
Corporate Headquarters
170 W. Tasman Drive
San Jose, CA 95134-1706
USA
408 526-4000
800 553-NETS

Debug Command Reference

Customer Order Number: DOC-DEBUGCR10.3
Text Part Number: 78-1707-01

 Digital Equipment Corporation 1995.
All Rights Reserved.

The products and specifications, configurations, and other technical information regarding the products
contained in this manual are subject to change without notice. All statements, technical information, and
recommendations contained in this manual are believed to be accurate and reliable but are presented without
warranty of any kind, express or implied, and users must take full responsibility for their application of any
products specified in this manual.

 This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in
accordance with the instruction manual for this device, may cause interference to radio communications. This
equipment has been tested and found to comply with the limits for a Class A computing device pursuant to
Subpart J of Part 15 of FCC Rules, which are designed to provide reasonable protection against such
interference when operated in a commercial environment. Operation of this equipment in a residential area is
likely to cause interference, in which case users at their own expense will be required to take whatever
measures may be required to correct the interference.

Possession, use, or copying of the software described in this publication is authorized only pursuant to a valid
written license from Digital or an authorized sublicensor.

Digital Equipment Corporation makes no representations that the use of its products in the manner described
in this publication will not infringe on existing or future patent rights, nor do the descriptions contained in
this publication imply the granting of licenses to make, use, or sell equipment or software in accordance with
the description.

The following are trademarks of Digital Equipment Corporation: DDCMP, DEC, DECnet, DECNIS,
DECserver, DECsystem, DECwindows, Digital, DNA, OpenVMS, ULTRIX, VAX, VAXstation, VMS,
VMScluster, and the DIGITAL logo.

Portions of this document is used with permission of Cisco Systems, Incorporated. Copyright © 1990 - 1995,
Cisco Systems, Inc.

The following third-party software may be included with your product and will be subject to the software
license agreement:

CiscoWorks software and documentation are based in part on HP OpenView under license from the Hewlett-
Packard Company. HP OpenView is a trademark of the Hewlett-Packard Company. Copyright © 1992, 1993
Hewlett-Packard Company.

The Cisco implementation of TCP header compression is an adaptation of a program developed by the
University of California, Berkeley (UCB) as part of UCB’s public domain version of the UNIX operating
system. All rights reserved. Copyright © 1981, Regents of the University of California.

Network Time Protocol (NTP). Copyright © 1992, David L. Mills. The University of Delaware makes no
representations about the suitability of this software for any purpose.

Point-to-Point Protocol. Copyright © 1989, Carnegie-Mellon University. All rights reserved. The name of the
University may not be used to endorse or promote products derived from this software without specific prior
written permission.

The Cisco implementation of TN3270 is an adaptation of the tn3270, curses, and termcap programs
developed by the University of California, Berkeley (UCB) as part of UCB’s public domain version of the
UNIX operating system. All rights reserved. Copyright © 1981-1988, Regents of the University of California.

Cisco incorporates Fastmac software in some Token Ring products. Fastmac software is licensed to Cisco by
Madge Networks Limited.

XRemote is a trademark of Network Computing Devices, Inc. Copyright © 1989, Network Computing
Devices, Inc., Mountain View, California. NCD makes no representations about the suitability of this
software for any purpose.

The X Window System is a trademark of the Massachusetts Institute of Technology. Copyright © 1987,
Digital Equipment Corporation, Maynard, Massachusetts, and the Massachusetts Institute of Technology,
Cambridge, Massachusetts. All rights reserved.

THESE MANUALS AND THE SOFTWARE OF THE ABOVE-LISTED SUPPLIERS ARE PROVIDED
“AS IS” WITH ALL FAULTS. DIGITAL AND THE ABOVE-NAMED SUPPLIERS DISCLAIM ALL
WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING THOSE OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE OR ARISING FROM A COURSE OF DEALING, USAGE,
OR TRADE PRACTICE.

IN NO EVENT SHALL DIGITAL OR ITS SUPPLIERS BE LIABLE FOR ANY INDIRECT, SPECIAL,
CONSEQUENTIAL, OR INCIDENTAL DAMAGES, INCLUDING, WITHOUT LIMITATION, LOST
PROFITS OR LOSS OR DAMAGE TO DATA ARISING OUT OF THE USE OR INABILITY TO USE
THIS MANUAL, EVEN IF DIGITAL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES.

Notice of Restricted Rights:

Use, duplication, or disclosure by the Government is subject to restrictions as set forth in subparagraph (c) of
the Commercial Computer Software - Restricted Rights clause at FAR §52.227-19 and subparagraph
(c)(1)(ii) of the Rights in Technical Data and Computer Software clause at DFARS §252.227-7013. The
information in this manual is subject to change without notice.

Access Without Compromise, Catalyst, CD-PAC, CiscoFusion, CiscoWorks, HyperSwitch, Internetwork

Operating System, IOS, Netscape, Point and Click Internetworking, SMARTnet The Packet, UniverCD,

Workgroup Director, and Workgroup Stack are trademarks, and Cisco, Cisco Systems and the Cisco logo are
registered trademarks of Cisco Systems, Inc. All other products or services mentioned in these documents are
the trademarks, service marks, registered trademarks, or registered service marks of their respective owners.

 Table of Contents v

T A B L E O F C O N T E N T S

About This Manual xxi

Audience and Scope xxi

Document Organization and Use xxi

Document Conventions xxii

Chapter 1

Using Debug Commands 1-1
Entering Debug Commands 1-1

Using the Debug ? Command 1-2

Using the Debug All Command 1-2

Generating Debug Command Output 1-2

Redirecting Debugging and Error Message Output 1-3
Enabling Message Logging 1-3
Setting the Message Logging Levels 1-3
Limiting the Types of Logging Messages Sent to the Console 1-4
Logging Messages to an Internal Buffer 1-4
Limiting the Types of Logging Messages Sent to Another Monitor 1-5
Logging Messages to a UNIX Syslog Server 1-5
Limiting Messages to a Syslog Server 1-5

Chapter 2

Debug Commands 2-1
debug apple arp 2-2

debug apple domain 2-4

debug apple errors 2-6

debug apple events 2-8

debug apple nbp 2-13

debug apple packet 2-16

debug apple remap 2-18

debug apple routing 2-20

debug apple zip 2-22

debug arp 2-24

debug atm errors 2-26

debug atm events 2-27

debug atm packet 2-30

debug bri 2-32

debug broadcast 2-34

debug cdp 2-37

vi Debug Command Reference

debug channel events 2-38

debug channel packets 2-40

debug clns esis events 2-42

debug clns esis packets 2-43

debug clns events 2-45

debug clns igrp packets 2-47

debug clns packet 2-49

debug clns routing 2-50

debug compress 2-51

debug decnet adj 2-52

debug decnet connects 2-54

debug decnet events 2-56

debug decnet packet 2-57

debug decnet routing 2-58

debug dialer 2-60

debug dspu activation 2-62

debug dspu packet 2-64

debug dspu state 2-66

debug dspu trace 2-68

debug eigrp fsm 2-70

debug eigrp packet 2-72

debug frame-relay 2-74

debug frame-relay events 2-77

debug frame-relay lmi 2-78

debug frame-relay packets 2-81

debug ip dvmrp 2-83

debug ip eigrp 2-86

debug ip icmp 2-88

debug ip igmp 2-92

debug ip igrp events 2-93

debug ip igrp transaction 2-95

debug ip mpacket 2-97

debug ip mrouting 2-99

debug ip ospf events 2-101

 Table of Contents vii

debug ip packet 2-102

debug ip pim 2-106

debug ip rip 2-109

debug ip routing 2-111

debug ip security 2-113

debug ip tcp driver 2-115

debug ip tcp driver-pak 2-117

debug ip tcp transactions2-119

debug ipx ipxwan 2-121

debug ipx packet 2-123

debug ipx routing 2-125

debug ipx sap 2-127

debug isdn-event 2-132

debug isdn-q921 2-136

debug isdn-q931 2-142

debug isis adj packets 2-146

debug isis spf statistics 2-147

debug isis update-packets 2-149

debug lapb 2-151

debug lat packet 2-155

debug lex rcmd 2-157

debug lnm events 2-160

debug lnm llc 2-162

debug lnm mac 2-165

debug local-ack state 2-167

debug netbios-name-cache2-169

debug packet 2-172

debug ppp 2-175

debug qllc error 2-184

debug qllc event 2-185

debug qllc packet 2-186

debug qllc state 2-187

debug qllc timer 2-188

debug qllc x25 2-189

viii Debug Command Reference

debug rif 2-190

debug sdlc 2-193

debug sdlc local-ack 2-197

debug sdllc 2-199

debug serial interface 2-201
Debug Serial Interface for Frame Relay Encapsulation 2-201
Debug Serial Interface for HDLC 2-202
Debug Serial Interface for HSSI 2-203
Debug Serial Interface for ISDN Basic Rate2-204
Debug Serial Interface for an MK5025 Device2-205
Debug Serial Interface for SMDS Encapsulation2-205

debug serial packet 2-207
Debug Serial Packet for SMDS Encapsulation2-207

debug source-bridge 2-208

debug source event 2-211

debug span 2-216

debug sse 2-219

debug standby 2-221

debug stun packet 2-223

debug tftp 2-226

debug token ring 2-227

debug vines arp 2-229

debug vines echo 2-231

debug vines ipc 2-232

debug vines netrpc 2-234

debug vines packet 2-236

debug vines routing 2-238

debug vines service 2-240

debug vines state 2-242

debug vines table 2-243

debug x25 all 2-244

debug x25 events 2-249

debug x25 vc 2-250

debug xns packet 2-251

debug xns routing 2-252

 Table of Contents ix

Appendix A

X.25 Cause and Diagnostic Codes A-1
X.25 Cause Codes A-2

X.25 Diagnostic Codes A-4

Appendix B

ISDN Switch Types, Codes, and Values B-1

 List of Figures xi

Figure 1-1 Example Debug Broadcast Output 1-2

Figure 2-1 Sample Debug Apple ARP Output 2-2

Figure 2-2 Sample Debug Apple Domain Output 2-4

Figure 2-3 Debug Apple Errors Output 2-6

Figure 2-4 Sample Debug Apple Events Output with Discovery Mode State Changes 2-9

Figure 2-5 Sample Debug Apple Events Output Showing Seed Coming Up by Itself 2-11

Figure 2-6 Debug Apple Events Output Showing Nonseed with No Seed 2-11

Figure 2-7 Sample Debug Apple Events Output Showing Compatibility Conflict 2-11

Figure 2-8 Sample Debug Apple NBP Output 2-14

Figure 2-9 Sample Debug Apple Packet Output 2-16

Figure 2-10 Sample Debug Output 2-18

Figure 2-11 Sample Debug Apple Routing Output 2-20

Figure 2-12 Sample Debug Apple ZIP Output 2-22

Figure 2-13 Sample Debug ARP Output 2-24

Figure 2-14 Sample Debug ATM Errors Output 2-26

Figure 2-15 Sample Debug ATM Events Output 2-27

Figure 2-16 Sample Debug ATM Packet Output 2-30

Figure 2-17 Sample Debug BRI Packets Output 2-32

Figure 2-18 Sample Debug Broadcast Output 2-34

Figure 2-19 Sample Debug CDP Output 2-37

Figure 2-20 Sample Debug Channel Events Output 2-38

Figure 2-21 Sample Debug Channel Packets Output 2-40

Figure 2-22 Sample Debug CLNS ESIS Events Output 2-42

Figure 2-23 Sample Debug CLNS ESIS Packets Output 2-43

Figure 2-24 Sample Debug CLNS Events Output 2-45

Figure 2-25 Sample Debug CLNS IGRP Packets Output 2-47

Figure 2-26 Sample Debug CLNS Packet Output 2-49

Figure 2-27 Sample Debug CLNS Routing Output 2-50

Figure 2-28 Sample Debug Compress Output 2-51

Figure 2-29 Sample Debug DECnet Adj Output 2-52

Figure 2-30 Sample Debug DECnet Connects Output 2-54

Figure 2-31 Sample Debug DECnet Events Output 2-56

Figure 2-32 Sample Debug DECnet Packet Output 2-57

Figure 2-33 Sample Debug DECnet Routing Output 2-58

L I S T O F F I G U R E S

xii Debug Command Reference

Figure 2-34 Sample Debug DSPU Activation Output 2-62

Figure 2-35 Sample Debug DSPU Packet Output 2-64

Figure 2-36 Sample Debug DSPU State Output 2-66

Figure 2-37 Sample Debug DSPU Trace Output 2-68

Figure 2-38 Sample Debug EIGRP FSM Output 2-70

Figure 2-39 Sample Debug EIGRP Packet Output 2-72

Figure 2-40 Sample Debug Frame-Relay Output 2-74

Figure 2-41 Sample Debug Frame-Relay Events Output 2-77

Figure 2-42 Sample Debug Frame-Relay LMI Output 2-78

Figure 2-43 Sample Debug Frame-Relay Packets Output 2-81

Figure 2-44 Sample Debug IP DVMRP Output 2-83

Figure 2-45 Sample Debug IP DVMRP Detail Output 2-84

Figure 2-46 Sample Debug IP EIGRP Output 2-86

Figure 2-47 Sample Debug IP ICMP Output 2-88

Figure 2-48 Sample Debug IP IGMP Output 2-92

Figure 2-49 Sample Debug IP IGRP Events Output 2-93

Figure 2-50 Sample Debug IP IGRP Transaction Output 2-95

Figure 2-51 Sample Debug IP Mpacket Output 2-97

Figure 2-52 Sample Debug IP Mrouting Output 2-99

Figure 2-53 Sample Debug IP OSPF Events Output2-101

Figure 2-54 Sample Debug IP Packet Output2-103

Figure 2-55 Sample Debug IP PIM Output 2-106

Figure 2-56 Sample Debug IP RIP Output 2-109

Figure 2-57 Sample Debug IP Routing Output 2-111

Figure 2-58 Sample Debug IP Security Output 2-113

Figure 2-59 Sample Debug IP TCP Driver Output 2-115

Figure 2-60 Sample Debug IP TCP Driver-Pak Output 2-117

Figure 2-61 Sample Debug IP TCP Output 2-119

Figure 2-62 Sample Debug IPX IPXWAN Output 2-121

Figure 2-63 Sample Debug IPX Packet Output2-123

Figure 2-64 Sample Debug IPX Routing Output 2-125

Figure 2-65 Sample Debug IPX SAP Output 2-127

Figure 2-66 Sample Debug ISDN-Event Output—Call Setup Outgoing Call 2-132

Figure 2-67 Sample Debug ISDN-Event Output—Call Setup Incoming Call2-133

 List of Figures xiii

Figure 2-68 Sample Debug ISDN-Event Output—Call Teardown by Far End 2-133

Figure 2-69 Sample Debug ISDN-Event Output—Call Teardown Local Side 2-133

Figure 2-70 Sample Debug ISDN-Event—Call Screening Normal Disconnect2-134

Figure 2-71 Sample Debug ISDN-Event—Call Screening Call Rejection 2-134

Figure 2-72 Sample Debug ISDN-Event Display—Called Party Subaddress 2-135

Figure 2-73 Sample Debug ISDN-Q921 Output for Outgoing Call 2-137

Figure 2-74 Sample Debug ISDN-Q921 Output for Startup Message on a DMS-100 Switch2-137

Figure 2-75 Debug ISDN-Q921 Output for Incoming Call 2-138

Figure 2-76 Sample Debug ISDN-Q931 Output—Call Setup Procedure for an Outgoing Call2-142

Figure 2-77 Sample Debug ISDN-Q931 Output—Call Setup Procedure for an Incoming Call2-143

Figure 2-78 Sample Debug ISDN-Q931 Output—Call Teardown Procedure from the Network 2-143

Figure 2-79 Sample Debug ISDN-Q931 Output—Call Teardown Procedure from the Router 2-143

Figure 2-80 Sample Debug ISIS Adj Packets Output2-146

Figure 2-81 Sample Debug ISIS SPF Statistics Output2-147

Figure 2-82 Sample Debug ISIS Update-Packets Output2-149

Figure 2-83 Sample Debug LAPB Output 2-151

Figure 2-84 Sample Debug LAT Packet Output2-155

Figure 2-85 Sample Debug LEX Rcmd Output 2-157

Figure 2-86 Sample Debug LNM Events Output 2-160

Figure 2-87 Sample Debug LNM LLC Output 2-162

Figure 2-88 Sample Debug LNM MAC Output 2-165

Figure 2-89 Sample Debug Local-Ack State Output2-167

Figure 2-90 Sample Debug NetBIOS-Name-Cache Output 2-169

Figure 2-91 Sample Debug Packet Output 2-172

Figure 2-92 Sample Debug PPP Packet Output 2-176

Figure 2-93 Partial Debug PPP Packet Output2-177

Figure 2-94 Sample Debug PPP Negotiation Output2-178

Figure 2-95 Sample Debug PPP Output with Packet and Negotiation Options Enabled 2-180

Figure 2-96 Sample Debug PPP Negotiation Output When No Response Is Detected2-181

Figure 2-97 Sample Debug PPP Output When No Response Is Detected (with Negotiation and Packet
Enabled) 2-181

Figure 2-98 Sample Debug PPP Error Output2-182

Figure 2-99 Sample Debug PPP CHAP Output 2-183

Figure 2-100 Sample Debug QLLC Error Output 2-184

xiv Debug Command Reference

Figure 2-101 Sample Debug Qllc Event Output 2-185

Figure 2-102 Sample Debug QLLC Packet Output 2-186

Figure 2-103 Sample Debug Qllc Event Output 2-187

Figure 2-104 Sample Debug QLLC Timer Output 2-188

Figure 2-105 Sample Debug QLLC X25 Output 2-189

Figure 2-106 Sample Debug RIF Output 2-190

Figure 2-107 Sample Debug SDLC Output 2-193

Figure 2-108 Sample Debug SDLC Local-Ack Output 2-198

Figure 2-109 Sample Debug SDLLC Output 2-199

Figure 2-110 Sample Debug Serial Interface Output for HDLC 2-202

Figure 2-111 Sample Debug Serial Packet Output for SMDS2-207

Figure 2-112 Sample Debug Source-Bridge Output in TCP Environment2-208

Figure 2-113 Sample Debug Source-Bridge Output in Direct Encapsulation Environment2-209

Figure 2-114 Sample Debug Source Event Output 2-211

Figure 2-115 Sample Debug Span Output for an IEEE BPDU Packet2-216

Figure 2-116 Sample Debug Span Output 2-217

Figure 2-117 Sample Debug SSE Output2-219

Figure 2-118 Sample Debug Standby Output 2-221

Figure 2-119 Sample Debug STUN Packet Output 2-224

Figure 2-120 Sample Debug TFTP Output 2-226

Figure 2-121 Sample Debug Token Ring Output2-227

Figure 2-122 Sample Debug VINES ARP Output 2-229

Figure 2-123 Sample Debug VINES Echo Output2-231

Figure 2-124 Sample Debug VINES IPC Output 2-232

Figure 2-125 Sample Debug VINES NetRPC Output 2-234

Figure 2-126 Sample Debug VINES Packet Output 2-236

Figure 2-127 Sample Debug VINES Routing Output 2-238

Figure 2-128 Sample Debug VINES Routing Verbose Output2-238

Figure 2-129 Sample Debug VINES Service Output 2-240

Figure 2-130 Sample Debug VINES Table Output 2-243

Figure 2-131 Sample Debug X25 All Output 2-245

Figure 2-132 Sample Debug X25 Events Output2-249

Figure 2-133 Sample Debug X25 VC Output 2-250

Figure 2-134 Sample Debug XNS Packet Output. 2-251

 List of Figures xv

Figure 2-135 Sample Debug XNS Routing Output 2-252

 List of Tables xvii

L I S T O F T A B L E S

Table 1-1 Message Logging Keywords and Levels 1-4

Table 2-1 Debug Apple NBP Field Descriptions—Part 1 2-14

Table 2-2 Debug Apple NBP Field Descriptions—Part 2 2-15

Table 2-3 Debug Apple Packet Field Descriptions—Part 1 2-17

Table 2-4 Debug Apple Packet Field Descriptions—Part 2 2-17

Table 2-5 Debug Apple Routing Field Descriptions—Part 1 2-21

Table 2-6 Debug Apple Routing Field Descriptions—Part 2 2-21

Table 2-7 Debug ATM Events Field Descriptions 2-28

Table 2-8 Debug ATM Packet Field Descriptions 2-31

Table 2-9 Debug Broadcast Field Descriptions 2-35

Table 2-10 Channel Packets Field Descriptions 2-40

Table 2-11 Debug Compress Field Descriptions 2-51

Table 2-12 Debug DECnet Connects Field Descriptions 2-54

Table 2-13 Debug Dialer Message Descriptions for DDR 2-60

Table 2-14 Debug DSPU Activation Field Descriptions 2-63

Table 2-15 Debug DSPU Packet Field Descriptions 2-64

Table 2-16 Debug DSPU State Field Descriptions 2-67

Table 2-17 Debug DSPU Trace Field Descriptions 2-69

Table 2-18 Debug EIGRP Packet Field Descriptions 2-73

Table 2-19 Debug Frame-Relay Field Descriptions 2-74

Table 2-20 Debug Frame-Relay LMI Field Descriptions—Part 1 2-79

Table 2-21 Debug Frame-Relay LMI Field Descriptions—Part 2 2-79

Table 2-22 Debug Frame-Relay LMI Field Descriptions—Part 3 2-80

Table 2-23 Debug Frame-Relay Packets Field Descriptions 2-82

Table 2-24 Internet Multicast Addresses 2-84

Table 2-25 Debug IP EIGRP Field Descriptions 2-87

Table 2-26 Debug IP ICMP Field Descriptions—Part 1 2-89

Table 2-27 Debug IP ICMP Field Descriptions—Part 2 2-90

Table 2-28 Debug IP Mpacket Field Descriptions 2-97

Table 2-29 Debug IP Packet Field Descriptions 2-103

Table 2-30 Security Actions 2-103

Table 2-31 Debug IP Security Field Descriptions 2-114

Table 2-32 Debug IP TCP Driver Field Descriptions2-115

Table 2-33 Debug TCP Driver-Pak Field Descriptions2-118

xviii Debug Command Reference

Table 2-34 Debug IP TCP Field Descriptions2-119

Table 2-35 Debug IPX Packet Field Descriptions 2-124

Table 2-36 Debug IPX Routing Field Descriptions 2-125

Table 2-37 Debug IPX SAP Field Descriptions—Part 12-129

Table 2-38 Debug IPX SAP Field Descriptions—Part 22-130

Table 2-39 Debug IPX SAP Field Descriptions—Part 32-131

Table 2-40 Debug ISDN-Event Field Descriptions2-134

Table 2-41 Debug ISDN-Q921 Field Descriptions 2-138

Table 2-42 Debug ISDN-Q931 Call Setup Procedure Field Descriptions2-143

Table 2-43 Debug ISDN-Event Field Descriptions2-148

Table 2-44 Debug LAPB Field Descriptions 2-152

Table 2-45 Debug LAT Packet Field Descriptions 2-155

Table 2-46 Debug LAT Packet Field Descriptions 2-156

Table 2-47 Debug LNM LLC Field Descriptions 2-163

Table 2-48 Debug LNM MAC Field Descriptions 2-166

Table 2-49 Debug Local-Ack State Field Descriptions 2-168

Table 2-50 Debug NetBIOS-Name-Cache Field Descriptions2-170

Table 2-51 Debug Packet Field Descriptions2-172

Table 2-52 Debug PPP Packet Field Descriptions2-176

Table 2-53 Debug PPP Negotiation Field Descriptions 2-178

Table 2-54 Debug PPP Error Field Descriptions 2-182

Table 2-55 Debug PPP CHAP Field Descriptions2-183

Table 2-56 Debug QLLC X.25 Field Descriptions 2-189

Table 2-57 Debug RIF Field Descriptions—Part 1 2-190

Table 2-58 Debug RIF Field Descriptions—Part 2 2-192

Table 2-59 Debug SDLC Field Descriptions for a Frame Output Event2-194

Table 2-60 Debug SDLC Field Descriptions Unique to a Frame Input Event2-195

Table 2-61 Debug SDLC Field Descriptions for a Timer Event2-196

Table 2-62 Debug SDLC Local-Ack Debugging Levels 2-197

Table 2-63 Debug SDLC Local-Ack Field Descriptions2-198

Table 2-64 Debug SDLLC Field Descriptions 2-200

Table 2-65 Debug Serial Interface Field Descriptions for HDLC2-202

Table 2-66 Debug Serial Interface Error Messages for HDLC2-203

Table 2-67 Debug Serial Interface Message Descriptions for ISDN Basic Rate2-204

 List of Tables xix

Table 2-68 Debug Serial Interface Message Descriptions for an MK5025 Device 2-205

Table 2-69 Debug Source Event Field Descriptions 2-211

Table 2-70 Debug Span Field Descriptions for an IEEE BPDU Packet 2-216

Table 2-71 Debug Span Field Descriptions for a DEC BPDU Packet 2-217

Table 2-72 Debug Standby Field Descriptions 2-222

Table 2-73 Debug STUN Packet Field Descriptions2-224

Table 2-74 Debug TFTP Field Descriptions 2-226

Table 2-75 Debug Token Ring Field Descriptions—Part 1 2-228

Table 2-76 Debug Token Ring Field Descriptions—Part 2 2-228

Table 2-77 Debug Token Ring Field Descriptions—Part 3 2-228

Table 2-78 Debug VINES ARP Field Descriptions 2-230

Table 2-79 Debug VINES Echo Field Descriptions 2-231

Table 2-80 VINES IPC Field Descriptions 2-233

Table 2-81 Debug VINES NetRPC Field Descriptions2-235

Table 2-82 Debug VINES Packet Field Descriptions2-236

Table 2-83 Debug VINES Service Field Descriptions—Part 12-241

Table 2-84 Debug VINES Service Field Descriptions—Part 22-241

Table 2-85 Debug VINES Table Field Descriptions2-243

Table 2-86 Debug X25 All Field Descriptions 2-245

Table 2-87 Debug X25 All PS and PR Field Descriptions2-247

Table 2-88 Debug X25 All Field Descriptions for Packets Representing Tunneled PVC Activity2-247

Table 2-89 Debug XNS Packet Field Descriptions 2-251

Table 2-90 Debug XNS Routing Field Descriptions2-253

Table A-1 Annex E International Problem Diagnostic Code Differences A-1

Table A-2 Cause Code Descriptions for CLEAR REQUEST Packets A-3

Table A-3 Cause Code Descriptions for RESET REQUEST Packets A-3

Table A-4 Cause Code Descriptions for RESTART Packets A-4

Table A-5 X.25 Diagnostic Field Code Descriptions A-4

Table B-1 Supported ISDN Switch Types B-1

Table B-2 ISDN Cause Code Fields B-2

Table B-3 ISDN Cause Values B-2

Table B-4 ISDN Bearer Capability Values B-5

Table B-5 Progress Description Field Values B-5

 About This Manual xxi

About This Manual

This section introduces the Debug Command Reference publication audience and scope,
organization, use, and conventions.

Audience and Scope
This publication addresses the network or system administrator who maintains a Cisco gateway,
router, or bridge running Internetwork Operating System (IOS) Release 10 and earlier software.

Readers should know how to configure a Cisco router and should be familiar with the protocols and
media their routers are configured to support. Readers must also be aware of their network topology.

Document Organization and Use
The Debug Command Reference publication provides information about using debug commands to
troubleshoot Cisco network servers. This manual is most effective when used in conjunction with the
Troubleshooting Internetworking Systems publication.

Chapter 1, “Using Debug Commands,” explains how you enter debug commands; use the debug ?
and debug all commands; and generate and redirect debug command output. It is important that you
read this chapter first before proceeding to Chapter 2, “Debug Commands.”

Chapter 2, “Debug Commands,” presents reference information on commands you use to debug your
internetwork. The chapter includes command function descriptions, sample output displays, and
explanations of these displays.

Appendix A, “X.25 Cause and Diagnostic Codes,” lists the codes that can appear in output from the
debug x25, debug x25-events, and debug x25-vc commands.

Appendix B, “ISDN Switch Types, Codes, and Values,” lists the supported switch types. It also
contains the cause codes, cause values, bearer capability values, and progress values that can appear
in output from the debug isdn-q921, debug isdn-q931, and debug isdn-event commands.

xxii Debug Command Reference

Document Conventions

Document Conventions
The command descriptions in this manual use these conventions:

• Commands and keywords are in boldface.

• Filenames, directory names, and arguments for which you supply values are in italics.

• Elements in square brackets ([]) are optional.

• Alternative but required keywords are grouped in braces ({ }) and are separated by vertical bars
(|).

• A string is defined as a nonquoted set of characters. For example, when setting up a community
string for SNMP to “public,” do not use quotes around the string or the string will be set to
“public.”

The samples use these conventions:

• Terminal sessions are printed in a screen font.

• Information you enter is in a boldface screen font.

• Nonprinting characters are shown in angle brackets (< >).

• Information the system displays is in a screen font; default responses are in square brackets ([]).

This publication also uses the following conventions:

Note Means reader take note. Notes contain helpful suggestions, or reference to materials not
covered in this manual.

Caution Means reader be careful. In this situation, you might do something that could result in
equipment damage or loss of data.

 About This Manual xxiii

Document Conventions

The following illustration explains the fields on a typical command reference page:

router bgp

Use the router bgp global configuration command to configure the
Border Gateway Protocol (BGP) routing process. Use the no router
bgp command to remove the routing process.

Syntax Description
autonomous-system Identifies the router to other BGP
 routers and tags the routing information
 passed along.

Default
No BGP autonomous systems are specified.

Command Mode
Global configuration

Usage Guidelines
This command allows you to set up a distributed routing core that
automatically guarantees the loop-free exchange of routing information
between autonomous systems (AS).

Example
The following example configures a BGP process for AS 120.

 router bgp 120

Related Commands
neighbor
network
timers bgp

Command name

Brief description of
command usage

Command syntax

List of command
 arguments and keywords

Descriptions of

 arguments and keywords

Default configuration or value

Mode in which
 command is entered

Guidelines about use and
 operation of the command

 or related commands

Example of using the command

Other commands to reference
 for related information; all

commands are in the same
chapter except those followed

by a †; see the index to
 locate these commands

S
28

22

router bgp

IP Routing Protocols Commands 17-99

router bgp autonomous-system
no router bgp autonomous-system

C H A P T E R

 Using Debug Commands 1-1

Using Debug Commands

1

This chapter explains how you use debug commands to diagnose and resolve internetworking
problems. Specifically, it covers the following topics:

• Entering debug commands

• Using the debug ? command

• Using the debug all command

• Generating debugging output

• Redirecting debugging output

Caution Because debugging output is assigned high priority in the CPU process, it can render the
system unusable. For this reason, only use debug commands to troubleshoot specific problems or
during troubleshooting sessions with Cisco technical support staff. Moreover, it is best to use debug
commands during periods of lower network traffic and fewer users. Debugging during these periods
decreases the likelihood that increased debug command processing overhead will affect system use.

Entering Debug Commands
All debug commands are entered while in privileged EXEC mode and most debug commands do
not take any arguments. For example, to enable the debug broadcast command, enter the following
in privileged EXEC mode at the command line:

debug broadcast

To turn off the debug broadcast command, in privileged EXEC mode, enter the no form of the
command at the command line:

no debug broadcast

Alternately, in privileged EXEC mode, you can enter the undebug form of the command:

undebug broadcast

To display the state of each debugging option, enter the following at the command line in privileged
EXEC mode:

show debugging

1-2 Debug Command Reference

Using the Debug ? Command

Using the Debug ? Command
To list and briefly describe all of the debugging command options, enter the following command in
privileged EXEC mode at the command line:

debug ?

Using the Debug All Command
To enable all system diagnostics, enter the following command in privileged EXEC mode at the
command line:

debug all

The no debug all command turns off all diagnostic output. Using the no debug all command is a
convenient way to ensure that you have not accidentally left any debug commands turned on.

Caution Because debugging output takes priority over other network traffic, and because the
debug all command generates more output than any other debug command, it can severely diminish
the router’s performance or even render it unusable. In virtually all cases, it is best to use more
specific debug commands.

Generating Debug Command Output
Enabling a debug command can result in output similar to the example shown in Figure 1-1 for the
debug broadcast command.

Figure 1-1 Example Debug Broadcast Output

router# debug broadcast

Ethernet0: Broadcast ARPA, src 0000.0c00.6fa4, dst ffff.ffff.ffff,
type 0x0800, data 4500002800000000FF11EA7B, len 60
Serial3: Broadcast HDLC, size 64, type 0x800, flags 0x8F00
Serial2: Broadcast PPP, size 128
Serial7: Broadcast FRAME-RELAY, size 174, type 0x800, DLCI 7a

The router continues to generate such output until you enter the corresponding no debug command
(in this case, no debug broadcast).

If you enable a debug command and no output is displayed, consider the following possibilities:

• The router may not be properly configured to generate the type of traffic you want to monitor.
Use the write terminal command to check its configuration.

• Even if the router is properly configured, it may not generate the type of traffic you want to
monitor during the particular period that debugging is turned on. Depending on the protocol you
are debugging, you can use commands such as the TCP/IP ping command to generate network
traffic.

 Using Debug Commands 1-3

Redirecting Debugging and Error Message Output

Redirecting Debugging and Error Message Output
By default, the network server sends the output from debug commands and system error messages
to the console terminal. If you use this default, monitor debugging output using a virtual terminal
connection, rather than the console port.

To redirect debugging output, use the logging command options within configuration mode.

Possible destinations include the console terminal, virtual terminals, internal buffer, and UNIX hosts
running a syslog server. The syslog format is compatible with 4.3 BSD UNIX and its derivatives.

Note Be aware that the debugging destination you use affects system overhead. Logging to the
console produces very high overhead, whereas logging to a virtual terminal produces less overhead.
Logging to a syslog server produces even less, and logging to an internal buffer produces the least
overhead of any method.

To configure message logging, you need to be in configuration command mode. To enter this mode,
use the configure terminal command at the EXEC prompt.

The following sections describe how to select redirection options with the logging router
configuration command.

Enabling Message Logging
To enable message logging to all supported destinations other than the console, enter the following:

logging on

The default condition is logging on.

To direct logging to the console terminal only and disable logging output to other destinations, enter
the following command:

no logging on

Setting the Message Logging Levels
You can set the logging levels when logging messages to the following:

• Console

• Monitor

• Syslog server

Table 1-1 lists and briefly describes the logging levels and corresponding keywords you can use to
set the logging levels for these types of messages. The highest level of message is level 0,
emergencies. The lowest level is level 7, debugging, which also displays the greatest amount of
messages. For information about limiting these messages, see sections later in this chapter.

1-4 Debug Command Reference

Redirecting Debugging and Error Message Output

Table 1-1 Message Logging Keywords and Levels

Limiting the Types of Logging Messages Sent to the Console
To limit the types of messages that are logged to the console, use the logging console router
configuration command. The full syntax of this command follows:

logging console level
no logging console

The logging console command limits the logging messages displayed on the console terminal to
messages up to and including the specified severity level, which is specified by the level argument.

The level argument can be one of the keywords listed in Table 1-1. They are listed in order from the
most severe level to the least severe.

The no logging console command disables logging to the console terminal.

Example
The following example sets console logging of messages at the debugging level, which is the least
severe level and will display all logging messages:

logging console debugging

Logging Messages to an Internal Buffer
The default logging device is the console; all messages are displayed on the console unless otherwise
specified.

To log messages to an internal buffer, use the logging buffered router configuration command. The
full syntax of this command follows:

logging buffered
no logging buffered

The logging buffered command copies logging messages to an internal buffer instead of writing
them to the console terminal. The buffer is circular in nature, so newer messages overwrite older
messages. To display the messages that are logged in the buffer, use the privileged EXEC command
show logging. The first message displayed is the oldest message in the buffer.

The no logging buffered command cancels the use of the buffer and writes messages to the console
terminal (the default).

Level Keyword Description Syslog Definition

0 emergencies System is unusable. LOG_EMERG

1 alerts Immediate action is needed. LOG_ALERT

2 critical Critical conditions exist. LOG_CRIT

3 errors Error conditions exist. LOG_ERR

4 warnings Warning conditions exist. LOG_WARNING

5 notification Normal, but significant, conditions exist. LOG_NOTICE

6 informational Informational messages. LOG_INFO

7 debugging Debugging messages. LOG_DEBUG

 Using Debug Commands 1-5

Redirecting Debugging and Error Message Output

Limiting the Types of Logging Messages Sent to Another Monitor
To limit the level of messages logged to the terminal lines (monitors), use the logging monitor
router configuration command. The full syntax of this command follows:

logging monitor level
no logging monitor

The logging monitor command limits the logging messages displayed on terminal lines other than
the console line to messages with a level up to and including the specified level argument. The level
argument is one of the keywords listed in Table 1-1. To display logging messages on a terminal
(virtual console), use the privileged EXEC command terminal monitor .

The no logging monitor command disables logging to terminal lines other than the console line.

Example
The following example sets the level of messages displayed on monitors other than the console to
notification :

logging monitor notification

Logging Messages to a UNIX Syslog Server
To log messages to the syslog server host, use the logging router configuration command. The full
syntax of this command follows:

logging ip-address
no logging ip-address

The logging command identifies a syslog server host to receive logging messages. The ip-address
argument is the IP address of the host. By issuing this command more than once, you build a list of
syslog servers that receive logging messages.

The no logging command deletes the syslog server with the specified address from the list of
syslogs.

Limiting Messages to a Syslog Server
To limit how many messages are sent to the syslog servers, use the logging trap router configuration
command. The full syntax of this command follows:

logging trap level
no logging trap

The logging trap command limits the logging messages sent to syslog servers to messages with a
level up to and including the specified level argument. The level argument is one of the keywords
listed in Table 1-1.

To send logging messages to a syslog server, specify its host address with the logging command.

The default trap level is informational .

The no logging trap command disables logging to syslog servers.

The current software generates four categories of syslog messages:

• Error messages about software or hardware malfunctions, displayed at the errors level.

• Interface up/down transitions and system restart messages, displayed at the notification level.

1-6 Debug Command Reference

Redirecting Debugging and Error Message Output

• Reload requests and low-process stack messages, displayed at the informational level.

• Output from the debug commands, displayed at the debugging level.

The privileged EXEC command show logging displays the addresses and levels associated with the
current logging setup. The command output also includes ancillary statistics.

Example of Setting Up a UNIX Syslog Daemon
To set up the syslog daemon on a 4.3 BSD UNIX system, include a line such as the following in the
file /etc/syslog.conf:

local7.debugging /usr/adm/logs/tiplog

The local7 keyword specifies the logging facility to be used.

The debugging keyword specifies the syslog level. See Table 1-1 for other keywords that can be
listed.

The UNIX system sends messages at or above this level to the specified file, in this case
/usr/adm/logs/tiplog. The file must already exist, and the syslog daemon must have permission to
write to it.

C H A P T E R

 Debug Commands 2-1

Debug Commands

2

This chapter contains an alphabetical listing of the debug commands. Documentation for each
command includes a brief description of its use, command syntax, usage guidelines, sample output,
and a description of that output.

Output formats vary with each debug command. Some generate a single line of output per packet,
whereas others generate multiple lines of output per packet. Some generate large amounts of output;
others generate only occasional output. Some generate lines of text, and others generate information
in field format. Thus, the way the debug commands are documented also varies. For example, for
debug commands that generate lines of text, the output is described line by line. For debug
commands that generate output in field format, tables are used to describe the fields.

By default, the network server sends the output from the debug commands to the console terminal.
Sending output to a terminal (virtual console) produces less overhead than sending it to the console.
Use the privileged EXEC command terminal monitor to send output to a terminal. For more
information about redirecting output, see the “Using Debug Commands” chapter.

2-2 Debug Command Reference

debug apple arp

debug apple arp
Use the debug apple arp EXEC command to enable debugging of the AppleTalk Address
Resolution Protocol (AARP). The no form of this command disables debugging output.

debug apple arp [type number]
no debug apple arp [type number]

Syntax Description

Command Mode
EXEC

Usage Guidelines
This command is helpful when you experience problems communicating with a node on the network
you control (a neighbor). If the debug apple arp display indicates that the router is receiving AARP
probes, you can assume that the problem does not reside at the physical layer.

Sample Display
Figure 2-1 shows sample debug apple arp output.

Figure 2-1 Sample Debug Apple ARP Output

router# debug apple arp

Ether0: AARP: Sent resolve for 4160.26
Ether0: AARP: Reply from 4160.26(0000.0c00.0453) for 4160.154(0000.0c00.8ea9)
Ether0: AARP: Resolved waiting request for 4160.26(0000.0c00.0453)
Ether0: AARP: Reply from 4160.19(0000.0c00.0082) for 4160.154(0000.0c00.8ea9)
Ether0: AARP: Resolved waiting request for 4160.19(0000.0c00.0082)
Ether0: AARP: Reply from 4160.19(0000.0c00.0082) for 4160.154(0000.0c00.8ea9)

Explanations for representative lines of output in Figure 2-1 follow.

type (Optional) Interface type

number (Optional) Interface number

 Debug Commands 2-3

debug apple arp

The following line indicates that the router has requested the hardware MAC address of the host at
network address 4160.26:

Ether0: AARP: Sent resolve for 4160.26

The following line indicates that the host at network address 4160.26 has replied, giving its MAC
address (0000.0c00.0453). For completeness, the message also shows the network address to which
the reply was sent and its hardware MAC address (also in parentheses).

Ether0: AARP: Reply from 4160.26(0000.0c00.0453) for 4160.154(0000.0c00.8ea9)

The following line indicates that the MAC address request is complete:

Ether0: AARP: Resolved waiting request for 4160.26(0000.0c00.0453)

2-4 Debug Command Reference

debug apple domain

debug apple domain
Use the debug apple domain EXEC command to enable debugging of the AppleTalk domain
lookups. The no form of this command disables debugging output.

debug apple domain
no debug apple domain

Syntax Description
This command has no arguments or keywords.

Command Mode
EXEC

Usage Guidelines
Use the debug apple domain command to observe activity between domains and subdomains. Use
this command in conjunction with the debug apple remap command to observe interaction between
remapping and domain activity. Messages are displayed when the state of a domain changes, such
as creating a new domain, deleting a domain, updating a domain, and creating domain neighbors.

Sample Display
Figure 2-2 shows sample debug apple domain output intermixed with output from the debug apple
remap command; the two commands show related events.

Figure 2-2 Sample Debug Apple Domain Output

router# debug apple domain

AT-REMAP: RemapProcess for net 3000 domain Domain 1
AT-REMAP: ReshuffleRemapList for subdomain 1
AT-REMAP: Could not find a remap for cable 3000-3001
AT-DOMAIN: Disabling Domain 1 [Domain 1]
AT-DOMAIN: Disabling interface Ethernet1
AT-DOMAIN: atdomain_DisablePort for Ethernet1
AT-DOMAIN: CleanUpDomain for domain 1 [Domain 1]
AT-DOMAIN: CleanSubDomain for inbound subdomain 1
AT-REMAP: Remap for net 70 inbound subdomain 1 has been deleted
AT-DOMAIN: DeleteAvRemapList for inbound subdomain 1
AT-DOMAIN: DeleteRemapTable for subdomain 1
AT-DOMAIN: DeleteAvRemapList for inbound subdomain 1
AT-DOMAIN: CleanSubDomain for outbound subdomain 1
AT-DOMAIN: DeleteRemapTable for subdomain 1
AT-REMAP: Remap for net 50 outbound subdomain 1 has been deleted
AT-DOMAIN: DeleteAvRemapList for outbound subdomain 1
AT-DOMAIN: DeleteAvRemapList for outbound subdomain 1
AT-DOMAIN: CleanUpDomain for domain 1 [Domain 1]
AT-DOMAIN: CleanSubDomain for inbound subdomain 1
AT-DOMAIN: DeleteRemapTable for subdomain 1
AT-DOMAIN: DeleteAvRemapList for inbound subdomain 1
AT-DOMAIN: CleanSubDomain for outbound subdomain 1
AT-DOMAIN: DeleteRemapTable for subdomain 1
AT-DOMAIN: DeleteAvRemapList for outbound subdomain 1

 Debug Commands 2-5

debug apple domain

Most lines of output in Figure 2-2 are from the debug apple domain command and are
self-explanatory.

