns one specific message type. The first line,

for example, indicates that IP address 131.108.170.26 sent a Frame Relay ARP reply; this packet
was received as input on the Serial2 interface. The last field (126) is the data link connection
identifier (DLCI) to use when communicating with the responding router.

Debug Commands 2-77

debug frame-relay Imi

debug frame-relay Imi

Use thedebug frame-relay Imi EXEC command to display information on the local management
interface (LMI) packets exchanged by the router and the Frame Relay service providerfdrhe
of this command disabletebugging output.

debug frame-relay Imi
no debug frame-relay Imi

Syntax Description
This command has no arguments or keywords.

Command Mode
EXEC

Usage Guidelines

You can use this command to determine whether the router and the Frame Relay switch are sending
and receiving LMI packets properly.

Note Because thdebug frame-relay Imicommand does not generate much output, you can use
it at any time, even during periods of heavy traffic, without adversely affecting other users on the
system.

Sample Display
Figure 2-42 shows samptiebug frame-relay Imioutput.

Figure 2-42 Sample Debug Frame-Relay LMI Output

router# debug frame-relay |m

LMI Serial 1(out): StEng, clock 20212760, nyseq 206, m neseen 205, yourseen 136, DTE up
exchange Serial 1(in): Status, clock 20212764, nyseq 206
RT IE 1, length 1, type 1
KA IE 3, length 2, yourseq 138, nyseq 206
Serial 1(out): StEnqg, clock 20222760, nyseq 207, m neseen 206, yourseen 138, DTE up
Serial 1(in): Status, clock 20222764, nyseq 207
RT IE 1, length 1, type 1
KA IE 3, length 2, yourseq 140, nyseq 207
Serial 1(out): clock 20232760, nyseq 208, m neseen 207, yourseen 140, line up
RT IE 1, length 1, type 1
KA IE 3, length 2, yourseq 142, nyseq 208
Serial 1(out): StEnqg, clock 20252760, nyseq 210, mi neseen 209, yourseen 144, DTE up
Full LMI Serial 1(in): Status, clock 20252764,
status RT IE 1, length 1, type O
KA IE 3, length 2, yourseq 146, nyseq 210
PVC | E Ox7, length 0x6, dlci 400, status 0, bw 56000
PVC | E Ox7, length Ox6, dlci 401, status O, bw 56000

message

S2546

2-78 Debug Command Reference

debug frame-relay Imi

In Figure 2-42, the first four lines describe an LMI exchange. The first line destirédbeM|

request the router has sent to the switch. Therskine describes the LMI reply the router has
received from the switch. The third and fourth lines describe the response to this request from the
switch. This LMI exchange is followed by two similar LMI exchanges. The last six lines in

Figure 2-42 consist of a full LMI status message that includes a description of the router’s two
permanent virtual circuits (PVCs).

Table 2-20 describes significant fields in the first line ofdabug frame-relay Imi output shown
in Figure 2-42.

Table 2-20 Debug Frame-Relay LMI Field Descr iptions—Part 1

Field Description

Seriall(out) Indication that the LMI request was sent out on the Seriall interface.
StEnq Command mode of message:

StEng—Status inquiry
Status—Status reply

clock 20212760 System clock (in milliseconds). Useful for determining whether an appropriate
amount of time has transpired between events.

myseq 206 The myseq counter maps to the router'sRENR SEQ counter.

yourseen 136 The yourseen counter maps to the LAST RCVD SEQ couititersgfitch.

DTE up Line protocol up/down stater the DTE (user) port.

Table 2-21 describes significant fields in the third and fourth lindelodig frame-relay Imioutput
shown in Figure 2-42.

Table 2-21 Debug Frame-Relay LMI Field Descr iptions—Part 2

Field Description

RTIE1 Value of the report type information element.

length 1 Length of the report type information element (in bytes).

type 1 Report type in RT IE.

KAIE 3 Value of the keepalive information element.

length 2 Length of the keepalive information element (in bytes).

yourseq 138 The yourseq counter maps to the CURRENT SEQ counter of the switch.
myseq 206 The myseq counter maps to the router’s CURRENT SEQ counter.

Debug Commands 2-79

debug frame-relay Imi

Table 2-22 describes significant fields in the last lindeifug frame-relay Imioutput shown in

Figure 2-42.
Table 2-22 Debug Frame-Relay LMI Field Descr iptions—Part 3
Field Description
PVC IE Ox7 Value of the permanent virtual circuit information element type.
length Ox6 Length of the PVC IE (in bytes).
dici 401 DLCI decimal value for this PVC.
status O Status value. Possible values include ttewfiol:
0x00—Addel/inactive
0x02—Added/active
0x04—Deleted
0x08—New/inactive
0x0a—New/active
bw 56000 CIR (committed information rate), in decimal, for the DLCI.

2-80 Debug Command Reference

debug fr ame-relay packets

debug frame-relay packets

Groups of

output lines~__ Serial 0(o):DLCI 100 type 809B size 104

Use thedebug frame-relay packetsEXEC command to display information on packets that have
been sent on a Frame Relay interface. Mdérm of this command disables debugging output.

debug frame-relay packets
no debug frame-relay packets

Syntax Description
This command has no arguments or keywords.

Command Mode
EXEC

Usage Guidelines

This command helps you analyze the packets that are sent on a Frame Relay interface. Because the
debug frame-relay packetscommand generates large amounts of output, only use it when traffic
on the Frame Relay network is less than 25 packets per second.

To analyze the packetsceivedon a Frame Relay interface, use dedug frame-relaycommand.

Sample Display
Figure 2-43 shows samptiebug frame-relay packetsoutput.

Figure 2-43 Sample Debug Frame-Relay Packets Output

router# debug frane-rel ay packets

Serial 0: broadcast = 1, link 809B, addr 65535. 255
Serial0(o):DLCI 500 type 809B size 24
Serial 0: broadcast - 0, |ink 809B, addr 10.2

Serial 0: broadcast search
Serial 0(0): DLCI 300 type 809B size 24
Serial 0(o):DLCI 400 type 809B size 24

S2547

As Figure 2-43 showslebug frame-relay packetsoutput consists of groups of output lines; each
group describes a Frame Relay packet that has been senurfiber of lines in thgroup can vary,
depending on the number of data link connection identifiers (DLCIs) on which the packet was sent.
For example, the first two pairs of output lines describe two different packets, both of which were
sent out on a single DLCI. The last three lines in Figure 2-43 describe a single Frame Relay packet
that was sent out on two DLCls.

Debug Commands 2-81

debug frame-relay packets

Table 2-23 describes significant fields shown in the first pair of output lines in Figure 2-43.

Table 2-23 Debug Frame-Relay Packets Field Descriptions

Field Description

SerialO: Interface that has sent the Frame Relay packet.

broadcast = 1 Destination of the packet. Possible values include the following:

broadcast = 1—Broadcast address
broadcast = 0—Particular destination

broadcast search—Searches all Frame Relay map entries for this particular protocol
that include the keyworbroadcast

link 809B Link type, as documented under “debug frame relay.”

addr 6535.255 Detination protocol address for this packet. In this case, it is an AppleTalk address.
Serial0(0): (o) indicates that this is an output event.

DLCI 500 Decimal value of the DLCI.

type 809B Packet type, as documented under “debug frame-relay.”

size 24 Size of this packet (in bytes).

Explanations for other lines of outpsitown in Figure 2-43 follow:

The following lines describe a Frame Relay packet sent to a particular address; in this case
AppleTalk address 10.2:

Serial0: broadcast - 0, link 809B, addr 10.2
Serial0(0):DLCI 100 type 809B size 104

The following lines describe a Frame Relay packet that went out on two different DLCIs, because
two Frame Relay map entries were found:

SerialO: broadcast search
Serial0(0):DLCI 300 type 809B size 24
Serial0(0):DLCI 400 type 809B size 24

The following lines do not appear in Figure 2-43. They describe a Frame Relay packet sent to a true
broadcast address.

Seriall: broadcast search
Seriall(0):DLCI 400 type 800 size 288

2-82 Debug Command Reference

debug ip dvmrp

debug ip dvmrp

Use thedebug ip dvmrp EXEC command to display information on Distance Vector Multiprotocol
Routing Protocol (DVMRP) packets received and transmitted ndHerm of this command
disables debugging output.

debug ip dvmrp [detail]
no debug ip dvmrp

Syntax Description

detail (Optional) Enables a more detailed level of output and
displays packet contents.

Command Mode
EXEC

Usage Guidelines

Use thedebug ip dvmrp detailcommand with care. This command generates a great deal of output
and can interrupt other activity on the router when it is invoked.

Sample Display
Figure 2-44 shows samptiebug ip dvmrp output.

Figure 2-44 Sample Debug IP DVMRP Output

router## debug ip dvmrp

DVMRP: Received Report on Ethernet0 from 131.119.244.10
DVMRP: Received Report on Ethernet0 from 131.119.244.11
DVMRP: Building Report for Ethernet0 224.0.0.4

DVMRP: Send Report on Ethernet0 to 224.0.0.4

DVMRP: Sending IGMP Reports for known groups on EthernetO
DVMRP: Received Report on Ethernet0 from 131.119.244.10
DVMRP: Received Report on TunnelO from 198.104.199.254
DVMRP: Received Report on TunnelO from 198.104.199.254
DVMRP: Received Report on TunnelO from 198.104.199.254
DVMRP: Received Report on TunnelO from 198.104.199.254
DVMRP: Received Report on TunnelO from 198.104.199.254
DVMRP: Received Report on TunnelO from 198.104.199.254
DVMRP: Building Report for Tunnel0 224.0.0.4

DVMRP: Send Report on TunnelO to 198.104.199.254
DVMRP: Send Report on TunnelO to 198.104.199.254
DVMRP: Send Report on TunnelO to 198.104.199.254
DVMRP: Send Report on TunnelO to 198.104.199.254
DVMRP: Radix tree walk suspension

DVMRP: Send Report on TunnelO to 198.104.199.254

Explanations for individual lines of output from Figure 2-44 follow.

The following lines show that the router received DVMRP routing information and placed it in the
mroute table:

DVMRP: Received Report on Ethernet0 from 131.119.244.10
DVMRP: Received Report on Ethernet0 from 131.119.244.11

Debug Commands 2-83

debug ip dvmrp

The following lines show that the router is creating a report to send to other DVMRP router:

DVMRP: Building Report for Ethernet0 224.0.0.4
DVMRP: Send Report on Ethernet0 to 224.0.0.4

Table 2-24 provides a list of internet multicast addresses supported for host IP implementations.

Table 2-24 Internet Multicast Addresses

Address Descr iption RFC
224.0.0.0 Base address (Reserved) RFC 1112
224.0.0.1 All systems on this subneRFC 1112
224.0.0.2 All routers on this subnet

224.0.0.3 Unassigned

224.0.0.4 DVMRP routers RFC 1075
224.0.0.5 OSPFIGP all routers RFC 1583

The following lines show that a protocol update report has been sent to all known multicast groups.
Hosts use IGMP reports to communiate with routers and to request to join a multicast group. In this
case, the router is sending an IGMP report for every known group to the host, which is running
mrouted. The host the responds as though the router was a host on the LAN segment that wants to
receive multicast packets for the group.

DVMRP: Sending IGMP Reports for known groups on EthernetO

Figure 2-45 shows samptiebug ip dvmrp detail output.

Figure 2-45 Sample Debug IP DVMRP Detail Output
router# debug ip dvmrp detalil

DVMRP: Sending IGMP Reports for known groups on EthernetO
DVMRP: Advertise group 224.2.224.2 on Ethernet0

DVMRP: Advertise group 224.2.193.34 on EthernetO
DVMRP: Advertise group 224.2.231.6 on Ethernet0

DVMRP: Received Report on TunnelO from 198.104.199.254
DVMRP: Origin 150.166.53.0/24, metric 13, distance 0
DVMRP: Origin 150.166.54.0/24, metric 13, distance 0
DVMRP: Origin 150.166.55.0/24, metric 13, distance 0
DVMRP: Origin 150.166.56.0/24, metric 13, distance 0
DVMRP: Origin 150.166.92.0/24, metric 12, distance 0
DVMRP: Origin 150.166.100.0/24, metric 12, distance 0
DVMRP: Origin 150.166.101.0/24, metric 12, distance 0
DVMRP: Origin 150.166.142.0/24, metric 8, distance 0
DVMRP: Origin 150.166.200.0/24, metric 12, distance 0
DVMRP: Origin 150.166.237.0/24, metric 12, distance 0
DVMRP: Origin 150.203.5.0/24, metric 8, distance 0

Explanations for individual lines of output from Figure 2-45 follow.

The following lines show that thgroup is available to the DVMRP rout&he mrouted process on
the host will forward the S,G information for theis grobpugh the DVMRP loud so other
members will know this S,G is available.

DVMRP: Advertise group 224.2.224.2 on Ethernet0

2-84 Debug Command Reference

debug ip dvmrp

The following lines show the DVMRP route information:

DVMRP: Origin 150.166.53.0/24, metric 13, distance 0
DVMRP: Origin 150.166.54.0/24, metric 13, distance 0

Metric is the number of hops the route has covered. Distance is the administrative distance.

Debug Commands 2-85

debug ip eigrp

debug ip eigrp
Use thedebug ip eigrp EXEC command to display information on Enhanced IGRP protocol
packets. Thao form of this command disables debugging output.

debug ip eigrp
no debug ip eigrp

Syntax Description
This command has no arguments or keywords.

Command Mode
EXEC

Usage Guidelines

This command helps yanalyze the packets that are sent and received on an interface. Because the
debug ip eigrpcommand generates large amounts of output, only use it when traffic on the network
is light.

Sample Display
Figure 2-46 shows samptiebug ip eigrp output.

Figure 2-46 Sample Debug IP EIGRP Output
router# debug ip eigrp

IP-EIGRP: Processing incoming UPDATE packet

IP-EIGRP: Ext 198.135.3.0 255.255.255.0 M 386560 - 256000 130560 SM 360960 - 256
000 104960

IP-EIGRP: Ext 198.135.0.0 255.255.255.0 M 386560 - 256000 130560 SM 360960 - 256
000 104960

IP-EIGRP: Ext 198.135.3.0 255.255.255.0 M 386560 - 256000 130560 SM 360960 - 256
000 104960

IP-EIGRP: 198.92.43.0 255.255.255.0, - do advertise out Ethernet0/1

IP-EIGRP: Ext 198.92.43.0 255.255.255.0 metric 371200 - 256000 115200

IP-EIGRP: 192.135.246.0 255.255.255.0, - do advertise out Ethernet0/1

IP-EIGRP: Ext 192.135.246.0 255.255.255.0 metric 46310656 - 45714176 596480
IP-EIGRP: 198.92.40.0 255.255.255.0, - do advertise out Ethernet0/1

IP-EIGRP: Ext 198.92.40.0 255.255.255.0 metric 2272256 - 1657856 614400
IP-EIGRP: 192.135.245.0 255.255.255.0, - do advertise out Ethernet0/1

IP-EIGRP: Ext 192.135.245.0 255.255.255.0 metric 40622080 - 40000000 622080
IP-EIGRP: 192.135.244.0 255.255.255.0, - do advertise out Ethernet0/1

Table 2-25 describes significant fields in the debug messages shown in Figure 2-46.

2-86 Debug Command Reference

debug ip eigrp

Table 2-25 Debug IP EIGRP Field Descriptions

Field Description

IP-EIGRP: Indicates that this is an IP Enhanced IGRP packet.

Ext Indicates the following address is an external destination rather than an
internal destination, which would be labeled as Int.

M Shows the computed metric, which includes SM and the cost between
this router and the ighbor. The first number is the composite metric.
The next two numbers are the inverse bandwidth and the delay,
respectively.

SM Shows the metric as reported by the neighbor.

Debug Commands 2-87

debug ip icmp

debug ip icmp
Use thedebug ip icmp EXEC command to display information on Internal Control Message
Protocol (ICMP) transactions. T form of this command disables debugging output.

debug ip icmp
no debug ip icmp

Syntax Description
This command has no arguments or keywords.

Command Mode
EXEC

Usage Guidelines

This command helps you determine whether the router is sending or receiving ICMP messages. Use
it, for example, when you areoubleshodhg an end-to-end connection problem.

Sample Display
Figure 2-47 shows samptiebug ip icmpoutput.

Figure 2-47 Sample Debug IP ICMP Output
router# debug ip icmp

ICMP: rcvd type 3, code 1, from 128.95.192.4

ICMP: src 36.56.0.202, dst 131.108.16.1, echo reply

ICMP: dst (131.120.1.0) port unreachable rcv from 131.120.1.15

ICMP: src 131.108.12.35, dst 131.108.20.7, echo reply

ICMP: dst (255.255.255.255) protocol unreachable rcv from 192.31.7.21
ICMP: dst (131.120.1.0) port unreachable rcv from 131.120.1.15

ICMP: dst (255.255.255.255) protocol unreachable rcv from 192.31.7.21
ICMP: dst (131.120.1.0) port unreachable rcv from 131.120.1.15

ICMP: src 36.56.0.202, dst 131.108.16.1, echo reply

ICMP: dst (131.120.1.0) port unreachable rcv from 131.120.1.15

ICMP: dst (255.255.255.255) protocol unreachable rcv from 192.31.7.21
ICMP: dst (131.120.1.0) port unreachable rcv from 131.120.1.15

Table 2-26 describes significant fields in the first lingebug ip icmp output shown in
Figure 2-47.

2-88 Debug Command Reference

debug ip icmp

Table 2-26

Debug IP ICMP Field Descriptions—Part 1

Field

Description

ICMP:

Indication that this message describes an ICMP packet.

rcvd type 3

The type field can be one of the following:
0—Echo Reply
3—Destination Unreachable
4—Source Quench
5—Redirect
8—Echo
9—Router Discovery Protocol Advertisement
10—Router Discovery Protocol Solicitations
11—Time Exceeded
12—Parameter Problem
13—Timestamp
14—TimestamReply
15—Information Request
16—Information Reply
17—Mask Request
18—Mask Reply

code 1

This field is a code. The meaning of the code depends upon the type
field value:

Echo and Echo Reply—The code field is always zero.

Destination Unreachable—The code field can have the following values:
0—Network unreachable

1—Host unreachable

2—Protocol unreachable

3—Port unreachable

4—Fragmentation needed and DF bit set

5—Source route failed

Source Quench—The code field is always 0.

Redirect—The code field can have the following values:

0—Redirect datagrams for the network

1—Redirect datagrams for the host

2—Redirect datagrams for the command mode of service and network
3—Redirect datagrams for the command mode of service and host

Router Discovery Protocol Advertisements and Solicitations—The code
field is always zero.

Debug Commands 2-89

debug ip icmp

Field Description

code 1 (continued) Time Exceeded—The code field can have the following values:
0—Time to live exceeded in transit
1—Fragment reassembly time exceeded
Parameter Problem—The code field can have the following values:
0—General problem
1—Option is missing
2—Option missing, no room to add
Timestamp and Timestamp Reply—The code field is always zero.

Information Request and Information Reply—The code field is always
zero.

Mask Request and Mask Reply—The code field is always zero.
from 128.95.192.4 Source address of the ICMP packet.

Table 2-27 describes significant fields in the second lirdebfig ip icmp output in Figure 2-47.

Table 2-27 Debug IP ICMP Field Descriptions—Part 2

Field Description

ICMP: Indication that this message describes an ICMP packet
src 36.56.0.202 The address of the sender of the echo

dst 131.108.16.1 The address of the receiving router

echo reply Indication the router received an echo reply

Other messages that ttebug ip icmpcommand can generate follow.

When an IP router or host sends out an ICMP mask request, the following message is generated
when the router sends a mask reply:

ICMP: sending mask reply (255.255.255.0) to 160.89.80.23 via Ethernet0
The following two lines are examples of the two forms of this message. The first form is generated
when a mask reply comes in after the router sends out a mask request. The second form occurs when

the router receives a mask reply with a nonmatching sequence and ID. See Appendix | of RFC 950,
“Internet Standar&ubnetting Procedureddr details.

ICMP: mask reply 255.255.255.0 from 160.89.80.31
ICMP: unexpected mask reply 255.255.255.0 from 160.89.80.32

The following output indicates that the router sent a redirect packet to the host at address
160.89.80.31, instructing that host to use the gateway at address 160.89.80.23 in order to reach the
host at destination address 131.108.1.111:

ICMP: redirect sent to 160.89.80.31 for dest 131.108.1.111 use gw 160.89.80.23

The following message indicates that the router received a redirect packet from the host at address
160.89.80.23, instructing the router to use the gateway at address 160.89.80.28 in order to reach the
host at destination address 160.89.81.34:

ICMP: redirect rcvd from 160.89.80.23 -- for 160.89.81.34 use gw 160.89.80.28

2-90 Debug Command Reference

debug ip icmp

The following message is displayed when the router sends an ICMP packet to the source address
(160.89.94.31 in this case), indicating that the destination address (131.108.13.33 in this case) is
unreachable:

ICMP: dst (131.108.13.33) host unreachable sent to 160.89.94.31

The following message is displayed when the router receives an ICMP packet from an intermediate
address (160.89.98.32 in this case), indicating that the destination address (131.108.13.33 in this
case) is unreachable:

ICMP: dst (131.108.13.33) host unreachable rcv from 160.89.98.32

Depending on the code received (as Table 2-26 describes), any of the unreachable messages can
have any of the following “strings” instead of the “host” string in the message:

net

protocol

port

frag. needed and DF set
source route failed
prohibited

The following message is displayed when the TTL in the IP header reaches zero and a time exceed
ICMP message is sent. The fields are self-explanatory.

ICMP: time exceeded (time to live) send to 128.95.1.4 (dest was 131.108.1.111)

The following message is generated when parameters in the IP header are corrupted in some way
and the parameter problem ICMP message is sent. The fields are self-explanatory.

ICMP: parameter problem sent to 128.121.1.50 (dest was 131.108.1.111)

Based on the preceding information, the remaining output can be easily understood.

ICMP: parameter problem rcvd 160.89.80.32

ICMP: source quench rcvd 160.89.80.32

ICMP: source quench sent to 128.121.1.50 (dest was 131.108.1.111)
ICMP: sending time stamp reply to 160.89.80.45

ICMP: sending info reply to 160.89.80.12

ICMP: rdp advert rcvd type 9, code 0, from 160.89.80.23

ICMP: rdp solicit rcvd type 10, code 0, from 160.89.80.43

Note For more information about the fieldsdebug ip icmpoutput, see RFC-792, “Internet
Control Message Protocol”; Appendix | of RFC-950, “Internet Standard Subnetting Procedure”; and
RFC-1256, “ICMP Router Discovery Messages.”

Debug Commands 2-91

debug ip igmp

debug ip igmp
Use thedebug ip igmpEXEC command to display Internet Group Management Protocol (IGMP)
packets received and transmitted, as well as IGMP-host related events.foim of this command
disables debugging output.
debug ip igmp
no debug ip igmp

Syntax Description
This command has no arguments or keywords.

Command Mode
EXEC

Usage Notes

This command helps discover whether the IGMP processes are functioning. In general, if IGMP is
not working, the router process never discovers that there is another host on the network that is
configured to receive multicast packets. In dense mode this means the packets will be delivered
intermittently (a few every 3 minutes). In sparse mode they will never be delivered.

Use this command in conjunction widlebug ip pimanddebug ip mrouting to observe additional
multicast activity and to see what is happening the the multicast routing process, or why packets are
forwarded out of particular interfaces.

Sample Display
Figure 2-48 shows samptiebug ip igmp output.

Figure 2-48 Sample Debug IP IGMP Output
router# debug ip igmp

IGMP: Received Host-Query from 198.92.37.33 (Ethernetl)

IGMP: Received Host-Report from 198.92.37.192 (Ethernetl) for 224.0.255.1
IGMP: Received Host-Report from 198.92.37.57 (Ethernetl) for 224.2.127.255
IGMP: Received Host-Report from 198.92.37.33 (Ethernetl) for 225.2.2.2

Explanations for output from Figure 2-48 follow.

The messages displayed by thebug ip igmpcommand show query and report activity received
from other routers and multicast group addresses.

Related Commands
debug ip pim
debug ip mrouting

2-92 Debug Command Reference

debug ip igrp events

debug ip igrp events
Use thadebug ip igrp eventsEXEC command to display summary inforioaton Interior Gateway
Routing Protocol (IGRP) routing messages that indicates the source and destination of each update,
as well as the number of routes in each update. Messages are not generated for each noute. The
form of this command disables debugging output.
debug ip igrp eventgip-addres$
no debug ip igrp eventgip-addres$

Syntax Description

ip-address (Optional) IP address of an IGRP neighbor

Command Mode
EXEC

Usage Guidelines

If the IP address of an IGRP neighbor is specified, the resualéhgg ip igrp eventsoutput
includes messages describing updates from that neighbor and updates that the router broadcasts
toward that neigbor.

This command is particularly useful when there are many networks in your routing table. In this
case, usinglebug ip igrp transactioncould flood the console and make the router unusable. Use
debug ip igrp eventsinstead to display summary routing information.

Sample Display
Figure 2-49 shows samptiebug ip igrp eventsoutput.

Figure 2-49 Sample Debug IP IGRP Events Output

router# debug ip igrp events

Updates sent— | GrP: sendi ng update to 255.255. 255. 255 via Ethernet1 (160.89.33.8)
to these two | GRP: Update contains 26 interior, 40 system and 3 exterior routes.
destination | GRP: Total routes in update: 69

—— I GRP: sending update to 255.255.255. 255 via Ethernet0 (160.89. 32. 8)

addresses | GRP: Update contains 1 interior, O system and O exterior routes.
| GRP: Total routes in update: 1

Upd{;\tes — I GRP: received update from 160. 89. 32. 24 on Ethernet0

received from | GRP: Update contains 17 interior, 1 system and O exterior routes.

these source | GRP: Total routes in update: 18

addresses —— I GRP: received update from 160.89.32.7 on EthernetO

| GRP: Update contains 5 interior, 1 system and O exterior routes.
| GRP: Total routes in update: 6

S2548

Figure 2-49 shows that the router has sent two updates to the broadcast address 255.255.255.255.
The router also received two updates. Three lines of output describe each of these updates.
Explanations for representative lines of output from Figure 2-49 follow.

The first line indicates whether the router sent or received the update packet, the source or
destination address, and the interfdfue®ugh which the update was sent or received. If the update
was sent, the IP address assigned to this interfacewsgin parentheses).

Debug Commands 2-93

debug ip igrp events

IGRP: sending update to 255.255.255.255 via Ethernetl (160.89.33.8)

The second line summarizes the number and types of routes described in the update:

IGRP: Update contains 26 interior, 40 system, and 3 exterior routes.

The third line indicates the total number of routes described in the update.

IGRP: Total routes in update: 69

2-94 Debug Command Reference

debug ip i grp transaction

debug ip igrp transaction

Use thedebug ip igrp transaction EXEC command to display transaction information on Interior
Gateway Routing Protocol (IGRP) routing transactions. iidiorm of this command disables
debugging output.

debug ip igrp transaction[ip-addres$
no debug ip igrp transaction[ip-addres$

Syntax Description

ip-address (Optional) IP address of an IGRP neighbor

Command Mode
EXEC

Usage Guidelines

If the IP address of an IGRP neighbor is specified, the resuléhgg ip igrp transaction output
includes messages describing updates from that neighbor and updates that the router broadcasts
toward that neigbor.

When there are many networks in your routing tatéddug ip igrp transaction can flood the
console and make the router unusable. In this caseebsg ip igrp eventsinstead to display
summary routing information.

Sample Display
Figure 2-50 shows samptkebug ip igrp transaction output.

Figure 2-50 Sample Debug IP IGRP Transaction Output

router# debug ip igrp

Updates sent__ | grp: received update from 160. 89. 80. 240 on Et her net
to these two subnet 160.89.66.0, metric 1300 (nei ghbor 1200)
source subnet 160.89.56.0, netric 8676 (nei ghbor 8576)
addresses subnet 160.89.48.0, netric 1200 (nei ghbor 1100)

subnet 160.89.50.0, netric 1300 (neighbor 1200)

subnet 160.89.40.0, netric 8676 (neighbor 8576)

network 192.82.152.0, netric 158550 (nei ghbor 158450)
network 192.68.151.0, netric 1115511 (nei ghbor 1115411)
network 150.136.0.0, metric 16777215 (i naccessible)
exterior network 129.140.0.0, netric 9676 (nei ghbor 9576)
exterior network 140.222.0.0, netric 9676 (nei ghbor 9576)
| GRP: received update from 160. 89. 80.28 on Et hernet

subnet 160.89.95.0, netric 180671 (nei ghbor 180571)
subnet 160.89.81.0, netric 1200 (nei ghbor 1100)

subnet 160.89.15.0, nmetric 16777215 (i naccessible)

Updates —— I GRP: sending update to 255.255. 255. 255 via Ethernet0 (160.89. 64. 31)
received from subnet 160.89.94.0, netric=847

these two —— I GRP: sending update to 255.255.255.255 via Seriall (160.89.94.31) 2
destination subnet 160.89.80.0, netric=16777215 §

subnet 160.89.64.0, netric=1100
addresses

Debug Commands 2-95

debug ip igrp transaction

Figure 2-50 shows that the router being debugged has received updates from two other routers on
the network. The router at source address 160.818&eninformation about ten destinations in

the update; the router at source address 160.89.80.28 sent information about timeédssh its
update. The router being debugged also sent updates—in both cases to the broadcast address
255.255.255.255 as the destination address.

The first line in Figure 2-50 is self-explanatory.

On the second line in Figure 2-50, the first field refers to the type of destination information:
“subnet” (interior), “network” (system), or “exterior” (exterior). The second field is the Internet
address of the destination network. The third field is the metric stored in the routing table and the
metric advertised by the neighbor sending ttiermaion. “Metric ... inaccessible” usually means

that the neighbor router has put the destination in holddown.

The entries in Figure 2-50 show that the router is sending updates that are similar, except that the
numbers in parentheses are the source aslebassed in the IP header. A metric of 16777215 is
inaccessible.

Other examples of output that thebug ip igrp transactioncommand can produce follow.

The following entry indicates that the routing table was updated and shows the new edition number
(97 in this case) to be used in the next IGRP update:

IGRP: edition is now 97
Entries such as the following occur on startup or when some event occurs such as an interface
transitioning or a user manually clearing the routing table:

IGRP: broadcasting request on Ethernet0
IGRP: broadcasting request on Ethernetl

The following type of entry can result when routing updates become corrupted between sending and
receiving routers:

IGRP: bad checksum from 160.89.64.43
An entry such as the following should never appear. If it does, the receiving router has a bug in the

software or a problem with the hardware. In either case, contact your technical support
representative.

IGRP: system 45 from 160.89.64.234, should be system 109

2-96 Debug Command Reference

debug ip mpacket

debug ip mpacket

Use thedebug ip mpacketEXEC command to display only IP multicast packets received and
transmitted. Theno form of this command disables debugging output.

debug ip mpacket[group]
no debug ip mpackefgroup|

Syntax Description

group (Optional) Group name or address to monitor a single
group’s packet activity

Command Mode
EXEC

Usage Guidelines

This command displays information for multicast IP packets that are forwarded from this router. By
using the optionajroup, you can limit the display to a specific multicast group.

Use this command wittlebug ip packetto observe additional packet information.

Note Thedebug ip mpacketcommand generates lots of messages. Use with care so that
performance on the network is not affected by the debug message traffic.

Sample Display
Figure 2-51 shows samptiebug ip mpacketoutput.

Figure 2-51 Sample Debug IP Mpacket Output
router# debug ip mpacket 224.2.0.1
IP: s=131.188.34.54 (Ethernetl), d=224.2.0.1 (Tunnel0), len 88, mforward
IP: s=131.188.34.54 (Ethernetl), d=224.2.0.1 (Tunnel0), len 88, mforward

IP: s=131.188.34.54 (Ethernetl), d=224.2.0.1 (Tunnel0), len 88, mforward
IP: s=140.162.3.27 (Ethernetl), d=224.2.0.1 (Tunnel0), len 68, mforward

Table 2-28 defines fields shown in Figure 2-51.

Table 2-28 Debug IP Mpacket Field Descr iptions

Field Description

1P An |IP packet.

s=address The source address of the packet.

(Ethernetl) The name of the interface that received the packet.

d=address The multicast group address that is the destination for this packet.

Debug Commands 2-97

debug ip mpacket

Field Description

(Tunnel0) The outgoing interface for the packet.

len 88 The number of bytes in the packet. This value will vary depending on the
application and the media.

mforward The packet has been forwarded.

not RPF interface

The interface is not a reverse packet forwarding interfacdetbeep
mrouting.)

RPF lookup failed

The reverse packaetvarding lookup failed. (Se#ebug ip mrouting.)

Related Commands

debug ip mrouting
debug ip packet

2-98 Debug Command Reference

debug ip mrouting

debug ip mrouting

Use thedebug ip mrouting EXEC command to display changes to the IP multicast routing
table.Theno form of this command disables debugging output.

debug ip mrouting [group]
no debug ip mrouting [group]

Syntax Description

group (Optional) Group name or address to monitor a single
group’s packet activity

Command Mode
EXEC

Usage Notes

This command tells when the router has made changes to the mroute table.ddfrithip pim
anddebug ip mrouting commands at the same time to obtain additional multicast routing
information. In addition, use thdebug ip igmp command to see why an mroute message is being
displayed.

This command generates a large amount of output. Use the ogfonplto limit the output to a
single multicast group.

Sample Display
Figure 2-52 shows samptiebug ip mrouting output.

Figure 2-52 Sample Debug IP Mrouting Output

router# debug ip mrouting 224.2.0.1
IP multicast routing debugging is on

MRT: Delete (13.0.0.0/8, 224.2.0.1)

MRT: Delete (128.3.0.0/16, 224.2.0.1)

MRT: Delete (128.6.0.0/16, 224.2.0.1)

MRT: Delete (128.9.0.0/16, 224.2.0.1)

MRT: Delete (128.16.0.0/16, 224.2.0.1)

MRT: Create (*, 224.2.0.1), if_input NULL

MRT: Create (198.92.15.0/24, 225.2.2.4), if_input Ethernet0, RPF nbr 131.108.61.15
MRT: Create (198.92.39.0/24, 225.2.2.4), if_input Ethernetl, RPF nbr 0.0.0.0
MRT: Create (13.0.0.0/8, 224.2.0.1), if_input Ethernetl, RPF nbr 0.0.0.0
MRT: Create (128.3.0.0/16, 224.2.0.1), if_input Ethernetl, RPF nbr 0.0.0.0
MRT: Create (128.6.0.0/16, 224.2.0.1), if_input Ethernetl, RPF nbr 0.0.0.0
MRT: Create (128.9.0.0/16, 224.2.0.1), if_input Ethernetl, RPF nbr 0.0.0.0
MRT: Create (128.16.0.0/16, 224.2.0.1), if_input Ethernetl, RPF nbr 0.0.0.0

Explanations for individual lines of output from Figure 2-52 follow.
The following lines show that multicast IP routes were deleted from the routing table:

MRT: Delete (13.0.0.0/8, 224.2.0.1)
MRT: Delete (128.3.0.0/16, 224.2.0.1)
MRT: Delete (128.6.0.0/16, 224.2.0.1)

Debug Commands 2-99

debug ip mrouting

The *,G entry in the following line is always null since it is a *,G. The *,G entries are generally
created by receipt of an IGMP host-report from a group Ineemn the directly connected lan or by

a PIM join message (in sparse mode) which this router receives from a router that is sending joins
toward the RP. This router will in turn, send a join toward the RP which creates the shared tree (or
RP tree).

MRT: Create (*, 224.2.0.1), if_input NULL

The following lines are an example of creating an S,G entry that show a mpacket was received on
EO. The second line shows a route being created for a source that is on a directly connected LAN.
The RPF means “reverse path forwarding,” whereby the router looks up the source address of the
multicast packet in the unicast routing table and asks which interface will be used to send a packet
to that source.

MRT: Create (198.92.15.0/24, 225.2.2.4), if_input Ethernet0, RPF nbr 131.108.61.15
MRT: Create (198.92.39.0/24, 225.2.2.4), if_input Ethernetl, RPF nbr 0.0.0.0

The following lines show that multicast IP routes were added to the routing table. Note the 0.0.0.0
as the RPF, which means the route was created by a source that is directly connected to this router.

MRT: Create (128.9.0.0/16, 224.2.0.1), if_input Ethernetl, RPF nbr 0.0.0.0
MRT: Create (128.16.0.0/16, 224.2.0.1), if_input Ethernetl, RPF nbr 0.0.0.0

If the source is not directly connected, the nbr address shown in these lines will be the address of the
router that forwarded the packet to this router.

The shortest path tree state maintained in routers consists of source (S), multicast address (G),
outgoing interface (OIF), and incoming interface (IIF). The forwarding information is referred to as
the multicast forwarding entry for (S,G).

An entry for a shared tree can match packets from any source for its associated group if the packets
come through the proper incoming interface agmeined by the RPF lookup. Such an entry is

denoted as (*,G). A (*,G) entry keeps the same information a (S,G) entry keeps, except that it saves
the rendezvous point (RP) address in place of the source address in sparse mode or 0.0.0.0 in dense
mode.

Related Commands
debug ip pim
debug ip igmp

2-100 Debug Command Reference

debug ip ospf events

debug ip ospf events

Use thedebug ip ospf event&£XEC command to display information on Open Shortest Path First
(OSPF)-related events, such as adjacencies, flooding information, designated router selection, and
shortest path first (SPF) calculation. Treeform of this command disables debugging output.

debug ip ospf events
no debug ip ospf events

Syntax Description
This command has no arguments or keywords.

Command Mode
EXEC

Sample Display
Figure 2-53 shows samptiebug ip ospf eventoutput.

Figure 2-53 Sample Debug IP OSPF Events Output
router# debug ip ospf-events

OSPF:hello with invalid timers on interface EthernetO

hello interval received 10 configured 10

net mask received 255.255.255.0 configured 255.255.255.0
dead interval received 40 configured 30

Thedebug ip ospf event®utput shown in Figure 2-53 might appear if any of the following occurs:
® The IP subnet masks for routers on the same network do not match.

® The OSPF hello interval for the router does not match that configured fortdbaeig

® The OSPF dead interval for the router does not match that configured for a neighbor.

If a router configured for OSPF routing is not seeing an OSPF neighbor on an attached network, do
the following:

® Make sure that both routers have been configured with the same IP mask, OSPF hello interval,
and OSPF dead interval.

® Make sure that both neighbors are part of the same area type.

In the following example line, the neighbor and this router are not part of a stub area (that is, one is
a part of a transit area and the other is a part of a stub area, as explained BMRF-C 1

OSPF: hello packet with mismatched E bit

Debug Commands 2-101

debug ip packet

debug ip packet

Use thedebug ip packetEXEC command to display generaldBbugging information and IP
security option (IPSO) security transactions. Tibdorm of this command disables debugging
output.

debug ip packet[access-lisnumbet
no debug ip packeflaccess-list-numbgr

Syntax Description

access-list-number (Optional) IP access list number that you can specify. If the
datagram is not permitted by that access list, the related
debugging output is suppressed.

Command Mode
EXEC

Usage Guidelines

If a communication session is closing when it should not be, an end-to-end connection problem can
be the cause. Thiebug ip packetcommand is useful for analyzing the messages traveling between
the local and remote hosts.

IP debugging inform&n includes packets received, generated, and forwarded. Fast-switched
packets do not generate messages.

IPSO security transactions include messages that describe the cause of failure each time a datagram
fails a security test in the system. Thiformaiton is also sent to the sending host when the router
configuration allows it.

Note Because thdebug ip packetcommand generates a significant amount of output, use it only
when traffic on the IP network is low, so other activity on the system is not adversely affected.

2-102 Debug Command Reference

debug ip packet

Sample Display
Figure 2-54 shows samptiebug ip packetoutput.

Figure 2-54 Sample Debug IP Packet Output
router# debug ip packet

IP: s=131.108.13.44 (Fddi0), d=157.125.254.1 (Serial2), g=131.108.16.2, forward

IP: s=131.108.1.57 (Ethernet4), d=192.36.125.2 (Serial2), g=131.108.16.2, forward

IP: s=131.108.1.6 (Ethernet4), d=255.255.255.255, rcvd 2

IP: s=131.108.1.55 (Ethernet4), d=131.108.2.42 (Fddi0), g=131.108.13.6, forward

IP: s=131.108.89.33 (Ethernet2), d=131.130.2.156 (Serial2), g=131.108.16.2, forward

IP: s=131.108.1.27 (Ethernet4), d=131.108.43.126 (Fddil), g=131.108.23.5, forward

IP: s=131.108.1.27 (Ethernet4), d=131.108.43.126 (Fddi0), g=131.108.13.6, forward

IP: s=131.108.20.32 (Ethernet2), d=255.255.255.255, rcvd 2

IP: s=131.108.1.57 (Ethernet4), d=192.36.125.2 (Serial2), g=131.108.16.2, access denied

Figure 2-54 shows two types of messages thade¢beg ip packetcommand can produce; the first

line of output describes an IP packet that the router forwards, and the third line of output describes
a packet that is destined for the router. In the third line of output, “rcvd 2” indicates that the router
decided to receive the packet.

Table 2-29 describes the fields shown in the first line of Figure 2-54.

Table 2-29 Debug IP Packet Field Descr iptions

Field Description

IP: Indicates that this is an IP packet.

s =131.108.13.44 (Fddi0) Indicates the source address of the packet and the name of the interface
that received the packet.

d = 157.125.254.1 (Serial2) Indicates the mhesion address of the packet and the name of the
interface (in this case, S2)rbugh which the packet is being sent out on
the network.

g =131.108.16.2 Indicates the address of the next hop gateway.

forward Indicates that the router is forwarding the packet. If a filter denies a

packet, “access denied” replaces “forward,” as shown in the last line of
output in Figure 2-54.

The calculation on whether to send a security error message can be sonoefulsitcr It depends

upon both the security label in the datagram and the label of the incoming interface. First, the label
contained in the datagram is examined for anything obviously wrong. If nothing is wrong, assume
it to be correct. If there is something wrong, the datagram is treatedlassified gensefhen the

label is compared with the interface range, and the appropriate action is taken as Table 2-30
describes.

Table 2-30 Security Actions

Classification Authorities Action Taken

Too low Too low No Response
Good No Response
Too high No Response

Debug Commands 2-103

debug ip packet

Classification Authorities Action Taken

In range Too low No Response
Good Accept
Too high Send Error

Too high Too low No Response
In range Send Error
Too high Send Error

The security code can only generate a few types of ICMP error messages. The only possible error
messages and their meanings follow:

“ICMP Parameter problem, code 0"—Error at pointer

“ICMP Parameter problem, code 1"—Missing option

“ICMP Parameter problem, code 2"—See Note that follows

“ICMP Unreachable, code 10"—Administratively prohibited

Note The message “ICMP Parameter problem, code 2" identifies a specific error that occurs in the
processing of a datagram. This message indicates that the router received a datagram containing a
maximum length IP header but no security option. After being processed and routed to another
interface, it is discovered that the outgoing interface is marked with “add a security label.” Since the
IP header is already full, the system cannot add a label and must drop the datagram and return an
error message.

When an IP packet is rejected due to an IP security failure, an audit message is sent via DNSIX NAT.
Also, anydebug ip packetoutput is appended to include a description of the reason for rejection.
These reasons can be any of theofolhg:

No basic

No basic, no response

Reserved class

Reserved class, no response
Class too low, no response

Class too high

Class too high, bad authorities, no response
Unrecognized class
Unrecognized class, no response
Multiple basic

Multiple basic, no response
Authority too low, no response

Authority too high

Compartment bits not dominated by maximum sensitivity level

2-104 Debug Command Reference

debug ip packet

Compartment bits don't dominate minimum sensitivity level
Security failure: extended security disallowed

NLESO source appeared twice

ESO source not found

Postroute, failed xfc out

No room to add IPSO

Debug Commands 2-105

debug ip pim

debug ip pim
Use thedebug ip pim EXEC command to display Protocol Independent Multicast (PIM) packets

received and transmitted as well as PIM related eventsid fem of this command disables
debugging output.

debug ip pim[group|
no debug ip pim[group]

Syntax Description

group (Optional) Group name or address to monitor a single
group’s packet activity

Command Mode
EXEC

Usage Guidelines
PIM uses IGMP packets to communicate between routers and advertise reachability information.

Use this command wittlebug ip igmpanddebug ip mrouting to observe additional multicast
routing information.

Sample Display
Figure 2-55 shows samptiebug ip pim output.

Figure 2-55 Sample Debug IP PIM Output
router# debug ip pim 224.2.0.1

PIM: Received Join/Prune on Ethernetl from 198.92.37.33

PIM: Received Join/Prune on Ethernetl from 198.92.37.33

PIM: Received Join/Prune on TunnelO from 10.3.84.1

PIM: Received Join/Prune on Ethernetl from 198.92.37.33

PIM: Received Join/Prune on Ethernetl from 198.92.37.33

PIM: Received RP-Reachable on Ethernetl from 131.108.20.31

PIM: Update RP expiration timer for 224.2.0.1

PIM: Forward RP-reachability packet for 224.2.0.1 on TunnelO

PIM: Received Join/Prune on Ethernetl from 198.92.37.33

PIM: Prune-list (163.221.196.51/32, 224.2.0.1)

PIM: Set join delay timer to 2 seconds for (163.221.0.0/16, 224.2.0.1) on Ethernetl
PIM: Received Join/Prune on Ethernetl from 198.92.37.6

PIM: Received Join/Prune on Ethernetl from 198.92.37.33

PIM: Received Join/Prune on TunnelO from 10.3.84.1

PIM: Join-list: (*, 224.2.0.1) RP 131.108.20.31

PIM: Add TunnelO to (*, 224.2.0.1), Forward state

PIM: Join-list: (13.0.0.0/8, 224.2.0.1)

PIM: Add TunnelO to (13.0.0.0/8, 224.2.0.1), Forward state

PIM: Join-list: (128.3.0.0/16, 224.2.0.1)

PIM: Prune-list (198.92.84.16/28, 224.2.0.1) RP-bit set RP 198.92.84.16
PIM: Send Prune on Ethernetl to 198.92.37.6 for (198.92.84.16/28, 224.2.0.1), RP
PIM: For RP, Prune-list: 128.9.0.0/16

PIM: For RP, Prune-list: 128.16.0.0/16

PIM: For RP, Prune-list: 128.49.0.0/16

2-106 Debug Command Reference

debug ip pim

PIM: For RP, Prune-list: 128.84.0.0/16

PIM: For RP, Prune-list: 128.146.0.0/16

PIM: For 10.3.84.1, Join-list: 198.92.84.16/28

PIM: Send periodic Join/Prune to RP via 198.92.37.6 (Ethernetl)

Explanations for individual lines of output from Figure 2-55 follow.

The following lines appear periodically when PIM is running in sparse mode and indicate to this
router which multicast groups and multicast sources other routers are interested in:

PIM: Received Join/Prune on Ethernetl from 198.92.37.33
PIM: Received Join/Prune on Ethernetl from 198.92.37.33

The following lines appear when a rendezvous point (RP) message is received and the RP timer is
reset. The expiration timer sets a checkpoint to make sure the RP still exists; otherwise a new RP
must be discovered:

PIM: Received RP-Reachable on Ethernetl from 131.108.20.31
PIM: Update RP expiration timer for 224.2.0.1
PIM: Forward RP-reachability packet for 224.2.0.1 on TunnelO

The prune-list message in the followirnigd states that this router is not interested in the source
address information. The prune message tells an upstream router to stop forwarding multicast
packets from this source.

PIM: Prune-list (163.221.196.51/32, 224.2.0.1)

In the following line, a second router on the network wants to override the prune message that the
upstream router just received. The timer is set at a random value so that if there are additional routers
on the network that still want to receive multicast packets for the group, only one will actually send
the message. The other routers will receive the join message arslipfeess sending their own
message.

PIM: Set join delay timer to 2 seconds for (163.221.0.0/16, 224.2.0.1) on Ethernetl

In the following line, a join message is sent towards the RP for all sources:

PIM: Join-list: (*, 224.2.0.1) RP 131.108.20.31

In the following lines, the interface is being added to the outgoing interface (OIF) of the *,G and S,G
mroute table entry so that packets from the source will be forwarded out that particular interface:

PIM: Add TunnelO to (*, 224.2.0.1), Forward state
PIM: Add TunnelO to (13.0.0.0/8, 224.2.0.1), Forward state

The following line appears in sparse maady. There are two trees on which data may be received:

the RP tree and the source tree. In dense mode there is no RP. After the source and the receiver have
discovered one another at the RP, the first-hop router for the receiver will usually join to the source
tree rather than the RP tree:

PIM: Prune-list (198.92.84.16/28, 224.2.0.1) RP-bit set RP 198.92.84.16

The Send Prune message in the next line shows that a router is sending a messagedoauser

saying that the first router no longer wants to receive multicast packets for the S,G. The “RP” at the
end of the message indicates that the router is pruning the RP tree and is most likely joining the
source tree, although the router may not have downstream members for the group or downstream
routers with members of the group. The output shows which specific sources this router no longer
wants to receive multicast from.

PIM: Send Prune on Ethernetl to 198.92.37.6 for (198.92.84.16/28, 224.2.0.1), RP

Debug Commands 2-107

debug ip pim

The following lines indicate a prune message is sent toward the RP so that router can join the source
tree rather than the RP tree:

PIM: For RP, Prune-list: 128.9.0.0/16
PIM: For RP, Prune-list: 128.16.0.0/16
PIM: For RP, Prune-list: 128.49.0.0/16

In the following line, a periodic message is sent towards the RP. The default period is once per
minute. Prune and join messages are sent toward the RP or source rather than directly to the RP or
source. It is the responsibility of the next-hop router to take proper actiorhigithéssage, such as
continuing to forward it to the next router in the tree.

PIM: Send periodic Join/Prune to RP via 198.92.37.6 (Ethernetl)

Related Commands

debug ip mrouting
debug ip igmp

2-108 Debug Command Reference

debug ip rip

debug ip rip

Updates
received
from this
source

address

Updates
sent to
these two
destination
addresses

Use thedebug ip rip EXEC command to display information on RIP routing transactionsn@he
form of this command disables debugging output.

debug ip rip
no debug ip rip

Syntax Description
This command has no arguments or keywords.

Command Mode
EXEC

Sample Display
Figure 2-56 shows samptiebug ip rip output.

Figure 2-56 Sample Debug IP RIP Output

router# debug ip rip

—RIP: received update from 160. 89. 80. 28 on EthernetO
160.89.95.0 in 1 hops
160.89.81.0 in 1 hops
160.89.66.0 in 2 hops
131.108.0.0 in 16 hops (inaccessible)
0.0.0.0 in 7 hop
—RIP: sending update to 255.255.255. 255 via Ethernet0 (160.89. 64. 31)
subnet 160.89.94.0, netric 1
131.108.0.0 in 16 hops (inaccessible)
—RIP: sending update to 255.255.255.255 via Seriall (160.89.94.31)
subnet 160.89.64.0, netric 1
subnet 160.89.66.0, netric 3
131.108.0.0 in 16 hops (i naccessible)
default 0.0.0.0, netric 8

S2550

Figure 2-56 shows that the router being debugged has received updates from one router at source
address 160.89.80.28. That router sent information about five destinations in the routing table
update. Notice that the fourth destination address in the update—131.108.0.0—is inaccessible
because it is more than 15 hops away from the router sending the update. The router being debugged
also sent updates, in both cases to broadcast address 255.255.255.255 as the destination.

The first line in Figure 2-56 is self-explanatory.

The second line in Figure 2-56 is an example of a routing table update. It shows how many hops a
given Internet address is from the router.

The entries in Figure 2-56 show that the router is sending updates that are similar, except that the
number in parentheses is the source address encapsulated into the IP header.

Examples of additional output that ttebug ip rip command can generate follow.

Debug Commands 2-109

debug ip rip

Entries such as the following appear at startup or when an event occurs such as an interface
transitioning or a user manually clearing the routing table:

RIP: broadcasting general request on Ethernet0
RIP: broadcasting general request on Ethernetl

The following line is self-explanatory:

RIP: received request from 160.89.80.207 on Ethernet0

An entry such as the following is most likely caused by a malformed packet from the transmitter:

RIP: bad version 128 from 160.89.80.43

2-110 Debug Command Reference

debug ip r outing

debug ip routing
Use thedebug ip routing EXEC command to display information on Routing Information Protocol

(RIP) routing table updates and route-cache updatesadfaem of this command disables
debugging output.

debug ip routing
no debug ip routing

Syntax Description
This command has no arguments or keywords.

Command Mode
EXEC

Sample Display
Figure 2-57 shows samptiebug ip routing output.

Figure 2-57 Sample Debug IP Routing Output
router# debug ip routing

RT: add 198.93.168.0 255.255.255.0 via 198.92.76.30, igrp metric [100/3020]

RT: metric change to 198.93.168.0 via 198.92.76.30, igrp metric [100/3020]
new metric [100/2930]

IP: cache invalidation from 0x115248 0x1378A, new version 5736

RT: add 198.133.219.0 255.255.255.0 via 198.92.76.30, igrp metric [100/16200]

RT: metric change to 198.133.219.0 via 198.92.76.30, igrp metric [100/16200]
new metric [100/10816]

RT: delete route to 198.133.219.0 via 198.92.76.30, igrp metric [100/10816]

RT: no routes to 198.133.219.0, entering holddown

IP: cache invalidation from 0x115248 0x1378A, new version 5737

RT: 198.133.219.0 came out of holddown

RT: garbage collecting entry for 198.133.219.0

IP: cache invalidation from 0x115248 0x1378A, new version 5738

RT: add 198.133.219.0 255.255.255.0 via 198.92.76.30, igrp metric [100/10816]

RT: delete route to 198.133.219.0 via 198.92.76.30, igrp metric [100/10816]

RT: no routes to 198.133.219.0, entering holddown

IP: cache invalidation from 0x115248 0x1378A, new version 5739

RT: 198.133.219.0 came out of holddown

RT: garbage collecting entry for 198.133.219.0

IP: cache invalidation from 0x115248 0x1378A, new version 5740

RT: add 198.133.219.0 255.255.255.0 via 198.92.76.30, igrp metric [100/16200]

RT: metric change to 198.133.219.0 via 198.92.76.30, igrp metric [100/16200]
new metric [100/10816]

RT: delete route to 198.133.219.0 via 198.92.76.30, igrp metric [100/10816]

RT: no routes to 198.133.219.0, entering holddown

IP: cache invalidation from 0x115248 0x1378A, new version 5741

Explanations for representative lines of output in Figure 2-57 follow.

In the following lines, a newly created entry has been added to the IP routing table. The “metric
change” indicates that this entry existed previously, but its metric changed and the change was
reported by means of IGRP. The metric could also be reported via RIP, OSPF, or another IP routing
protocol. The numbers inside the brackets report the administrative distance and the actual metric.

Debug Commands 2-111

debug ip routing

“Cache invalidation” means that the fast switching cache was invalidated due to a routing table
change. “New version” is the version number of the routing table. When the routing table changes,
this number is incremented. The hexadecimal numbers are internal numbers that vary from version
to version and software load to software load.

RT: add 198.93.168.0 255.255.255.0 via 198.92.76.30, igrp metric [100/3020]

RT: metric change to 198.93.168.0 via 198.92.76.30, igrp metric [100/3020]
new metric [100/2930]

IP: cache invalidation from 0x115248 0x1378A, new version 5736

In the following output, the “holddown” ariccache invalidation” lines are displayed. Most of the
distance vector routing protocols use “haldah” to avoid typical problems like counting to infinity
and routing loops. If you look at the outputsbiow ip protocolsyou will see what the timer values
are for “holddown” and “cache invdation”. “Cache invalidation” corsponds to “came out of
holddown”. “Delete route” is triggered when a better pathes along. It gets rid of the old inferior
path.

RT: delete route to 198.133.219.0 via 198.92.76.30, igrp metric [100/10816]

RT: no routes to 198.133.219.0, entering holddown

IP: cache invalidation from 0x115248 0x1378A, new version 5737
RT: 198.133.219.0 came out of holddown

2-112 Debug Command Reference

debug ip security

debug ip security
Use thedebug ip securityEXEC command to display IP security option processing.nbhierm
of this command disabletebugging output.

debug ip security
no debug ip security

Syntax Description
This command has no arguments or keywords.

Command Mode
EXEC

Usage Guidelines

Thedebug ip securitycommand displaysiformation for bottbasic and extended IP security

options. For interfaces whelg security is configured, each IP packet processed for that interface
results in debugging output regardless of whether the packet contains IP security options. IP packets
processed for other interfaces that also contain IP security information also dedaeyging

output. Some additional IP security debugging information is also controlled égtibg ip packet

EXEC command.

Note Because thdebug ip securitycommand generates a significant amount of output for every
IP packet processed, use it only when traffic on the IP network is low, so other activity on the system
is not adversely affected.

Sample Display
Figure 2-58 shows samptiebug ip securityoutput.

Figure 2-58 Sample Debug IP Security Output
router# debug ip security

IP Security: src 198.92.72.52 dst 198.92.72.53, number of BSO 1

idb: NULL

pak: insert (OxFF) Ox0
IP Security: BSO postroute: SECINSERT changed to secret (Ox5A) 0x10
IP Security: src 198.92.72.53 dst 198.92.72.52, number of BSO 1

idb: secret (0x6) 0x10 to secret (0x6) 0x10, no implicit

def secret (Ox6) 0x10

pak: secret (Ox5A) 0x10
IP Security: checking BSO 0x10 against [0x10 0x10]
IP Security: classified BSO as secret (0x5A) 0x10

Table 2-31 describes significant fields shown in Figure 2-58.

Debug Commands 2-113

debug ip security

Table 2-31 Debug IP Security Field Descr iptions

Field Description

number of BSO Indicates the number of basic security optamml in the packet.

idb Provides information on the security configuration for the incoming interface.
pak Provides information on the security classification of the incoming packet.
src Indicates the source IP address.

dst Indicates the destination IP address.

Explanations for representative lines of output in Figure 2-58 follow.

The following line indicates that the packet was locally generated, and it has been classified with the
internally significant security level “insert” (0xff) and authority 0x0:

idb: NULL
pak: insert (0xff) Ox0

The following line indicates that the packet was received via an interface with dedicated IP security
configured. Specifically, the interface is configured at security level “secret” and with authority
information of 0x0. The packet itself was classified at level “secret” (0x5a) and authority 0x10.

idb: secret (0x6) 0x10 to secret (0x6) 0x10, no implicit
def secret (Ox6) Ox10
pak: secret (0x5A) 0x10

2-114 Debug Command Reference

debug ip tcp driver

debug ip tcp driver
Use thedebug ip tcp driver EXEC command to display information on Transmission Control

Protocol (TCP) driver events; for example, connections opening or closing, or packets being
dropped because of full queues. Tieeform of this command disables debugging output.

debug ip tcp driver
no debug ip tcp driver

Syntax Description
This command has no arguments or keywords.

Command Mode
EXEC

Usage Guidelines

The TCP driver is the process that the router software uses to send packet data over a TCP
connection. Remote source-route bridging, STUN (serial tunneling), ands¥ifshing currently
use the TCP driver.

Using thedebug ip tcp driver command together with tliebug ip tcp driver-pak command
provides the most verbose debugging output concerning TCP driver activity.

Sample Display
Figure 2-59 shows samptiebug ip tcp driver output.

Figure 2-59 Sample Debug IP TCP Driver Output
router# debug ip tcp driver

TCPDRV359CD8: Active open 160.89.80.26:0 --> 160.89.80.25:1996 OK, Iport 36628
TCPDRV359CD8: enable tcp timeouts

TCPDRV359CD8: 160.89.80.26:36628 --> 160.89.80.25:1996 Abort
TCPDRV359CD8: 160.89.80.26:36628 --> 160.89.80.25:1996 DoClose tcp abort

Explanations for individual lines of output from Figure 2-59 follow.

Table 2-32 describes the fields in the first line of output.

Table 2-32 Debug IP TCP Driver Field Descriptions

Field Description

TCPDRV359CD8: Unique identifigor this instance of TCP driver activity.

Active open 160.89.80.26 Indication that the router at IP add68589.80.26 has initiated a
connection to another router.

0 The TCP port number the initiator of the connection uses to indicate that
any port number can be used to set up a connection.

-->160.89.80.25 The IP address of the remote router to which the connection has been
initiated.

Debug Commands 2-115

debug ip tcp driver

Field Description

11996 The TCP port number that the initiatotted connection is requesting
that the remote router use for the connection. (1996 is a private TCP port
number reserved in this implementation for remote source-route
bridging.)

OK, Indication that the connection has been established. ¢bti@ection has
not been established, this field and thedfelhg field do not appear in
this line of output.

Iport 36628 The TCP port number that hagially been assigned for the initiator to
use for this connection.

The following line indicates that the TCP driver user (reraotece-route bridging, in this case) will
allow TCP to drop the connection if excessive retransmissions occur:

TCPDRV359CD8: enable tcp timeouts
The following line indicates that the TCP driver user (in this case, remote soutebridging) at

IP address 160.89.80.26 (and using TCP port number 36628) is requesting that the connection to IP
address 160.89.80.25 using TCP port number 1996 be aborted:

TCPDRV359CD8: 160.89.80.26:36628 --> 160.89.80.25:1996 Abort

The following line indicates that this connection was in fact closed due to an abort:

TCPDRV359CD8: 160.89.80.26:36628 --> 160.89.80.25:1996 DoClose tcp abort

2-116 Debug Command Reference

debug ip tcp driver-pak

debug ip tcp driver-pak
Use thedebug ip tcp driver-pak EXEC command to displaypformaion on every operation that
the Transmission Control Protocol (TCP) driver performs. Adérm of this command disables
debugging output.
debug ip tcp driver-pak
no debug ip tcp driver-pak

Syntax Description
This command has no arguments or keywords.

Command Mode
EXEC

Usage Guidelines

This command turns on a verbose debugging by logging at least one debugging message for every
packet sent or received on the TCP driver connection.

The TCP driver is the process that the router software uses to send packet data over a TCP
connection. Remote source-route bridging, STUN (serial tunneling), ands¥ishing currently
use the TCP driver.

To observe the context within which certdigbug ip tcp driver-pak messages occur, turn on this
command in conjunction with thrdebug ip tcp driver command.

Note Because thdebug ip tcp driver-pak command generates so many messages, use it only on
lightly loaded systems. This command not only places a significant load on the system processor,
but it may even change the symptoms of any unexpected behavior that occur.

Sample Display
Figure 2-60 shows samptiebug ip tcp driver-pak output.

Figure 2-60 Sample Debug IP TCP Driver-Pak Output
router# debug ip tcp driver-pak

TCPDRV359CD8: send 2E8CDS8 (len 26) queued
TCPDRV359CD8: output pak 2E8CD8 (len 26) (26)
TCPDRV359CD8: readf 42 bytes (Thresh 16)
TCPDRV359CD8: readf 26 bytes (Thresh 16)
TCPDRV359CD8: readf 10 bytes (Thresh 10)
TCPDRV359CD8: send 327E40 (len 4502) queued
TCPDRV359CD8: output pak 327E40 (len 4502) (4502)

Explanations for individual lines of output from Figure 2-60 follow.

Table 2-33 describes the fields shown in the first line of output.

Debug Commands 2-117

debug ip tcp driver-pak

Table 2-33 Debug TCP Driver-Pak Field Descr iptions

Field Description

TCPDRV359CD8 Unique identifigor this instance of TCP driver activity.

send Indication that this event involves the TCP driver sending data.
2E8CD8 Address in memory of the data the TCP driver is sending.

(len 26) Length of the data (in bytes).

queued Indication that the TCP driver user process (in this case, remote

source-route bridging) has transferred the data to the TCP driver to send.

The following line indicates that the TCP driver has sent the data that it had received from the TCP
driver user, as shown in the previous line of output. The last field in the line (26) indicates that the
26 bytes of data were sent out as a single unit.

TCPDRV359CD8: output pak 2E8CDS8 (len 26) (26)
The following line indicates that the TCP driver has received 42 bytes of data from the remote IP
address. The TCP driver user (in this case, remote source-route bridging) has established an input

threshold of 16 bytes for this connection. (The input threshold instructs the TCP driver to transfer
data to the TCP driver user only when at least 16 bytes are present.)

TCPDRV359CD8: readf 42 bytes (Thresh 16)

2-118 Debug Command Reference

debug ip tcp transactions

debug ip tcp transactions

Use thedebug ip tcp transactionsEXEC command to display information on significant
Transmission Control Protocol (TCP) transactions such as state changes, retransmissions, and
duplicate packets. Theo form of this command disables debugging output.

debug ip tcp transactions
no debug ip tcp transactions

Syntax Description
This command has no arguments or keywords.

Command Mode
EXEC

Usage Guidelines

This command is particularly useful for debugging a performance problem on a TCP/IP network that
you have isolated above the data link layer.

Thedebug ip tcptransactionscommand displays output for packets the router sends and receives,
but does not display output for packets it forwards.

Sample Display
Figure 2-61 shows samptiebug ip tcp transactionsoutput.

Figure 2-61 Sample Debug IP TCP Output
router# debug ip tcp transactions

TCP: sending SYN, seq 168108, ack 88655553

TCPO: Connection to 26.9.0.13:22530, advertising MSS 966
TCPO: state was LISTEN -> SYNRCVD [23 -> 26.9.0.13(22530)]
TCPO: state was SYNSENT -> SYNRCVD [23 ->26.9.0.13(22530)]
TCPO: Connection to 26.9.0.13:22530, received MSS 956
TCPO: restart retransmission in 5996

TCPO: state was SYNRCVD -> ESTAB [23 -> 26.9.0.13(22530)]
TCP2: restart retransmission in 10689

TCP2: restart retransmission in 10641

TCP2: restart retransmission in 10633

TCP2: restart retransmission in 13384 -> 26.0.0.13(16151)]
TCPO: restart retransmission in 5996 [23 -> 26.0.0.13(16151)]

Table 2-34 describes significant fields shown in Figure 2-61.

Table 2-34 Debug IP TCP Field Descriptions

Field Description

TCP: Indicates that this is a TCP transaction.

sending SYN Indicates that a synchronize packet is being sent.

seq 168108 Indicates the sequence number of the data being sent.

Debug Commands 2-119

debug ip tcp transactions

Field

Description

ack 88655553

Indicates thequience number of the data being
acknowledged.

TCPO:

Indicates th& TY number (0, in this case) with which this
TCP connection is associated.

Connection to 26.9.0.13:22530

Indicates the remote address with which a connection has
been established.

advertising MSS 966

Indicates the maximum segment size this side of the TCP
connection is offering to the other side.

state was LISTEN -> SYNSENT

Indicates that the TCP statdimachanged state from
LISTEN to SYNSENT. Possible TCP states follow:

CLOSED—Connection closed.
CLOSEWAIT—Received a FIN segment.
CLOSING—Received a FIN/ACK segment.
ESTAB—Connection eablished.

FINWAIT 1—Sent a FIN segment to start closing the
connection.

FINWAIT 2—Waiting for a FIN segment.

LASTACK—Sent aFIN segment in response to a received
FIN segment.

LISTEN—Listening for aconnection equest.
SYNRCVD—Received a SYN segment, andpended.

SYNSENT—Sent a SYN segnt to start connection
negotiation.

TIMEWAIT—Waiting for network to clear segments for this
connection before the network no longer recognizes the
connection as valid. This must occur before a new connection
can be set up.

[23 -> 26.9.0.13(22530)]

Within these brackets:
The first field (23) indicates local TCP port.

The second field (26.9.0.13) indicates the destination IP
address.

The third field (22530) indicates the destination TCP port.

restart retransmission in 5996

Indicates the number of milliseconds until the next
retransmission takes place.

2-120 Debug Command Reference

debug ipx ipxwan

debug ipx ipxwan

Use thedebug ipxipxwan EXEC command to display debug information for interfaces configured
to use IPXWAN. Theno form of this command disables debugging output.

debug ipxipxwan
no debug ipxipxwan

Syntax Description
This command has no arguments or keywords.

Command Mode
EXEC

Usage Guidelines

Thedebug ipxipxwan command is useful for verifying the startup negotiations between two routers
running the IPX protocol through a WAN. This commanadduces output only during state changes
or startup. During normal operations, no output is produced.

Sample Display
Figure 2-62 shows samptiebug ipxipxwan output during link startup.

Figure 2-62 Sample Debug IPX IPXWAN Output
router## debug ipx ipxwan

%LINEPROTO-5-UPDOWN: Line protocol on Interface Seriall, changed state to up
IPXWAN: state (Disconnect -> Sending Timer Requests) [Serial1/6666:200 (IPX line
state brought up)]

IPXWAN: state (Sending Timer Requests -> Disconnect) [Serial1/6666:200 (IPX line
state brought down)]

IPXWAN: state (Disconnect -> Sending Timer Requests) [Serial1/6666:200 (IPX line
state brought up)]

IPXWAN: Send TIMER_REQ [seq 0] out Serial1/6666:200
IPXWAN: Send TIMER_REQ [seq 1] out Serial1/6666:200
IPXWAN: Send TIMER_REQ [seq 2] out Serial1/6666:200
IPXWAN: Send TIMER_REQ [seq 0] out Serial1/6666:200

IPXWAN: Rev TIMER_REQ on Serial1/6666:200, NodelD 1234, Seq 1

IPXWAN: Send TIMER_REQ [seq 1] out Serial1/6666:200

IPXWAN: Rcv TIMER_RSP on Serial1/6666:200, NodelD 1234, Seq 1, Del 6

IPXWAN: state (Sending Timer Requests -> Master: Sent RIP/SAP) [Serial1/6666:200
(Received Timer Response as master)]

IPXWAN: Send RIPSAP_INFO_REQ [seq 0] out Serial1/6666:200

IPXWAN: Rcv RIPSAP_INFO_RSP from Serial1/6666:200, NodelD 1234, Seq 0
IPXWAN: state (Master: Sent RIP/SAP -> Master: Connect) [Serial1/6666:200 (Received
Router

Info Rsp as Master)]

Debug Commands 2-121

debug ipx ipxwan

Explanations for representative lines of output in Figure 2-62 follow.
The following line indicates that the interface has initialized:

%LINEPROTO-5-UPDOWN: Line protocol on Interface Seriall, changed state to up

The following lines indicate that the startup process failed to receive a timer response, brought the
link down, then brought the link up and tried again with a new timer set:

IPXWAN: state (Sending Timer Requests -> Disconnect) [Serial1/6666:200 (IPX line
state brought down)]

IPXWAN: state (Disconnect -> Sending Timer Requests) [Serial1/6666:200 (IPX line
state brought up)]

The following lines indicate that the interface is sending timer requests and waiting on timer
response:

IPXWAN: Send TIMER_REQ [seq 0] out Serial1/6666:200
IPXWAN: Send TIMER_REQ [seq 1] out Serial1/6666:200

The following lines indicate that the interface has received a timer request from the other end of the
link and has sent a timer response. The fourth line shows that the interface has come up as the master
on the link.

IPXWAN: Rev TIMER_REQ on Serial1/6666:200, NodelD 1234, Seq 1

IPXWAN: Send TIMER_REQ [seq 1] out Serial1/6666:200

IPXWAN: Rcv TIMER_RSP on Serial1/6666:200, NodelD 1234, Seq 1, Del 6
IPXWAN: state (Sending Timer Requests -> Master: Sent RIP/SAP) [Serial1/6666:200
(Received Timer Response as master)]

The following lines indicate that the interface is sending RIP/SAP requests:

IPXWAN: Send RIPSAP_INFO_REQ [seq 0] out Serial1/6666:200

IPXWAN: Rcv RIPSAP_INFO_RSP from Serial1/6666:200, NodelD 1234, Seq 0
IPXWAN: state (Master: Sent RIP/SAP -> Master: Connect) [Serial1/6666:200 (Received
Router Info Rsp as Master)]

2-122 Debug Command Reference

debug ipx packet

debug ipx packet

Use thedebug ipx packetEXEC command to display information about packets received,
transmitted, and forwarded. The form of this command disables debugging output.

debug ipx packet
no debug ipx packet

Syntax Description
This command has no arguments or keywords.

Command Mode
EXEC

Usage Guidelines
This command is useful for learning whether IPX packets are traveling over a router.

Note In order to generatdebug ipx packetinformation on all IPX traffic traveling over the router,
you must first configure the router so that fast switching is disabled. Use fip route-cache
command on all interfaces on which you want to observe traffic. If the router is configured for IPX
fast switching, only non-fast switched packets will produce output. When the IPX cache is
invalidated or cleared, one packet for each destination is displayed as the cache is repopulated.

Sample Display
Figure 2-63 shows samptiebug ipx packetoutput.

Figure 2-63 Sample Debug IPX Packet Output
router# debug ipx packet

Novell: src=160.0260.8c4c.4f22, dst=1.0000.0000.0001, packet received
Novell: src=160.0260.8c4c.4f22, dst=1.0000.0000.0001,gw=183.0000.0c01.5d85,
sending packet

In Figure 2-63, the first line indicates that thater receives a packet from a Novell station (address
160.0260.8c4c.4f22); this trace does not indicate the address of the immediate router sending the
packet to this router. In the second line, the router forwards the packet toward the Novell server
(address 1.0000.0000.0001) through an immediate router (183.0000.0c01.5d85).

Table 2-35 describes significant fields shown in Figure 2-63.

Debug Commands 2-123

debug ipx packet

Table 2-35 Debug IPX Packet Field Descr iptions

Field Description

IPX Indication that this is an IPX packet.

src = 160.0260.8c4c.4f22 Source address of the IPX packet. The Novell network number is 160.
Its MAC address is 0260.8c4c.4f22.

dst = 1.0000.0000.0001 Desttim address for the IPX packet. The address 0000.0001 is

an internal MAC address, and the network number 1 is the internal
network number of a Novell 3.11 server.

packet received The router received this packet from a Novell station, possiblytthro
an intermediate router.

gw = 183.0000.0c01.5d85 The router is sending the packet overnexhbop router; its address
of 183.0000.0c01.5d85 was learneahf the IPX routing table.

sending packet The router is attempting to send this packet.

2-124 Debug Command Reference

debug ipx routing

debug ipx routing
Use thedebug ipx routing EXEC command to display information on IPX routing packets that the
router sends and receives. Theeform of this command disables debugging output.

debug ipx routing
no debug ipx routing

Syntax Description
This command has no arguments or keywords.

Command Mode
EXEC

Usage Guidelines

Normally, a router or server sends out one routing update per minute. Each routing update packet
can include up to 50 entries. If many networks exist on thenigt@ork, the router sends out

multiple packets per update. For example, if a router has 120 entries in the routing table, it would
send three routing update packets per update. The first routing update packet would include the first
50 entries, the second packet would include the next 50 entries, and the last routing update packet
would include the last 20 entries.

Sample Display
Figure 2-64 shows samptiebug ipx routing output.

Figure 2-64 Sample Debug IPX Routing Output
router# debug ipx routing

NovellRIP: update from 9999.0260.8c6a.1733
110801 in 1 hops, delay 2

NovellRIP: sending update to 12FFO2:ffff.ffff.ffff via Ethernet 1
network 555, metric 2, delay 3
network 1234, metric 3, delay 4

Table 2-36 describes significant fields shown in Figure 2-64.

Table 2-36 Debug IPX Routing Field Descriptions

Field Description

IPXRIP This is an IPX RIP packet.

update from This packet is a routing update from a Novell server at address
9999.0260.8c6a.1733 9999.260.8c6a.1733.

110801 in 1 hops Network 110801 is one hop away from the router at address

9999.260.8c6a.1733.

delay 2 Delay is a time measurement (1/18th second) that the NetWare shell uses
to estimate how long to wait for a response from a file server. Also
known as ticks.

Debug Commands 2-125

debug ipx routing

Field

Description

sending update to
12FFO2:fff. ffff. ffff via
Ethernet 1

The router is sending this IPX routing update packet to address
12Fro2:ffff ffff.ffff through its Ethernet 1 interface.

network 555

The packet includes routing update information for network 555.

metric 2

Network 555 is two metrics (or hops) away from the router.

delay 3

Network 555 is a delay of 3 away from the router. Delay is a
measurement that the NetWare shell uses to estimatéohgwo wait
for a response from a file server. Also known as ticks.

Related Command
debug ipx sap

2-126 Debug Command Reference

debug ipx sap

debug ipx sap

Describes a —|I SAP Response type 0x2 | en 160 src: 160. 0000. 0c00. 070d dest: 160.ffff.ffff.ffff(452)

single SAP
packet

Use thedebug ipx sapEXEC command to display information about IPX Service Advertisement
Protocol (SAP) packets. Thm form of this command disables debugging output.

debug ipx sap[activity | eventd
no debug ipx sap

Syntax Description

activity (Optional) Provides more detailed output of SAP packets,
including displays of services in SAP packets.

events (Optional) Limits amount of detailed output for SAP
packets to those that contain interesting events.

Command Mode
EXEC

Usage Guidelines

Normally, a router or server sends out one SAP update per minute. Each SAP packet can include up
to seven entries. If many servers are advertising on the network, the router sends out multiple packets
per update. For example, if a router has 20 entries in the SAP table, it would send three SAP packets
per update. The first SAP would include the first seven entries, the second SAP would include the
next seven entries, and the last update would include the last six entries.

Obtain the most meaningful detail by usingdledug ipx sap activityand thedebug ipx sapevents
commands together.

Caution Because thdebug ipxsapcommand can generate a lot of output, use it with caution on
networks that have many interfaces and large service tables.

Sample Display
Figure 2-65 shows samptiebug ipx sapoutput.

Figure 2-65 Sample Debug IPX SAP Output

router# debug i px sap

Novel | SAP: at 0023F778:

type Ox4, “HELLO2", 199.0002.0004.0006 (451), 2 hops

type Ox4, “HELLOL”, 199.0002.0004.0008 (451), 2 hops

Novel | SAP: sendi ng update to 160
Novel | SAP: at 00169080:

O SAP Update type 0x2 len 96 ssoc: 0x452 dest: 160.ffff.ffff.ffff(452)
Novel | : type Ox4, “Magnolia”, 42.0000.0000.0001 (451), 2 hops

S2551

Debug Commands 2-127

debug ipx sap

As Figure 2-65 shows, tidebug ipx sapcommand generates multiple lines of output for each SAP
packet—a packet summary message and a service detail message.

The first line displays the internal router memory address of the packet. The technical support staff
may use thisriformaion in problem debugging.

NovellSAP: at 0023F778:

2-128 Debug Command Reference

debug ipx sap

Table 2-37 describes the fields shown in the second line of output in Figure 2-65.

Table 2-37 Debug IPX SAP Field Descriptions—Part 1

Field

Description

Indication as to whether the router received the SAP packet as input (l)
or is sending an update as output (O).

SAP Response type 0x2

Packet type. Formatiis passible values fan include:
1—General query
2—General response
3—Get Nearest Server request
4—Get Nearest Server response

len 160

Length of this packet (in bytes).

src: 160.000.0c00.070d

Source address of the packet.

dest: 160.ffff.ffff.ffff

The IPX netvork number and broadcast address of the destination IPX
network for which the message is intended.

(452)

IPX socket number of the processding the packet at the source
address. This number is always 452, which is the soekaber for the
SAP process.

Table 2-38 describes the fields shown in the third and fourth lines of output in Figure 2-65.

Debug Commands 2-129

debug ipx sap

Table 2-38 Debug IPX SAP Field Descriptions—Part 2
Field Description
type 0x4 Indicates the type of service the server sending the packet provides.

Format is Or. Some of the values forare proprietary to Novell. Those
values fom that have been published include

0—Unknown

1—User

2—User group

3—FPrint queue

4—File server

5—Job server

6—Gateway

7—Print server

8—Archive queue

9—Archive server

A—Job queue
B—Administration

21—NAS SNA gateway
24—Remote bridge server
2D—Time Synchronization VAP
2E—Dynamic SAP
47—Advertising print server
4B—Btrieve VAP 5.0

4C—SQL VAP
7A—TES—NetWare for VMS
98—NetWare access server
9A—Named Pipes server
9E—Portable NetWare—UNIX
111—Test server

166—NetWare management
233—NetWare management agent
237—NetExplorer NLM
239—HMI hub

23A—NetWare LANalyzer agent
26A—NMS management
FFFF—Wildcard (any SAP service)
Contact Novell for more information.

“HELLO2” Name of the sever being advertised.

199.0002.0004.0006 (451) Indicates the network number and address (and socket) of the server
generating the SAP packet.

2 hops Number ofdps to the server from the router.

2-130 Debug Command Reference

debug ipx sap

The fifth line of output indicates that the router sent a SAP updateviomket 60:

NovellSAP: sending update to 160

As Figure 2-65 shows, the format figbug ipx sapoutput describing a SAP update the router sends
is similar to that describing a SAP update the router receives, except that the ssoc: field replaces the
src: field, as the following line of output indicates:

O SAP Update type Ox2 len 96 ssoc:0x452 dest:160.ffff.ffff.ffff(452)

Table 2-39 describes possible values for the ssoc: field.

Table 2-39 Debug IPX SAP Field Descriptions—Part 3
Field Description
ssoc:0x452 Indicates the IPX socket number of the process sending the packet at the

source address. Possible values include
451—Network Core Protocol
452—Service Advertising Protocol
453—Rouing Information Protocol
455—NetBIOS

456—Diagnostics

4000 to 6000—Ephemeral sockets usmdnteraction with file servers
and other networkammunications

Related Command
debug ipx routing

Debug Commands 2-131

debug isdn-event

debug isdn-event

Use thedebug isdn-eventEXEC command to display Integrated Services Digitalvdelt (ISDN)

events occurring on the user side (on the router) of the ISDN interface. The ISDN events that can be
displayed are Q.931 events (call setup and teardown of ISDN network connectiong) faiime of

this command disables debugging output.

debug isdn-event
no debug isdn-event

Syntax Description
This command has no arguments or keywords.

Command Mode
EXEC

Usage Guidelines

Althoughthedebug isdn-eventand thedebug isdn-q931commands provide similar debug
information, the information is displayed in a different format. If you want to see the information in
both formats, enable both commands at the same time. The displays will be intermingled.

Use theshow dialercommand to retrieve information about the status and configuration of the
ISDN interface on the router.

Sample Display
Figure 2-66 shows samptiebug isdn-eventoutput of call setup events for an outgoing call.

Figure 2-66 Sample Debug ISDN-Event Output—Call Setup Outgoing Call
router## debug isdn-event

ISDN Event: Call to 415555121202

received HOST_PROCEEDING

Channel ID i = 0x0101

Channel ID i = 0x89

received HOST_CONNECT

Channel ID i = 0x0101

ISDN Event: Connected to 415555121202 on B1 at 64 Kb/s

2-132 Debug Command Reference

debug isdn-event

Figure 2-67 shows samptiebug isdn-eventoutput of call setup events for an incoming call. The
values used for internal purposes are unpacked information elements. The values that follow the
ISDN specification are an interpretation of the unpacked information elements. Refer to the “ISDN
Switch Types, Codes, and Values” appendix for information about these values.