Related Commands
debug apple remap

2-6 Debug Command Reference

debug apple errors

debug apple errors
Use the debug apple errors EXEC command to display errors occurring in the AppleTalk network.
The no form of this command disables debugging output.

debug apple errors [type number]
no debug apple errors [type number]

Syntax Description

Command Mode
EXEC

Usage Guidelines
In a stable AppleTalk network, the debug apple errors command produces little output.

To solve encapsulation problems, enable debug apple errors and debug apple packet together.

Sample Display
Figure 2-3 shows sample debug apple errors output when a router is brought up with a zone that
does not agree with the zone list of other routers on the network.

Figure 2-3 Debug Apple Errors Output

router# debug apple errors

%AT-3-ZONEDISAGREES: Ethernet0: AppleTalk port disabled; zone list incompatible with
4160.19
%AT-3-ZONEDISAGREES: Ethernet0: AppleTalk port disabled; zone list incompatible with
4160.19
%AT-3-ZONEDISAGREES: Ethernet0: AppleTalk port disabled; zone list incompatible with
4160.19

As Figure 2-3 suggests, a single error message indicates zone list incompatibility; this message is
sent out periodically until the condition is corrected or debug apple errors is turned off.

Most of the other messages that debug apple errors can generate are obscure or indicate a serious
problem with the AppleTalk network. Some of these other messages follow.

type (Optional) Interface type

number (Optional) Interface number

 Debug Commands 2-7

debug apple errors

In the following message, RTMPRsp, RTMPReq, ATP, AEP, ZIP, ADSP, or SNMP could replace
NBP, and “llap dest not for us” could replace “wrong encapsulation”:

Packet discarded, src 4160.12-254,dst 4160.19-254,NBP,wrong encapsulation

In the following message, in addition to invalid echo packet, other possible errors are unsolicited
AEP echo reply, unknown echo function, invalid ping packet, unknown ping function, and bad
responder packet type.

Ethernet0: AppleTalk packet error; no source address available
AT: pak_reply: dubious reply creation, dst 4160.19
AT: Unable to get a buffer for reply to 4160.19

Processing error, src 4160.12-254,dst 4160.19-254,AEP, invalid echo packet

The debug apple errors command can print out additional messages when other debugging
commands are also turned on. When you turn on both debug apple errors and debug apple events,
the following message can be generated:

Proc err, src 4160.12-254,dst 4160.19-254,ZIP,NetInfo Reply format is invalid

In the preceding message, in addition to NetInfo Reply format is invalid, other possible errors are
NetInfoReply not for me, NetInfoReply ignored, NetInfoReply for operational net ignored,
NetInfoReply from invalid port, unexpected NetInfoReply ignored, cannot establish primary zone,
no primary has been set up, primary zone invalid, net information mismatch, multicast mismatch,
and zones disagree.

When you turn on both debug apple errors and debug apple nbp, the following message can be
generated:

Processing error, ...,NBP,NBP name invalid

In the preceding message, in addition to NBP name invalid, other possible errors are NBP type
invalid, NBP zone invalid, not operational, error handling brrq, error handling proxy, NBP fwdreq
unexpected, No route to srcnet, Proxy to “*” zone, Zone “*” from extended net, No zone info for
“*”, and NBP zone unknown.

When you turn on both debug apple errors and debug apple routing, the following message can
be generated:

Processing error, ...,RTMPReq, unknown RTMP request

In the preceding message, in addition to unknown RTMP request, other possible errors are RTMP
packet header bad, RTMP cable mismatch, routed RTMP data, RTMP bad tuple, and Not Req or Rsp.

2-8 Debug Command Reference

debug apple events

debug apple events
Use the debug apple events EXEC command to display information about AppleTalk special
events, neighbors becoming reachable/unreachable, and interfaces going up/down. Only significant
events (for example, neighbor and route changes) are logged. The no form of this command disables
debugging output.

debug apple events [type number]
no debug apple events [type number]

Syntax Description

Command Mode
EXEC

Usage Guidelines
The debug apple events command is useful for solving AppleTalk network problems because it
provides an overall picture of the stability of the network. In a stable network, the debug apple
events command does not return any information. If the command generates numerous messages,
those messages can indicate possible sources of the problems.

When configuring or making changes to a router or interface for AppleTalk, enable debug apple
events. Doing so alerts you to the progress of the changes or to any errors that might result. Also use
this command periodically when you suspect network problems.

The debug apple events command is also useful to determine whether network flapping (nodes
toggling online and offline) is occurring. If flapping is excessive, look for routers that only support
254 networks.

When you enable debug apple events, you will see any messages that the configuration command
apple event-logging normally displays. Turning on debug apple events, however, does not cause
apple event-logging to be maintained in nonvolatile memory. Only turning on apple event-logging
explicitly stores it in nonvolatile memory. Furthermore, if apple event-logging is already enabled,
turning on or off debug apple events does not affect apple event-logging.

Sample Display
Figure 2-4 shows sample debug apple events output that describes a nonseed router coming up in
discovery mode.

type (Optional) Interface type

number (Optional) Interface number

 Debug Commands 2-9

debug apple events

Figure 2-4 Sample Debug Apple Events Output with Discovery Mode State Changes

As Figure 2-4 shows, the debug apple events command is useful in tracking the discovery mode
state changes through which an interface progresses. When no problems are encountered, the state
changes progress as follows:

1 Line down

2 Restarting

3 Probing (for its own address [node ID] using AARP)

4 Acquiring (sending out GetNetInfo requests)

5 Requesting zones (the list of zones for its cable)

6 Verifying (that the router’s configuration is correct. If not, a port configuration mismatch is
declared.)

7 Checking zones (to make sure its list of zones is correct)

8 Operational (participating in routing)

Explanations for individual lines of output in Figure 2-4 follow.

The following message indicates that a port is set. In this case, the zone multicast address is being
reset:

Ether0: AT: Resetting interface address filters

The following messages indicate that the router is changing to restarting mode:

%AT-5-INTRESTART: Ether0: AppleTalk port restarting; protocol restarted
Ether0: AppleTalk state changed; unknown -> restarting

The following message indicates that the router is probing in the startup range of network numbers
(65280-65534) to discover its network number:

Ether0: AppleTalk state changed; restarting -> probing

router# debug apple events

Ether0: AT: Resetting interface address filters
%AT-5-INTRESTART: Ether0: AppleTalk port restarting; protocol restarted
Ether0: AppleTalk state changed; unknown -> restarting
Ether0: AppleTalk state changed; restarting -> probing
%AT-6-ADDRUSED: Ether0: AppleTalk node up; using address 65401.148
Ether0: AppleTalk state changed; probing -> acquiring
%AT-6-ACQUIREMODE: Ether0: AT port initializing; acquiring net configuration
Ether0: AppleTalk state changed; acquiring -> restarting
Ether0: AppleTalk state changed; restarting -> line down
Ether0: AppleTalk state changed; line down -> restarting
Ether0: AppleTalk state changed; restarting -> probing
%AT-6-ADDRUSED: Ether0: AppleTalk node up; using address 4160.148
Ether0: AppleTalk state changed; probing -> acquiring
%AT-6-ACQUIREMODE: Ether0: AT port initializing; acquiring net configuration
Ether0: AppleTalk state changed; acquiring -> requesting zones
Ether0: AT: Resetting interface address filters
%AT-5-INTRESTART: Ether0: AppleTalk port restarting; protocol restarted
Ether0: AppleTalk state changed; requesting zones -> verifying
AT: Sent GetNetInfo request broadcast on Ethernet0
Ether0: AppleTalk state changed; verifying -> checking zones
Ether0: AppleTalk state changed; checking zones -> operational

Discovery
mode state
changes

S
25

42

2-10 Debug Command Reference

debug apple events

The following message indicates that the router is enabled as a nonrouting node using a provisional
network number within its startup range of network numbers. This type of message only appears if
the network address the router will use differs from its configured address. This is always the case
for a discovery-enabled router; it is rarely the case for a nondiscovery-enabled router.

%AT-6-ADDRUSED: Ether0: AppleTalk node up; using address 65401.148

The following messages indicate that the router is sending out GetNetInfo requests to discover the
default zone name and the actual network number range in which its network number can be chosen:

Ether0: AppleTalk state changed; probing -> acquiring
%AT-6-ACQUIREMODE: Ether0: AT port initializing; acquiring net configuration

Now that the router has acquired the cable configuration information, the following message
indicates that it restarts using that information:

Ether0: AppleTalk state changed; acquiring -> restarting

The following messages indicate that the router is probing for its actual network address:

Ether0: AppleTalk state changed; restarting -> line down
Ether0: AppleTalk state changed; line down -> restarting
Ether0: AppleTalk state changed; restarting -> probing

The following message indicates that the router has found an actual network address to use:

%AT-6-ADDRUSED: Ether0: AppleTalk node up; using address 4160.148

The following messages indicate that the router is sending out GetNetInfo requests to verify the
default zone name and the actual network number range from which its network number can be
chosen:

Ether0: AppleTalk state changed; probing -> acquiring
%AT-6-ACQUIREMODE: Ether0: AT port initializing; acquiring net configuration

The following message indicates that the router is requesting the list of zones for its cable:

Ether0: AppleTalk state changed; acquiring -> requesting zones

The following messages indicate that the router is sending out GetNetInfo requests to make sure its
understanding of the configuration is correct:

Ether0: AppleTalk state changed; requesting zones -> verifying
AT: Sent GetNetInfo request broadcast on Ethernet0

The following message indicates that the router is rechecking its list of zones for its cable:

Ether0: AppleTalk state changed; verifying -> checking zones

The following message indicates that the router is now fully operational as a routing node and can
begin routing:

Ether0: AppleTalk state changed; checking zones -> operational

Figure 2-5 shows sample debug apple events output that describes a nondiscovery-enabled router
coming up when no other router is on the wire.

 Debug Commands 2-11

debug apple events

Figure 2-5 Sample Debug Apple Events Output Showing Seed Coming Up by Itself

As Figure 2-5 shows, a nondiscovery-enabled router can come up when no other router is on the
wire; however, it must assume that its configuration (if accurate syntactically) is correct, because no
other router can verify it. Notice that the last line in Figure 2-5 indicates this situation.

Figure 2-6 shows sample debug apple events output that describes a discovery-enabled router
coming up when there is no seed router on the wire.

Figure 2-6 Debug Apple Events Out put Showing Nonseed with No Seed

router# debug apple events

Ether0: AT: Resetting interface address filters
%AT-5-INTRESTART: Ether0: AppleTalk port restarting; protocol restarted
Ether0: AppleTalk state changed; unknown -> restarting
Ether0: AppleTalk state changed; restarting -> probing
%AT-6-ADDRUSED: Ether0: AppleTalk node up; using address 65401.148
Ether0: AppleTalk state changed; probing -> acquiring
AT: Sent GetNetInfo request broadcast on Ether0
AT: Sent GetNetInfo request broadcast on Ether0
AT: Sent GetNetInfo request broadcast on Ether0
AT: Sent GetNetInfo request broadcast on Ether0
AT: Sent GetNetInfo request broadcast on Ether0

As Figure 2-6 shows, when you attempt to bring up a nonseed router without a seed router on the
wire, it never becomes operational; instead, it hangs in the acquiring mode and continues to send out
periodic GetNetInfo requests.

Figure 2-7 shows sample debug apple events output when a nondiscovery-enabled router is brought
up on an AppleTalk internetwork that is in compatibility mode (set up to accommodate extended as
well as nonextended AppleTalk) and the router has violated internetwork compatibility.

Figure 2-7 Sample Debug Apple Events Output Showing Compatibility Conflict

router# debug apple events

Ethernet1: AT: Resetting interface address filters
%AT-5-INTRESTART: Ethernet1: AppleTalk port restarting; protocol restarted
Ethernet1: AppleTalk state changed; unknown -> restarting
Ethernet1: AppleTalk state changed; restarting -> probing
%AT-6-ADDRUSED: Ethernet1: AppleTalk node up; using address 4165.204
Ethernet1: AppleTalk state changed; probing -> verifying
AT: Sent GetNetInfo request broadcast on Ethernet1
Ethernet1: AppleTalk state changed; verifying -> operational
%AT-6-ONLYROUTER: Ethernet1: AppleTalk port enabled; no neighbors found

S
25

43

Indicates a nondiscovery-
enabled router with no
other router on the wire

router# debug apple events

E0: AT: Resetting interface address filters
%AT-5-INTRESTART: E0: AppleTalk port restarting; protocol restarted
E0: AppleTalk state changed; restarting -> probing
%AT-6-ADDRUSED: E0: AppleTalk node up; using address 41.19
E0: AppleTalk state changed; probing -> verifying
AT: Sent GetNetInfo request broadcast on Ethernet0
%AT-3-ZONEDISAGREES: E0: AT port disabled; zone list incompatible with 41.19
AT: Config error for E0, primary zone invalid
E0: AppleTalk state changed; verifying -> config mismatch

S
25

45

Indicates
configuration
mismatch

2-12 Debug Command Reference

debug apple events

The three configuration command lines that follow indicate the part of the router’s configuration that
caused the configuration mismatch shown in Figure 2-7:

lestat(config)#int e 0
lestat(config-if)#apple cab 41-41
lestat(config-if)#apple zone Marketign

The router shown in Figure 2-7 had been configured with a cable range of 41-41 instead of 40-40,
which would have been accurate. Additionally, the zone name was configured incorrectly; it should
have been “Marketing,” rather than being misspelled as “Marketign.”

 Debug Commands 2-13

debug apple nbp

debug apple nbp
Use the debug apple nbp EXEC command to display debugging output from the Name Binding
Protocol (NBP) routines. The no form of this command disables debugging output.

debug apple nbp [type number]
no debug apple nbp [type number]

Syntax Description

Command Mode
EXEC

Usage Guidelines
To determine whether the router is receiving NBP lookups from a node on the AppleTalk network,
enable debug apple nbp at each node between the router and the node in question to determine
where the problem lies.

Note Because the debug apple nbp command can generate many messages, use it only when the
router’s CPU utilization is less than 50 percent.

type (Optional) Interface type

number (Optional) Interface number

2-14 Debug Command Reference

debug apple nbp

Sample Display
Figure 2-8 shows sample debug apple nbp output.

Figure 2-8 Sample Debug Apple NBP Output

router# debug apple nbp

AT: NBP ctrl = LkUp, ntuples = 1, id = 77
AT: 4160.19, skt 2, enum 0, name: =:ciscoRouter@Low End SW Lab
AT: LkUp =:ciscoRouter@Low End SW Lab

AT: NBP ctrl = LkUp-Reply, ntuples = 1, id = 77
AT: 4160.154, skt 254, enum 1, name: lestat.Ether0:ciscoRouter@Low End SW Lab

AT: NBP ctrl = LkUp, ntuples = 1, id = 78
AT: 4160.19, skt 2, enum 0, name: =:IPADDRESS@Low End SW Lab
AT: NBP ctrl = LkUp, ntuples = 1, id = 79
AT: 4160.19, skt 2, enum 0, name: =:IPGATEWAY@Low End SW Lab
AT: NBP ctrl = LkUp, ntuples = 1, id = 83
AT: 4160.19, skt 2, enum 0, name: =:ciscoRouter@Low End SW Lab
AT: LkUp =:ciscoRouter@Low End SW Lab

AT: NBP ctrl = LkUp, ntuples = 1, id = 84
AT: 4160.19, skt 2, enum 0, name: =:IPADDRESS@Low End SW Lab

AT: NBP ctrl = LkUp, ntuples = 1, id = 85
AT: 4160.19, skt 2, enum 0, name: =:IPGATEWAY@Low End SW Lab
AT: NBP ctrl = LkUp, ntuples = 1, id = 85
AT: 4160.19, skt 2, enum 0, name: =:IPGATEWAY@Low End SW Lab

The first three lines in Figure 2-8 describe an NBP lookup request:

AT: NBP ctrl = LkUp, ntuples = 1, id = 77
AT: 4160.19, skt 2, enum 0, name: =:ciscoRouter@Low End SW Lab
AT: LkUp =:ciscoRouter@Low End SW Lab

Table 2-1 describes the fields in the first line of output shown in Figure 2-8.

Table 2-1 Debug Apple NBP Field Descriptions—Part 1

Table 2-2 describes the fields in the second line of output shown in Figure 2-8.

Field Description

AT: NBP Indicates that this message describes an AppleTalk NBP packet.

ctrl = LkUp Identifies the type of NBP packet. Possible values include

LkUp—NBP lookup request.

LkUp-Reply—NBP lookup reply.

ntuples = 1 Indicates the number of name-address pairs in the lookup request packet.
Range: 1-31 tuples.

id = 77 Identifies an NBP lookup request value.

 Debug Commands 2-15

debug apple nbp

Table 2-2 Debug Apple NBP Field Descriptions—Part 2

The third line in Figure 2-8 essentially reiterates the information in the two lines above it, indicating
that a lookup request has been made regarding name-address pairs for all objects of the ciscoRouter
type in the Low End SW Lab zone.

Because the router is defined as an object of type ciscoRouter in zone Low End SW Lab, the router
sends an NBP lookup reply in response to this NBP lookup request. The following two lines of
output from Figure 2-8 show the router’s response:

AT: NBP ctrl = LkUp-Reply, ntuples = 1, id = 77
AT: 4160.154, skt 254, enum 1, name: lestat.Ether0:ciscoRouter@Low End SW Lab

In the first line, ctrl = LkUp-Reply identifies this NBP packet as an NBP lookup request. The same
value in the id field (id = 77) associates this lookup reply with the previous lookup request. The
second line indicates that the network address associated with the router’s entity name
(lestat.Ether0:ciscoRouter@Low End SW Lab) is 4160.154. The fact that no other entity
name/network address is listed indicates that the responder only knows about itself as an object of
type ciscoRouter in zone Low End SW Lab.

Field Description

AT: Indicates that this message describes an AppleTalk packet.

4160.19 Indicates the network address of the requester.

skt 2 Indicates the internet socket address of the requester. The responder will
send the NBP lookup reply to this socket address.

enum 0 Indicates the enumerator field. Used to identify multiple names
registered on a single socket. Each tuple is assigned its own enumerator,
incrementing from 0 for the first tuple.

name: =:ciscoRouter@Low End
SW Lab

Indicates the entity name for which a network address has been
requested. The AppleTalk entity name includes three components:

Object (in this case, a wildcard character (=), indicating that the
requester is requesting name-address pairs for all objects of the specified
type in the specified zone)

Type (in this case, ciscoRouter)

Zone (in this case, Low End SW Lab)

2-16 Debug Command Reference

debug apple packet

debug apple packet
Use the debug apple packet EXEC command to display per-packet debugging output. The output
reports information online when a packet is received or a transmit is attempted. The no form of this
command disables debugging output.

debug apple packet [type number]
no debug apple packet [type number]

Syntax Description

Command Mode
EXEC

Usage Guidelines
With this command, you can monitor the types of packets being slow switched. It displays at least
one line of debugging output per AppleTalk packet processed.

When invoked in conjunction with the debug apple routing, debug apple zip, and debug apple
nbp commands, the debug apple packet command adds protocol processing information in
addition to generic packet details. It also reports successful completion or failure information.

When invoked in conjunction with the debug apple errors command, the debug apple packet
command reports packet-level problems, such as those concerning encapsulation.

Note Because the debug apple packet command can generate many messages, use it only when
the router’s CPU utilization is less than 50 percent.

Sample Display
Figure 2-9 shows sample debug apple packet output.

Figure 2-9 Sample Debug Apple Packet Output

router# debug apple packet

Ether0: AppleTalk packet: enctype SNAP, size 60, encaps000000000000000000000000
AT: src=Ethernet0:4160.47, dst=4160-4160, size=10, 2 rtes, RTMP pkt sent
AT: ZIP Extended reply rcvd from 4160.19
AT: ZIP Extended reply rcvd from 4160.19
AT: src=Ethernet0:4160.47, dst=4160-4160, size=10, 2 rtes, RTMP pkt sent
Ether0: AppleTalk packet: enctype SNAP, size 60, encaps000000000000000000000000
Ether0: AppleTalk packet: enctype SNAP, size 60, encaps000000000000000000000000

Table 2-3 describes the fields in the first line of output shown in Figure 2-9.

type (Optional) Interface type

number (Optional) Interface number

 Debug Commands 2-17

debug apple packet

Table 2-3 Debug Apple Packet Field Descriptions—Part 1

Table 2-4 describes the fields in the second line of output shown in Figure 2-9.

Table 2-4 Debug Apple Packet Field Descriptions—Part 2

The third line in Figure 2-9 indicates the type of packet received and its source AppleTalk address.
This message is repeated in the fourth line because AppleTalk hosts can send multiple replies to a
given GetNetInfo request.

Field Description

Ether0: Name of the interface through which the router received the
packet

AppleTalk packet Indication that this is an AppleTalk packet

enctype SNAP Encapsulation type for the packet

size 60 Size of the packet (in bytes)

encaps000000000000000000000000 Encapsulation

Field Description

AT: Indication that this is an AppleTalk packet

src = Ethernet0:4160.47 Name of the interface sending the packet and its AppleTalk address

dst = 4160-4160 Cable range of the packet’s destination

size = 10 Size of the packet (in bytes)

2 rtes Indication that two routes in the routing table link these two addresses

RTMP pkt sent The type of packet sent

2-18 Debug Command Reference

debug apple remap

debug apple remap
Use the debug apple remap EXEC command to enable debugging of the AppleTalk remap lookups.
The no form of this command disables debugging output.

debug apple remap
no debug apple remap

Syntax Description
This command has no arguments or keywords.

Command Mode
EXEC

Usage Guidelines
Use the debug apple remap command with the debug apple domain command to observe activity
between domains and subdomains. Messages from debug apple remap are displayed when a
particular remapping function occurs, such as creating remaps or deleting remaps.

Sample Display
Figure 2-10 shows sample debug apple remap output intermixed with output from the debug apple
domain command; the two commands show related events.

Figure 2-10 Sample Debug Output

router# debug apple remap
router# debug apple domain

AT-REMAP: RemapProcess for net 3000 domain Domain 1
AT-REMAP: ReshuffleRemapList for subdomain 1
AT-REMAP: Could not find a remap for cable 3000-3001
AT-DOMAIN: Disabling Domain 1 [Domain 1]
AT-DOMAIN: Disabling interface Ethernet1
AT-DOMAIN: atdomain_DisablePort for Ethernet1
AT-DOMAIN: CleanUpDomain for domain 1 [Domain 1]
AT-DOMAIN: CleanSubDomain for inbound subdomain 1
AT-REMAP: Remap for net 70 inbound subdomain 1 has been deleted
AT-DOMAIN: DeleteAvRemapList for inbound subdomain 1
AT-DOMAIN: DeleteRemapTable for subdomain 1
AT-DOMAIN: DeleteAvRemapList for inbound subdomain 1
AT-DOMAIN: CleanSubDomain for outbound subdomain 1
AT-DOMAIN: DeleteRemapTable for subdomain 1
AT-REMAP: Remap for net 50 outbound subdomain 1 has been deleted
AT-DOMAIN: DeleteAvRemapList for outbound subdomain 1
AT-DOMAIN: DeleteAvRemapList for outbound subdomain 1
AT-DOMAIN: CleanUpDomain for domain 1 [Domain 1]
AT-DOMAIN: CleanSubDomain for inbound subdomain 1
AT-DOMAIN: DeleteRemapTable for subdomain 1
AT-DOMAIN: DeleteAvRemapList for inbound subdomain 1
AT-DOMAIN: CleanSubDomain for outbound subdomain 1
AT-DOMAIN: DeleteRemapTable for subdomain 1
AT-DOMAIN: DeleteAvRemapList for outbound subdomain 1

 Debug Commands 2-19

debug apple remap

Most lines of output in Figure 2-10 are from the debug apple domain command. The output from
the debug apple remap command is self-explanatory.

Related Command
debug apple domain

2-20 Debug Command Reference

debug apple routing

debug apple routing
Use the debug apple routing EXEC command to enable debugging output from the Routing Table
Maintenance Protocol (RTMP) routines. The no form of this command disables debugging output.

debug apple routing [type number]
no debug apple routing [type number]

Syntax Description

Command Mode
EXEC

Usage Guidelines
This command can be used to monitor acquisition of routes, aging of routing table entries, and
advertisement of known routes. It also reports conflicting network numbers on the same network if
the network is misconfigured.

Note Because the debug apple routing command can generate many messages, use it only when
the router’s CPU utilization is less than 50 percent.

Sample Display
Figure 2-11 shows sample debug apple routing output.

Figure 2-11 Sample Debug Apple Routing Output

router# debug apple routing

AT: src=Ethernet0:4160.41, dst=4160-4160, size=19, 2 rtes, RTMP pkt sent
AT: src=Ethernet1:41069.25, dst=41069, size=427, 96 rtes, RTMP pkt sent
AT: src=Ethernet2:4161.23, dst=4161-4161, size=427, 96 rtes, RTMP pkt sent
AT: Route ager starting (97 routes)
AT: Route ager finished (97 routes)
AT: RTMP from 4160.19 (new 0,old 94,bad 0,ign 0, dwn 0)
AT: RTMP from 4160.250 (new 0,old 0,bad 0,ign 2, dwn 0)
AT: RTMP from 4161.236 (new 0,old 94,bad 0,ign 1, dwn 0)
AT: src=Ethernet0:4160.41, dst=4160-4160, size=19, 2 rtes, RTMP pkt sent

Explanations for representative lines of the debug apple routing output in Figure 2-11 follow.

Table 2-5 describes the fields in the first line of sample debug apple routing output.

type (Optional) Interface type

number (Optional) Interface number

 Debug Commands 2-21

debug apple routing

Table 2-5 Debug Apple Routing Field Descriptions—Part 1

The following two messages indicate that the ager has started and finished the aging process for the
routing table and that this table contains 97 entries.

AT: Route ager starting (97 routes)
AT: Route ager finished (97 routes)

Table 2-6 describes the fields in the following line of debug apple routing output.

AT: RTMP from 4160.19 (new 0,old 94,bad 0,ign 0, dwn 0)

Table 2-6 Debug Apple Routing Field Descriptions—Part 2

Field Description

AT: Indicates that this is AppleTalk debugging output

src = Ethernet0:4160.41 Indicates the source router interface and network address for the RTMP
update packet

dst = 4160-4160 Indicates the destination network address for the RTMP update packet

size = 19 Shows the size of this RTMP packet (in bytes)

2 rtes Indicates that this RTMP update packet includes information on two
routes

RTMP pkt sent Indicates that this type of message describes an RTMP update packet
that the router has sent (rather than one that it has received)

Field Description

AT: Indicates that this is AppleTalk debugging output

RTMP from 4160.19 Indicates the source address of the RTMP update the router received

new 0 Shows the number of routes in this RTMP update packet that the router did
not already know about

old 94 Shows the number of routes in this RTMP update packet that the router
already knew about

bad 0 Shows the number of routes the other router indicates have gone bad

ign 0 Shows the number of routes the other router ignores

dwn 0 Shows the number of poisoned tuples included in this packet

2-22 Debug Command Reference

debug apple zip

debug apple zip
Use the debug apple zip EXEC command to display debugging output from the Zone Information
Protocol (ZIP) routines. The no form of this command disables debugging output.

debug apple zip [type number]
no debug apple zip [type number]

Syntax Description

Command Mode
EXEC

Usage Guidelines
This command reports significant events such as the discovery of new zones and zone list queries.
It generates information similar to that generated by debug apple routing, but generates it for ZIP
packets instead of RTMP packets.

You can use he debug apple zip command to determine whether a ZIP storm is taking place in the
AppleTalk network. You can detect the existence of a ZIP storm when you see that no router on a
cable has the zone name corresponding to a network number that all the routers have in their routing
tables.

Sample Display
Figure 2-12 shows sample debug apple zip output.

Figure 2-12 Sample Debug Apple ZIP Output

router# debug apple zip

AT: Sent GetNetInfo request broadcast on Ether0
AT: Recvd ZIP cmd 6 from 4160.19-6
AT: 3 query packets sent to neighbor 4160.19
AT: 1 zones for 31902, ZIP XReply, src 4160.19
AT: net 31902, zonelen 10, name US-Florida

Explanations of the lines of output shown in Figure 2-12 follow.

type (Optional) Interface type

number (Optional) Interface number

 Debug Commands 2-23

debug apple zip

The first line indicates that the router has received an RTMP update that includes a new network
number and is now requesting zone information:

AT: Sent GetNetInfo request broadcast on Ether0

The second line indicates that the neighbor at address 4160.19 replies to the zone request with a
default zone:

AT: Recvd ZIP cmd 6 from 4160.19-6

The third line indicates that the router responds with three queries to the neighbor at network address
4160.19 for other zones on the network:

AT: 3 query packets sent to neighbor 4160.19

The fourth line indicates that the neighbor at network address 4160.19 responds with a ZIP extended
reply, indicating that one zone has been assigned to network 31902:

AT: 1 zones for 31902, ZIP XReply, src 4160.19

The fifth line indicates that the router responds that the zone name of network 31902 is US-Florida,
and the zone length of that zone name is 10:

AT: net 31902, zonelen 10, name US-Florida

2-24 Debug Command Reference

debug arp

debug arp
Use the debug arp EXEC command to display information on Address Resolution Protocol (ARP)
transactions. The no form of this command disables debugging output.

debug arp
no debug arp

Syntax Description
This command has no arguments or keywords.

Command Mode
EXEC

Usage Guidelines
Use this command when some nodes on a TCP/IP network are responding, but others are not. It
shows whether the router is sending ARPs and whether it is receiving ARPs.

Sample Display
Figure 2-13 shows sample debug arp output.

Figure 2-13 Sample Debug ARP Output

router# debug arp

IP ARP: sent req src 131.108.22.7 0000.0c01.e117, dst 131.108.22.96 0000.0000.0000
IP ARP: rcvd rep src 131.108.22.96 0800.2010.b908, dst 131.108.22.7
IP ARP: rcvd req src 131.108.6.10 0000.0c00.6fa2, dst 131.108.6.62
IP ARP: rep filtered src 131.108.22.7 aa92.1b36.a456, dst 255.255.255.255 ffff.ffff.ffff
IP ARP: rep filtered src 131.108.9.7 0000.0c00.6b31, dst 131.108.22.7 0800.2010.b908

In Figure 2-13, each line of output represents an ARP packet that the router sent or received.
Explanations for the individual lines of output follow.

The first line indicates that the router at IP address 131.108.22.7 and MAC address 0000.0c01.e117
sent an ARP request for the MAC address of the host at 131.108.22.96. The series of zeros
(0000.0000.0000) following this address indicate that the router is currently unaware of the MAC
address.

IP ARP: sent req src 131.108.22.7 0000.0c01.e117, dst 131.108.22.96 \
0000.0000.0000

The second line indicates that the router at IP address 131.108.22.7 receives a reply from the host at
131.108.22.96 indicating that its MAC address is 0800.2010.b908:

IP ARP: rcvd rep src 131.108.22.96 0800.2010.b908, dst 131.108.22.7

The third line indicates that the router receives an ARP request from the host at 131.108.6.10
requesting the MAC address for the host at 131.108.6.62:

IP ARP: rcvd req src 131.108.6.10 0000.0c00.6fa2, dst 131.108.6.62

 Debug Commands 2-25

debug arp

The fourth line indicates that another host on the network attempted to send the router an ARP reply
for the router’s own address. The router ignores such bogus replies. Usually, this can happen if
someone is running a bridge in parallel with the router and is allowing ARP to be bridged. It
indicates a network misconfiguration.

IP ARP: rep filtered src 131.108.22.7 aa92.1b36.a456, dst 255.255.255.255 \
ffff.ffff.ffff

The fifth line indicates that another host on the network attempted to inform the router that it is on
network 131.108.9.7, but the router does not know that that network is attached to a different router
interface. The remote host (probably a PC or an X terminal) is misconfigured. If the router were to
install this entry, it would deny service to the real machine on the proper cable.

IP ARP: rep filtered src 131.108.9.7 0000.0c00.6b31, dst 131.108.22.7 \
0800.2010.b908

2-26 Debug Command Reference

debug atm errors

debug atm errors
Use the debug atm errors EXEC command to display Asynchronous Transfer Mode (ATM) errors.
The no form of this command disables debugging output.

debug atm errors
no debug atm errors

Syntax Description
This command has no arguments or keywords.

Command Mode
EXEC

Sample Display
Figure 2-14 shows sample debug atm errors output.

Figure 2-14 Sample Debug ATM Errors Output

router# debug atm errors
ATM(ATM2/0): Encapsulation error, link=7, host=836CA86D.

The line of output in Figure 2-14 indicates that a packet was routed to the ATM interface, but no
static map was set up to route that packet to the proper virtual circuit.

 Debug Commands 2-27

debug atm events

debug atm events
Use the debug atm events EXEC command to display ATM events. The no form of this command
disables debugging output.

debug atm events
no debug atm events

Syntax Description
This command has no arguments or keywords.

Command Mode
EXEC

Usage Guidelines
This command displays ATM events that occur on the ATM interface processor and is useful for
diagnosing problems in an ATM network. It provides an overall picture of the stability of the
network. In a stable network, the debug atm events command does not return any information. If
the command generates numerous messages, the messages can indicate the possible source of
problems.

When configuring or making changes to a router or interface for ATM, enable debug atm events.
Doing so alerts you to the progress of the changes or to any errors that might result. Also use this
command periodically when you suspect network problems.

Sample Display
Figure 2-15 shows sample debug atm events output.

Figure 2-15 Sample Debug ATM Events Output

router# debug atm events
ATM events debugging is on
RESET(ATM4/0): PLIM type is 1, Rate is 100Mbps
aip_disable(ATM4/0): state=1
config(ATM4/0)
aip_love_note(ATM4/0): asr=0x201
aip_enable(ATM4/0)
aip_love_note(ATM4/0): asr=0x4000
aip_enable(ATM4/0): restarting VCs: 7
aip_setup_vc(ATM4/0): vc:1 vpi:1 vci:1
aip_love_note(ATM4/0): asr=0x200
aip_setup_vc(ATM4/0): vc:2 vpi:2 vci:2
aip_love_note(ATM4/0): asr=0x200
aip_setup_vc(ATM4/0): vc:3 vpi:3 vci:3
aip_love_note(ATM4/0): asr=0x200
aip_setup_vc(ATM4/0): vc:4 vpi:4 vci:4
aip_love_note(ATM4/0): asr=0x200
aip_setup_vc(ATM4/0): vc:6 vpi:6 vci:6
aip_love_note(ATM4/0): asr=0x200
aip_setup_vc(ATM4/0): vc:7 vpi:7 vci:7
aip_love_note(ATM4/0): asr=0x200
aip_setup_vc(ATM4/0): vc:11 vpi:11 vci:11
aip_love_note(ATM4/0): asr=0x200

2-28 Debug Command Reference

debug atm events

Table 2-7 describes significant fields in the output shown in Figure 2-15.

Table 2-7 Debug ATM Events Field Descriptions

Explanations for representative lines of output in Figure 2-15 follow.

The following line indicates that the ATM Interface Processor (AIP) was reset. The PLIM TYPE
detected was 1, so the maximum rate is set to 100 Mbps.

RESET(ATM4/0): PLIM type is 1, Rate is 100Mbps

The following line indicates that the ATM Interface Processor (AIP) was given a shutdown
command, but the current configuration indicates that the AIP should be up:

aip_disable(ATM4/0): state=1

The following line indicates that a configuration command has been completed by the AIP:

aip_love_note(ATM4/0): asr=0x201

The following line indicates that the AIP was given a no shutdown command to take it out of
shutdown:

aip_enable(ATM4/0)

The following line indicates that the AIP detected a carrier state change. It does not indicate that the
carrier is down or up, only that it has changed:

aip_love_note(ATM4/0): asr=0x4000

The following line of output indicates that the AIP enable function is restarting all PVCs
automatically:

aip_enable(ATM4/0): restarting VCs: 7

Field Description

PLIM type Indicates the interface rate in Mbps. Possible values are
 1 = TAXI(4B5B) 100 Mbps
 2 = SONET 155 Mbps
 3 = E3 34 Mbps

state Indicates current state of the AIP. Possible values are
 1 = An ENABLE will be issued soon
 0 = The AIP will remain shut down

asr Defines a bitmask, which indicates actions or completions to commands. Valid
bitmask values are
 0x0800 = AIP crashed, reload may be required.
 0x0400 = AIP detected a carrier state change.
 0x0n00 = Command completion status. Command completion status codes are

n = 8 Invalid PLIM detected
n = 4 Command failed
n = 2 Command completed successfully
n = 1 CONFIG request failed
n = 0 Invalid value

 Debug Commands 2-29

debug atm events

The following lines of output indicate that PVC 1 was set up and a successful completion code was
returned:

aip_setup_vc(ATM4/0): vc:1 vpi:1 vci:1
aip_love_note(ATM4/0): asr=0x200

2-30 Debug Command Reference

debug atm packet

debug atm packet
Use the debug atm packet EXEC command to display per-packet debugging output. The output
reports information online when a packet is received or a transmit is attempted. The no form of this
command disables debugging output.

debug atm packet
no debug atm packet

Syntax Description
This command has no arguments or keywords.

Command Mode
EXEC

Usage Guidelines
The debug atm packet command displays all process-level ATM packets for both outbound and
inbound packets. This command is useful for determining whether packets are being received and
transmitted correctly.

For transmitted packets, the information is displayed only after the protocol data unit (PDU) is
entirely encapsulated and a next hop virtual circuit (VC) is found. If information is not displayed,
the address translation probably failed during encapsulation. When a next hop VC is found, the
packet is displayed exactly as it will be presented on the wire. Having a display indicates the packets
are properly encapsulated for transmission.

For received packets, information is displayed for all incoming frames. The display can show
whether the transmitting station properly encapsulates the frames. Because all incoming frames are
displayed, this information is useful when performing back-to-back testing and corrupted frames
cannot be dropped by an intermediary ATM switch.

The debug atm packet command also displays the initial bytes of the actual PDU in hexadecimal.
This information can be decoded only by qualified support or engineering personnel.

Note Because the debug atm packet command generates a significant amount of output for every
packet processed, use it only when traffic on the network is low, so other activity on the system is
not adversely affected.

Sample Display
Figure 2-16 shows sample debug atm packet output.

Figure 2-16 Sample Debug ATM Packet Output

router# debug atm packets
ATM packets debugging is on
router#
ATM2/0(O): VCD: 0x1,DM: 1C00, MUX, ETYPE: 0800,Length: 32
4500 002E 0000 0000 0209 92ED 836C A26E FFFF FFFF 1108 006D 0001 0000 0000
A5CC 6CA2 0000 000A 0000 6411 76FF 0100 6C08 00FF FFFF 0003 E805 DCFF 0105

 Debug Commands 2-31

debug atm packet

Table 2-8 describes significant fields shown in Figure 2-16.

Table 2-8 Debug ATM Packet Field Descriptions

The following two lines of output are the binary data, which are the contents of the protocol PDU
before encapsulation at the ATM:

4500 002E 0000 0000 0209 92ED 836C A26E FFFF FFFF 1108 006D 0001 0000 0000
A5CC 6CA2 0000 000A 0000 6411 76FF 0100 6C08 00FF FFFF 0003 E805 DCFF 0105

Field Description

ATM2/0 Indicates the interface that generated this packet.

(O) Indicates an output packet. (I) would mean receive packet.

VCD: 0xn Indicates the virtual circuit associated with this packet, where n is some value.

DM: 0xnnnn Indicates the descriptor mode bits on output only, where nnnn is a hexadecimal
value.

ETYPE: n Shows the Ethernet type for this packet.

Length: n Shows the total length of the packet including the ATM header(s).

2-32 Debug Command Reference

debug bri

debug bri
Use the debug bri EXEC command to display debugging information on Integrated Services Digital
Networks (ISDN) Basic Rate Interface (BRI) routing activity. The no form of this command disables
debugging output.

debug bri
no debug bri

Syntax Description
This command has no arguments or keywords.

Command Mode
EXEC

Usage Guidelines
The debug bri command indicates whether the ISDN code is enabling and disabling the B-channels
when attempting an outgoing call. This command is available for the low-end router products that
have a multi-BRI network interface module installed.

Note Because the debug bri command generates a significant amount of output, use it only when
traffic on the IP network is low, so other activity on the system is not adversely affected.

Sample Display
Figure 2-17 shows sample debug bri output.

Figure 2-17 Sample Debug BRI Packets Output

Router# debug bri

Basic Rate network interface debugging is on
BRI: write_sid: wrote 1B for subunit 0, slot 1.
BRI: write_sid: wrote 15 for subunit 0, slot 1.
BRI: write_sid: wrote 17 for subunit 0, slot 1.
BRI: write_sid: wrote 6 for subunit 0, slot 1.
BRI: write_sid: wrote 8 for subunit 0, slot 1.
BRI: write_sid: wrote 11 for subunit 0, slot 1.
BRI: write_sid: wrote 13 for subunit 0, slot 1.
BRI: write_sid: wrote 29 for subunit 0, slot 1.
BRI: write_sid: wrote 1B for subunit 0, slot 1.
BRI: write_sid: wrote 15 for subunit 0, slot 1.
BRI: write_sid: wrote 17 for subunit 0, slot 1.
BRI: write_sid: wrote 20 for subunit 0, slot 1.
BRI: Starting Power Up timer for unit = 0.
BRI: write_sid: wrote 3 for subunit 0, slot 1.
BRI: Starting T3 timer after expiry of PUP timeout for unit = 0, current state is F4.
BRI: write_sid: wrote FF for subunit 0, slot 1.
BRI: Activation for unit = 0, current state is F7.
BRI: enable channel B1
BRI: write_sid: wrote 14 for subunit 0, slot 1.

 Debug Commands 2-33

debug bri

%LINK-3-UPDOWN: Interface BRI0: B-Channel 1, changed state to up
%LINK-5-CHANGED: Interface BRI0: B-Channel 1, changed state to up.!!!
BRI: disable channel B1
BRI: write_sid: wrote 15 for subunit 0, slot 1.

%LINK-3-UPDOWN: Interface BRI0: B-Channel 1, changed state to down
%LINK-5-CHANGED: Interface BRI0: B-Channel 1, changed state to down
%LINEPROTO-5-UPDOWN: Line protocol on Interface BRI0: B-Channel 1, changed state to down

Explanations for individual lines of output from Figure 2-17 follow.

The following line indicates that an internal command was written to the interface controller. The
subunit identifies the first interface in the slot:

BRI: write_sid: wrote 1B for subunit 0, slot 1.

The following line indicates that the power-up timer was started for the named unit:

BRI: Starting Power Up timer for unit = 0.

The following lines indicate that the channel or the protocol on the interface changed state:

%LINK-3-UPDOWN: Interface BRI0: B-Channel 1, changed state to up
%LINK-5-CHANGED: Interface BRI0: B-Channel 1, changed state to up.!!!
%LINEPROTO-5-UPDOWN: Line protocol on Interface BRI0: B-Channel 1, changed state to down

The following line indicates that the channel was disabled:

BRI: disable channel B1

Lines of output not described are for use by support staff only.

Related Commands
debug isdn-event
debug isdn-q921
debug isdn-q931

2-34 Debug Command Reference

debug broadcast

debug broadcast
Use the debug broadcast EXEC command to display information on MAC broadcast packets. The
no form of this command disables debugging output.

debug broadcast
no debug broadcast

Syntax Description
This command has no arguments or keywords.