Figure 2-67 Sample Debug ISDN-Event Output—Call Setup Incoming Call

rout er# debug isdn-event

recei ved HOST_I NCOM NG_CALL
Bearer Capability i = 0x080010 Used for
Channel 1D i = 0x0101 internal

anne i = 0Ox
Calling Party Nunber i = 0x0000, ‘415555121202’ pUrposes
| E out of order or end of ‘private’ IEs -- Foll
Bearer Capability i = 0x8890 ollows
Channel IDi = 0x89 ISDN
Calling Party Number i = 0x0083, ‘415555121202’ specifications

| SDN Event: Received a call from 415555121202 on Bl at 64 Kb/s
| SDN Event: Accepting the call
recei ved HOST_CONNECT
Channel IDi = 0x0101
| SDN Event: Connected to 415555121202 on Bl at 64 Kb/s

S2552

Figure 2-68 shows sampikebug isdn-eventoutput of call teardown events for a call that has been
hung up by the other side of the connection.

Figure 2-68 Sample Debug ISDN-Event Output—Call Teardown by Far End
router## debug isdn-event

received HOST_DISCONNECT
ISDN Event: Call to 415555121202 was hung up

Figure 2-69 shows samptiebug isdn-eventoutput of a call teardown event for an outgoing or
incoming call that has been hung up by the ISDN interface on the router side.

Figure 2-69 Sample Debug ISDN-Event Output—Call Teardown Local Side
router## debug isdn-event

ISDN Event: Hangup call to call id 0x8008

Debug Commands 2-133

debug isdn-event

Table 2-40 describes significant fields shown in Figure 2-66 through Figure 2-69.

Table 2-40 Debug ISDN-Event Field Descriptions

Field Descr iption

Bearer Capability Indicates the requested bearer service to be provided by the
network.

i= Indicates the Information Element Identifier. The value depends
on the field it is associated with. Refer to the ITBQ’.931
specification for details about the possible values associated with
each field for which this identifier is relevant.

Channel ID Indicates the Channel Identifier. The value 83 indicates any
channel, 0101 indicates the B1 channel, and 89 indicates the B1
channel.

Calling Party Number Identifies the called party. This field is only present in outgoing

calls. Note that it may be replaced by the Keypad facility field.
This field uses the IA5 character set.

IE out of order or end of ‘private’ IEs Indicates that an information element identifier is out of order or
there are no more private network information element
identifiers to interpret.

Received a call from 4155581202 on ldentifies the origin of the call. This field is present only in

B1 at 64Kb/s incoming calls. Note that the information about the incoming call
includes the channel and speed. Whether this number is
displayed depends on the network delivering the calling party
number.

1. The ITU-T carries out the functions of the former Consultative Committee for International Telegraph and Telephone.

Figure 2-70 shows samptiebug isdn-eventoutput of a call teardown event for a call that has
passed call screening then has been hung up by the ISDN interface on the far end side.

Figure 2-70 Sample Debug ISDN-Event—Call Screening Normal Disconnect

0:04:51: 291.848 RX <- DISCONNECT pd = 8 callref = 0x83
0:04:51: Cause i = 0x8090 - Normal call clearing

Figure 2-71 shows samptiebug isdn-evenbutput of a call teardown event for a call that has not
passed call screening and has been rejected by the ISDN interface on the router side.

Figure 2-71 Sample Debug ISDN-Event—Call Screening Call Rejection

0:06:44: 404.732 RX <- DISCONNECT pd = 8 callref = 0x82
0:06:44: Cause i = 0x8095 - Call rejected

Figure 2-72 shows samptiebug isdn-eventoutput of a call teardown event for an outgoing call
that uses a dialer subaddress.

2-134 Debug Command Reference

debug isdn-event

Figure 2-72 Sample Debug ISDN-Event Display—Called Party Subaddress

0:04:55: ISDN Event: Call to 5551201:123
0:04:55: 295.692 TX -> SETUP pd = 8 callref = 0x02

0:04:55: Bearer Capability i = 0x8890

0:04:55: Channel ID i = 0x83

0:04:55: Called Party Number i = 0x80, '5551201'
0:04:55: Called Party SubAddr i = 0x80, 'P123'
0:04:55: 295.840 RX <- CALL_PROC pd =8 callref = 0x82
0:04:55: Channel ID i = 0x89

0:04:55: received HOST_PROCEEDING
Channel ID i = 0x0101
0:04:55: mmmeemmemeeeeee
Channel ID i = 0x89
0:04:56: 296.044 RX <- CONNECT pd =8 callref = 0x82
0:04:56: received HOST_CONNECT
Channel ID i = 0x0101
0:04:56: ---mmmmmmmmmeeee-
0:04:56: ISDN Event: Connected to 5551201:123 on B1 at 64 Kb/s
0:04:56: 296.064 TX -> CONNECT_ACK pd =8 callref = 0x02.

Debug Commands 2-135

debug isdn-q921

debug isdn-q921

Use thedebug isdn-q921EXEC command to display data link layer (Layer 2) access procedures
that are taking place at the router on the D-channel (LAPD) of its Integrated Services Digital
Network (ISDN) interface. Theo form of this command disables debugging output.

debug isdn-q921
no debug isdn-q921

Syntax Description
This command has no arguments or keywords.

Command Mode
EXEC

Usage Guidelines

The ISDN data link layer interface provided by the router conforms to the user interface
specification defined by ITU-T recommendation Q.921. @ébkug isdn-q921command output is

limited to commands and responses exchanged during peer-to-peer communication carried over the
D-channel. This debug information does not include data transmitted over the B-channels that are
also part of the router’s ISDN interface. The peers (data link layer entities and layer management
entities on the routers) communicate with each other via an ISDN switch over the D-channel.

Note The ISDN switch provides the network interface defined by Q.921. This debug command
does not display data link layer access procedures taking place within the |Siixkr(gtat is,
procedures taking place on the network side of the ISDN connection). See the “ISDN Switch Types,
Codes, and Values” appendix for a list of the supported ISDN switch types.

A router can be the calling or called party of the ISDN Q.921 data link layer access procedures. If
the router is the calling party, the command displays information about an outgoing call. If the router
is the called party, the command display®imaion about an incoming call and the keepalives
(RRs).

Thedebug isdn-q921command can be used with tthebug isdn-eventand thedebug isdn-q931
commands at the same time. The displays will be intermingled.

2-136 Debug Command Reference

debug isdn-q921

Sample Display

Figure 2-73 shows samptiebug isdn-q92loutput for an outgoing call.

Figure 2-73

rout er# debug isdn-qg921

471.348 TX -> RRp sapi = 0 tei = 67 nr = 19

471.372 RX <- RRp sapi = 0 tei = 67 nr = 17

471.376 TX -> RRf sapi = 0 tei = 67 nr =19

471.388 RX <- RRf sapi = 0 tei = 67 nr = 17

471.968 TX -> INFCc sapi = 0 tei = 67 ns = 17 nr = 19
700A80353535313231323032

472.068 RX <- RRr sapi = 0 tei = 67 nr = 18

472.088 RX <- INFCc sapi = 0 tei = 67 ns = 19 nr = 18
472.096 TX -> RRr sapi = 0 tei = 67 nr = 20

472.268 RX <- INFCc sapi = 0 tei = 67 ns = 20 nr 18 i
472.276 TX -> RRr sapi = 0 tei = 67 nr = 21

472.284 TX -> INFCc sapi = 0 tei = 67 ns 18 nr = 21 i
472.356 RX <- RRr sapi = 0 tei = 67 nr = 19

Sample Debug ISDN-Q921 Output for Outgoing Call

Call Setup
message

0x080105@504028890180183
Call Proceeding

message
180189

0x080185

ox080185p7] Call Connect
message

0x080105@F\
Connect Ack

message

S2555

Figure 2-74 shows samptiebug isdn-q921loutput for a startup message on a 00 switch.

Figure 2-74
router# debug isdn-q921
139.516 TX -> IDREQ ri = 48386 ai = 127
139.520 RX <- IDREMri = 0 ai = 89
139.544 RX <- | DASSN ri = 48386 ai = 90
139.552 TX -> SABMEp sapi = 0 tei = 90
139.552 RX <- IDCKRQ ri = 0 ai = 127
139.560 TX -> IDCKRP ri = 36131 ai = 90
140.548 RX <- IDCKRQ ri =0 ai = 127
140.556 TX -> IDCKRP ri = 24404 ai = 90
140.560 TX -> SABMEp sapi = 0 tei = 90
140.584 RX <- UAf sapi = 0 tei = 90
140.592 TX -> INFCc sapi = 0 tei = 90 ns =
| NFORVATION pd = 8 callref = (null)

SPID Information i

140.624 RX <- RRr sapi = 0 tei =90 nr =1
140.592 RX <- INFCc sapi = 0 tei = 90 ns =
I NFORVATION pd = 8 callref = (null)
ENDPO NT | Dent i = OxF08

140.768 TX -> RRr sapi = 0 tei =90 nr =1
150.768 TX -> RRp sapi = 0 tei =90 nr =1
150. 788 RX <- RRf sapi Otei =90 nr =1
160.796 TX -> RRp sapi = 0 tei =90 nr =1
160. 816 RX <- RRf sapi 0O tei =90 nr 1

L2 link

Onr =0

= 0x343135393033383336363031

Onr =0

S2556

Sample Debug ISDN-Q921 Output for Startup Message on a DMS-100 Switch

| establishment

Debug Commands 2-137

debug isdn-q921

Figure 2-75 shows samptiebug isdn-q921output for an incoming call. It is an incoming SETUP
message that assumes the L2 link is already established to the other side.

Figure 2-75

router# debug isdn-q921

Debug ISDN-Q921 Output for Incoming Call

234423.764 TX -> RRp sapi = 0 tei = 66 nr = 36

234423.780 RX <- RRp sapi = 0 tei = 66 nr = 26

234423.784 TX -> RRf sapi = 0 tei = 66 nr = 36

234423.808 RX <- RRf sapi = 0 tei = 66 nr = 26

234425.800 RX <- UAf sapi = 0 tei = 127 i =
0x0801080504028890018001896C1000833831303132333445363738393032
234425.820 TX -> INFOc sapi = 0 tei = 66 ns = 36 nr = 36 i=0x08018807
234425.904 RX <- RRr sapi = 0 tei = 90 nr = 27

234425.920 RX <- INFOc sapi = 0 tei = 66 ns = 36 nr = 33 i=0x0801080F
234433.936 TX -> RRr sapi = 0 tei = 66 nr= 37

234435.940 RX <- RRp sapi = 0 tei = 66 nr = 27

234435.980 TX -> RRf sapi = 0 tei = 66 nr = 37

234435.640 RX <- RRf sapi = 0 tei = 66 nr = 27

Table 2-41 describes significant fields in Figure 2-73, Figure 2-74, and Figure 2-75.

Table 2-41

Debug ISDN-Q921 Field Descr iptions

Field

Description

139.516

Indicates the time, in seconds, at which the frame was transmitted from
or received by the data link layer entity on the router. The time is
maintained by an internal clock. This internal clock is used for the
various timers (such as T200, T202, and T201 that may expire while
these access procedures are being processed) and for timestamping.

X

Indicates that this frame is being transmitted from the ISDN interface on
the local router (user side).

RX

Indicates that this frame is being received by the ISDN interface on the
local router from the peer (network side).

IDREQ

Indicates the Identity Request message type sent froloceleouter to

the network (assignment source point [ASP]) during the automatic
terminal endpoint identifier (TEI) assignment procedilifés message

is sent in a Ul command frame. The service access point identifier
(SAPI) value for this message type is always 63 (indicating that it is a
Layer 2 management procedure) but it is not displayed. The TEI value
for this message type is 127 (indicating that it is a broadcast operation).

ri = 48386

Indicates the Reference number used to differentiate between user
devices requesting TEI assignment. This value is a randomly generated
number between 0 and 65535. The same ri value sent in the IDREQ
message should be returned in the corresponding IDASSN message.
Note that a Referenceumber of 0 indicates th#ie message is sent
from the network side management layer entity and a referember
has not been generated.

ai = 127

Indicates the Action indicator used to request that the ASP assign any
TEI value. It is always 127 for the broadcast TEI. Note that in some
message types, such as IDREM, a specific TEI value is indicated.

2-138 Debug Command Reference

debug isdn-q921

Field Description

IDREM Indicates the Identity Remove message type sent from the ASP to the
user side layer management entity during the TEI removal procedure.
This message is sent in a Ul command frame. The ASP sends the
Identity Remove message twice to avoid message loss.

IDASSN Indicates the Identity Assigned message type sent from the ISDN service
provider on the network to the local router during the automatic TEI
assignment procedure. This message is sentin a Ul command frame. The
SAPI value for this message type is always 63 (indicating that it is
Layer 2 management procedure). The TEI value for this message type is
127 (indicating it is a broadcast operation).

ai=90 Indicates the TEI value automatically assigned by the ASP. This TEI
value is used by data link layer entities on the local router in subsequent
communication witlthe network. The valid values are in the range 64
through 126.

SABME Indicates the set asynchronous balanced mode extended command. This
command places the recipient into modulo 128 iplelframe
acknowledged operation. This command also indicates that all exception
conditions have been cleared. The SABME command is sent once a
secondor N200 times (typically three times) until its acceptance is
confirmed with a UA response. For a list and brief description of other
commands and responses that can be exchanged beheetaia link
layer entities on the local router and the network, see ITU-T
Recommendation Q.921.

sapi=0 Identifies the service access point at which the data link layer entity
provides services to Layer 3 or to the management layer. A SAPI with
the value 0 indicates it is a call control procedure. Note that the Layer 2
management procedures such as TEI assignment, TEI removal, and TEI
checking, which are tracked with tbebug isdn-q92icommand, do not
display the corresponding SAPI value; it is implicit. If the SAPI value
were displayed it would be 63.

tei = 90 Indicates the TEI value automatically assigned by the ASP. This TEI
value will be used by data link layer entities on the local router in
subsequent communication with thewerk. The valid values are in the
range 64 through 126.

IDCKRQ Indicates the Identity Check Request message type sent from the ISDN
service provider on the network to the local router during the TEI check
procedure. This message is sent in a Ul command frame. The ri field is
always 0. The ai field for this message contains either a specific TEI
value for the local router to check or 127, which indicates that the local
router should check all TEI values. For a list and brief description of
other message types that can be exchanged between the local router and
the ISDN service provider on the network, see the “ISDN Switch Types,
Codes, and Values” appendix.

IDCKRP Indicates the Identity Check #nse message type sent from the local
router to the ISDN service provider on the network during the TEI check
procedure. This message is sent in a Ul command frame in response to
the IDCKRQ message. The ri field is a randomly generated number
between 0 and 65535. The ai field for this naggscontains the specific
TEI value that has been checked.

UAf Confirms that the network side has accepted the SABME command
previously sent by the local router. The final bit is set to 1.

Debug Commands 2-139

debug isdn-q921

Field

Description

INFOc

Indicates that this is an Information command. It is used to transfer
sequentially numbered frames containing information fields that are
provided by Layer 3. The information is transferred across a data link
connection.

INFORMATION pd = 8 callref =
(null)

Indicates the information fields provided by Layer 3. The information is
sent one frame at a time. If multiple frames need to be sent, several
Information commands are sent. The pd value is the protocol
discriminator. The value 8 indicates it is call control information. The
call reference number is always null for SPID information,

SPID information i =

Indicates the service profile identifier (SPID). The local router sends this

0x34313539303338333636303linformation to the ISDN switch to indicate the services to which it

subscribes. SPIDs are assigned by the service provider and are usually
10-digit telephone numbefsllowed by optional numbers. Currently,

only the DMS-100 switch supports SPIDs, one for each B-channel. If
SPID information is sent to a switch type other than DMS-100, an error
may be displayed in the debug information.

ns=0

Indicates the send sequence number of transmitted | frames.

nr=0

Indicates the expected send sequence number of the next received |
frame. At time of transmission, this value should be equal to the value of
ns. The value of nr is used to determine whether frames need to be
retransmitted for recovery.

RRr

Indicates the Receive Ready response for unacknowledged information
transfer. The RRr is a response to an INFOc.

RRp

Indicates the Receive Ready command with the poll bit set. The data link
layer entity on the user side uses the poll bit in the frame to solicit a
response from the peer on the network side.

RRf

Indicates the Receive Ready response with the final bit set. The data link
layer entity on the network side uses the final bit in the frame to indicate
a response to the poll.

sapi

Indicates the service access point identifier. The SAPI is the point at
which data link services are provided to a network layer or management
entity. Currently, this field can have the value 0 (for call control
procedure) or 63 (for Layer 2 management procedures)

tei

Indicates the terminal endpoint identifier (TEI) that has been assigned
automatically by the assignment source point (ASP) (also called the
layer management entity on the network side). The valid range is 64
through 126. The value 127 indicates a broadcast.

Explanations for individual lines of output from Figure 2-73 follow.

The following lines indicate the message exchanges between the data link entity on the local router
(user side) and the assignment source point (ASP) on the network side during the TEI assignment
procedure. This assumes that the link is down and no TEI currently exists.

139.516 TX -> IDREQ ri = 48386 ai = 127
139.544 RX <- IDASSN ri = 48386 ai = 90

At 139.516, the local router data link layer entity sent an Identity Request message tatink net
data link layer entity to request a TEI value that can be used in subsequent communication between
the peer data link layer entities. The request includes a randomly generated reference number

2-140 Debug Command Reference

debug isdn-q921

(48386) to differentiate among user devices that request automatic TEIl assignment and an action
indicator of 127 to indicate that the ASP can assign any TEI value available. The ISDN user interface
on the router uses automatic TEIl assignment.

At 139.544, the network data link entity responds to the Identity Request message with an Identity
Assigned message. Thesponse includes theference number (48386) previously sent in the
request and TEI value (90) assigned by the ASP.

The following line indicates a message exchange between the layer management entity on the
network side and the layer management entity on the local router (user side) during the TEI removal
procedure:

139.520 RX <- IDREM ri = 0 ai = 89

At 139.520, the network layer management entity sends an ldentity Remove message when it
determines that removal is necessary. The message includes a reference number that is always 0,
because it is not sponding to a request from the localiter. The message also includes the TEI
value (89) that is being removed because it is an old value that is no longer used.

The following lines indicate the message exchanges between the layer management entity on the
network and the layer management entity on the local router (user side) during the TEI check
procedure:

139.552 RX <- IDCKRQ ri = 0 ai = 127
139.560 TX -> IDCKRP ri = 36131 ai = 90

At 139.552, the layer management entity on thevak sends the Identity Check Request message

to the layer management entity on the local router to check whether a TEl is in use. The message
includes a reference number that is always 0 and the TEI value to check. In this case, an ai value of
127 indicates that all TEI values should be checked. At 139.560, the layer management entity on the
local router responds with an Identity CheclsRense mesage indicating that TEI value 90 is

currently in use.

The following lines indicate the messages exchanged between the data link layer entity on the local
router (user side) and the data link layer on the network side to place the network side into modulo
128 multiple frame acknowledged operation. Note that the data link layer entity on the network side
also can initiate the exchange.

140.560 TX -> SABMEp sapi = 0 tei = 90
140.584 RX <- UAf sapi = 0 tei = 90

At 140.560, the data link layer entity on the local router sends the SABME command with a SAPI

of O (call control procedure) for TEI 90. At 140.584, the first opportunity, the data link layer entity

on the network responds with a UA response. This response indicates acceptance of the command.
The data link layer entity sending the SABME command may have to send it more than once before
receiving a UA response.

The following lines indicate the status of the data link layer entities. Both are ready to receive
| frames.

150.768 TX -> RRpsapi=0tei=90nr=1
150.788 RX <- RRfsapi=0tei=90nr=1

These | frames are typically exchanged every 10 seconds (T203 timer).

Debug Commands 2-141

debug isdn-q931

debug isdn-q931

Use thedebug isdn-q931EXEC command to display information about call setup and teardown of
ISDN network connections (Layer 3) between the local router (user side) and the netwar. The
form of this command disables debugging output.

debug isdn-q931
no debug isdn-q931

Syntax Description
This command has no arguments or keywords.

Command Mode
EXEC

Usage Guidelines

The ISDN network layer interface provided by the router conforms to the user interface specification
defined by ITU-T recommendation Q.931, supplemented by other specifications such as for switch
types VN2 and VN3.The router tracks only activities that occur on the user side, not the network
side, of the network connection. The displaformationdebug isdn-g931command output is

limited to commands and responses exchanged during peer-to-peer communication carried over the
D-channel. This debug information does not include data transmitted over the B-channels, which are
also part of the router’s ISDN interface. The peers (network layers) communicate with each other
via an ISDN switch over the D-channel.

A router can be the calling or called party of the ISDN Q.931 network connection call setup and tear-
down procedures. If the router is the calling party, the command displays information about an
outgoing call. If the router is the called party, the command displays information about an incoming
call.

You can use thdebug isdn-q931command with thelebug isdn-eventand thedebug isdn-q921
commands at the same time. The displays will be intermingled.

Sample Display
Figure 2-76 shows samptiebug isdn-q93loutput of a call setup procedure for an outgoing call.

Figure 2-76 Sample Debug ISDN- Q931 Output— Call Setup Procedure for an Outgoing Call
router# debug isdn-q931

234191.372 TX -> SETUP pd = 8 callref = 0x04

Bearer Capability i = 0x8890

Channel ID i = 0x83

Called Party Number i = 0x80, ‘415555121202’
234191.624 RX <- CALL_PROC pd = 8 callref = 0x84
Channel ID i = 0x89

234191.692 RX <- CONNECT pd = 8 callref = 0x84
234191.692 TX -> CONNECT_ACK pd = 8 callref = 0x04....
Success rate is 0 percent (0/5)

2-142 Debug Command Reference

debug isdn-q931

Figure 2-77 shows samptiebug isdn-q93loutput of a call setup procedure for an incoming call.

Figure 2-77 Sample Debug ISDN- Q931 Output— Call Setup Procedure for an Incoming Call

router# debug isdn-q931

234223.224 RX <- SETUP pd = 8 callref = 0x06

Bearer Capability i = 0x8890

Channel ID i = 0x89

Calling Party Number i = 0x0083, ‘81012345678902’
234223.244 TX -> CONNECT pd = 8 callref = 0x86
234223.344 RX <- CONNECT_ACK pd = 8 callref = 0x06

Figure 2-78 shows samptiebug isdn-q931output of a call teardown procedure from the network.

Figure 2-78 Sample Debug ISDN-Q931 Output—Call Teardown Procedure from the

Network
router# debug isdn-q931

234207.648 RX <- DISCONNECT pd = 8 callref = 0x84
Cause i = 0x8790

Looking Shift to Codeset 6

Codeset 6 |IE 0x1 1 0x82 ‘10’

234207.668 TX -> RELEASE pd = 8 callref = 0x04

Cause i = 0x8090

234207.764 RX <- RELEASE_COMP pd = 8 callref = 0x84

Figure 2-79 shows samptiebug isdn-q93loutput of a call teardown procedure from the router.

Figure 2-79 Sample Debug ISDN-Q931 Output—Call Teardown Procedure from the Router

router# debug isdn-q931

234236.644 TX -> DISCONNECT pd = 8 callref = 0x05
Cause i = 0x879081

234238.664 RX <- RELEASE pd = 8 callref = 0x85
Looking Shift to Codeset 6

Codeset 6 |IE 0x1 1 0x82 ‘10’

234238.752 TX <- RELEASE_COMP pd = 8 callref = 0x05

Table 2-42 describes significant fields in Figure 2-76 through Figure 2-79.

Table 2-42 Debug ISDN-Q931 Call Setup Procedure Field Descriptions
Field Description
234191.372 Indicates the time, in seconds, at which the message was transmitted

from or received by the network layer on the router. The time is
maintained by an internal clock. This internal clock is used for timeout
purposes and timestamping.

TX Indicates that this message is being transmitted from the local router
(user side) to the network side of the ISDN interface.
RX Indicates that this message is being received by the user side of the ISDN

interface from the network side.

Debug Commands 2-143

debug isdn-q931

Field

Description

SETUP

Indicates that the SETUP message type has been sent to initiate call
establishment between peer network layers. This message can be sent
from either the local router or the network.

pd

Indicates the protocol discriminator. The protocol discriminator
distinguishes messages for call control over the user-network ISDN
interface from other ITU-T-defined messages, including other
Q.931messages. The protocol discriminator is 8 for call control
messages such as SETUP. For basic-1tr6, the protocol discriminator
is 65.

callref

Indicates the call reference number in hexadecimal. The value of this
field indicates the number of calls made from either the router (outgoing
calls) or the network (incoming calls). Note that the originator of the
SETUP message sets the higlder bit of the call referenceimber to 0.

The destination of the connection sets the high-order bit to 1 in
subsequent call control messages, such as the CONNECT message. For
example, callref = 0x04 in the request becomes callref = 0x84 in the
response.

Bearer Capability

Indicates the requested bearer service to be provided by the network.

Indicates the Information Element Identifier. The value depends on the
field it is associated with. Refer to the ITUQ931 specification for

details about the possible values associated with each field for which this
identifier is relevant.

Channel ID

Indicates the Channel Identifier. The value 83 indicates any channel, 89
indicates the B1 channel, and 8A indicates the B2 channel. For more
information about the Channel Identifier, refer to ITU-T
Recommendation Q.931.

Called Party Number

Identifies the called party. This field is only present in outgoing SETUP
messages. Note that it can be replaced by the Keypad facility field. This
field uses the IA5 character set.

Calling Party Number

Identifies the origin of the call. This field is present only in incoming
SETUP messages. This field uses the IA5 character set.

CALL_PROC Indicates the CALL PROCEEDING message; the requested call setup
has begun and no more call setup information will be accepted.
CONNECT Indicates that the called user has accepted the call.

CONNECT_ACK

Indicates that the calling user ackredges the called user’s acceptance
of the call.

DISCONNECT Indicatesither that the user side has requested the network to clear an
end-to-end connection or that the network has cleared the end-to-end
connection.

Cause Indicates the cause of the disconnect. Refer to ITU-T recommendation

Q.931 for detailed information about DISCONNECT cause codes and
RELEASE cause codes.

Looking Shift to Codeset 6

Indicates that the next information elements will be interpreted
according to information element identifiers assigned in codeset 6.
Codeset 6 means that the information elements are specific to the local
network.

Codeset 6 |IE Ox1 i =0x82, ‘10’

Indicates charging information. This information is specific to the NTT
switch type and may not be sent by other switch types.

2-144 Debug Command Reference

debug isdn-q931

Field

Description

RELEASE

Indicates that the sending equipment will release the cremmhehll

reference. The recipient of this messabeuld prepare to release the
call reference and channel.

RELEASE_COMP

Indicatethat the sending equipment has received a RELEASE message
and has now released the call reference and channel.

Debug Commands 2-145

debug isis adj packets

debug isis adj packets

Use thedebug isis adj packetEXEC command to display information on all adjacency-related
activity such as hello packets sent and received and IS-IS adjacencies going up and down. The
form of this command disables debugging output.

debug isis adj packets
no debug isis adj packets

Syntax Description
This command has no arguments or keywords.

Command Mode
EXEC

Sample Display
Figure 2-80 shows samptiebug isis adj packetoutput.

Figure 2-80 Sample Debug ISIS Adj Packets Output
router# debug isis adj packets

ISIS-Adj: Rec L1 IIH from 0000.0c00.40af (Ethernet0), cir type 3, cir id
BBBB.BBBB.BBBB.01

ISIS-Adj: Rec L2 IIH from 0000.0c00.40af (Ethernet0), cir type 3, cir id
BBBB.BBBB.BBBB.01

ISIS-Adj: Rec L1 IIH from 0000.0c00.0c36 (Ethernetl), cir type 3, cir id
CCcCcC.cccce.cccc.o3

ISIS-Adj: Area mismatch, level 1 IIH on Ethernetl

ISIS-Adj: Sending L1 IIH on Ethernetl

ISIS-Adj: Sending L2 IIH on Ethernetl

ISIS-Adj: Rec L2 IIH from 0000.0c00.0c36 (Ethernetl), cir type 3, cir id
BBBB.BBBB.BBBB.03

Explanations for individual lines of output from Figure 2-80 follow.

The following line indicates that the router received#S hello packet (1IH) on EthernetO from
the Level 1 router (L1) at MAC address 0000.0c00.40af. The circuit type is the interface type:
1—Level 1 only; 2—Level 2 only; 3—Level 1/2.

The circuit ID is what the neighbor interprets as the designhated router for the interface.
ISIS-Adj: Rec L1 IIHfrom0000.0c00.40af (Ethernet0), cirtype 3, cirid BBBB.BBBB.BBBB.01

The following line indicates that the router (configured as a Level 1 router) received on Ethernetl

an IS-IS hello packet from a Level 1 router in another area, thereby declaring an area mismatch:
ISIS-Adj: Area mismatch, level 1 IIH on Ethernetl

The following lines indicates that the router (configured as a Level 1/Level 2 router) sent on

Ethernetl a Level 1 IS-IS hello packet, and then a Level 2 IS-IS packet:

ISIS-Adj: Sending L1 IIH on Ethernetl
ISIS-Adj: Sending L2 IIH on Ethernetl

2-146 Debug Command Reference

debug isis spf statistics

debug isis spf statistics

Use thedebug isis spf statisticEXEC command to display statistical information about building
routes between intermediate systems (ISs).nh@rm of this command disable&bugging
output.

debug isis spf statistics
no debug isis spf statistics

Syntax Description
This command has no arguments or keywords.

Command Mode
EXEC

Usage Guidelines

The Intermediate System-to-Intermediate System (IS-IS) Intra-Domain Routing Exchange Protocol
(IDRP) provides routing between ISs by flooding the network with link-state information. 1S-IS
provides routing at two levels, intra-area (Level 1) and intra-domain (Level 2). Level 1 routing
allows Level 1 ISs to communicate with other Level 1 ISs in the same area. Level 2 routing allows
Level 2 ISs to build an interdomain backbone between Level 1 areas by traversing only Level 2 ISs.
Level 1 ISs only need to know the path to the nearest Level 2 IS in order to take advantage of the
interdomain backbone created by the Level 2 ISs.

The IS-IS protocol uses the Shortest Path First (SPF) routing algorithm to build Level 1 and Level 2
routes. Thalebug isis spf statistic€ommand provides information for determining how long it
takes to place a Level 1 IS or Level 2 IS on the shortest path tree (SPT) using the IS-IS protocol.

Note The SPF algorithm is also called the Dijkstra algorithm, after the creator of the algorithm.

Sample Display
Figure 2-81 shows samptiebug isis spf statisticoutput.

Figure 2-81 Sample Debug ISIS SPF Statistics Output
router# debug isis spf packets
ISIS-Stats: Compute L1 SPT, Timestamp 2780.328 seconds
ISIS-Stats: Complete L1 SPT, Compute time 0.004, 1 nodes on SPT

ISIS-Stats: Compute L2 SPT, Timestamp 2780.3336 seconds
ISIS-Stats: Complete L2 SPT, Compute time 0.056, 12 nodes on SPT

Debug Commands 2-147

debug isis spf statistics

Table 2-43 describes significant fields shown in Figure 2-81.

Table 2-43 Debug ISDN-Event Field Descriptions

Field Descr iption

Compute L1 SPT Indicates that Level 1 ISs are taduked to a Level 1 area.
Timestamp Indicates the time at which the SPF algorithm was applied. The

time indicates the number of seconds that have elapsed since the
system has been up and configured.

Complete L1 SPT Indicates thie algorithm has completed for Level 1 routing.

Compute time Indicates the time it took to pl#oe ISs on the shortest path tree
(SPT).

nodes on SPT Indicates the number ofttg have been added.

Compute L2 SPT Indicates that Level 2 ISs are taduked to domain.

Complete L2 SPT Indicates thie algorithm has completed for Level 2 routing.

Explanations for individual lines of output from Figure 2-81 follow.
The following lines show the statistical information available for Level 1 ISs:

ISIS-Stats: Compute L1 SPT, Timestamp 2780.328 seconds
ISIS-Stats: Complete L1 SPT, Compute time 0.004, 1 nodes on SPT

The output indicates that the SPF algorithm was applied 2780.328 seconds after the system was up
and configured. Given the existing intra-area topology, it took 4 milliseconds to place one Level 1
IS on the SPT.

The following lines show the statistical information available for Level 2 ISs:

ISIS-Stats: Compute L2 SPT, Timestamp 2780.3336 seconds
ISIS-Stats: Complete L2 SPT, Compute time 0.056, 12 nodes on SPT

This output indicates that the SPF algorithm was ap@80.3336 seconds aftére system was
up and configured. Given the existing intra-domain topology, it took 56 milliseconds to place 12
Level 2 ISs on the SPT.

2-148 Debug Command Reference

debug isis update-packets

debug isis update-packets

Use thedebug isis update-packet&EXEC command to display various sequence number protocol
data units (PDUs) and link state packets that are detected by a router. This router has been configured
for IS-IS routing. Theno form of this command disables debugging output.

debug isis update-packets
no debug isis update-packets

Syntax Description
This command has no arguments or keywords.

Command Mode
EXEC

Sample Display
Figure 2-82 shows samptiebug isis update-packetsutput.

Figure 2-82 Sample Debug ISIS Update- Packets Output
router# debug isis update-packets

ISIS-Update: Sending L1 CSNP on Ethernet0

ISIS-Update: Sending L2 CSNP on Ethernet0

ISIS-Update: Updating L2 LSP

ISIS-Update: Delete link 888.8800.0181.00 from L2 LSP 1600.8906.4022.00-00, seq E
ISIS-Update: Updating L1 LSP

ISIS-Update: Sending L1 CSNP on Ethernet0

ISIS-Update: Sending L2 CSNP on Ethernet0

ISIS-Update: Add link 8888.8800.0181.00 to L2 LSP 1600.8906.4022.00-00, new seq 10,
len 91

ISIS-Update: Sending L2 LSP 1600.8906.4022.00-00, seq 10, ht 1198 on Tunnel0
ISIS-Update: Sending L2 CSNP on TunnelO

ISIS-Update: Updating L2 LSP

ISIS-Update: Rate limiting L2 LSP 1600.8906.4022.00-00, seq 11 (Tunnel0)
ISIS-Update: Updating L1 LSP

ISIS-Update: Rec L2 LSP 888.8800.0181.00.00-00 (TunnelO)

ISIS-Update: PSNP entry 1600.8906.4022.00-00, seq 10, ht 1196

Explanations for individual lines of output from Figure 2-82 follow.

The following lines indicate thahe router has sent a periodic Level 1 and Level 2 complete
sequence number PDU on Ethernet O:

ISIS-Update: Sending L1 CSNP on Ethernet0
ISIS-Update: Sending L2 CSNP on Ethernet0

The following lines indicate thahe netvork service access poiniEAP) identified as
8888.8800.0181.00 was deleted from the Level 2 LSP 1600.8906.4022.00-00. The sequence humber
associated with this LSP is OxE.

ISIS-Update: Updating L2 LSP
ISIS-Update: Delete link 888.8800.0181.00 from L2 LSP 1600.8906.4022.00-00, seq E

The following lines indicate that the NSAP identified as 8888.8800.0181.00 was added to the Level
2 LSP 1600.8906.4022.00-00. The new sequence numdaiated with this LSP is 0x10.

Debug Commands 2-149

debug isis update-packets

ISIS-Update: Updating L1 LSP

ISIS-Update: Sending L1 CSNP on Ethernet0

ISIS-Update: Sending L2 CSNP on Ethernet0

ISIS-Update: Add link 8888.8800.0181.00 to L2 LSP 1600.8906.4022.00-00, new seq 10,
len 91

The following line indicates that the router sent Level 2 LSP 1600.8906.4022.00-00 with sequence
number 0x10 on TunnelO:

ISIS-Update: Sending L2 LSP 1600.8906.4022.00-00, seq 10, ht 1198 on Tunnel0
The following lines indicates that a Level 2 LSP could not be transmitted because it was recently
transmitted:

ISIS-Update: Sending L2 CSNP on TunnelO
ISIS-Update: Updating L2 LSP
ISIS-Update: Rate limiting L2 LSP 1600.8906.4022.00-00, seq 11 (Tunnel0)

The following lines indicate that a Level 2 partial sequence number PDU (PSNP) has been received
on TunnelO:

ISIS-Update: Updating L1 LSP
ISIS-Update: Rec L2 PSNP from 8888.8800.0181.00 (Tunnel0)

The following line indicates that a Level 2 PSNP with an entry for Level 2 LSP
1600.8906.4022.00-00 has been received. This output is an acknowledgment that a previously sent
LSP was received without an error.

ISIS-Update: PSNP entry 1600.8906.4022.00-00, seq 10, ht 1196

2-150 Debug Command Reference

debug lapb

debug lapb

Use thedebug lapbEXEC command to display all traffic for interfaces using Link Access Protocl,
Balanced (LAPB) encapsulation. The form of this command disables debugging output.

debug lapb
no debug lapb

Syntax Description
This command has no arguments or keywords.

Command Mode
EXEC

Usage Guidelines

This command displays information on the X.25 Layer 2 protocol. It is useful to users who are
familiar with the LAPB protocol.

You can use thdebug lapbcommand to determine why X.25 interfaces or LAPB connections are
going up and down. It is also useful for identifying link problems, as evidencedshben
interfacescommand displays a high number of rejects or frame errors over the X.25 link.

Caution Because thdebug lapbcommand generates a lot of output, use it when the aggregate of
all LAPB traffic on X.25 and LAPB interfaces is fewer than five frames per second.

Sample Display
Figure 2-83 shows samptiebuglapb output. (The numbers 1 through 7 at the top of the display
have been added in order to aid documentation.)

Figure 2-83 Sample Debug LAPB Output

1 23 4 56 7
Serial0: LAPB | CONNECT (5) IFRAME P 2 1
Serial0: LAPB O REJSENT (2) REJ F 3
Serial0: LAPB O REJSENT (5) IFRAME 0 3
Serial0: LAPB | REJSENT (2) REJ (C) 7
Serial0: LAPB | DISCONNECT (2) SABM P
Serial0: LAPB O CONNECT (2) UA F
Serial0: LAPB O CONNECT (5) IFRAME 0 0
Serial0: LAPB T1 CONNECT 357964 0

In Figure 2-83 each line of output describes a LAPB event. There are two types of LAPB events:
frame events (when a frame enters or exits the LAPB) and timer events. In Figure 2-83, the last line
describes a timer event; all of the other lines describe frame events. Table 2-44 describes the first
seven fields shown in Figure 2-83.

Debug Commands 2-151

debug lapb

Table 2-44 Debug LAPB Field Descriptions
Field Description
First field Interface type and unit number reporting the frame event.
Second field Protocol providing the information.
Third field Frame event type. Possible values follow:
I—Frame input

O—Frame output
T1—T1 timer expired
T3—Interface outage timer expired

T4—Idle link timer expired

Fourth field State of the protocol when the frame event occurred. Possible values
follow:

BUSY (RNR frame received)
CONNECT

DISCONNECT
DISCSENT(disconnect sent)
ERROR (FRMR frame sent)
REJSENT (reject frame sent)
SABMSENT (SABM frame sent)

Fifth field In a frame event, this value is the size of the frame (in bytes). In a timer
event, this value is the current timer value (in milliseconds).

Sixth field In a frame event, this value is the frame type name. Possible values for
frame type names follow:

DISC—Disconnect

DM—Disconnect mode

FRMR—Frame reject
IFRAME—Information frame
ILLEGAL—Illegal LAPB frame
REJ—Reject

RNR—Recéver not ready

RR—Receiver ready

SABM—Set asynchronous balanced mode
SABME—Set asynchronous balanced mazdended
UA—Unnumbered acknowledgment

In a T1 timer event, this value is the number of retransmissions already
attempted.

2-152 Debug Command Reference

debug lapb

Field Description
Seventh field This field is only present in frame events. It describes the frame type
identified by the LAPB address and Poll/Final bit. Possible values are as

(Note that this field will not print
if the frame control field is
required to appear as eithera (C)—Command frame
command or a response, and thaﬂ?)—Response frame
frame type is correct.)

follows:

P—Command/Poll frame
F—Response/Final frame

/ERR—Command/Response type is invalid for the control field. An
?ERR generally means that the DTE/DCE assignments are not correct
for this link.

BAD-ADDR—Address field is neither Command nordpense

A timer event only displays the first six fieldsagbug lapboutput. For frame events, however, the
fields that follow the sixth field document the LAPB contrdiormaion present in the frame.
Depending on the value of the frame type name shown in the sixth field, these fields may or may not
appear. Descriptions of the fields following the first six fields shown in Figure 2-83 follow.

After the Poll/Final indicator, depending on the frame type, three different types of LAPB control
information can be printed.

For information frames, the value of the N(S) field and the N(R) field will be printed. The N(S) field
of an information frame is the sequence number of that frame, so this field will rotate between 0 and
7 for (modulo 8 operation) or 0 and 127 (for modulo 128 operation) for successive outgoing
information frames and (under normal circumstances) also will rotate for incoming information
frame streams. The N(R) field is a “piggybacked”ramkledgment for the incoming information

frame stream; it informs the other end of the link what sequence number is expected next.

RR, RNR, and REJ frames have an N(R) field, so the value of that field is printed. This field has
exactly the same significance that it does in an information frame.

For the FRMR frame, the error information is decoded to display the rejected control field, V(R) and
V(S) values, the Response/Command flag, and the error flags WXYZ.