Command Mode
EXEC

Usage Guidelines
Depending on the type of interface and the type of encapsulation used on that interface, the debug
broadcast command can produce a wide range of messages.

Sample Display
Figure 2-18 shows sample debug broadcast output. Notice how similar it is to the debug packet
output.

Figure 2-18 Sample Debug Br oadcast Output

router# debug broadcast

Ethernet0: Broadcast ARPA, src 0000.0c00.6fa4, dst ffff.ffff.ffff, type 0x0800,
data 4500002800000000FF11EA7B, len 60
Serial3: Broadcast HDLC, size 64, type 0x800, flags 0x8F00
Serial2: Broadcast PPP, size 128
Serial7: Broadcast FRAME-RELAY, size 174, type 0x800, DLCI 7a

Table 2-9 describes significant fields shown in Figure 2-18.

 Debug Commands 2-35

debug broadcast

Table 2-9 Debug Broadcast Field Descriptions

Field Description

Ethernet0 Name of Ethernet interface that received the packet.

Broadcast Indication that this packet was a broadcast packet.

ARPA Indication that this packet uses ARPA-style encapsulation. Possible
encapsulation styles vary depending on the media command mode
(MCM) and encapsulation style, as follows:

Ethernet (MCM)

Encapsulation Style
APOLLO
ARP
ETHERTALK
ISO1
ISO3
LLC2
NOVELL-ETHER
SNAP

FDDI (MCM)

Encapsulation Style
APOLLO
ISO1
ISO3
LLC2
SNAP

Serial (MCM)

Encapsulation Style
BFEX25
BRIDGE
DDN-X25
DDNX25-DCE
ETHERTALK
FRAME-RELAY
HDLC
HDH
LAPB
LAPBDCE
MULTI-LAPB
PPP
SDLC-PRIMARY
SDLC-SECONDARY
SLIP
SMDS
STUN
X25
X25-DCE

2-36 Debug Command Reference

debug broadcast

Token Ring (MCM)

Encapsulation Style
3COM-TR
ISO1
ISO3
MAC
LLC2
NOVELL-TR
SNAP
VINES-TR

src 0000.0c00.6fa4 MAC address of the node generating the packet.

dst ffff.ffff.ffff.ffff MAC address of the destination node for the packet. This address is
always the MAC broadcast address.

type 0x0800 Packet type (IP in this case).

data ... First 12 bytes of the datagram following the MAC header.

len 60 Length of the message that the interface received from the wire (in
bytes).

size 128 Length of the message that the interface received from the wire (in
bytes).

flags 0x8F00 HDLC or PPP flags field.

DLCI 7a The DLCI number on Frame Relay.

Field Description

 Debug Commands 2-37

debug cdp

debug cdp
Use the debug cdp EXEC command to enable debugging of Cisco Discovery Protocol (CDP). The
no form of this command disables debugging output.

debug cdp { packets | adjacency | events}
no debug cdp { packets | adjacency | events}

Syntax Description

Command Mode
EXEC

Usage Guidelines
Use debug cdp commands to display information about CDP packet activity, activity between CDP
neighbors, and various CDP events.

Sample Display
Figure 2-19 shows a composite sample output from debug cdp packets, debug cdp adjacency, and
debug cdp events.

Figure 2-19 Sample Debug CDP Output

router# debug cdp packets
CDP packet info debugging is on
router# debug cdp adjacency
CDP neighbor info debugging is on
router# debug cdp events
CDP events debugging is on

CDP-PA: Packet sent out on Ethernet0
CDP-PA: Packet received from gray.cisco.com on interface Ethernet0

CDP-AD: Deleted table entry for violet.cisco.com, interface Ethernet0
CDP-AD: Interface Ethernet2 coming up

CDP-EV: Encapsulation on interface Serial2 failed

The messages displayed by debug cdp commands are self-explanatory.

packets Enables packet-related debugging output.

adjacency Enables adjacency-related debugging output.

events Enables output related related to error messages, such as
detecting a bad checksum.

2-38 Debug Command Reference

debug channel events

debug channel events
The debug channel events EXEC command displays processing events that occur on the channel
adapter interfaces of all installed adapters. This command is valid for the Cisco 7000 series routers
only. The no form of this command disables debugging output.

debug channel events
no debug channel events

Syntax Description
This command has no arguments or keywords.

Command Mode
EXEC

Usage Guidelines
This command displays Channel Interface Processor (CIP) events that occur on the CIP interface
processor and is useful for diagnosing problems in an IBM channel attach network. It provides an
overall picture of the stability of the network. In a stable network, the debug channel events
command does not return any information except for a statistic message (cip_love_letter)
transmitted every ten seconds. If the command generates numerous messages, they can indicate the
possible source of the problems.

When configuring or making changes to a router or interface that supports IBM channel attach,
enable debug channel events. Doing so alerts you to the progress of the changes or to any errors
that might result. Also use this command periodically when you suspect network problems.

Sample Display
Figure 2-20 shows sample debug channel events output.

Figure 2-20 Sample Debug Channel Events Output

Router# debug channel events
Channel3/1: love letter received, bytes 3308
Channel3/0: love letter received, bytes 3336
cip_love_letter: recieved ll, but no cip_info
Channel3/0: cip_reset(), state administratively down
Channel3/0: cip_reset(), state up
Channel3/0: sending nodeid
Channel3/0: sending command for vc 0, CLAW path C700, device C0

Explanations for individual lines of output from Figure 2-20 follow.

The following line indicates that data was received on the CIP:

Channel3/1: love letter received, bytes 3308

The following line indicates that the interface is enabled, but there is no configuration for it. It does
not normally indicate a problem, just that the route processor (RP) got statistics from the CIP but has
no place to store them.

cip_love_letter: recieved ll, but no cip_info

 Debug Commands 2-39

debug channel events

The following line indicates that the CIP is being reset to an administrative down state:

Channel3/0: cip_reset(), state administratively down

The following line indicates that the CIP is being reset to an administrative up state:

Channel3/0: cip_reset(), state up

The following line indicates that the node id is being sent to the CIP. This information is the same
as the "Local Node" information under the show extended channel slot/port subchannels
command. The CIP needs this information to send to the host mainframe.

Channel3/0: sending nodeid

The following line indicates that a CLAW subchannel command is being sent from the RP to the
CIP. The value vc 0 indicates that the CIP will use virual circuit number 0 with this device. The
virual circuit number will also show up when using the debug channel packets command.

Channel3/0: sending command for vc 0, CLAW path C700, device C0

2-40 Debug Command Reference

debug channel packets

debug channel packets
Use the debug channel packets EXEC command to display per-packet debugging output. The
output reports information when a packet is received or a transmit is attempted. The no form of this
command disables debugging output.

debug channel packets
no debug channel packets

Syntax Description
This command has no arguments or keywords.

Command Mode
EXEC

Usage Guidelines
The debug channel packets command displays all process-level Channel Interface Processor (CIP)
packets for both outbound and and inbound packets. You will need to disable fast switching and
autonomous switching to obtain debugging output. This command is useful for determining whether
packets are received or transmitted correctly.

This command is valid for the Cisco 7000 series routers only.

Sample Display
Figure 2-21 shows sample debug channel packets output.

Figure 2-21 Sample Debug Channel Packets Output

Router# debug channel packets

Channel packets debugging is on
(Channel3/0)-out size = 104, vc = 0000, type = 0800, src 198.92.0.11, dst 198.92.1.58
(Channel3/0)-in size = 48, vc = 0000, type = 0800, src 198.92.1.58, dst 198.92.15.197
(Channel3/0)-in size = 48, vc = 0000, type = 0800, src 198.92.1.58, dst 198.92.15.197
(Channel3/0)-out size = 71, vc = 0000, type = 0800, src 198.92.15.197, dst 198.92.1.58
(Channel3/0)-in size = 44, vc = 0000, type = 0800, src 198.92.1.58, dst 198.92.15.197

Table 2-10 provides explanations for individual lines of output from Figure 2-21.

Table 2-10 Channel Packets Field Descriptions

Field Description

(Channel3/0) The interface slot and port.

in / out In is a packet from the mainframe to the router.

Out is a packet from the router to the mainframe.

size = The number of bytes in the packet, including internal overhead.

vc = A value from 0–511 that maps to the claw interface configuration
command. This information is from the MAC layer.

 Debug Commands 2-41

debug channel packets

type = The encapsulation type in the MAC layer. The value 0800 indicates an
IP datagram.

src The origin, or source, of the packet, as opposed to the previous hop
address.

dst The destination of the packet, as opposed to the next hop address.

Field Description

2-42 Debug Command Reference

debug clns esis events

debug clns esis events
Use the debug clns esis events EXEC command to display uncommon End System-to-Intermediate
System (ES-IS) events, including previously unknown neighbors, neighbors that have aged out, and
neighbors that have changed roles (ES to IS, for example). The no form of this command disables
debugging output.

debug clns esis events
no debug clns esis events

Syntax Description
This command has no arguments or keywords.

Command Mode
EXEC

Sample Display
Figure 2-22 shows sample debug clns esis events output.

Figure 2-22 Sample Debug CLNS ESIS Events Output

router# debug clns esis events

ES-IS: ISH from aa00.0400.2c05 (Ethernet1), HT 30
ES-IS: ESH from aa00.0400.9105 (Ethernet1), HT 150
ES-IS: ISH sent to All ESs (Ethernet1): NET 49.0001.AA00.0400.6904.00, HT 299, HLEN 20

Explanations for individual lines of output from Figure 2-22 follow.

The following line indicates that the router received a hello packet (ISH) from the IS at MAC address
aa00.0400.2c05 on the Ethernet1 interface. The hold time (or number of seconds to consider this
packet valid before deleting it) for this packet is 30 seconds.

ES-IS: ISH from aa00.0400.2c05 (Ethernet1), HT 30

The following line indicates that the router received a hello packet (ESH) from the ES at MAC
address aa00.0400.9105 on the Ethernet1 interface. The hold time is 150 seconds.

ES-IS: ESH from aa00.0400.9105 (Ethernet1), HT 150

The following line indicates that the router sent an IS hello packet on the Ethernet0 interface to all
ESs on the network. The router’s NET address is 49.0001.AA00.6904.00, the hold time for this
packet is 299 seconds, and the header length of this packet is 20 bytes.

ES-IS: ISH sent to All ESs (Ethernet1): NET 49.0001.AA00.0400.6904.00, HT 299, HLEN 20

 Debug Commands 2-43

debug clns esis packets

debug clns esis packets
Use the debug clns esis packets EXEC command to enable display information on End
System-to-Intermediate System (ES-IS) packets that the router has received and sent. The no form
of this command disables debugging output.

debug clns esis packets
no debug clns esis packets

Syntax Description
This command has no arguments or keywords.

Command Mode
EXEC

Sample Display
Figure 2-23 shows sample debug clns esis packets output.

Figure 2-23 Sample Debug CLNS ESIS Packets Output

router# debug clns esis packets

ES-IS: ISH sent to All ESs (Ethernet0): NET
47.0005.80ff.ef00.0000.0001.5940.1600.8906.4023.00, HT 299, HLEN 33
ES-IS: ISH sent to All ESs (Ethernet1): NET
47.0005.80ff.ef00.0000.0001.5940.1600.8906.4023.00, HT 299, HLEN 34
ES-IS: ISH from aa00.0400.6408 (Ethernet0), HT 299
ES-IS: ISH sent to All ESs (Tunnel0): NET
47.0005.80ff.ef00.0000.0001.5940.1600.O906.4023.00, HT 299, HLEN 34
IS-IS: ESH from 0000.0c00.bda8 (Ethernet0), HT 300

Explanations for individual lines of output from Figure 2-23 follow.

The following line indicates that the router has sent an IS hello packet on Ethernet0 to all ESs on the
network. This hello packet indicates that the router’s NET is
47.0005.80ff.ef00.0000.0001.5940.1600.8906.4023.00. The hold time for this packet is
299 seconds. The packet header is 33 bytes in length.

ES-IS: ISH sent to All ESs (Ethernet0): NET 47.0005.80ff.ef00.0000.0001.5940.1600.8906.4023.00, HT 299, HLEN 33

The following line indicates that the router has sent an IS hello packet on Ethernet1 to all ESs on the
network. This hello packet indicates that the router’s NET is
47.0005.80ff.ef00.0000.0001.5940.1600.8906.4023.00. The hold time for this packet is
299 seconds. The packet header is 33 bytes in length.

ES-IS: ISH sent to All ESs (Ethernet1): NET 47.0005.80ff.ef00.0000.0001.5940.1600.8906.4023.00, HT 299, HLEN 34

The following line indicates that the router received a hello packet on Ethernet0 from an
intermediate system, aa00.0400.6408. The hold time for this packet is 299 seconds.

ES-IS: ISH from aa00.0400.6408 (Ethernet0), HT 299

2-44 Debug Command Reference

debug clns esis packets

The following line indicates that the router has sent an IS hello packet on Tunnel0 to all ESs on the
network. This hello packet indicates that the router’s NET is
47.0005.80ff.ef00.0000.0001.5940.1600.8906.4023.00. The hold time for this packet is
299 seconds. The packet header is 33 bytes in length.

ES-IS: ISH sent to All ESs (Tunnel0): NET 47.0005.80ff.ef00.0000.0001.5940.1600.8906.4023.00, HT 299, HLEN 34

The following line indicates that on Ethernet0, the router received a hello packet from an end system
with an SNPA of 0000.0c00.bda8. The hold time for this packet is 300 seconds.

IS-IS: ESH from 0000.0c00.bda8 (Ethernet0), HT 300

 Debug Commands 2-45

debug clns events

debug clns events
Use the debug clns events EXEC command to display CLNS events that are occurring at the router.
The no form of this command disables debugging output.

debug clns events
no debug clns events

Syntax Description
This command has no arguments or keywords.

Command Mode
EXEC

Sample Display
Figure 2-24 shows sample debug clns events output.

Figure 2-24 Sample Debug CLNS Events Output

router# debug clns events

CLNS: Echo PDU received on Ethernet3 from 39.0001.2222.2222.2222.00!
CLNS: Sending from 39.0001.3333.3333.3333.00 to 39.0001.2222.2222.2222.00
 via 2222.2222.2222 (Ethernet3 0000.0c00.3a18)
CLNS: Forwarding packet size 117
 from 39.0001.2222.2222.2222.00
 to 49.0002.0001.AAAA.AAAA.AAAA.00
 via 49.0002 (Ethernet3 0000.0c00.b5a3)
CLNS: RD Sent on Ethernet3 to 39.0001.2222.2222.2222.00 @ 0000.0c00.3a18,
 redirecting 49.0002.0001.AAAA.AAAA.AAAA.00 to 0000.0c00.b5a3

Explanations for individual lines of output from Figure 2-24 follow.

The following line indicates that the router received an echo PDU on Ethernet3 from source network
service access point (NSAP) 39.0001.2222.2222.2222.00. The exclamation point at the end of the
line has no significance.

CLNS: Echo PDU received on Ethernet3 from 39.0001.2222.2222.2222.00!

The following lines indicate that the router at source NSAP 39.0001.3333.3333.3333.00 is sending
a CLNS echo packet to destination NSAP 39.0001.2222.2222.2222.00 via an IS with system ID
2222.2222.2222. The packet is being sent on the Ethernet3 interface, with a MAC address of
0000.0c00.3a18.

CLNS: Sending from 39.0001.3333.3333.3333.00 to 39.0001.2222.2222.2222.00
 via 2222.2222.2222 (Ethernet3 0000.0c00.3a18)

The following lines indicate that a CLNS echo packet 117 bytes in size is being sent from source
NSAP 39.0001.2222.2222.2222.00 to destination NSAP 49.0002.0001.AAAA.AAAA.AAAA.00
via the router at NSAP 49.0002. The packet is being forwarded on the Ethernet3 interface, with a
MAC address of 0000.0c00.b5a3.

CLNS: Forwarding packet size 117
 from 39.0001.2222.2222.2222.00
 to 49.0002.0001.AAAA.AAAA.AAAA.00
 via 49.0002 (Ethernet3 0000.0c00.b5a3)

2-46 Debug Command Reference

debug clns events

The following lines indicate that the router sent a redirect packet on the Ethernet3 interface to the
NSAP 39.0001.2222.2222.2222.00 at MAC address 0000.0c00.3a18 to indicate that NSAP
49.0002.0001.AAAA.AAAA.AAAA.00 can be reached at MAC address 0000.0c00.b5a3.

CLNS: RD Sent on Ethernet3 to 39.0001.2222.2222.2222.00 @ 0000.0c00.3a18,
 redirecting 49.0002.0001.AAAA.AAAA.AAAA.00 to 0000.0c00.b5a3

 Debug Commands 2-47

debug clns igrp packets

debug clns igrp packets
Use the debug clns igrp packets EXEC command to display debugging information on all
ISO-IGRP routing activity. The no form of this command disables debugging output.

debug clns igrp packets
no debug clns igrp packets

Syntax Description
This command has no arguments or keywords.

Command Mode
EXEC

Sample Display
Figure 2-25 shows sample debug clns igrp packets output.

Figure 2-25 Sample Debug CLNS IGRP Packets Output

router# debug clns igrp packets

ISO-IGRP: Hello sent on Ethernet3 for DOMAIN_green1
ISO-IGRP: Received hello from 39.0001.3333.3333.3333.00, (Ethernet3), ht 51
ISO-IGRP: Originating level 1 periodic update
ISO-IGRP: Advertise dest: 2222.2222.2222
ISO-IGRP: Sending update on interface: Ethernet3
ISO-IGRP: Originating level 2 periodic update
ISO-IGRP: Advertise dest: 0001
ISO-IGRP: Sending update on interface: Ethernet3
ISO-IGRP: Received update from 3333.3333.3333 (Ethernet3)
ISO-IGRP: Opcode: area
ISO-IGRP: Received level 2 adv for 0001 metric 1100
ISO-IGRP: Opcode: station
ISO-IGRP: Received level 1 adv for 3333.3333.3333 metric 1100

Explanations for individual lines of output from Figure 2-25 follow.

The following line indicates that the router is sending a hello packet to advertise its existence in the
DOMAIN_green1 domain:

ISO-IGRP: Hello sent on Ethernet3 for DOMAIN_green1

The following line indicates that the router received a hello packet from a certain network service
access point (NSAP) on the Ethernet3 interface. The hold time for this information is 51 seconds.

ISO-IGRP: Received hello from 39.0001.3333.3333.3333.00, (Ethernet3), ht 51

The following lines indicate that the router is generating a Level 1 update to advertise reachability
to destination NSAP 2222.2222.2222 and that it is sending that update to all systems that can be
reached through the Ethernet3 interface:

ISO-IGRP: Originating level 1 periodic update
ISO-IGRP: Advertise dest: 2222.2222.2222
ISO-IGRP: Sending update on interface: Ethernet3

2-48 Debug Command Reference

debug clns igrp packets

The following lines indicate that the router is generating a Level 2 update to advertise reachability
to destination area 1 and that it is sending that update to all systems that can be reached through the
Ethernet3 interface:

ISO-IGRP: Originating level 2 periodic update
ISO-IGRP: Advertise dest: 0001
ISO-IGRP: Sending update on interface: Ethernet3

The following lines indicate that the router received an update from NSAP 3333.3333.3333 on
Ethernet3. This update indicated the area the router at this NSAP could reach.

ISO-IGRP: Received update from 3333.3333.3333 (Ethernet3)
ISO-IGRP: Opcode: area

The following lines indicate that the router received an update advertising that the source of that
update can reach area 1 with a metric of 1100. A station opcode indicates that the update included
system addresses.

ISO-IGRP: Received level 2 adv for 0001 metric 1100
ISO-IGRP: Opcode: station

 Debug Commands 2-49

debug clns packet

debug clns packet
Use the debug clns packet EXEC command to display information about packet receipt and
forwarding to the next interface. The no form of this command disables debugging output.

debug clns packet
no debug clns packet

Syntax Description
This command has no arguments or keywords.

Command Mode
EXEC

Sample Display
Figure 2-26 shows sample debug clns packet output.

Figure 2-26 Sample Debug CLNS Packet Output

router# debug clns packet

CLNS: Forwarding packet size 157
 from 47.0023.0001.0000.0000.0003.0001.1920.3614.3002.00 STUPI-RBS
 to 47.0005.80ff.ef00.0000.0001.5940.1600.8906.4017.00
 via 1600.8906.4017 (Ethernet0 0000.0c00.bda8)
CLNS: Echo PDU received on Ethernet0 from 4
7.0005.80ff.ef00.0000.0001.5940.1600.8906.4017.00!
CLNS: Sending from 47.0005.80ff.ef00.0000.0001.5940.1600.8906.4023.00 to
47.0005.80ff.ef00.0000.0001.5940.1600.8906.4017.00
 via 1600.8906.4017 (Ethernet0 0000.0c00.bda8)

Explanations for individual lines of output from Figure 2-26 follow.

In the following lines, the first line indicates that a Connectionless Network Service (CLNS) packet
of size 157 bytes is being forwarded. The second line indicates the network service access point
(NSAP) and system name of the source of the packet. The third line indicates the destination NSAP
for this packet. The fourth line indicates the next-hop system ID, interface, and SNPA of the router
interface used to forward this packet.

CLNS: Forwarding packet size 157
 from 47.0023.0001.0000.0000.0003.0001.1920.3614.3002.00 STUPI-RBS
 to 47.0005.80ff.ef00.0000.0001.5940.1600.8906.4017.00
 via 1600.8906.4017 (Ethernet0 0000.0c00.bda8)

In the following lines, the first line indicates that the router received an Echo PDU on the specified
interface from the source NSAP. The second line indicates which source NSAP is used to send a
CLNS packet to the destination NSAP, as shown on the third line. The fourth line indicates the
next-hop system ID, interface, and SNPA of the router interface used to forward this packet.

CLNS: Echo PDU received on Ethernet0 from 47.0005.80ff.ef00.0000.0001.5940.1600.8906.4017.00!
CLNS: Sending from 47.0005.80ff.ef00.0000.0001.5940.1600.8906.4023.00 to
47.0005.80ff.ef00.0000.0001.5940.1600.8906.4017.00
via 1600.8906.4017 (Ethernet0 0000.0c00.bda8)

2-50 Debug Command Reference

debug clns routing

debug clns routing
Use the debug clns routing EXEC command to display debugging information of all
Connectionless Network Service (CLNS) routing cache updates and activities involving the CLNS
routing table. The no form of this command disables debugging output.

debug clns routing
no debug clns routing

Syntax Description
This command has no arguments or keywords.

Command Mode
EXEC

Sample Display
Figure 2-27 shows sample debug clns routing output.

Figure 2-27 Sample Debug CLNS Routing Output

router# debug clns routing

CLNS-RT: cache increment:17
CLNS-RT: Add 47.0023.0001.0000.0000.0003.0001 to prefix table, next hop 1920.3614.3002
CLNS-RT: Aging cache entry for: 47.0023.0001.0000.0000.0003.0001.1920.3614.3002.06
CLNS-RT: Deleting cache entry for: 47.0023.0001.0000.0000.0003.0001.1920.3614.3002.06

Explanations for individual lines of output from Figure 2-27 follow.

The following line indicates that a change to the routing table has resulted in an addition to the
fast-switching cache:

CLNS-RT: cache increment:17

The following line indicates that a specific prefix route was added to the routing table, and indicates
the next-hop system ID to that prefix route. In other words, when the router receives a packet with
the prefix 47.0023.0001.0000.0000.0003.0001 in that packet’s destination address, it forwards that
packet to the router with the MAC address 1920.3614.3002.

CLNS-RT: Add 47.0023.0001.0000.0000.0003.0001 to prefix table, next hop 1920.3614.3002

The following lines indicate that the fast-switching cache entry for a certain network service access
point (NSAP) has been invalidated and then deleted:

CLNS-RT: Aging cache entry for: 47.0023.0001.0000.0000.0003.0001.1920.3614.3002.06
CLNS-RT: Deleting cache entry for: 47.0023.0001.0000.0000.0003.0001.1920.3614.3002.06

 Debug Commands 2-51

debug compress

debug compress
Use the debug compress EXEC command to display compression information. The no form of this
command disables debugging output.

debug compress
no debug compress

Syntax Description
This command has no arguments or keywords.

Command Mode
EXEC

Sample Display
Figure 2-28 shows sample debug compress output.

Figure 2-28 Sample Debug Compress Output

router# debug compress
 DECOMPRESS xmt_paks 5 rcv_sync 5
 COMPRESS xmt_paks 10 version 1
 COMPRESS xmt_paks 11 version 1
 DECOMPRESS xmt_paks 6 rcv_sync 6
 COMPRESS xmt_paks 12 version 1
 COMPRESS xmt_paks 13 version 1
 DECOMPRESS xmt_paks 7 rcv_sync 7
 COMPRESS xmt_paks 14 version 1
 COMPRESS xmt_paks 15 version 1

Table 2-11 describes significant fields shown in Figure 2-28.

Table 2-11 Debug Compress Field Descriptions

Field Description

COMPRESS xmt_paks The sequence count of this frame is modulo 256 (except zero only occurs on
initialization). This value is part of the compression header sent with each frame.

DECOMPRESS xmt_paks The sequence count in the compression header received with this frame.

DECOMPRESS rcv_sync The received internal sequence count, which is verified against the DECOMPRESS
xmt_paks count. If these counts do not match, a Link Access Procedure, Balanced
(LAPB) reset will occur. On LAPB reset, a compression reinitialization occurs.
Compression reinitialization initializes the dictionaries and xmt_paks and rcv_sync
counts.

2-52 Debug Command Reference

debug decnet adj

debug decnet adj
Use the debug decnet adj EXEC command to display debugging information on DECnet
adjacencies. The no form of this command disables debugging output.

debug decnet adj
no debug decnet adj

Syntax Description
This command has no arguments or keywords.

Command Mode
EXEC

Sample Display
Figure 2-29 shows sample debug decnet adj output.

Figure 2-29 Sample Debug DECnet Adj Output

router# debug decnet adj
DECnet adjacencies debugging is on
router#
DNET-ADJ: Level 1 hello from 1.3
DNET-ADJ: sending hellos
DNET-ADJ: Sending hellos to all routers on interface Ethernet0, blksize 1498
DNET-ADJ: Level 1 hello from 1.3
DNET-ADJ: 1.5 adjacency initializing
DNET-ADJ: sending triggered hellos
DNET-ADJ: Sending hellos to all routers on interface Ethernet0, blksize 1498
DNET-ADJ: Level 1 hello from 1.3
DNET-ADJ: 1.5 adjacency up
DNET-ADJ: Level 1 hello from 1.5
DNET-ADJ: 1.5 adjacency down, listener timeout

Explanations for representative lines of output in Figure 2-29 follow.

The following line indicates that the router is sending hellos to all routers on this segment, which in
this case is Ethernet 0:

DNET-ADJ: Sending hellos to all routers on interface Ethernet0, blksize 1498

The following line indicates that the router has heard a hello from address 1.5 and is creating an
adjacency entry in its table. The initial state of this adjacency will be initializing.

DNET-ADJ: 1.5 adjacency initializing

The following line indicates that the router is sending an unscheduled (triggered) hello as a result of
some event, such as new adjacency being heard:

DNET-ADJ: sending triggered hellos

The following line indicates that the adjacency with 1.5 is now up, or active:

DNET-ADJ: 1.5 adjacency up

 Debug Commands 2-53

debug decnet adj

The following line indicates that the adjacency with 1.5 has timed out, because no hello has been
heard from adjacency 1.5 in the time interval originally specified in the hello from 1.5:

DNET-ADJ: 1.5 adjacency down, listener timeout

The following line indicates that the router is sending an unscheduled hello, as a result of some
event, such as the adjacency state changing:

DNET-ADJ: hello update triggered by state changed in dn_add_adjacency

2-54 Debug Command Reference

debug decnet connects

debug decnet connects
Use the debug decnet connects EXEC command to display debugging information of all connect
packets that are filtered (permitted or denied) by DECnet access lists. The no form of this command
disables debugging output.

debug decnet connects
no debug decnet connects

Syntax Description
This command has no arguments or keywords.

Command Mode
EXEC

Usage Guidelines
When using connect packet filtering, it may be helpful to use the decnet access-group configuration
command to apply the following basic access list:

access-list 300 permit 0.0 63.1023
access-list 300 permit 0.0 63.1023 eq any

You can then log all connect packets transmitted on interfaces to which you applied this list, in order
to determine those elements on which your connect packets must be filtered.

Sample Display
Figure 2-30 shows sample debug decnet connects output.

Figure 2-30 Sample Debug DECnet Connects Output

router# debug decnet connects

DNET-CON: list 300 item #2 matched src=19.403 dst=19.309 on Ethernet0: permitted
 srcname="RICK" srcuic=[0,017]
 dstobj=42 id="USER"

Table 2-12 describes significant fields shown in Figure 2-30.

Table 2-12 Debug DECnet Connects Fi eld Descriptions

Field Description

DNET-CON: Indicates that this is a debug decnet connects packet

list 300 item #2 matched Indicates that a packet matched the second item in access list 300

src = 19.403 Indicates the source DECnet address for the packet

dst = 19.309 Indicates the destination DECnet address for the packet

on Ethernet0: Indicates the router interface on which the access list filtering the
packet was applied

permitted Indicates that the access list permitted the packet

 Debug Commands 2-55

debug decnet connects

Note Packet password and account information is not logged in the debug decnet connects
message, nor is it displayed by the show access EXEC command. If you specify password or
account information in your access list, they can be viewed by anyone with access to your router’s
configuration.

srcname = “RICK” Indicates the originator user of the packet

srcuic = [0,017] Indicates the source UIC of the packet

dstobj = 42 Indicates that DECnet object 42 is the destination

id=“USER” Indicates the access user

Field Description

2-56 Debug Command Reference

debug decnet events

debug decnet events
Use the debug decnet events EXEC command to display debugging information on DECnet events.
The no form of this command disables debugging output.

debug decnet events
no debug decnet events

Syntax Description
This command has no arguments or keywords.

Command Mode
EXEC

Sample Display
Figure 2-31 shows sample debug decnet events output.

Figure 2-31 Sample Debug DECnet Events Output

router# debug decnet events

DNET: Hello from area 50 rejected - exceeded ‘max area' parameter (45)
DNET: Hello from area 50 rejected - exceeded ‘max area' parameter (45)

Explanations for representative lines of output in Figure 2-31 follow.

The following line indicates that the router received a hello from a router whose area was greater
than the max-area parameter with which this router was configured:

DNET: Hello from area 50 rejected - exceeded 'max area' parameter (45)

The following line indicates that the router received a hello from a router whose node ID was greater
than the max-node parameter with which this router was configured:

DNET: Hello from node 1002 rejected - exceeded 'max node' parameter (1000)

 Debug Commands 2-57

debug decnet packet

debug decnet packet
Use the debug decnet packet EXEC command to display debugging information on DECnet packet
events. The no form of this command disables debugging output.

debug decnet packet
no debug decnet packet

Syntax Description
This command has no arguments or keywords.

Command Mode
EXEC

Sample Display
Figure 2-32 shows sample debug decnet packet output.

Figure 2-32 Sample Debug DECnet Packet Output

router# debug decnet packet

DNET-PKT: src 1.4 dst 1.5 sending to PHASEV
DNET-PKT: Packet fwded from 1.4 to 1.5, via 1.5, snpa 0000.3080.cf90, TokenRing0

Explanations for individual lines of output from Figure 2-32 follow.

The following line indicates that the router is sending a converted packet addressed to node 1.5 to
Phase V:

DNET-PKT: src 1.4 dst 1.5 sending to PHASEV

The following line indicates that the router forwarded a packet from node 1.4 to node 1.5. The packet
is being sent to the next hop of 1.5 whose subnetwork point of attachment (MAC address) on that
interface is 0000.3080.cf90.

DNET-PKT: Packet fwded from 1.4 to 1.5, via 1.5, snpa 0000.3080.cf90, TokenRing0

2-58 Debug Command Reference

debug decnet routing

debug decnet routing
Use the debug decnet routing EXEC command to display all DECnet routing-related events
occurring at the router. The no form of this command disables debugging output.

debug decnet routing
no debug decnet routing

Syntax Description
This command has no arguments or keywords.

Command Mode
EXEC

Sample Display
Figure 2-33 shows sample debug decnet routing output.

Figure 2-33 Sample Debug DECnet Routing Output

router# debug decnet routing

DNET-RT: Received level 1 routing from 1.3 on Ethernet0 at 1:16:34
DNET-RT: Sending routes
DNET-RT: Sending normal routing updates on Ethernet0
DNET-RT: Sending level 1 routing updates on interface Ethernet0
DNET-RT: Level1 routes from 1.5 on Ethernet0: entry for node 5 created
DNET-RT: route update triggered by after split route pointers in dn_rt_input
DNET-RT: Received level 1 routing from 1.5 on Ethernet 0 at 1:18:35
DNET-RT: Sending L1 triggered routes
DNET-RT: Sending L1 triggered routing updates on Ethernet0
DNET-RT: removing route to node 5

Explanations for individual lines of output from Figure 2-33 follow.

The following line indicates that the router has received a level 1 update on interface Ethernet 0:

DNET-RT: Received level 1 routing from 1.3 on Ethernet0 at 1:16:34

The following line indicates that the router is sending its scheduled updates on interface Ethernet 0:

DNET-RT: Sending normal routing updates on Ethernet0

The following line indicates that the route will send an unscheduled update on this interface as a
result of some event. In this case, the unscheduled update is a result of a new entry created in the
interface’s routing table.

DNET-RT: route update triggered by after split route pointers in dn_rt_input

 Debug Commands 2-59

debug decnet routing

The following line indicates that the router sent the unscheduled update on Ethernet 0:

DNET-RT: Sending L1 triggered routes
DNET-RT: Sending L1 triggered routing updates on Ethernet0

The following line indicates that the router removed the entry for node 5 because the adjacency with
node 5 timed out, or the route to node 5 through a next-hop router went away:

DNET-RT: removing route to node 5

2-60 Debug Command Reference

debug dialer

debug dialer
Use the debug dialer EXEC command to display debugging information about the packets that are
received on a Frame Relay interface. The no form of this command disables debugging output.

debug dialer
no debug dialer

Syntax Description
This command has no arguments or keywords.

Command Mode
EXEC

Usage Guidelines
Table 2-13 describes the error messages that the debug dialer command can generate for a serial
interface being used as a V.25bis dialer for dial-on-demand routing (DDR).

Table 2-13 Debug Dialer Message Descript ions for DDR

When DDR is enabled on the interface, information concerning the cause of any calls (called Dialing
cause) may be displayed.

Message Descr iption

Serial 0: Dialer result = xxxxxxxxxx This message displays the result returned from the V.25bis
dialer. It is useful in debugging if calls are failing. On some
hardware platforms, this message cannot be displayed due to
hardware limitations. Possible values for the xxxxxxxxxx variable
depend on the V.25bis device with which the router is
communicating.

Serial 0: No dialer string defined.
Dialing cannot occur.

This message is displayed when a packet is received that should
cause a call to be placed. However, there is no dialer string
configured, so dialing cannot occur. This message usually
indicates a configuration problem.

Serial 0: Attempting to dial xxxxxxxxxx This message indicates that a packet has been received that
passes the dial-on-demand access lists. That packet causes
dialing of a phone number. The xxxxxxxxxx variable is the
number being called.

Serial 0: Unable to dial xxxxxxxxxx This message is displayed if for some reason, the phone call
could not be placed. This might be due to a lack of memory, full
output queues, or other problems.

Serial 0: disconnecting call This message is displayed when the router attempts to hang up a
call.

Serial 0: idle timeout

Serial 0: re-enable timeout

Serial 0: wait for carrier timeout

One of these three messages is displayed when their
corresponding dialer timer expires. They are mostly
informational, but are useful when debugging a disconnected
call or call failure.

 Debug Commands 2-61

debug dialer

The following line of output for an IP packet lists the name of the DDR interface and the source and
destination addresses of the packet:

Dialing cause: Serial0: ip (s=131.108.1.111 d=131.108.2.22)

The following line of output for a bridged packet lists the DDR interface and the type of packet (in
hexadecimal). For information on these packet types, see the “Ethernet Type Codes,” appendix of
the Router Products Command Reference publication.

Dialing cause: Serial1: Bridge (0x6005)

2-62 Debug Command Reference

debug dspu activation

debug dspu activation
Use the debug dspu activation EXEC command to display information on downstream physical
unit (DSPU) activation. The no form of this command disables debugging output.

debug dspu activation [name]
no debug dspu activation [name]

Syntax Description

Command Mode
EXEC

Usage Guidelines
The debug dspu activation command displays all DSPU activation traffic. To restrict the output to
a specific host or physical unit (PU), include the host or PU name argument. You cannot turn off
debugging output for an individual PU if that PU has not been named in the debug dspu activation
command.

Sample Display
Figure 2-34 shows sample debug dspu activation output. Not all intermediate numbers are shown
for the “activated” and “deactivated” logical unit (LU) address ranges.

Figure 2-34 Sample Debug DSPU Activation Output

router# debug dspu activation
DSPU: LS HOST3745 connected
DSPU: PU HOST3745 activated
DSPU: LU HOST3745-2 activated
DSPU: LU HOST3745-3 activated
. . .
DSPU: LU HOST3745-253 activated
DSPU: LU HOST3745-254 activated

DSPU: LU HOST3745-2 deactivated
DSPU: LU HOST3745-3 deactivated
. . .
DSPU: LU HOST3745-253 deactivated
DSPU: LU HOST3745-254 deactivated
DSPU: LS HOST3745 disconnected
DSPU: PU HOST3745 deactivated

Table 2-14 describes significant fields in the output shown in Figure 2-34.

name (Optional) A host or PU name designation.

 Debug Commands 2-63

debug dspu act ivation

Table 2-14 Debug DSPU Act ivation Field Descriptions

Related Commands
debug dspu packet
debug dspu state
debug dspu trace

Field Description

DSPU Downstream PU debug message.

LS A link station (LS) event triggered the message.

PU A PU event triggered the message.

LU A logical unit (LU) event triggered the message.

HOST3745 Host name or PU name.

HOST3745-253 Host name or PU name and the LU address, separated by a colon.

connected
activated
disconnected
deactivated

Event that occured to trigger the message.

2-64 Debug Command Reference

debug dspu packet

debug dspu packet
Use the debug dspu packet EXEC command to display information on downstream physical unit
(DSPU) packet. The no form of this command disables debugging output.

debug dspu packet [name]
no debug dspu packet [name]

Syntax Description

Command Mode
EXEC

Usage Guidelines
The debug dspu packet command displays all DSPU packet data flowing through the router. To
restrict the output to a specific host or PU, include the host or PU name argument. You cannot turn
off debugging output for an individual PU if that PU has not been named in the debug dspu packet
command.

Sample Display
Figure 2-35 shows sample debug dspu packet output.

Figure 2-35 Sample Debug DSPU Packet Output

router# debug dspu packet

DSPU: Rx: PU HOST3745 data length 12 data:
 2D0003002BE16B80 000D0201
DSPU: Tx: PU HOST3745 data length 25 data:
 2D0000032BE1EB80 000D020100850000 000C060000010000 00
DSPU: Rx: PU HOST3745 data length 12 data:
 2D0004002BE26B80 000D0201
DSPU: Tx: PU HOST3745 data length 25 data:
 2D0000042BE2EB80 000D020100850000 000C060000010000 00

Table 2-15 describes significant fields in the output shown in Figure 2-35.

Table 2-15 Debug DSPU Packet Field Descriptions

name (Optional) A host or PU name designation.

Field Description

DSPU: Rx: Received frame (packet) from the remote PU to the router PU.

DSPU: Tx: Transmitted frame (packet) from the router PU to the remote PU.

PU HOST3745 Host name or PU associated with the transmit or receive.

data length 12 data: Number of bytes of data, followed by up to 128 bytes of displayed data.

 Debug Commands 2-65

debug dspu packet

Related Commands
debug dspu activation
debug dspu state
debug dspu trace

2-66 Debug Command Reference

debug dspu state

debug dspu state
Use the debug dspu state EXEC command to display information on downstream physical unit
(DSPU) finite state machine (FSM) state changes. The no form of this command disables debugging
output.

debug dspu state [name]
no debug dspu state [name]

Syntax Description

Command Mode
EXEC

Usage Guidelines
Use the debug dspu state command to display only the FSM state changes. To see all FSM activity,
use the debug dspu trace command. You cannot turn off debugging output for an individual PU if
that PU has not been named in the debug dspu state command.

Sample Display
Figure 2-36 shows sample debug dspu state output. Not all intermediate numbers are shown for the
“activated” and “deactivated” logical unit (LU) address ranges.

Figure 2-36 Sample Debug DSPU State Output

router# debug dspu state
DSPU: LS HOST3745: input=StartLs, Reset -> PendConOut
DSPU: LS HOST3745: input=ReqOpn.Cnf, PendConOut -> Xid
DSPU: LS HOST3745: input=Connect.Ind, Xid -> ConnIn
DSPU: LS HOST3745: input=Connected.Ind, ConnIn -> Connected
DSPU: PU HOST3745: input=Actpu, Reset -> Active
DSPU: LU HOST3745-2: input=uActlu, Reset -> upLuActive
DSPU: LU HOST3745-3: input=uActlu, Reset -> upLuActive
. . .
DSPU: LU HOST3745-253: input=uActlu, Reset -> upLuActive
DSPU: LU HOST3745-254: input=uActlu, Reset -> upLuActive

DSPU: LS HOST3745: input=PuStopped, Connected -> PendDisc
DSPU: LS HOST3745: input=Disc.Cnf, PendDisc -> PendClose
DSPU: LS HOST3745: input=Close.Cnf, PendClose -> Reset
DSPU: PU HOST3745: input=T2ResetPu, Active -> Reset
DSPU: LU HOST3745-2: input=uStopLu, upLuActive -> Reset
DSPU: LU HOST3745-3: input=uStopLu, upLuActive -> Reset
. . .
DSPU: LU HOST3745-253: input=uStopLu, upLuActive -> Reset
DSPU: LU HOST3745-254: input=uStopLu, upLuActive -> Reset

Table 2-15 describes significant fields in the output shown in Figure 2-36.

name (Optional) A host or PU name designation.

 Debug Commands 2-67

debug dspu state

Table 2-16 Debug DSPU State Field Descriptions

Related Commands
debug dspu activation
debug dspu packet
debug dspu trace

Field Description

DSPU Downstream PU debug message.

LS A link station (LS) event triggered the message.

PU A PU event triggered the message.

LU A logical unit (LU) event triggered the message.

HOST3745-253 Host name or PU name and LU address.

input=input, The input received by the FSM.

previous-state, -> current-state The previous state and current new state as seen by the FSM.

2-68 Debug Command Reference

debug dspu trace

debug dspu trace
Use the debug dspu trace EXEC command to display information on downstream physical unit
(DSPU) trace activity, which includes all finite state machine (FSM) activity. The no form of this
command disables debugging output.

debug dspu trace [name]
no debug dspu trace [name]

Syntax Description

Command Mode
EXEC

Usage Guidelines
Use the debug dspu trace command to display all FSM state changes. To see FSM state changes
only, use the debug debug dspu state command. You cannot turn off debugging output for an
individual PU if that PU has not been named in the debug dspu trace command.

Sample Display
Figure 2-37 shows sample debug dspu trace output.

Figure 2-37 Sample Debug DSPU Trace Output

router# debug dspu trace

DSPU: LS HOST3745 input = 0 ->(1,a1)
DSPU: LS HOST3745 input = 5 ->(5,a6)
DSPU: LS HOST3745 input = 7 ->(5,a9)
DSPU: LS HOST3745 input = 9 ->(5,a28)
DSPU: LU HOST3745-2 in:0 s:0->(2,a1)
DSPU: LS HOST3745 input = 19 ->(8,a20)
DSPU: LS HOST3745 input = 18 ->(8,a17)
DSPU: LU HOST3745-3 in:0 s:0->(2,a1)
DSPU: LS HOST3745 input = 19 ->(8,a20)
DSPU: LS HOST3745 input = 18 ->(8,a17)
DSPU: LU HOST3745-252 in:0 s:0->(2,a1)
DSPU: LS HOST3745 input = 19 ->(8,a20)
DSPU: LS HOST3745 input = 18 ->(8,a17)
DSPU: LU HOST3745-253 in:0 s:0->(2,a1)
DSPU: LS HOST3745 input = 19 ->(8,a20)
DSPU: LS HOST3745 input = 18 ->(8,a17)
DSPU: LU HOST3745-254 in:0 s:0->(2,a1)
DSPU: LS HOST3745 input = 19 ->(8,a20)

Table 2-17 describes significant fields in the output shown in Figure 2-37.

name (Optional) A host or PU name designation.

 Debug Commands 2-69

debug dspu trace

Table 2-17 Debug DSPU Trace Field Descriptions

Related Commands
debug dspu activation
debug dspu packet
debug dspu state

Field Description

7:23:57 Time stamp.

DSPU Downstream PU debug message.

LS A link station (LS) event triggered the message.

PU A PU event triggered the message.

LU A logical unit (LU) event triggered the message.

HOST3745-253 Host name or PU name and LU address.

in:input s:state ->(new-state,
action)

String describing the following:

input - LU FSM input
state - Current FSM state
new-state - New FSM state
action - FSM action

input= input ->

(new-state, action)

String describing the following:

input - PU or LS FSM input
new-state - New PU or LS FSM state
action - PU or LS FSM action

2-70 Debug Command Reference

debug eigrp fsm

debug eigrp fsm
Use the debug eigrp fsm EXEC command to display debugging information about Enhanced IGRP
feasible successor metrics (FSM). The no form of this command disables debugging output.

debug eigrp fsm
no debug eigrp fsm

Syntax Description
This command has no arguments or keywords.

Command Mode
EXEC

Usage Guidelines
This command helps you observe Enhanced IGRP feasible successor activity and to determine
whether route updates are being installed and deleted by the routing process.

Sample Display
Figure 2-38 shows sample debug eigrp fsm output.

Figure 2-38 Sample Debug EIGRP FSM Output

router# debug eigrp fsm

DUAL: dual_rcvupdate(): 198.93.166.0 255.255.255.0 via 0.0.0.0 metric 750080/0
DUAL: Find FS for dest 198.93.166.0 255.255.255.0. FD is 4294967295, RD is 42949
67295 found
DUAL: RT installed 198.93.166.0 255.255.255.0 via 0.0.0.0
DUAL: dual_rcvupdate(): 192.168.4.0 255.255.255.0 via 0.0.0.0 metric 4294967295/
4294967295
DUAL: Find FS for dest 192.168.4.0 255.255.255.0. FD is 2249216, RD is 2249216
DUAL: 0.0.0.0 metric 4294967295/4294967295not found Dmin is 4294967295
DUAL: Dest 192.168.4.0 255.255.255.0 not entering active state.
DUAL: Removing dest 192.168.4.0 255.255.255.0, nexthop 0.0.0.0
DUAL: No routes. Flushing dest 192.168.4.0 255.255.255.0

Explanations for individual lines of output from Figure 2-38 follow.

In the first line of Figure 2-38, DUAL stands for Diffusing Update ALgorithm. It is the basic
mechanism within Enhanced IGRP that makes the routing decisions.The next three fields are the
Internet address and mask of the destination network and the address through which the update was
received. The metric field shows the metric stored in the routing table and the metric advertised by
the neighbor sending the information. “Metric ... inaccessible” usually means that the neighbor
router no longer has a route to the destination, or the destination is in holddown.

In the following output, Enhanced IGRP is attempting to find a feasible successor for the destination.
Feasible successors are part of the DUAL loop avoidance methods. The FD field contains more loop
avoidance state information. The RD field is the reported distance, which is the metric used in
update, query or reply packets.

 Debug Commands 2-71

debug eigrp fsm

The indented line with the “not found” message means a feasible successor (FS) was not found for
192.168.4.0 and EIGRP must start a diffusing computation. This means it begins to actively probe
(sends query packets about destination 192.168.4.0) the network looking for alternate paths to
192.164.4.0.

DUAL: Find FS for dest 192.168.4.0 255.255.255.0. FD is 2249216, RD is 2249216
DUAL: 0.0.0.0 metric 4294967295/4294967295not found Dmin is 4294967295

The following output indicates the route DUAL successfully installed into the routing table.

DUAL: RT installed 198.93.166.0 255.255.255.0 via 0.0.0.0

The following output shows that no routes were discovered to the destination and the route
information is being removed from the topology table.

DUAL: Dest 192.168.4.0 255.255.255.0 not entering active state.
DUAL: Removing dest 192.168.4.0 255.255.255.0, nexthop 0.0.0.0
DUAL: No routes. Flushing dest 192.168.4.0 255.255.255.0

2-72 Debug Command Reference

debug eigrp packet

debug eigrp packet
Use the debug eigrp packet EXEC command to display general debugging information. The no
form of this command disables debugging output.

debug eigrp packet
no debug eigrp packet

Syntax Description
This command has no arguments or keywords.

Command Mode
EXEC

Usage Guidelines
If a communication session is closing when it should not be, an end-to-end connection problem can
be the cause. The debug eigrp packet command is useful for analyzing the messages traveling
between the local and remote hosts.

Sample Display
Figure 2-39 shows sample debug eigrp packet output.

Figure 2-39 Sample Debug EIGRP Packet Output

router# debug eigrp packet

EIGRP: Sending HELLO on Ethernet0/1
 AS 109, Flags 0x0, Seq 0, Ack 0
EIGRP: Sending HELLO on Ethernet0/1
 AS 109, Flags 0x0, Seq 0, Ack 0
EIGRP: Sending HELLO on Ethernet0/1
 AS 109, Flags 0x0, Seq 0, Ack 0
EIGRP: Received UPDATE on Ethernet0/1 from 192.195.78.24,
 AS 109, Flags 0x1, Seq 1, Ack 0
EIGRP: Sending HELLO/ACK on Ethernet0/1 to 192.195.78.24,
 AS 109, Flags 0x0, Seq 0, Ack 1
EIGRP: Sending HELLO/ACK on Ethernet0/1 to 192.195.78.24,
 AS 109, Flags 0x0, Seq 0, Ack 1
EIGRP: Received UPDATE on Ethernet0/1 from 192.195.78.24,
 AS 109, Flags 0x0, Seq 2, Ack 0

The output shows transmission and receipt of Enhanced IGRP packets. These packet types may be
HELLO, UPDATE, REQUEST, QUERY, or REPLY packets. The sequence and acknowledgement
numbers used by the Enhanced IGRP reliable transport algorithm are shown in the output. Where
applicable, the network layer address of the neighboring router is also included.

Table 2-18 describes significant fields in the output shown in Figure 2-39.

 Debug Commands 2-73

debug eigrp packet

Table 2-18 Debug EIGRP Packet Field Descr iptions

Field Description

EIGRP: An Enhanced IGRP packet.

AS n Autonomous System number.

Flags nxn A flag of 1 means the sending router is indicating to the receiving router
that this is the first packet it has sent to the receiver.

A flag of 2 is a multicast that should be conditionally received by routers
that have the contitionally-receive (CR) bit set. This bit gets set when
the sender of the multicast has previously sent a sequence packet
explicitly telling it to set the CR bit.

HELLO The hello packets are the neighbor discovery packets. They are used to
determine if neighbors are still alive. As long as neighbors receive the
hello packets the router is sending, the neighbors validate the router and
any routing information sent. If neighbors lose the hello packets, the
receiving neighbors invalidate any routing information previously sent.
Neighbors also transmit hello packets.

2-74 Debug Command Reference

debug frame-relay

debug frame-relay
Use the debug frame-relay EXEC command to display debugging information about the packets
that are received on a Frame Relay interface. The no form of this command disables debugging
output.

debug frame-relay
no debug frame-relay

Syntax Description
This command has no arguments or keywords.

Command Mode
EXEC

Usage Guidelines
This command helps you analyze the packets that have been received. However, because the debug
frame-relay command generates a lot of output, only use it when traffic on the Frame Relay network
is less than 25 packets per second.

To analyze the packets that have been sent on a Frame Relay interface, use the debug frame-relay
packets command.

Sample Display
Figure 2-40 shows sample debug frame-relay output.

Figure 2-40 Sample Debug Frame-Relay Output

router# debug frame-relay

Serial0(i): dlci 500(0x7C41), pkt type 0x809B, datagramsize 24
Serial1(i): dlci 1023(0xFCF1), pkt type 0x309, datagramsize 13
Serial0(i): dlci 500(0x7C41), pkt type 0x809B, datagramsize 24
Serial1(i): dlci 1023(0xFCF1), pkt type 0x309, datagramsize 13
Serial0(i): dlci 500(0x7C41), pkt type 0x809B, datagramsize 24

Table 2-19 describes significant fields shown in Figure 2-40.

Table 2-19 Debug Frame-Relay Field Descriptions

Field Description

Serial0(i): Indicates that the Serial0 interface has received this Frame Relay
datagram as input.

dlci 500(0x7C41) Indicates the value of the data link connection identifier (DLCI) for this
packet in decimal (and q922). In this case, 500 has been configured as
the multicast DLCI.

 Debug Commands 2-75

debug frame-relay

pkt type 0x809B Indicates the packet type code.

Possible supported signaling message codes follow:

0x308—Signaling message; valid only with a DLCI of 0.

0x309—LMI message; valid only with a DLCI of 1023

Possible supported Ethernet type codes follow:

0x0201—IP on 3MB net

0x0201—Xerox ARP on 10MB nets

0xCC—RFC 1294 (only for IP)

0x0600—XNS

0x0800—IP on 10 MB net

0x0806—IP ARP

0x0808—Frame Relay ARP

0x0BAD—VINES IP

0x0BAE—VINES loopback protocol

0x0BAF—VINES Echo

0x6001—DEC MOP booting protocol

0x6002—DEC MOP console protocol

0x6003—DECnet Phase IV on Ethernet

0x6004—DEC LAT on Ethernet

0x8005—HP Probe

0x8035—RARP

0x8038—DEC spanning tree

0x809b—Apple EtherTalk

0x80f3—AppleTalk ARP

0x8019—Apollo domain

0x80C4—VINES IP

0x80C5— VINES ECHO

0x8137—IPX

0x9000—Ethernet loopback packet IP

Field Description

2-76 Debug Command Reference

debug frame-relay

pkt type 0x809B (continued) Possible HDLC type codes follow:

0x1A58— IPX, standard form

0xFEFE—CLNS

0xEFEF—ES-IS

0x1998—Uncompressed TCP

0x1999—Compressed TCP

0x6558—Serial line bridging

datagramsize 24 Indicates size of this datagram in bytes

Field Description

 Debug Commands 2-77

debug frame-relay events

debug frame-relay events
Use the debug frame-relay events EXEC command to display debugging information about Frame
Relay ARP replies on networks that support a multicast channel and use dynamic addressing. The
no form of this command disables debugging output.

debug frame-relay events
no debug frame-relay events

Syntax Description
This command has no arguments or keywords.

Command Mode
EXEC

Usage Guidelines
This command is useful for identifying the cause of end-to-end connection problems during the
installation of a Frame Relay network or node.

Note Because the debug frame-relay events command does not generate much output, you can
use it at any time, even during periods of heavy traffic, without adversely affecting other users on
the system.

Sample Display
Figure 2-41 shows sample debug frame-relay events output.

Figure 2-41 Sample Debug Frame-Relay Events Output

router# debug frame-relay events

Serial2(i): reply rcvd 131.108.170.26 126
Serial2(i): reply rcvd 131.108.170.28 128
Serial2(i): reply rcvd 131.108.170.34 134
Serial2(i): reply rcvd 131.108.170.38 144
Serial2(i): reply rcvd 131.108.170.41 228
Serial2(i): reply rcvd 131.108.170.65 325

As Figure 2-41 shows, debug frame-relay events returns one specific message type. The first line,
for example, indicates that IP address 131.108.170.26 sent a Frame Relay ARP reply; this packet
was received as input on the Serial2 interface. The last field (126) is the data link connection
identifier (DLCI) to use when communicating with the responding router.

2-78 Debug Command Reference

debug frame-relay lmi

debug frame-relay lmi
Use the debug frame-relay lmi EXEC command to display information on the local management
interface (LMI) packets exchanged by the router and the Frame Relay service provider. The no form
of this command disables debugging output.

debug frame-relay lmi
no debug frame-relay lmi

Syntax Description
This command has no arguments or keywords.

Command Mode
EXEC

Usage Guidelines
You can use this command to determine whether the router and the Frame Relay switch are sending
and receiving LMI packets properly.

Note Because the debug frame-relay lmi command does not generate much output, you can use
it at any time, even during periods of heavy traffic, without adversely affecting other users on the
system.

Sample Display
Figure 2-42 shows sample debug frame-relay lmi output.

Figure 2-42 Sample Debug Frame-Relay LMI Output

router# debug frame-relay lmi

Serial1(out): StEnq, clock 20212760, myseq 206, mineseen 205, yourseen 136, DTE up
Serial1(in): Status, clock 20212764, myseq 206
RT IE 1, length 1, type 1
KA IE 3, length 2, yourseq 138, myseq 206
Serial1(out): StEnq, clock 20222760, myseq 207, mineseen 206, yourseen 138, DTE up
Serial1(in): Status, clock 20222764, myseq 207
RT IE 1, length 1, type 1
KA IE 3, length 2, yourseq 140, myseq 207
Serial1(out): clock 20232760, myseq 208, mineseen 207, yourseen 140, line up
RT IE 1, length 1, type 1
KA IE 3, length 2, yourseq 142, myseq 208
Serial1(out): StEnq, clock 20252760, myseq 210, mineseen 209, yourseen 144, DTE up
Serial1(in): Status, clock 20252764,
RT IE 1, length 1, type 0
KA IE 3, length 2, yourseq 146, myseq 210
PVC IE 0x7, length 0x6, dlci 400, status 0, bw 56000
PVC IE 0x7, length 0x6, dlci 401, status 0, bw 56000

S
25

46

LMI
exchange

Full LMI
status
message

 Debug Commands 2-79

debug frame-relay lmi

In Figure 2-42, the first four lines describe an LMI exchange. The first line describes the LMI
request the router has sent to the switch. The second line describes the LMI reply the router has
received from the switch. The third and fourth lines describe the response to this request from the
switch. This LMI exchange is followed by two similar LMI exchanges. The last six lines in
Figure 2-42 consist of a full LMI status message that includes a description of the router’s two
permanent virtual circuits (PVCs).

Table 2-20 describes significant fields in the first line of the debug frame-relay lmi output shown
in Figure 2-42.

Table 2-20 Debug Frame-Relay LMI Field Descr iptions—Part 1

Table 2-21 describes significant fields in the third and fourth lines of debug frame-relay lmi output
shown in Figure 2-42.

Table 2-21 Debug Frame-Relay LMI Field Descr iptions—Part 2

Field Description

Serial1(out) Indication that the LMI request was sent out on the Serial1 interface.

StEnq Command mode of message:

StEnq—Status inquiry

Status—Status reply

clock 20212760 System clock (in milliseconds). Useful for determining whether an appropriate
amount of time has transpired between events.

myseq 206 The myseq counter maps to the router’s CURRENT SEQ counter.

yourseen 136 The yourseen counter maps to the LAST RCVD SEQ counter of the switch.

DTE up Line protocol up/down state for the DTE (user) port.

Field Description

RT IE 1 Value of the report type information element.

length 1 Length of the report type information element (in bytes).

type 1 Report type in RT IE.

KA IE 3 Value of the keepalive information element.

length 2 Length of the keepalive information element (in bytes).

yourseq 138 The yourseq counter maps to the CURRENT SEQ counter of the switch.

myseq 206 The myseq counter maps to the router’s CURRENT SEQ counter.

2-80 Debug Command Reference

debug frame-relay lmi

Table 2-22 describes significant fields in the last line of debug frame-relay lmi output shown in
Figure 2-42.

Table 2-22 Debug Frame-Relay LMI Field Descr iptions—Part 3

Field Description

PVC IE 0x7 Value of the permanent virtual circuit information element type.

length 0x6 Length of the PVC IE (in bytes).

dlci 401 DLCI decimal value for this PVC.

status 0 Status value. Possible values include the following:

0x00—Added/inactive

0x02—Added/active

0x04—Deleted

0x08—New/inactive

0x0a—New/active

bw 56000 CIR (committed information rate), in decimal, for the DLCI.

 Debug Commands 2-81

debug fr ame-relay packets

debug frame-relay packets
Use the debug frame-relay packets EXEC command to display information on packets that have
been sent on a Frame Relay interface. The no form of this command disables debugging output.

debug frame-relay packets
no debug frame-relay packets

Syntax Description
This command has no arguments or keywords.

Command Mode
EXEC

Usage Guidelines
This command helps you analyze the packets that are sent on a Frame Relay interface. Because the
debug frame-relay packets command generates large amounts of output, only use it when traffic
on the Frame Relay network is less than 25 packets per second.

To analyze the packets received on a Frame Relay interface, use the debug frame-relay command.

Sample Display
Figure 2-43 shows sample debug frame-relay packets output.

Figure 2-43 Sample Debug Frame-Relay Packets Output

As Figure 2-43 shows, debug frame-relay packets output consists of groups of output lines; each
group describes a Frame Relay packet that has been sent. The number of lines in the group can vary,
depending on the number of data link connection identifiers (DLCIs) on which the packet was sent.
For example, the first two pairs of output lines describe two different packets, both of which were
sent out on a single DLCI. The last three lines in Figure 2-43 describe a single Frame Relay packet
that was sent out on two DLCIs.

router# debug frame-relay packets

Serial0: broadcast = 1, link 809B, addr 65535.255
Serial0(o):DLCI 500 type 809B size 24
Serial0: broadcast - 0, link 809B, addr 10.2
Serial0(o):DLCI 100 type 809B size 104
Serial0: broadcast search
Serial0(o):DLCI 300 type 809B size 24
Serial0(o):DLCI 400 type 809B size 24

S
25

47

Groups of
output lines

2-82 Debug Command Reference

debug frame-relay packets

Table 2-23 describes significant fields shown in the first pair of output lines in Figure 2-43.

Table 2-23 Debug Frame-Relay Packets Field Descriptions

Explanations for other lines of output shown in Figure 2-43 follow:

The following lines describe a Frame Relay packet sent to a particular address; in this case
AppleTalk address 10.2:

Serial0: broadcast - 0, link 809B, addr 10.2
Serial0(o):DLCI 100 type 809B size 104

The following lines describe a Frame Relay packet that went out on two different DLCIs, because
two Frame Relay map entries were found:

Serial0: broadcast search
Serial0(o):DLCI 300 type 809B size 24
Serial0(o):DLCI 400 type 809B size 24

The following lines do not appear in Figure 2-43. They describe a Frame Relay packet sent to a true
broadcast address.

Serial1: broadcast search
Serial1(o):DLCI 400 type 800 size 288

Field Description

Serial0: Interface that has sent the Frame Relay packet.

broadcast = 1 Destination of the packet. Possible values include the following:

broadcast = 1—Broadcast address

broadcast = 0—Particular destination

broadcast search—Searches all Frame Relay map entries for this particular protocol
that include the keyword broadcast.

link 809B Link type, as documented under “debug frame relay.”

addr 65535.255 Destination protocol address for this packet. In this case, it is an AppleTalk address.

Serial0(o): (o) indicates that this is an output event.

DLCI 500 Decimal value of the DLCI.

type 809B Packet type, as documented under “debug frame-relay.”

size 24 Size of this packet (in bytes).

 Debug Commands 2-83

debug ip dvmrp

debug ip dvmrp
Use the debug ip dvmrp EXEC command to display information on Distance Vector Multiprotocol
Routing Protocol (DVMRP) packets received and transmitted. The no form of this command
disables debugging output.

debug ip dvmrp [detail]
no debug ip dvmrp

Syntax Description

Command Mode
EXEC

Usage Guidelines
Use the debug ip dvmrp detail command with care. This command generates a great deal of output
and can interrupt other activity on the router when it is invoked.

Sample Display
Figure 2-44 shows sample debug ip dvmrp output.

Figure 2-44 Sample Debug IP DVMRP Output

router# debug ip dvmrp
DVMRP: Received Report on Ethernet0 from 131.119.244.10
DVMRP: Received Report on Ethernet0 from 131.119.244.11
DVMRP: Building Report for Ethernet0 224.0.0.4
DVMRP: Send Report on Ethernet0 to 224.0.0.4
DVMRP: Sending IGMP Reports for known groups on Ethernet0
DVMRP: Received Report on Ethernet0 from 131.119.244.10
DVMRP: Received Report on Tunnel0 from 198.104.199.254
DVMRP: Received Report on Tunnel0 from 198.104.199.254
DVMRP: Received Report on Tunnel0 from 198.104.199.254
DVMRP: Received Report on Tunnel0 from 198.104.199.254
DVMRP: Received Report on Tunnel0 from 198.104.199.254
DVMRP: Received Report on Tunnel0 from 198.104.199.254
DVMRP: Building Report for Tunnel0 224.0.0.4
DVMRP: Send Report on Tunnel0 to 198.104.199.254
DVMRP: Send Report on Tunnel0 to 198.104.199.254
DVMRP: Send Report on Tunnel0 to 198.104.199.254
DVMRP: Send Report on Tunnel0 to 198.104.199.254
DVMRP: Radix tree walk suspension
DVMRP: Send Report on Tunnel0 to 198.104.199.254

Explanations for individual lines of output from Figure 2-44 follow.

The following lines show that the router received DVMRP routing information and placed it in the
mroute table:

DVMRP: Received Report on Ethernet0 from 131.119.244.10
DVMRP: Received Report on Ethernet0 from 131.119.244.11

detail (Optional) Enables a more detailed level of output and
displays packet contents.

2-84 Debug Command Reference

debug ip dvmrp

The following lines show that the router is creating a report to send to other DVMRP router:

DVMRP: Building Report for Ethernet0 224.0.0.4
DVMRP: Send Report on Ethernet0 to 224.0.0.4

Table 2-24 provides a list of internet multicast addresses supported for host IP implementations.

Table 2-24 Internet Multicast Addresses

The following lines show that a protocol update report has been sent to all known multicast groups.
Hosts use IGMP reports to communiate with routers and to request to join a multicast group. In this
case, the router is sending an IGMP report for every known group to the host, which is running
mrouted. The host the responds as though the router was a host on the LAN segment that wants to
receive multicast packets for the group.

DVMRP: Sending IGMP Reports for known groups on Ethernet0

Figure 2-45 shows sample debug ip dvmrp detail output.

Figure 2-45 Sample Debug IP DVMRP Detail Output

router# debug ip dvmrp detail

DVMRP: Sending IGMP Reports for known groups on Ethernet0
DVMRP: Advertise group 224.2.224.2 on Ethernet0
DVMRP: Advertise group 224.2.193.34 on Ethernet0
DVMRP: Advertise group 224.2.231.6 on Ethernet0
DVMRP: Received Report on Tunnel0 from 198.104.199.254
DVMRP: Origin 150.166.53.0/24, metric 13, distance 0
DVMRP: Origin 150.166.54.0/24, metric 13, distance 0
DVMRP: Origin 150.166.55.0/24, metric 13, distance 0
DVMRP: Origin 150.166.56.0/24, metric 13, distance 0
DVMRP: Origin 150.166.92.0/24, metric 12, distance 0
DVMRP: Origin 150.166.100.0/24, metric 12, distance 0
DVMRP: Origin 150.166.101.0/24, metric 12, distance 0
DVMRP: Origin 150.166.142.0/24, metric 8, distance 0
DVMRP: Origin 150.166.200.0/24, metric 12, distance 0
DVMRP: Origin 150.166.237.0/24, metric 12, distance 0
DVMRP: Origin 150.203.5.0/24, metric 8, distance 0

Explanations for individual lines of output from Figure 2-45 follow.

The following lines show that this group is available to the DVMRP router. The mrouted process on
the host will forward the S,G information for theis group through the DVMRP cloud so other
members will know this S,G is available.

DVMRP: Advertise group 224.2.224.2 on Ethernet0

Address Descr iption RFC

224.0.0.0 Base address (Reserved) RFC 1112

224.0.0.1 All systems on this subnetRFC 1112

224.0.0.2 All routers on this subnet

224.0.0.3 Unassigned

224.0.0.4 DVMRP routers RFC 1075

224.0.0.5 OSPFIGP all routers RFC 1583

 Debug Commands 2-85

debug ip dvmrp

The following lines show the DVMRP route information:

DVMRP: Origin 150.166.53.0/24, metric 13, distance 0
DVMRP: Origin 150.166.54.0/24, metric 13, distance 0

Metric is the number of hops the route has covered. Distance is the administrative distance.

2-86 Debug Command Reference

debug ip eigrp

debug ip eigrp
Use the debug ip eigrp EXEC command to display information on Enhanced IGRP protocol
packets. The no form of this command disables debugging output.

debug ip eigrp
no debug ip eigrp

Syntax Description
This command has no arguments or keywords.

Command Mode
EXEC

Usage Guidelines
This command helps you analyze the packets that are sent and received on an interface. Because the
debug ip eigrp command generates large amounts of output, only use it when traffic on the network
is light.

Sample Display
Figure 2-46 shows sample debug ip eigrp output.

Figure 2-46 Sample Debug IP EIGRP Output

router# debug ip eigrp

IP-EIGRP: Processing incoming UPDATE packet
IP-EIGRP: Ext 198.135.3.0 255.255.255.0 M 386560 - 256000 130560 SM 360960 - 256
000 104960
IP-EIGRP: Ext 198.135.0.0 255.255.255.0 M 386560 - 256000 130560 SM 360960 - 256
000 104960
IP-EIGRP: Ext 198.135.3.0 255.255.255.0 M 386560 - 256000 130560 SM 360960 - 256
000 104960
IP-EIGRP: 198.92.43.0 255.255.255.0, - do advertise out Ethernet0/1
IP-EIGRP: Ext 198.92.43.0 255.255.255.0 metric 371200 - 256000 115200
IP-EIGRP: 192.135.246.0 255.255.255.0, - do advertise out Ethernet0/1
IP-EIGRP: Ext 192.135.246.0 255.255.255.0 metric 46310656 - 45714176 596480
IP-EIGRP: 198.92.40.0 255.255.255.0, - do advertise out Ethernet0/1
IP-EIGRP: Ext 198.92.40.0 255.255.255.0 metric 2272256 - 1657856 614400
IP-EIGRP: 192.135.245.0 255.255.255.0, - do advertise out Ethernet0/1
IP-EIGRP: Ext 192.135.245.0 255.255.255.0 metric 40622080 - 40000000 622080
IP-EIGRP: 192.135.244.0 255.255.255.0, - do advertise out Ethernet0/1

Table 2-25 describes significant fields in the debug messages shown in Figure 2-46.

 Debug Commands 2-87

debug ip eigrp

Table 2-25 Debug IP EIGRP Field Descriptions

Field Description

IP-EIGRP: Indicates that this is an IP Enhanced IGRP packet.

Ext Indicates the following address is an external destination rather than an
internal destination, which would be labeled as Int.

M Shows the computed metric, which includes SM and the cost between
this router and the neighbor. The first number is the composite metric.
The next two numbers are the inverse bandwidth and the delay,
respectively.

SM Shows the metric as reported by the neighbor.

2-88 Debug Command Reference

debug ip icmp

debug ip icmp
Use the debug ip icmp EXEC command to display information on Internal Control Message
Protocol (ICMP) transactions. The no form of this command disables debugging output.

debug ip icmp
no debug ip icmp

Syntax Description
This command has no arguments or keywords.

Command Mode
EXEC

Usage Guidelines
This command helps you determine whether the router is sending or receiving ICMP messages. Use
it, for example, when you are troubleshooting an end-to-end connection problem.

Sample Display
Figure 2-47 shows sample debug ip icmp output.

Figure 2-47 Sample Debug IP ICMP Output

router# debug ip icmp

ICMP: rcvd type 3, code 1, from 128.95.192.4
ICMP: src 36.56.0.202, dst 131.108.16.1, echo reply
ICMP: dst (131.120.1.0) port unreachable rcv from 131.120.1.15
ICMP: src 131.108.12.35, dst 131.108.20.7, echo reply
ICMP: dst (255.255.255.255) protocol unreachable rcv from 192.31.7.21
ICMP: dst (131.120.1.0) port unreachable rcv from 131.120.1.15
ICMP: dst (255.255.255.255) protocol unreachable rcv from 192.31.7.21
ICMP: dst (131.120.1.0) port unreachable rcv from 131.120.1.15
ICMP: src 36.56.0.202, dst 131.108.16.1, echo reply
ICMP: dst (131.120.1.0) port unreachable rcv from 131.120.1.15
ICMP: dst (255.255.255.255) protocol unreachable rcv from 192.31.7.21
ICMP: dst (131.120.1.0) port unreachable rcv from 131.120.1.15

Table 2-26 describes significant fields in the first line of debug ip icmp output shown in
Figure 2-47.

 Debug Commands 2-89

debug ip icmp

Table 2-26 Debug IP ICMP Field Descriptions—Part 1

Field Description

ICMP: Indication that this message describes an ICMP packet.

rcvd type 3 The type field can be one of the following:

0—Echo Reply

3—Destination Unreachable

4—Source Quench

5—Redirect

8—Echo

9—Router Discovery Protocol Advertisement

10—Router Discovery Protocol Solicitations

11—Time Exceeded

12—Parameter Problem

13—Timestamp

14—Timestamp Reply

15—Information Request

16—Information Reply

17—Mask Request

18—Mask Reply

code 1 This field is a code. The meaning of the code depends upon the type
field value:

Echo and Echo Reply—The code field is always zero.

Destination Unreachable—The code field can have the following values:

0—Network unreachable

1—Host unreachable

2—Protocol unreachable

3—Port unreachable

4—Fragmentation needed and DF bit set

5—Source route failed

Source Quench—The code field is always 0.

Redirect—The code field can have the following values:

0—Redirect datagrams for the network

1—Redirect datagrams for the host

2—Redirect datagrams for the command mode of service and network

3—Redirect datagrams for the command mode of service and host

Router Discovery Protocol Advertisements and Solicitations—The code
field is always zero.

2-90 Debug Command Reference

debug ip icmp

Table 2-27 describes significant fields in the second line of debug ip icmp output in Figure 2-47.

Table 2-27 Debug IP ICMP Field Descriptions—Part 2

Other messages that the debug ip icmp command can generate follow.

When an IP router or host sends out an ICMP mask request, the following message is generated
when the router sends a mask reply:

ICMP: sending mask reply (255.255.255.0) to 160.89.80.23 via Ethernet0

The following two lines are examples of the two forms of this message. The first form is generated
when a mask reply comes in after the router sends out a mask request. The second form occurs when
the router receives a mask reply with a nonmatching sequence and ID. See Appendix I of RFC 950,
“Internet Standard Subnetting Procedures,” for details.

ICMP: mask reply 255.255.255.0 from 160.89.80.31
ICMP: unexpected mask reply 255.255.255.0 from 160.89.80.32

The following output indicates that the router sent a redirect packet to the host at address
160.89.80.31, instructing that host to use the gateway at address 160.89.80.23 in order to reach the
host at destination address 131.108.1.111:

ICMP: redirect sent to 160.89.80.31 for dest 131.108.1.111 use gw 160.89.80.23

The following message indicates that the router received a redirect packet from the host at address
160.89.80.23, instructing the router to use the gateway at address 160.89.80.28 in order to reach the
host at destination address 160.89.81.34:

ICMP: redirect rcvd from 160.89.80.23 -- for 160.89.81.34 use gw 160.89.80.28

code 1 (continued) Time Exceeded—The code field can have the following values:

0—Time to live exceeded in transit

1—Fragment reassembly time exceeded

Parameter Problem—The code field can have the following values:

0—General problem

1—Option is missing

2—Option missing, no room to add

Timestamp and Timestamp Reply—The code field is always zero.

Information Request and Information Reply—The code field is always
zero.

Mask Request and Mask Reply—The code field is always zero.

from 128.95.192.4 Source address of the ICMP packet.

Field Description

ICMP: Indication that this message describes an ICMP packet

src 36.56.0.202 The address of the sender of the echo

dst 131.108.16.1 The address of the receiving router

echo reply Indication the router received an echo reply

Field Description

 Debug Commands 2-91

debug ip icmp

The following message is displayed when the router sends an ICMP packet to the source address
(160.89.94.31 in this case), indicating that the destination address (131.108.13.33 in this case) is
unreachable:

ICMP: dst (131.108.13.33) host unreachable sent to 160.89.94.31

The following message is displayed when the router receives an ICMP packet from an intermediate
address (160.89.98.32 in this case), indicating that the destination address (131.108.13.33 in this
case) is unreachable:

ICMP: dst (131.108.13.33) host unreachable rcv from 160.89.98.32

Depending on the code received (as Table 2-26 describes), any of the unreachable messages can
have any of the following “strings” instead of the “host” string in the message:

net
protocol
port
frag. needed and DF set
source route failed
prohibited

The following message is displayed when the TTL in the IP header reaches zero and a time exceed
ICMP message is sent. The fields are self-explanatory.

ICMP: time exceeded (time to live) send to 128.95.1.4 (dest was 131.108.1.111)

The following message is generated when parameters in the IP header are corrupted in some way
and the parameter problem ICMP message is sent. The fields are self-explanatory.

ICMP: parameter problem sent to 128.121.1.50 (dest was 131.108.1.111)

Based on the preceding information, the remaining output can be easily understood.

ICMP: parameter problem rcvd 160.89.80.32
ICMP: source quench rcvd 160.89.80.32
ICMP: source quench sent to 128.121.1.50 (dest was 131.108.1.111)
ICMP: sending time stamp reply to 160.89.80.45
ICMP: sending info reply to 160.89.80.12
ICMP: rdp advert rcvd type 9, code 0, from 160.89.80.23
ICMP: rdp solicit rcvd type 10, code 0, from 160.89.80.43

Note For more information about the fields in debug ip icmp output, see RFC-792, “Internet
Control Message Protocol”; Appendix I of RFC-950, “Internet Standard Subnetting Procedure”; and
RFC-1256, “ICMP Router Discovery Messages.”

2-92 Debug Command Reference

debug ip igmp

debug ip igmp
Use the debug ip igmp EXEC command to display Internet Group Management Protocol (IGMP)
packets received and transmitted, as well as IGMP-host related events. The no form of this command
disables debugging output.

debug ip igmp
no debug ip igmp

Syntax Description
This command has no arguments or keywords.

Command Mode
EXEC

Usage Notes
This command helps discover whether the IGMP processes are functioning. In general, if IGMP is
not working, the router process never discovers that there is another host on the network that is
configured to receive multicast packets. In dense mode this means the packets will be delivered
intermittently (a few every 3 minutes). In sparse mode they will never be delivered.

Use this command in conjunction with debug ip pim and debug ip mrouting to observe additional
multicast activity and to see what is happening the the multicast routing process, or why packets are
forwarded out of particular interfaces.

Sample Display
Figure 2-48 shows sample debug ip igmp output.

Figure 2-48 Sample Debug IP IGMP Output

router# debug ip igmp

IGMP: Received Host-Query from 198.92.37.33 (Ethernet1)
IGMP: Received Host-Report from 198.92.37.192 (Ethernet1) for 224.0.255.1
IGMP: Received Host-Report from 198.92.37.57 (Ethernet1) for 224.2.127.255
IGMP: Received Host-Report from 198.92.37.33 (Ethernet1) for 225.2.2.2

Explanations for output from Figure 2-48 follow.

The messages displayed by the debug ip igmp command show query and report activity received
from other routers and multicast group addresses.

Related Commands
debug ip pim
debug ip mrouting

 Debug Commands 2-93

debug ip igrp events

debug ip igrp events
Use the debug ip igrp events EXEC command to display summary information on Interior Gateway
Routing Protocol (IGRP) routing messages that indicates the source and destination of each update,
as well as the number of routes in each update. Messages are not generated for each route. The no
form of this command disables debugging output.

debug ip igrp events [ip-address]
no debug ip igrp events [ip-address]

Syntax Description

Command Mode
EXEC

Usage Guidelines
If the IP address of an IGRP neighbor is specified, the resulting debug ip igrp events output
includes messages describing updates from that neighbor and updates that the router broadcasts
toward that neighbor.

This command is particularly useful when there are many networks in your routing table. In this
case, using debug ip igrp transaction could flood the console and make the router unusable. Use
debug ip igrp events instead to display summary routing information.

Sample Display
Figure 2-49 shows sample debug ip igrp events output.

Figure 2-49 Sample Debug IP IGRP Events Output

Figure 2-49 shows that the router has sent two updates to the broadcast address 255.255.255.255.
The router also received two updates. Three lines of output describe each of these updates.
Explanations for representative lines of output from Figure 2-49 follow.

The first line indicates whether the router sent or received the update packet, the source or
destination address, and the interface through which the update was sent or received. If the update
was sent, the IP address assigned to this interface is shown (in parentheses).

ip-address (Optional) IP address of an IGRP neighbor

router# debug ip igrp events

IGRP: sending update to 255.255.255.255 via Ethernet1 (160.89.33.8)
IGRP: Update contains 26 interior, 40 system, and 3 exterior routes.
IGRP: Total routes in update: 69
IGRP: sending update to 255.255.255.255 via Ethernet0 (160.89.32.8)
IGRP: Update contains 1 interior, 0 system, and 0 exterior routes.
IGRP: Total routes in update: 1
IGRP: received update from 160.89.32.24 on Ethernet0
IGRP: Update contains 17 interior, 1 system, and 0 exterior routes.
IGRP: Total routes in update: 18
IGRP: received update from 160.89.32.7 on Ethernet0
IGRP: Update contains 5 interior, 1 system, and 0 exterior routes.
IGRP: Total routes in update: 6

Updates sent
to these two
destination
addresses

Updates
received from
these source
addresses
 S

25
48

2-94 Debug Command Reference

debug ip igrp events

IGRP: sending update to 255.255.255.255 via Ethernet1 (160.89.33.8)

The second line summarizes the number and types of routes described in the update:

IGRP: Update contains 26 interior, 40 system, and 3 exterior routes.

The third line indicates the total number of routes described in the update.

IGRP: Total routes in update: 69

 Debug Commands 2-95

debug ip i grp transaction

debug ip igrp transaction
Use the debug ip igrp transaction EXEC command to display transaction information on Interior
Gateway Routing Protocol (IGRP) routing transactions. The no form of this command disables
debugging output.

debug ip igrp transaction [ip-address]
no debug ip igrp transaction [ip-address]

Syntax Description

Command Mode
EXEC

Usage Guidelines
If the IP address of an IGRP neighbor is specified, the resulting debug ip igrp transaction output
includes messages describing updates from that neighbor and updates that the router broadcasts
toward that neighbor.

When there are many networks in your routing table, debug ip igrp transaction can flood the
console and make the router unusable. In this case, use debug ip igrp events instead to display
summary routing information.

Sample Display
Figure 2-50 shows sample debug ip igrp transaction output.

Figure 2-50 Sample Debug IP IGRP Transaction Output

ip-address (Optional) IP address of an IGRP neighbor

router# debug ip igrp

IGRP: received update from 160.89.80.240 on Ethernet
 subnet 160.89.66.0, metric 1300 (neighbor 1200)
 subnet 160.89.56.0, metric 8676 (neighbor 8576)
 subnet 160.89.48.0, metric 1200 (neighbor 1100)
 subnet 160.89.50.0, metric 1300 (neighbor 1200)
 subnet 160.89.40.0, metric 8676 (neighbor 8576)
 network 192.82.152.0, metric 158550 (neighbor 158450)
 network 192.68.151.0, metric 1115511 (neighbor 1115411)
 network 150.136.0.0, metric 16777215 (inaccessible)
 exterior network 129.140.0.0, metric 9676 (neighbor 9576)
 exterior network 140.222.0.0, metric 9676 (neighbor 9576)
IGRP: received update from 160.89.80.28 on Ethernet
 subnet 160.89.95.0, metric 180671 (neighbor 180571)
 subnet 160.89.81.0, metric 1200 (neighbor 1100)
 subnet 160.89.15.0, metric 16777215 (inaccessible)
IGRP: sending update to 255.255.255.255 via Ethernet0 (160.89.64.31)
 subnet 160.89.94.0, metric=847
IGRP: sending update to 255.255.255.255 via Serial1 (160.89.94.31)
 subnet 160.89.80.0, metric=16777215
 subnet 160.89.64.0, metric=1100

Updates sent
to these two
source
addresses

Updates
received from
these two
destination
addresses

S
25

49

2-96 Debug Command Reference

debug ip igrp transaction

Figure 2-50 shows that the router being debugged has received updates from two other routers on
the network. The router at source address 160.89.80.240 sent information about ten destinations in
the update; the router at source address 160.89.80.28 sent information about three destinations in its
update. The router being debugged also sent updates—in both cases to the broadcast address
255.255.255.255 as the destination address.

The first line in Figure 2-50 is self-explanatory.

On the second line in Figure 2-50, the first field refers to the type of destination information:
“subnet” (interior), “network” (system), or “exterior” (exterior). The second field is the Internet
address of the destination network. The third field is the metric stored in the routing table and the
metric advertised by the neighbor sending the information. “Metric ... inaccessible” usually means
that the neighbor router has put the destination in holddown.

The entries in Figure 2-50 show that the router is sending updates that are similar, except that the
numbers in parentheses are the source addresses used in the IP header. A metric of 16777215 is
inaccessible.

Other examples of output that the debug ip igrp transaction command can produce follow.

The following entry indicates that the routing table was updated and shows the new edition number
(97 in this case) to be used in the next IGRP update:

IGRP: edition is now 97

Entries such as the following occur on startup or when some event occurs such as an interface
transitioning or a user manually clearing the routing table:

IGRP: broadcasting request on Ethernet0
IGRP: broadcasting request on Ethernet1

The following type of entry can result when routing updates become corrupted between sending and
receiving routers:

IGRP: bad checksum from 160.89.64.43

An entry such as the following should never appear. If it does, the receiving router has a bug in the
software or a problem with the hardware. In either case, contact your technical support
representative.

IGRP: system 45 from 160.89.64.234, should be system 109

 Debug Commands 2-97

debug ip mpacket

debug ip mpacket
Use the debug ip mpacket EXEC command to display only IP multicast packets received and
transmitted.The no form of this command disables debugging output.

debug ip mpacket [group]
no debug ip mpacket [group]

Syntax Description

Command Mode
EXEC

Usage Guidelines
This command displays information for multicast IP packets that are forwarded from this router. By
using the optional group, you can limit the display to a specific multicast group.

Use this command with debug ip packet to observe additional packet information.

Note The debug ip mpacket command generates lots of messages. Use with care so that
performance on the network is not affected by the debug message traffic.

Sample Display
Figure 2-51 shows sample debug ip mpacket output.

Figure 2-51 Sample Debug IP Mpacket Output

router# debug ip mpacket 224.2.0.1

IP: s=131.188.34.54 (Ethernet1), d=224.2.0.1 (Tunnel0), len 88, mforward
IP: s=131.188.34.54 (Ethernet1), d=224.2.0.1 (Tunnel0), len 88, mforward
IP: s=131.188.34.54 (Ethernet1), d=224.2.0.1 (Tunnel0), len 88, mforward
IP: s=140.162.3.27 (Ethernet1), d=224.2.0.1 (Tunnel0), len 68, mforward

Table 2-28 defines fields shown in Figure 2-51.

Table 2-28 Debug IP Mpacket Field Descr iptions

group (Optional) Group name or address to monitor a single
group’s packet activity

Field Description

IP An IP packet.

s= address The source address of the packet.

(Ethernet1) The name of the interface that received the packet.

d= address The multicast group address that is the destination for this packet.