In the following example, the output shows an idle link timer action (T4) where the timer expires
twice on an idle link, with the value of T4 set to five seconds:

Serial2: LAPB T4 CONNECT 255748
Serial2: LAPB O CONNECT (2) RRP 5
Serial2: LAPB | CONNECT (2) RR F 5
Serial2: LAPB T4 CONNECT 260748
Serial2: LAPB O CONNECT (2) RRP 5
Serial2: LAPB | CONNECT (2) RRF 5

The next example shows an interface outage timer expiration (T3):

Serial2: LAPB T3 DISCONNECT 273284

The following example output shows an error condition when no DCE to DTE connection exists.
Note that if a frame has only one valid type (for example, a SABM can only be a command frame),
a received frame that has tiveong frame type will be flagged as a receive error (R/ERR in the
following output). This feature makes misconfigured links (DTE-DTE or DCE-DCE) easy to spot.
Other, less common errors will be highlighed too, such as a too-short or too-long frame, or an invalid
address (neither command nor response):

Serial2: LAPB T1 SABMSENT 1026508 1
Serial2: LAPB O SABMSENT (2) SABM P

Debug Commands 2-153

debug lapb

Serial2: LAPB | SABMSENT (2) SABM (R/ERR)
Serial2: LAPB T1 SABMSENT 1029508 2
Serial2: LAPB O SABMSENT (2) SABM P
Serial2: LAPB | SABMSENT (2) SABM (R/ERR)

The output in the next example shows the router is misconfigured and has a standard (modulo 8)
interface connected to an extended (mod@8) interface. Thisondition is indicated by the SABM
balanced mode and SABME balanced mode extended messages appearing on the same interface:

Serial2: LAPB T1 SABMSENT 1428720 0
Serial2: LAPB O SABMSENT (2) SABME P
Serial2: LAPB | SABMSENT (2) SABM P
Serial2: LAPB T1 SABMSENT 1431720 1
Serial2: LAPB O SABMSENT (2) SABME P
Serial2: LAPB | SABMSENT (2) SABM P

2-154 Debug Command Reference

debug lat packet

debug lat packet

Use thedebug lat packetEXEC command to display information on all LAT events. hdorm
of this command disabletebugging output.

debug lat packet
no debug lat packet

Syntax Description
This command has no arguments or keywords.

Command Mode
EXEC

Usage Guidelines
For each datagram (packet) received or transmitted, a message is logged to the console.

Note This command severely impacts LAT performance and is intended for troubleshooting use
only.

Sample Display
Figure 2-84 shows samptiebuglat packet output.

Figure 2-84 Sample Debug LAT Packet Output
router# debug lat packet
LAT: | int=Ethernet0, src=0000.0c01.0509, dst=0900.2b00.000f, type=0, M=0, R=0

LAT: | int=EthernetO, src=0800.2b11.2d13, dst=0000.0c01.7876, type=A, M=0, R=0
LAT: O dst=0800.2b11.2d13, int=Ethernet0, type= A, M=0, R=0, len= 20, next O ref 1

The second line of output in Figure 2-84 describes a packet that is input to the router. Table 2-45
describes the fields in this line.

Table 2-45 Debug LAT Packet Field Descriptions
Field Description
LAT: Indicates that this display shows LAT debugging output.

| Indicates that this line of output describes a packet that is input to the
router (1) or outpufrom the router (O).

int = Ethernet0 Indicates the interface on which the packet évekplace.
src = 0800.2b11.2d13 Indicates the source address of the packet.
dst = 0000.0c01.7876 Indicates the destination address of the packet.

Debug Commands 2-155

debug lat packet

Field Description
type = A Indicates the message type (in hex). Possible values are as follows:
0 = Run Circuit

1 = Start Circuit

2 = Stop Circuit

A = Service Announcement
C = Command

D = Status

E = Solicit Information

F = Response Information

The third line of output in Figure 2-84 describes a packet that is output from the router. Table 2-46
describes the last three fields in this line.

Table 2-46 Debug LAT Packet Field Descriptions

Field Description

len=20 Indicates the length (hex) of the packet in bytes.
next 0 Indicates the link on transmit queue.

ref 1 Indicates the count of packet users.

2-156 Debug Command Reference

debug lex remd

debug lex rcmd

Use thedebug lex rcmdEXEC command to debug LAN Extender remote commandsnd ferm
of this command disabletebugging output.

debug lex remd
no debug lex rcmd

Syntax Description
This command has no arguments or keywords.

Command Mode

EXEC

Sample Display
Figure 2-85 shows samptiebug lex remdoutput.

Figure 2-85

Sample Debug LEX Rcmd Output

router# debug lex remd

LEX-RCMD:
LEX-RCMD:

"shutdown" command received on unbound serial interface- Serial0
LexO : "inventory" command received

Rcvd remd: FF 03 80 41 41 13 00 1A 8A 00 00 16 01 FF 00 00
Rcvd remd: 00 02 00 00 07 5B CD 15 00 00 OC 01 15 26

LEX-RCMD:
LEX-RCMD:
LEX-RCMD:
:illegal length for LexO0 : "lex input-type-list"
LEX-RCMD:
: encapsulation failure
LEX-RCMD:
LEX-RCMD:
LEX-RCMD:
LEX-RCMD:
LEX-RCMD:
LEX-RCMD:

LEX-RCMD

LEX-RCMD

ACK or response received on Serial0 without a corresponding ID
REJ received
illegal CODE field received in header: <number>

Lex0 is not bound to a serial interface

timeout for LexO: "lex priority-group" command

re-transmitting LexO0: "lex priority-group” command

lex_setup_and_send called with invalid parameter

bind occurred on shutdown LEX interface

Serial0- No free Lex interface found with negotiated MAC address 0000.0c00.d8db
No active Lex interface found for unbind

Explanations for individual lines of output from Figure 2-85 follow.

The following output indicates that a LAN Extender remote command packet was received on a
serial interface which is not bound to a LAN Extender interface.

LEX-RCMD:

"shutdown" command received on unbound serial interface- Serial0

This message can occur for any of the LAN Extender remote commands. Possible causes of this
message are as follows:

® FLEX state machine software error

® Serial line momentarily goes down, which is detected by the host but not by FLEX

The following output indicates that a LAN Extender remote command response has been received.
The hexadecimal values are for internal use only:

LEX-RCMD:

LexO : "inventory" command received

Rcvd remd: FF 03 80 41 41 13 00 1A 8A 00 00 16 01 FF 00 00

Debug Commands 2-157

debug lex remd

Rcvd remd: 00 02 00 00 07 5B CD 15 00 00 0C 01 15 26

The following output indicates that when the host router originates a LAN Extender remote
command to FLEX, it generates an 8-bit identifier which is used to associate a command with its
corresponding response:

LEX-RCMD: ACK or response received on Serial0 without a corresponding ID

This message could be displayed for any of the following reasons:

® FLEX was very busy at the time that the command arrived and could not send an immediate
response. The command timed out on the host router and then FLEX finally sesptireses

® Transmission error.
® Software error.

Possible responses to Config-Request are Config-ACK, Config-NAK, and Config-Rej. The
following output shows that some of the options in the Config-Request are not recognizable or are
not acceptable to FLEX due to transmission errors or software errors:

LEX-RCMD: REJ received

The following output shows that a LAN Extender remote command response was received but that
the CODE field in the header was incorrect:

LEX-RCMD: illegal CODE field received in header: <number>

The following output indicates that a LAN Extender remote command response was received but
that it had an incorrect length field. This message can occur for any of the LAN Extender remote
commands:

LEX-RCMD: illegal length for LexO : "lex input-type-list"

The following output shows that a host router was about to send a remote command when the serial
link went down:

LEX-RCMD: Lex0 is not bound to a serial interface

The following output shows that the serial interface's encapsulation routine failed to encapsulate the

remote command datagram because the LEX-NCP was not in the OPEN state. Due to the way the
PPP state machine is implemented, it is normal to see a single encapsulation failure for each remote
command that gets sent at bind time.

LEX-RCMD: encapsulation failure

The following output shows that the timer expired for the given remote command without having
received a response from the FLEX device. This message can occur for any of the LAN Extender
remote commands:

LEX-RCMD: timeout for Lex0: "lex priority-group” command

This message could be displayed for any of the following reasons:
® FLEX too busy to respond

® Transmission failure

® Software error

The following output indicates that the host is retransmitting the remote command after a timeout:

LEX-RCMD: re-transmitting Lex0: "lex priority-group” command

2-158 Debug Command Reference

debug lex remd

The following output indicates that an illegal parameter was passed to the lex_setup_and_send
routine. This message could be displayed for due to a host software error:

LEX-RCMD: lex_setup_and_send called with invalid parameter

The following output is informational and shows when a bind occurs on a shutdown interface:
LEX-RCMD: bind occurred on shutdown LEX interface

The following output shows that LEX-NCP reached the open state and a bind operation was

attempted with the FLEX's MAC address, but no free LAN Extender interface oueckthat were

configured with that MAC address. This output can occur when the network administrator does not
configure a LAN Extender interface with the correct MAC address.

LEX-RCMD: SerialO- No free Lex interface found with negotiated MAC address 0000.0c00.d8db
The following output shows that the serial line that was bound to the LAN Extender interface went
down and the unbind routine was called, but when the list of active LAN Extender interfaces was

searched, the LAN Extender interface corresponding to the serial interface was not found. This
output usually occurs because of a host software error:

LEX-RCMD: No active Lex interface found for unbind

Debug Commands 2-159

debug Inm events

debug Inm events

Use thedebug Inm eventsEXEC command to display any unusual events that occur on a Token
Ring network. These events include stations reporting errors or error thresholds being exceeded. The
no form of this command disables debugging output.

debug Inm events
no debug Inm events

Syntax Description
This command has no arguments or keywords.

Command Mode
EXEC

Sample Display
Figure 2-86 shows samptiebug Inm eventsoutput.

Figure 2-86 Sample Debug LNM Events Output
router# debug Inm events

IBMNM3: Adding 0000.3001.1166 to error list

IBMNM3: Station 0000.3001.1166 going into preweight condition
IBMNM3: Station 0000.3001.1166 going into weight condition
IBMNM3: Removing 0000.3001.1166 from error list

LANMGRO: Beaconing is present on the ring

LANMGRO: Ring is no longer beaconing

IBMNM3: Beaconing, Postmortem Started

IBMNM3: Beaconing, heard from 0000.3000.1234

IBMNM3: Beaconing, Postmortem Next Stage

IBMNM3: Beaconing, Postmortem Finished

Explanations for the messagd®wwn in Figure 2-86 follow.

The following message indicates that station 0000.3001.1166 reported errors and has been added to
the list of stations reporting errors. This station is located on Ring 3.

IBMNM3: Adding 0000.3001.1166 to error list
The following message indicates that station 0000.3001.1166 has passed the “early warning”
threshold for error counts:

IBMNMS3: Station 0000.3001.1166 going into preweight condition
The following message indicates that statioB®08001.1166 is experiencing a severe number of
errors:

IBMNM3: Station 0000.3001.1166 going into weight condition
The following message indicates that the error counts for station 0000.3001.1166 have all decayed
to zero, so this station is being removed from the list of stations that have reported errors:

IBMNM3: Removing 0000.3001.1166 from error list

2-160 Debug Command Reference

debug Inm events

The following message indicates that Ring 0 has entered failure mode. This ring number is assigned
internally.

LANMGRO: Beaconing is present on the ring
The following message indicates that Ring 0 is no longer in failure mode. This ring number is
assigned internally.

LANMGRO: Ring is no longer beaconing
The following message indicates that the router is beginning its attempt to determine whether any
stations left the ring during the automatic recovery process for the last beaconing failure. The router

attempts to contact stations that were part of the fault domain to detect whether they are still
operating on the ring.

IBMNM3: Beaconing, Postmortem Started

The following message indicates that the router is attempting to determine whether or not any
stations left the ring during the automatic recovery process for the last beaconing failure. It received
a response from station 0000.3000.1234, one of the two statithes fiault domain.

IBMNM3: Beaconing, heard from 0000.3000.1234

The following message indicates that the router is attempting to determine whether any stations left
the ring during the automatic recovery process for the last beaconing failure. It is initiating another
attempt to contact the two stations in the fault domain.

IBMNM3: Beaconing, Postmortem Next Stage

The following message indicates that the router has attempted to determine whether any stations left
the ring during the automatic recovery process for the last beaconing failure. It has successfully
heard back from both stations that were part of the fault domain.

IBMNM3: Beaconing, Postmortem Finished

Explanations follow for other messages thatdbbug Inm eventcommand can generate.

The following message indicates that the router is out of memory:

LANMGR: memory request failed, find_or_build_station()

The following message indicates that Ring 3 is experiencing a large number of errors that cannot be
attributed to any individual station:

IBMNM3: Non-isolating error threshold exceeded

The following message indicates that a station (or stations) on Ring 3 are receiving frames faster
than they can be processed.

IBMNM3: Adapters experiencing congestion

The following message indicates that the beaconing has lasted for over 1 minute and is considered
a “permanent” error:

IBMNM3: Beaconing, permanent

The following message indicates that the beaconing lasted for less than 1 minute. The router is
attempting to determine whether either station in the fault domain left the ring.

IBMNM: Beaconing, Destination Started

In the preceding line of output, the following can replace “Started”: “Next State”, “Finished”,
“Timed out”, and “Cannot find statiomi'.

Debug Commands 2-161

debug Inm lic

debug Inm lic

Use thedebug Inm lIcEXEC command to display all communication between the router/bridge and
the LAN Network Managers (LNMs) that have connections to it. Athform of this command
disables debugging output.

debug Inm llc
no debug Inm llc

Syntax Description
This command has no arguments or keywords.

Command Mode
EXEC

Usage Guidelines
One line is displayed for each message sent or received.

Sample Display
Figure 2-87 shows samptiebug Inm lic output.

Figure 2-87 Sample Debug LNM LLC Output
router# debug Inm lic

IBMNM: Received LRM Set Reporting Point frame from 1000.5ade.0d8a.

IBMNM: found bridge: 001-2-00A, addresses: 0000.3040.a630 4000.3040.a630
IBMNM: Opening connection to 1000.5ade.0d8a on TokenRing0

IBMNM: Sending LRM LAN Manager Accepted to 1000.5ade.0d8a on link O.
IBMNM: sending LRM New Reporting Link Established to 1000.5a79.dbf8 on link 1.
IBMNM: Determining new controlling LNM

IBMNM: Sending Report LAN Manager Control Shift to 1000.5ade.0d8a on link 0.
IBMNM: Sending Report LAN Manager Control Shift to 1000.5a79.dbf8 on link 1.

IBMNM: Bridge 001-2-00A received Request Bridge Status from 1000.5ade.0d8a.
IBMNM: Sending Report Bridge Status to 1000.5ade.0d8a on link 0.

IBMNM: Bridge 001-2-00A received Request REM Status from 1000.5ade.0d8a.
IBMNM: Sending Report REM Status to 1000.5ade.0d8a on link 0.

IBMNM: Bridge 001-2-00A received Set Bridge Parameters from 1000.5ade.0d8a.
IBMNM: Sending Bridge Parameters Set to 1000.5ade.0d8a on link 0.

IBMNM: sending Bridge Params Changed Notification to 1000.5a79.dbf8 on link 1.
IBMNM: Bridge 001-2-00A received Set REM Parameters from 1000.5ade.0d8a.
IBMNM: Sending REM Parameters Set to 1000.5ade.0d8a on link 0.

IBMNM: sending REM Parameters Changed Notification to 1000.5a79.dbf8 on link 1.
IBMNM: Bridge 001-2-00A received Set REM Parameters from 1000.5ade.0d8a.
IBMNM: Sending REM Parameters Set to 1000.5ade.0d8a on link 0.

IBMNM: sending REM Parameters Changed Notification to 1000.5a79.dbf8 on link 1.
IBMNM: Received LRM Set Reporting Point frame from 1000.5ade.0d8a.

IBMNM: found bridge: 001-1-00A, addresses: 0000.3080.2d79 4000.3080.2d7

As Figure 2-87 indicateslebug Inm llc output can vary somewhat in format. Table 2-47 describes
significant fields shown in the first line of output in Figure 2-87.

2-162 Debug Command Reference

debug Inm lic

Table 2-47 Debug LNM LLC Field Descriptions

Field Description

IBMNM: This line of output displays LLC-levaedebugging information.

Received The router received a frame. The other possible value is Sending, to
indicate that the router is sending a frame.

LRM The function of the LLC-level software that isramunicating:

CRS—Configuration Report Server
LBS—LAN Bridge Server
LRM—LAN Reporting Manager
REM—Ring Error Monitor
RPS—Ring Parameter Server
RS—Ring Station

Set Reporting Point

Name of the specific frame that the router sent or received. Possible
values include the fldwing:

Bridge Counter Report

Bridge Parameters Changed Notification
Bridge Parameters Set

CRS Remove Ring Station

CRS Report NAUN Change

CRS Report Station Information
CRS Request Station Information
CRS Ring Station Removed

LRM LAN Manager Accepted
LRM Set Reporting Point

New Reporting Link Established
REM Forward MAC Frame

REM Parameters Changed Notification
REM Parameters Set

Report Bridge Status

Report LAN Manager Control Shift
Report REM Status

Request Bridge Status

Request REM Status

Set Bridge Parameters

Set REM Parameters

from 1000.5ade.0d8a

the router has received the frame, this address is the source address of
the frame. If the router is sending the frame, this address is the
destination address of the frame.

Explanations for other types of messages shown in Figure 2-87 follow.

The following message indicates that the lookuptierbridge with which the LAN Manager was
requesting to communicate was successful:

IBMNM: found bridge: 001-2-00A, addresses: 0000.3040.a630 4000.3040.a630

Debug Commands 2-163

debug Inm lic

The following message is self-explanatory:

IBMNM: Opening connection to 1000.5ade.0d8a on TokenRing0

The following message indicates that a LAN Manager has connected or disconnected from an
internal bridge and that the router computes which LAN Manager is allowed to change parameters:

IBMNM: Determining new controlling LNM

The following line of output indicates which bridge in the router is the destination for the frame:

IBMNM: Bridge 001-2-00A received Request Bridge Status from 1000.5ade.0d8a.

2-164 Debug Command Reference

debug Inm mac

debug Inm mac

Use thedebug Inm macEXEC command to display all management communication between the
router/bridge and all stations on the local Token Rings.nbhiferm of this command disables
debugging output.

debug In

m mac

no debug Inm mac

Syntax Description
This command has no arguments or keywords.

Command
EXEC

Usage Gui

Mode

delines

One line is displayed for each message sent or received.

Sample Display

Figure 2-88

Figure 2-88

router#

LANMGRO:
LANMGRO:
LANMGRO:

LANMGRO

LANMGRO:
LANMGRO:
LANMGR2:
LANMGR2:
LANMGR2:
LANMGRO:
LANMGRO:

LANMGR2
LANMGRO

LANMGR2:
LANMGR2:
LANMGR2:
LANMGR2:
LANMGR?2:
LANMGRO:
LANMGRO:
LANMGRO:
: CRS received report NAUN change from 1000.5ade.0d8a.

LANMGRO
LANMGRO

LANMGR2:
LANMGR2:
LANMGR2:

shows samptiebug Inm macoutput.

Sample Debug LNM MAC Output
debug Inm mac

RS received request address from 4000.3040.a670.

RS sending report address to 4000.3040.a670.

RS received request state from 4000.3040.a670.

: RS sending report state to 4000.3040.a670.

RS received request attachments from 4000.3040.a670.
RS sending report attachments to 4000.3040.a670.

RS received ring purge from 0000.3040.a630.

RS start watching ring poll.

RS start watching ring poll.

: REM received report soft error from 0000.3040.a630.
: REM received report soft error from 0000.3040.a630.
RS received ring purge from 0000.3040.a630.

RS received AMP from 0000.3040.a630.

RS received SMP from 0000.3080.2d79.

RS start watching ring poll.

RS received ring purge from 0000.3040.a630.
RS received AMP from 0000.3040.a630.

RS received SMP from 0000.3080.2d79.

. RS start watching ring poll.

RS received SMP from 1000.5ade.0d8a.

RPS received request initialization from 1000.5ade.0d8a.
RPS sending initialize station to 1000.5ade.0d8a.

CRS received report NAUN change from 0000.3040.2630.

CRS received report NAUN change from 0000.3040.2630.

CRS received report NAUN change from 1000.5ade.0d8a.

Table 2-48 describes significant fields shown in the first line of output in Figure 2-88.

Debug Commands 2-165

debug Inm mac

Table 2-48 Debug LNM MAC Field Descriptions
Field Description
LANMGRO: LANMGR indicates that this line of outputgtilays MAC-level

debuggingnformation. O indicates the number of the Token Ring
interface associated with this line of debugging output.

RS Indicates which function of the MAC-level softwaredsntnunicating:
CRS—Configuration Report Server
REM—Ring Error Monitor
RPS—Ring Parameter Server
RS—Ring Station

received Indicates that the router received a frame. The other possible value is
“sending”, to indicate that the router is sending a frame.

request address Indicates the name of the specific frame that the router sent or received.
Possible values include the following:
AMP

initialize station
report address
report attachments
report nearest active upstream neighbor (NAUN) change
report soft error
report state

request address
request attachments
request initialization
request state

ring purge

SMP

from 4000.3040.a670 Indicates the source address of the framerafitbe has received the
frame. If the router is sending the frame, this address is thieaten
address of the frame.

As Figure 2-88 indicates, alebug Inm macmessages follow the format described in Table 2-48
except the following:

LANMGR?2: RS start watching ring poll
LANMGR?2: RS stop watching ring poll

These messages indicate that the router starts and stops receiving AMP and SMP frames. These
frames are used to build a current picture of which stations are on the ring.

2-166 Debug Command Reference

debug local-ack state

debug local-ack state

Use thedebug local-ack stateEXEC command to display the new and the old state conditions
whenever there is a state change in the local acknowledgment state machimefdrheof this
command disables debugging output.

debug local-ack state
no debug local-ack state

Syntax Description
This command has no arguments or keywords.

Command Mode
EXEC

Sample Display
Figure 2-89 shows samptiebug local-ack stateoutput.

Figure 2-89 Sample Debug Local-Ack State Output
router# debug local-ack state

LACK_STATE: 2370300, hashp 2AE628, old state = disconn, new state = awaiting
LLC2 open to finish

LACK_STATE: 2370304, hashp 2AE628, old state = awaiting LLC2 open to finish,
new state = connected

LACK_STATE: 2373816, hashp 2AE628, old state = connected, new state = disconnected
LACK_STATE: 2489548, hashp 2AE628, old state = disconn, new state = awaiting
LLC2 open to finish

LACK_STATE: 2489548, hashp 2AE628, old state = awaiting LLC2 open to finish,
new state = connected

LACK_STATE: 2490132, hashp 2AE628, old state = connected, new state = awaiting
linkdown response

LACK_STATE: 2490140, hashp 2AE628, old state = awaiting linkdown response,
new state = disconnected

LACK_STATE: 2497640, hashp 2AE628, old state = disconn, new state = awaiting
LLC2 open to finish

LACK_STATE: 2497644, hashp 2AE628, old state = awaiting LLC2 open to finish,
new state = connected

Debug Commands 2-167

debug local-ack state

Table 2-49 describes significant fields shown in Figure 2-89.

Table 2-49 Debug Local-Ack State Field Descriptions
Field Description
LACK_STATE: Indicationthat this packet describes a state change in the local

acknowledgment state machine.

2370300

System clock.

hashp 2AE628

Intmal control block pointer used by technical support staff for
debugging purposes.

old state = disconn

The old state condition in the lockhawledgment state machine.
Possible values include the following:

Disconn (disconnected)
awaiting LLC2 open to finish
connected

awaiting linkdown response

new state = awaiting LLC2 open The new state condition in the local acknowledgment state machine.

to finish

Possible values include the following:
Disconn (disconnected)

awaiting LLC2 open to finish
connected

awaiting linkdown response

2-168 Debug Command Reference

debug netbios-name-cache

debug netbios-name-cache

Use thadebug netbios-name-cachEXEC command to display name caching activities on a router.
Theno form of this command disableebugging output.

debug netbios-name-cache
no debug netbhios-name-cache

Syntax Description
This command has no arguments or keywords.

Command Mode
EXEC

Usage Guidelines
Examine the display to diagnose problems in NetBIOS name caching.

Sample Display
Figure 2-90 illustrates a collection of samgkbug netbios-name-cacheutput listings.

Figure 2-90 Sample Debug NetBIOS-Name-Cache Output
router# debug netbios-name-cache

NETBIOS: L checking nhame ORINDA , vrn=0

NetBIOS name cache table corrupted at offset 13

NetBIOS name cache table corrupted at later offset, at location 13

NETBIOS: U chk name=ORINDA, addr=1000.4444.5555, idb=TR1, vrn=0, type=1
NETBIOS: U upd name=ORINDA,addr=1000.4444.5555,idb=TR1,vrn=0,type=1
NETBIOS: U add name=0ORINDA,addr=1000.4444.5555,idb=TR1,vrn=0,type=1
NETBIOS: U no memory to add cache entry. name=ORINDA,addr=1000.4444.5555
NETBIOS: Invalid structure detected in netbios_name_cache_ager

NETBIOS: flushed name=ORINDA, addr=1000.4444.5555

NETBIOS: expired name=ORINDA, addr=1000.4444.5555

NETBIOS: removing entry. name=0ORINDA,addr=1000.4444.5555,idb=TR1,vrn=0
NETBIOS: Tossing ADD_NAME/STATUS/NAME/ADD_GROUP frame

NETBIOS: Lookup Failed -- not in cache

NETBIOS: Lookup Worked, but split horizon failed

NETBIOS: Could not find RIF entry

NETBIOS: Cannot duplicate packet in netbios_name_cache_proxy

Note The sample display in Figure 2-90 is a composite output. Debugging output that you actually
see would not necessarily occur in this sequence.

Table 2-50 describes selectebug netbios-name-cacheutput fields.

Debug Commands 2-169

debug netbios-name-cache

Table 2-50 Debug NetBIOS-Name-Cache Field Descriptions

Field Description

NETBIOS This is a NetBIOS name caching debugging output.

L, U L means lookup; U means update.

vrn=0 Router determined that the packet comes from virtual ring number 0; this

packet actually comes from a real Token Ring interface, because virtual
ring number 0 is not valid.

addr=1000.4444.5555 MAC address 1000.4444.5555 of machine being looked up in NetBIOS
name cache.
idb=TR1 Indicatiorthat name of machine was learned from Token Ring interface

number 1; idb translates into interface data block.

type=1 The type field indicates the way that the router learned about the
specified machine. The possible values for type are as follows:

1 = Learned from traffic
2 = Learned from a remote peer

4, 8 = Statically entered via the router’s configuration

The following discussion briefly outlines each line shown in the example provided in Figure 2-90.

With the first line of output, the router declares that it has examined the NetBIOS name cache table
for the machine name ORINDA and that the packet that prompted the lookup camertinahrinig
0. In this case, this packet comes from a real interface—uvirtual ring number 0 is not valid.

NETBIOS: L checking name ORINDA, vrn=0
The following two lines indicate that an invalid NetBIOS entry exists and thebthepted memory
was detected. The invalid memory will be removed from the table; no action is needed.

NetBIOS name cache table corrupted at offset 13
NetBIOS name cache table corrupted at later offset, at location 13

The following line indicates that the router attempted to check the NetBIOS cacHert#i#eaname
ORINDA with MAC address 1008444.%55. This name was obtained from Token Ring interface
1. The type field indicates that the name was learned from traffic.

NETBIOS: U chk name=ORINDA, addr=1000.4444.5555, ido=TR1, vin=0, type=1
The following line indicates that the NetBIOS name ORINDA is in the name cache table and was
updated to the current value:

NETBIOS: U upd name=ORINDA,addr=1000.4444.5555,idb=TR1,vrn=0,type=1
The following line indicates that the NetBIOS name ORINDA is not in the table and must be added
to the table:

NETBIOS: U add name=ORINDA,addr=1000.4444.5555,idb=TR1,vrn=0,type=1
The following line indicates that there wasufficient cahe buffer space when the router tried to
add this name:

NETBIOS: U no memory to add cache entry. name=ORINDA,addr=1000.4444.5555
The following line indicates that the NetBIOS ager detects an invalid memory in the cache. The
router clears the entry; no action is needed.

NETBIOS: Invalid structure detected in netbios_name_cache_ager

2-170 Debug Command Reference

debug netbios-name-cache

The following line indicates that the entry for DA was flushed from the cache table:

NETBIOS: flushed name=ORINDA, addr=1000.4444.5555
The following line indicates that the entry for ORINDA timed out and was flushed from the cache
table:

NETBIOS: expired name=ORINDA, addr=1000.4444.5555

The following line indicates that the router removed the ORINDA entry from its cache table:
NETBIOS: removing entry. name=0ORINDA,addr=1000.4444.5555,idb=TR1,vrn=0
The following line indicates that the router discarded a NetBIOS packet of type ADD_NAME,

STATUS, NAME_QUERY, or ADD_GROUP. These packets are discarded when multiple copies of
one of these packet types are detected during a certain period of time.

NETBIOS: Tossing ADD_NAME/STATUS/NAME/ADD_GROUP frame

The following line indicates that the system could not find a NetBIOS name in the cache:
NETBIOS: Lookup Failed -- not in cache
The following line indicates that the system found the destination NetBIOS name in the cache, but

located on the same ring from which the packet came. The router will drop¢het pacause the
packet should not leave this ring.

NETBIOS: Lookup Worked, but split horizon failed
The following line indicates that the system found the NetBIOS name in the cache, but the router
could not find the corresponding RIF. The packet will be sent as a broadcast frame.
NETBIOS: Could not find RIF entry
The following line indicates that no buffer was available to create a NetBIOS namepoaxcheA
proxy will not be created for the packet, which will be forwarded as a broadcast frame.

NETBIOS: Cannot duplicate packet in netbios_name_cache_proxy

Debug Commands 2-171

debug packet

debug packet

Use thedebug packetEXEC command to display information on packets that the network can not
classify. Theno form of this command disableebugging output.

debug packet
no debug packet

Syntax Description
This command has no arguments or keywords.

Command Mode
EXEC

Sample Display

Figure 2-91 shows samptiebug packetoutput. Notice how similar it is tdebug broadcast
output.

Figure 2-91 Sample Debug Packet Output
router## debug packet

EthernetO: Unknown ARPA, src 0000.0c00.6fa4, dst ffff.ffff.ffff, type 0x0a0
data 00000c00f23a00000c00ab45, len 60

Serial3: Unknown HDLC, size 64, type Oxaaaa, flags OxOF00

Serial2: Unknown PPP, size 128

Serial7: Unknown FRAME-RELAY, size 174, type 0x5865, DLCI 7a
Serial0: compressed TCP/IP packet dropped

Table 2-51 describes significant fields shown in Figure 2-91.

Table 2-51 Debug Packet Field Descriptions

Field Description

Ethernet0 Name of the Ethernet interface that received the packet.
Unknown The network could not classifyis packet. Examples include packets

with unknown link types.

ARPA This packet uses ARPA-style encapsulation. Possible encapsulation
styles vary depending on the media command mode (MCM) and
encapsulation style, as follows:

Ethernet (MCM)

Encapsulation Style
APOLLO

ARP

ETHERTALK

ISO1

1ISO3

LLC2
NOVELL-ETHER
SNAP

2-172 Debug Command Reference

debug packet

Field

Description

FDDI (MCM)

Encapsulation Style
APOLLO

ISO1

1ISO3

LLC2

SNAP

Frame Relay

Encapsulation Style
BRIDGE
FRAME-RELAY

Serial (MCM)

Encapsulation Style
BFEX25

BRIDGE

DDN-X25
DDNX25-DCE
ETHERTALK
FRAME-RELAY
HDLC

HDH

LAPB

LAPBDCE
MULTI-LAPB

PPP
SDLC-PRIMARY
SDLC-SECONDARY
SLIP

SMDS

STUN

X25

X25-DCE

Token Ring (MCM)

Encapsulation Style
3COM-TR

ISO1

ISO3

MAC

LLC2

NOVELL-TR

SNAP

VINES-TR

src 0000.0c00.6fa4

MAC address of the node generating the packet.

dst.ffff.ffff.ffff MAC address of the destination node for the packet.

type 0x0a0 Packet type.

data ... First 12 bytes of the datagram following the MAC header.

len 60 Length of the message in bytes that the interface received from the
wire.

size 64 Length of the message in bytes that the interface received from the

wire. Equivalent to the len field.

flags OXOF00

HDLC or PP flags field.

Debug Commands 2-173

debug packet

Field Description

DLCI 7a The DLCI number on Frame Relay.

compressed TCP/IP packet This message can occur when TCP header compression is enabled on
dropped an interface and the packet does not turn out to be HDLC or X25 after

classification.

2-174 Debug Command Reference

debug ppp

debug ppp

Use thedebug ppp EXEC command to display information on traffic and exchanges in an
internetwork implementing the Point-to-Point Protocol (PPP).nichform of this command
disables debugging output.

debug ppp{packet| negotiation | error | chap}
no debug ppp{packet| negotiation | error | chap}

Syntax Description

packet Causes thdebug pppcommand to display PPP packets
being sent and received. (This command displays low-level
packet dumps.)

negotiation Causes thdebug pppcommand to display PPP packets
transmitted during PPP startup, where PPP options are
negotiated.

error Causes thdebug pppcommand to display protocol errors

and error statistics associated with PPP connection
negotiation and operation.

chap Causes thdebug pppcommand to display Challenge
Authentication Protocol (CHAP) packet exchanges and
Password Authentication Protocol (PAP) exchanges.

Command Mode
EXEC

Usage Guidelines
Use thedebug pppcommands when trying to find the following:

® The Network Control Protocols (NCPs) that are supported on either end of a PPP connection
® Any loops that might exist in a PPP internetwork

® Nodes that are (or are not) properly negotiating PPP connections

® Errors that have occurred over the PPP connection

® Causes for CHAP session failures

® Causes for PAP session failures

Refer to Internet RFCs 1331, 1332, and 1333 for details concerning PPP-related nomenclature and
protocol information.

Sample Displays
Figure 2-92 shows sampliebug ppp packetoutput as seen from the Link Quality Monitor (LQM)
side of the connection. This display example depicts packet exchanges under normal PPP operation.

Debug Commands 2-175

Figure 2-92 Sample Debug PPP Packet Output

router# debug ppp packet

PPP Serial4(0): Icp_slgr() state = OPEN magic = D21B4, len = 48

PPP Serial4(i): pkt type 0xC025, datagramsize 52

PPP Serial4(i): Icp_rlqgr() state = OPEN magic = D3454, len = 48

PPP Serial4(i): pkt type 0xC021, datagramsize 16

PPP Serial4: | LCP ECHOREQ(9) id 3 (C) magic D3454

PPP Serial4: input(C021) state = OPEN code = ECHOREQ(9) id = 3 len =12
PPP Serial4: O LCP ECHOREP(A) id 3 (C) magic D21B4

PPP Serial4(0): Icp_slgr() state = OPEN magic = D21B4, len = 48

PPP Serial4(i): pkt type 0xC025, datagramsize 52

PPP Serial4(i): Icp_rlgr() state = OPEN magic = D3454, len = 48

PPP Serial4(i): pkt type 0xC021, datagramsize 16

PPP Serial4: | LCP ECHOREQ(9) id 4 (C) magic D3454

PPP Serial4: input(C021) state = OPEN code = ECHOREQ(9) id =4 len = 12
PPP Serial4: O LCP ECHOREP(A) id 4 (C) magic D21B4

PPP Serial4(0): Icp_slgr() state = OPEN magic = D21B4, len = 48

PPP Serial4(i): pkt type 0xC025, datagramsize 52

PPP Serial4(i): Icp_rlgr() state = OPEN magic = D3454, len = 48

PPP Serial4(i): pkt type 0xC021, datagramsize 16

PPP Serial4: | LCP ECHOREQ(9) id 5 (C) magic D3454

PPP Serial4: input(C021) state = OPEN code = ECHOREQ(9) id =5 len =12
PPP Serial4: O LCP ECHOREP(A) id 5 (C) magic D21B4

PPP Serial4(0): Icp_slgr() state = OPEN magic = D21B4, len = 48

PPP Serial4(i): pkt type 0xC025, datagramsize 52

PPP Serial4(i): Icp_rlgr() state = OPEN magic = D3454, len = 48

PPP Serial4(i): pkt type 0xC021, datagramsize 16

PPP Serial4: | LCP ECHOREQ(9) id 6 (C) magic D3454

PPP Serial4: input(C021) state = OPEN code = ECHOREQ(9) id = 6 len =12
PPP Serial4: O LCP ECHOREP(A) id 6 (C) magic D21B4

PPP Serial4(0): Icp_slgr() state = OPEN magic = D21B4, len = 48

PPP Serial4(i): pkt type 0xC025, datagramsize 52

PPP Serial4(i): Icp_rlgr() state = OPEN magic = D3454, len = 48

PPP Serial4(i): pkt type 0xC021, datagramsize 16

PPP Serial4: | LCP ECHOREQ(9) id 7 (C) magic D3454

PPP Serial4: input(C021) state = OPEN code = ECHOREQ(9) id =7 len = 12
PPP Serial4: O LCP ECHOREP(A) id 7 (C) magic D21B4

PPP Serial4(0): Icp_slgr() state = OPEN magic = D21B4, len = 48

Table 2-52 describes significant fields shown in Figure 2-92.

Table 2-52 Debug PPP Packet Field Descriptions

Field Description

PPP This is PPP debugging output.

Serial4 Interface number associated with this debugging information.

(0), O This packet was detected as an output packet.

@)1 This packet was detected as an input packet.

lcp_slqr() Procedure name; running LQM, send a Link Quality Report (LQR).
lcp_rlgr() Procedure name; running LQM, received an LQR.

input (C025)

Theouter received a packet of the specified packet type (in hex). A
value of C025 indicates packet of type LQM.

state = OPEN

PPP state; normal state is OPEN.

2-176 Debug Command Reference

debug ppp

Field Description

magic = D21B4 Mgic Number for indicated node; when output is indicated, this is the
Magic Number of the node on whidebugging is enabled. The actual
Magic Number depends on whether the packet detected is indicated as

lorO.

datagramsize = 52 Packet length including header.

code = ECHOREQ(9) Code identifies the type of packet received. Both forms of the packet,
string and hexadecimal, are presented.

len = 48 Packet length without header.

id=3 ID number per Link Control Protocol (LCP) packet format.

pkt type 0xC025 Packet type in hexadecimal; typical packet types are C025 for LQM and
C021 for LCP.

LCP ECHOREQ (9) Echo Request; value in parentheses is the hexadecimal representation of
the LCP type.

LCP ECHOREP (A) Echo Reply; value in parentheses is the hexadeejpn@sentation of

the LCP type.

To elaborate on the displayed output, consider the partial exchange in Figure 2-93. This sequence
shows that one side is using ECHO for its keepalives and the other side is using LQRSs.

Figure 2-93 Partial Debug PPP Packet Output

PPP Serial4(0): Icp_slgr() state = OPEN magic = D21B4, len = 48

PPP Serial4(i): pkt type 0xC025, datagramsize 52

PPP Serial4(i): Icp_rlgr() state = OPEN magic = D3454, len = 48

PPP Serial4(i): pkt type 0xC021, datagramsize 16

PPP Serial4: | LCP ECHOREQ(9) id 3 (C) magic D3454

PPP Serial4: input(C021) state = OPEN code = ECHOREQ(9) id = 3 len = 12
PPP Serial4: O LCP ECHOREP(A) id 3 (C) magic D21B4

PPP Serial4(0): Icp_slgr() state = OPEN magic = D21B4, len = 48

The following discussion briefly outlines each line of this exchange.

The first line states that the router witbbugging enabled has sent an LQR to the other side of the
PPP connection:

PPP Serial4(0): Icp_slgr() state = OPEN magic = D21B4, len = 48
The next two lines indicate that the router has received a packet of type C025 (LQM) and provides
details about the packet:

PPP Serial4(i): pkt type 0xC025, datagramsize 52
PPP Serial4(i): Icp_rlgr() state = OPEN magic = D3454, len = 48

The next two lines indicate that the router received an ECHOREQ of type C021 (LCP). The other
side is sending ECHOs. The router on whdebugging is configured for LQM but also responds to
ECHOs.

PPP Serial4(i): pkt type 0xC021, datagramsize 16
PPP Serial4: | LCP ECHOREQ(9) id 3 (C) magic D3454

Next the router is detected to have responded to the ECHOREQ with an ECHOREP and is preparing
to send out an LQR:

PPP Serial4: O LCP ECHOREP(A) id 3 (C) magic D21B4
PPP Serial4(0): Icp_slgr() state = OPEN magic = D21B4, len = 48

Debug Commands 2-177

debug ppp

Figure 2-94 shows sampliebug ppp negotiationoutput. This is a normal negotiation, where both
sides agree on network control program (NCP) parameters. In this case, protocol type IP is proposed
and acknowledged.

Figure 2-94 Sample Debug PPP Negotiation Output
router# debug ppp negotiation

ppp: sending CONFREQ, type = 4 (CI_QUALITYTYPE), value = C025/3E8

ppp: sending CONFREQ, type =5 (CI_MAGICNUMBER), value = 3D56CAC
ppp: received config for type = 4 (QUALITYTYPE) acked

ppp: received config for type = 5 (MAGICNUMBER) value = 3D567F8 acked (ok)
PPP Serial4: state = ACKSENT fsm_rconfack(C021): rcvd id 5

ppp: config ACK received, type = 4 (CI_QUALITYTYPE), value = C025

ppp: config ACK received, type = 5 (CI_MAGICNUMBER), value = 3D56CAC
ppp: ipcp_reqci: returning CONFACK.