2-98 Debug Command Reference

debug ip mpacket

Related Commands
debug ip mrouting
debug ip packet

(Tunnel0) The outgoing interface for the packet.

len 88 The number of bytes in the packet. This value will vary depending on the
application and the media.

mforward The packet has been forwarded.

not RPF interface The interface is not a reverse packet forwarding interface. (See debug ip
mrouting .)

RPF lookup failed The reverse packet forwarding lookup failed. (See debug ip mrouting.)

Field Description

 Debug Commands 2-99

debug ip mrouting

debug ip mrouting
Use the debug ip mrouting EXEC command to display changes to the IP multicast routing
table.The no form of this command disables debugging output.

debug ip mrouting [group]
no debug ip mrouting [group]

Syntax Description

Command Mode
EXEC

Usage Notes
This command tells when the router has made changes to the mroute table. Use the debug ip pim
and debug ip mrouting commands at the same time to obtain additional multicast routing
information. In addition, use the debug ip igmp command to see why an mroute message is being
displayed.

This command generates a large amount of output. Use the optional group to limit the output to a
single multicast group.

Sample Display
Figure 2-52 shows sample debug ip mrouting output.

Figure 2-52 Sample Debug IP Mrouting Output

router# debug ip mrouting 224.2.0.1
IP multicast routing debugging is on

MRT: Delete (13.0.0.0/8, 224.2.0.1)
MRT: Delete (128.3.0.0/16, 224.2.0.1)
MRT: Delete (128.6.0.0/16, 224.2.0.1)
MRT: Delete (128.9.0.0/16, 224.2.0.1)
MRT: Delete (128.16.0.0/16, 224.2.0.1)
MRT: Create (*, 224.2.0.1), if_input NULL
MRT: Create (198.92.15.0/24, 225.2.2.4), if_input Ethernet0, RPF nbr 131.108.61.15
MRT: Create (198.92.39.0/24, 225.2.2.4), if_input Ethernet1, RPF nbr 0.0.0.0
MRT: Create (13.0.0.0/8, 224.2.0.1), if_input Ethernet1, RPF nbr 0.0.0.0
MRT: Create (128.3.0.0/16, 224.2.0.1), if_input Ethernet1, RPF nbr 0.0.0.0
MRT: Create (128.6.0.0/16, 224.2.0.1), if_input Ethernet1, RPF nbr 0.0.0.0
MRT: Create (128.9.0.0/16, 224.2.0.1), if_input Ethernet1, RPF nbr 0.0.0.0
MRT: Create (128.16.0.0/16, 224.2.0.1), if_input Ethernet1, RPF nbr 0.0.0.0

Explanations for individual lines of output from Figure 2-52 follow.

The following lines show that multicast IP routes were deleted from the routing table:

MRT: Delete (13.0.0.0/8, 224.2.0.1)
MRT: Delete (128.3.0.0/16, 224.2.0.1)
MRT: Delete (128.6.0.0/16, 224.2.0.1)

group (Optional) Group name or address to monitor a single
group’s packet activity

2-100 Debug Command Reference

debug ip mrouting

The *,G entry in the following line is always null since it is a *,G. The *,G entries are generally
created by receipt of an IGMP host-report from a group member on the directly connected lan or by
a PIM join message (in sparse mode) which this router receives from a router that is sending joins
toward the RP. This router will in turn, send a join toward the RP which creates the shared tree (or
RP tree).

MRT: Create (*, 224.2.0.1), if_input NULL

The following lines are an example of creating an S,G entry that show a mpacket was received on
E0. The second line shows a route being created for a source that is on a directly connected LAN.
The RPF means “reverse path forwarding,” whereby the router looks up the source address of the
multicast packet in the unicast routing table and asks which interface will be used to send a packet
to that source.

MRT: Create (198.92.15.0/24, 225.2.2.4), if_input Ethernet0, RPF nbr 131.108.61.15
MRT: Create (198.92.39.0/24, 225.2.2.4), if_input Ethernet1, RPF nbr 0.0.0.0

The following lines show that multicast IP routes were added to the routing table. Note the 0.0.0.0
as the RPF, which means the route was created by a source that is directly connected to this router.

MRT: Create (128.9.0.0/16, 224.2.0.1), if_input Ethernet1, RPF nbr 0.0.0.0
MRT: Create (128.16.0.0/16, 224.2.0.1), if_input Ethernet1, RPF nbr 0.0.0.0

If the source is not directly connected, the nbr address shown in these lines will be the address of the
router that forwarded the packet to this router.

The shortest path tree state maintained in routers consists of source (S), multicast address (G),
outgoing interface (OIF), and incoming interface (IIF). The forwarding information is referred to as
the multicast forwarding entry for (S,G).

An entry for a shared tree can match packets from any source for its associated group if the packets
come through the proper incoming interface as determined by the RPF lookup. Such an entry is
denoted as (*,G). A (*,G) entry keeps the same information a (S,G) entry keeps, except that it saves
the rendezvous point (RP) address in place of the source address in sparse mode or 0.0.0.0 in dense
mode.

Related Commands
debug ip pim
debug ip igmp

 Debug Commands 2-101

debug ip ospf events

debug ip ospf events
Use the debug ip ospf events EXEC command to display information on Open Shortest Path First
(OSPF)-related events, such as adjacencies, flooding information, designated router selection, and
shortest path first (SPF) calculation. The no form of this command disables debugging output.

debug ip ospf events
no debug ip ospf events

Syntax Description
This command has no arguments or keywords.

Command Mode
EXEC

Sample Display
Figure 2-53 shows sample debug ip ospf events output.

Figure 2-53 Sample Debug IP OSPF Events Output

router# debug ip ospf-events

OSPF:hello with invalid timers on interface Ethernet0
hello interval received 10 configured 10
net mask received 255.255.255.0 configured 255.255.255.0
dead interval received 40 configured 30

The debug ip ospf events output shown in Figure 2-53 might appear if any of the following occurs:

• The IP subnet masks for routers on the same network do not match.

• The OSPF hello interval for the router does not match that configured for a neighbor.

• The OSPF dead interval for the router does not match that configured for a neighbor.

If a router configured for OSPF routing is not seeing an OSPF neighbor on an attached network, do
the following:

• Make sure that both routers have been configured with the same IP mask, OSPF hello interval,
and OSPF dead interval.

• Make sure that both neighbors are part of the same area type.

In the following example line, the neighbor and this router are not part of a stub area (that is, one is
a part of a transit area and the other is a part of a stub area, as explained in RFC 1247).

OSPF: hello packet with mismatched E bit

2-102 Debug Command Reference

debug ip packet

debug ip packet
Use the debug ip packet EXEC command to display general IP debugging information and IP
security option (IPSO) security transactions. The no form of this command disables debugging
output.

debug ip packet [access-list-number]
no debug ip packet [access-list-number]

Syntax Description

Command Mode
EXEC

Usage Guidelines
If a communication session is closing when it should not be, an end-to-end connection problem can
be the cause. The debug ip packet command is useful for analyzing the messages traveling between
the local and remote hosts.

IP debugging information includes packets received, generated, and forwarded. Fast-switched
packets do not generate messages.

IPSO security transactions include messages that describe the cause of failure each time a datagram
fails a security test in the system. This information is also sent to the sending host when the router
configuration allows it.

Note Because the debug ip packet command generates a significant amount of output, use it only
when traffic on the IP network is low, so other activity on the system is not adversely affected.

access-list-number (Optional) IP access list number that you can specify. If the
datagram is not permitted by that access list, the related
debugging output is suppressed.

 Debug Commands 2-103

debug ip packet

Sample Display
Figure 2-54 shows sample debug ip packet output.

Figure 2-54 Sample Debug IP Packet Output

router# debug ip packet

IP: s=131.108.13.44 (Fddi0), d=157.125.254.1 (Serial2), g=131.108.16.2, forward
IP: s=131.108.1.57 (Ethernet4), d=192.36.125.2 (Serial2), g=131.108.16.2, forward
IP: s=131.108.1.6 (Ethernet4), d=255.255.255.255, rcvd 2
IP: s=131.108.1.55 (Ethernet4), d=131.108.2.42 (Fddi0), g=131.108.13.6, forward
IP: s=131.108.89.33 (Ethernet2), d=131.130.2.156 (Serial2), g=131.108.16.2, forward
IP: s=131.108.1.27 (Ethernet4), d=131.108.43.126 (Fddi1), g=131.108.23.5, forward
IP: s=131.108.1.27 (Ethernet4), d=131.108.43.126 (Fddi0), g=131.108.13.6, forward
IP: s=131.108.20.32 (Ethernet2), d=255.255.255.255, rcvd 2
IP: s=131.108.1.57 (Ethernet4), d=192.36.125.2 (Serial2), g=131.108.16.2, access denied

Figure 2-54 shows two types of messages that the debug ip packet command can produce; the first
line of output describes an IP packet that the router forwards, and the third line of output describes
a packet that is destined for the router. In the third line of output, “rcvd 2” indicates that the router
decided to receive the packet.

Table 2-29 describes the fields shown in the first line of Figure 2-54.

Table 2-29 Debug IP Packet Field Descr iptions

The calculation on whether to send a security error message can be somewhat confusing. It depends
upon both the security label in the datagram and the label of the incoming interface. First, the label
contained in the datagram is examined for anything obviously wrong. If nothing is wrong, assume
it to be correct. If there is something wrong, the datagram is treated as unclassified genser. Then the
label is compared with the interface range, and the appropriate action is taken as Table 2-30
describes.

Table 2-30 Security Actions

Field Description

IP: Indicates that this is an IP packet.

s = 131.108.13.44 (Fddi0) Indicates the source address of the packet and the name of the interface
that received the packet.

d = 157.125.254.1 (Serial2) Indicates the destination address of the packet and the name of the
interface (in this case, S2) through which the packet is being sent out on
the network.

g = 131.108.16.2 Indicates the address of the next hop gateway.

forward Indicates that the router is forwarding the packet. If a filter denies a
packet, “access denied” replaces “forward,” as shown in the last line of
output in Figure 2-54.

Classification Authorities Action Taken

Too low Too low

Good

Too high

No Response

No Response

No Response

2-104 Debug Command Reference

debug ip packet

The security code can only generate a few types of ICMP error messages. The only possible error
messages and their meanings follow:

• “ICMP Parameter problem, code 0”—Error at pointer

• “ICMP Parameter problem, code 1”—Missing option

• “ICMP Parameter problem, code 2”—See Note that follows

• “ICMP Unreachable, code 10”—Administratively prohibited

Note The message “ICMP Parameter problem, code 2” identifies a specific error that occurs in the
processing of a datagram. This message indicates that the router received a datagram containing a
maximum length IP header but no security option. After being processed and routed to another
interface, it is discovered that the outgoing interface is marked with “add a security label.” Since the
IP header is already full, the system cannot add a label and must drop the datagram and return an
error message.

When an IP packet is rejected due to an IP security failure, an audit message is sent via DNSIX NAT.
Also, any debug ip packet output is appended to include a description of the reason for rejection.
These reasons can be any of the following:

• No basic

• No basic, no response

• Reserved class

• Reserved class, no response

• Class too low, no response

• Class too high

• Class too high, bad authorities, no response

• Unrecognized class

• Unrecognized class, no response

• Multiple basic

• Multiple basic, no response

• Authority too low, no response

• Authority too high

• Compartment bits not dominated by maximum sensitivity level

In range Too low

Good

Too high

No Response

Accept

Send Error

Too high Too low

In range

Too high

No Response

Send Error

Send Error

Classification Authorities Action Taken

 Debug Commands 2-105

debug ip packet

• Compartment bits don't dominate minimum sensitivity level

• Security failure: extended security disallowed

• NLESO source appeared twice

• ESO source not found

• Postroute, failed xfc out

• No room to add IPSO

2-106 Debug Command Reference

debug ip pim

debug ip pim
Use the debug ip pim EXEC command to display Protocol Independent Multicast (PIM) packets
received and transmitted as well as PIM related events.The no form of this command disables
debugging output.

debug ip pim [group]
no debug ip pim [group]

Syntax Description

Command Mode
EXEC

Usage Guidelines
PIM uses IGMP packets to communicate between routers and advertise reachability information.

Use this command with debug ip igmp and debug ip mrouting to observe additional multicast
routing information.

Sample Display
Figure 2-55 shows sample debug ip pim output.

Figure 2-55 Sample Debug IP PIM Output

router# debug ip pim 224.2.0.1

PIM: Received Join/Prune on Ethernet1 from 198.92.37.33
PIM: Received Join/Prune on Ethernet1 from 198.92.37.33
PIM: Received Join/Prune on Tunnel0 from 10.3.84.1
PIM: Received Join/Prune on Ethernet1 from 198.92.37.33
PIM: Received Join/Prune on Ethernet1 from 198.92.37.33
PIM: Received RP-Reachable on Ethernet1 from 131.108.20.31
PIM: Update RP expiration timer for 224.2.0.1
PIM: Forward RP-reachability packet for 224.2.0.1 on Tunnel0
PIM: Received Join/Prune on Ethernet1 from 198.92.37.33
PIM: Prune-list (163.221.196.51/32, 224.2.0.1)
PIM: Set join delay timer to 2 seconds for (163.221.0.0/16, 224.2.0.1) on Ethernet1
PIM: Received Join/Prune on Ethernet1 from 198.92.37.6
PIM: Received Join/Prune on Ethernet1 from 198.92.37.33
PIM: Received Join/Prune on Tunnel0 from 10.3.84.1
PIM: Join-list: (*, 224.2.0.1) RP 131.108.20.31
PIM: Add Tunnel0 to (*, 224.2.0.1), Forward state
PIM: Join-list: (13.0.0.0/8, 224.2.0.1)
PIM: Add Tunnel0 to (13.0.0.0/8, 224.2.0.1), Forward state
PIM: Join-list: (128.3.0.0/16, 224.2.0.1)
PIM: Prune-list (198.92.84.16/28, 224.2.0.1) RP-bit set RP 198.92.84.16
PIM: Send Prune on Ethernet1 to 198.92.37.6 for (198.92.84.16/28, 224.2.0.1), RP
PIM: For RP, Prune-list: 128.9.0.0/16
PIM: For RP, Prune-list: 128.16.0.0/16
PIM: For RP, Prune-list: 128.49.0.0/16

group (Optional) Group name or address to monitor a single
group’s packet activity

 Debug Commands 2-107

debug ip pim

PIM: For RP, Prune-list: 128.84.0.0/16
PIM: For RP, Prune-list: 128.146.0.0/16
PIM: For 10.3.84.1, Join-list: 198.92.84.16/28
PIM: Send periodic Join/Prune to RP via 198.92.37.6 (Ethernet1)

Explanations for individual lines of output from Figure 2-55 follow.

The following lines appear periodically when PIM is running in sparse mode and indicate to this
router which multicast groups and multicast sources other routers are interested in:

PIM: Received Join/Prune on Ethernet1 from 198.92.37.33
PIM: Received Join/Prune on Ethernet1 from 198.92.37.33

The following lines appear when a rendezvous point (RP) message is received and the RP timer is
reset. The expiration timer sets a checkpoint to make sure the RP still exists; otherwise a new RP
must be discovered:

PIM: Received RP-Reachable on Ethernet1 from 131.108.20.31
PIM: Update RP expiration timer for 224.2.0.1
PIM: Forward RP-reachability packet for 224.2.0.1 on Tunnel0

The prune-list message in the following line states that this router is not interested in the source
address information. The prune message tells an upstream router to stop forwarding multicast
packets from this source.

PIM: Prune-list (163.221.196.51/32, 224.2.0.1)

In the following line, a second router on the network wants to override the prune message that the
upstream router just received. The timer is set at a random value so that if there are additional routers
on the network that still want to receive multicast packets for the group, only one will actually send
the message. The other routers will receive the join message and then suppress sending their own
message.

PIM: Set join delay timer to 2 seconds for (163.221.0.0/16, 224.2.0.1) on Ethernet1

In the following line, a join message is sent towards the RP for all sources:

PIM: Join-list: (*, 224.2.0.1) RP 131.108.20.31

In the following lines, the interface is being added to the outgoing interface (OIF) of the *,G and S,G
mroute table entry so that packets from the source will be forwarded out that particular interface:

PIM: Add Tunnel0 to (*, 224.2.0.1), Forward state
PIM: Add Tunnel0 to (13.0.0.0/8, 224.2.0.1), Forward state

The following line appears in sparse mode only. There are two trees on which data may be received:
the RP tree and the source tree. In dense mode there is no RP. After the source and the receiver have
discovered one another at the RP, the first-hop router for the receiver will usually join to the source
tree rather than the RP tree:

PIM: Prune-list (198.92.84.16/28, 224.2.0.1) RP-bit set RP 198.92.84.16

The Send Prune message in the next line shows that a router is sending a message to a second router
saying that the first router no longer wants to receive multicast packets for the S,G. The “RP” at the
end of the message indicates that the router is pruning the RP tree and is most likely joining the
source tree, although the router may not have downstream members for the group or downstream
routers with members of the group. The output shows which specific sources this router no longer
wants to receive multicast from.

PIM: Send Prune on Ethernet1 to 198.92.37.6 for (198.92.84.16/28, 224.2.0.1), RP

2-108 Debug Command Reference

debug ip pim

The following lines indicate a prune message is sent toward the RP so that router can join the source
tree rather than the RP tree:

PIM: For RP, Prune-list: 128.9.0.0/16
PIM: For RP, Prune-list: 128.16.0.0/16
PIM: For RP, Prune-list: 128.49.0.0/16

In the following line, a periodic message is sent towards the RP. The default period is once per
minute. Prune and join messages are sent toward the RP or source rather than directly to the RP or
source. It is the responsibility of the next-hop router to take proper action with this message, such as
continuing to forward it to the next router in the tree.

PIM: Send periodic Join/Prune to RP via 198.92.37.6 (Ethernet1)

Related Commands
debug ip mrouting
debug ip igmp

 Debug Commands 2-109

debug ip rip

debug ip rip
Use the debug ip rip EXEC command to display information on RIP routing transactions. The no
form of this command disables debugging output.

debug ip rip
no debug ip rip

Syntax Description
This command has no arguments or keywords.

Command Mode
EXEC

Sample Display
Figure 2-56 shows sample debug ip rip output.

Figure 2-56 Sample Debug IP RIP Output

Figure 2-56 shows that the router being debugged has received updates from one router at source
address 160.89.80.28. That router sent information about five destinations in the routing table
update. Notice that the fourth destination address in the update—131.108.0.0—is inaccessible
because it is more than 15 hops away from the router sending the update. The router being debugged
also sent updates, in both cases to broadcast address 255.255.255.255 as the destination.

The first line in Figure 2-56 is self-explanatory.

The second line in Figure 2-56 is an example of a routing table update. It shows how many hops a
given Internet address is from the router.

The entries in Figure 2-56 show that the router is sending updates that are similar, except that the
number in parentheses is the source address encapsulated into the IP header.

Examples of additional output that the debug ip rip command can generate follow.

router# debug ip rip

RIP: received update from 160.89.80.28 on Ethernet0
 160.89.95.0 in 1 hops
 160.89.81.0 in 1 hops
 160.89.66.0 in 2 hops
 131.108.0.0 in 16 hops (inaccessible)
 0.0.0.0 in 7 hop
RIP: sending update to 255.255.255.255 via Ethernet0 (160.89.64.31)
 subnet 160.89.94.0, metric 1
 131.108.0.0 in 16 hops (inaccessible)
RIP: sending update to 255.255.255.255 via Serial1 (160.89.94.31)
 subnet 160.89.64.0, metric 1
 subnet 160.89.66.0, metric 3
 131.108.0.0 in 16 hops (inaccessible)
 default 0.0.0.0, metric 8

Updates
received
from this
source
address

Updates
sent to
these two
destination
addresses

S
25

50

2-110 Debug Command Reference

debug ip rip

Entries such as the following appear at startup or when an event occurs such as an interface
transitioning or a user manually clearing the routing table:

RIP: broadcasting general request on Ethernet0
RIP: broadcasting general request on Ethernet1

The following line is self-explanatory:

RIP: received request from 160.89.80.207 on Ethernet0

An entry such as the following is most likely caused by a malformed packet from the transmitter:

RIP: bad version 128 from 160.89.80.43

 Debug Commands 2-111

debug ip r outing

debug ip routing
Use the debug ip routing EXEC command to display information on Routing Information Protocol
(RIP) routing table updates and route-cache updates. The no form of this command disables
debugging output.

debug ip routing
no debug ip routing

Syntax Description
This command has no arguments or keywords.

Command Mode
EXEC

Sample Display
Figure 2-57 shows sample debug ip routing output.

Figure 2-57 Sample Debug IP Routing Output

router# debug ip routing

RT: add 198.93.168.0 255.255.255.0 via 198.92.76.30, igrp metric [100/3020]
RT: metric change to 198.93.168.0 via 198.92.76.30, igrp metric [100/3020]
 new metric [100/2930]
IP: cache invalidation from 0x115248 0x1378A, new version 5736
RT: add 198.133.219.0 255.255.255.0 via 198.92.76.30, igrp metric [100/16200]
RT: metric change to 198.133.219.0 via 198.92.76.30, igrp metric [100/16200]
 new metric [100/10816]
RT: delete route to 198.133.219.0 via 198.92.76.30, igrp metric [100/10816]
RT: no routes to 198.133.219.0, entering holddown
IP: cache invalidation from 0x115248 0x1378A, new version 5737
RT: 198.133.219.0 came out of holddown
RT: garbage collecting entry for 198.133.219.0
IP: cache invalidation from 0x115248 0x1378A, new version 5738
RT: add 198.133.219.0 255.255.255.0 via 198.92.76.30, igrp metric [100/10816]
RT: delete route to 198.133.219.0 via 198.92.76.30, igrp metric [100/10816]
RT: no routes to 198.133.219.0, entering holddown
IP: cache invalidation from 0x115248 0x1378A, new version 5739
RT: 198.133.219.0 came out of holddown
RT: garbage collecting entry for 198.133.219.0
IP: cache invalidation from 0x115248 0x1378A, new version 5740
RT: add 198.133.219.0 255.255.255.0 via 198.92.76.30, igrp metric [100/16200]
RT: metric change to 198.133.219.0 via 198.92.76.30, igrp metric [100/16200]
 new metric [100/10816]
RT: delete route to 198.133.219.0 via 198.92.76.30, igrp metric [100/10816]
RT: no routes to 198.133.219.0, entering holddown
IP: cache invalidation from 0x115248 0x1378A, new version 5741

Explanations for representative lines of output in Figure 2-57 follow.

In the following lines, a newly created entry has been added to the IP routing table. The “metric
change” indicates that this entry existed previously, but its metric changed and the change was
reported by means of IGRP. The metric could also be reported via RIP, OSPF, or another IP routing
protocol. The numbers inside the brackets report the administrative distance and the actual metric.

2-112 Debug Command Reference

debug ip routing

 “Cache invalidation” means that the fast switching cache was invalidated due to a routing table
change. “New version” is the version number of the routing table. When the routing table changes,
this number is incremented. The hexadecimal numbers are internal numbers that vary from version
to version and software load to software load.

RT: add 198.93.168.0 255.255.255.0 via 198.92.76.30, igrp metric [100/3020]
RT: metric change to 198.93.168.0 via 198.92.76.30, igrp metric [100/3020]
 new metric [100/2930]
IP: cache invalidation from 0x115248 0x1378A, new version 5736

In the following output, the “holddown” and “ cache invalidation” lines are displayed. Most of the
distance vector routing protocols use “holddown” to avoid typical problems like counting to infinity
and routing loops. If you look at the output of show ip protocols you will see what the timer values
are for “holddown” and “cache invalidation”. “Cache invalidation” corresponds to “came out of
holddown”. “Delete route” is triggered when a better path comes along. It gets rid of the old inferior
path.

RT: delete route to 198.133.219.0 via 198.92.76.30, igrp metric [100/10816]
RT: no routes to 198.133.219.0, entering holddown
IP: cache invalidation from 0x115248 0x1378A, new version 5737
RT: 198.133.219.0 came out of holddown

 Debug Commands 2-113

debug ip security

debug ip security
Use the debug ip security EXEC command to display IP security option processing. The no form
of this command disables debugging output.

debug ip security
no debug ip security

Syntax Description
This command has no arguments or keywords.

Command Mode
EXEC

Usage Guidelines
The debug ip security command displays information for both basic and extended IP security
options. For interfaces where ip security is configured, each IP packet processed for that interface
results in debugging output regardless of whether the packet contains IP security options. IP packets
processed for other interfaces that also contain IP security information also trigger debugging
output. Some additional IP security debugging information is also controlled by the debug ip packet
EXEC command.

Note Because the debug ip security command generates a significant amount of output for every
IP packet processed, use it only when traffic on the IP network is low, so other activity on the system
is not adversely affected.

Sample Display
Figure 2-58 shows sample debug ip security output.

Figure 2-58 Sample Debug IP Security Output

router# debug ip security

IP Security: src 198.92.72.52 dst 198.92.72.53, number of BSO 1
 idb: NULL
 pak: insert (0xFF) 0x0
IP Security: BSO postroute: SECINSERT changed to secret (0x5A) 0x10
IP Security: src 198.92.72.53 dst 198.92.72.52, number of BSO 1
 idb: secret (0x6) 0x10 to secret (0x6) 0x10, no implicit
 def secret (0x6) 0x10
 pak: secret (0x5A) 0x10
IP Security: checking BSO 0x10 against [0x10 0x10]
IP Security: classified BSO as secret (0x5A) 0x10

Table 2-31 describes significant fields shown in Figure 2-58.

2-114 Debug Command Reference

debug ip security

Table 2-31 Debug IP Security Field Descr iptions

Explanations for representative lines of output in Figure 2-58 follow.

The following line indicates that the packet was locally generated, and it has been classified with the
internally significant security level “insert” (0xff) and authority 0x0:

idb: NULL
pak: insert (0xff) 0x0

The following line indicates that the packet was received via an interface with dedicated IP security
configured. Specifically, the interface is configured at security level “secret” and with authority
information of 0x0. The packet itself was classified at level “secret” (0x5a) and authority 0x10.

idb: secret (0x6) 0x10 to secret (0x6) 0x10, no implicit
 def secret (0x6) 0x10
pak: secret (0x5A) 0x10

Field Description

number of BSO Indicates the number of basic security options found in the packet.

idb Provides information on the security configuration for the incoming interface.

pak Provides information on the security classification of the incoming packet.

src Indicates the source IP address.

dst Indicates the destination IP address.

 Debug Commands 2-115

debug ip tcp driver

debug ip tcp driver
Use the debug ip tcp driver EXEC command to display information on Transmission Control
Protocol (TCP) driver events; for example, connections opening or closing, or packets being
dropped because of full queues. The no form of this command disables debugging output.

debug ip tcp driver
no debug ip tcp driver

Syntax Description
This command has no arguments or keywords.

Command Mode
EXEC

Usage Guidelines
The TCP driver is the process that the router software uses to send packet data over a TCP
connection. Remote source-route bridging, STUN (serial tunneling), and X.25 switching currently
use the TCP driver.

Using the debug ip tcp driver command together with the debug ip tcp driver-pak command
provides the most verbose debugging output concerning TCP driver activity.

Sample Display
Figure 2-59 shows sample debug ip tcp driver output.

Figure 2-59 Sample Debug IP TCP Driver Output

router# debug ip tcp driver

TCPDRV359CD8: Active open 160.89.80.26:0 --> 160.89.80.25:1996 OK, lport 36628
TCPDRV359CD8: enable tcp timeouts
TCPDRV359CD8: 160.89.80.26:36628 --> 160.89.80.25:1996 Abort
TCPDRV359CD8: 160.89.80.26:36628 --> 160.89.80.25:1996 DoClose tcp abort

Explanations for individual lines of output from Figure 2-59 follow.

Table 2-32 describes the fields in the first line of output.

Table 2-32 Debug IP TCP Driver Field Descriptions

Field Description

TCPDRV359CD8: Unique identifier for this instance of TCP driver activity.

Active open 160.89.80.26 Indication that the router at IP address 160.89.80.26 has initiated a
connection to another router.

:0 The TCP port number the initiator of the connection uses to indicate that
any port number can be used to set up a connection.

--> 160.89.80.25 The IP address of the remote router to which the connection has been
initiated.

2-116 Debug Command Reference

debug ip tcp driver

The following line indicates that the TCP driver user (remote source-route bridging, in this case) will
allow TCP to drop the connection if excessive retransmissions occur:

TCPDRV359CD8: enable tcp timeouts

The following line indicates that the TCP driver user (in this case, remote source-route bridging) at
IP address 160.89.80.26 (and using TCP port number 36628) is requesting that the connection to IP
address 160.89.80.25 using TCP port number 1996 be aborted:

TCPDRV359CD8: 160.89.80.26:36628 --> 160.89.80.25:1996 Abort

The following line indicates that this connection was in fact closed due to an abort:

TCPDRV359CD8: 160.89.80.26:36628 --> 160.89.80.25:1996 DoClose tcp abort

:1996 The TCP port number that the initiator of the connection is requesting
that the remote router use for the connection. (1996 is a private TCP port
number reserved in this implementation for remote source-route
bridging.)

OK, Indication that the connection has been established. If the connection has
not been established, this field and the following field do not appear in
this line of output.

lport 36628 The TCP port number that has actually been assigned for the initiator to
use for this connection.

Field Description

 Debug Commands 2-117

debug ip tcp driver-pak

debug ip tcp driver-pak
Use the debug ip tcp driver-pak EXEC command to display information on every operation that
the Transmission Control Protocol (TCP) driver performs. The no form of this command disables
debugging output.

debug ip tcp driver-pak
no debug ip tcp driver-pak

Syntax Description
This command has no arguments or keywords.

Command Mode
EXEC

Usage Guidelines
This command turns on a verbose debugging by logging at least one debugging message for every
packet sent or received on the TCP driver connection.

The TCP driver is the process that the router software uses to send packet data over a TCP
connection. Remote source-route bridging, STUN (serial tunneling), and X.25 switching currently
use the TCP driver.

To observe the context within which certain debug ip tcp driver-pak messages occur, turn on this
command in conjunction with the debug ip tcp driver command.

Note Because the debug ip tcp driver-pak command generates so many messages, use it only on
lightly loaded systems. This command not only places a significant load on the system processor,
but it may even change the symptoms of any unexpected behavior that occur.

Sample Display
Figure 2-60 shows sample debug ip tcp driver-pak output.

Figure 2-60 Sample Debug IP TCP Driver-Pak Output

router# debug ip tcp driver-pak

TCPDRV359CD8: send 2E8CD8 (len 26) queued
TCPDRV359CD8: output pak 2E8CD8 (len 26) (26)
TCPDRV359CD8: readf 42 bytes (Thresh 16)
TCPDRV359CD8: readf 26 bytes (Thresh 16)
TCPDRV359CD8: readf 10 bytes (Thresh 10)
TCPDRV359CD8: send 327E40 (len 4502) queued
TCPDRV359CD8: output pak 327E40 (len 4502) (4502)

Explanations for individual lines of output from Figure 2-60 follow.

Table 2-33 describes the fields shown in the first line of output.

2-118 Debug Command Reference

debug ip tcp driver-pak

Table 2-33 Debug TCP Driver-Pak Field Descr iptions

The following line indicates that the TCP driver has sent the data that it had received from the TCP
driver user, as shown in the previous line of output. The last field in the line (26) indicates that the
26 bytes of data were sent out as a single unit.

TCPDRV359CD8: output pak 2E8CD8 (len 26) (26)

The following line indicates that the TCP driver has received 42 bytes of data from the remote IP
address. The TCP driver user (in this case, remote source-route bridging) has established an input
threshold of 16 bytes for this connection. (The input threshold instructs the TCP driver to transfer
data to the TCP driver user only when at least 16 bytes are present.)

TCPDRV359CD8: readf 42 bytes (Thresh 16)

Field Description

TCPDRV359CD8 Unique identifier for this instance of TCP driver activity.

send Indication that this event involves the TCP driver sending data.

2E8CD8 Address in memory of the data the TCP driver is sending.

(len 26) Length of the data (in bytes).

queued Indication that the TCP driver user process (in this case, remote
source-route bridging) has transferred the data to the TCP driver to send.

 Debug Commands 2-119

debug ip tcp transactions

debug ip tcp transactions
Use the debug ip tcp transactions EXEC command to display information on significant
Transmission Control Protocol (TCP) transactions such as state changes, retransmissions, and
duplicate packets. The no form of this command disables debugging output.

debug ip tcp transactions
no debug ip tcp transactions

Syntax Description
This command has no arguments or keywords.

Command Mode
EXEC

Usage Guidelines
This command is particularly useful for debugging a performance problem on a TCP/IP network that
you have isolated above the data link layer.

The debug ip tcp transactions command displays output for packets the router sends and receives,
but does not display output for packets it forwards.

Sample Display
Figure 2-61 shows sample debug ip tcp transactions output.

Figure 2-61 Sample Debug IP TCP Output

router# debug ip tcp transactions

TCP: sending SYN, seq 168108, ack 88655553
TCP0: Connection to 26.9.0.13:22530, advertising MSS 966
TCP0: state was LISTEN -> SYNRCVD [23 -> 26.9.0.13(22530)]
TCP0: state was SYNSENT -> SYNRCVD [23 -> 26.9.0.13(22530)]
TCP0: Connection to 26.9.0.13:22530, received MSS 956
TCP0: restart retransmission in 5996
TCP0: state was SYNRCVD -> ESTAB [23 -> 26.9.0.13(22530)]
TCP2: restart retransmission in 10689
TCP2: restart retransmission in 10641
TCP2: restart retransmission in 10633
TCP2: restart retransmission in 13384 -> 26.0.0.13(16151)]
TCP0: restart retransmission in 5996 [23 -> 26.0.0.13(16151)]

Table 2-34 describes significant fields shown in Figure 2-61.

Table 2-34 Debug IP TCP Field Descriptions

Field Description

TCP: Indicates that this is a TCP transaction.

sending SYN Indicates that a synchronize packet is being sent.

seq 168108 Indicates the sequence number of the data being sent.

2-120 Debug Command Reference

debug ip tcp transactions

ack 88655553 Indicates the sequence number of the data being
acknowledged.

TCP0: Indicates the TTY number (0, in this case) with which this
TCP connection is associated.

Connection to 26.9.0.13:22530 Indicates the remote address with which a connection has
been established.

advertising MSS 966 Indicates the maximum segment size this side of the TCP
connection is offering to the other side.

state was LISTEN -> SYNSENT Indicates that the TCP state machine changed state from
LISTEN to SYNSENT. Possible TCP states follow:

CLOSED—Connection closed.

CLOSEWAIT—Received a FIN segment.

CLOSING—Received a FIN/ACK segment.

ESTAB—Connection established.

FINWAIT 1—Sent a FIN segment to start closing the
connection.

FINWAIT 2—Waiting for a FIN segment.

LASTACK—Sent a FIN segment in response to a received
FIN segment.

LISTEN—Listening for a connection request.

SYNRCVD—Received a SYN segment, and responded.

SYNSENT—Sent a SYN segment to start connection
negotiation.

TIMEWAIT—Waiting for network to clear segments for this
connection before the network no longer recognizes the
connection as valid. This must occur before a new connection
can be set up.

[23 -> 26.9.0.13(22530)] Within these brackets:

The first field (23) indicates local TCP port.

The second field (26.9.0.13) indicates the destination IP
address.

The third field (22530) indicates the destination TCP port.

restart retransmission in 5996 Indicates the number of milliseconds until the next
retransmission takes place.

Field Description

 Debug Commands 2-121

debug ipx ipxwan

debug ipx ipxwan
Use the debug ipx ipxwan EXEC command to display debug information for interfaces configured
to use IPXWAN. The no form of this command disables debugging output.

debug ipx ipxwan
no debug ipx ipxwan

Syntax Description
This command has no arguments or keywords.

Command Mode
EXEC

Usage Guidelines
The debug ipx ipxwan command is useful for verifying the startup negotiations between two routers
running the IPX protocol through a WAN. This command produces output only during state changes
or startup. During normal operations, no output is produced.

Sample Display
Figure 2-62 shows sample debug ipx ipxwan output during link startup.

Figure 2-62 Sample Debug IPX IPXWAN Output

router# debug ipx ipxwan

%LINEPROTO-5-UPDOWN: Line protocol on Interface Serial1, changed state to up
IPXWAN: state (Disconnect -> Sending Timer Requests) [Serial1/6666:200 (IPX line
 state brought up)]
IPXWAN: state (Sending Timer Requests -> Disconnect) [Serial1/6666:200 (IPX line
 state brought down)]
IPXWAN: state (Disconnect -> Sending Timer Requests) [Serial1/6666:200 (IPX line
 state brought up)]

IPXWAN: Send TIMER_REQ [seq 0] out Serial1/6666:200
IPXWAN: Send TIMER_REQ [seq 1] out Serial1/6666:200
IPXWAN: Send TIMER_REQ [seq 2] out Serial1/6666:200
IPXWAN: Send TIMER_REQ [seq 0] out Serial1/6666:200

IPXWAN: Rcv TIMER_REQ on Serial1/6666:200, NodeID 1234, Seq 1
IPXWAN: Send TIMER_REQ [seq 1] out Serial1/6666:200
IPXWAN: Rcv TIMER_RSP on Serial1/6666:200, NodeID 1234, Seq 1, Del 6
IPXWAN: state (Sending Timer Requests -> Master: Sent RIP/SAP) [Serial1/6666:200
 (Received Timer Response as master)]
IPXWAN: Send RIPSAP_INFO_REQ [seq 0] out Serial1/6666:200
IPXWAN: Rcv RIPSAP_INFO_RSP from Serial1/6666:200, NodeID 1234, Seq 0
IPXWAN: state (Master: Sent RIP/SAP -> Master: Connect) [Serial1/6666:200 (Received
Router
Info Rsp as Master)]

2-122 Debug Command Reference

debug ipx ipxwan

Explanations for representative lines of output in Figure 2-62 follow.

The following line indicates that the interface has initialized:

%LINEPROTO-5-UPDOWN: Line protocol on Interface Serial1, changed state to up

The following lines indicate that the startup process failed to receive a timer response, brought the
link down, then brought the link up and tried again with a new timer set:

IPXWAN: state (Sending Timer Requests -> Disconnect) [Serial1/6666:200 (IPX line
 state brought down)]
IPXWAN: state (Disconnect -> Sending Timer Requests) [Serial1/6666:200 (IPX line
 state brought up)]

The following lines indicate that the interface is sending timer requests and waiting on timer
response:

IPXWAN: Send TIMER_REQ [seq 0] out Serial1/6666:200
IPXWAN: Send TIMER_REQ [seq 1] out Serial1/6666:200

The following lines indicate that the interface has received a timer request from the other end of the
link and has sent a timer response. The fourth line shows that the interface has come up as the master
on the link.

IPXWAN: Rcv TIMER_REQ on Serial1/6666:200, NodeID 1234, Seq 1
IPXWAN: Send TIMER_REQ [seq 1] out Serial1/6666:200
IPXWAN: Rcv TIMER_RSP on Serial1/6666:200, NodeID 1234, Seq 1, Del 6
IPXWAN: state (Sending Timer Requests -> Master: Sent RIP/SAP) [Serial1/6666:200
 (Received Timer Response as master)]

The following lines indicate that the interface is sending RIP/SAP requests:

IPXWAN: Send RIPSAP_INFO_REQ [seq 0] out Serial1/6666:200
IPXWAN: Rcv RIPSAP_INFO_RSP from Serial1/6666:200, NodeID 1234, Seq 0
IPXWAN: state (Master: Sent RIP/SAP -> Master: Connect) [Serial1/6666:200 (Received
Router Info Rsp as Master)]

 Debug Commands 2-123

debug ipx packet

debug ipx packet
Use the debug ipx packet EXEC command to display information about packets received,
transmitted, and forwarded. The no form of this command disables debugging output.

debug ipx packet
no debug ipx packet

Syntax Description
This command has no arguments or keywords.

Command Mode
EXEC

Usage Guidelines
This command is useful for learning whether IPX packets are traveling over a router.

Note In order to generate debug ipx packet information on all IPX traffic traveling over the router,
you must first configure the router so that fast switching is disabled. Use the no ipx route-cache
command on all interfaces on which you want to observe traffic. If the router is configured for IPX
fast switching, only non-fast switched packets will produce output. When the IPX cache is
invalidated or cleared, one packet for each destination is displayed as the cache is repopulated.

Sample Display
Figure 2-63 shows sample debug ipx packet output.

Figure 2-63 Sample Debug IPX Packet Output

router# debug ipx packet

Novell: src=160.0260.8c4c.4f22, dst=1.0000.0000.0001, packet received
Novell: src=160.0260.8c4c.4f22, dst=1.0000.0000.0001,gw=183.0000.0c01.5d85,
sending packet

In Figure 2-63, the first line indicates that the router receives a packet from a Novell station (address
160.0260.8c4c.4f22); this trace does not indicate the address of the immediate router sending the
packet to this router. In the second line, the router forwards the packet toward the Novell server
(address 1.0000.0000.0001) through an immediate router (183.0000.0c01.5d85).

Table 2-35 describes significant fields shown in Figure 2-63.

2-124 Debug Command Reference

debug ipx packet

Table 2-35 Debug IPX Packet Field Descr iptions

Field Description

IPX Indication that this is an IPX packet.

src = 160.0260.8c4c.4f22 Source address of the IPX packet. The Novell network number is 160.
Its MAC address is 0260.8c4c.4f22.

dst = 1.0000.0000.0001 Destination address for the IPX packet. The address 0000.0000.0001 is
an internal MAC address, and the network number 1 is the internal
network number of a Novell 3.11 server.

packet received The router received this packet from a Novell station, possibly through
an intermediate router.

gw = 183.0000.0c01.5d85 The router is sending the packet over to the next hop router; its address
of 183.0000.0c01.5d85 was learned from the IPX routing table.

sending packet The router is attempting to send this packet.

 Debug Commands 2-125

debug ipx routing

debug ipx routing
Use the debug ipx routing EXEC command to display information on IPX routing packets that the
router sends and receives. The no form of this command disables debugging output.

debug ipx routing
no debug ipx routing

Syntax Description
This command has no arguments or keywords.

Command Mode
EXEC

Usage Guidelines
Normally, a router or server sends out one routing update per minute. Each routing update packet
can include up to 50 entries. If many networks exist on the internetwork, the router sends out
multiple packets per update. For example, if a router has 120 entries in the routing table, it would
send three routing update packets per update. The first routing update packet would include the first
50 entries, the second packet would include the next 50 entries, and the last routing update packet
would include the last 20 entries.

Sample Display
Figure 2-64 shows sample debug ipx routing output.

Figure 2-64 Sample Debug IPX Routing Output

router# debug ipx routing

NovellRIP: update from 9999.0260.8c6a.1733
 110801 in 1 hops, delay 2
NovellRIP: sending update to 12FF02:ffff.ffff.ffff via Ethernet 1
 network 555, metric 2, delay 3
 network 1234, metric 3, delay 4

Table 2-36 describes significant fields shown in Figure 2-64.

Table 2-36 Debug IPX Routing Field Descriptions

Field Description

IPXRIP This is an IPX RIP packet.

update from
9999.0260.8c6a.1733

This packet is a routing update from a Novell server at address
9999.0260.8c6a.1733.

110801 in 1 hops Network 110801 is one hop away from the router at address
9999.0260.8c6a.1733.

delay 2 Delay is a time measurement (1/18th second) that the NetWare shell uses
to estimate how long to wait for a response from a file server. Also
known as ticks.

2-126 Debug Command Reference

debug ipx routing

Related Command
debug ipx sap

sending update to
12FF02:ffff.ffff.ffff via
Ethernet 1

The router is sending this IPX routing update packet to address
12FF02:ffff.ffff.ffff through its Ethernet 1 interface.

network 555 The packet includes routing update information for network 555.

metric 2 Network 555 is two metrics (or hops) away from the router.

delay 3 Network 555 is a delay of 3 away from the router. Delay is a
measurement that the NetWare shell uses to estimate how long to wait
for a response from a file server. Also known as ticks.