(ok)

PPP Serial4: state = ACKSENT fsm_rconfack(8021): rcvd id 4

Table 2-53 describes significant fields shown in Figure 2-94.

Table 2-53 Debug PPP Negotiation Field Descriptions

Field Description

ppp This is a PPP debugging output.
sending CONFREQ Theuter sent a configuration request.

type =4 (CI_QUALITYTYPE) The type of LCP configuration optithrat is being negotiated and a
descriptor. A type value of 4 indicates Quality Protocol negotiation; a
type value of 5 indicates Magic Number negotiation.

value = C025/3E8 For Quality Protocol negotiation, indicates NG® and reporting
period. In the example, C025 indicates LQM; 3E8 is a hexadecimal
value translating to about 10 seconds (in hundredths afoande

value = 3D56CAC For Magic Numbeegotiation, indicates the Maghumber being
negotiated.

received config The receiving node has received the proposed option negotiation for the
indicated option type.

acked Acknowledgment and acceptance of options.

state = ACKSENT Specific PPP state in the negotiation process.

ipcp_reqci IPCP notification message; sending CONFACK.

fsm_rconfack (8021) The procedure fsm_rconfack processes received CONFACKSs, and the

protocol (8021) is IP.

The following discussion briefly outlines each line shown in the example provided in Figure 2-94.

The first two lines in Figure 2-94 indicate that the router is trying to bring up LCP and intends to use
the indicated negotiation options (Quality Protocol and Magic Number). The value fields are the
values of the options themselves. C025/3E8 translates to Quality Protocol LQM. 3E8 is the reporting
period (in hundredths of a second). 3D56CAC is the value of the Magic Number for the router.

ppp: sending CONFREQ, type = 4 (CI_QUALITYTYPE), value = C025/3E8
ppp: sending CONFREQ, type =5 (CI_MAGICNUMBER), value = 3D56CAC

2-178 Debug Command Reference

debug ppp

The next two lines indicate that the other side negotiated for options 4 and 5 as requested and
acknowledged both. If the responding end doesuapport theoptions, a CONFREJ is sent by the
responding node. If the responding end does not accept the value of the option, a CONFNAK is sent
with the value field modified.

ppp: received config for type = 4 (QUALITYTYPE) acked
ppp: received config for type = 5 (MAGICNUMBER) value = 3D567F8 acked (ok)

The next three lines indicate that the router received a CONFACK from the responding side and
displays accepted option values. Use the rcvd id field to verify that the CONFREQ and CONFACK
have the same id field.

PPP Serial4: state = ACKSENT fsm_rconfack(C021): rcvd id 5
ppp: config ACK received, type = 4 (CI_QUALITYTYPE), value = C025
ppp: config ACK received, type = 5 (CI_MAGICNUMBER), value = 3D56CAC

The next line indicates that the router has IP routing enabled on this interface and that the IPCP NCP
negotiated successfully:

ppp: ipcp_reqci: returning CONFACK.

In the last line, the router’s state is listed as ACKSENT.

PPP Serial4: state = ACKSENT fsm_rconfack(C021): rcvd id 5\

Figure 2-95 shows sample output whibug ppp packetanddebug ppp negotiationoutput are
enabled at the same time.

Debug Commands 2-179

debug ppp

Figure 2-95

router# debug ppp negoti ation
router# debug ppp packet

ppp: sending CONFREQ type = 4 (Cl_QUALITYTYPE), value = €025/ 3E8
ppp: sending CONFREQ type = 5 (Cl_MAQ CNUMBER), val ue =P4€672
PPP Serial 4: O LCP CONFREQ(1) id 4 A YPE (8) 192 37 0 0 3 232

NAG CNUVEER (6)

PPP Serial 4(i): pkt type 0xC021,

PPP Serial4: | LCP CONFREQ1)
MAG CNUMBER (6) 0 13 84 240

dat agr ansi ze 22
id4 (12) QUALITYTYPE (8) 192 37 0 0 3 232

PPP Serial 4: input(0021) state = REQSENT code = CONFREQQ'1) id = 4 len = 18
ppp: received config for type = 4 (QUALI TYTYPE) acked
ppp: received config for type = 5 (MAG CNUMBER) val ue = D54F0 acked

PPP Serial 4: O LCP CONFACK(2) id 4 (12) QUALITYTYPE (8) 192 37 0 0 3 232
MAG CNUMBER (6) 0 13 84 240 (ok)

PPP Serial 4(i): pkt type 0xC021, datagransize 22

PPP Serial4: | LCP CONFACK(2) id 4 (12) QUALITYTYPE (8) [19237 0 0 3 232]
MAG CNUMBER (6) 0 13 76 100

PPP Serial 4: input(0021) state = ACKSENT code = CONFACK(2) id

PPP Serial 4: state = ACKSENT fsmrconfack(C021): rcvd id 4

ppp: config ACK received, type = 4 (Cl_QUALI TYTYPE), val ue C025

ppp: config ACK received, type = 5 (Cl _MAG CNUMBER), val ue D4C64

=4 len = 18

i pcp: sending CONFREQ type = 3 (Cl _ADDRESS), Address = 2.1.1.2
PPP Serial4: O | PCP CONFREQ(1) id 3 (10) Type3 (6) 2 1 1 2

PPP Serial4: | |PCP CONFREQ(1) id 3 (10) Type3 (6) 2 1 1 1

PPP Serial 4(i): pkt type 0x8021, datagransize 14

PPP Serial 4: input(8021) state = REQSENT code = CONFREQ(1l) id = 3 len =
ppp Serial4: Negotiate |IP address: her address 2.1.1.1 (ACK)

ppp: ipcp_reqci: returning CONFACK.

PPP Serial 4: O | PCP CONFACK(2) id 3 (10) Type3 (6) 2 1 1 1 (ok)

PPP Serial 4: | | PCP CONFACK(2) id 3 (10) Type3 (6) 2 1 1 2
PPP Serial 4: input(8021) state = ACKSENT code = CONFACK(2)
PPP Serial 4: state = ACKSENT fsmrconfack(8021): rcvd id 3
i pcp: config ACK received, type = 3 (Cl _ADDRESS), Address = 2.1.1.2

10

id =31len =10

PPP Serial4(o): Tcp_slqgr() state = OPEN nagi c = D4C64, Ten = 48
PPP Serial 4(i): pkt type 0xC025, datagransize 52

PPP Serial4(i): lcp_rlqgr() state = OPEN magic = D54F0, len = 48

PPP Serial 4(i): pkt type 0xC025, datagransize 52

PPP Serial4(i): lcp_rlgr() state = OPEN magi c = D54F0, len = 48 o’l:o
PPP Serial 4(0): lcp_slqgr() state = OPEN magic = D4C64, len = 48 &

2-180 Debug Command Reference

Sample Debug PPP Output with Packet and Negotiation Options Enabled

This field shows a
decimal representation
of the Magic Number.

This field shows
a decimal representation
of the NCP value.

This field shows a
decimal representation
of the reporting period.

This exchange
represents a
_successful PPP
negotiation for
support of NCP
type IPCP.

debug ppp

Figure 2-96 shows sampdiebug ppp negotiationoutput when the remote side of the connection is
unable to respond to LQM requests.

Figure 2-96 Sample Debug PPP Negotiation Output When No Response Is Detected
router# debug ppp negotiation

ppp: sending CONFREQ, type = 4 (CI_QUALITYTYPE), value = C025/3E8
ppp: sending CONFREQ, type = 5 (CI_MAGICNUMBER), value = 44B7010
ppp: sending CONFREQ, type = 4 (CI_QUALITYTYPE), value = C025/3E8
ppp: sending CONFREQ, type = 5 (CI_MAGICNUMBER), value = 44B7010
ppp: sending CONFREQ, type = 4 (CI_QUALITYTYPE), value = C025/3E8
ppp: sending CONFREQ, type = 5 (CI_MAGICNUMBER), value = 44B7010
ppp: sending CONFREQ, type = 4 (CI_QUALITYTYPE), value = C025/3E8
ppp: sending CONFREQ, type = 5 (CI_MAGICNUMBER), value = 44B7010
ppp: sending CONFREQ, type = 4 (CI_QUALITYTYPE), value = C025/3E8
ppp: sending CONFREQ, type = 5 (CI_MAGICNUMBER), value = 44B7010
ppp: sending CONFREQ, type = 4 (CI_QUALITYTYPE), value = C025/3E8
ppp: sending CONFREQ, type = 5 (CI_MAGICNUMBER), value = 44B7010
ppp: sending CONFREQ, type = 4 (CI_QUALITYTYPE), value = C025/3E8
ppp: sending CONFREQ, type = 5 (CI_MAGICNUMBER), value = 44B7010
ppp: sending CONFREQ, type = 4 (CI_QUALITYTYPE), value = C025/3E8
ppp: sending CONFREQ, type = 5 (CI_MAGICNUMBER), value = 44B7010
ppp: sending CONFREQ, type = 4 (CI_QUALITYTYPE), value = C025/3E8
ppp: sending CONFREQ, type = 5 (CI_MAGICNUMBER), value = 44B7010
ppp: sending CONFREQ, type = 4 (CI_QUALITYTYPE), value = C025/3E8
ppp: sending CONFREQ, type = 5 (CI_MAGICNUMBER), value = 44B7010
ppp: sending CONFREQ, type = 4 (CI_QUALITYTYPE), value = C025/3E8
ppp: sending CONFREQ, type = 5 (CI_MAGICNUMBER), value = 44B7010
ppp: sending CONFREQ, type = 4 (CI_QUALITYTYPE), value = C025/3E8
ppp: sending CONFREQ, type = 5 (CI_MAGICNUMBER), value = 44C1488

Figure 2-97 shows sample output when no response is detected for configuration requests (with both
debug ppp negotiationanddebug ppp packetenabled).

Figure 2-97 Sample Debug PPP Output When No Response Is Detected (with Negotiation
and Packet Enabled)

router# debug ppp negotiation
router# debug ppp packet

ppp: sending CONFREQ, type = 4 (CI_QUALITYTYPE), value = C025/3E8

ppp: sending CONFREQ, type = 5 (CI_MAGICNUMBER), value = 44DFDC8

PPP Serial4: O LCP CONFREQ(1) id 14 (12) QUALITYTYPE (8) 192 37 0 0 3 232
MAGICNUMBER (6) 4 77 253 200

ppp: TIMEout: Time= 44E0980 State= 3

ppp: sending CONFREQ, type = 4 (CI_QUALITYTYPE), value = C025/3E8

ppp: sending CONFREQ, type = 5 (CI_MAGICNUMBER), value = 44DFDC8

PPP Serial4: O LCP CONFREQ(1) id 15 (12) QUALITYTYPE (8) 192 37 0 0 3 232
MAGICNUMBER (6) 4 77 253 200

ppp: TIMEout: Time= 44E1828 State= 3

ppp: sending CONFREQ, type = 4 (CI_QUALITYTYPE), value = C025/3E8

ppp: sending CONFREQ, type = 5 (CI_MAGICNUMBER), value = 44DFDC8

PPP Serial4: O LCP CONFREQ(1) id 16 (12) QUALITYTYPE (8) 192 37 0 0 3 232
MAGICNUMBER (6) 4 77 253 200

ppp: TIMEout: Time= 44E27C8 State= 3

ppp: sending CONFREQ, type = 4 (CI_QUALITYTYPE), value = C025/3E8

ppp: sending CONFREQ, type = 5 (CI_MAGICNUMBER), value = 44DFDC8

PPP Serial4: O LCP CONFREQ(1) id 17 (12) QUALITYTYPE (8) 192 37 0 0 3 232
MAGICNUMBER (6) 4 77 253 200

ppp: TIMEout: Time= 44E3768 State= 3

Debug Commands 2-181

debug ppp

Figure 2-98 shows samplebug ppp error output. These messages might appear when the Quality

Protocol option is enabled on an interface that is already running PPP.

Figure 2-98

router# debug ppp error

Sample Debug PPP Error Output

PPP Serial3(i): rlgr receive failure. successes =15
PPP: myrcvdiffp = 159 peerxmitdiffp = 41091
PPP: myrcvdiffo = 2183 peerxmitdiffo = 1714439

PPP: threshold = 25

PPP Seriald4(i): rlgr transmit failure. successes = 15
PPP: myxmitdiffp = 41091 peerrcvdiffp = 159

PPP: myxmitdiffo = 1714439 peerrcvdiffo = 2183
PPP: I->OutLQRs = 1 LastOutLQRs = 1

PPP: threshold = 25

PPP Serial3(i): Igr_protrej() Stop sending LQRs.
PPP Serial3(i): The link appears to be looped back.

Table 2-54 describes significant fields shown in Figure 2-98.

Table 2-54 Debug PPP Error Field Descriptions

Field Description

PPP This is PPP debugging output.

Serial3(i) Interface number associated with this debugging information; indicates

that this is an input packet.

rlgr receive failure

The request to negotiate the Quality Protocol option is not accepted.

myrcvdiffp = 159

Number of packets received over the time period.

peerxmitdiffp = 41091

Number of packets sent by the remote node over this period.

myrcvdiffo = 2183

Number of octets received over this period.

peerxmitdiffo = 1714439

Number of octets sent by the remote node over this period.

threshold = 25

The maximum error percentage acceptable on this interface. This
percentage is calculated by the threshold value entered in the
ppp quality numberinterface configuration command. A value of
100-humber(100 minusnumbe} is the maximum error percentage. In
this case, aumberof 75 was entered. This means that the local router
must maintain a minimum 75 percent non-error etage, or the PPP
link will be considered down.

OutLQRs =1

Local router’s current send LQR sequence number.

LastOutLQRs = 1

The last sequence number that the remote node side has seen from the
local node.

2-182 Debug Command Reference

debug ppp

Figure 2-99 shows samptiebug ppp chapoutput. When doing CHAP authentication, use this
debugcommand to determine why an authentication fails. This command is also useful when doing
PAP authentication.

Figure 2-99 Sample Debug PPP CHAP Output
router# debug ppp chap

Serial0: Unable to authenticate. No name received from peer

Serial0: Unable to validate CHAP response. USERNAME pioneer not found.

Serial0: Unable to validate CHAP response. No password defined for USERNAME pioneer
SerialO: Failed CHAP authentication with remote.

Remote message is Unknown name

Serial0: remote passed CHAP authentication.

Serial0: Passed CHAP authentication with remote.

Serial0: CHAP input code =4 id = 3len = 48

In general, these messages are self-explanatory. Fields that appelaugrppp chapdisplays that
can show optional output are outlined in Table 2-55.

Table 2-55 Debug PPP CHAP Field Descriptions
Field Description
Serial0 Interface number associated with this debugging information and CHAP

access session in question.

USERNAME pioneer not found. The namp®neerin this example is the name received in the CHAP
response. The router looks up this name in the list of usernames that are
configured for the router.

Remote message is Unknown The following messages can appear:
name No name received to authenticate

Unknown name
No secret for given name
Short MD5 response received

MD compare failed

code =4 Specific CHAP type packet detected. Possible values are as follows:
1 = Challenge
2 = Response
3 = Success
4 = Failure
len = 48 Packet length without header.
id=3 ID number per Link Control Protocol (LCP) packet format.

Debug Commands 2-183

debug gllic error

debug qllc error

Use thedebug glic error EXEC command to display quality link line control (QLLC) errors. The
no form of this command disables debugging output.

debug gllc error
no debug gllc error

Syntax Description
This command has no arguments or keywords.

Command Mode
EXEC

Usage Guidelines

This command helps you track down errors in the QLLC interactions with X.25 networks. Use
debug gllc error in conjunction withdebug x25 allto see the connection. The data shown by this
command only flows through the router on the X.25 connection. Some forms of this command can
generate lots of output and network traffic.

Sample Display
Figure 2-100 shows sampdiebug glicerror output.

Figure 2-100 Sample Debug QLLC Error Output
router# debug glic error

%QLLC-3-GENERRMSG: glic_close - bad glic pointer Caller 00407116 Caller 00400BD2
QLLC 4000.1111.0002: NO X.25 connection. Dicarding XID and calling out

Explanations for individual lines of output from Figure 2-100 follow.

The following line indicates that the QLLC connection was closed:

%QLLC-3-GENERRMSG: glic_close - bad glic pointer Caller 00407116 Caller 00400BD2

The following line shows the virtual MAC address of the failed connection:

QLLC 4000.1111.0002: NO X.25 connection. Dicarding XID and calling out

2-184 Debug Command Reference

debug gllc event

debug gllc event

Use thedebug glic eventEXEC command to enable debugging of QLLC events.richiorm of
this command disables debugging output.

debug gllc event
no debug glic event

Syntax Description
This command has no arguments or keywords.

Command Mode
EXEC

Usage Guidelines

Use thedebug gllic eventcommand to display primitives that might affect the state of a QLLC
connection. An example of these events is the allocation of a QLLC structure for a logical channel
indicator when an X.25 call has been accepted with the QLLC call user data. Other examples are
the receipt and transmission of LAN explorer and XID frames.

Sample Display
Figure 2-101 shows sampdiebug gllc eventoutput.

Figure 2-101 Sample Debug Qllc Event Output
router## debug glic event

QLLC: allocating new glic Ici 9

QLLC: tx POLLING TEST, da 4001.3745.1088, sa 4000.1111.0001

QLLC: rxexplorerresponse,da4000.1111.0001, sac001.3745.1088, rif 08B0.1A91.1901.A040
QLLC: gen NULL XID, da c001.3745.1088, sa 4000.1111.0001, rif 0830.1A91.1901.A040, dsap
4, ssap 4

QLLC: rx XID response, da 4000.1111.0001, sa c001.3745.1088, rif 08B0.1A91.1901.A040

Explanations for representative lines of output in Figure 2-101 follow.
The following line indicates a new QLLC data structure has been allocated:

QLLC: allocating new glic Ici 9

The following lines show transmission and receipt of LAN explorer or test frames:

QLLC: tx POLLING TEST, da 4001.3745.1088, sa 4000.1111.0001
QLLC: rxexplorerresponse,da4000.1111.0001, sac001.3745.1088, rif 08B0.1A91.1901.A040

The following lines show XID events:

QLLC: gen NULL XID, da c001.3745.1088, sa 4000.1111.0001, rif 0830.1A91.1901.A040, dsap
4, ssap 4
QLLC: rx XID response, da 4000.1111.0001, sa c001.3745.1088, rif 08B0.1A91.1901.A040

Debug Commands 2-185

debug gllc packet

debug gllc packet
Use thedebug glic packetEXEC command to display QLLC events and QLLC data packets. The
no form of this command disables debugging output.

debug gllc packet
no debug gllc packet

Syntax Description
This command has no arguments or keywords.

Command Mode
EXEC

Usage Guidelines

This command helps you to track down errors in the QLLC interactions with X.25 networks. The
data shown by this command only floti'soughthe router on the X25 connection. Wisbug gllc
packetin conjunction withdebug x25 allto see the connection and the data that flows through the
router.

Sample Display
Figure 2-102 shows sampliebug gllc packetoutput.

Figure 2-102 Sample Debug QLLC Packet Output
router# debug gllc packet

14:38:05: Serial2/5 QLLC I: Data Packet.-RSP 9 bytes.
14:38:07: Serial2/6 QLLC |: Data Packet.-RSP 112 bytes.
14:38:07: Serial2/6 QLLC O: Data Packet. 128 bytes.
14:38:08: Serial2/6 QLLC |: Data Packet.-RSP 9 bytes.
14:38:08: Serial2/6 QLLC |: Data Packet.-RSP 112 bytes.
14:38:08: Serial2/6 QLLC O: Data Packet. 128 bytes.
14:38:08: Serial2/6 QLLC |: Data Packet.-RSP 9 bytes.
14:38:12: Serial2/5 QLLC |: Data Packet.-RSP 112 bytes.
14:38:12: Serial2/5 QLLC O: Data Packet. 128 bytes.

Explanations for individual lines of output from Figure 2-102 follow.
The following lines indicate a packet was received on the interfaces:

14:38:05: Serial2/5 QLLC |: Data Packet.-RSP 9 bytes.
14:38:07: Serial2/6 QLLC |: Data Packet.-RSP 112 bytes.

The following lines show that a packet was transmitted on the interfaces:

14:38:07: Serial2/6 QLLC O: Data Packet. 128 bytes.
14:38:12: Serial2/5 QLLC O: Data Packet. 128 bytes.

2-186 Debug Command Reference

debug gllc state

debug gllc state

Use thedebug gllc statetEXEC command to enable debugging of the QLLC eventsndtierm
of this command disabletebugging output.

debug gllc state
no debug gllc state

Syntax Description
This command has no arguments or keywords.

Command Mode
EXEC

Usage Guidelines

Use thedebug gllc statecommand to show when the state of a QLLC connection has changed. The
typical QLLC connection goes from states ADM to SETUP to NORMAL. The NORMAL state
indicates that a QLLC connection exists and is ready for data transfer.

Sample Display
Figure 2-103 shows sampiiebug glic stateoutput.

Figure 2-103 Sample Debug Qllc Event Output
router# debug glic state

Serial2 QLLC O: QSM-CMD

Serial2: X25 O D1 DATA (5) Q81ci9 PS4PR 3
QLLC: state ADM -> SETUP

Serial2: X251 D1 RR (3) 8Ici9 PR 5

Serial2: X251 D1 DATA (5) Q8Ici9 PS3PR5
Serial2 QLLC I: QUA-RSPQLLC: addr 00, ctl 73

QLLC: gsetupstate: recvd qua rsp
QLLC: state SETUP -> NORMAL

Explanations for representative lines of output in Figure 2-103 follow.
The following line indicates a QLLC connection attempt is changing state from ADM to SETUP:

QLLC: state ADM -> SETUP

The following line indicates a QLLC connection attempt is changing state from SETUP to
NORMAL:

QLLC: state SETUP -> NORMAL

Debug Commands 2-187

debug glic timer

debug gllc timer

Use thedebug glic timer EXEC command to display QLLC timer events. Tlosform of this
command disables debugging output.

debug gllc timer
no debug gllc timer

Syntax Description
This command has no arguments or keywords.

Command Mode
EXEC

Usage Guidelines

The QLLC process peridocally cycles and checks status of itself and its partner. If the partner is not
found in the desired state, a LAPB primitive command is resent until the partner is in the desired
state or the timer expires.

Sample Display
Figure 2-104 shows sampliebug glictimer output.

Figure 2-104 Sample Debug QLLC Timer Output
router# debug gllc timer

14:27:24: Qllc timer Ici 257, state ADM retry count O Caller 00407116 Caller 00400BD2
14:27:34: Qllc timer Ici 257, state NORMAL retry count O
14:27:44: Qllc timer Ici 257, state NORMAL retry count 1
14:27:54: Qllc timer Ici 257, state NORMAL retry count 1

Explanations for individual lines of output from Figure 2-104 follow.

The following line of output shows the state of a QLLC partner on a given X.25 logical channel
identifier:

14:27:24: Qllc timer Ici 257, state ADM retry count O Caller 00407116 Caller 00400BD2

Other messages are informational and appear every ten seconds.

2-188 Debug Command Reference

debug gllc x25

debug gllc x25

Use the debug glic x25 EXEC command to display X.25 packets that affect a QLLC connection. The
no form of this command disables debugging output.

debug gllc x25
no debug gllc x25

Syntax Description
This command has no arguments or keywords.

Command Mode
EXEC

Usage Guidelines

This command is helpful to track down errors in the QLLC interactions with X.25 networks. Use
debug gllc x25in conjunction withdebug x25 event®r debug x25 allto see the X.25 events
between the router and its partner.

Sample Display
Figure 2-105 shows sampiiebug gllcx25 output.

Figure 2-105 Sample Debug QLLC X25 Output

router# debug gllc x25
gllc x.25 events debugging is on

15:07:23: QLLC X25 notify Ici 257 event 1
15:07:23: QLLC X25 notify Ici 257 event 5
15:07:34: QLLC X25 notify Ici 257 event 3 Caller 00407116 Caller 00400BD2
15:07:35: QLLC X25 notify Ici 257 event 4

Table 2-56 describes fields of output that appear in Figuk@5 follow.

Table 2-56 Debug QLLC X.25 Field Descriptions

Field Description

15:07:23 Shows the time of day.

QLLC X25 notify 257 Indicatethis is aQLLC X25 message.

eventn Indicates the type of evemt, Values fom can be as follows:

1 — Circuit is cleared

2 — Circuit has been reset

3 — Circuit is connected

4 — Circuit congestion has cleared
5 — Circuit has been deleted

Debug Commands 2-189

debug rif

debug rif
Use thedebug rif EXEC command to display information on entries entering and leaving the
routing information field (RIF) cache. T form of this command disabléebugging output.

debug rif
no debug rif

Syntax Description
This command has no arguments or keywords.

Command Mode
EXEC

Usage Guidelines

In order to use thdebug rif command to display traffic source-routed through an interfasg,
switching of source route bridging (SRB) frames must first be disabled witiotkeurce-bridge
route-cacheinterface interface configuration command.

Sample Display
Figure 2-106 shows sampiiebug rif output.

Figure 2-106 =~ Sample Debug RIF Output
router# debug rif
SDLLC or RIF: U chk da=9000. 5a59. 04f 9, sa=0110. 2222. 33c1 [4880. 3201. 00A1. 0050] type 8 on

Local-Ack static/renote/0
RIF: U chk da=0000. 3080. 4aed, sa=0000. 0000. 0000 [] type 8 on TokenRi ng0/0

entry RIF: U add 1000.5a59. 04f 9 [4880. 3201. 00A1. 0050] type 8
RIF: L checking da=0000. 3080. 4aed, sa=0000. 0000. 0000
Non-SDLLC RIF: rcvd TEST response from 9000. 5a59. 04f 9
or non-Local- R F: U upd da=1000. 5a59. 04f 9, sa=0110. 2222. 33c1 [4880. 3201. 00AL. 0050]
Ack entry RIF: rcvd XID response from 9000. 5a59. 04f 9

S2559

SR1: sent XD response to 9000. 5a59. 04f9

Explanations for representative linesdebug rif output in Figure 2-106 follow.

The first line of output is an example of a RIF entry for an interface configured for SDLLC or
Local-Ack. Table 2-57 describes significant fields shown in this lindeblug rif output.

Table 2-57 Debug RIF Field Descriptions—Part 1

Field Description

RIF: This message describes RIF ughing output.

U chk Update checking. The entry is being updated; the timer is set to zero (0).
da = 9000.5a59.04f9 Destination MAC address.

sa = 0110.2222.33c1 Source MAC address. This field contains values of zero

(0000.0000.0000) in a non-SDLLC or non-Local-ack entry.

2-190 Debug Command Reference

debug rif

Field Description

[4880.3201.00A1.0050] RIF string. This field is blank (null RIF) in a non-SDLLC or
non-Local-Ack entry.

type 8 Possible values follow:
O0—Null entry

1—This entry was learned from a particular Token Ring port (interface)
2—Statically configured

4—Statically configured for a remote interface

8—This entry is to be aged

16—This entry (which has been learned from a remote interface) is to be
aged

32—This entry is not to be aged

64 —This interface is to be used by LAN Network Manager (and is not
to be aged)

on static/remote/0 This route was learned from a real Token Ring port, in contrast to a
virtual ring.

The following line of output is an example of a RIF entry for an interface that is not configured for
SDLLC or Local-Ack:

RIF: U chk da=0000.3080.4aed,sa=0000.0000.0000 [] type 8 on TokenRing0/0

Notice that the source address contains only zero values (0000.0000.0000), and that the RIF string
is null ([])- The last element in the entry indicates that this route was learned from a virtual ring,
rather than a real Token Ring port.

The following line shows that a new entry has been added to the RIF cache:

RIF: U add 1000.5a59.04f9 [4880.3201.00A1.0050] type 8

The following line shows that a RIF cache lookup operation has taken place:

RIF: L checking da=0000.3080.4aed, sa=0000.0000.0000

The following line shows that a TEST response from address 9000.5a59.04f9 was inserted into the
RIF cache:

RIF: rcvd TEST response from 9000.5a59.049

The following line shows that the RIF entry for this route has been found and updated:

RIF: U upd da=1000.5a59.04f9,5sa=0110.2222.33c1 [4880.3201.00A1.0050]

The following line shows that an XID response from this address was inserted into the RIF cache:

RIF: rcvd XID response from 9000.5a59.04f9

The following line shows that the router sent an XIBp@nse to this address:

SR1: sent XID response to 9000.5a59.049

Table 2-58 explains the other possible linegetfug rif output.

Debug Commands 2-191

debug rif

Table 2-58 Debug RIF Field Descriptions—Part 2
Field Description
RIF: L Sending XID foraddress The router/bridge wanted to send a packet to

addressbut did not find it in the RIF cache. It sent
an XID explorer packet to determine which RIF it
should use. The ainpted packet is dropped.

RIF:

L No buffer for XID toaddress

Similar to the previous description; however, a
buffer in which to build the XID packet could not
be obtained.

RIF:

U remote rif too smallrf]

A packet’s RIF was too short to be valid.

RIF:

U rejaddresgtoo big Fif]

A packet’s RIF exceeded the maximum size
allowed and was rejected. The maximum size is
18 bytes.

RIF:

U upd interfaceddress

The RIF entry for this router/bridge’s interface has
been updated.

RIF:

U ignaddresdnterface update

A RIF entry that would have updated an interface
corresponding to one dhis router’s interfaces.

RIF: U addaddresqrif] The RIF entry foaddresshas been added to the
RIF cache.

RIF: U no memory to add rif faxddress No memory to add a RIF entry faddress

RIF: removing rif entry fomddresstype code The RIF entry fomddresshas been forcibly
removed.

RIF: flushedaddress The RIF entry fomddresshas been removed
because of a RIF cache flush.

RIF: expiredaddress The RIF entry fomddresshas been aged out of the

RIF cache.

2-192 Debug Command Reference

debug sdlc

debug sdic

Use thedebug sdIcEXEC command to display information on Synchronous Data Link Control
(SDLC) frames received and sent by any router serial interface involsegporting SDLC end
station functions. Thao form of this command disables debugging output.

debug sdlc
no debug sdlc

Syntax Description
This command has no arguments or keywords.

Command Mode
EXEC

Usage Guidelines

Because using this command is processor intensive, it is best to use it after hours, rather than in a
production environment. It is also best to turn this command on by itself, rather than use it in
conjunction with othedebug commands.

Sample Display
Figure 2-107 shows sampiiebug sdlcoutput.

Figure 2-107 Sample Debug SDLC Output
router# debug sdic

SDLC: Sending RR at location 4

Serial3: SDLC O (12495952) C2 CONNECT (2) RR P/F 6

Serial3: SDLC | (12495964) [C2] CONNECT (2) RR P/F 0 (R) [VR: 6 VS: 0]
Serial3: SDLC T [C2] 12496064 CONNECT 12496064 0

SDLC: Sending RR at location 4

Serial3: SDLC O (12496064) C2 CONNECT (2) RR P/F 6

Serial3: SDLC | (12496076) [C2] CONNECT (2) RR P/F 0 (R) [VR: 6 VS: 0]
Serial3: SDLC T [C2] 12496176 CONNECT 12496176 0

Explanations for individual lines of output from Figure 2-107 follow.

The following line of output indicates that the router is sending a Receiver Ready packet at
location 4 in the code:

SDLC: Sending RR at location 4

The following line of output describes a frame input event:

Serial3: SDLC O (12495952) C2 CONNECT (2) RR P/F 6

Table 2-59 describes the fields in this line of output.

Debug Commands 2-193

debug sdlc

Table 2-59 Debug SDLC Field Descriptions for a Frame Output Event

Field Description

Serial3 Interface type and umitimber reportinghe frame
event.

SDLC Protocol providing the information.

o Command mode of frame event. Possible values
follow:
I—Frame input

O—Frame output
T—T1 timer expired

(12495952) Currertimer value.

Cc2 SDLC address of the SDLC connection.

CONNECT State ofhe protocol when the frame event
occurred. Possible values follow:
CONNECT
DISCONNECT

DISCSENT (disconnect sent)
ERROR (FRMR frame sent)
REJSENT (reject frame sent)
SNRMSENT (SNRM frame sent)

USBUSY
THEMBUSY
BOTHBUSY
) Size of the frame (in bytes).
RR Frame type name. Possible values follow:

DISC—Disconnect

DM—Disconnect mode
FRMR—Frame reject
IFRAME—Information frame
REJ—Reject

RNR—Receiver not ready
RR—Receiver ready

SIM—Set Initialization mode command
SNRM—Set Normal Response Mode
TEST—Test frame
UA—Unnumbered acknowledgment
XID—EXchange ID

2-194 Debug Command Reference

debug sdlc

Field Description

P/F Poll/Final bit indicator. Possible values follow:
F—Final (printed for Response frames)
P—~Poll (printed for Command frames)

P/F—Poll/Final (printed for RR, RNR and REJ
frames, which can be either Command or Response
frames)

6 Receive count; range: 0-7.

The following line of output describes a frame input event:
Serial3: SDLC | (12495964) [C2] CONNECT (2) RR P/F 0 (R) [VR: 6 VS: 0] rfp: P

In addition to the fields described in Table 2-59, output for a frame input event also includes two
additional fields, as described in Table 2-60.

Table 2-60 Debug SDLC Field Descriptions Unique to a Frame Input Event
Field Description
(R) Frame Type:

C—Command
R—Response

VR: 6 Receive count; range: 0-7.
VS: 0 Send count; range: 0-7.
fp: P Ready for poll;

P —Idle poll (keepalive) timer is on.
T—Data acknowledgment timer is on.
These timers are based on the T1 timer.

VS: 0 Send count; range: 0—7.

Debug Commands 2-195

debug sdlc

The following line of output describes a frame timer event:

Serial3: SDLC T [C2] 12496064 CONNECT 12496064 0

Table 2-61 describes the fields in this line of output.

Table 2-61 Debug SDLC Field Descriptions for a Timer Event

Field Description

Serial3: Interface type and umittmber reportinghe frame
event.

SDLC Protocol providing the information.

T The timer has expired.

[C2] SDLC address of this SDLC connection.

12496064 System clock.

CONNECT State ofhe protocol when the frame event
occurred. Possible values follow:
BOTHBUSY
CONNECT
DISCONNECT
DISCSENT (disconnect sent)
ERROR (FRMR frame sent)
REJSENT (reject frame sent)
SNRMSENT (SNRM frame sent)
THEMBUSY
BOTHBUSY

12496064 Top timer.

0 Retry count; default: 0.

2-196 Debug Command Reference

debug sdic local-ack

debug sdic local-ack

Use thedebug sdlic local-ackEXEC command to display information on the local acknowledgment
feature. Theno form of this command disables debugging output.

debug sdic local-ac{numbet
no debug sdlc local-acfnumbet

Syntax Description

number (Optional) Frame type that you want to monitor. Refer to
the “Usage Guidelines” section.

This command has no arguments or keywords.

Command Mode
EXEC

Usage Guidelines

You can select the frame types you want to monitor; the frame types corresponagsbitdu can

select 1, 2, 4, or 7, which is the decimal value of the bit flag settings. If you select 1, the octet is set
to 00000001. If you select 2, the octet is set to 0000010. If you select 4, the octet is set to 00000100.
If you want to select all frame types, select 7; the octet is 00000111. The default is 7 for all events.

Table 2-62 defines these bit flags.

Table 2-62 Debug SDLC Local-Ack Debugging Levels

Debug Command Meaning

debug sdlc local-ack 1 Only U-Frame events

debug sdlc local-ack 2 Only I-Frame events

debug sdlc local-ack 4 Only S-Frame events

debug sdlc local-ack 7 All SDLC Local-Ack events (default setting)

Caution Because using this command is processor intensive, it is best to use it after hours, rather
than in a production environment. It is also best to use this command by itself, rather than in
conjunction with other debugging commands.

Sample Display
Figure 2-108 shows sampiiebug sdlc local-ackoutput.

Debug Commands 2-197

debug sdlc local-ack

Figure 2-108 Sample Debug SDLC Local-Ack Output

router# debug sdlc local-ack 1

Group of —— SLACK (Serial 3): Input = Network, LinkupRequest
associated SLACK (Serial3): Od State = Await Sdl cOpen New State = Await Sdl cQpen
operations .
P SLACK (Serial 3): Qutput = SDLC, SNRM
SLACK (Serial 3): Input = SDLC, UA
SLACK (Serial3): AOd State = Await Sdl cOpen New State = Active
o
©
SLACK (Serial 3): Qutput = Network, LinkResponse §,

Explanations for individual lines of output from Figure 2-108 follow.
The first line shows the input to the SDLC local acknowledgment state machine:

SLACK (Serial3): Input = Network, LinkupRequest

Table 2-63 describes the fields in this line of output.

Table 2-63 Debug SDLC Local-Ack Field Descriptions

Field Description

SLACK The SDLC local acknowledgment teiee is providing the
information.

(Serial3): Interface type and umittmber reportinghe event.

Input = Network The source of the input.

LinkupRequest The op code. A LinkupRequest isxan®le of possible values.

The second line shows the change in the SDLC local acknowledgment state machine. In this case
the AwaitSdIicOpen state is an internal state that has not changed while this display was captured.

SLACK (Serial3): Old State = AwaitSdlcOpen New State = AwaitSdlcOpen

The third line shows the output from the SDLC local acknowledgment state machine:

SLACK (Serial3): Input = Network, LinkupRequest

2-198 Debug Command Reference

debug sdllc

debug sdllc

Use thedebug sdllcEXEC command to display information about data link layer frames transferred
between a device on a Token Ring and a device on a serial line via a router configured with the
SDLLC feature. Theo form of this command disables debugging output.

debug sdllc
no debug sdllc

Syntax Description
This command has no arguments or keywords.

Command Mode
EXEC

Usage Guidelines

The SDLLC feature translates between the SDLC link layer protocol used to communicate with
devices on a serial line and the LLC2 link layer protocol used to communicate with devices on a
Token Ring.

The router configured with the SDLLC feature must be attached to the serial line. The router sends
and receives frames on behalf of the serial device on the attached serial line but acts as an SDLC
station.

The topology between the router configured with the SDLLC feature and the Token Ring is network
dependent and is not limited by the SDLLC feature.

Sample Display
Figure 2-109 shows sampdebug sdllcoutput between link layer peers from the perspective of the
SDLLC-configured router.

Figure 2-109 Sample Debug SDLLC Output
router# debug sdlic

SDLLC: rx explorer rsp, da 4000.2000.1001, sa C000.1020.1000, rif
8840.0011.00A1.0050

SDLLC: tx short xid, sa 4000.2000.1001, da C000.1020.1000, rif
88C0.0011.00A1.0050, dsap 4 ssap 4

SDLLC: tx long xid, sa 4000.2000.1001, da C000.1020.1000, rif
88C0.0011.00A1.0050, dsap 4 ssap 4

Rcvd SABME/LINKUP_REQ pak from TR host

Debug Commands 2-199

debug sdllc

Table 2-64 describes significant fields shown in Fig#E09:

Table 2-64 Debug SDLLC Field Descriptions

Field Description

rx Router receives message from the FEP.

explorer rsp Response to an explorer (TEST) frame previously sent by the router to
FEP.

da Destination address. This is the address of the router receiving the
response.

sa Source address. This is the address of the FEP sending the response to
the router.

rif Routing information field.

tx Router sent message to the FEP.

short xid Router sent the null XID to the FEP.

dsap Destination service access point

ssap Source service access point.

tx long xid Router sent the XID type 2 to the FEP.

Rcvd Router received Layer 2 message from the FEP.

SABME/LINKUP_REQ Set asynchronous Balanced M&aé&nded command.

The following line indicates that an explorer frame response was received by the router at address
4000.2000.1001 from the FEP at address C000.1020.1000 with the specified RIF. The original
explorer sent to the FEP from the router is not monitored as part déliug sdllccommand.

SDLLC: rx explorer rsp, da 4000.2000.1001, sa C000.1020.1000, rif
8840.0011.00A1.0050

The following line indicates that the router sent the null XID (Type 0) to the FEP. The debugging
information does not include the response to the XID message sent by the FEP to the router.

SDLLC: tx short xid, sa 4000.2000.1001, da C000.1020.1000, rif
88C0.0011.00A1.0050, dsap 4 ssap 4

The following line indicates that the router sent the XID command (Format O Type 2) to the FEP:

SDLLC: tx long xid, sa 4000.2000.1001, da C000.1020.1000, rif
88C0.0011.00A1.0050, dsap 4 ssap 4

The following line is the SABME response to the XID command previously sent by the router to the
FEP:

Rcvd SABME/LINKUP_REQ pak from TR host

2-200 Debug Command Reference

debug serial interface

debug serial interface

Use thedebug serial interfaceEXEC command to display information on a serial connection
failure. Theno form of this command disables debugging output.

debug serial interface
no debug serial interface

Syntax Description
This command has no arguments or keywords.

Command Mode
EXEC

Usage Guidelines

If the show interfaceserial command shows that the line and protocol are down, you can use the

debug serial interfacecommand to isolate a timing problem as the cause of a connection failure. If
the keepalive values in the mineseq, yourseen, and myseen fields are not incrementing in each

subsequent line of output, there is a timing or line problem at one end of the connection.

Note While thedebug serial interfacecommand typically does not generate a lot of output,
nevertheless use it cautiously during production hours. When SMDS is enabled, for example, it can
generate considerable output.

The output of thelebug serial interfacecommand can vary, depending on the type of WAN
configured for an interface: Frame Relay, HDLC, HSSI, SMDS, or X.25. The output also can vary
depending on the type of encapsulation configured for that interface. The hardware platform also can
affectdebug serial interfaceoutput.