Field Description

 Debug Commands 2-127

debug ipx sap

debug ipx sap
Use the debug ipx sap EXEC command to display information about IPX Service Advertisement
Protocol (SAP) packets. The no form of this command disables debugging output.

debug ipx sap [activity | events]
no debug ipx sap

Syntax Description

Command Mode
EXEC

Usage Guidelines
Normally, a router or server sends out one SAP update per minute. Each SAP packet can include up
to seven entries. If many servers are advertising on the network, the router sends out multiple packets
per update. For example, if a router has 20 entries in the SAP table, it would send three SAP packets
per update. The first SAP would include the first seven entries, the second SAP would include the
next seven entries, and the last update would include the last six entries.

Obtain the most meaningful detail by using the debug ipx sap activity and the debug ipx sap events
commands together.

Caution Because the debug ipx sap command can generate a lot of output, use it with caution on
networks that have many interfaces and large service tables.

Sample Display
Figure 2-65 shows sample debug ipx sap output.

Figure 2-65 Sample Debug IPX SAP Output

activity (Optional) Provides more detailed output of SAP packets,
including displays of services in SAP packets.

events (Optional) Limits amount of detailed output for SAP
packets to those that contain interesting events.

router# debug ipx sap

NovellSAP: at 0023F778:
I SAP Response type 0x2 len 160 src:160.0000.0c00.070d dest:160.ffff.ffff.ffff(452)
 type 0x4, “HELLO2”, 199.0002.0004.0006 (451), 2 hops
 type 0x4, “HELLO1”, 199.0002.0004.0008 (451), 2 hops
NovellSAP: sending update to 160
NovellSAP: at 00169080:
 O SAP Update type 0x2 len 96 ssoc:0x452 dest:160.ffff.ffff.ffff(452)
Novell: type 0x4, “Magnolia”, 42.0000.0000.0001 (451), 2 hops

Describes a
single SAP
packet

S
25

51

2-128 Debug Command Reference

debug ipx sap

As Figure 2-65 shows, the debug ipx sap command generates multiple lines of output for each SAP
packet—a packet summary message and a service detail message.

The first line displays the internal router memory address of the packet. The technical support staff
may use this information in problem debugging.

NovellSAP: at 0023F778:

 Debug Commands 2-129

debug ipx sap

Table 2-37 describes the fields shown in the second line of output in Figure 2-65.

Table 2-37 Debug IPX SAP Field Descriptions—Part 1

Table 2-38 describes the fields shown in the third and fourth lines of output in Figure 2-65.

Field Description

I Indication as to whether the router received the SAP packet as input (I)
or is sending an update as output (O).

SAP Response type 0x2 Packet type. Format is 0xn; possible values for n include:

1—General query

2—General response

3—Get Nearest Server request

4—Get Nearest Server response

len 160 Length of this packet (in bytes).

src: 160.000.0c00.070d Source address of the packet.

dest:160.ffff.ffff.ffff The IPX network number and broadcast address of the destination IPX
network for which the message is intended.

(452) IPX socket number of the process sending the packet at the source
address. This number is always 452, which is the socket number for the
SAP process.

2-130 Debug Command Reference

debug ipx sap

Table 2-38 Debug IPX SAP Field Descriptions—Part 2

Field Description

type 0x4 Indicates the type of service the server sending the packet provides.
Format is 0xn. Some of the values for n are proprietary to Novell. Those
values for n that have been published include

0—Unknown

1—User

2—User group

3—Print queue

4—File server

5—Job server

6—Gateway

7—Print server

8—Archive queue

9—Archive server

A—Job queue

B—Administration

21—NAS SNA gateway

24—Remote bridge server

2D—Time Synchronization VAP

2E—Dynamic SAP

47—Advertising print server

4B—Btrieve VAP 5.0

4C—SQL VAP

7A—TES—NetWare for VMS

98—NetWare access server

9A—Named Pipes server

9E—Portable NetWare—UNIX

111—Test server

166—NetWare management

233—NetWare management agent

237—NetExplorer NLM

239—HMI hub

23A—NetWare LANalyzer agent

26A—NMS management

FFFF—Wildcard (any SAP service)

Contact Novell for more information.

“HELLO2” Name of the server being advertised.

199.0002.0004.0006 (451) Indicates the network number and address (and socket) of the server
generating the SAP packet.

2 hops Number of hops to the server from the router.

 Debug Commands 2-131

debug ipx sap

The fifth line of output indicates that the router sent a SAP update to network 160:

NovellSAP: sending update to 160

As Figure 2-65 shows, the format for debug ipx sap output describing a SAP update the router sends
is similar to that describing a SAP update the router receives, except that the ssoc: field replaces the
src: field, as the following line of output indicates:

O SAP Update type 0x2 len 96 ssoc:0x452 dest:160.ffff.ffff.ffff(452)

Table 2-39 describes possible values for the ssoc: field.

Table 2-39 Debug IPX SAP Field Descriptions—Part 3

Related Command
debug ipx routing

Field Description

ssoc:0x452 Indicates the IPX socket number of the process sending the packet at the
source address. Possible values include

451—Network Core Protocol

452—Service Advertising Protocol

453—Routing Information Protocol

455—NetBIOS

456—Diagnostics

4000 to 6000—Ephemeral sockets used for interaction with file servers
and other network communications

2-132 Debug Command Reference

debug isdn-event

debug isdn-event
Use the debug isdn-event EXEC command to display Integrated Services Digital Network (ISDN)
events occurring on the user side (on the router) of the ISDN interface. The ISDN events that can be
displayed are Q.931 events (call setup and teardown of ISDN network connections). The no form of
this command disables debugging output.

debug isdn-event
no debug isdn-event

Syntax Description
This command has no arguments or keywords.

Command Mode
EXEC

Usage Guidelines
Although the debug isdn-event and the debug isdn-q931 commands provide similar debug
information, the information is displayed in a different format. If you want to see the information in
both formats, enable both commands at the same time. The displays will be intermingled.

Use the show dialer command to retrieve information about the status and configuration of the
ISDN interface on the router.

Sample Display
Figure 2-66 shows sample debug isdn-event output of call setup events for an outgoing call.

Figure 2-66 Sample Debug ISDN-Event Output—Call Setup Outgoing Call

router# debug isdn-event

ISDN Event: Call to 415555121202
received HOST_PROCEEDING
 Channel ID i = 0x0101

 Channel ID i = 0x89
received HOST_CONNECT
 Channel ID i = 0x0101
ISDN Event: Connected to 415555121202 on B1 at 64 Kb/s

 Debug Commands 2-133

debug isdn-event

Figure 2-67 shows sample debug isdn-event output of call setup events for an incoming call. The
values used for internal purposes are unpacked information elements. The values that follow the
ISDN specification are an interpretation of the unpacked information elements. Refer to the “ISDN
Switch Types, Codes, and Values” appendix for information about these values.

Figure 2-67 Sample Debug ISDN-Event Output—Call Setup Incoming Call

Figure 2-68 shows sample debug isdn-event output of call teardown events for a call that has been
hung up by the other side of the connection.

Figure 2-68 Sample Debug ISDN-Event Output—Call Teardown by Far End

router# debug isdn-event

received HOST_DISCONNECT
ISDN Event: Call to 415555121202 was hung up

Figure 2-69 shows sample debug isdn-event output of a call teardown event for an outgoing or
incoming call that has been hung up by the ISDN interface on the router side.

Figure 2-69 Sample Debug ISDN-Event Output—Call Teardown Local Side

router# debug isdn-event

ISDN Event: Hangup call to call id 0x8008

router# debug isdn-event

received HOST_INCOMING_CALL
 Bearer Capability i = 0x080010

 Channel ID i = 0x0101
 Calling Party Number i = 0x0000, ‘415555121202’
 IE out of order or end of ‘private’ IEs --
 Bearer Capability i = 0x8890
 Channel ID i = 0x89
 Calling Party Number i = 0x0083, ‘415555121202’
ISDN Event: Received a call from 415555121202 on B1 at 64 Kb/s
ISDN Event: Accepting the call
received HOST_CONNECT
 Channel ID i = 0x0101
ISDN Event: Connected to 415555121202 on B1 at 64 Kb/s

Used for
internal
purposes

S
25

52

Follows
ISDN
specifications

2-134 Debug Command Reference

debug isdn-event

Table 2-40 describes significant fields shown in Figure 2-66 through Figure 2-69.

Table 2-40 Debug ISDN-Event Field Descriptions

Figure 2-70 shows sample debug isdn-event output of a call teardown event for a call that has
passed call screening then has been hung up by the ISDN interface on the far end side.

Figure 2-70 Sample Debug ISDN-Event—Call Screening Normal Disconnect

0:04:51: 291.848 RX <- DISCONNECT pd = 8 callref = 0x83
0:04:51: Cause i = 0x8090 - Normal call clearing

Figure 2-71 shows sample debug isdn-event output of a call teardown event for a call that has not
passed call screening and has been rejected by the ISDN interface on the router side.

Figure 2-71 Sample Debug ISDN-Event—Call Screening Call Rejection

0:06:44: 404.732 RX <- DISCONNECT pd = 8 callref = 0x82
0:06:44: Cause i = 0x8095 - Call rejected

Figure 2-72 shows sample debug isdn-event output of a call teardown event for an outgoing call
that uses a dialer subaddress.

Field Descr iption

Bearer Capability Indicates the requested bearer service to be provided by the
network.

i= Indicates the Information Element Identifier. The value depends
on the field it is associated with. Refer to the ITU-T1 Q.931
specification for details about the possible values associated with
each field for which this identifier is relevant.

Channel ID Indicates the Channel Identifier. The value 83 indicates any
channel, 0101 indicates the B1 channel, and 89 indicates the B1
channel.

Calling Party Number Identifies the called party. This field is only present in outgoing
calls. Note that it may be replaced by the Keypad facility field.
This field uses the IA5 character set.

IE out of order or end of ‘private’ IEs Indicates that an information element identifier is out of order or
there are no more private network information element
identifiers to interpret.

Received a call from 415555121202 on
B1 at 64Kb/s

Identifies the origin of the call. This field is present only in
incoming calls. Note that the information about the incoming call
includes the channel and speed. Whether this number is
displayed depends on the network delivering the calling party
number.

1. The ITU-T carries out the functions of the former Consultative Committee for International Telegraph and Telephone.

 Debug Commands 2-135

debug isdn-event

Figure 2-72 Sample Debug ISDN-Event Display—Called Party Subaddress

0:04:55: ISDN Event: Call to 5551201:123
0:04:55: 295.692 TX -> SETUP pd = 8 callref = 0x02
0:04:55: Bearer Capability i = 0x8890
0:04:55: Channel ID i = 0x83
0:04:55: Called Party Number i = 0x80, '5551201'
0:04:55: Called Party SubAddr i = 0x80, 'P123'
0:04:55: 295.840 RX <- CALL_PROC pd = 8 callref = 0x82
0:04:55: Channel ID i = 0x89
0:04:55: received HOST_PROCEEDING
 Channel ID i = 0x0101
0:04:55: -------------------
 Channel ID i = 0x89
0:04:56: 296.044 RX <- CONNECT pd = 8 callref = 0x82
0:04:56: received HOST_CONNECT
 Channel ID i = 0x0101
0:04:56: -------------------
0:04:56: ISDN Event: Connected to 5551201:123 on B1 at 64 Kb/s
0:04:56: 296.064 TX -> CONNECT_ACK pd = 8 callref = 0x02.

2-136 Debug Command Reference

debug isdn-q921

debug isdn-q921
Use the debug isdn-q921 EXEC command to display data link layer (Layer 2) access procedures
that are taking place at the router on the D-channel (LAPD) of its Integrated Services Digital
Network (ISDN) interface. The no form of this command disables debugging output.

debug isdn-q921
no debug isdn-q921

Syntax Description
This command has no arguments or keywords.

Command Mode
EXEC

Usage Guidelines
The ISDN data link layer interface provided by the router conforms to the user interface
specification defined by ITU-T recommendation Q.921. The debug isdn-q921 command output is
limited to commands and responses exchanged during peer-to-peer communication carried over the
D-channel. This debug information does not include data transmitted over the B-channels that are
also part of the router’s ISDN interface. The peers (data link layer entities and layer management
entities on the routers) communicate with each other via an ISDN switch over the D-channel.

Note The ISDN switch provides the network interface defined by Q.921. This debug command
does not display data link layer access procedures taking place within the ISDN network (that is,
procedures taking place on the network side of the ISDN connection). See the “ISDN Switch Types,
Codes, and Values” appendix for a list of the supported ISDN switch types.

A router can be the calling or called party of the ISDN Q.921 data link layer access procedures. If
the router is the calling party, the command displays information about an outgoing call. If the router
is the called party, the command displays information about an incoming call and the keepalives
(RRs).

The debug isdn-q921 command can be used with the debug isdn-event and the debug isdn-q931
commands at the same time. The displays will be intermingled.

 Debug Commands 2-137

debug isdn-q921

Sample Display
Figure 2-73 shows sample debug isdn-q921 output for an outgoing call.

Figure 2-73 Sample Debug ISDN-Q921 Output for Outgoing Call

Figure 2-74 shows sample debug isdn-q921 output for a startup message on a DMS-100 switch.

Figure 2-74 Sample Debug ISDN-Q921 Output for Startup Message on a DMS-100 Switch

router# debug isdn-q921

471.348 TX -> RRp sapi = 0 tei = 67 nr = 19
471.372 RX <- RRp sapi = 0 tei = 67 nr = 17
471.376 TX -> RRf sapi = 0 tei = 67 nr =19
471.388 RX <- RRf sapi = 0 tei = 67 nr = 17
471.968 TX -> INFOc sapi = 0 tei = 67 ns = 17 nr = 19 i = 0x0801050504028890180183
700A80353535313231323032
472.068 RX <- RRr sapi = 0 tei = 67 nr = 18
472.088 RX <- INFOc sapi = 0 tei = 67 ns = 19 nr = 18 i = 0x08018502180189
472.096 TX -> RRr sapi = 0 tei = 67 nr = 20
472.268 RX <- INFOc sapi = 0 tei = 67 ns = 20 nr 18 i = 0x08018507
472.276 TX -> RRr sapi = 0 tei = 67 nr = 21
472.284 TX -> INFOc sapi = 0 tei = 67 ns 18 nr = 21 i = 0x0801050F
472.356 RX <- RRr sapi = 0 tei = 67 nr = 19

S
25

55

Call Setup
message

Call Proceeding
message

Call Connect
message

Connect Ack
message

router# debug isdn-q921

139.516 TX -> IDREQ ri = 48386 ai = 127
139.520 RX <- IDREM ri = 0 ai = 89
139.544 RX <- IDASSN ri = 48386 ai = 90
139.552 TX -> SABMEp sapi = 0 tei = 90
139.552 RX <- IDCKRQ ri = 0 ai = 127
139.560 TX -> IDCKRP ri = 36131 ai = 90
140.548 RX <- IDCKRQ ri = 0 ai = 127
140.556 TX -> IDCKRP ri = 24404 ai = 90
140.560 TX -> SABMEp sapi = 0 tei = 90
140.584 RX <- UAf sapi = 0 tei = 90
140.592 TX -> INFOc sapi = 0 tei = 90 ns = 0 nr = 0
 INFORMATION pd = 8 callref = (null)
SPID Information i = 0x343135393033383336363031
140.624 RX <- RRr sapi = 0 tei = 90 nr = 1
140.592 RX <- INFOc sapi = 0 tei = 90 ns = 0 nr = 0
 INFORMATION pd = 8 callref = (null)
ENDPOINT IDent i = 0xF080
140.768 TX -> RRr sapi = 0 tei = 90 nr = 1
150.768 TX -> RRp sapi = 0 tei = 90 nr = 1
150.788 RX <- RRf sapi = 0 tei = 90 nr = 1
160.796 TX -> RRp sapi = 0 tei = 90 nr = 1
160.816 RX <- RRf sapi = 0 tei = 90 nr = 1

S
25

56

L2 link
establishment

2-138 Debug Command Reference

debug isdn-q921

Figure 2-75 shows sample debug isdn-q921 output for an incoming call. It is an incoming SETUP
message that assumes the L2 link is already established to the other side.

Figure 2-75 Debug ISDN-Q921 Output for Incoming Call

router# debug isdn-q921

234423.764 TX -> RRp sapi = 0 tei = 66 nr = 36
234423.780 RX <- RRp sapi = 0 tei = 66 nr = 26
234423.784 TX -> RRf sapi = 0 tei = 66 nr = 36
234423.808 RX <- RRf sapi = 0 tei = 66 nr = 26
234425.800 RX <- UAf sapi = 0 tei = 127 i =
0x0801080504028890018001896C1000833831303132333445363738393032
234425.820 TX -> INFOc sapi = 0 tei = 66 ns = 36 nr = 36 i=0x08018807
234425.904 RX <- RRr sapi = 0 tei = 90 nr = 27
234425.920 RX <- INFOc sapi = 0 tei = 66 ns = 36 nr = 33 i=0x0801080F
234433.936 TX -> RRr sapi = 0 tei = 66 nr = 37
234435.940 RX <- RRp sapi = 0 tei = 66 nr = 27
234435.980 TX -> RRf sapi = 0 tei = 66 nr = 37
234435.640 RX <- RRf sapi = 0 tei = 66 nr = 27

Table 2-41 describes significant fields in Figure 2-73, Figure 2-74, and Figure 2-75.

Table 2-41 Debug ISDN-Q921 Field Descr iptions

Field Description

139.516 Indicates the time, in seconds, at which the frame was transmitted from
or received by the data link layer entity on the router. The time is
maintained by an internal clock. This internal clock is used for the
various timers (such as T200, T202, and T201 that may expire while
these access procedures are being processed) and for timestamping.

TX Indicates that this frame is being transmitted from the ISDN interface on
the local router (user side).

RX Indicates that this frame is being received by the ISDN interface on the
local router from the peer (network side).

IDREQ Indicates the Identity Request message type sent from the local router to
the network (assignment source point [ASP]) during the automatic
terminal endpoint identifier (TEI) assignment procedure. This message
is sent in a UI command frame. The service access point identifier
(SAPI) value for this message type is always 63 (indicating that it is a
Layer 2 management procedure) but it is not displayed. The TEI value
for this message type is 127 (indicating that it is a broadcast operation).

ri = 48386 Indicates the Reference number used to differentiate between user
devices requesting TEI assignment. This value is a randomly generated
number between 0 and 65535. The same ri value sent in the IDREQ
message should be returned in the corresponding IDASSN message.
Note that a Reference number of 0 indicates that the message is sent
from the network side management layer entity and a reference number
has not been generated.

ai = 127 Indicates the Action indicator used to request that the ASP assign any
TEI value. It is always 127 for the broadcast TEI. Note that in some
message types, such as IDREM, a specific TEI value is indicated.

 Debug Commands 2-139

debug isdn-q921

IDREM Indicates the Identity Remove message type sent from the ASP to the
user side layer management entity during the TEI removal procedure.
This message is sent in a UI command frame. The ASP sends the
Identity Remove message twice to avoid message loss.

IDASSN Indicates the Identity Assigned message type sent from the ISDN service
provider on the network to the local router during the automatic TEI
assignment procedure. This message is sent in a UI command frame. The
SAPI value for this message type is always 63 (indicating that it is
Layer 2 management procedure). The TEI value for this message type is
127 (indicating it is a broadcast operation).

ai = 90 Indicates the TEI value automatically assigned by the ASP. This TEI
value is used by data link layer entities on the local router in subsequent
communication with the network. The valid values are in the range 64
through 126.

SABME Indicates the set asynchronous balanced mode extended command. This
command places the recipient into modulo 128 multiple frame
acknowledged operation. This command also indicates that all exception
conditions have been cleared. The SABME command is sent once a
second for N200 times (typically three times) until its acceptance is
confirmed with a UA response. For a list and brief description of other
commands and responses that can be exchanged between the data link
layer entities on the local router and the network, see ITU-T
Recommendation Q.921.

sapi = 0 Identifies the service access point at which the data link layer entity
provides services to Layer 3 or to the management layer. A SAPI with
the value 0 indicates it is a call control procedure. Note that the Layer 2
management procedures such as TEI assignment, TEI removal, and TEI
checking, which are tracked with the debug isdn-q921 command, do not
display the corresponding SAPI value; it is implicit. If the SAPI value
were displayed it would be 63.

tei = 90 Indicates the TEI value automatically assigned by the ASP. This TEI
value will be used by data link layer entities on the local router in
subsequent communication with the network. The valid values are in the
range 64 through 126.

IDCKRQ Indicates the Identity Check Request message type sent from the ISDN
service provider on the network to the local router during the TEI check
procedure. This message is sent in a UI command frame. The ri field is
always 0. The ai field for this message contains either a specific TEI
value for the local router to check or 127, which indicates that the local
router should check all TEI values. For a list and brief description of
other message types that can be exchanged between the local router and
the ISDN service provider on the network, see the “ISDN Switch Types,
Codes, and Values” appendix.

IDCKRP Indicates the Identity Check Response message type sent from the local
router to the ISDN service provider on the network during the TEI check
procedure. This message is sent in a UI command frame in response to
the IDCKRQ message. The ri field is a randomly generated number
between 0 and 65535. The ai field for this message contains the specific
TEI value that has been checked.

UAf Confirms that the network side has accepted the SABME command
previously sent by the local router. The final bit is set to 1.

Field Description

2-140 Debug Command Reference

debug isdn-q921

Explanations for individual lines of output from Figure 2-73 follow.

The following lines indicate the message exchanges between the data link entity on the local router
(user side) and the assignment source point (ASP) on the network side during the TEI assignment
procedure. This assumes that the link is down and no TEI currently exists.

139.516 TX -> IDREQ ri = 48386 ai = 127
139.544 RX <- IDASSN ri = 48386 ai = 90

At 139.516, the local router data link layer entity sent an Identity Request message to the network
data link layer entity to request a TEI value that can be used in subsequent communication between
the peer data link layer entities. The request includes a randomly generated reference number

INFOc Indicates that this is an Information command. It is used to transfer
sequentially numbered frames containing information fields that are
provided by Layer 3. The information is transferred across a data link
connection.

INFORMATION pd = 8 callref =
(null)

Indicates the information fields provided by Layer 3. The information is
sent one frame at a time. If multiple frames need to be sent, several
Information commands are sent. The pd value is the protocol
discriminator. The value 8 indicates it is call control information. The
call reference number is always null for SPID information,

SPID information i =
0x343135393033383336363031

Indicates the service profile identifier (SPID). The local router sends this
information to the ISDN switch to indicate the services to which it
subscribes. SPIDs are assigned by the service provider and are usually
10-digit telephone numbers followed by optional numbers. Currently,
only the DMS-100 switch supports SPIDs, one for each B-channel. If
SPID information is sent to a switch type other than DMS-100, an error
may be displayed in the debug information.

ns = 0 Indicates the send sequence number of transmitted I frames.

nr = 0 Indicates the expected send sequence number of the next received I
frame. At time of transmission, this value should be equal to the value of
ns. The value of nr is used to determine whether frames need to be
retransmitted for recovery.

RRr Indicates the Receive Ready response for unacknowledged information
transfer. The RRr is a response to an INFOc.

RRp Indicates the Receive Ready command with the poll bit set. The data link
layer entity on the user side uses the poll bit in the frame to solicit a
response from the peer on the network side.

RRf Indicates the Receive Ready response with the final bit set. The data link
layer entity on the network side uses the final bit in the frame to indicate
a response to the poll.

sapi Indicates the service access point identifier. The SAPI is the point at
which data link services are provided to a network layer or management
entity. Currently, this field can have the value 0 (for call control
procedure) or 63 (for Layer 2 management procedures)

tei Indicates the terminal endpoint identifier (TEI) that has been assigned
automatically by the assignment source point (ASP) (also called the
layer management entity on the network side). The valid range is 64
through 126. The value 127 indicates a broadcast.

Field Description

 Debug Commands 2-141

debug isdn-q921

(48386) to differentiate among user devices that request automatic TEI assignment and an action
indicator of 127 to indicate that the ASP can assign any TEI value available. The ISDN user interface
on the router uses automatic TEI assignment.

At 139.544, the network data link entity responds to the Identity Request message with an Identity
Assigned message. The response includes the reference number (48386) previously sent in the
request and TEI value (90) assigned by the ASP.

The following line indicates a message exchange between the layer management entity on the
network side and the layer management entity on the local router (user side) during the TEI removal
procedure:

139.520 RX <- IDREM ri = 0 ai = 89

At 139.520, the network layer management entity sends an Identity Remove message when it
determines that removal is necessary. The message includes a reference number that is always 0,
because it is not responding to a request from the local router. The message also includes the TEI
value (89) that is being removed because it is an old value that is no longer used.

The following lines indicate the message exchanges between the layer management entity on the
network and the layer management entity on the local router (user side) during the TEI check
procedure:

139.552 RX <- IDCKRQ ri = 0 ai = 127
139.560 TX -> IDCKRP ri = 36131 ai = 90

At 139.552, the layer management entity on the network sends the Identity Check Request message
to the layer management entity on the local router to check whether a TEI is in use. The message
includes a reference number that is always 0 and the TEI value to check. In this case, an ai value of
127 indicates that all TEI values should be checked. At 139.560, the layer management entity on the
local router responds with an Identity Check Response message indicating that TEI value 90 is
currently in use.

The following lines indicate the messages exchanged between the data link layer entity on the local
router (user side) and the data link layer on the network side to place the network side into modulo
128 multiple frame acknowledged operation. Note that the data link layer entity on the network side
also can initiate the exchange.

140.560 TX -> SABMEp sapi = 0 tei = 90
140.584 RX <- UAf sapi = 0 tei = 90

At 140.560, the data link layer entity on the local router sends the SABME command with a SAPI
of 0 (call control procedure) for TEI 90. At 140.584, the first opportunity, the data link layer entity
on the network responds with a UA response. This response indicates acceptance of the command.
The data link layer entity sending the SABME command may have to send it more than once before
receiving a UA response.

The following lines indicate the status of the data link layer entities. Both are ready to receive
I frames.

150.768 TX -> RRp sapi = 0 tei = 90 nr = 1
150.788 RX <- RRf sapi = 0 tei = 90 nr = 1

These I frames are typically exchanged every 10 seconds (T203 timer).

2-142 Debug Command Reference

debug isdn-q931

debug isdn-q931
Use the debug isdn-q931 EXEC command to display information about call setup and teardown of
ISDN network connections (Layer 3) between the local router (user side) and the network. The no
form of this command disables debugging output.

debug isdn-q931
no debug isdn-q931

Syntax Description
This command has no arguments or keywords.

Command Mode
EXEC

Usage Guidelines
The ISDN network layer interface provided by the router conforms to the user interface specification
defined by ITU-T recommendation Q.931, supplemented by other specifications such as for switch
types VN2 and VN3.The router tracks only activities that occur on the user side, not the network
side, of the network connection. The display information debug isdn-q931 command output is
limited to commands and responses exchanged during peer-to-peer communication carried over the
D-channel. This debug information does not include data transmitted over the B-channels, which are
also part of the router’s ISDN interface. The peers (network layers) communicate with each other
via an ISDN switch over the D-channel.

A router can be the calling or called party of the ISDN Q.931 network connection call setup and tear-
down procedures. If the router is the calling party, the command displays information about an
outgoing call. If the router is the called party, the command displays information about an incoming
call.

You can use the debug isdn-q931 command with the debug isdn-event and the debug isdn-q921
commands at the same time. The displays will be intermingled.

Sample Display
Figure 2-76 shows sample debug isdn-q931 output of a call setup procedure for an outgoing call.

Figure 2-76 Sample Debug ISDN- Q931 Output— Call Setup Procedure for an Outgoing Call

router# debug isdn-q931

234191.372 TX -> SETUP pd = 8 callref = 0x04
 Bearer Capability i = 0x8890
 Channel ID i = 0x83
 Called Party Number i = 0x80, ‘415555121202’
234191.624 RX <- CALL_PROC pd = 8 callref = 0x84
 Channel ID i = 0x89
234191.692 RX <- CONNECT pd = 8 callref = 0x84
234191.692 TX -> CONNECT_ACK pd = 8 callref = 0x04....
Success rate is 0 percent (0/5)

 Debug Commands 2-143

debug isdn-q931

Figure 2-77 shows sample debug isdn-q931 output of a call setup procedure for an incoming call.

Figure 2-77 Sample Debug ISDN- Q931 Output— Call Setup Procedure for an Incoming Call

router# debug isdn-q931

234223.224 RX <- SETUP pd = 8 callref = 0x06
 Bearer Capability i = 0x8890
 Channel ID i = 0x89
 Calling Party Number i = 0x0083, ‘81012345678902’
234223.244 TX -> CONNECT pd = 8 callref = 0x86
234223.344 RX <- CONNECT_ACK pd = 8 callref = 0x06

Figure 2-78 shows sample debug isdn-q931 output of a call teardown procedure from the network.

Figure 2-78 Sample Debug ISDN-Q931 Output—Call Teardown Procedure from the
Network

router# debug isdn-q931

234207.648 RX <- DISCONNECT pd = 8 callref = 0x84
 Cause i = 0x8790
 Looking Shift to Codeset 6
 Codeset 6 IE 0x1 1 0x82 ‘10’
234207.668 TX -> RELEASE pd = 8 callref = 0x04
 Cause i = 0x8090
234207.764 RX <- RELEASE_COMP pd = 8 callref = 0x84

Figure 2-79 shows sample debug isdn-q931 output of a call teardown procedure from the router.

Figure 2-79 Sample Debug ISDN-Q931 Output—Call Teardown Procedure from the Router

router# debug isdn-q931

234236.644 TX -> DISCONNECT pd = 8 callref = 0x05
 Cause i = 0x879081
234238.664 RX <- RELEASE pd = 8 callref = 0x85
 Looking Shift to Codeset 6
 Codeset 6 IE 0x1 1 0x82 ‘10’
234238.752 TX <- RELEASE_COMP pd = 8 callref = 0x05

Table 2-42 describes significant fields in Figure 2-76 through Figure 2-79.

Table 2-42 Debug ISDN-Q931 Call Setup Procedure Field Descriptions

Field Description

234191.372 Indicates the time, in seconds, at which the message was transmitted
from or received by the network layer on the router. The time is
maintained by an internal clock. This internal clock is used for timeout
purposes and timestamping.

TX Indicates that this message is being transmitted from the local router
(user side) to the network side of the ISDN interface.

RX Indicates that this message is being received by the user side of the ISDN
interface from the network side.

2-144 Debug Command Reference

debug isdn-q931

SETUP Indicates that the SETUP message type has been sent to initiate call
establishment between peer network layers. This message can be sent
from either the local router or the network.

pd Indicates the protocol discriminator. The protocol discriminator
distinguishes messages for call control over the user-network ISDN
interface from other ITU-T-defined messages, including other
Q.931messages. The protocol discriminator is 8 for call control
messages such as SETUP. For basic-1tr6, the protocol discriminator
is 65.

callref Indicates the call reference number in hexadecimal. The value of this
field indicates the number of calls made from either the router (outgoing
calls) or the network (incoming calls). Note that the originator of the
SETUP message sets the high-order bit of the call reference number to 0.
The destination of the connection sets the high-order bit to 1 in
subsequent call control messages, such as the CONNECT message. For
example, callref = 0x04 in the request becomes callref = 0x84 in the
response.

Bearer Capability Indicates the requested bearer service to be provided by the network.

i= Indicates the Information Element Identifier. The value depends on the
field it is associated with. Refer to the ITU-T Q.931 specification for
details about the possible values associated with each field for which this
identifier is relevant.

Channel ID Indicates the Channel Identifier. The value 83 indicates any channel, 89
indicates the B1 channel, and 8A indicates the B2 channel. For more
information about the Channel Identifier, refer to ITU-T
Recommendation Q.931.

Called Party Number Identifies the called party. This field is only present in outgoing SETUP
messages. Note that it can be replaced by the Keypad facility field. This
field uses the IA5 character set.

Calling Party Number Identifies the origin of the call. This field is present only in incoming
SETUP messages. This field uses the IA5 character set.

CALL_PROC Indicates the CALL PROCEEDING message; the requested call setup
has begun and no more call setup information will be accepted.

CONNECT Indicates that the called user has accepted the call.

CONNECT_ACK Indicates that the calling user acknowledges the called user’s acceptance
of the call.

DISCONNECT Indicates either that the user side has requested the network to clear an
end-to-end connection or that the network has cleared the end-to-end
connection.

Cause Indicates the cause of the disconnect. Refer to ITU-T recommendation
Q.931 for detailed information about DISCONNECT cause codes and
RELEASE cause codes.

Looking Shift to Codeset 6 Indicates that the next information elements will be interpreted
according to information element identifiers assigned in codeset 6.
Codeset 6 means that the information elements are specific to the local
network.

Codeset 6 IE 0x1 i = 0x82, ‘10’ Indicates charging information. This information is specific to the NTT
switch type and may not be sent by other switch types.

Field Description

 Debug Commands 2-145

debug isdn-q931

RELEASE Indicates that the sending equipment will release the channel and call
reference. The recipient of this message should prepare to release the
call reference and channel.

RELEASE_COMP Indicates that the sending equipment has received a RELEASE message
and has now released the call reference and channel.

Field Description

2-146 Debug Command Reference

debug isis adj packets

debug isis adj packets
Use the debug isis adj packets EXEC command to display information on all adjacency-related
activity such as hello packets sent and received and IS-IS adjacencies going up and down. The no
form of this command disables debugging output.

debug isis adj packets
no debug isis adj packets

Syntax Description
This command has no arguments or keywords.

Command Mode
EXEC

Sample Display
Figure 2-80 shows sample debug isis adj packets output.

Figure 2-80 Sample Debug ISIS Adj Packets Output

router# debug isis adj packets

ISIS-Adj: Rec L1 IIH from 0000.0c00.40af (Ethernet0), cir type 3, cir id
BBBB.BBBB.BBBB.01
ISIS-Adj: Rec L2 IIH from 0000.0c00.40af (Ethernet0), cir type 3, cir id
BBBB.BBBB.BBBB.01
ISIS-Adj: Rec L1 IIH from 0000.0c00.0c36 (Ethernet1), cir type 3, cir id
CCCC.CCCC.CCCC.03
ISIS-Adj: Area mismatch, level 1 IIH on Ethernet1
ISIS-Adj: Sending L1 IIH on Ethernet1
ISIS-Adj: Sending L2 IIH on Ethernet1
ISIS-Adj: Rec L2 IIH from 0000.0c00.0c36 (Ethernet1), cir type 3, cir id
BBBB.BBBB.BBBB.03

Explanations for individual lines of output from Figure 2-80 follow.

The following line indicates that the router received an IS-IS hello packet (IIH) on Ethernet0 from
the Level 1 router (L1) at MAC address 0000.0c00.40af. The circuit type is the interface type:
1—Level 1 only; 2—Level 2 only; 3—Level 1/2.

The circuit ID is what the neighbor interprets as the designated router for the interface.

ISIS-Adj: Rec L1 IIH from 0000.0c00.40af (Ethernet0), cir type 3, cir id BBBB.BBBB.BBBB.01

The following line indicates that the router (configured as a Level 1 router) received on Ethernet1
an IS-IS hello packet from a Level 1 router in another area, thereby declaring an area mismatch:

ISIS-Adj: Area mismatch, level 1 IIH on Ethernet1

The following lines indicates that the router (configured as a Level 1/Level 2 router) sent on
Ethernet1 a Level 1 IS-IS hello packet, and then a Level 2 IS-IS packet:

ISIS-Adj: Sending L1 IIH on Ethernet1
ISIS-Adj: Sending L2 IIH on Ethernet1

 Debug Commands 2-147

debug isis spf statistics

debug isis spf statistics
Use the debug isis spf statistics EXEC command to display statistical information about building
routes between intermediate systems (ISs). The no form of this command disables debugging
output.

debug isis spf statistics
no debug isis spf statistics

Syntax Description
This command has no arguments or keywords.

Command Mode
EXEC

Usage Guidelines
The Intermediate System-to-Intermediate System (IS-IS) Intra-Domain Routing Exchange Protocol
(IDRP) provides routing between ISs by flooding the network with link-state information. IS-IS
provides routing at two levels, intra-area (Level 1) and intra-domain (Level 2). Level 1 routing
allows Level 1 ISs to communicate with other Level 1 ISs in the same area. Level 2 routing allows
Level 2 ISs to build an interdomain backbone between Level 1 areas by traversing only Level 2 ISs.
Level 1 ISs only need to know the path to the nearest Level 2 IS in order to take advantage of the
interdomain backbone created by the Level 2 ISs.

The IS-IS protocol uses the Shortest Path First (SPF) routing algorithm to build Level 1 and Level 2
routes. The debug isis spf statistics command provides information for determining how long it
takes to place a Level 1 IS or Level 2 IS on the shortest path tree (SPT) using the IS-IS protocol.

Note The SPF algorithm is also called the Dijkstra algorithm, after the creator of the algorithm.

Sample Display
Figure 2-81 shows sample debug isis spf statistics output.

Figure 2-81 Sample Debug ISIS SPF Statistics Output

router# debug isis spf packets

ISIS-Stats: Compute L1 SPT, Timestamp 2780.328 seconds
ISIS-Stats: Complete L1 SPT, Compute time 0.004, 1 nodes on SPT
ISIS-Stats: Compute L2 SPT, Timestamp 2780.3336 seconds
ISIS-Stats: Complete L2 SPT, Compute time 0.056, 12 nodes on SPT

2-148 Debug Command Reference

debug isis spf statistics

Table 2-43 describes significant fields shown in Figure 2-81.

Table 2-43 Debug ISDN-Event Field Descriptions

Explanations for individual lines of output from Figure 2-81 follow.

The following lines show the statistical information available for Level 1 ISs:

ISIS-Stats: Compute L1 SPT, Timestamp 2780.328 seconds
ISIS-Stats: Complete L1 SPT, Compute time 0.004, 1 nodes on SPT

The output indicates that the SPF algorithm was applied 2780.328 seconds after the system was up
and configured. Given the existing intra-area topology, it took 4 milliseconds to place one Level 1
IS on the SPT.

The following lines show the statistical information available for Level 2 ISs:

ISIS-Stats: Compute L2 SPT, Timestamp 2780.3336 seconds
ISIS-Stats: Complete L2 SPT, Compute time 0.056, 12 nodes on SPT

This output indicates that the SPF algorithm was applied 2780.3336 seconds after the system was
up and configured. Given the existing intra-domain topology, it took 56 milliseconds to place 12
Level 2 ISs on the SPT.

Field Descr iption

Compute L1 SPT Indicates that Level 1 ISs are to be added to a Level 1 area.

Timestamp Indicates the time at which the SPF algorithm was applied. The
time indicates the number of seconds that have elapsed since the
system has been up and configured.

Complete L1 SPT Indicates that the algorithm has completed for Level 1 routing.

Compute time Indicates the time it took to place the ISs on the shortest path tree
(SPT).

nodes on SPT Indicates the number of ISs that have been added.

Compute L2 SPT Indicates that Level 2 ISs are to be added to domain.

Complete L2 SPT Indicates that the algorithm has completed for Level 2 routing.

 Debug Commands 2-149

debug isis update-packets

debug isis update-packets
Use the debug isis update-packets EXEC command to display various sequence number protocol
data units (PDUs) and link state packets that are detected by a router. This router has been configured
for IS-IS routing. The no form of this command disables debugging output.

debug isis update-packets
no debug isis update-packets

Syntax Description
This command has no arguments or keywords.

Command Mode
EXEC

Sample Display
Figure 2-82 shows sample debug isis update-packets output.

Figure 2-82 Sample Debug ISIS Update- Packets Output

router# debug isis update-packets

ISIS-Update: Sending L1 CSNP on Ethernet0
ISIS-Update: Sending L2 CSNP on Ethernet0
ISIS-Update: Updating L2 LSP
ISIS-Update: Delete link 888.8800.0181.00 from L2 LSP 1600.8906.4022.00-00, seq E
ISIS-Update: Updating L1 LSP
ISIS-Update: Sending L1 CSNP on Ethernet0
ISIS-Update: Sending L2 CSNP on Ethernet0
ISIS-Update: Add link 8888.8800.0181.00 to L2 LSP 1600.8906.4022.00-00, new seq 10,
 len 91
ISIS-Update: Sending L2 LSP 1600.8906.4022.00-00, seq 10, ht 1198 on Tunnel0
ISIS-Update: Sending L2 CSNP on Tunnel0
ISIS-Update: Updating L2 LSP
ISIS-Update: Rate limiting L2 LSP 1600.8906.4022.00-00, seq 11 (Tunnel0)
ISIS-Update: Updating L1 LSP
ISIS-Update: Rec L2 LSP 888.8800.0181.00.00-00 (Tunnel0)
ISIS-Update: PSNP entry 1600.8906.4022.00-00, seq 10, ht 1196

Explanations for individual lines of output from Figure 2-82 follow.

The following lines indicate that the router has sent a periodic Level 1 and Level 2 complete
sequence number PDU on Ethernet 0:

ISIS-Update: Sending L1 CSNP on Ethernet0
ISIS-Update: Sending L2 CSNP on Ethernet0

The following lines indicate that the network service access point (NSAP) identified as
8888.8800.0181.00 was deleted from the Level 2 LSP 1600.8906.4022.00-00. The sequence number
associated with this LSP is 0xE.

ISIS-Update: Updating L2 LSP
ISIS-Update: Delete link 888.8800.0181.00 from L2 LSP 1600.8906.4022.00-00, seq E

The following lines indicate that the NSAP identified as 8888.8800.0181.00 was added to the Level
2 LSP 1600.8906.4022.00-00. The new sequence number associated with this LSP is 0x10.

2-150 Debug Command Reference

debug isis update-packets

ISIS-Update: Updating L1 LSP
ISIS-Update: Sending L1 CSNP on Ethernet0
ISIS-Update: Sending L2 CSNP on Ethernet0
ISIS-Update: Add link 8888.8800.0181.00 to L2 LSP 1600.8906.4022.00-00, new seq 10,
 len 91

The following line indicates that the router sent Level 2 LSP 1600.8906.4022.00-00 with sequence
number 0x10 on Tunnel0:

ISIS-Update: Sending L2 LSP 1600.8906.4022.00-00, seq 10, ht 1198 on Tunnel0

The following lines indicates that a Level 2 LSP could not be transmitted because it was recently
transmitted:

ISIS-Update: Sending L2 CSNP on Tunnel0
ISIS-Update: Updating L2 LSP
ISIS-Update: Rate limiting L2 LSP 1600.8906.4022.00-00, seq 11 (Tunnel0)

The following lines indicate that a Level 2 partial sequence number PDU (PSNP) has been received
on Tunnel0:

ISIS-Update: Updating L1 LSP
ISIS-Update: Rec L2 PSNP from 8888.8800.0181.00 (Tunnel0)

The following line indicates that a Level 2 PSNP with an entry for Level 2 LSP
1600.8906.4022.00-00 has been received. This output is an acknowledgment that a previously sent
LSP was received without an error.

ISIS-Update: PSNP entry 1600.8906.4022.00-00, seq 10, ht 1196

 Debug Commands 2-151

debug lapb

debug lapb
Use the debug lapb EXEC command to display all traffic for interfaces using Link Access Protocl,
Balanced (LAPB) encapsulation. The no form of this command disables debugging output.

debug lapb
no debug lapb

Syntax Description
This command has no arguments or keywords.

Command Mode
EXEC

Usage Guidelines
This command displays information on the X.25 Layer 2 protocol. It is useful to users who are
familiar with the LAPB protocol.

You can use the debug lapb command to determine why X.25 interfaces or LAPB connections are
going up and down. It is also useful for identifying link problems, as evidenced when show
interfaces command displays a high number of rejects or frame errors over the X.25 link.

Caution Because the debug lapb command generates a lot of output, use it when the aggregate of
all LAPB traffic on X.25 and LAPB interfaces is fewer than five frames per second.

Sample Display
Figure 2-83 shows sample debug lapb output. (The numbers 1 through 7 at the top of the display
have been added in order to aid documentation.)

Figure 2-83 Sample Debug LAPB Output

 1 2 3 4 5 6 7
Serial0: LAPB I CONNECT (5) IFRAME P 2 1
Serial0: LAPB O REJSENT (2) REJ F 3
Serial0: LAPB O REJSENT (5) IFRAME 0 3
Serial0: LAPB I REJSENT (2) REJ (C) 7
Serial0: LAPB I DISCONNECT (2) SABM P
Serial0: LAPB O CONNECT (2) UA F
Serial0: LAPB O CONNECT (5) IFRAME 0 0
Serial0: LAPB T1 CONNECT 357964 0

In Figure 2-83 each line of output describes a LAPB event. There are two types of LAPB events:
frame events (when a frame enters or exits the LAPB) and timer events. In Figure 2-83, the last line
describes a timer event; all of the other lines describe frame events. Table 2-44 describes the first
seven fields shown in Figure 2-83.

2-152 Debug Command Reference

debug lapb

Table 2-44 Debug LAPB Field Descriptions

Field Description

First field Interface type and unit number reporting the frame event.

Second field Protocol providing the information.

Third field Frame event type. Possible values follow:

I—Frame input

O—Frame output

T1—T1 timer expired

T3—Interface outage timer expired

T4—Idle link timer expired

Fourth field State of the protocol when the frame event occurred. Possible values
follow:

BUSY (RNR frame received)

CONNECT

DISCONNECT

DISCSENT (disconnect sent)

ERROR (FRMR frame sent)

REJSENT (reject frame sent)

SABMSENT (SABM frame sent)

Fifth field In a frame event, this value is the size of the frame (in bytes). In a timer
event, this value is the current timer value (in milliseconds).

Sixth field In a frame event, this value is the frame type name. Possible values for
frame type names follow:

DISC—Disconnect

DM—Disconnect mode

FRMR—Frame reject

IFRAME—Information frame

ILLEGAL—Illegal LAPB frame

REJ—Reject

RNR—Receiver not ready

RR—Receiver ready

SABM—Set asynchronous balanced mode

SABME—Set asynchronous balanced mode, extended

UA—Unnumbered acknowledgment

In a T1 timer event, this value is the number of retransmissions already
attempted.

 Debug Commands 2-153

debug lapb

A timer event only displays the first six fields of debug lapb output. For frame events, however, the
fields that follow the sixth field document the LAPB control information present in the frame.
Depending on the value of the frame type name shown in the sixth field, these fields may or may not
appear. Descriptions of the fields following the first six fields shown in Figure 2-83 follow.

After the Poll/Final indicator, depending on the frame type, three different types of LAPB control
information can be printed.

For information frames, the value of the N(S) field and the N(R) field will be printed. The N(S) field
of an information frame is the sequence number of that frame, so this field will rotate between 0 and
7 for (modulo 8 operation) or 0 and 127 (for modulo 128 operation) for successive outgoing
information frames and (under normal circumstances) also will rotate for incoming information
frame streams. The N(R) field is a “piggybacked” acknowledgment for the incoming information
frame stream; it informs the other end of the link what sequence number is expected next.

RR, RNR, and REJ frames have an N(R) field, so the value of that field is printed. This field has
exactly the same significance that it does in an information frame.

For the FRMR frame, the error information is decoded to display the rejected control field, V(R) and
V(S) values, the Response/Command flag, and the error flags WXYZ.

In the following example, the output shows an idle link timer action (T4) where the timer expires
twice on an idle link, with the value of T4 set to five seconds:

Serial2: LAPB T4 CONNECT 255748
Serial2: LAPB O CONNECT (2) RR P 5
Serial2: LAPB I CONNECT (2) RR F 5
Serial2: LAPB T4 CONNECT 260748
Serial2: LAPB O CONNECT (2) RR P 5
Serial2: LAPB I CONNECT (2) RR F 5

The next example shows an interface outage timer expiration (T3):

Serial2: LAPB T3 DISCONNECT 273284

The following example output shows an error condition when no DCE to DTE connection exists.
Note that if a frame has only one valid type (for example, a SABM can only be a command frame),
a received frame that has the wrong frame type will be flagged as a receive error (R/ERR in the
following output). This feature makes misconfigured links (DTE-DTE or DCE-DCE) easy to spot.
Other, less common errors will be highlighed too, such as a too-short or too-long frame, or an invalid
address (neither command nor response):

Serial2: LAPB T1 SABMSENT 1026508 1
Serial2: LAPB O SABMSENT (2) SABM P

Seventh field

(Note that this field will not print
if the frame control field is
required to appear as either a
command or a response, and that
frame type is correct.)

This field is only present in frame events. It describes the frame type
identified by the LAPB address and Poll/Final bit. Possible values are as
follows:

(C)—Command frame

(R)—Response frame

P—Command/Poll frame

F—Response/Final frame

/ERR—Command/Response type is invalid for the control field. An
?ERR generally means that the DTE/DCE assignments are not correct
for this link.

BAD-ADDR—Address field is neither Command nor Response

Field Description

2-154 Debug Command Reference

debug lapb

Serial2: LAPB I SABMSENT (2) SABM (R/ERR)
Serial2: LAPB T1 SABMSENT 1029508 2
Serial2: LAPB O SABMSENT (2) SABM P
Serial2: LAPB I SABMSENT (2) SABM (R/ERR)

The output in the next example shows the router is misconfigured and has a standard (modulo 8)
interface connected to an extended (modulo 128) interface. This condition is indicated by the SABM
balanced mode and SABME balanced mode extended messages appearing on the same interface:

Serial2: LAPB T1 SABMSENT 1428720 0
Serial2: LAPB O SABMSENT (2) SABME P
Serial2: LAPB I SABMSENT (2) SABM P
Serial2: LAPB T1 SABMSENT 1431720 1
Serial2: LAPB O SABMSENT (2) SABME P
Serial2: LAPB I SABMSENT (2) SABM P

 Debug Commands 2-155

debug lat packet

debug lat packet
Use the debug lat packet EXEC command to display information on all LAT events. The no form
of this command disables debugging output.

debug lat packet
no debug lat packet

Syntax Description
This command has no arguments or keywords.

Command Mode
EXEC

Usage Guidelines
For each datagram (packet) received or transmitted, a message is logged to the console.

Note This command severely impacts LAT performance and is intended for troubleshooting use
only.

Sample Display
Figure 2-84 shows sample debug lat packet output.

Figure 2-84 Sample Debug LAT Packet Output

router# debug lat packet

LAT: I int=Ethernet0, src=0000.0c01.0509, dst=0900.2b00.000f, type=0, M=0, R=0
LAT: I int=Ethernet0, src=0800.2b11.2d13, dst=0000.0c01.7876, type=A, M=0, R=0
LAT: O dst=0800.2b11.2d13, int=Ethernet0, type= A, M=0, R=0, len= 20, next 0 ref 1

The second line of output in Figure 2-84 describes a packet that is input to the router. Table 2-45
describes the fields in this line.

Table 2-45 Debug LAT Packet Field Descriptions

Field Description

LAT: Indicates that this display shows LAT debugging output.

I Indicates that this line of output describes a packet that is input to the
router (I) or output from the router (O).

int = Ethernet0 Indicates the interface on which the packet event took place.

src = 0800.2b11.2d13 Indicates the source address of the packet.

dst = 0000.0c01.7876 Indicates the destination address of the packet.

2-156 Debug Command Reference

debug lat packet

The third line of output in Figure 2-84 describes a packet that is output from the router. Table 2-46
describes the last three fields in this line.

Table 2-46 Debug LAT Packet Field Descriptions

type = A Indicates the message type (in hex). Possible values are as follows:

0 = Run Circuit

1 = Start Circuit

2 = Stop Circuit

A = Service Announcement

C = Command

D = Status

E = Solicit Information

F = Response Information

Field Description

len= 20 Indicates the length (hex) of the packet in bytes.

next 0 Indicates the link on transmit queue.

ref 1 Indicates the count of packet users.

Field Description

 Debug Commands 2-157

debug lex rcmd

debug lex rcmd
Use the debug lex rcmd EXEC command to debug LAN Extender remote commands. The no form
of this command disables debugging output.

debug lex rcmd
no debug lex rcmd

Syntax Description
This command has no arguments or keywords.

Command Mode
EXEC

Sample Display
Figure 2-85 shows sample debug lex rcmd output.

Figure 2-85 Sample Debug LEX Rcmd Output

router# debug lex rcmd

LEX-RCMD: "shutdown" command received on unbound serial interface- Serial0
LEX-RCMD: Lex0 : "inventory" command received
Rcvd rcmd: FF 03 80 41 41 13 00 1A 8A 00 00 16 01 FF 00 00
Rcvd rcmd: 00 02 00 00 07 5B CD 15 00 00 0C 01 15 26
LEX-RCMD: ACK or response received on Serial0 without a corresponding ID
LEX-RCMD: REJ received
LEX-RCMD: illegal CODE field received in header: <number>
LEX-RCMD: illegal length for Lex0 : "lex input-type-list"
LEX-RCMD: Lex0 is not bound to a serial interface
LEX-RCMD: encapsulation failure
LEX-RCMD: timeout for Lex0: "lex priority-group" command
LEX-RCMD: re-transmitting Lex0: "lex priority-group" command
LEX-RCMD: lex_setup_and_send called with invalid parameter
LEX-RCMD: bind occurred on shutdown LEX interface
LEX-RCMD: Serial0- No free Lex interface found with negotiated MAC address 0000.0c00.d8db
LEX-RCMD: No active Lex interface found for unbind

Explanations for individual lines of output from Figure 2-85 follow.

The following output indicates that a LAN Extender remote command packet was received on a
serial interface which is not bound to a LAN Extender interface.

LEX-RCMD: "shutdown" command received on unbound serial interface- Serial0

This message can occur for any of the LAN Extender remote commands. Possible causes of this
message are as follows:

• FLEX state machine software error

• Serial line momentarily goes down, which is detected by the host but not by FLEX

The following output indicates that a LAN Extender remote command response has been received.
The hexadecimal values are for internal use only:

LEX-RCMD: Lex0 : "inventory" command received
Rcvd rcmd: FF 03 80 41 41 13 00 1A 8A 00 00 16 01 FF 00 00

2-158 Debug Command Reference

debug lex rcmd

Rcvd rcmd: 00 02 00 00 07 5B CD 15 00 00 0C 01 15 26

The following output indicates that when the host router originates a LAN Extender remote
command to FLEX, it generates an 8-bit identifier which is used to associate a command with its
corresponding response:

LEX-RCMD: ACK or response received on Serial0 without a corresponding ID

This message could be displayed for any of the following reasons:

• FLEX was very busy at the time that the command arrived and could not send an immediate
response. The command timed out on the host router and then FLEX finally sent the response.

• Transmission error.

• Software error.

Possible responses to Config-Request are Config-ACK, Config-NAK, and Config-Rej. The
following output shows that some of the options in the Config-Request are not recognizable or are
not acceptable to FLEX due to transmission errors or software errors:

LEX-RCMD: REJ received

The following output shows that a LAN Extender remote command response was received but that
the CODE field in the header was incorrect:

LEX-RCMD: illegal CODE field received in header: <number>

The following output indicates that a LAN Extender remote command response was received but
that it had an incorrect length field. This message can occur for any of the LAN Extender remote
commands:

LEX-RCMD: illegal length for Lex0 : "lex input-type-list"

The following output shows that a host router was about to send a remote command when the serial
link went down:

LEX-RCMD: Lex0 is not bound to a serial interface

The following output shows that the serial interface's encapsulation routine failed to encapsulate the
remote command datagram because the LEX-NCP was not in the OPEN state. Due to the way the
PPP state machine is implemented, it is normal to see a single encapsulation failure for each remote
command that gets sent at bind time.

LEX-RCMD: encapsulation failure

The following output shows that the timer expired for the given remote command without having
received a response from the FLEX device. This message can occur for any of the LAN Extender
remote commands:

 LEX-RCMD: timeout for Lex0: "lex priority-group" command

This message could be displayed for any of the following reasons:

• FLEX too busy to respond

• Transmission failure

• Software error

The following output indicates that the host is retransmitting the remote command after a timeout:

LEX-RCMD: re-transmitting Lex0: "lex priority-group" command

 Debug Commands 2-159

debug lex rcmd

The following output indicates that an illegal parameter was passed to the lex_setup_and_send
routine. This message could be displayed for due to a host software error:

LEX-RCMD: lex_setup_and_send called with invalid parameter

The following output is informational and shows when a bind occurs on a shutdown interface:

LEX-RCMD: bind occurred on shutdown LEX interface

The following output shows that LEX-NCP reached the open state and a bind operation was
attempted with the FLEX's MAC address, but no free LAN Extender interfaces were found that were
configured with that MAC address. This output can occur when the network administrator does not
configure a LAN Extender interface with the correct MAC address.

LEX-RCMD: Serial0- No free Lex interface found with negotiated MAC address 0000.0c00.d8db

The following output shows that the serial line that was bound to the LAN Extender interface went
down and the unbind routine was called, but when the list of active LAN Extender interfaces was
searched, the LAN Extender interface corresponding to the serial interface was not found. This
output usually occurs because of a host software error:

LEX-RCMD: No active Lex interface found for unbind

2-160 Debug Command Reference

debug lnm events

debug lnm events
Use the debug lnm events EXEC command to display any unusual events that occur on a Token
Ring network. These events include stations reporting errors or error thresholds being exceeded. The
no form of this command disables debugging output.

debug lnm events
no debug lnm events

Syntax Description
This command has no arguments or keywords.

Command Mode
EXEC

Sample Display
Figure 2-86 shows sample debug lnm events output.

Figure 2-86 Sample Debug LNM Events Output

router# debug lnm events

IBMNM3: Adding 0000.3001.1166 to error list
IBMNM3: Station 0000.3001.1166 going into preweight condition
IBMNM3: Station 0000.3001.1166 going into weight condition
IBMNM3: Removing 0000.3001.1166 from error list
LANMGR0: Beaconing is present on the ring
LANMGR0: Ring is no longer beaconing
IBMNM3: Beaconing, Postmortem Started
IBMNM3: Beaconing, heard from 0000.3000.1234
IBMNM3: Beaconing, Postmortem Next Stage
IBMNM3: Beaconing, Postmortem Finished

Explanations for the messages shown in Figure 2-86 follow.

The following message indicates that station 0000.3001.1166 reported errors and has been added to
the list of stations reporting errors. This station is located on Ring 3.

IBMNM3: Adding 0000.3001.1166 to error list

The following message indicates that station 0000.3001.1166 has passed the “early warning”
threshold for error counts:

IBMNM3: Station 0000.3001.1166 going into preweight condition

The following message indicates that station 0000.3001.1166 is experiencing a severe number of
errors:

IBMNM3: Station 0000.3001.1166 going into weight condition

The following message indicates that the error counts for station 0000.3001.1166 have all decayed
to zero, so this station is being removed from the list of stations that have reported errors:

IBMNM3: Removing 0000.3001.1166 from error list

 Debug Commands 2-161

debug lnm events

The following message indicates that Ring 0 has entered failure mode. This ring number is assigned
internally.

LANMGR0: Beaconing is present on the ring

The following message indicates that Ring 0 is no longer in failure mode. This ring number is
assigned internally.

LANMGR0: Ring is no longer beaconing

The following message indicates that the router is beginning its attempt to determine whether any
stations left the ring during the automatic recovery process for the last beaconing failure. The router
attempts to contact stations that were part of the fault domain to detect whether they are still
operating on the ring.

IBMNM3: Beaconing, Postmortem Started

The following message indicates that the router is attempting to determine whether or not any
stations left the ring during the automatic recovery process for the last beaconing failure. It received
a response from station 0000.3000.1234, one of the two stations in the fault domain.

IBMNM3: Beaconing, heard from 0000.3000.1234

The following message indicates that the router is attempting to determine whether any stations left
the ring during the automatic recovery process for the last beaconing failure. It is initiating another
attempt to contact the two stations in the fault domain.

IBMNM3: Beaconing, Postmortem Next Stage

The following message indicates that the router has attempted to determine whether any stations left
the ring during the automatic recovery process for the last beaconing failure. It has successfully
heard back from both stations that were part of the fault domain.

IBMNM3: Beaconing, Postmortem Finished

Explanations follow for other messages that the debug lnm events command can generate.

The following message indicates that the router is out of memory:

LANMGR: memory request failed, find_or_build_station()

The following message indicates that Ring 3 is experiencing a large number of errors that cannot be
attributed to any individual station:

IBMNM3: Non-isolating error threshold exceeded

The following message indicates that a station (or stations) on Ring 3 are receiving frames faster
than they can be processed.

IBMNM3: Adapters experiencing congestion

The following message indicates that the beaconing has lasted for over 1 minute and is considered
a “permanent” error:

IBMNM3: Beaconing, permanent

The following message indicates that the beaconing lasted for less than 1 minute. The router is
attempting to determine whether either station in the fault domain left the ring.

IBMNM: Beaconing, Destination Started

In the preceding line of output, the following can replace “Started”: “Next State”, “Finished”,
“Timed out”, and “Cannot find station n”.

2-162 Debug Command Reference

debug lnm llc

debug lnm llc
Use the debug lnm llc EXEC command to display all communication between the router/bridge and
the LAN Network Managers (LNMs) that have connections to it. The no form of this command
disables debugging output.

debug lnm llc
no debug lnm llc

Syntax Description
This command has no arguments or keywords.

Command Mode
EXEC

Usage Guidelines
One line is displayed for each message sent or received.

Sample Display
Figure 2-87 shows sample debug lnm llc output.

Figure 2-87 Sample Debug LNM LLC Output

router# debug lnm llc

IBMNM: Received LRM Set Reporting Point frame from 1000.5ade.0d8a.
IBMNM: found bridge: 001-2-00A, addresses: 0000.3040.a630 4000.3040.a630
IBMNM: Opening connection to 1000.5ade.0d8a on TokenRing0
IBMNM: Sending LRM LAN Manager Accepted to 1000.5ade.0d8a on link 0.
IBMNM: sending LRM New Reporting Link Established to 1000.5a79.dbf8 on link 1.
IBMNM: Determining new controlling LNM
IBMNM: Sending Report LAN Manager Control Shift to 1000.5ade.0d8a on link 0.
IBMNM: Sending Report LAN Manager Control Shift to 1000.5a79.dbf8 on link 1.

IBMNM: Bridge 001-2-00A received Request Bridge Status from 1000.5ade.0d8a.
IBMNM: Sending Report Bridge Status to 1000.5ade.0d8a on link 0.
IBMNM: Bridge 001-2-00A received Request REM Status from 1000.5ade.0d8a.
IBMNM: Sending Report REM Status to 1000.5ade.0d8a on link 0.
IBMNM: Bridge 001-2-00A received Set Bridge Parameters from 1000.5ade.0d8a.
IBMNM: Sending Bridge Parameters Set to 1000.5ade.0d8a on link 0.
IBMNM: sending Bridge Params Changed Notification to 1000.5a79.dbf8 on link 1.
IBMNM: Bridge 001-2-00A received Set REM Parameters from 1000.5ade.0d8a.
IBMNM: Sending REM Parameters Set to 1000.5ade.0d8a on link 0.
IBMNM: sending REM Parameters Changed Notification to 1000.5a79.dbf8 on link 1.
IBMNM: Bridge 001-2-00A received Set REM Parameters from 1000.5ade.0d8a.
IBMNM: Sending REM Parameters Set to 1000.5ade.0d8a on link 0.
IBMNM: sending REM Parameters Changed Notification to 1000.5a79.dbf8 on link 1.
IBMNM: Received LRM Set Reporting Point frame from 1000.5ade.0d8a.
IBMNM: found bridge: 001-1-00A, addresses: 0000.3080.2d79 4000.3080.2d7

As Figure 2-87 indicates, debug lnm llc output can vary somewhat in format. Table 2-47 describes
significant fields shown in the first line of output in Figure 2-87.

 Debug Commands 2-163

debug lnm llc

Table 2-47 Debug LNM LLC Field Descriptions

Explanations for other types of messages shown in Figure 2-87 follow.

The following message indicates that the lookup for the bridge with which the LAN Manager was
requesting to communicate was successful:

IBMNM: found bridge: 001-2-00A, addresses: 0000.3040.a630 4000.3040.a630

Field Description

IBMNM: This line of output displays LLC-level debugging information.

Received The router received a frame. The other possible value is Sending, to
indicate that the router is sending a frame.

LRM The function of the LLC-level software that is communicating:

CRS—Configuration Report Server

LBS—LAN Bridge Server

LRM—LAN Reporting Manager

REM—Ring Error Monitor

RPS—Ring Parameter Server

RS—Ring Station

Set Reporting Point Name of the specific frame that the router sent or received. Possible
values include the following:

Bridge Counter Report

Bridge Parameters Changed Notification

Bridge Parameters Set

CRS Remove Ring Station

CRS Report NAUN Change

CRS Report Station Information

CRS Request Station Information

CRS Ring Station Removed

LRM LAN Manager Accepted

LRM Set Reporting Point

New Reporting Link Established

REM Forward MAC Frame

REM Parameters Changed Notification

REM Parameters Set

Report Bridge Status

Report LAN Manager Control Shift

Report REM Status

Request Bridge Status

Request REM Status

Set Bridge Parameters

Set REM Parameters

from 1000.5ade.0d8a If the router has received the frame, this address is the source address of
the frame. If the router is sending the frame, this address is the
destination address of the frame.

2-164 Debug Command Reference

debug lnm llc

The following message is self-explanatory:

IBMNM: Opening connection to 1000.5ade.0d8a on TokenRing0

The following message indicates that a LAN Manager has connected or disconnected from an
internal bridge and that the router computes which LAN Manager is allowed to change parameters:

IBMNM: Determining new controlling LNM

The following line of output indicates which bridge in the router is the destination for the frame:

IBMNM: Bridge 001-2-00A received Request Bridge Status from 1000.5ade.0d8a.

 Debug Commands 2-165

debug lnm mac

debug lnm mac
Use the debug lnm mac EXEC command to display all management communication between the
router/bridge and all stations on the local Token Rings. The no form of this command disables
debugging output.

debug lnm mac
no debug lnm mac

Syntax Description
This command has no arguments or keywords.

Command Mode
EXEC

Usage Guidelines
One line is displayed for each message sent or received.

Sample Display
Figure 2-88 shows sample debug lnm mac output.

Figure 2-88 Sample Debug LNM MAC Output

router# debug lnm mac

LANMGR0: RS received request address from 4000.3040.a670.
LANMGR0: RS sending report address to 4000.3040.a670.
LANMGR0: RS received request state from 4000.3040.a670.
LANMGR0: RS sending report state to 4000.3040.a670.
LANMGR0: RS received request attachments from 4000.3040.a670.
LANMGR0: RS sending report attachments to 4000.3040.a670.
LANMGR2: RS received ring purge from 0000.3040.a630.
LANMGR2: CRS received report NAUN change from 0000.3040.a630.
LANMGR2: RS start watching ring poll.
LANMGR0: CRS received report NAUN change from 0000.3040.a630.
LANMGR0: RS start watching ring poll.
LANMGR2: REM received report soft error from 0000.3040.a630.
LANMGR0: REM received report soft error from 0000.3040.a630.
LANMGR2: RS received ring purge from 0000.3040.a630.
LANMGR2: RS received AMP from 0000.3040.a630.
LANMGR2: RS received SMP from 0000.3080.2d79.
LANMGR2: CRS received report NAUN change from 1000.5ade.0d8a.
LANMGR2: RS start watching ring poll.
LANMGR0: RS received ring purge from 0000.3040.a630.
LANMGR0: RS received AMP from 0000.3040.a630.
LANMGR0: RS received SMP from 0000.3080.2d79.
LANMGR0: CRS received report NAUN change from 1000.5ade.0d8a.
LANMGR0: RS start watching ring poll.
LANMGR2: RS received SMP from 1000.5ade.0d8a.
LANMGR2: RPS received request initialization from 1000.5ade.0d8a.
LANMGR2: RPS sending initialize station to 1000.5ade.0d8a.

Table 2-48 describes significant fields shown in the first line of output in Figure 2-88.

2-166 Debug Command Reference

debug lnm mac

Table 2-48 Debug LNM MAC Field Descriptions

As Figure 2-88 indicates, all debug lnm mac messages follow the format described in Table 2-48
except the following:

LANMGR2: RS start watching ring poll
LANMGR2: RS stop watching ring poll

These messages indicate that the router starts and stops receiving AMP and SMP frames. These
frames are used to build a current picture of which stations are on the ring.

Field Description

LANMGR0: LANMGR indicates that this line of output displays MAC-level
debugging information. 0 indicates the number of the Token Ring
interface associated with this line of debugging output.

RS Indicates which function of the MAC-level software is communicating:

CRS—Configuration Report Server

REM—Ring Error Monitor

RPS—Ring Parameter Server

RS—Ring Station

received Indicates that the router received a frame. The other possible value is
“sending”, to indicate that the router is sending a frame.

request address Indicates the name of the specific frame that the router sent or received.
Possible values include the following:

AMP

initialize station

report address

report attachments

report nearest active upstream neighbor (NAUN) change

report soft error

report state

request address

request attachments

request initialization

request state

ring purge

SMP

from 4000.3040.a670 Indicates the source address of the frame, if the router has received the
frame. If the router is sending the frame, this address is the destination
address of the frame.

 Debug Commands 2-167

debug local-ack state

debug local-ack state
Use the debug local-ack state EXEC command to display the new and the old state conditions
whenever there is a state change in the local acknowledgment state machine. The no form of this
command disables debugging output.

debug local-ack state
no debug local-ack state

Syntax Description
This command has no arguments or keywords.

Command Mode
EXEC

Sample Display
Figure 2-89 shows sample debug local-ack state output.

Figure 2-89 Sample Debug Local-Ack State Output

router# debug local-ack state

LACK_STATE: 2370300, hashp 2AE628, old state = disconn, new state = awaiting
LLC2 open to finish
LACK_STATE: 2370304, hashp 2AE628, old state = awaiting LLC2 open to finish,
new state = connected
LACK_STATE: 2373816, hashp 2AE628, old state = connected, new state = disconnected
LACK_STATE: 2489548, hashp 2AE628, old state = disconn, new state = awaiting
LLC2 open to finish
LACK_STATE: 2489548, hashp 2AE628, old state = awaiting LLC2 open to finish,
new state = connected
LACK_STATE: 2490132, hashp 2AE628, old state = connected, new state = awaiting
linkdown response
LACK_STATE: 2490140, hashp 2AE628, old state = awaiting linkdown response,
new state = disconnected
LACK_STATE: 2497640, hashp 2AE628, old state = disconn, new state = awaiting
LLC2 open to finish
LACK_STATE: 2497644, hashp 2AE628, old state = awaiting LLC2 open to finish,
new state = connected

2-168 Debug Command Reference

debug local-ack state

Table 2-49 describes significant fields shown in Figure 2-89.

Table 2-49 Debug Local-Ack State Field Descriptions

Field Description

LACK_STATE: Indication that this packet describes a state change in the local
acknowledgment state machine.

2370300 System clock.

hashp 2AE628 Internal control block pointer used by technical support staff for
debugging purposes.

old state = disconn The old state condition in the local acknowledgment state machine.
Possible values include the following:

Disconn (disconnected)

awaiting LLC2 open to finish

connected

awaiting linkdown response

new state = awaiting LLC2 open
to finish

The new state condition in the local acknowledgment state machine.
Possible values include the following:

Disconn (disconnected)

awaiting LLC2 open to finish

connected

awaiting linkdown response

 Debug Commands 2-169

debug netbios-name-cache

debug netbios-name-cache
Use the debug netbios-name-cache EXEC command to display name caching activities on a router.
The no form of this command disables debugging output.

debug netbios-name-cache
no debug netbios-name-cache

Syntax Description
This command has no arguments or keywords.

Command Mode
EXEC

Usage Guidelines
Examine the display to diagnose problems in NetBIOS name caching.

Sample Display
Figure 2-90 illustrates a collection of sample debug netbios-name-cache output listings.

Figure 2-90 Sample Debug NetBIOS-Name-Cache Output

router# debug netbios-name-cache

NETBIOS: L checking name ORINDA , vrn=0
NetBIOS name cache table corrupted at offset 13
NetBIOS name cache table corrupted at later offset, at location 13
NETBIOS: U chk name=ORINDA, addr=1000.4444.5555, idb=TR1, vrn=0, type=1
NETBIOS: U upd name=ORINDA,addr=1000.4444.5555,idb=TR1,vrn=0,type=1
NETBIOS: U add name=ORINDA,addr=1000.4444.5555,idb=TR1,vrn=0,type=1
NETBIOS: U no memory to add cache entry. name=ORINDA,addr=1000.4444.5555
NETBIOS: Invalid structure detected in netbios_name_cache_ager
NETBIOS: flushed name=ORINDA, addr=1000.4444.5555
NETBIOS: expired name=ORINDA, addr=1000.4444.5555
NETBIOS: removing entry. name=ORINDA,addr=1000.4444.5555,idb=TR1,vrn=0
NETBIOS: Tossing ADD_NAME/STATUS/NAME/ADD_GROUP frame
NETBIOS: Lookup Failed -- not in cache
NETBIOS: Lookup Worked, but split horizon failed
NETBIOS: Could not find RIF entry
NETBIOS: Cannot duplicate packet in netbios_name_cache_proxy

Note The sample display in Figure 2-90 is a composite output. Debugging output that you actually
see would not necessarily occur in this sequence.

Table 2-50 describes selected debug netbios-name-cache output fields.

2-170 Debug Command Reference

debug netbios-name-cache

Table 2-50 Debug NetBIOS-Name-Cache Field Descriptions

The following discussion briefly outlines each line shown in the example provided in Figure 2-90.

With the first line of output, the router declares that it has examined the NetBIOS name cache table
for the machine name ORINDA and that the packet that prompted the lookup came from virtual ring
0. In this case, this packet comes from a real interface—virtual ring number 0 is not valid.

NETBIOS: L checking name ORINDA, vrn=0

The following two lines indicate that an invalid NetBIOS entry exists and that the corrupted memory
was detected. The invalid memory will be removed from the table; no action is needed.

NetBIOS name cache table corrupted at offset 13
NetBIOS name cache table corrupted at later offset, at location 13

The following line indicates that the router attempted to check the NetBIOS cache table for the name
ORINDA with MAC address 1000.4444.5555. This name was obtained from Token Ring interface
1. The type field indicates that the name was learned from traffic.

NETBIOS: U chk name=ORINDA, addr=1000.4444.5555, idb=TR1, vrn=0, type=1

The following line indicates that the NetBIOS name ORINDA is in the name cache table and was
updated to the current value:

NETBIOS: U upd name=ORINDA,addr=1000.4444.5555,idb=TR1,vrn=0,type=1

The following line indicates that the NetBIOS name ORINDA is not in the table and must be added
to the table:

NETBIOS: U add name=ORINDA,addr=1000.4444.5555,idb=TR1,vrn=0,type=1

The following line indicates that there was insufficient cache buffer space when the router tried to
add this name:

NETBIOS: U no memory to add cache entry. name=ORINDA,addr=1000.4444.5555

The following line indicates that the NetBIOS ager detects an invalid memory in the cache. The
router clears the entry; no action is needed.

NETBIOS: Invalid structure detected in netbios_name_cache_ager

Field Description

NETBIOS This is a NetBIOS name caching debugging output.

L, U L means lookup; U means update.

vrn=0 Router determined that the packet comes from virtual ring number 0; this
packet actually comes from a real Token Ring interface, because virtual
ring number 0 is not valid.

addr=1000.4444.5555 MAC address 1000.4444.5555 of machine being looked up in NetBIOS
name cache.

idb=TR1 Indication that name of machine was learned from Token Ring interface
number 1; idb translates into interface data block.

type=1 The type field indicates the way that the router learned about the
specified machine. The possible values for type are as follows:

1 = Learned from traffic

2 = Learned from a remote peer

4, 8 = Statically entered via the router’s configuration

 Debug Commands 2-171

debug netbios-name-cache

The following line indicates that the entry for ORINDA was flushed from the cache table:

NETBIOS: flushed name=ORINDA, addr=1000.4444.5555

The following line indicates that the entry for ORINDA timed out and was flushed from the cache
table:

NETBIOS: expired name=ORINDA, addr=1000.4444.5555

The following line indicates that the router removed the ORINDA entry from its cache table:

NETBIOS: removing entry. name=ORINDA,addr=1000.4444.5555,idb=TR1,vrn=0

The following line indicates that the router discarded a NetBIOS packet of type ADD_NAME,
STATUS, NAME_QUERY, or ADD_GROUP. These packets are discarded when multiple copies of
one of these packet types are detected during a certain period of time.

NETBIOS: Tossing ADD_NAME/STATUS/NAME/ADD_GROUP frame

The following line indicates that the system could not find a NetBIOS name in the cache:

NETBIOS: Lookup Failed -- not in cache

The following line indicates that the system found the destination NetBIOS name in the cache, but
located on the same ring from which the packet came. The router will drop this packet because the
packet should not leave this ring.

NETBIOS: Lookup Worked, but split horizon failed

The following line indicates that the system found the NetBIOS name in the cache, but the router
could not find the corresponding RIF. The packet will be sent as a broadcast frame.

NETBIOS: Could not find RIF entry

The following line indicates that no buffer was available to create a NetBIOS name-cache proxy. A
proxy will not be created for the packet, which will be forwarded as a broadcast frame.

NETBIOS: Cannot duplicate packet in netbios_name_cache_proxy

2-172 Debug Command Reference

debug packet

debug packet
Use the debug packet EXEC command to display information on packets that the network can not
classify. The no form of this command disables debugging output.

debug packet
no debug packet

Syntax Description
This command has no arguments or keywords.

Command Mode
EXEC

Sample Display
Figure 2-91 shows sample debug packet output. Notice how similar it is to debug broadcast
output.

Figure 2-91 Sample Debug Packet Output

router# debug packet

Ethernet0: Unknown ARPA, src 0000.0c00.6fa4, dst ffff.ffff.ffff, type 0x0a0
data 00000c00f23a00000c00ab45, len 60
Serial3: Unknown HDLC, size 64, type 0xaaaa, flags 0x0F00
Serial2: Unknown PPP, size 128
Serial7: Unknown FRAME-RELAY, size 174, type 0x5865, DLCI 7a
Serial0: compressed TCP/IP packet dropped

Table 2-51 describes significant fields shown in Figure 2-91.

Table 2-51 Debug Packet Field Descriptions

Field Description

Ethernet0 Name of the Ethernet interface that received the packet.

Unknown The network could not classify this packet. Examples include packets
with unknown link types.

ARPA This packet uses ARPA-style encapsulation. Possible encapsulation
styles vary depending on the media command mode (MCM) and
encapsulation style, as follows:

Ethernet (MCM)

Encapsulation Style
APOLLO
ARP
ETHERTALK
ISO1
ISO3
LLC2
NOVELL-ETHER
SNAP

 Debug Commands 2-173

debug packet

FDDI (MCM)

Encapsulation Style
APOLLO
ISO1
ISO3
LLC2
SNAP

Frame Relay

Encapsulation Style
BRIDGE
FRAME-RELAY

Serial (MCM)

Encapsulation Style
BFEX25
BRIDGE
DDN-X25
DDNX25-DCE
ETHERTALK
FRAME-RELAY
HDLC
HDH
LAPB
LAPBDCE
MULTI-LAPB
PPP
SDLC-PRIMARY
SDLC-SECONDARY
SLIP
SMDS
STUN
X25
X25-DCE

Token Ring (MCM)

Encapsulation Style
3COM-TR
ISO1
ISO3
MAC
LLC2
NOVELL-TR
SNAP
VINES-TR

src 0000.0c00.6fa4 MAC address of the node generating the packet.

dst.ffff.ffff.ffff MAC address of the destination node for the packet.

type 0x0a0 Packet type.

data ... First 12 bytes of the datagram following the MAC header.

len 60 Length of the message in bytes that the interface received from the
wire.

size 64 Length of the message in bytes that the interface received from the
wire. Equivalent to the len field.

flags 0x0F00 HDLC or PP flags field.

Field Description

2-174 Debug Command Reference

debug packet

DLCI 7a The DLCI number on Frame Relay.

compressed TCP/IP packet
dropped

This message can occur when TCP header compression is enabled on
an interface and the packet does not turn out to be HDLC or X25 after
classification.

Field Description

 Debug Commands 2-175

debug ppp

debug ppp
Use the debug ppp EXEC command to display information on traffic and exchanges in an
internetwork implementing the Point-to-Point Protocol (PPP). The no form of this command
disables debugging output.

debug ppp { packet | negotiation | error | chap}
no debug ppp { packet | negotiation | error | chap}

Syntax Description

Command Mode
EXEC

Usage Guidelines
Use the debug ppp commands when trying to find the following:

• The Network Control Protocols (NCPs) that are supported on either end of a PPP connection

• Any loops that might exist in a PPP internetwork

• Nodes that are (or are not) properly negotiating PPP connections

• Errors that have occurred over the PPP connection

• Causes for CHAP session failures

• Causes for PAP session failures

Refer to Internet RFCs 1331, 1332, and 1333 for details concerning PPP-related nomenclature and
protocol information.

Sample Displays
Figure 2-92 shows sample debug ppp packet output as seen from the Link Quality Monitor (LQM)
side of the connection. This display example depicts packet exchanges under normal PPP operation.

packet Causes the debug ppp command to display PPP packets
being sent and received. (This command displays low-level
packet dumps.)

negotiation Causes the debug ppp command to display PPP packets
transmitted during PPP startup, where PPP options are
negotiated.

error Causes the debug ppp command to display protocol errors
and error statistics associated with PPP connection
negotiation and operation.

chap Causes the debug ppp command to display Challenge
Authentication Protocol (CHAP) packet exchanges and
Password Authentication Protocol (PAP) exchanges.

2-176 Debug Command Reference

debug ppp

Figure 2-92 Sample Debug PPP Packet Output

router# debug ppp packet

PPP Serial4(o): lcp_slqr() state = OPEN magic = D21B4, len = 48
PPP Serial4(i): pkt type 0xC025, datagramsize 52
PPP Serial4(i): lcp_rlqr() state = OPEN magic = D3454, len = 48
PPP Serial4(i): pkt type 0xC021, datagramsize 16
PPP Serial4: I LCP ECHOREQ(9) id 3 (C) magic D3454
PPP Serial4: input(C021) state = OPEN code = ECHOREQ(9) id = 3 len = 12
PPP Serial4: O LCP ECHOREP(A) id 3 (C) magic D21B4
PPP Serial4(o): lcp_slqr() state = OPEN magic = D21B4, len = 48
PPP Serial4(i): pkt type 0xC025, datagramsize 52
PPP Serial4(i): lcp_rlqr() state = OPEN magic = D3454, len = 48
PPP Serial4(i): pkt type 0xC021, datagramsize 16
PPP Serial4: I LCP ECHOREQ(9) id 4 (C) magic D3454
PPP Serial4: input(C021) state = OPEN code = ECHOREQ(9) id = 4 len = 12
PPP Serial4: O LCP ECHOREP(A) id 4 (C) magic D21B4
PPP Serial4(o): lcp_slqr() state = OPEN magic = D21B4, len = 48
PPP Serial4(i): pkt type 0xC025, datagramsize 52
PPP Serial4(i): lcp_rlqr() state = OPEN magic = D3454, len = 48
PPP Serial4(i): pkt type 0xC021, datagramsize 16
PPP Serial4: I LCP ECHOREQ(9) id 5 (C) magic D3454
PPP Serial4: input(C021) state = OPEN code = ECHOREQ(9) id = 5 len = 12
PPP Serial4: O LCP ECHOREP(A) id 5 (C) magic D21B4
PPP Serial4(o): lcp_slqr() state = OPEN magic = D21B4, len = 48
PPP Serial4(i): pkt type 0xC025, datagramsize 52
PPP Serial4(i): lcp_rlqr() state = OPEN magic = D3454, len = 48
PPP Serial4(i): pkt type 0xC021, datagramsize 16
PPP Serial4: I LCP ECHOREQ(9) id 6 (C) magic D3454
PPP Serial4: input(C021) state = OPEN code = ECHOREQ(9) id = 6 len = 12
PPP Serial4: O LCP ECHOREP(A) id 6 (C) magic D21B4
PPP Serial4(o): lcp_slqr() state = OPEN magic = D21B4, len = 48
PPP Serial4(i): pkt type 0xC025, datagramsize 52
PPP Serial4(i): lcp_rlqr() state = OPEN magic = D3454, len = 48
PPP Serial4(i): pkt type 0xC021, datagramsize 16
PPP Serial4: I LCP ECHOREQ(9) id 7 (C) magic D3454
PPP Serial4: input(C021) state = OPEN code = ECHOREQ(9) id = 7 len = 12
PPP Serial4: O LCP ECHOREP(A) id 7 (C) magic D21B4
PPP Serial4(o): lcp_slqr() state = OPEN magic = D21B4, len = 48

Table 2-52 describes significant fields shown in Figure 2-92.

Table 2-52 Debug PPP Packet Field Descriptions

Field Description

PPP This is PPP debugging output.

Serial4 Interface number associated with this debugging information.

(o), O This packet was detected as an output packet.

(i) I This packet was detected as an input packet.

lcp_slqr() Procedure name; running LQM, send a Link Quality Report (LQR).

lcp_rlqr() Procedure name; running LQM, received an LQR.

input (C025) The router received a packet of the specified packet type (in hex). A
value of C025 indicates packet of type LQM.

state = OPEN PPP state; normal state is OPEN.

 Debug Commands 2-177

debug ppp

To elaborate on the displayed output, consider the partial exchange in Figure 2-93. This sequence
shows that one side is using ECHO for its keepalives and the other side is using LQRs.

Figure 2-93 Partial Debug PPP Packet Output

PPP Serial4(o): lcp_slqr() state = OPEN magic = D21B4, len = 48
PPP Serial4(i): pkt type 0xC025, datagramsize 52
PPP Serial4(i): lcp_rlqr() state = OPEN magic = D3454, len = 48
PPP Serial4(i): pkt type 0xC021, datagramsize 16
PPP Serial4: I LCP ECHOREQ(9) id 3 (C) magic D3454
PPP Serial4: input(C021) state = OPEN code = ECHOREQ(9) id = 3 len = 12
PPP Serial4: O LCP ECHOREP(A) id 3 (C) magic D21B4
PPP Serial4(o): lcp_slqr() state = OPEN magic = D21B4, len = 48

The following discussion briefly outlines each line of this exchange.

The first line states that the router with debugging enabled has sent an LQR to the other side of the
PPP connection:

PPP Serial4(o): lcp_slqr() state = OPEN magic = D21B4, len = 48

The next two lines indicate that the router has received a packet of type C025 (LQM) and provides
details about the packet:

PPP Serial4(i): pkt type 0xC025, datagramsize 52
PPP Serial4(i): lcp_rlqr() state = OPEN magic = D3454, len = 48

The next two lines indicate that the router received an ECHOREQ of type C021 (LCP). The other
side is sending ECHOs. The router on which debugging is configured for LQM but also responds to
ECHOs.