The following sectionshow sampleebug serial interfacedisplays for various configurations and
describe the possible output the command can generate for these configurations.

Debug Serial Interface for Frame Relay Encapsulation

The following message is displayed if the encapsulation for the interface is Frame Relay (or HDLC)
and the router attempts to send a packet containing an unknown packet type:

lllegal serial link type code xxx

Debug Commands 2-201

debug serial interface

Debug Serial Interface for HDLC

Figure 2-110 shows sampliebug serial interfaceoutput for an HDLC connection when
keepalives are enabled.

Figure 2-110 Sample Debug Serial Interface Output for HDLC
router# debug serial interface

Serial 1: HDLC nyseq 636119
Serial 1: HDLC nyseq 636120,
Serial 1: HDLC nyseq 636121
Serial 1: HDLC nyseq 636122
Serial 1: HDLC nyseq 636123,
Serial 1: HDLC nyseq 636124
Serial 1: HDLC nyseq 636125
Serial 1: HDLC nyseq 636126,

neseen 636119, yourseen 515032, |ine up
neseen 636120, yourseen 515033, |ine up
neseen 636121, yourseen 515034, |ine up
neseen 636122, yourseen 515035, |ine up
neseen 636123, yourseen 515036, |ine up
neseen 636124, yourseen 515037, line up
neseen 636125, yourseen 515038, |ine up
neseen 636126, yourseen 515039, |ine up

33333333

Serial1: HDLC nyseq 636127, nmineseen 636127, yourseen 515040, |ine up

1 missed Serial 1. HDLC[nyseq 636128, m neseen 636127, |yourseen 515041, |ine up
keepalive Serial 1: HDLC myseq 636129, m neseen 636129, yourseen 515042, line up

. Serial1l: HDLC nyseq 636130, mi neseen 636130, yourseen 515043, |line up
3 n“SS?d —Serial1: HDLC nyseq 636131, nineseen 636130, | yourseen 515044, |ine up
keepalives; |serial 1: HDLC nyseq 636132, mineseen 636130, | yourseen 515045, |ine up
line goes Serial 1: HDLC nyseq 636133, mnineseen 636130, | yourseen 515046,
down and Serial 1: HDLC nyseq 636127, mi neseen 636127, yourseen 515040, line up
interface is Ser?all: HDLC nyseq 636128, njneseen 636127, yourseen 515041, I?ne up §
reset Seriall: HDLC nyseq 636129, mineseen 636129, yourseen 515042, line up »

In Figure 2-110, thelebug serial interfacedisplay shows that the remote router is not receiving all
the keepalives the router is sending. When the difference in the values in the myseq and mineseen
fields exceeds three, the line goes down and the interface is reset.

Table 2-65 describes significant fields shown in Figure 2-110.

Table 2-65 Debug Serial Interface Field Descr iptions for HDLC

Field Description

Seriall Interface through whidhe serial connection is taking place.

HDLC The serial connection is an HDLC connection.

myseq 636119 The myseq counter increases by one each time the router sends a

keepalive packet to the remote router.

mineseen 636119 The value of the mineseen counter reflects the last myseq sequence
number the remote router has acknowledged receiving from the router.
The remote router stores this value in its yourseen counter and sends that
value in a keepalive packet to the router.

yourseen 515032 The yourseen counter reflects the value of the myseq sequence number
the router has received in a keepalive packet from the remote router.

line up The connection between the routers is maintained. Value changes to
“line down” if the values of the myseq and myseen fields in a keepalive
packet differ by more than three. Value returns to “line up” when the
interface is reset. If the line is in loopback mode, (“looped”) appears
after this field.

2-202 Debug Command Reference

debug serial interface

Table 2-66 describes additional error messages thaetheg serial interfacecommand can
generate for HDLC.

Table 2-66 Debug Serial Interface Error Messages for HDLC

Field Description

lllegal serial link type codgxx, PC This message is displayed if the router attempts to send a packet
= 0xnnnnnn containing an uknown packetype.

lllegal HDLC serial type codexx ~ This message is displayed if an unknown packet type is received.
PC = Oxnnnnn

Serial 0: attempting to restart This message is displayed periodically if the interface is down. The
hardware is then reset to hopefully correct the problem.

Serial 0: Received bridge packet This message is displayed if a bridge packet is received over a serial
sent tonnnnnnnnn interface configured for HDLC, and bridging is not configured on
that interface.

Debug Serial Interface for HSSI

On an HSSI interface, thdebug serial interfacecommand can generate the following additional
error message:

HSSIO: Reset from 0x nnnnnnn

This message indicates that the HSSI hardware has been resetnfihartvariable is the
address of the routine requesting that the hardware be reset; this value is useful only to development
engineers.

Debug Commands 2-203

debug serial interface

Debug Serial Interface for ISDN Basic Rate

Table 2-67 describes error messages thadiélibeig serial interfacecommand can generate for

ISDN Basic Rate.

Table 2-67

Debug Serial Interface Message Descriptions for ISDN Basic Rate

Message

Description

BRI: D-chan collision

A collision on the ISDN D-channel has occurred; the
software will retry transmission.

Received SID Loss of Frame Alignment int.

The ISDN hardware has lost frame alignment. This
usually indicates a problem with the ISDN network.

Unexpected IMP int: ipr = 0

The ISDN hardware received an unexpected interrupt.
The Oxnvariable indicates the value returned by the
interrupt register.

BRI(d): RX Frame Length Violation. Lengthr=
BRI(d): RX Nonoctet Aligned Frame

BRI(d): RX Abort Sequence

BRI(d): RX CRC Error

BRI(d): RX Overrun Error

BRI(d): RX Carrier Detect Lost

Any of these messages can be displayed when a
receive error occurs on one of the ISDN channels. The
(d) indicates which channel it is on. These messages
can indicate a problem with the ISDN network
connection.

BRIO: Reset from Oxnnnnnn

The BRI hardware has been reset. Thendxinnn

variable is the address of the routine that requested that
the hardware be reset; it is useful only to development
engineers.

BRI(d): Bad state in SCMs scmlxscm2 =x
scm3 =x

BRI(d): Bad state in SCONs sconkscon2 =
scon3 =

BRI(d): Bad state ub SCR; SCRx=

Any of these messages can be displayed if the ISDN
hardware is not in the proper state. The hardware is
then reset. If the message is displayed constantly, it
usually indicates a hardware problem.

BRI(d): lllegal packet encapsulationn=

This message is displayed if a packet is received, but
the encapsulation used for the packet is not recognized.
It can indicate that the interface is misconfigured.

2-204 Debug Command Reference

debug serial interface

Debug Serial Interface for an MK5025 Device

Table 2-68 describes the additional error messages thdéhiug serial interfacecommand can
generate for an KI5025device.

Table 2-68 Debug Serial Interface Message Descriptions for an MK5025 Device
Message Description
MK5(d): Reset from ORnnnnnnn This message indicates that the hardware has been reset. The

Oxnnnnnnrvariable is the address of the routine that requested
that the hardware be reset; it is useful only to development
engineers.

MK5(d): lllegal packet encapsulationr= This message is displayed if a packet is received, but the
encapsulation used for the packet is not recognized. Possibly
an indication that the interface is misconfigured.

MK5(d): No packet available for packet This message is displayed in cases where the serial driver
realignment attempted to get a buffer (memory) and was unable to do so.

MK5(d): Bad state in CSRO x) This message is displayed if the hardware is not in the proper
state. The hardware is then reset. If this message is displayed
constantly, it usually indicates a hardware problem.

MK5(d): New serial state i This message is displayed to indicate that the hardware has
interrupted the software. It displays the state that the hardware
is reporting.

MK5(d): DCD is down. If the interrupt indicates that the state of carrier has changed,

MKS5(d): DCD is up. oPeDnghese messages is displayed to indicate the current state
0 .

Debug Serial Interface for SMDS Encapsulation

When encapsulation is set to SMepug serial interfacedisplays SMDS packets that are sent
and received, as well as any error messages resulting from SMDS packet transmission.

The error messages that tebug serial interfacecommand can generate for SMDS follow.

The following message indicates that a new protocol requested SMDS to encapsulate the data for
transmission. SMDS is not yet able to encapsulate the protocol.

SMDS: Error on Serial 0, encapsulation bad protocol = X
The following message indicates that SMDS was asked to encapsulate a packet, but no

corresponding destination E.164 SMDS address was found in any of the static SMDS tables or in
the ARP tables:

SMDS send: Error in encapsulation, no hardware address, type = X
The following message indicates that a protocol such as CLNS or IP has been enabled on an SMDS
interface, but the corsponding multicast addsses have not been configured. Theariable

displays the link type for which encapsulation was requested. This value is only significant to Cisco
as an internal protocol type value.

SMDS: Send, Error in encapsulation, type= n

The following messages can occur when a corrupted packet is received on an SMDS interface. The
router expected, but received.

SMDS: Invalid packet, Reserved NOT ZERO, Xy

Debug Commands 2-205

debug serial interface

SMDS: Invalid packet, TAG mismatch Xy
SMDS: Invalid packet, Bad TRAILER length Xy

The following messages can indicate an invalid length for an SMDS packet:

SMDS: Invalid packet, Bad BA length X

SMDS: Invalid packet, Bad header extension length X
SMDS: Invalid packet, Bad header extension type X
SMDS: Invalid packet, Bad header extension value X

The following messages are displayed wherdéteug serial interfacecommand is enabled:

Interface Serial 0 Sending SMDS L3 packet:
SMDS: dgsize: xtype:0 xnsrc: ydst =z

If the debug serial interfacecommand is enabled, the following message can be displayed when a
packet is received on an SMDS interface, but the destination SMDS address does not match any on
that interface:

SMDS: Packet n, not addressed to us

2-206 Debug Command Reference

debug ser ial packet

debug serial packet

Use thedebug serial packeEXEC command to display more detailed serial interface debugging
information than you can obtain usidgbug serial interfacecommand. Tha&o form of this
command disables debugging output.

debug serial packet
no debug serial packet

Syntax Description
This command has no arguments or keywords.

Command Mode
EXEC

Usage Guidelines

Thedebug serial packettommand generates output that is dependent on the type of serial interface
and the encapsulation that is running on that interface. The hardware platform also cademmact
serial packetoutput.

Sample Display
Thedebug serial packetcommand displays output for only SMDS encapsulations.

Debug Serial Packet for SMDS Encapsulation

Figure 2-111 shows sample output when SMDS is enabled on the interface.

Figure 2-111 Sample Debug Serial Packet Output for SMDS
router# debug serial packet

Interface Serial2 Sending SMDS L3 packet:

SMDS Header : Id: 00 RSVD: 00 BEtag: EC Basize: 0044

Dest:E18009999999FFFF Src:C12015804721FFFF Xh:04030000030001000000000000000000
SMDS LLC : AA AA 03 00 00 00 80 38

SMDS Data : E1 19 01 00 00 80 00 00 OC 00 38 1F 00 OA 00 80 00 00 OC 01 2B 71

SMDS Data : 06 01 01 OF 1E 24 00 EC 00 44 00 02 00 00 83 6C 7D 00 00 00 00 00

SMDS Trailer : RSVD: 00 BEtag: EC Length: 0044

As Figure 2-111 shows, when encapsulation is set to SME&lsig serial packedisplays the entire
SMDS header (in hex), as well as some payload data on transmit or receive. This information is
useful only when you have an understanding of the SMDS protocol. The first line of the output
indicates either Sending or Receiving.

Debug Commands 2-207

debug source-bridge

debug source-bridge

Use thedebug source-bridgeEXEC command to display information about packets and frames
transferred across a source-route bridge.nichform of this command disables debugging output.

debug source-bridge
no debug source-bridge

Syntax Description
This command has no arguments or keywords.

Command Mode
EXEC

Sample Display

Figure 2-112 shows samplebug source-bridgeoutput for peer bridges using TCP as a transport
mechanism. The remote source-route bridging (RSRB) network configuration has ring 2 and ring 1
bridged together through remote peer bridges. The remote peer bridges are connected via a serial
line and use TCP as the transport mechanism.

Figure 2-112 Sample Debug Source-Bridge Output in TCP Environment
router# debug source-bridge

RSRB: remote explorer to 5/131.108.250.1/1996 srn 2 [C840.0021.0050.0000]
RSRB: Version/Ring XReq sent to peer 5/131.108.250.1/1996

RSRB: Received version reply from 5/131.108.250.1/1996 (version 2)

RSRB: DATA: 5/131.108.250.1/1996 Ring Xchg Rep, trn 2, vrn 5, off 18, len 10
RSRB: added bridge 1, ring 1 for 5/131.108.240.1/1996

RSRB: DATA: 5/131.108.250.1/1996 Explorer trn 2, vrn 5, off 18, len 69
RSRB: DATA: 5/131.108.250.1/1996 Forward trn 2, vrn 5, off O, len 92

RSRB: DATA: forward Forward srn 2, br 1, vrn 5 to peer 5/131.108.250.1/1996

Explanations for individual lines of ouptut in Figure 2-112 follow.

The following line indicates that a remote explorer frame has been sent to IP address 131.108.250.1
and like all RSRB TCP connections, has been assigned port 1996. The bridge belongs to ring
group 5. The explorer frame originated from ring number 2. The routing information field (RIF)
descriptor has been generated by the local station and indicates that the frame was sent out via
bridge 1 onto virtual ring 5.

RSRB: remote explorer to 5/131.108.250.1/1996 srn 2 [C840.0021.0050.0000]

The following line indicates that a request for remote peer information has been sent to IP address
131.108.250.1, TCP port 1996. The bridge belongs to riogpg5.

RSRB: Version/Ring XReq sent to peer 5/131.108.250.1/1996

The following line is the response to the version request previously sent. The response is sent from
IP address 131.108.250.1, TCP port 1996. The bridge belongs to ring group 5.

RSRB: Received version reply from 5/131.108.250.1/1996 (version 2)

2-208 Debug Command Reference

debug sour ce-bridge

The following line is the response to the ring request previously sent. The response is sent from IP
address 131.10850.1, TCHort 1996. The target ring number is 2, virtual ring number is 5, the
offset is 18, and the length of the frame is 10 bytes.

RSRB: DATA: 5/131.108.250.1/1996 Ring Xchg Rep, trn 2, vrn 5, off 0, len 10
The following line indicates that bridge 1 and ring 1 were added to the source-bridge table for IP
address 131.10850.1, TCHort 1996.

RSRB: added bridge 1, ring 1 for 5/131.108.250.1/1996
The following line indicates that a packet containing an explorer frame came across virtual ring 5

from IP address 131.108.250.1, TCP port 1996. The packet is 69 bytes in length. This packet is
received after the Ring Exchange information was received and updated on both sides.

RSRB: DATA: 5/131.108.250.1/1996 Explorer trn 2, vrn 5, off 18, len 69

The following line indicates that a packet containing data came across virtual ring 5 from IP address
131.108.250.1 over TCP port 1996. The packet is being placed on the local target ring 2.The packet
is 92 bytes in length.

RSRB: DATA: 5/131.108.250.1/1996 Forward trn 2, vrn 5, off 0, len 92

The following line indicates that a packet containing data is being forwarded to the peer that has IP
131.108.250.1 address belonging to local ring 2 and bridge 1. The packet is forwarded via virtual
ring 5. This packet is sent after the Ring Exchange information was received and updated on both
sides.

RSRB: DATA: forward Forward srn 2, br 1, vrn 5 to peer 5/131.108.250.1/1996
Figure 2-113 shows samplebug source-bridgeoutput for peer bridges using direct encapsulation
as a transport mechanism. The RSRB network configuration has ring 1 and ring 2 bridged together

through peer bridges. The peer bridges connected via a serial line and use TCP as the transport
mechanism.

Figure 2-113 Sample Debug Source-Bridge Output in Direct Encapsulation Environment
router# debug source-bridge

RSRB: remote explorer to 5/Seriall srn 1 [C840.0011.0050.0000]
RSRB: Version/Ring XReq sent to peer 5/Seriall

RSRB: Received version reply from 5/Seriall (version 2)

RSRB: IFin: 5/Seriall Ring Xchg, Rep trn 0, vrn 5, off 0, len 10
RSRB: added bridge 1, ring 1 for 5/Seriall

Explanations for individual lines of output in Figure 2-113 follow.

The following line indicates that a remote explorer frame was sent to remote peer Seriall, which
belongs to ring group 5. The explorer frame originated from ring number 1. The routing information
field (RIF) descriptor 0011.0050 was generatethisylocal station and indicates that the frame was
sent out via bridge 1 onto virtual ring 5.

RSRB: remote explorer to 5/Seriall srn 1 [C840.0011.0050.0000]

The following line indicates that a request for remote peer information was sent to Seriall. The
bridge belongs to ring group 5.

RSRB: Version/Ring XReq sent to peer 5/Seriall

Debug Commands 2-209

debug source-bridge

The following line is the response to the version request previously sent. The response is sent from
Serial 1. The bridge belongs to ring group 5 and the version is 2.

RSRB: Received version reply from 5/Seriall (version 2)

The following line is the response to the ring request previously sent. The response is sent from
Seriall. The target ring number is 2, virtual ring number is 5, the offset is 0, and the length of the
frame is 39 bytes.

RSRB: IFin: 5/Seriall Ring Xchg Rep, trn 2, vrn 5, off 0, len 39

The following line indicates that bridge 1 and ring 1 were added to the source-bridge table for
Seriall.

RSRB: added bridge 1, ring 1 for 5/Seriall

2-210 Debug Command Reference

debug source event

debug source event

Use thedebug source evenEXEC command to display information on source-route bridging
activity. Theno form of this command disables debugging output.

debug source event
no debug source event

Syntax Description
This command has no arguments or keywords.

Command Mode
EXEC

Usage Guidelines
Output of thedebug source bridgecommand is identical to the output of this command.

Note In order to use thédebug source eventommand to display traffic source-routed through an
interface, you first must disable fast switching of SRB frames withahsource-bridge
route-cacheinterface configuration command.

Sample Display
Figure 2-114 shows sampiiebug source evenbutput.

Figure 2-114 Sample Debug Source Event Output
router# debug source event

RSRBO: forward (srn 5 bn 1 trn 10), src: 8110.2222.33c1 dst: 1000.5a59.04f9
[0800.3201.00A1.0050]
RSRBO: forward (srn 5 bn 1 trn 10), src: 8110.2222.33c1 dst: 1000.5a59.049
[0800.3201.00A1.0050]
RSRBO: forward (srn 5 bn 1 trn 10), src: 8110.2222.33c1 dst: 1000.5a59.04f9
[0800.3201.00A1.0050]
RSRBO: forward (srn 5 bn 1 trn 10), src: 8110.2222.33c1 dst: 1000.5a59.049
[0800.3201.00A1.0050]
RSRBO: forward (srn 5 bn 1 trn 10), src: 8110.2222.33c1 dst: 1000.5a59.04f9
[0800.3201.00A1.0050]

Table 2-69 describes significant fields shown in Figure 2-114.

Table 2-69 Debug Source Event Field Descriptions
Field Description
RSRBO: Indication that this RIF cache entry is for the Token Ring O interface, which

has been configured for remote source-route bridgBgB(, in ontrast,
would indicate that this RIF cache entry is for Token Ring 1, configured for
source-route bridging.)

Debug Commands 2-211

debug source event

Field Description

forward Forward (normal data) packet, in contrast to a control packet containing
proprietary Cisco bridging information.

srn 5 Ring number of the packet’s source ring.

bn 1 Bridge number of the briddleis packet traverses.

trn 10 Ring number of the packetarget ring.

src: 8110.2222.33c1 Source address of the route iRtRisache entry.

dst: 1000.5a59.04f9 Destination address of the route in this RIF cache entry.

[0800.3201.00A1.0050] RIF string in this RIF cache entry.

Examples of othedebug source evenmessages follow.

In the following example messages, SRB RSRB denotes a message associated with interface
Token Ringn. An n of 99 denotes the remote side of the network.

SRBnN: no path, s: <src MAC addr>d: <dst MAC addr>rif: <rif>

In the preceding example, a bridgeable packet came in on interface TokentRintpere was
nowhere to send it. This is most likely a configuration error. For example, an interface has source
bridging turned on, but it is not connected to another source bridging interface or a ring group.

In the following example, a bridgeable packet has been forwarded from Token Ritige target
ring. The two interfaces are directly linked.

SRBn: direct forward (srn <ring>bn <bridge>trn <ring>)

In the following examples, a proxy explorer reply was not generated because there was no way to
get to the address from this interface. The packet came from the node with the first <address>.

SRBn: br dropped proxy XID, <address> for <address>, wrong vring (rem)
SRBn: br dropped proxy TEST, <address> for <address>, wrong vring (rem)
SRBn: br dropped proxy XID, <address> for <address>, wrong vring (local)
SRBn: br dropped proxy TEST, <address> for <address>, wrong vring (local)
SRBn: br dropped proxy XID, <address> for <address>, no path

SRBn: br dropped proxy TEST, <address> for <address>, no path

In the following example, an approprigtexy explorereply was generated on behalf of the second
<address>. It is sent to the first <address>.

SRBn: br sent proxy XID, <address> for <address>[<rif>]
SRBn: br sent proxy TEST, <address> for <address>[<rif>]

The following example indicates that the broadcast bits were not set, or that the routing information
indicator on the packet was not set:

SRB<unit#>: illegal explorer, s: <srcMACaddr> d: <destMACaddr> rif:
<RIFstring>

The following example indicates that the direction bit in the RIF field was set, or that an odd packet
length was encountered. Such packets are dropped.
SRB<unit #>: bad explorer control, D set or odd
The following example indicates that a spanning exploredn@sped because the spanningapt
was not configured on the interface:

SRB<unit #>: span dropped, input off, s: <src mac addr> d: <dest mac addr>
rif: <rif string>

2-212 Debug Command Reference

debug source event

The following example indicates that a spanning explorer was dropped because it had traversed the
ring previously:

SRB<unit #>: span violation, s: <src mac addr> d: <dest mac addr> rif:

<rif string>
The following example indicates that an explorer was dropped because the maximum hop count
limit was reached on that interface:

SRB<unit #>: max hops reached - <hop cnt>, s: <src mac addr> d: <dest mac addr>

rif: <rif string>

The following example indicates that the ring exchange request was sent to the indicated peer. This
request tells the remote side which rings this node has and asks for a reply indicating which rings
that side has.

RSRB: sent RingXreq to <ring group>/<ip addr>
The following example indicates that a message was sent to the remote peer. The <label> variable
can be AHDR (active header), PHDR (passive header), HDR (normal header), or DATA (data

exchange), and <op> can be Forward, Explorer, Ring Xchg, Req, Ring Xchg, Rep, Unknown Ring
Group, Unknown Peer, or Unknown Target Ring.

RSRB: <label>: sent <op> to <ring group>/<ip addr>
The following example indicates that the remote bridge and ring pair were removed from or added
to the local ring group table because the remote peer changed:

RSRB: removing bn <bridge> rn <ring> from <ring group>/<ip addr>
RSRB: added bridge <bridge>, ring <ring> for <ring group>/<ip addr>

The following example shows miscellaneous remote peer connection establishment messages:

RSRB: peer <ring group>/<ip addr> closed [last state n]

RSRB: passive open <ip addr>(remote port) -> <local port>

RSRB: CONN: opening peer <ring group>/<ip addr>, attempt n

RSRB: CONN: Remote closed <ring group>/<ip addr> on open

RSRB: CONN: peer <ring group>/<ip addr> open failed, <reason>[code]

The following example shows that an explorer packet was propagated onto the local ring from the
remote ring group:

RSRBn: sent local explorer, bridge <bridge> trn <ring>, [rif]

The following messages indicate that the remote source-route bridging code found the packet was
in error:

RSRBn: ring group <ring group> not found
RSRBn: explorer rif [rif] not long enough

The following example indicates that a buffer could not be obtained for a ring exchange packet; this
is an internal error.

RSRB: couldn’t get pak for ringXchg

The following example indicates that a ring exchange packet was received that had an incorrect
length; this is an internal error.

RSRB: XCHG: reqg/reply badly formed, length <pak length>, peer <peer id>

The following example indicates that a ring entry was removed for the peer; the ring was possibly
disconnected from the network, causing the remote router to send an update to all its peers.

RSRB: removing bridge <br #> ring <ring #> from <peer name> <ring type>

Debug Commands 2-213

debug source event

The following example indicates that a ring entry was added for the specified peer; the ring was
possibly added to the network, causing the other router to send an update to all its peers.

RSRB: added bridge <br #>, ring <ring #> for <peer id>
The following example indicates that no memory was available to add a ring number to the ring
group specified; this is an internal error.

RSRB: no memory for ring element <ring group #>
The following example indicates that memory was corrupted for a connection block; this is an
internal eror.

RSRB: CONN: corrupt connection block
The following example indicates that a connector process started, but that there was no packet to
process; this is an internal error.

RSRB: CONN: warning, no initial packet, peer: <ip addr> <peer pointer>
The following example indicates that a packet was received with a version number different from
the one present on the router:

RSRB: IF New version. local=<local version #>, remote=<remote version>,
<pak op code> <peer id>

The following example indicates that a packet with a bad op code was received for a direct
encapsulation peer; this is an internal error.

RSRB: IFin: bad op <op code> (op code string) from <peer id>

The following example indicates that the virtual ring header will not fit on the packet to be sent to
the peer; this is an internal error:

RSRB: vrif_sender, hdr won't fit
The following example indicates that the specified peer is being opened. The retry count specifies
the number of times the opening operation is attempted.

RSRB: CONN: opening peer <peer id> <retry count>
The following example indicates that the router, configured for FST encapsulation, received a
version reply to the version request packet it had sent previously:

RSRB: FST Rcvd version reply from <peer id> (version #)
The following example indicates that the router, configured for FST encapsulation, sent a version
request packet to the specified peer:

RSRB: FST Version Request. op = <opcode>, <peer id>
The following example indicates that the router received a packet with a bad op code from the
specified peer; this is an internal error.

RSRB: FSTin: bad op <opcode> (op code string) from <peer id>
The following example indicates that the TCP connection between the router and the specified peer
is being aborted:

RSRB: aborting <ring group #>/<peer id> (vrtcpd_abort called)

2-214 Debug Command Reference

debug source event

The following example indicates that an attempt to establish a TCP connection to a remote peer
timed out:

RSRB: CONN: attempt timed out

The following example indicates that a packet was dropped because the ring group number in the
packet did not correlate with the ring groups configured on the router:

RSRB<unit #>: ring group <ring group #> not found

Debug Commands 2-215

debug span

debug span

Use thedebug spanEXEC command to display information on changes in the spanning-tree
topology when debugging a transparent bridge. fidieorm of this command disables debugging
output.

debug span
no debug span

Syntax Description
This command has no arguments or keywords.

Command Mode
EXEC

Usage Guidelines
This command is useful for tracking and verifying that the spanning-tree protocol is operating
correctly.

Sample Display—IEEE Spanning Tree
Sampledebug spanoutput for an IEEE BPDU packet follows:

ST: Ether4 0000000000000A080002A02D6700000000000A080002A02D6780010000140002000F00

Figure 2-115 shows the precedidgbug spanoutput broken up by fields and labeled to aid
documentation.

Figure 2-115 Sample Debug Span Output for an IEEE BPDU Packet

ST: Ether4 0000 00 00 00 000A 080002A02D67 00000000 000A 080002A02D67 80 01 0000 1400 0200 OF00
A B CDE F G H | J KL M N O

Table 2-70 describes significant fields shown in Figure 2-115.

Table 2-70 Debug Span Field Descriptions for an| EEE BPDU Packet
Field Description

ST: Indication that this is a spanning tree packet.

Ether4 Interface receiving the packet.

(A) 0000 Indication that this is an IEEE BPDU packet.

(B) 00 \ersion.

(C) o0 Command mode:

00 indicates config BPDU.
80 indicates the Topology Change Notification (TCN) BPDU.

(D) 00 Topology change acknowledgment:
00 indicates no change.
80 indicates a change notification.

2-216 Debug Command Reference

debug span

Field Description

(E) 000A Root priority.

(F) 080002A02D67 Root ID.

(G) 00000000 Root path cost (0 means theder of this BPDU packet is the root
bridge).

(H) 000A Bridge priority.

(1) 080002A02D67 Bridge ID.

(J) 80 Port priority.

(K) 01 Port No. 1.

(L) 0000 Message age in 256ths of a second (0 seconds, in this case).

(M) 1400 Maximum age in 256ths of a second (20 seconds, in this case).

(N) 0200 Hello time in 256ths of a second (2 seconds, in this case).

(O) OF00 Forward delay in 256ths of a second (15 seconds, in this case).

Sample Display—DEC Spanning Tree
Sampledebug spanoutput for a DEC BPDU packet follows:

ST: Ethernet4 E1190100000200000C01A2C90064008000000C0106CEOAO01050F1E6A

Figure 2-116 shows the precedidgbug spanoutput broken up by fields and labeled to aid
documentation.

Figure 2-116 =~ Sample Debug Span Output

E1 19 01 00 0002 00000C0O1A2C9 0064 0080 O0000CO106CE OA 01 05 OF 1E 6A
A B CDE F G H | J K LMNDO

S2576

Table 2-71 describes significant fields shown in Figure 2-116.

Table 2-71 Debug Span Field Descr iptions fora DEC BPDU Packet

Field Description

ST: Indication that this is a spanning tree packet.

Ethernet4 Interface receiving the packet.

(A) E1 Indication that this is a DEC BPDU packet.

(B) 19 Indication that this is a DEC Hello packet. Possible values are as
follows:

0x19—DEC Hello
0x02—Topology changeotification (TCN)

(C)o1 DEC version.
(D) 00 Flag that is a bit field with the following mapping:
1—TCN

2—TCN acknowledgment
8—Use short timers
(E) 0002 Root priority.

Debug Commands 2-217

debug span

Field

Description

(F) 00000C01A2C9

Root ID (MAC address).

(G) 0064

Root path cost (translated as 100 in decimal notation).

(H) 0080

Bridge priority.

() 00000C0106CE

Bdge ID.

(J) 0A

Port ID (in contrast to interface number).

(K) 01

Message age (in seconds).

(L) 05

Hello time (in seconds).

(M) OF

Maximum age (in seconds).

(N) 1E

Forward delay (in seconds).

(0) 6A

Not applicable.

2-218 Debug Command Reference

debug sse

debug sse

Use thedebug sseEXEC command to displaypformation for the Siton Switching Engine (SSE)

processor. Thao form of this command disables debugging output.

debug sse
no debug sse

Syntax Description
This command has no arguments or keywords.

Command Mode

EXEC

Usage Guidelines
By using thedebug ssecommand, you can observe statistics and counters maintained by the SSE.

Sample Display
Figure 2-117 shows sampliebug sseoutput.

Figure 2-117 Sample Debug SSE Output

router# debug sse

SSE:
SSE:
SSE:
SSE:
SSE:
SSE:
SSE:

SSE

Explanations for representative lines of output in Figure 2-117 follow.

IP number of cache entries changed 273 274

IP number of cache entries changed 273 274

bridging enabled

interface Ethernet0/0 icb 0x30 addr 0x29 status 0x21A040 protos 0x11
interface Ethernet0/1 icb 0x33 addr 0x29 status 0x21A040 protos 0x11
interface Ethernet0/2 icb 0x36 addr 0x29 status 0x21A040 protos 0x10
interface Ethernet0/3 icb 0x39 addr 0x29 status 0x21A040 protos 0x11

: interface Ethernet0/4 icb 0x3C addr 0x29 status 0x21A040 protos 0x10
SSE:
SSE:
SSE:

interface Ethernet0/5 icb 0x3F addr 0x29 status 0x21A040 protos 0x11
interface Hssi1/0 icb 0x48 addr 0x122 status 0x421E080 protos 0x11
cache update took 316ms, elapsed 320ms

The following line indicates that the SSE cache is being updated due to a change in the IP fast
switching cache:

SSE:

IP number of cache entries changed 273 274

The following line indicates that bridging functions were enabled on the SSE:

SSE:

bridging enabled

The following lines indicate that the SSE is now loaded with information about the interfaces:

SSE:
SSE:
SSE:
SSE:
SSE:
SSE:

SSE

interface Ethernet0/0 icb 0x30 addr 0x29 status 0x21A040 protos 0x11
interface Ethernet0/1 icb 0x33 addr 0x29 status 0x21A040 protos 0x11
interface Ethernet0/2 icb 0x36 addr 0x29 status 0x21A040 protos 0x10
interface Ethernet0/3 icb 0x39 addr 0x29 status 0x21A040 protos 0x11
interface Ethernet0/4 icb 0x3C addr 0x29 status 0x21A040 protos 0x10
interface Ethernet0/5 icb 0x3F addr 0x29 status 0x21A040 protos 0x11

: interface Hssil/0 icb 0x48 addr 0x122 status 0x421E080 protos Ox11

Debug Commands 2-219

debug sse

The following line indicates that the SSE took 316 ms of processor time to update the SSE cache.
The value of 320 ms represents the total time elapsed while the cache updates were performed.

SSE: cache update took 316ms, elapsed 320ms

2-220 Debug Command Reference

debug standby

debug standby

Use thadebug standbyEXEC command to display hot standby protocol state changeaofbem
of this command disabletebugging output.

debug standby
no debug standby

Syntax Description
This command has no arguments or keywords.

Command Mode
EXEC

Usage Guidelines

Thedebug standbycommand displays hot standby protocol state changes and debugging
information regarding transmission and receipt of hot standby protocol packets. Use this command
to determine whether hotastdby rouérs recognize one another and take the proper actions.

Sample Display
Figure 2-118 shows sampliebug standbyoutput.

Figure 2-118 Sample Debug Standby Output
router# debug standby

SB: EthernetO state Virgin -> Listen

SB: Starting up hot standby process

SB:EthernetO Hello in 198.92.72.21 Active pri 90 hel 3 hol 10 ip 198.92.72.29
SB:EthernetO Hello in 198.92.72.21 Active pri 90 hel 3 hol 10 ip 198.92.72.29
SB:EthernetO Hello in 198.92.72.21 Active pri 90 hel 3 hol 10 ip 198.92.72.29
SB:EthernetO Hello in 198.92.72.21 Active pri 90 hel 3 hol 10 ip 198.92.72.29

SB: EthernetO state Listen -> Speak

SB:EthernetO Hello out 198.92.72.20 Speak pri 100 hel 3 hol 10 ip 198.92.72.29
SB:EthernetO Hello in 198.92.72.21 Active pri 90 hel 3 hol 10 ip 198.92.72.29
SB:EthernetO Hello out 198.92.72.20 Speak pri 100 hel 3 hol 10 ip 198.92.72.29
SB:EthernetO Hello in 198.92.72.21 Active pri 90 hel 3 hol 10 ip 198.92.72.29
SB:EthernetO Hello out 198.92.72.20 Speak pri 100 hel 3 hol 10 ip 198.92.72.29
SB:EthernetO Hello in 198.92.72.21 Active pri 90 hel 3 hol 10 ip 198.92.72.29

SB: EthernetO state Speak -> Standby

SB:EthernetO Hello out 198.92.72.20 Standby pri 100 hel 3 hol 10 ip 198.92.72.29
SB:EthernetO Hello in 198.92.72.21 Active pri 90 hel 3 hol 10 ip 198.92.72.29
SB:EthernetO Hello out 198.92.72.20 Standby pri 100 hel 3 hol 10 ip 198.92.72.29
SB:EthernetO Hello in 198.92.72.21 Active pri 90 hel 3 hol 10 ip 198.92.72.29
SB:EthernetO Hello out 198.92.72.20 Standby pri 100 hel 3 hol 10 ip 198.92.72.29
SB:EthernetO Hello in 198.92.72.21 Active pri 90 hel 3 hol 10 ip 198.92.72.29

SB: Ethernet0 Coup out 198.92.72.20 Standby pri 100 hel 3 hol 10 ip 198.92.72.29
SB: EthernetO state Standby -> Active

SB:EthernetO Hello out 198.92.72.20 Active pri 100 hel 3 hol 10 ip 198.92.72.29
SB:EthernetO Hello in 198.92.72.21 Speak pri 90 hel 3 hol 10 ip 198.92.72.29
SB:EthernetO Hello out 198.92.72.20 Active pri 100 hel 3 hol 10 ip 198.92.72.29
SB:EthernetO Hello in 198.92.72.21 Speak pri 90 hel 3 hol 10 ip 198.92.72.29
SB:EthernetO Hello out 198.92.72.20 Active pri 100 hel 3 hol 10 ip 198.92.72.29

Debug Commands 2-221

debug standby

Table 2-72 describes significant fields shown in Figure 2-118.

Table 2-72 Debug Standby Field Descriptions

Field Description

SB An abbreviation for “standby.”

EthernetO The interface on which a hot standby packet was sent or received.
Hello in Hello packet received from the specified IP address.

Hello out Hello packet sent from the specified IP address.

pri Priority advertised in the hello packet.

hel Hello interval advertised in the hello packet.

hol Holddown interval advertised in the hello packet.

ip address Hot standby group IP address advertised in the hello packet.
state Transition from one state to another.

Coup outaddress Coup packet sent by the router from the specified IP address.

Explanations for representative lines of output in Figure 2-118 follow.

The following line indicates that the router is initiating the hot standby protocokt@hdby ip
interface configuration command enables hot standby.

SB: Starting up hot standby process

The following line indicates that a state transition occurred on the interface:

SB: EthernetO state Listen -> Speak

2-222 Debug Command Reference

debug stun packet

debug stun packet

Use thedebug stun packetEXEC command to display information on packets traveling through
the serial tunnel (STUN) links. Use the form of this command to disabtkebugging output.

debug stun packefgroup [addres$
no debug stun packefgroup| [addres$

Syntax Description

group (Optional) Decimal integer assigned to a group. Using this
option limits output to packets associated with the specified
STUN group.

address (Optional) Output is further limited to only those packets

containing the specified STUN address. Bddress
argument is in the appropriate format for the STUN
protocol running for the specifiedaup.

Command Mode
EXEC

Usage Guidelines

Because using this command is processor intensive, it is best to use it after hours, rather than in a
production environment. It is also best to turn this command on by itself, rather than use it in
conjunction with other debug commands.

Sample Display
Figure 2-119 shows sampliebug stun packetoutput.

Debug Commands 2-223

debug stun packet

Figure 2-119 Sample Debug STUN Packet Output
router# debug stun packet
X1 type .
of packet ‘*ISTUN sdl c: 0:00: 04 Ser!aIS NDI : (0C2/008) U:. SNRM PF: 1
STUN sdlc: 0:00: 04 Serial3 NDI : (0C2/008) U. SNRM PF: 1
STUN sdl c: 0:00:01 Serial3 SDI: (0C2/008) U UA PF: 1
X2type — STUN sdlc: 0:00:00 Serial 3 SDIi: (0C2/008) S: RR PF:1 NR 000
of packet STUN sdlc: 0:00:00 Serial3 SDIi: (0C2/008) S: RR PF:1 NR: 000
STUN sdl c: 0:00:00 Serial3 SDi: (0C2/008) S: RR PF:1 NR 000
STUN sdlc: 0:00:00 Serial3 SDl: (0C2/008) S: RR PF:1 NR 000
STUN sdl c: 0:00:00 Serial3 SDi: (0C2/008) S: RR PF:1 NR 000
STUN sdl c: 0:00:00 Serial3 SDi: (0C2/008) S: RR PF:1 NR 000
STUN sdlc: 0:00:00 Serial3 SDl: (0C2/008) S: RR PF:1 NR 000
STUN sdl c: 0:00: 00 Serial3 SDi: (0C2/008) S: RR PF:1 NR 000
STUN sdlc: 0:00: 00 Serial3 SDI: (0C2/008) S: RR PF:1 NR 000
STUN sdlc: 0:00:00 Serial3 SDl: (0C2/008) S: RR PF:1 NR 000
STUN sdlc: 0:00: 00 Serial3 SDl: (0C2/008) S RR PF:1 NR 000
X3tyPe —{STUN sdlc: 0:00: 00 Serial 3 NDI: (0C2/008) I: PF:1 NR 000 NS: 000
of packet STUN sdlc; 0:00:00 Serial 3 SDI . (0C2/008) T: PF.1 NR 001 NS 000
STUN sdl c: 0:00: 00 Serial3 SDI: (0C2/008) S: RR PF:1 NR 001
STUN sdl c: 0:00: 00 Serial3 SDI: (0C2/008) S: RR PF:1 NR 001
STUN sdlc: 0:00:00 Serial3 SDl: (0C2/008) S: RR PF:1 NR 001
STUN sdl c: 0:00: 00 Serial3 SDi: (0C2/008) S: RR PF:1 NR 001

Explanations for individual lines of output from Figure 2-119 follow.

The following line describes an X1 type of packet:

STUN sdlc: 0:00:04 Serial3

Table 2-73 describes significant fields shown in this lindeifug stun packetoutput.

Table 2-73

NDI: (0C2/008) U: SNRM PF:1

Debug STUN Packet Field Descriptions

Field

Description

STUN sdlc:

Indication that the STUN feature is providing the
information.

0:00:04

Time elapsed since receipt of previous packet.

Serial3

Interface type and umittmber reportinghe event.

NDI:

The type of cloud separating the SDe@d nodes.

Possible values follow:

NDI—Network input

SDI—Serial link

0C2

SDLC address of the SDLC connection.

008

A modulo value of 8.

2-224 Debug Command Reference

S2563

debug stun packet

Field Description

U:SNRM The frame type followed by the command or
response type. In this case it is an Unnumbered
frame that contains an SNRM (Set Normal
Response Mode) command. The possible frame
types are as follows:

|—Information frame

S—Supensory frame. The possible commands
and responses are: RR (Receive Ready), RNR
(Receive Not Ready), and REJ (Reject).

U—Unnumbered framé he possible commands
are: Ul (Unnumbered Information), SNRM,
DISC/RD (Disconnect/Request Disconnect),
SIM/RIM, XID Exchange ldentification), TEST.
The possible mponses are UA (unnumbered
acknowledgment), DM (Disconnected Mode), and
FRMR (Frame Reject Mode)

PF:1 Poll/Final bit.
0—Off
1—On

The following line of output describes an X2 type of packet:

STUN sdic: 0:00:00 Serial3 SDI: (0C2/008) S: RR PF:1 NR:000

All the fields in the previous line of output match those for an X1 type of packet, except the last field,
which is additional. NR:000 indicates a receive count of 0; the range for the receive countis 0 to 7.

The following line of output describes an X3 type of packet:

STUN sdic: 0:00:00 Serial3 SDI: (0C2/008) S:I PF:1 NR:000 NS:000

All fields in the previous line of output match those for an X2 type of packet, except the last field,
which is additional. NS:000 indicates a send count of 0; the range for the send countis O to 7.

Debug Commands 2-225

debug tftp

debug tftp

Use thedebug tftp EXEC command to display Trivial File Transfer Protocol (TFiI€)ugging
information when encountering problems netbooting or usingaghégure network or write
network commands. Thao form of this command disables debugging output.

debug tftp
no debug tftp

Syntax Description
This command has no arguments or keywords.

Command Mode
EXEC

Sample Display
Figure 2-120 shows sampdiebug tftp output from the EXEC commaraite network.

Figure 2-120 Sample Debug TFTP Output
router# debug tftp

TFTP: msclock 0x292B4; Sending write request (retry 0), socket_id 0x301DA8
TFTP: msclock 0x2A63C; Sending write request (retry 1), socket_id 0x301DA8
TFTP: msclock 0x2A6DC; Received ACK for block 0, socket_id 0x301DA8
TFTP: msclock 0x2A6DC; Received ACK for block 0, socket_id 0x301DA8
TFTP: msclock 0x2A6DC; Sending block 1 (retry 0), socket_id 0x301DA8
TFTP: msclock Ox2A6E4; Received ACK for block 1, socket_id 0x301DA8

Table 2-74 describes significant fields shown in the first line of output from FLED.

Table 2-74 Debug TFTP Field Descriptions

Message Descri ption

TFTP: This entry describes a TFTP packet.

msclock 0x292B4; Internal timekeeping clock (in milliseds).

Sending write request The TFTP operation.

(retry 0)

socket_id 0x301DA8 Unique memory address for the socket for the TFTP connection.

2-226 Debug Command Reference

debug token ring

debug token ring
Use thadebug token ringEXEC command to display messages about Token Ring interface activity.
Theno form of this command disableebugging output.

debug token ring
no debug token ring

Syntax Description
This command has no arguments or keywords.

Command Mode
EXEC

Usage Guidelines
This command reports several lines of information for each packet sent or received and is intended
for low traffic, detailed debugging.

The Token Ring interface records providéormaton regarding the current state of the ring. These
messages are only displayed whendbbug token eventcommand is enabled.

Thedebug token ringcommand invokes verbose Token Ring hardware debugging. This includes
detailed displays as traffic arrives and departs the unit.

Note It is best to use this command only on router/bridges with light loads.

Sample Display
Figure 2-121 shows sampdiebug token ring output.

Figure 2-121 Sample Debug T oken Ring Output
router# debug token ring

TRO: Interface is alive, phys. addr 5000.1234.5678

TRO: in: MAC: acfc: 0x1105 Dst: c000.ffff.ffff Src: 5000.1234.5678 bf: 0x45

TRO: in: riflen O, rd_offset 0, lic_offset 40

TRO: out: MAC: acfc: 0x0040 Dst: 5000.1234.5678 Src: 5000.1234.5678 bf: 0x00

TRO: out: LLC: AAAA0300 00009000 00000100 AAC00000 00000802 50001234 In: 28
TRO: in: MAC: acfc: 0x1140 Dst: 5000.1234.5678 Src: 5000.1234.5678 bf: 0x09

TRO: in: LLC: AAAA0O300 00009000 00000100 AACOB24A 4B4A6768 74732072 In: 28
TRO: in: riflen O, rd_offset 0, lic_offset 14

TRO: out: MAC: acfc: 0x0040 Dst: 5000.1234.5678 Src: 5000.1234.5678 bf: 0x00

TRO: out: LLC: AAAA0300 00009000 00000100 D1D00000 FE11E636 96884006 In: 28
TRO: in: MAC: acfc: 0x1140 Dst: 5000.1234.5678 Src: 5000.1234.5678 bf: 0x09

TRO: in: LLC: AAAA0300 00009000 00000100 D1D0774C 4DC2078B 3D000160 In: 28
TRO: in: riflen O, rd_offset 0, lic_offset 14

TRO: out: MAC: acfc: 0x0040 Dst: 5000.1234.5678 Src: 5000.1234.5678 bf: 0x00

TRO: out: LLC: AAAA0300 00009000 00000100 FBE00000 FE11E636 96884006 In: 28

Table 2-75 describes significant fields shown in the second line of output from Figure 2-121.

Debug Commands 2-227

debug token ring

Table 2-75 Debug Token Ring Field Descr iptions—Part 1

Message Descri ption

TRO: Name of the interface associated with the Token Ring event.

in: Indication of whether the packet was input to the interface (in) or output from

the interface (out).

MAC: The type of packet, as follows:
MAC—Media Access Control
LLC—Link Level Control

acfc: 0x1105 Access Control, Frame Control bytes, as defined by the IEEE 802.5 standard.
Dst: c000 fff. ffff Destination address of the frame.

Src: 5000.1234.5678 Souraddress of the frame.

bf: 0x45 Bridge flags for internal use by technical support staff.

Table 2-76 describes significant fields shown in the third line of output from Figure 2-121.

Table 2-76 Debug Token Ring Field Descr iptions—Part 2

Message Descr iption

TRO: Name of the interface associated with the Token Ring event.

in: Indication of whether the packet was input to the interface (in) or output from
the interface (out).

riflen O Length of the RIF field (in bytes).

rd_offset 0 Offset (in bytes) of the frame pointinghe start of the RIF field.

lic_offset 40 Offset in the frame pointing to the start of the LLC field.

Table 2-77 describes significant fields shown in the fifth line of output from Figure 2-121.

Table 2-77 Debug Token Ring Field Descr iptions—Part 3

Message Descr iption

TRO: Name of the interface associated with the Token Ring event.

out: Indication of whether the packet was input to the interface (in) or output from

the interface (out).

LLC: The type of frame, as follows:
MAC—Media Access Control
LLC—Link Level Control
AAAA0300 This and the octethat follow it indicate the contents (hex) of the frame.

In: 28 The length of the information field (in bytes).

2-228 Debug Command Reference

debug vines arp

debug vines arp

Use thedebug vines arpEXEC command to display debugging information on all Virtual
Integrated Network Service (VINES) Address Resolution Protocol (ARP) packets that the router
sends or receives. Tie form of this command disables debugging output.

debug vines arp
no debug vines arp

Syntax Description
This command has no arguments or keywords.

Command Mode
EXEC

Sample Display
Figure 2-122 shows sampliebug vines arpoutput.

Figure 2-122 Sample Debug VINES ARP Output
router# debug vines arp

VNSARP: received ARP type 0 from 0260.8c43.a7e4

VNSARP: sending ARP type 1 to 0260.8c43.a7e4

VNSARP: received ARP type 2 from 0260.8c43.a7e4

VNSARP: sending ARP type 3 to 0260.8c43.a7e4 assigning address 3001153C:8004

VSARP: received ARP type 0 from 0260.8342.1501

VSARP: sending ARP type 1 to 0260.8342.1501

VSARP: received ARP type 2 from 0260.8342.1501

VSARP: sending ARP type 3 to 0260.8342.1501 assigning address 3001153C:8005,
sequence 143C, metric 2

In Figure 2-122, the first four lines showman-sequenced ARP transaction and the second four lines
show a sequenced ARP transaction. Within thedirstp of bur lines, the first line shows that the

router received an ARP request (type 0) from indicated station address 0260.8c43.a7e4. The second
line shows that the router is sending back the ARP service response (type 1), indicating that it is
willing to assign VINES Internet addresses. The third line shows that the router received a VINES
Internet address assignment request (type 2) from address 0260.8c43.aTedtthiti@e shows

that the router is responding (type 3) to the address assignment request from the client and assigning
it the address 3001153C:8004.

Within the second group of four lines, the sequenced ARP packénelisdes the router’ current
sequence number and the metric value between the router and the client.

Table 2-78 describes significant fields shown in Figa#E22.

Debug Commands 2-229

debug vines arp

Table 2-78 Debug VINES ARP Field Descriptions

Field Description

VNSARP: Indicates that this is a Banyan VINES nonsequenced ARP message.
VSARP: Indicates that this is a Banyan VINES sequenced ARP message.
received ARP type 0 Indicates that an ARP request of type 0 was received. Possible type

values follow:

0—Query request. The ARP client broadcasts a type 0 message to
request an ARP service to respond.

1—Service response. The ARP service responds with a type 1 message
to an ARP client’s query request.

2—Assignment request. The ARP client responds to a service response
with a type 2 message to request a Banyan VINES Internet address.

3—Assignment response. The ARP servicponds to an assignment
request with a type 3 message that includes the assigned Banyan VINES
Internet address.

from 0260.8c43.a7e4 Indicates the source address of the packet.

2-230 Debug Command Reference

debug vines echo

debug vines echo

Use thedebug vines ech&eXEC command to display information on all MAC-level echo packets
that the router sends or receives. Banyan VINES interface t@stiggams rake use of these echo
packets. Thao form of this command disables debugging output.

debug vines echo
no debug vines echo

Syntax Description
This command has no arguments or keywords.

Note These echo packets do not include network layer addresses.

Command Mode
EXEC

Sample Display
Figure 2-123 shows sampliebug vines echmutput.

Figure 2-123 Sample Debug VINES Echo Output
router# debug vines echo
VINESECHO: 100 byte packet from 0260.8c43.a7e4

Table 2-79 describes the fields shown in FigRnE23.

Table 2-79 Debug VINES Echo Field Descriptions

Field Description

VINESECHO Indicatiorthat this is alebug vines echanessage.
100 byte packet Packet size in bytes.

from 0260.8c43.a7e4 Source address of the echo packet.

Debug Commands 2-231

debug vines ipc

debug vines ipc

Use thedebug vines ipdEXEC command to display information on all transactions that occur at the
VINES IPC layer, which is one of the two VINES transport layers.rfichiorm of this command
disables debugging output.

debug vines ipc
no debug vines ipc

Syntax Description
This command has no arguments or keywords.

Command Mode
EXEC

Usage Guidelines

You can use thdebug vines ipaccommand to discover why an IPC layer process on the router is not
communicating with another IPC layer process on another router or Banyan VINES server.

Sample Display
Figure 2-124 shows sampliebug vines ipcoutput for three pairs of transactions. For more
information about these fields or their values, refer to Banyan VINES documentation.

Figure 2-124 Sample Debug VINES IPC Output
router# debug vines ipc

VIPC: sending IPC Data to Townsaver port 7 from port 7
r_cid 0, |_cid 1, seq 1, ack 0, length 12

VIPC: received IPC Data from Townsaver port 7 to port 7
r_cid 51, |_cid 1, seq 1, ack 1, length 32

VIPC: sending IPC Ack to Townsaver port O from port O
r_cid 51, 1_cid 1, seq 1, ack 1, length O

Table 2-80 describes the fields shown in FigRnE24.

2-232 Debug Command Reference

debug vines ipc

Table 2-80 VINES IPC Field Descriptions
Field Description
VIPC: Indicates that this is output from tHebug vines ipacommand.

sending Indicates that the router is either sending an IPC packet to another router
or has received an IPC packet from another router.
IPC Data to Indicates the type of IPC frame:

Acknowledgment
Data

Datagram
Disconnect

Error

Probe

Townsaver port 7

Indicates the machine name as assigned using the MIBLES
command, or IP address of the other router. Also indicates the port on
that machine through which the packet has been transmitted.

from port 7

Indicates the port on the routenoiugh which the packet has been
transmitted.

r_cid 0, |_cid 1, seq 1, ack 0,
length 12

Indicates the values for various fields in the IPC layer header of this
packet. Refer to Banyan VINES documentation for more information.

Debug Commands 2-233

debug vines netrpc

debug vines netrpc

Use thedebug vines netrpcEXEC command to display information on all transactions that occur
at the VINES NetRPC layer, which is the VINES Session/Presentation layaroTaen of this
command disables debugging output.

debug vines netrpc
no debug vines netrpc

Syntax Description
This command has no arguments or keywords.

Command Mode
EXEC

Usage Guidelines

You can use théebug vines netrpccommand to discover why a NetRPC layer process on the router
is not communicating with another NetRPC layer process on another router or Banyan server.

Sample Display
Figure 2-125 shows sampliebug vines netrpooutput. For more information about these fields or
their values, refer to Banyan VINES documentation.

Figure 2-125 Sample Debug VINES NetRPC Output
router# debug vines netrpc

VRPC: sending RPC call to Townsaver
VRPC: received RPC return from Townsaver

Table 2-81 describes the fields shown in the first line of output in Figure 2-125.

2-234 Debug Command Reference

debug vines netrpc

Table 2-81 Debug VINES NetRPC Field Descriptions
Field Description
VRPC: Indicates that this is outpubfn thedebug vines netrpccommand.
sending RPC Indicates that the router is either sending a NetRPC packet to another
router or has received a NetRPC packet from another router.
call Indicates the transaction type:
abort
call
reject
return
return address
search
search all
Townsaver Indicates the machine name as assigned using the WosSE®mmand

or IP address of the other router.

Debug Commands 2-235

debug vines packet

debug vines packet

Use thedebug vines packeEXEC command to display general VINB8bugging information.
This information includes packets received, generated, and forwarded, as well as failed access
checks and other operations. Tieform of this command disables debugging output.

debug vines packet
no debug vines packet

Syntax Description
This command has no arguments or keywords.

Command Mode
EXEC

Sample Display
Figure 2-126 shows sampliebug vines packebutput.

Figure 2-126 =~ Sample Debug VINES Packet Output
router# debug vines packet

VINES: s=30028CF9:1 (Ether2), d=FFFFFFFF:FFFF, rcvd w/ hops 0

VINES: s=3000CBD4:1 (Etherl), d=3002ABEA:1 (Ether2), g=3002ABEA:1, sent
VINES: s=3000CBD4:1 (Etherl), d=3000B959:1, rcvd by gw

VINES: s=3000B959:1 (local), d=3000CBD4:1 (Etherl), g=3000CBD4:1, sent

The following information describes selected lines of output from Figure 2-126.

Table 2-82 describes the fields shown in the first line of output.

Table 2-82 Debug VINES Packet Field Descr iptions

Field Description

VINES: Indicates that this is a Banyan VINES packet.

s = 30028CF9:1 Indicatesmurce address of the packet.

(Ether2) Indicates the interface through which the packet was received.

d = FFFFFFFF:FFFF Indicates that the destination is a broadcast address.

rcvd w/ hops 0 Indicates that the packet was received because it was a local broadcast packet.

The remaining hop count the packet was zero (0).

2-236 Debug Command Reference

debug vines packet

In the following line, the destination is the addra882ABEA:1 associated with interface Ether2.
Source address 3000CBD4ént a packet to this destination through the gateway at address
3000ABEA:1.

VINES: s=3000CBD4:1 (Etherl), d=3002ABEA:1 (Ethernet2), g=3002ABEA:1, sent

In the following line, the router being debugged is the destination address €5300B
VINES: s=3000CBD4:1 (Etherl), d=3000B959:1, rcvd by gw

In the following line, (local) indicates that the router being debugged generated the packet:

VINES: s=3000B959:1 (local), d=3000CBD4:1 (Etherl), g=3000CBD4:1, sent

Debug Commands 2-237

debug vines routing

debug vines routing

Use thedebug vines routingEXEC command to display information on all VINES RTP update
messages sent or received and all routing table activities that occur in the routerfarheof this
command disables debugging output.

debug vines routing[verbosd
no debug vines routing

Syntax Description

verbose (Optional) Provides detailed information about the contents
of each update.

Command Mode
EXEC

Sample Displays
Figure 2-127 shows sampiiebug vines routingoutput.

Figure 2-127 Sample Debug VINES Routing Output

rout er# debug vines routing

VSRTP: generating change update, sequence nunber 0002C791
Update sent —ysgrTP: sent update to Broadcast on HssiO |
. _1{ VSRTP: received update from LabRouter on Hssi 0]
Update received VSRTP: LabRout er- HsO- HDLC up -> up, change update, onenore
VRTP: sendi ng update to Broadcast on EthernetO
VSRTP: generating null update
VSRTP: Sending update to Al oe on HssiO

S2854

Figure 2-128 shows sampliebug vines routing verboseutput.

Figure 2-128 Sample Debug VINES Routing Ver bose Output
router# debug vines routing verbose

VRTP: sending update to Broadcast on Ethernet0
network 30011E7E, metric 0020 (0.4000 seconds)
network 30015800, metric 0010 (0.2000 seconds)
network 3003148A, metric 0020 (0.4000 seconds)

VSRTP: generating change update, sequence number 0002C795
network Router9 metric 0010, seq 00000000, flags 09
network RouterzZz metric 0230, seq 00052194, flags 02

VSRTP: sent update to Broadcast on Hssi0

VSRTP: received update from LabRouter on HssiO
update: type 00, flags 07, id 000E, ofst 0000, seq 15DFC, met 0010
network LabRouter from the server
network Router9 metric 0020, seq 00000000, flags 09

VSRTP: LabRouter-Hs0-HDLC up -> up, change update, onemore

Figure 2-128 describes two VINES routing updates; the first includes two entries and the second
includes three entries. The following information describes selected lines of output.

2-238 Debug Command Reference

debug vines routing

The following line shows that the router sent a periodic routing update to the broadcast address
FFFFFFFF:FFFF through the EthernetO interface:

VRTP: sending update to Broadcast on Ethernet0

The following line indicates that the router knows how to reach net@@PR1E7E, which is a
metric of 0020 away from the router. The value that follows the metric (0.4000 seconds) interprets
the metric in seconds.

network 30011E7E, metric 0020 (0.4000 seconds)

The following lines show that the router sent a change routing update to the Broadcast addresses on
the HssiO interface using the Sequenced Routing Update Protocol (SRTP) routing protocol:

VSRTP: generating change update, sequence number 0002C795
VSRTP: Sending update to Broadcast on HssiO

The lines in between the previous two indicate that the router knows how to reach network Router9,
which is a metric of 0010 (0.2000 seconds) away from the router. The sequence number for Router9
is zero, and according to the 0x08 bit in the flags field, is invalid. The 0x01 bit of the flags field
indicates that Router9 is attached via a LAN interface.

network Router9 metric 0010, seq 00000000, flags 09
The next lines indicate that the router can reach network RouterZZ, which is a metric of 0230

(7.0000 seconds) away from the router. The sequence number for Routéfx2194 The 0x02
bit of the flags field indicates that RouterZZ is attached via a WAN interface.

network RouterzZZ metric 0230, seq 00052194, flags 02
The following line indicates that the router received a routing update from the router LabRouter
through the HssiO interface:

VINESRTP: received update from LabRouter on Hssi0
The following line displays all SRTP values contained in the header of the SRTP packet. This is a
type 00 packet, which is a routing update, and the flags field is set to 07, indicating that this is a
change update (0x04) and contains both the beginning (0x01) and end (0x02) of the update. This
overall update is update number O00E from the router, and this fragment of the update contains the

routes beginning at offset 0000 of the update. The sending router’s sequence number is currently
00015DFC, and its configured metric for this interface is 0010.

update: type 00, flags 07, id O00E, ofst 0000, seq 00015DFC, met 0010
The following line implies that the server sending this update is directly accessible to the router

(even though VINES servers do not explicitly list themselves in routing updates). Because this is an
implicit entry in the table, the other information for this entry is taken from the previous line.

network LabRouter from the server
As the first actual entry in the routing update from LabRouter, the following line indicates that

Router9 can be reached by sending to this server. This network is a metric of 0020 away from the
sending server.

network Router9 metric 0020, seq 00000000, flags 09

Debug Commands 2-239

debug vines service

debug vines service

Use thedebug vines servicEXEC command to display information on all transactions that occur
at the VINES Service (or applications) layer. Tieeform of this command disablegbugging
output.

debug vines service
no debug vines service

Syntax Description
This command has no arguments or keywords.

Command Mode
EXEC

Usage Guidelines

You can use thdebug vines serviceommand to discover why a VINES Service layer process on
the router is not communicating with another Service layer process on another router or Banyan
server.

Note Because thdebug vines serviceommand provides the highest level overview of VINES
traffic through the router, it is best to begin debugging using this command, and then proceed to use
lower-level VINESdebugcommands as necessary.

Sample Display
Figure 2-129 shows sampliebug vines serviceutput.

Figure 2-129 Sample Debug VINES Service Output

rout er# debug vines service

Sent/ ———VSRV: Get Tinme Info sent to Townsaver
Response VSRV: Get Tine Info response from Townsaver, tine: 01:47:54 PDT Apr 29 1993 1
pair VSRV: epoch SS@A\ oe@®ervers-10, age: 0:15:15 é’

As Figure 2-129 suggestdebug vines servicdines of output appear as activity pairs—either a
sent/response pair as shown, or as a received/sent pair.

Table 2-83 describes the fields shown in the second line of output in Rigi2@.For more
information about these fields or their values, refer to Banyan VINES documentation.

2-240 Debug Command Reference

debug vines service

Table 2-83 Debug VINES Service Field Descriptions—Part 1

Field Description

VSRV: Indicates that this is output from tblebug vines serviceommand.
Get Time Info Indicates one of three packet types:

Get Time Info
Time Set

Time Sync

response from Indicates whether the packet was sent to another rougpgresesfrom
another router, or received from another router.

Townsaver Indicates the machine name as assigned using the WHSES
command, or IP address of the other router.

time: 01:47:54 PDT Apr 29 1993 Indicates the current time in hours:minutes:seconds and current date.

Table 2-84 describes the fields shown in the third line of output in FR3a&9. This line is an
extension of the first two lines of output. For more information about these fields or their values,
refer to Banyan VINES documentation.

Table 2-84 Debug VINES Service Field Descriptions—Part 2

Field Description

VSRV: Output from thedebug vines serviceommand.

epoch Line of output that describes a VINES epoch.
SS@Aloe@Servers-10 Epoch name.

age: 0:15:15 Epoch—elapsed time since the time was last set in the network.

Debug Commands 2-241

debug vines state

debug vines state

Use thedebug vines stateEXEC command to display information on the VINES SRTP state
machine transactions. The form of this command disables debugging output.

debug vines state
no debug vines state

Syntax Description
This command has no arguments or keywords.

Command Mode
EXEC

Usage Guidelines

This command provides a subset of the information provided liethgy vines routingcommand,
showing only the transactions made by the SRTP state machine. Refedébtigevines routing
command for descriptions of output from thebug vines stateeommand.

2-242 Debug Command Reference

debug vines table

debug vines table

Use thedebug vines tableEXEC command to display information on all modifications to the
VINES routing table. Thao form of this command disables debugging output.

debug vines table
no debug vines table

Syntax Description
This command has no arguments or keywords.

Command Mode
EXEC

Usage Guidelines

This command provides a subset of the informagimuuced by thdebug vines routingcommand,
as well as some more detailed information on table additions and deletions.

Sample Display
Figure 2-130 shows sampiiebug vines tableoutput.

Figure 2-130 Sample Debug VINES Table Output
router# debug vines table
VINESRTP: create neighbor 3001153C:8004, interface EthernetO

Table 2-85 describes significant fields shown in Figi#E30.

Table 2-85 Debug VINES Table Field Descriptions

Field Description

VINESRTP: Indicates that this isdebug vines routingor debug vines table
message.

create neighbor 3001153C:8004 Indicates that tleatcéit address 30013G:8004 has beeadded to the
Banyan VINES neighboable.

interface Ethernet 0 Indicates that this neighbor can be reached through the router interface
named EthernetO.

Debug Commands 2-243

debug x25 all

debug x25 all

Use thedebug x25 allEXEC command to display information on all X.25 traffic, including data,
control messages, and flow control (RR and RNR) packetsnd Fferm of this command disables
debugging output.

debug x25 all
no debug x25 all

Syntax Description
This command has no arguments or keywords.

Command Mode
EXEC

Usage Guidelines
This command is particularly useful for diagnosing problems encountered when placing calls.
Thedebug x25 alloutput includes data, control messages, and flow control packets for all of the

router’s virtual circuits. Thdebug x25 eventanddebug x25 vacommandgrovide asubset of this
output.

Caution Becausalebug x25 alldisplays all X.25 traffic, it is processor intensive and can render
the router useless. Only udebug x25 allwhen the aggregate of all X.25 traffic is fewer than five
packets per second.

Sample Display
Figure 2-131 shows sampliebug x25 alloutput.

2-244 Debug Command Reference

debug x25 all

Figure 2-131 Sample Debug X25 All Output

router#

Serial2:
Serial2:
Serial2:

debug x25 all

X25 O R3 RESTART (5) 8 Ici 0 cause 7 diag 0
X251 R3 RESTART (5) 8 Ici 0 cause 0 diag O
X251 P1 CALL REQUEST (11) 8 Ici 1024

From (2): 49 To(2): 46
Facilities: (0)
Call User Data (4): 0xCC 00 00 00 (ip)

Serial2:
Serial2:
Serial2:
Serial2:
1 X25 O D1 DATA (103) 8 Ici 1024 PS1 PR 2
Serial2:
: X251 D1 DATA (103) 8 Ici 1024 PS 2 PR 2
Serial2:
Serial2:
Serial2:

Serial2

Serial2

X25 O P4 CALL CONNECTED (3) 8 Ici 1024
X25 | P4 DATA (103) 8 Ici 1024 PSO PR O
X25 O D1 DATA (103) 8 1ci 1024 PSOPR 1
X251 D1 DATA (103) 8 Ici 1024 PS1 PR O

X251 D1 RR (3) 8 Ici 1024 PR 2
X25 O D1 DATA (103) 8 Ici 1024 PS2 PR 3

X251 D1 CLEAR REQUEST (5) 8 Ici 1024 cause 0 diag 122
X25 O D1 CLEAR CONFIRMATION (3) 8 Ici 1024

XOT: X250 D1 PVC-SETUP, waiting to connect (29) <Serial2 pvc 3><Serial2 pvc 1> 2/1 128/64
XOT: X25 | D1 PVC-SETUP, connected (29) <Serial2 pvc 3><Serial2 pvc 1> 2/1 128/64

Serial2:
Serial2:

X25 O D1 RESET REQUEST (5) 8 Ici 3 cause 15 diag 0
X251 D1 RESET CONFIRMATION (3) 81ci 3

Figure 2-131 shows a typical exchange of packets between two X.25 devices on a network. The first
line of output in Figure 2-131 describes a RESTART packet. Table 2-86 describes the fields in this
line of output.

Table 2-86 Debug X25 All Field Descriptions

Field Description

Serial2 The interface on which the X.25 event occured. Events that occur on an
X.25-over-TCP connection report XOT.

X25 That this message describes an X.25 event.

(0] Indication of whether the X.25 message was input () or output (O)
through the interface.

R3 State of the virtual circuit. Possible values follow:

D1—Flow control ready

D2—DTE reset request

D3—DCE reset indication

P1—lIdle

P2—DTE waiting for DCE to connect CALL
P3—DCE waiting for DTE to accept CALL
P4—Data transfer

P5—CALL collision

Debug Commands 2-245

debug x25 all

Field

Description

R3 (Continued)

P6—DTE clear request
P7—DCE clear indication
R1—Packet level ready
R2—DTE restart request
R3—DCE restart indication
X1—Nonstandard state for a virtual circuit in hold-down

See Annex B of the 1984 ITU-T X.25 Recommendation for more
information on these states.

RESTART

Thetype of X.25 packet. Possible values follow:
CALL CONNECTED

CALL REQUEST

CLEAR CONFIRMATION

CLEAR REQUEST

DATA

DIAGNOSTIC

ILLEGAL

INTR CONFIRMATION

INTR (interrupt)

PVC-SETUP

REGISTRATION

REGISTRATION CONFIRMATION
RESET CONFIRMATION

RESET REQUEST

RESTART

RESTART CONFIRMATION

RNR (Receiver Not Ready)

RR (Receiver Ready)

(6)

Number of bytes in the packet.

8

Modulo of the virtual circuit. Possible values are 8 or 128.

Ici0

Virtual circuit number. See Annex A of the 1984 ITU-T X.25
Recommendation for information on VC assignment.

cause 7

Code indicating the event that triggered the packet. The cause field can
only appear in entries for CLEAR REQUEST, RESET REQUEST, and
RESTART packetsPossible values for the cause field can vary,
depending on the type of packet. Refer to the “X.25 Cause and
Diagnostic Codes” appendix for explanations of these codes.

diag 0

Code providing an additional hint as to what, if anything, went wrong.
The diag field can only appear in entries for CLEAR REQUEST,
DIAGNOSTIC (as “error 0"), RESET REQUEST and RESTART
packets. Because of the largember of possle values, they are listed

in the “X.25 Cause and Diagnostic Codes” aypjie.

2-246 Debug Command Reference

debug x25 all

Table 2-87 describes the PS and PR fields that can appedebug x25 alldisplay.

Table 2-87 Debug X25 All PS and PR Field Descr iptions

Field Description

PSO Packet send sequence number; used for flowotofithe aitgoing
packet stream. Present only in DATA packets.

PRO Packet receive sequence number used for flow control of the incoming
packet stream by indicating the PS value that the sender next expects to
see.

In Figure 2-131notice also that the CALL REQUEST packet precedes three other lines of output
that have a unique format.

Serial2: X251 P1 CALL REQUEST (11) 8 Ici 1024
From (2): 49 To(2): 46

Facilities: (0)

Call User Data (4): 0xCC 00 00 00 (ip)
Serial2: X25 O P4 CALL CONNECTED (3) 8 Ici 1024

These lines indicate that the CALL REQUEST packet has a two-digit source address, 49, and a
two-digit destination address, 46. These are X.121 addresses that can be from 0 to 15 digits in length.
The Facilities field is (0) bytes in length, indicating that no X.25 facilities are being requested. The
optional call user data field is 4 bytes in length. Any encapsulation protocol identification (PID) in
the Call User Data will have the encoding values printed and identified. Multiprotocol Virtual
Circuits can also have PID information in Data packets; the debug output for these packets will also
describe the PID.

The two lines of output in Figure 2-131 that begin with XOT are shown below.

XOT: X250 D1 PVC-SETUP, waiting to connect (29) <Serial2 pvc 3><Serial2 pvc 1> 2/1 128/64
XOT: X25 | D1 PVC-SETUP, connected (29) <Serial2 pvc 3><Serial2 pvc 1> 2/1 128/64

These lines of output do not describe standard X.25 packets. Instead, they describe messages that
represent a tunneled PVC setup between two routers. Table 2-88 describes the fields these two lines
of output.

Table 2-88 Debug X25 All Field Descript ions for Packets Representing Tunneled PVC
Activity

Field Description

XOT This message travels over a TCP connection.

X25 This message describes an X.25 event.

0] Indication of whether the X.25 message was input (I) or output (O)

through the connection.

D1 State of the permanent virtual circuit. Possible values follow.
D1—Flow control ready
D2—DTE reset request
D3—DCE reset indication

See Annex B of the 1984 ITU-T X.25 Recommendation for more
information on these states.

Debug Commands 2-247

debug x25 all

Field

Description

wait to connect

State of the PVC. Some of these strings only apply to PVCs that are
remotely tunneled over a TCP connectidthe %X25-3-PVCBAD
system error message (as documented iSytseem Error Messages
publication), and thehow x25 vecommand (as documented in the
Router Products Command Referepelication) also use these PVC
state strings. Possible values follow:

awaiting PVC-SETUP reply
can't supporflow control values
connected

dest. disconnected

dest. interface is not up

dest. PVC configuration mismatch
mismatched flow control values
no such dest. interface

no such dest. PVC

non-X.25 dest. interface

PVC setup protocol error
PVC/TCP connect timed out
PVC/TCP connection refused
PVC/TCP routing error

trying to connect via TCP
waiting to connect

(29)

Incoming/outgoing message size (in bytes).

<Serial2 pvc 3>

Interface and PVC number that originated the message (originator).

<Serial2 pvc 1>

Interface and PVC number thapanded to that message (responder).

2/1

Window sizes (in packets).

128/64

Maximum packet sizes (in bytes).

2-248 Debug Command Reference

debug x25 events

debug x25 events

Use thedebug x25 event&£XEC command to display information on all X.25 traffic except X.25
data or acknowledgment packets. Tioeeform of this command disables debugging output.

debug x25 events
no debug x25 events

Syntax Description
This command has no arguments or keywords.

Command Mode
EXEC

Usage Guidelines

Thedebug x25 eventgommand is useful for debugging X.25 problems, because it shows changes
that occur in the virtual circuits handled by the router. Because most X.25 connectivity problems
stem from errors that CLEAR or RESET virtual circuits, you cardebelg x25 eventso identify

these errors.

While debug x25 alloutput includes both data and control messages for all of the router’s virtual
circuits,debug x25 event®utput includes only control messages for all of the router’s VCs. In
contrastdebug x25 veoutput filters the output for a single VC number. Thdehug x25 events
output is a subset ofebug x25 alloutput, andlebug x25 vcoutput modifies either of them to
further limit the output.

Note Becausalebug x25 eventslisplays a subset of all X.25 traffic, it is safer to use thebug
x25 all during production hours.

Sample Display
Figure 2-132 shows sampliebug x25 eventoutput.

Figure 2-132 Sample Debug X25 Events Output
router# debug x25 events

Serial2: X251 R3 RESTART (5) 8 Ici 0 cause 0 diag 0
Serial2: X251 P1 CALL REQUEST (11) 8 Ici 1024
From (2): 49 To(2): 46
Facilities: (0)
Call User Data (4): 0xCC 00 00 00 (ip)
Serial2: X25 O P4 CALL CONNECTED (3) 8 Ici 1024
Serial2: X251 D1 CLEAR REQUEST (5) 8 Ici 1024 cause 0 diag 122
Serial2: X25 O D1 CLEAR CONFIRMATION (3) 8 Ici 1024
Serial2: X25 O D1 RESET REQUEST (5) 8 Ici 1 cause 0 diag 122
Serial2: X251 D1 RESET CONFIRMATION (3) 8lci 1

See thalebug x25 allcommand description for information on the fieldsl@bug x25 events
output.

Debug Commands 2-249

debug x25 vc

debug x25 vc

Use thedebug x25 vcEXEC command to displaypformation ortraffic for a particular virtual
circuit in order to solve any connectivity or performance problems it is exhibitingnd@ferm of
this command removes the filter for a particular virtual circuit frond#tmuig x25 allor debug x25
eventsoutput.

debug x25 venumber
no debug x25 vanumber

Syntax Description

number VC number associated with the virtual circuit(s) you want to monitor

Command Mode
EXEC

Usage Guidelines
Because no interface is specified, traffic on any VC that has the speuifigukbris reported.

Thedebug x25 vecommand limits the output oebug x25 allor debug x25 eventoutput to the
packets occurring on a particular VC number. This command modifies the operation of the
debug x25 allor debug x25 eventgommands, so one of those commands must be used with
debug x25 vcto produce output.

VC 0 cannot be specified. It is used for X.25 service messages, such as RESTART packets, not VC
traffic. VCO can be monitored only when no VC filter is used.

Note Becausalebug x25 vconly displays traffic for a small subset of virtual circuits, it is safe to
use even under heavy traffic conditions, as long as events for that virtual circuit are fewer than
25 packets per second.

Sample Display
Figure 2-133 shows sampliebug x25 vcoutput.

Figure 2-133 Sample Debug X25 VC Output

router# debug x25vc 1

X25 debugging output restricted to VC1
router# debug x25 events

X25 special event debugging is on

router# show debug

X.25 (debugging restricted to VC number 1):
X25 special event debugging is on

Serial0: X25 0 P2 CALL REQUEST (19) 8lci 1

From(14): 31250000000101 To(14): 31109090096101
Facilities (0)

Serial0: X25 | P2 CLEAR REQUEST (5) 8 Ici 1 cause diag 122

See thalebug x25 allcommand description for information on the fieldsl@bug x25 vcoutput.

2-250 Debug Command Reference

debug xns packet

debug xns packet

Use thedebug xns packeEXEC command to display information on XNS packet traffic, including
the addresses for source, destination, and next hop router of each packetfdrhe of this
command disables debugging output.

debug xns packet
no debug xns packet

Syntax Description
This command has no arguments or keywords.

Command Mode
EXEC

Usage Guidelines

To gain the fullest understanding of XNS routing\att, you should enabldebug xns routingand
debug xns packetogether.

Sample Display
Figure 2-134 shows sampiiebug xns packebutput.

Figure 2-134 Sample Debug XNS Packet Output.
router# debug xns packet
XNS: src=5.0000.0c02.6d04, dst=>5.ffff.ffff.ffff, packet sent
XNS: src=1.0000.0c00.440f, dst=1.ffff.ffff.ffff, rcvd. on EthernetO
XNS: src=1.0000.0c00.440f, dst=1.ffff.ffff.ffff, local processing

Table 2-89 describes significant fields shown in Figi#E34.

Table 2-89 Debug XNS Packet Field Descriptions

Field Description

XNS: Indicates that this is an XNS packet.

src =5.0000.0c02.6d04 Indicates ttta source address for this message is 0802.6d04 on
network 5.

dst = 5.ffff.ffff.ffff Indicates that the destination address for this message is the broadcast
address ffffffff.ffff on network 5.

packet sent Indicates that the packet to destination address 5.ffff. ffff.ffff in

Figure 2-134, as displayed using tfebug xns packetommand, was
queued on the output interface.

rcvd. on EthernetO Indicates that the router just received this pghctaghthe EthernetO
interface.
local processing Indicates that the router has examined the packet and determined that it

must process it, rather than forwarding it.

Debug Commands 2-251

debug xns routing

debug xns routing

Use thedebug xns routingEXEC command to display information on XNS routing transactions.
Theno form of this command disableebugging output.

debug xns routing
no debug xns routing

Syntax Description
This command has no arguments or keywords.

Command Mode
EXEC

Usage Guidelines

To gain the fullest understanding of XNS routing activity, endbélaig xns routinganddebug xns
packettogether.

Sample Display
Figure 2-135 shows sampiliebug xns routingoutput.

Figure 2-135 Sample Debug XNS Routing Output
router# debug xns routing
XNSRIP: sending standard periodic update to 5.ffff.ffff.ffff via Ethernet2
network 1, hop count 1

network 2, hop count 2

XNSRIP: got standard update from 1.0000.0c00.440f socket 1 via EthernetO
net 2: 1 hops

Table 2-90 describes significant fields shown in Figa#E35.

2-252 Debug Command Reference

debug xns routing

Table 2-90 Debug XNS Routing Field Descriptions

Field Description

XNSRIP: This is an XNS routing phet.

sending standard periodic update Router indicates that this is a periodic XNS routing information update.

to 5.ffff.ffff.ffff Destination address is ffff.ffff.ffff on network 5.

via Ethernet2 Name of the output interface.

network 1, hop count 1 Network 1 is one hop away from this router.

got standard update from Router indicates that it has received an XNS routing information update

1.0000.0c00.440f from address 0000.0c00.440f on network 1.

socket 1 The socket number is a well-known port for XNS. Possible values
include

1—routing information
2—echo

3—router error

Debug Commands 2-253

APPENDIX g

X.25 Cause and Diagnostic Codes

This appendix covers the X.25 cause and diagnostic codes, as referred teibuhe25 all
command of the “Debug Commands” chapter. For more information on these codes, see the 1984
ITU-T X.25 Recommendation.

Note The ITU-T carries out the functions of the former Consultative Committee for International
Telegraph and Telephone (CCITT).

Note The router reports the decimal value of a cause or diagnostic code, whereas other X.25
equipment may report these codes in hexadecimal notation. For this reason, this appendix lists both
the decimal and hexadecimal values of the cause and diagnostic codes.

Table A-1 describes the differences between our implementation of certain X.25 network-generated,
“international problem” diagnostic fields and the definitions provided in Annex E of ITU-T
Recommendation X.25. The Annex E Table E-1/X.25 includes the complete diagnostic field listing.

Table A-1 Annex E Internat ional Problem Diagnostic Code Differences

Decimal Annex E, Rec. X.25 Diagnostic Cisco Proprietary Definition of

Value Description Diagnostic Codes

112 International problem Not used.

113 Remote network problem Not used.

114 International protocol problem Not used.

115 International link out of order Indicates one of the following failures: failed

when initializing a switched PVC; in TCP
tunneling, failed when initiating or resetting a
PVC; or, failed when PAD PVC circuit was
initiated or reset.

116 International link busy Not used.
117 Transit network facility problem Not used.
118 Remote network facility problem Not used.

X.25 Cause and Diagnostic Codes A-1

X.25 Cause Codes

Decimal Annex E, Rec. X.25 Diagnostic Cisco Proprietary Definition of

Value Description Diagnostic Codes

119 International routing problem Indicates the following failure: in TCP
tunneling of X.25 when session is closed by
network.

120 Temporary routing problem Indicates the following failure: when tunneling

X.25 through TCP/IP and the remote network
is identified as unreachable.

121 Unkrown called DNIC Not used.

122 Maintenance action (may apply to For CMNS, indicates the following: router fails
maintenance action within a national to route the call due to setup or unreachability
network of destination; when VC is cleared using the

clear x25-vcEXEC command; when router
CLEARs a VC when its idle timer expires.

X.25 Cause Codes

A cause code indicates an event that triggered an X.25 packet. The cause code can only appear in
entries for CLEAR REQUEST, REGISTRATION CONFIRMATION, RESET REQUEST, and
RESTART packets. Possible values for the cause code can vary, depending on the type of packet.
Because the REGISTRATION exchange is not supported, those cause codes are not documented in
this section.

A-2 Debug Command Reference

X.25 Cause Codes

Table A-2 describes the meanings of cause codes for CLEAR REQUEST packets.

Table A-2 Cause Code Descr iptions for CLEAR REQUEST Packets
Code Code

(Hex) (Dec) Descr iption

00 0 (or 128 to 255) DTE originated

01 1 Number busy

03 3 Invalid facility request

05 5 Network congestion

09 9 Out of order

0B 11 Access barred

(0]p) 13 Not obtainable

11 17 Remote procedure error

13 19 Local procedure error

15 21 RPOA out of order

19 25 Reverse charging not accepted
21 33 Incompatible destination

29 41 Fast select not accepted

39 57 Ship absent

Table A-3 describes the meanings of cause codes for RESET REQUEST packets.

Table A-3 Cause Code Descr iptions for RESET R EQUEST Packets
Code Code

(Hex) (Dec) Descr iption

00 0 (or 128 to 255) DTE originated

01 1 Out of order

03 3 Remote procedure error
05 5 Local procedure error
07 7 Network congestion

09 9 Remote DTE operational
OF 15 Network operational

11 17 Incompatible destination
1D 29 Network out of order

X.25 Cause and Diagnostic Codes A-3

X.25 Diagnostic Codes

Table A-4 describes the meanings of cause codes for RESTART packets.

Table A-4 Cause Code Descr iptions for RESTART Packets
Code Code

(Hex) (Dec) Descr iption

00 0 (or 128 to 255) DTE restarting

01 1 Local procedure error

03 3 Network congestion

07 7 Network operational

7F 127 Registration/cancellation confirmed

X.25 Diagnostic Codes

The X.25 diag (diagnostic) code provides an additional hint as to what, if anythingyrneegt This
code can only appear in entries for CLEAR REQUEST, DIAGNOSTIC, RESET REQUEST, and

RESTART
packet.

packets. Unlike the cause codes, the diag codes do not vary depending upon the type of

Note These diagnostic codes can be produced by any equipment handling a given virtual circuit,
and are then propagated through all equipment handling that virtual circuit. Thus, receipt of a

diagnostic

code may not indicate a problem with the router.

Table A-5 describes the meanings of possible diag codes.

Table A-5 X.25 Diagnostic Field Code Descriptions
Code Code

(Hex) (Dec) Description

00 00 No additional information

01 01 Invalid P(S)

02 02 Invalid P(R)

10 16 Packet type invalid

11 17 Packet type invalid for state R1
12 18 Packet type invalid for state R2
13 19 Packet type invalid for state R3
14 20 Packet type invalid for state P1
15 21 Packet type invalid for state P2
16 22 Packet type invalid for state P3
17 23 Packet type invalid for state P4
18 24 Packet type invalid for state P5
19 25 Packet type invalid for state P6
1A 26 Packet type invalid for state P7

A-4 Debug Command Reference

X.25 Diagnostic Codes

Code Code

(Hex) (Dec) Description

1B 27 Packet type invalid for state D1

1C 28 Packet type invalid for state D2

1D 29 Packet type invalid for state D3

20 32 Packet not allowed

21 33 Unidentifiable packet

22 34 Call on one-way logical channel

23 35 Invalid packet type on a permanent virtual circuit
24 36 Packet on unassigned LCN

25 37 Reject not subscribed to

26 38 Packet too short

27 39 Packet too long

28 40 Invalid GFI (General Format Identifier)

29 41 Restart or registration packet with nonzero LCI
2A 42 Packet type not compatible with facility

2B 43 Unauthorizedhterrupt confirmation

2C 44 Unauthorizethterrupt

2D 45 Unauthorized reject

30 48 Timer expired

31 49 Timer expired for incoming call

32 50 Timer expired for clear indication

33 51 Timer expired for reset indication

34 52 Timer expired for restart indication

35 53 Timer expired for call deflection

40 64 Call setup, clearing, or registration problem
41 65 Facility code not allowed

42 66 Facility parameter not allowed

43 67 Invalid called address

44 68 Invalid calling address

45 69 Invalid facility length

46 70 Incoming call barred

47 71 No logical channel available

48 72 Call collision

49 73 Duplicate facility requested

4A 74 Nonzero address length

4B 75 Nonzero facility length

4C 76 Facility not provided when expected

4D 77 Invalid ITU-T-specified DTE facility

4E 78 Maximum number of call redirections or deflections exceeded

X.25 Cause and Diagnostic Codes A-5

X.25 Diagnostic Codes

Code Code

(Hex) (Dec) Description

50 80 Miscellaneous

51 81 Improper cause code for DTE

52 82 Octet not aligned

53 83 Inconsistent Q bit setting

54 84 NUI (Network User Identification) problem
70 112 International problem

71 113 Remote network problem

72 114 International protocol problem

73 115 International link out of order

74 116 International link busy

75 117 Transit network facility problem

76 118 Remote network facilifgroblem

77 119 International routing problem

78 120 Temporary routing problem

79 121 Unknown called DNIC

7A 122 Maintenance actiomlear x25 vecommand issued)

Diagnostic codes with values of 80 or greater in hexadecimal, or with values of 128 or greater in
decimal, are specific to a particular network. To learn the meanings of these codes, contact the
administrator for that netork.

A-6 Debug Command Reference

APPENDIX RS

ISDN Switch Types, Codes, and
Values

This appendix contains a list of the supported switch types. It also contains the ISDN cause codes,
ISDN bearer capability values, aptbgress description field values that are valid withendebug
commands for ISDN.

Note The ITU-T carries out the functions of the former Consultative Committee for International
Telegraph and Telephone (CCITT).

Table B-1 lists the ISDN switch types supported by the ISDN interface.

Table B-1 Suppor ted ISDN Switch Types
Identifier Descr iption
basic-1tr6 German 1TR6 ISDN switches

basic-5ess

AT&T basic rate switches

basic-dms100

NT DMS-100 basic rate switches

basic-net3

NET3 ISDN swihes (UK and others)

basic-nil

National ISDN-1 switches

basic-nwnet3

Norway Net3 switches

basic-nznet3

New Zealand Net3 switches

basic-ts013

Australian TS013 switches

none

No switch defined

ntt

Japanese NTT ISDN switches

primary-4ess

AT&T 4ESS switch tyder the U.S. (ISDN PRI only)

primary-5ess

AT&T 5ESS switch tyder the U.S. (ISDN PRI only)

primary-dms100

NT DMS-100 switch type for the U.S. (ISDN PRI only)

vnh2 French VN2 ISDN switches
vn3 French VN3 ISDN switches
primary-ntt INS-Net 1500 for Japan

primary-net5

NETS5 ISDN PRI switches (Europe)

ISDN Switch Types, Codes, and Values B-1

Table B-2 lists the ISDN cause code fields that display in the following format withiorethey

commands:
i=0Oxyly2z1z2ala2

Table B-2 ISDN Cause Code Fields

Field Value—Description

0x The values that follow are in hexadecimal.

yl 8—ITU-T standard coding.

y2 0—User
1—Private network serving local user
2—Public network serving local user
3—Transit network
4—Public network serving remote user
5—Private network serving remote user
7—International network
A—Network beyondnternetworking point

z1 Class of cause value.

z2 Value of cause value.

al (Optional) Diagnostic field that is always 8.

a2 (Optional) Diagnostic field that is one of the following values:

0—Unknown
1—Permanent
2—Transient

Table B-3 lists descriptions of the cause value field of the cause information element. The notes
referred to in the Diagnostics column follow the table.

Table B-3 ISDN Cause Values
Cause Value Cause

Class Value Number Cause Diagnostics
000 0001 1 Unallocated (unassigned) number Note 12
000 0010 2 No route to specified transit network Transit network identity (Note 11)
000 0011 3 No route to destination Note 12
000 0110 6 Channel unacceptable
000 0111 7 Call awarded and being delivered in

an established channel
001 0000 16 Normal call clearing Note 12
001 0001 17 User busy
001 0010 18 No user responding
001 0011 19 No answer from user (user alerted)

B-2 Debug Command Reference

Cause Value

Cause
Class Value Number Cause Diagnostics
001 0101 21 Call rejected Note 12. User supplied diagnostic
(Note 4)
001 0110 22 Number changed
001 1010 26 Non-selected user clearing
001 1011 27 Designation out of order
001 1100 28 Invalid number format
001 1101 29 Facility rejected Facility identification (Note 1)
001 1110 30 Response to STATUS ENQUIRY
001 1111 31 Normal, unspecified
010 0010 34 No circuit/channel available Note 10
010 0110 38 Network out of order
010 1001 41 Temporary failure
010 1010 42 Switching equipment congestion
010 1011 43 Access information discarded Discarded information element
identifier(s) (Note 6)
010 1100 44 Requested circuit/channel not Note 10
available
010 1111 47 Resources unavailable, unspecified
011 0001 49 Quality of service unavailable Table B-2
011 0010 50 Requested facility not subscribed Facility identification (Note 1)
011 1001 57 Bearer capability not authorized Note 3
011 1010 58 Bearer capability not presently Note 3
available
011 1111 63 Service or option not available,
unspecified
100 0001 65 Bearer capability not implemented Note 3
100 0010 66 Channel type not implemented Channel Type (Note 7)
100 0101 69 Requested facility not implemented Facility Identification (Note 1)
100 0110 70 Only restricted digital information
bearer capability is available
100 1111 79 Service or option not implemented,
unspecified
101 0001 81 Invalid call reference value
101 0010 82 Identified channel does not exist Channel identity
101 0011 83 A suspended call exists, but this call
identity does not
101 0100 84 Call identity in use
101 0101 85 No call suspended
101 0110 86 Call having the requested call Clearing cause
identity has been cleared
101 1000 88 Incompatible destination Incompatible parameter (Note 2)

ISDN Switch Types, Codes, and Values B-3

Cause Value

Cause
Class Value Number Cause Diagnostics
101 1011 91 Invalid transit network selection
101 1111 95 Invalid message, unspecified
110 0000 96 Mandatory information element is Information element identifier(s)
missing (Note 6)
110 0001 97 Message type non-existent or not Message type
implemented
110 0010 98 Message not compatible with call Message type
state or message type non-existent or
not implemented
110 0011 99 Information element non-existent dnformation element identifier(s)
not implemented (Notes 6, 8)
110 0100 100 Invalid information element Information element identifier(s)
contents (Note 6)
110 0101 101 Message not compatible with call Message type
state
110 0110 102 Recovery on timer expires Timer number (Note 9)
110 1111 111 Protocol error, unspecified
111 1111 127 Internetworking, unspecified

Note 1: The coding of facility identification is network dependent.
Note 2 Incompatible parameter is composed of incompatible information element identifier.

Note 3 The format of the diagnostic field for cause 57, 58, and 65 is shown in the ITU-T Q.931
specification.

Note 4 User-supplied diagnostic field is encoded according to the user specification, subject to the
maximum length of the cause information element. The coding of user-supplggusiiics should
be made in such a way that it does not conflict with the coding described in Table B-2.

Note 5 New destination is formatted as the called party number information element, including
information element identifier. Transit network selection may also badadl

Note 6 Locking and non-locking shift procedures described in the ITQRI9B1 specification apply.
In principle, information element identifiers are in the same order as the information elements in the
received message.

Note 7: The following coding is used:
® Bit 8—extension bit
® Bit 7 through 5—spare

® Bit 4 through 1—according to Table 4-15/Q.931 octet 3.2, channel type in ITU-T Q.931
specification

Note 8 When only locking shift information element is included and no variable length information
element identifier follows, it means that the codeset in the locking shift itself is not implemented.

Note @ The timer number is coded in IA5 characters. The following coding is used in each octet:
® Bit 8—Spare “0"
® Bit 7 through 1—IA5 character

B-4 Debug Command Reference

Note 10 Examples of the cause values to be used for various busy/congestion condition appear in
Annex J of the ITU-T Q.931 specification.

Note 11 The diagnostic field contains the entire transit network selection or network-specific
facilities information element, as applicable.

Table B-4 lists the ISDN bearer capability values that display in the following format within the
debug commands:

0x8890 for 64Kbps or 0x218F for 56 Kbps

Table B-4 ISDN Bearer Capability Values

Field Value—Description

0x Indication that the values that follow are in hexadecimal
88 ITU-T coding standard; unrestricted digital information
90 Circuit mode, 64 Kbps

21 Layer 1, V.110/X.30

8F Synchronous, no in-band negotiation, 56Kbps

Table B-5 lists the values of the Progress description field contained in the ISDN Progress indicator
information element.

Table B-5 Progress Description Field Values
Bits Number Description
0000001 1 Call is not end-to-end ISDN, further call progress information may

be available in-band

0000010 2 Destination address is non-ISDN

0000011 3 Origination address is non-ISDN

0000100 4 Call has returned to the ISDN

0001000 8 In-band information or appropriate pattern now available.

All other values for the progress description field are reserved.

ISDN Switch Types, Codes, and Values B-5

I NDEX

A

access list filtering, DECnet

2-54

Address Resolution Protocol

adjacencies in DECnet
adjacencyproblems

See ARP
2-52
2-146

apple eventeggingcommand 2-8
AppleTalk

apple eventeggingcommand 2-8
ARP probes 2-2
cable range configuration mismatch
compatibility conflict 2-11
debug apple arp command 2-2
debug apple domain command 2-4
debug apple errors command 2-6
debug apple events command 2-8
debug apple nbp command 2-13
debug apple packet command

description 2-16

using with other commands 2-16
debug apple remap command 2-18
debug apple routing command 2-20
debug apple zip command

compared with

command 2-22

description 2-22
discovery mode state changes, tracking 2-9
encapsulation problems 2-6
extended/nonextended networks
flapping routes 2-8
GetNetInfo requests
MAC address 2-3
NBP

lookup request 2-14-2-15

routines, displaying 2-13
NBP name invalid 2-7
network address probe 2-10
network errors, displaying 2-6
network number range message
packets, displaying 2-16
router startuprobe message 2-9

2-12

debug apple-routing

2-11

2-10, 2-17

2-10

RTMP
display, description 2-21
errors 2-7
routines, displaying 2-20
update 2-23

seed/nonseed routers 2-11
slow switching, monitoring 2-16
source address, displaying 2-17
special events 2-8
ZIP
extended reply 2-23
routines 2-22
storm 2-22

zone list check 2-10
zone list incompatibility 2-6
AppleTalk Address Resolution Protocol
See AppleTalk ARP
ARP
MAC addresses, displaying 2-24
request type 2-230
transactions, display using debug arp 2-24
ARPA-style encapsulation 2-35
Asynchronous Transfer Mode
See ATM
ATM
completion codes, displayed 2-28
debug atm errors command 2-26
debug atm events command 2-27
debug atm packet command 2-30

packet length 2-31
transmission rates 2-28
virtual circuit indicator 2-31
B
Banyan VINES
See VINES
basic security options 2-114

bearer capability values B-5
BPDUs, investigating 2-216, 2-217
BRI, debug bri command 2-32
bridging problems

source-route bridging 2-211

spanning-tree topology 2-216
broadcast packets, MAC 2-34
buffers, internal 1-4

C

cache
See fast switching, NetBIOS, RIF, RSRB
call
information displayed in ISDN 2-136
problems, diagnosing 2-244

setup events 2-132
teardown events 2-133
cause codes
ISDN B-2-B-5
X.25 A-2-A-4
Challenge Handshake Authentication Protocol
See CHAP
Channel Interface Processor
See CIP
CHAP
authentication 2-183

Index 1

See also PPP
CIP
debug channel events command 2-38
debug channel packets command 2-40
packet display 2-40
CIR, investigating 2-80
Cisco Discovery Protocol
See CDP
clear x25 vc command A-6
command reference page sample xxiii
commands
See individual debug commands
committed information rate
See CIR
compatibility conflict in AppleTalk network 2-11
completion codes in ATM 2-29
configuration, display using write terminal command 1-2
configure network command, problems2-226
configure terminal command, message logging 1-3
Connectionless Network Service (CLNS)
See ISO CLNS
console line versus terminal lines 1-5
console line, limiting output on 1-4
console messages
controlling 1-4
logging 1-4
coup packet 2-222

D

daemon setup, syslog server 1-6
Data Link Connection Identifier
See DLCI
data link layer access limits, ISDN 2-136
DCD, monitoring state of 2-205
DDR
debug dialer command
description 2-60
received packets, analyzing 2-60
serial interface messages 2-60
dead interval for OSPF 2-101
debug 2-92, 2-99, 2-106
debug ? command 1-2
debug all command 1-2
debug apple arp command 2-2
debug apple domain command 2-4
debug apple errors command
description 2-6
using with other commands 2-7
debug apple events command
compared with apple event logging command 2-8
description 2-8
seed/nonseed routers 2-11
debug apple nbp command 2-13

debug apple packet command
description 2-16
using with other commands 2-16
debug apple remap command 2-18
debug apple routing command 2-20
debug apple zip command
compared with debug apple-routing command 2-22
description 2-22
debug arp command 2-24
debug atm errors command 2-26
debug atm events command 2-27
debug atm packet command 2-30
debug bri command 2-32
debug broadcast command 2-34
debug cdp command 2-37
debug channel events command 2-38
debug channel packets command 2-40
debug cIns esis events command 2-42
debug cIns esis packets command 2-43
debug clns events command 2-45
debug cIns igrp packets command 2-47
debug clns packet command 2-49
debug cIns routing command 2-50
debug command options, displaying 1-2
debug commands
caution foruse 1-1
disabling all 1-2
documentation method 2-1
enabling all 1-2
entering 1-1
generating output 1-2
redirectingoutput 1-3
sample output 1-2
using the no form 1-1
debug compress command 2-51
debug decnet adj command 2-52
debug decnet connects command 2-54
debug decnet events command 2-56
debug decnet packet command 2-57
debug decnet routing command 2-58
debug dialer command 2-60
debug dspu activation command 2-62
debug dspu packet command 2-64
debug dspu state command 2-66
debug dspu trace command 2-68
debug eigrp fsm command 2-70
debug eigrp packet command 2-72
debug frame-relay command
compared with debug
command 2-74,2-81
description 2-74
debug frame-relay events command 2-77
debug frame-relay Imi command 2-78
debug frame-relay packets command
compared with debug frame-relay command 2-81

frame-relay packets

2 Debug Command Reference

description 2-81
debug ip dvmrp command 2-83
debug ip eigrp command 2-86
debug ip icmp command 2-88
debug ip igmp command 2-92, 2-99, 2-106
debug ip igrp events command
compared with debug ip igrp
command 2-93
description 2-93
debug ip igrp transaction command
compared with debug ip igrp events command 2-95
description 2-95
destination information 2-96
debug ip mpacket command 2-97
debug ip mrouting command 2-92, 2-29106
debug ip ospf events command 2-101
debug ip packet command 2-97, 2-102
debug ip pim command 2-92, 2-98106
debug ip rip command 2-109
debug ip routing command 2-111
debug ip security command 2-113
debug ip tcp driver command 2-115, 2-117
debug ip tcp driver-pak command2-115, 2-117
debug ip tcp transactions comman@-119
debug ipx ipxwan command 2-121
debug ipx packet command 2-123
debug ipx routing command 2-125
debug ipx sap command 2-127
debug isdn event command 2-132
debug isdn-g92tommand
description 2-136
using with other commands 2-136
debug isdn-g93tommand 2-142
debug isis adj packets comman®-146
debug isis spf statistics command 2-147
debug isis update packets commangd-149
debug lapb command 2-151
debug lat packet command2-155
debug lex rcmd command 2-157
debug Inm events command2-160
debug Inm llc command 2-162
debug Inm mac command 2-165
debug local-ack statommand 2-167
debug netbios-name-cache commang-169
debug output
See output from debug
debug packet command2-172
debug ppp chap command 2-183
debug ppp command 2-175
debug ppp error command 2-182
debug ppp negotiation command 2-178
debug gllc error 2-184
debug gllc event command 2-185
debug gllc packet command 2-186
debug gllc state command 2-187

transaction

debug gllc timer command 2-188
debug gllc x25 command 2-189
debug rif command 2-190
debug sdlc command 2-193
debug sdic local-ack command 2-197
debug sdllc command 2-199
debug serial interface command
description 2-201
HDLC messages 2-202
HSSI messages 2-203
ISDN Basic Rate messages 2-204
MK5025 device messages 2-205
SMDS messages 2-205
debug serial packet command
description 2-207
with SMDS enabled 2-207
debug source event command 2-211
debug source-bridge command 2-208, 2-211
debug span command2-216
debug sse command2-219
debug standby command2-221
debug status, displaying 1-1
debug stun packet command2-223
debug tftp command 2-226
debug token ring command 2-227
debug vines arp command 2-229
debug vines echo command 2-231
debug vines ipc command 2-232
debug vines netrpc command 2-234
debug vines packet command 2-236
debug vines routing command2-238, 2-243
debug vines service command 2-240
debug vines state command 2-242
debug vines table command 2-243
debug x25 2-184
debug x25 all command 2-244
debug x25 events command 2-249
debug x25 vc command 2-250
debug xns packet command 2-251
debug xns routing command2-252
DECnet
access list filtering 2-54
adjacency entry in routing table 2-52
adjacency state change 2-53
BDPU packet 2-217
debug decnet adj command 2-52
debug decnet connects command 2-54
debug decnet events command 2-56
debug decnet packet command 2-57
debug decnet routing command 2-58
debug lat packet command2-155
hello packet 2-217
LAT events, logging 2-155
max area parameter 2-56
max node parameter 2-56

Index 3

password and account information 2-55
Phase IV/Phase V converted packet 2-57
routing eventslogging 2-58

routing updates, logging 2-57

spanning tree problems 2-217
unscheduled update event 2-58

decnet access-group command, used with connect packet

filtering 2-54

delay measurement in NetWare 2-126
diagnostics codes, X.25 A-4-A-6
Dial-on-Demand Routing

See DDR
Dijkstra algorithm 2-147
disable all debugging activity —1-2
disabling debug commands 1-1
discovery mode state changes, tracking 2-9
display output

See output from debug
displaying current debug status 1-1
displaying debug command options 1-2
DLCI

counts 2-81, 2-174

investigating 2-80, 2-82
document conventions Xxii
downstream physical unit

See DSPU
DSPU

debug dspu activation command 2-62

debug dspu packet command 2-64

debug dspu state command 2-66

debug dspu trace command 2-68
dynamic addressing, Frame Relay 2-77

E

EIGRP
analyzing local and remote host traffic 2-72
debug eigrp fsm command 2-70
debug eigrp packet command 2-72
debug ip eigrp command 2-86
enabling aldebugging 1-2
encapsulation
identifying styles 2-35
solving problems in AppleTalk 2-6
style, general packet debugging 2-172
enhanced IGRP
See EIGRP
error messages, ICMP 2-104
ES hello packets, displaying 2-42
ES-IS
debug cIns esis events command 2-42
debug clns esis packets command 2-43
hello packet, displaying 2-42
See also ISO CLNS

explorer frame packet 2-209
explorer frame response 2-200
explorer packet 2-213

fast switching
cache entry 2-50
IPX packet information, displaying 2-123
RIF cache information, displaying 2-190
source-route bridging information, displaying2-211
flapping routes, identifying 2-8
frame event protocol state in SDLC 2-194
frame events, investigating 2-152
Frame Relay
analyzing end-to-end connection problems 2-77
ARP replies, displaying 2-77
debug frame-relay command
compared with debug frame-relay packets
command 2-74
description 2-74
debug frame-relay events command 2-77
debug frame-relay Imi command 2-78
debug frame-relay packets command 2-81
DLCI counts 2-81, 2-174
dynamic addressing 2-77
interface packets, displaying 2-81
LMI
exchanges 2-79
full status message 2-79
packets, displaying 2-78
multicast channel 2-77
packet type codes 2-75
received packets, analyzing 2-74
sent packets, analyzing 2-74, 2-81
unknown packet types 2-201
frame type names 2-152
FST encapsulation 2-214

G

GetNetinfo requests, tracking 2-10, 2-17

H

halt all debug activity 1-2
HDLC, debug serial interface command 2-202
hello interval for OSPF 2-101
hello packet
displaying DECnet 2-217
displaying ES-IS 2-42

4 Debug Command Reference

displaying IS-IS 2-146
displaying ISO IGRP 2-47
High-level Data Link Control
See HDLC
High-Speed Serial Interface
See HSSI
host address, setting syslog server 1-5
host command 2-233, 2-235
hot standby protocol
See HSP
HSP
Coup packet 2-222
group IP address 2-222
state transition 2-222
HSSI, debug serial interface comman@-203

IBM channel attach
See CIP
ICMP
code types 2-89
debug ip icmp command 2-88
end-to-end connection, analyzing 2-88
mask request message 2-90
packet types 2-89
security error messages in IPSQ-104
transactions, logging 2-88
IEEE spaning treeproblems 2-216
IGRP
debug ip igrp events command 2-93
routing messages, displaying 2-93
routing transactions, displaying 2-95
Information Element Identifier, ISDN 2-134, 2-144
Integrated Services Digital Network
See ISDN
interface packets, displaying Frame Relay 2-81
Interior Gateway Routing Protocol
See IGRP
internal bufferJogging messagesto 1-4
Internet Control Message Protocol
See ICMP
InternetGroup Management Protocol (IGMP) 2-92
Internet Protocol
See IP
Internet Protocol Security Option
See IPSO
Internetwork Packet Exange
See IPX
P
analyzing local and remote host traffic 2-102

analyzing TCP/IP performance problems 2-119

basic security options 2-114
debug ip icmp command 2-88

debug ip igrp events command 2-93

debug ip packet command 2-102

debug ip rip command 2-109

debug ip routing command 2-111

debug ip security command 2-113

general debugginimformation, displaying 2-102
ICMP transactions, gging 2-88

IGRP routing messages, displaying 2-95
IGRP routing transactions, displaying 2-93
IPSO security transactions, displaying 2-102

OSPF-related events, generating information 2-101

packet information 2-119

RIP routing transactions, logging2-109
RIP updates 2-109

routing transactions, logging 2-111
security classification 2-114
security failure message 2-104
subnet mask problems 2-101

TCP transactions, displaying2-119
See also OSPF

See also TCP

IPSO

IPX

analyzing datagram failures 2-72,102
security actions table 2-103

security error message calculatior2-103
security error messages2-104

security transactions 2-102

security transactions, displaying2-102
unclassified genser 2-103

debug ipx ipxwan command 2-121
debug ipx packet command 2-123
debug ipx routing command 2-125
debug ipx sap command 2-127
delay measurement in NetWare 2-126
displaying non-fast switched packets only 2-123
packet information 2-123
routing packet information 2-125
routing updatd¢iming 2-125
SAP

packet summary 2-128

packets 2-127

response type 2-129

updates 2-127
server service types 2-130
service detail message 2-128
socket number 2-129, 2-131
startup negotiations 2-121
ticks 2-126

ipx route-cache command 2-123
IS hello packets, displaying 2-42, 2-43
ISDN

Action indicator 2-138
assignment source point 2-140
Basic Rate problems 2-204

Index 5

bearer capability values B-5
bearer service 2-134
call information, displaying 2-136
call origin 2-134
call reference number 2-144
call setup events 2-132
call setup, displaying 2-142
call teardown events 2-133
call teardown, displaying 2-142
cause codes B-2-B-5
Channel Identifier 2-144
channel identifier 2-134
data link layer display limits 2-136
debug display format differences 2-132
debug isdn event command 2-132
debug isdn-921 command

description 2-136

using with other commands 2-136
debug isdn-q93tommand 2-142
debug serial interface command 2-204
Identity Check Request message typ2-139
Identity Check Response message typ2139
Identity Remove message type2-139
Identity Request message type2-138
Information command 2-140
Information Element Identifier 2-134, 2-144
layer 2 access procedures, displaying-136

modulo 128 multiple frame acknowledged

operation 2-139
protocol discriminator 2-144
Receive Ready response 2-140
reference number 2-138
send sequence number 2-140
service access point 2-139
Service Profile IDentifier 2-140
show dialer command 2-132
switch types B-1
TEl value 2-139
user-side events, displaying 2-132
ISDN BRI
See BRI
IS-1S
debug isis spf statistics command 2-147
hello packet 2-146
route statistical information, displaying2-147
See also ISO CLNS
ISO CLNS
adjacency-related activities, displaying2-146
debug cIns esis events command 2-42
debug cIns esis packets command 2-43
debug clns events command 2-45
debug clns packet command 2-49
debug cIns routing command 2-50
debug isis adj packets comman®-146
debug isis update packets command 2-149

Dijkstra algorithm 2-147
ES hello packets, displaying 2-42
fast-switching cache entry 2-50
hold time, displaying 2-42
IS hello packets, displaying 2-43
ISH packets, displaying 2-42
IS-IS hello packet 2-146
link state packets 2-149
MAC address, displaying 2-45
NSAP
displaying 2-45, 2-49
identifier 2-149
PDUSand link state packets, displaying2-149
routing cache updates 2-50
routing table change indicator 2-50
sequence number packets 2-149
shortest path first algorithm 2-147
SNPA display 2-49

using debug clns-events to display ES-IS events

ISO IGRP
debug clns igrp packets command 2-47
hello packet display 2-47
Level 1 update display 2-47
Level 2 update display 2-48
metric display 2-48

K
keepalive

packet monitoring 2-202

timing values, serial connection 2-201
L

LAN Extender
debug lex rcmd command 2-157
lex interface 2-157
LAN Network Manager
See LNM
LAPB
events 2-151
frame type names 2-152
interface traffic, displaying 2-151
LAT
See DECnet
Level 1 update display, ISO-IGRP 2-47
Level 2 update display, ISO IGRP 2-48
LEX
See LAN Extender

link problems, using debug lapb to debug 2-151

link state packets, investigating 2-149
LLC

6 Debug Command Reference

2-42

debug Inm llc command 2-162
software function level 2-163
LLC2, Token Ring problems 2-227
LMI
exchanges 2-79
full status message 2-79
packets, displaying 2-78
LNM
communication, displaying 2-162
debug Inm events command2-160
debug Inm lic command 2-162
debug Inm mac command 2-165
management communication, displayin@-165
Token Ring network, displang events 2-160
Local Acknowledgment
monitoring frame types 2-197
state conditions 2-167
Local Management Interface for Frame Relay
See LMI
logging buffereccommand 1-4
loggingcommand
redirecting error messages 1-3
setting up UNIX syslog 1-5
loggingconsole command 1-4
logging monior command 1-5
logging on command 1-3
logging trap command 1-5
Logical Link Control
See LLC
Logical Link Control, type 2
See LLC2

M

MAC
AppleTalk hardware address, displaying 2-3
ARP address, displaying 2-24
ARPA-style encapsulation 2-35
broadcast fields, described 2-35
broadcast packets, displaying 2-34
displaying ISO CLNS address 2-45
IP address, displaying 2-24
NetBIOS address, displaying 2-170
spanning tree root address 2-218
TCP/IP address, displaying 2-24
Magic Number 2-178, 2-180
mask request message, ICMP 2-90
max area parameter exceeded 2-56
max node parameter exceeded 2-56
Media Access Control
See MAC
message logging
choosing a destination 1-3
directing to console 1-3

enabling 1-3
keywords and levels 1-4
limiting output on console 1-4
limiting output on terminal lines 1-5
setting levels 1-3
setting trap level 1-5
to internal buffer 1-4
to UNIX syslog server 1-5
messages, ICMP 2-104
metric display, ISO IGRP 2-48
MK5025
debug serial interface command 2-205
device problems 2-205
monitor, logging messagesto 1-5
multicast channel, Frame Relay 2-77
multicast IP
debug ip igmp command 2-92, 2-99, 2-106
debug ip mpacket command 2-97
debug ip mrouting command 2-92, 2-29106
debug ip pim command 2-92, 2-98,106

N

Name Binding Protocol
See NBP
name caching activities, examining2-169
name not in NetBIOS cache 2-171
name-cache proxy 2-171
NBP
lookup request 2-14-2-15
name invalid 2-7
routines, displaying 2-13
neighbor reachability problems 2-8
NetBIOS
debug netbios-name-cache command 2-169
insufficient cache buffer space display 2-170
MAC address display 2-170
name caching activities, displaying2-169
name descriptions 2-170
name not in cache 2-171
name-cache proxy nonexistent 2-171
netbooting problems 2-226
NetRPC packet 2-235
network address probe 2-10
network traffic
debug priority over 1-2
generating with ping command 1-2
Novell
See IPX
NSAP
identifier 2-149
ISO CLNS display 2-45, 2-49

Index 7

O

Open Shortest Path First
See OSPF
options to debugommand, displaying 1-2
osl
See ISO CLNS
OSPF
dead interval 2-101
debug ip ospf events command 2-101
hello interval 2-101
IP-related events, generating informatior2-101
neighbors in same area 2-101
stub area 2-101
subnet mask problems 2-101
output from debug
caution using 1-2
generating 1-2
limiting 1-4
limiting on terminal lines 1-5
logging to internal buffer 1-4
redirect using comand options 1-3
setting message levels 1-3
terminal lines versus console lines 1-5
to a UNIX syslog server 1-5
using the logging command 1-3

P

packet conversion, Phase IV/Phase V = 2-57
packet length in ATM 2-31
packet link display 2-223
packet malformed in RIP 2-110
packet type codes, Frame Relay 2-75
packet types, X.25 2-246
PAP 2-183
debug ppp chap command 2-183
displaying exchanges 2-175
Password Authentication Protocol
See PAP
peer bridges 2-209
per-packebutput, AppleTalk 2-16
Phase IV/Phase V converted packet 2-57
ping command, using to generate network traffic = 1-2
Point-to-Point Protocol
See PPP
PPP
CHAP
authentication 2-183
debug ppp chap command 2-183
debug ppp error command 2-182
debug ppp negotiation 2-178
Magic Number 2-178, 2-180

packet exchange between ECHO and LQRs
Quality Protocol option 2-182
traffic, monitoring 2-175
Protocol Data Units
See PDUs
Protocol Independent Multicast (PIM) 2-106
protocols using TCP driver 2-115

Q

QLLC
debug gllc error 2-184
debug gllc event command 2-185
debug gllc packet command 2-186
debug gllc state command 2-187
debug gllc timer command 2-188
debug gllc x25 command 2-189

R

remote peer message header typ@s213
Remote Source-Route Bridging
See RSRB
RIF
cache problems 2-190
interface not configured 2-191
XID response 2-191
RIF cache entry 2-211
ring exchange packet 2-213
RIP
debug ip rip command 2-109
debug ip routing command 2-111
packet malformed 2-110
routing table updates 2-109
routing transactions 2-109
routing updated 2-111
router configuration, displaying 1-2
router, SDLLC support 2-199
routing algorithm
Dijkstra 2-147
shortest path first 2-147
routing cache updates 2-50
Routing Information Field
See RIF
routing information field 2-209
Routing Information Protocol
See RIP
Routing Table Maintenance Protocol
See RTMP
routing table updates, RIP 2-109
routing updatdiming, IPX 2-125
RSRB

2-177

8 Debug Command Reference

debug source event command 2-211
explorer packet 2-213
FST encapsulation 2-214
message header types 2-213
RIF cache entry 2-211
ring exchange packet 2-213
virtual ring header 2-214
RTMP
display, description 2-21
packet, displaying 2-20
using debug apple routing to debug 2-20

RTMP update 2-23

RTP update messages 2-238
S

SAP problems 2-127

SAP response type 2-129

SAP updates in IPX 2-127
SDLC
debug sdic command 2-193
debug sdic local-ack command 2-197
frame event protocol state 2-194
frame type name 2-194
Local Acknowledgment information, displaying 2-
197
Local Acknowledgment state machine
SDLC frames, logging 2-193
SDLLC
data link layer, displaying 2-199
debug sdllc command 2-199

2-198

explorer frame response 2-200
feature definition 2-199
security classification 2-114

security error message calculation in IPSQ-103
security failure messages in IP 2-104
security, ICMP error messages 2-104
security, IPSO error message®-104
seed/nonseed routers 2-11
sequence number packets, investigating 2-149
serial connection problems 2-201
serial debugging, interface support
serial timing problems 2-201
Serial Tunneling
See STUN
server service types in IPX 2-130
Service Advertisement Protocol
See SAP
service detail message in IPX 2-128
setting message logging trap level 1-5
shortest path first algorithm 2-147
show debugging command 1-1
show dialer command 2-132
show interface serial command 2-201

2-201

show logging command 1-4, 1-6
Silicon Switching Bgine
See SSE
slow switching, monitoring AppleTalk 2-16
SMDS
debug serial interface command 2-205
debug serial packet command 2-207
encapsulation problems 2-205, 2-207
SNPA display, ISO CLNS 2-49
socket number in IPX 2-129, 2-131
source-bridge route-cache command missing
Source-Route Bridging
See SRB

source-route bridging problems 2-211
spanning tree
topology change notification 2-216

topology problems 2-216
SRB
debug source event command 2-211
debug source-bridge command 2-208
explorer frame 2-209
packet and frame information, displaying
peer bridges 2-209
routing information field 2-209
using TCP as transport 2-208
SSE, debug sse command 2-219
standby ip command 2-222
startup AppleTalk probe message 2-9
startup negotiations in an IPX WAN 2-121
state machine changes in TCR2-120
stub area 2-101
STUN
debug stun packet command2-223
packet link display 2-223
X1 packet type 2-224
X2 packet type 2-225
subnet mask problems 2-101
switch types, ISDN interface support B-1
Switched Multimegabit Data Service
See SMDS
Synchronous Data Link Control
See SDLC
syslog server
daemonsetup 1-6
limiting messagesto 1-5
logging messagesto 1-5
setting host address 1-5
setting trap level 1-5
trap levels described 1-5
system diagnostics, enabling all 1-2

T

TCNSs, monitoring 2-216, 2-217

2-190

2-208

Index 9

TCP
analyzing performance problems 2-119
debug ip tcp command 2-119
debug ip tcp driver command 2-115, 2-117
debug ip tcp driver-pak command2-115, 2-117
displaying transactions 2-119
driver activity identifier 2-115, 2-118
driver events, logging 2-115
driver operations, logging 2-117
header compression, investigatin@-174
packet information 2-119
port number 2-116
protocols using driver 2-115
state machine changes 2-120
verbose debugging output 2-115
See also IP
TCP/IP
debug arp command 2-24
MAC addresses, displaying 2-24
network nodes not responding 2-24
terminal lines versus console line 1-5
terminal lines, limiting outputon 1-5
terminal monitor command 1-5
TFTP
configure network command 2-226
debug tftp command 2-226
write network command 2-226
ticks, NetWare delay measurement 2-126
timing problems, serial connection 2-201
Token Ring
communication, displaying 2-162
debug token ring command 2-227
interface activity, displaying 2-227
management communication, displayin@-165
network events, displaying 2-160
Topology Change Notification
See spanning-tree, TCN
Transmission Control Protocol
See TCP
transmission rates for ATM 2-28
transparent bridging problems 2-216
trap level
described 1-5
setting 1-5
tunneling
See STUN

U

unclassified genser 2-103

undebug command 1-1

UNIX syslog server
daemon setup 1-6

limiting messagesto 1-5
logging messagesto 1-5
setting host address 1-5
setting trap level 1-5
trap levels described 1-5
unknown prodcol problems
displaying 2-172
encapsulation styles 2-172
unscheduled update event, displaying 2-58

Vv

VINES
ARP packets, logging 2-229
ARP request type 2-230
debug vines arp command 2-229
debug vines echo command 2-231
debug vines ipc command 2-232
debug vines netrpc command 2-234
debug vines packet command 2-236
debug vines routing command2-238, 2-243
debug vines service command 2-240
debug vines state command = 2-242
debug vines table command 2-243
general information, logging 2-236
host command 2-233, 2-235
IPC layer transactions,dging 2-232
MAC-level echo packets, logging 2-231
NetRPC layer transactioniegging 2-234
RTP update messages, logging 2-238
Service layer transactionsgiging 2-240
SRTP state transactionsglfing 2-242

virtual circuit display in ATM ~ 2-31

virtual circuit states, X.25 2-245

virtual ring header, RSRB 2-214

W

write network command problems 2-226
write terminal command 1-2

X

X.25
cause codes A-2-A-4
debug lapb command 2-151
debug x25 all command 2-244
debug x25 events command 2-249
debug x25 vc command 2-250
diagnosing call problems 2-244
diagnostics codes A-4-A-6

10 Debug Command Reference

LAPB
frame type names 2-152
LAPB events 2-151
LAPB interface traffic, displaying 2-151
packet types 2-246
traffic, displaying 2-244, 2-249
virtual circuit states 2-245
virtual circuit traffic, displaying 2-250
X1 packet type 2-224
X2 packet type 2-225
X25
clear x25 vc command A-6
XID response 2-191
XNS
debug xns packet command 2-251
debug xns routing command2-252
packet traffic, logging 2-251
routing transaction, displaying 2-252

Z

ZIP

extended reply 2-23

storm 2-22

using debug apple zip to debug 2-22
Zone Information Protocol

See ZIP
zone list incompatibility 2-6

Index 11