PPP Serial4(i): pkt type 0xC021, datagramsize 16
PPP Serial4: I LCP ECHOREQ(9) id 3 (C) magic D3454

Next the router is detected to have responded to the ECHOREQ with an ECHOREP and is preparing
to send out an LQR:

PPP Serial4: O LCP ECHOREP(A) id 3 (C) magic D21B4
PPP Serial4(o): lcp_slqr() state = OPEN magic = D21B4, len = 48

magic = D21B4 Magic Number for indicated node; when output is indicated, this is the
Magic Number of the node on which debugging is enabled. The actual
Magic Number depends on whether the packet detected is indicated as
I or O.

datagramsize = 52 Packet length including header.

code = ECHOREQ(9) Code identifies the type of packet received. Both forms of the packet,
string and hexadecimal, are presented.

len = 48 Packet length without header.

id = 3 ID number per Link Control Protocol (LCP) packet format.

pkt type 0xC025 Packet type in hexadecimal; typical packet types are C025 for LQM and
C021 for LCP.

LCP ECHOREQ (9) Echo Request; value in parentheses is the hexadecimal representation of
the LCP type.

LCP ECHOREP (A) Echo Reply; value in parentheses is the hexadecimal representation of
the LCP type.

Field Description

2-178 Debug Command Reference

debug ppp

Figure 2-94 shows sample debug ppp negotiation output. This is a normal negotiation, where both
sides agree on network control program (NCP) parameters. In this case, protocol type IP is proposed
and acknowledged.

Figure 2-94 Sample Debug PPP Negotiation Output

router# debug ppp negotiation

ppp: sending CONFREQ, type = 4 (CI_QUALITYTYPE), value = C025/3E8
ppp: sending CONFREQ, type = 5 (CI_MAGICNUMBER), value = 3D56CAC
ppp: received config for type = 4 (QUALITYTYPE) acked
ppp: received config for type = 5 (MAGICNUMBER) value = 3D567F8 acked (ok)
PPP Serial4: state = ACKSENT fsm_rconfack(C021): rcvd id 5
ppp: config ACK received, type = 4 (CI_QUALITYTYPE), value = C025
ppp: config ACK received, type = 5 (CI_MAGICNUMBER), value = 3D56CAC
ppp: ipcp_reqci: returning CONFACK.
 (ok)
PPP Serial4: state = ACKSENT fsm_rconfack(8021): rcvd id 4

Table 2-53 describes significant fields shown in Figure 2-94.

Table 2-53 Debug PPP Negotiation Field Descriptions

The following discussion briefly outlines each line shown in the example provided in Figure 2-94.

The first two lines in Figure 2-94 indicate that the router is trying to bring up LCP and intends to use
the indicated negotiation options (Quality Protocol and Magic Number). The value fields are the
values of the options themselves. C025/3E8 translates to Quality Protocol LQM. 3E8 is the reporting
period (in hundredths of a second). 3D56CAC is the value of the Magic Number for the router.

ppp: sending CONFREQ, type = 4 (CI_QUALITYTYPE), value = C025/3E8
ppp: sending CONFREQ, type = 5 (CI_MAGICNUMBER), value = 3D56CAC

Field Description

ppp This is a PPP debugging output.

sending CONFREQ The router sent a configuration request.

type = 4 (CI_QUALITYTYPE) The type of LCP configuration option that is being negotiated and a
descriptor. A type value of 4 indicates Quality Protocol negotiation; a
type value of 5 indicates Magic Number negotiation.

value = C025/3E8 For Quality Protocol negotiation, indicates NCP type and reporting
period. In the example, C025 indicates LQM; 3E8 is a hexadecimal
value translating to about 10 seconds (in hundredths of a second).

value = 3D56CAC For Magic Number negotiation, indicates the Magic Number being
negotiated.

received config The receiving node has received the proposed option negotiation for the
indicated option type.

acked Acknowledgment and acceptance of options.

state = ACKSENT Specific PPP state in the negotiation process.

ipcp_reqci IPCP notification message; sending CONFACK.

fsm_rconfack (8021) The procedure fsm_rconfack processes received CONFACKs, and the
protocol (8021) is IP.

 Debug Commands 2-179

debug ppp

The next two lines indicate that the other side negotiated for options 4 and 5 as requested and
acknowledged both. If the responding end does not support the options, a CONFREJ is sent by the
responding node. If the responding end does not accept the value of the option, a CONFNAK is sent
with the value field modified.

ppp: received config for type = 4 (QUALITYTYPE) acked
ppp: received config for type = 5 (MAGICNUMBER) value = 3D567F8 acked (ok)

The next three lines indicate that the router received a CONFACK from the responding side and
displays accepted option values. Use the rcvd id field to verify that the CONFREQ and CONFACK
have the same id field.

PPP Serial4: state = ACKSENT fsm_rconfack(C021): rcvd id 5
ppp: config ACK received, type = 4 (CI_QUALITYTYPE), value = C025
ppp: config ACK received, type = 5 (CI_MAGICNUMBER), value = 3D56CAC

The next line indicates that the router has IP routing enabled on this interface and that the IPCP NCP
negotiated successfully:

ppp: ipcp_reqci: returning CONFACK.

In the last line, the router’s state is listed as ACKSENT.

PPP Serial4: state = ACKSENT fsm_rconfack(C021): rcvd id 5\

Figure 2-95 shows sample output when debug ppp packet and debug ppp negotiation output are
enabled at the same time.

2-180 Debug Command Reference

debug ppp

Figure 2-95 Sample Debug PPP Output with Packet and Negotiation Options Enabled

router# debug ppp negotiation
router# debug ppp packet

ppp: sending CONFREQ, type = 4 (CI_QUALITYTYPE), value = C025/3E8
ppp: sending CONFREQ, type = 5 (CI_MAGICNUMBER), value = D4C64
PPP Serial4: O LCP CONFREQ(1) id 4 (12) QUALITYTYPE (8) 192 37 0 0 3 232
 MAGICNUMBER (6) 0 13 76 100
PPP Serial4(i): pkt type 0xC021, datagramsize 22
PPP Serial4: I LCP CONFREQ(1) id 4 (12) QUALITYTYPE (8) 192 37 0 0 3 232
 MAGICNUMBER (6) 0 13 84 240
PPP Serial4: input(C021) state = REQSENT code = CONFREQ(1) id = 4 len = 18
ppp: received config for type = 4 (QUALITYTYPE) acked
ppp: received config for type = 5 (MAGICNUMBER) value = D54F0 acked
PPP Serial4: O LCP CONFACK(2) id 4 (12) QUALITYTYPE (8) 192 37 0 0 3 232
 MAGICNUMBER (6) 0 13 84 240 (ok)
PPP Serial4(i): pkt type 0xC021, datagramsize 22
PPP Serial4: I LCP CONFACK(2) id 4 (12) QUALITYTYPE (8) 192 37 0 0 3 232
 MAGICNUMBER (6) 0 13 76 100
PPP Serial4: input(C021) state = ACKSENT code = CONFACK(2) id = 4 len = 18
PPP Serial4: state = ACKSENT fsm_rconfack(C021): rcvd id 4
ppp: config ACK received, type = 4 (CI_QUALITYTYPE), value = C025
ppp: config ACK received, type = 5 (CI_MAGICNUMBER), value = D4C64
ipcp: sending CONFREQ, type = 3 (CI_ADDRESS), Address = 2.1.1.2
PPP Serial4: O IPCP CONFREQ(1) id 3 (10) Type3 (6) 2 1 1 2
PPP Serial4: I IPCP CONFREQ(1) id 3 (10) Type3 (6) 2 1 1 1
PPP Serial4(i): pkt type 0x8021, datagramsize 14
PPP Serial4: input(8021) state = REQSENT code = CONFREQ(1) id = 3 len = 10
ppp Serial4: Negotiate IP address: her address 2.1.1.1 (ACK)
ppp: ipcp_reqci: returning CONFACK.
PPP Serial4: O IPCP CONFACK(2) id 3 (10) Type3 (6) 2 1 1 1 (ok)
PPP Serial4: I IPCP CONFACK(2) id 3 (10) Type3 (6) 2 1 1 2
PPP Serial4: input(8021) state = ACKSENT code = CONFACK(2) id = 3 len = 10
PPP Serial4: state = ACKSENT fsm_rconfack(8021): rcvd id 3
ipcp: config ACK received, type = 3 (CI_ADDRESS), Address = 2.1.1.2
PPP Serial4(o): lcp_slqr() state = OPEN magic = D4C64, len = 48
PPP Serial4(i): pkt type 0xC025, datagramsize 52
PPP Serial4(i): lcp_rlqr() state = OPEN magic = D54F0, len = 48
PPP Serial4(i): pkt type 0xC025, datagramsize 52
PPP Serial4(i): lcp_rlqr() state = OPEN magic = D54F0, len = 48
PPP Serial4(o): lcp_slqr() state = OPEN magic = D4C64, len = 48

S
28

77

This field shows a
decimal representation
of the Magic Number.

This exchange
represents a
successful PPP
negotiation for
support of NCP
type IPCP.

This field shows
a decimal representation
of the NCP value.

This field shows a
decimal representation
of the reporting period.

 Debug Commands 2-181

debug ppp

Figure 2-96 shows sample debug ppp negotiation output when the remote side of the connection is
unable to respond to LQM requests.

Figure 2-96 Sample Debug PPP Negotiation Output When No Response Is Detected

router# debug ppp negotiation

ppp: sending CONFREQ, type = 4 (CI_QUALITYTYPE), value = C025/3E8
ppp: sending CONFREQ, type = 5 (CI_MAGICNUMBER), value = 44B7010
ppp: sending CONFREQ, type = 4 (CI_QUALITYTYPE), value = C025/3E8
ppp: sending CONFREQ, type = 5 (CI_MAGICNUMBER), value = 44B7010
ppp: sending CONFREQ, type = 4 (CI_QUALITYTYPE), value = C025/3E8
ppp: sending CONFREQ, type = 5 (CI_MAGICNUMBER), value = 44B7010
ppp: sending CONFREQ, type = 4 (CI_QUALITYTYPE), value = C025/3E8
ppp: sending CONFREQ, type = 5 (CI_MAGICNUMBER), value = 44B7010
ppp: sending CONFREQ, type = 4 (CI_QUALITYTYPE), value = C025/3E8
ppp: sending CONFREQ, type = 5 (CI_MAGICNUMBER), value = 44B7010
ppp: sending CONFREQ, type = 4 (CI_QUALITYTYPE), value = C025/3E8
ppp: sending CONFREQ, type = 5 (CI_MAGICNUMBER), value = 44B7010
ppp: sending CONFREQ, type = 4 (CI_QUALITYTYPE), value = C025/3E8
ppp: sending CONFREQ, type = 5 (CI_MAGICNUMBER), value = 44B7010
ppp: sending CONFREQ, type = 4 (CI_QUALITYTYPE), value = C025/3E8
ppp: sending CONFREQ, type = 5 (CI_MAGICNUMBER), value = 44B7010
ppp: sending CONFREQ, type = 4 (CI_QUALITYTYPE), value = C025/3E8
ppp: sending CONFREQ, type = 5 (CI_MAGICNUMBER), value = 44B7010
ppp: sending CONFREQ, type = 4 (CI_QUALITYTYPE), value = C025/3E8
ppp: sending CONFREQ, type = 5 (CI_MAGICNUMBER), value = 44B7010
ppp: sending CONFREQ, type = 4 (CI_QUALITYTYPE), value = C025/3E8
ppp: sending CONFREQ, type = 5 (CI_MAGICNUMBER), value = 44B7010
ppp: sending CONFREQ, type = 4 (CI_QUALITYTYPE), value = C025/3E8
ppp: sending CONFREQ, type = 5 (CI_MAGICNUMBER), value = 44C1488

Figure 2-97 shows sample output when no response is detected for configuration requests (with both
debug ppp negotiation and debug ppp packet enabled).

Figure 2-97 Sample Debug PPP Output When No Response Is Detected (with Negotiation
and Packet Enabled)

router# debug ppp negotiation
router# debug ppp packet

ppp: sending CONFREQ, type = 4 (CI_QUALITYTYPE), value = C025/3E8
ppp: sending CONFREQ, type = 5 (CI_MAGICNUMBER), value = 44DFDC8
PPP Serial4: O LCP CONFREQ(1) id 14 (12) QUALITYTYPE (8) 192 37 0 0 3 232
 MAGICNUMBER (6) 4 77 253 200
ppp: TIMEout: Time= 44E0980 State= 3
ppp: sending CONFREQ, type = 4 (CI_QUALITYTYPE), value = C025/3E8
ppp: sending CONFREQ, type = 5 (CI_MAGICNUMBER), value = 44DFDC8
PPP Serial4: O LCP CONFREQ(1) id 15 (12) QUALITYTYPE (8) 192 37 0 0 3 232
 MAGICNUMBER (6) 4 77 253 200
ppp: TIMEout: Time= 44E1828 State= 3
ppp: sending CONFREQ, type = 4 (CI_QUALITYTYPE), value = C025/3E8
ppp: sending CONFREQ, type = 5 (CI_MAGICNUMBER), value = 44DFDC8
PPP Serial4: O LCP CONFREQ(1) id 16 (12) QUALITYTYPE (8) 192 37 0 0 3 232
 MAGICNUMBER (6) 4 77 253 200
ppp: TIMEout: Time= 44E27C8 State= 3
ppp: sending CONFREQ, type = 4 (CI_QUALITYTYPE), value = C025/3E8
ppp: sending CONFREQ, type = 5 (CI_MAGICNUMBER), value = 44DFDC8
PPP Serial4: O LCP CONFREQ(1) id 17 (12) QUALITYTYPE (8) 192 37 0 0 3 232
 MAGICNUMBER (6) 4 77 253 200
ppp: TIMEout: Time= 44E3768 State= 3

2-182 Debug Command Reference

debug ppp

Figure 2-98 shows sample debug ppp error output. These messages might appear when the Quality
Protocol option is enabled on an interface that is already running PPP.

Figure 2-98 Sample Debug PPP Error Output

router# debug ppp error

PPP Serial3(i): rlqr receive failure. successes = 15
PPP: myrcvdiffp = 159 peerxmitdiffp = 41091
PPP: myrcvdiffo = 2183 peerxmitdiffo = 1714439
PPP: threshold = 25
PPP Serial4(i): rlqr transmit failure. successes = 15
PPP: myxmitdiffp = 41091 peerrcvdiffp = 159
PPP: myxmitdiffo = 1714439 peerrcvdiffo = 2183
PPP: l->OutLQRs = 1 LastOutLQRs = 1
PPP: threshold = 25
PPP Serial3(i): lqr_protrej() Stop sending LQRs.
PPP Serial3(i): The link appears to be looped back.

Table 2-54 describes significant fields shown in Figure 2-98.

Table 2-54 Debug PPP Error Field Descriptions

Field Description

PPP This is PPP debugging output.

Serial3(i) Interface number associated with this debugging information; indicates
that this is an input packet.

rlqr receive failure The request to negotiate the Quality Protocol option is not accepted.

myrcvdiffp = 159 Number of packets received over the time period.

peerxmitdiffp = 41091 Number of packets sent by the remote node over this period.

myrcvdiffo = 2183 Number of octets received over this period.

peerxmitdiffo = 1714439 Number of octets sent by the remote node over this period.

threshold = 25 The maximum error percentage acceptable on this interface. This
percentage is calculated by the threshold value entered in the
ppp quality number interface configuration command. A value of
100–number (100 minus number) is the maximum error percentage. In
this case, a number of 75 was entered. This means that the local router
must maintain a minimum 75 percent non-error percentage, or the PPP
link will be considered down.

OutLQRs = 1 Local router’s current send LQR sequence number.

LastOutLQRs = 1 The last sequence number that the remote node side has seen from the
local node.

 Debug Commands 2-183

debug ppp

Figure 2-99 shows sample debug ppp chap output. When doing CHAP authentication, use this
debug command to determine why an authentication fails. This command is also useful when doing
PAP authentication.

Figure 2-99 Sample Debug PPP CHAP Output

router# debug ppp chap

Serial0: Unable to authenticate. No name received from peer
Serial0: Unable to validate CHAP response. USERNAME pioneer not found.
Serial0: Unable to validate CHAP response. No password defined for USERNAME pioneer
Serial0: Failed CHAP authentication with remote.
Remote message is Unknown name
Serial0: remote passed CHAP authentication.
Serial0: Passed CHAP authentication with remote.
Serial0: CHAP input code = 4 id = 3 len = 48

In general, these messages are self-explanatory. Fields that appear in debug ppp chap displays that
can show optional output are outlined in Table 2-55.

Table 2-55 Debug PPP CHAP Field Descriptions

Field Description

Serial0 Interface number associated with this debugging information and CHAP
access session in question.

USERNAME pioneer not found. The name pioneer in this example is the name received in the CHAP
response. The router looks up this name in the list of usernames that are
configured for the router.

Remote message is Unknown
name

The following messages can appear:
No name received to authenticate

Unknown name

No secret for given name

Short MD5 response received

MD compare failed

code = 4 Specific CHAP type packet detected. Possible values are as follows:

1 = Challenge

2 = Response

3 = Success

4 = Failure

len = 48 Packet length without header.

id = 3 ID number per Link Control Protocol (LCP) packet format.

2-184 Debug Command Reference

debug qllc error

debug qllc error
Use the debug qllc error EXEC command to display quality link line control (QLLC) errors. The
no form of this command disables debugging output.

debug qllc error
no debug qllc error

Syntax Description
This command has no arguments or keywords.

Command Mode
EXEC

Usage Guidelines
This command helps you track down errors in the QLLC interactions with X.25 networks. Use
debug qllc error in conjunction with debug x25 all to see the connection. The data shown by this
command only flows through the router on the X.25 connection. Some forms of this command can
generate lots of output and network traffic.

Sample Display
Figure 2-100 shows sample debug qllc error output.

Figure 2-100 Sample Debug QLLC Error Output

router# debug qllc error

%QLLC-3-GENERRMSG: qllc_close - bad qllc pointer Caller 00407116 Caller 00400BD2
QLLC 4000.1111.0002: NO X.25 connection. Dicarding XID and calling out

Explanations for individual lines of output from Figure 2-100 follow.

The following line indicates that the QLLC connection was closed:

%QLLC-3-GENERRMSG: qllc_close - bad qllc pointer Caller 00407116 Caller 00400BD2

The following line shows the virtual MAC address of the failed connection:

QLLC 4000.1111.0002: NO X.25 connection. Dicarding XID and calling out

 Debug Commands 2-185

debug qllc event

debug qllc event
Use the debug qllc event EXEC command to enable debugging of QLLC events. The no form of
this command disables debugging output.

debug qllc event
no debug qllc event

Syntax Description
This command has no arguments or keywords.

Command Mode
EXEC

Usage Guidelines
Use the debug qllc event command to display primitives that might affect the state of a QLLC
connection. An example of these events is the allocation of a QLLC structure for a logical channel
indicator when an X.25 call has been accepted with the QLLC call user data. Other examples are
the receipt and transmission of LAN explorer and XID frames.

Sample Display
Figure 2-101 shows sample debug qllc event output.

Figure 2-101 Sample Debug Qllc Event Output

router# debug qllc event

QLLC: allocating new qllc lci 9
QLLC: tx POLLING TEST, da 4001.3745.1088, sa 4000.1111.0001
QLLC: rx explorer response, da 4000.1111.0001, sa c001.3745.1088, rif 08B0.1A91.1901.A040
QLLC: gen NULL XID, da c001.3745.1088, sa 4000.1111.0001, rif 0830.1A91.1901.A040, dsap
4, ssap 4
QLLC: rx XID response, da 4000.1111.0001, sa c001.3745.1088, rif 08B0.1A91.1901.A040

Explanations for representative lines of output in Figure 2-101 follow.

The following line indicates a new QLLC data structure has been allocated:

QLLC: allocating new qllc lci 9

The following lines show transmission and receipt of LAN explorer or test frames:

QLLC: tx POLLING TEST, da 4001.3745.1088, sa 4000.1111.0001
QLLC: rx explorer response, da 4000.1111.0001, sa c001.3745.1088, rif 08B0.1A91.1901.A040

The following lines show XID events:

QLLC: gen NULL XID, da c001.3745.1088, sa 4000.1111.0001, rif 0830.1A91.1901.A040, dsap
4, ssap 4
QLLC: rx XID response, da 4000.1111.0001, sa c001.3745.1088, rif 08B0.1A91.1901.A040

2-186 Debug Command Reference

debug qllc packet

debug qllc packet
Use the debug qllc packet EXEC command to display QLLC events and QLLC data packets. The
no form of this command disables debugging output.

debug qllc packet
no debug qllc packet

Syntax Description
This command has no arguments or keywords.

Command Mode
EXEC

Usage Guidelines
This command helps you to track down errors in the QLLC interactions with X.25 networks. The
data shown by this command only flows through the router on the X25 connection. Use debug qllc
packet in conjunction with debug x25 all to see the connection and the data that flows through the
router.

Sample Display
Figure 2-102 shows sample debug qllc packet output.

Figure 2-102 Sample Debug QLLC Packet Output

router# debug qllc packet

14:38:05: Serial2/5 QLLC I: Data Packet.-RSP 9 bytes.
14:38:07: Serial2/6 QLLC I: Data Packet.-RSP 112 bytes.
14:38:07: Serial2/6 QLLC O: Data Packet. 128 bytes.
14:38:08: Serial2/6 QLLC I: Data Packet.-RSP 9 bytes.
14:38:08: Serial2/6 QLLC I: Data Packet.-RSP 112 bytes.
14:38:08: Serial2/6 QLLC O: Data Packet. 128 bytes.
14:38:08: Serial2/6 QLLC I: Data Packet.-RSP 9 bytes.
14:38:12: Serial2/5 QLLC I: Data Packet.-RSP 112 bytes.
14:38:12: Serial2/5 QLLC O: Data Packet. 128 bytes.

Explanations for individual lines of output from Figure 2-102 follow.

The following lines indicate a packet was received on the interfaces:

14:38:05: Serial2/5 QLLC I: Data Packet.-RSP 9 bytes.
14:38:07: Serial2/6 QLLC I: Data Packet.-RSP 112 bytes.

The following lines show that a packet was transmitted on the interfaces:

14:38:07: Serial2/6 QLLC O: Data Packet. 128 bytes.
14:38:12: Serial2/5 QLLC O: Data Packet. 128 bytes.

 Debug Commands 2-187

debug qllc state

debug qllc state
Use the debug qllc state EXEC command to enable debugging of the QLLC events. The no form
of this command disables debugging output.

debug qllc state
no debug qllc state

Syntax Description
This command has no arguments or keywords.

Command Mode
EXEC

Usage Guidelines
Use the debug qllc state command to show when the state of a QLLC connection has changed. The
typical QLLC connection goes from states ADM to SETUP to NORMAL. The NORMAL state
indicates that a QLLC connection exists and is ready for data transfer.

Sample Display
Figure 2-103 shows sample debug qllc state output.

Figure 2-103 Sample Debug Qllc Event Output

router# debug qllc state

Serial2 QLLC O: QSM-CMD
Serial2: X25 O D1 DATA (5) Q 8 lci 9 PS 4 PR 3
QLLC: state ADM -> SETUP
Serial2: X25 I D1 RR (3) 8 lci 9 PR 5
Serial2: X25 I D1 DATA (5) Q 8 lci 9 PS 3 PR 5
Serial2 QLLC I: QUA-RSPQLLC: addr 00, ctl 73

QLLC: qsetupstate: recvd qua rsp
QLLC: state SETUP -> NORMAL

Explanations for representative lines of output in Figure 2-103 follow.

The following line indicates a QLLC connection attempt is changing state from ADM to SETUP:

QLLC: state ADM -> SETUP

The following line indicates a QLLC connection attempt is changing state from SETUP to
NORMAL:

QLLC: state SETUP -> NORMAL

2-188 Debug Command Reference

debug qllc timer

debug qllc timer
Use the debug qllc timer EXEC command to display QLLC timer events. The no form of this
command disables debugging output.

debug qllc timer
no debug qllc timer

Syntax Description
This command has no arguments or keywords.

Command Mode
EXEC

Usage Guidelines
The QLLC process peridocally cycles and checks status of itself and its partner. If the partner is not
found in the desired state, a LAPB primitive command is resent until the partner is in the desired
state or the timer expires.

Sample Display
Figure 2-104 shows sample debug qllc timer output.

Figure 2-104 Sample Debug QLLC Timer Output

router# debug qllc timer

14:27:24: Qllc timer lci 257, state ADM retry count 0 Caller 00407116 Caller 00400BD2
14:27:34: Qllc timer lci 257, state NORMAL retry count 0
14:27:44: Qllc timer lci 257, state NORMAL retry count 1
14:27:54: Qllc timer lci 257, state NORMAL retry count 1

Explanations for individual lines of output from Figure 2-104 follow.

The following line of output shows the state of a QLLC partner on a given X.25 logical channel
identifier:

14:27:24: Qllc timer lci 257, state ADM retry count 0 Caller 00407116 Caller 00400BD2

Other messages are informational and appear every ten seconds.

 Debug Commands 2-189

debug qllc x25

debug qllc x25
Use the debug qllc x25 EXEC command to display X.25 packets that affect a QLLC connection. The
no form of this command disables debugging output.

debug qllc x25
no debug qllc x25

Syntax Description
This command has no arguments or keywords.

Command Mode
EXEC

Usage Guidelines
This command is helpful to track down errors in the QLLC interactions with X.25 networks. Use
debug qllc x25 in conjunction with debug x25 events or debug x25 all to see the X.25 events
between the router and its partner.

Sample Display
Figure 2-105 shows sample debug qllc x25 output.

Figure 2-105 Sample Debug QLLC X25 Output

router# debug qllc x25
qllc x.25 events debugging is on

15:07:23: QLLC X25 notify lci 257 event 1
15:07:23: QLLC X25 notify lci 257 event 5
15:07:34: QLLC X25 notify lci 257 event 3 Caller 00407116 Caller 00400BD2
15:07:35: QLLC X25 notify lci 257 event 4

Table 2-56 describes fields of output that appear in Figure2-105 follow.

Table 2-56 Debug QLLC X.25 Field Descriptions

Field Description

15:07:23 Shows the time of day.

QLLC X25 notify 257 Indicates this is a QLLC X25 message.

event n Indicates the type of event, n. Values for n can be as follows:

1 – Circuit is cleared
2 – Circuit has been reset
3 – Circuit is connected
4 – Circuit congestion has cleared
5 – Circuit has been deleted

2-190 Debug Command Reference

debug rif

debug rif
Use the debug rif EXEC command to display information on entries entering and leaving the
routing information field (RIF) cache. The no form of this command disables debugging output.

debug rif
no debug rif

Syntax Description
This command has no arguments or keywords.

Command Mode
EXEC

Usage Guidelines
In order to use the debug rif command to display traffic source-routed through an interface, fast
switching of source route bridging (SRB) frames must first be disabled with the no source-bridge
route-cache interface interface configuration command.

Sample Display
Figure 2-106 shows sample debug rif output.

Figure 2-106 Sample Debug RIF Output

Explanations for representative lines of debug rif output in Figure 2-106 follow.

The first line of output is an example of a RIF entry for an interface configured for SDLLC or
Local-Ack. Table 2-57 describes significant fields shown in this line of debug rif output.

Table 2-57 Debug RIF Field Descriptions—Part 1

Field Description

RIF: This message describes RIF debugging output.

U chk Update checking. The entry is being updated; the timer is set to zero (0).

da = 9000.5a59.04f9 Destination MAC address.

sa = 0110.2222.33c1 Source MAC address. This field contains values of zero
(0000.0000.0000) in a non-SDLLC or non-Local-ack entry.

router# debug rif

RIF: U chk da=9000.5a59.04f9,sa=0110.2222.33c1 [4880.3201.00A1.0050] type 8 on
static/remote/0
RIF: U chk da=0000.3080.4aed,sa=0000.0000.0000 [] type 8 on TokenRing0/0
RIF: U add 1000.5a59.04f9 [4880.3201.00A1.0050] type 8
RIF: L checking da=0000.3080.4aed, sa=0000.0000.0000
RIF: rcvd TEST response from 9000.5a59.04f9
RIF: U upd da=1000.5a59.04f9,sa=0110.2222.33c1 [4880.3201.00A1.0050]
RIF: rcvd XID response from 9000.5a59.04f9
SR1: sent XID response to 9000.5a59.04f9

S
25

59

SDLLC or
Local-Ack
entry

Non-SDLLC
or non-Local-
Ack entry

 Debug Commands 2-191

debug rif

The following line of output is an example of a RIF entry for an interface that is not configured for
SDLLC or Local-Ack:

RIF: U chk da=0000.3080.4aed,sa=0000.0000.0000 [] type 8 on TokenRing0/0

Notice that the source address contains only zero values (0000.0000.0000), and that the RIF string
is null ([]). The last element in the entry indicates that this route was learned from a virtual ring,
rather than a real Token Ring port.

The following line shows that a new entry has been added to the RIF cache:

RIF: U add 1000.5a59.04f9 [4880.3201.00A1.0050] type 8

The following line shows that a RIF cache lookup operation has taken place:

RIF: L checking da=0000.3080.4aed, sa=0000.0000.0000

The following line shows that a TEST response from address 9000.5a59.04f9 was inserted into the
RIF cache:

RIF: rcvd TEST response from 9000.5a59.04f9

The following line shows that the RIF entry for this route has been found and updated:

RIF: U upd da=1000.5a59.04f9,sa=0110.2222.33c1 [4880.3201.00A1.0050]

The following line shows that an XID response from this address was inserted into the RIF cache:

RIF: rcvd XID response from 9000.5a59.04f9

The following line shows that the router sent an XID response to this address:

SR1: sent XID response to 9000.5a59.04f9

Table 2-58 explains the other possible lines of debug rif output.

[4880.3201.00A1.0050] RIF string. This field is blank (null RIF) in a non-SDLLC or
non-Local-Ack entry.

 type 8 Possible values follow:

0—Null entry

1—This entry was learned from a particular Token Ring port (interface)

2—Statically configured

4—Statically configured for a remote interface

8—This entry is to be aged

16—This entry (which has been learned from a remote interface) is to be
aged

32—This entry is not to be aged

64 —This interface is to be used by LAN Network Manager (and is not
to be aged)

on static/remote/0 This route was learned from a real Token Ring port, in contrast to a
virtual ring.

Field Description

2-192 Debug Command Reference

debug rif

Table 2-58 Debug RIF Field Descriptions—Part 2

Field Description

RIF: L Sending XID for address The router/bridge wanted to send a packet to
address but did not find it in the RIF cache. It sent
an XID explorer packet to determine which RIF it
should use. The attempted packet is dropped.

RIF: L No buffer for XID to address Similar to the previous description; however, a
buffer in which to build the XID packet could not
be obtained.

RIF: U remote rif too small [rif] A packet’s RIF was too short to be valid.

RIF: U rej address too big [rif] A packet’s RIF exceeded the maximum size
allowed and was rejected. The maximum size is
18 bytes.

RIF: U upd interface address The RIF entry for this router/bridge’s interface has
been updated.

RIF: U ign address interface update A RIF entry that would have updated an interface
corresponding to one of this router’s interfaces.

RIF: U add address [rif] The RIF entry for address has been added to the
RIF cache.

RIF: U no memory to add rif for address No memory to add a RIF entry for address.

RIF: removing rif entry for address, type code The RIF entry for address has been forcibly
removed.

RIF: flushed address The RIF entry for address has been removed
because of a RIF cache flush.

RIF: expired address The RIF entry for address has been aged out of the
RIF cache.

 Debug Commands 2-193

debug sdlc

debug sdlc
Use the debug sdlc EXEC command to display information on Synchronous Data Link Control
(SDLC) frames received and sent by any router serial interface involved in supporting SDLC end
station functions. The no form of this command disables debugging output.

debug sdlc
no debug sdlc

Syntax Description
This command has no arguments or keywords.

Command Mode
EXEC

Usage Guidelines
Because using this command is processor intensive, it is best to use it after hours, rather than in a
production environment. It is also best to turn this command on by itself, rather than use it in
conjunction with other debug commands.

Sample Display
Figure 2-107 shows sample debug sdlc output.

Figure 2-107 Sample Debug SDLC Output

router# debug sdlc

SDLC: Sending RR at location 4
Serial3: SDLC O (12495952) C2 CONNECT (2) RR P/F 6
Serial3: SDLC I (12495964) [C2] CONNECT (2) RR P/F 0 (R) [VR: 6 VS: 0]
Serial3: SDLC T [C2] 12496064 CONNECT 12496064 0
SDLC: Sending RR at location 4
Serial3: SDLC O (12496064) C2 CONNECT (2) RR P/F 6
Serial3: SDLC I (12496076) [C2] CONNECT (2) RR P/F 0 (R) [VR: 6 VS: 0]
Serial3: SDLC T [C2] 12496176 CONNECT 12496176 0

Explanations for individual lines of output from Figure 2-107 follow.

The following line of output indicates that the router is sending a Receiver Ready packet at
location 4 in the code:

SDLC: Sending RR at location 4

The following line of output describes a frame input event:

Serial3: SDLC O (12495952) C2 CONNECT (2) RR P/F 6

Table 2-59 describes the fields in this line of output.

2-194 Debug Command Reference

debug sdlc

Table 2-59 Debug SDLC Field Descriptions for a Frame Output Event

Field Description

Serial3 Interface type and unit number reporting the frame
event.

SDLC Protocol providing the information.

O Command mode of frame event. Possible values
follow:

I—Frame input

O—Frame output

T—T1 timer expired

(12495952) Current timer value.

C2 SDLC address of the SDLC connection.

CONNECT State of the protocol when the frame event
occurred. Possible values follow:

CONNECT

DISCONNECT

DISCSENT (disconnect sent)

ERROR (FRMR frame sent)

REJSENT (reject frame sent)

SNRMSENT (SNRM frame sent)

USBUSY

THEMBUSY

BOTHBUSY

(2) Size of the frame (in bytes).

RR Frame type name. Possible values follow:

DISC—Disconnect

DM—Disconnect mode

FRMR—Frame reject

IFRAME—Information frame

REJ—Reject

RNR—Receiver not ready

RR—Receiver ready

SIM—Set Initialization mode command

SNRM—Set Normal Response Mode

TEST—Test frame

UA—Unnumbered acknowledgment

XID—EXchange ID

 Debug Commands 2-195

debug sdlc

The following line of output describes a frame input event:

Serial3: SDLC I (12495964) [C2] CONNECT (2) RR P/F 0 (R) [VR: 6 VS: 0] rfp: P

In addition to the fields described in Table 2-59, output for a frame input event also includes two
additional fields, as described in Table 2-60.

Table 2-60 Debug SDLC Field Descriptions Unique to a Frame Input Event

P/F Poll/Final bit indicator. Possible values follow:

F—Final (printed for Response frames)

P—Poll (printed for Command frames)

P/F—Poll/Final (printed for RR, RNR and REJ
frames, which can be either Command or Response
frames)

6 Receive count; range: 0–7.

Field Description

(R) Frame Type:

C—Command

R—Response

VR: 6 Receive count; range: 0–7.

VS: 0 Send count; range: 0–7.

rfp: P Ready for poll;

P —Idle poll (keepalive) timer is on.

T—Data acknowledgment timer is on.

These timers are based on the T1 timer.

VS: 0 Send count; range: 0–7.

Field Description

2-196 Debug Command Reference

debug sdlc

The following line of output describes a frame timer event:

Serial3: SDLC T [C2] 12496064 CONNECT 12496064 0

Table 2-61 describes the fields in this line of output.

Table 2-61 Debug SDLC Field Descriptions for a Timer Event

Field Description

Serial3: Interface type and unit number reporting the frame
event.

SDLC Protocol providing the information.

T The timer has expired.

[C2] SDLC address of this SDLC connection.

12496064 System clock.

CONNECT State of the protocol when the frame event
occurred. Possible values follow:

BOTHBUSY

CONNECT

DISCONNECT

DISCSENT (disconnect sent)

ERROR (FRMR frame sent)

REJSENT (reject frame sent)

SNRMSENT (SNRM frame sent)

THEMBUSY

BOTHBUSY

12496064 Top timer.

0 Retry count; default: 0.

 Debug Commands 2-197

debug sdlc local-ack

debug sdlc local-ack
Use the debug sdlc local-ack EXEC command to display information on the local acknowledgment
feature. The no form of this command disables debugging output.

debug sdlc local-ack [number]
no debug sdlc local-ack [number]

Syntax Description

This command has no arguments or keywords.

Command Mode
EXEC

Usage Guidelines
You can select the frame types you want to monitor; the frame types correspond to bit flags. You can
select 1, 2, 4, or 7, which is the decimal value of the bit flag settings. If you select 1, the octet is set
to 00000001. If you select 2, the octet is set to 0000010. If you select 4, the octet is set to 00000100.
If you want to select all frame types, select 7; the octet is 00000111. The default is 7 for all events.
Table 2-62 defines these bit flags.

Table 2-62 Debug SDLC Local-Ack Debugging Levels

Caution Because using this command is processor intensive, it is best to use it after hours, rather
than in a production environment. It is also best to use this command by itself, rather than in
conjunction with other debugging commands.

Sample Display
Figure 2-108 shows sample debug sdlc local-ack output.

number (Optional) Frame type that you want to monitor. Refer to
the “Usage Guidelines” section.

Debug Command Meaning

debug sdlc local-ack 1 Only U-Frame events

debug sdlc local-ack 2 Only I-Frame events

debug sdlc local-ack 4 Only S-Frame events

debug sdlc local-ack 7 All SDLC Local-Ack events (default setting)

2-198 Debug Command Reference

debug sdlc local-ack

Figure 2-108 Sample Debug SDLC Local-Ack Output

Explanations for individual lines of output from Figure 2-108 follow.

The first line shows the input to the SDLC local acknowledgment state machine:

SLACK (Serial3): Input = Network, LinkupRequest

Table 2-63 describes the fields in this line of output.

Table 2-63 Debug SDLC Local-Ack Field Descriptions

The second line shows the change in the SDLC local acknowledgment state machine. In this case
the AwaitSdlcOpen state is an internal state that has not changed while this display was captured.

SLACK (Serial3): Old State = AwaitSdlcOpen New State = AwaitSdlcOpen

The third line shows the output from the SDLC local acknowledgment state machine:

SLACK (Serial3): Input = Network, LinkupRequest

Field Description

SLACK The SDLC local acknowledgment feature is providing the
information.

(Serial3): Interface type and unit number reporting the event.

Input = Network The source of the input.

LinkupRequest The op code. A LinkupRequest is an example of possible values.

router# debug sdlc local-ack 1

SLACK (Serial3): Input = Network, LinkupRequest
SLACK (Serial3): Old State = AwaitSdlcOpen New State = AwaitSdlcOpen

SLACK (Serial3): Output = SDLC, SNRM

SLACK (Serial3): Input = SDLC, UA
SLACK (Serial3): Old State = AwaitSdlcOpen New State = Active

SLACK (Serial3): Output = Network, LinkResponse

S
25

60

Group of
associated
operations

 Debug Commands 2-199

debug sdllc

debug sdllc
Use the debug sdllc EXEC command to display information about data link layer frames transferred
between a device on a Token Ring and a device on a serial line via a router configured with the
SDLLC feature. The no form of this command disables debugging output.

debug sdllc
no debug sdllc

Syntax Description
This command has no arguments or keywords.

Command Mode
EXEC

Usage Guidelines
The SDLLC feature translates between the SDLC link layer protocol used to communicate with
devices on a serial line and the LLC2 link layer protocol used to communicate with devices on a
Token Ring.

The router configured with the SDLLC feature must be attached to the serial line. The router sends
and receives frames on behalf of the serial device on the attached serial line but acts as an SDLC
station.

The topology between the router configured with the SDLLC feature and the Token Ring is network
dependent and is not limited by the SDLLC feature.

Sample Display
Figure 2-109 shows sample debug sdllc output between link layer peers from the perspective of the
SDLLC-configured router.

Figure 2-109 Sample Debug SDLLC Output

router# debug sdllc

SDLLC: rx explorer rsp, da 4000.2000.1001, sa C000.1020.1000, rif
 8840.0011.00A1.0050
SDLLC: tx short xid, sa 4000.2000.1001, da C000.1020.1000, rif
 88C0.0011.00A1.0050, dsap 4 ssap 4
SDLLC: tx long xid, sa 4000.2000.1001, da C000.1020.1000, rif
 88C0.0011.00A1.0050, dsap 4 ssap 4
Rcvd SABME/LINKUP_REQ pak from TR host

2-200 Debug Command Reference

debug sdllc

Table 2-64 describes significant fields shown in Figure2-109:

Table 2-64 Debug SDLLC Field Descriptions

The following line indicates that an explorer frame response was received by the router at address
4000.2000.1001 from the FEP at address C000.1020.1000 with the specified RIF. The original
explorer sent to the FEP from the router is not monitored as part of the debug sdllc command.

SDLLC: rx explorer rsp, da 4000.2000.1001, sa C000.1020.1000, rif
 8840.0011.00A1.0050

The following line indicates that the router sent the null XID (Type 0) to the FEP. The debugging
information does not include the response to the XID message sent by the FEP to the router.

SDLLC: tx short xid, sa 4000.2000.1001, da C000.1020.1000, rif
 88C0.0011.00A1.0050, dsap 4 ssap 4

The following line indicates that the router sent the XID command (Format 0 Type 2) to the FEP:

SDLLC: tx long xid, sa 4000.2000.1001, da C000.1020.1000, rif
 88C0.0011.00A1.0050, dsap 4 ssap 4

The following line is the SABME response to the XID command previously sent by the router to the
FEP:

Rcvd SABME/LINKUP_REQ pak from TR host

Field Description

rx Router receives message from the FEP.

explorer rsp Response to an explorer (TEST) frame previously sent by the router to
FEP.

da Destination address. This is the address of the router receiving the
response.

sa Source address. This is the address of the FEP sending the response to
the router.

rif Routing information field.

tx Router sent message to the FEP.

short xid Router sent the null XID to the FEP.

dsap Destination service access point

ssap Source service access point.

tx long xid Router sent the XID type 2 to the FEP.

Rcvd Router received Layer 2 message from the FEP.

SABME/LINKUP_REQ Set asynchronous Balanced Mode Extended command.

 Debug Commands 2-201

debug serial interface

debug serial interface
Use the debug serial interface EXEC command to display information on a serial connection
failure. The no form of this command disables debugging output.

debug serial interface
no debug serial interface

Syntax Description
This command has no arguments or keywords.

Command Mode
EXEC

Usage Guidelines
If the show interface serial command shows that the line and protocol are down, you can use the
debug serial interface command to isolate a timing problem as the cause of a connection failure. If
the keepalive values in the mineseq, yourseen, and myseen fields are not incrementing in each
subsequent line of output, there is a timing or line problem at one end of the connection.

Note While the debug serial interface command typically does not generate a lot of output,
nevertheless use it cautiously during production hours. When SMDS is enabled, for example, it can
generate considerable output.

The output of the debug serial interface command can vary, depending on the type of WAN
configured for an interface: Frame Relay, HDLC, HSSI, SMDS, or X.25. The output also can vary
depending on the type of encapsulation configured for that interface. The hardware platform also can
affect debug serial interface output.

The following sections show sample debug serial interface displays for various configurations and
describe the possible output the command can generate for these configurations.

Debug Serial Interface for Frame Relay Encapsulation
The following message is displayed if the encapsulation for the interface is Frame Relay (or HDLC)
and the router attempts to send a packet containing an unknown packet type:

Illegal serial link type code xxx

2-202 Debug Command Reference

debug serial interface

Debug Serial Interface for HDLC
Figure 2-110 shows sample debug serial interface output for an HDLC connection when
keepalives are enabled.

Figure 2-110 Sample Debug Serial Interface Output for HDLC

In Figure 2-110, the debug serial interface display shows that the remote router is not receiving all
the keepalives the router is sending. When the difference in the values in the myseq and mineseen
fields exceeds three, the line goes down and the interface is reset.

Table 2-65 describes significant fields shown in Figure 2-110.

Table 2-65 Debug Serial Interface Field Descr iptions for HDLC

Field Description

Serial1 Interface through which the serial connection is taking place.

HDLC The serial connection is an HDLC connection.

myseq 636119 The myseq counter increases by one each time the router sends a
keepalive packet to the remote router.

mineseen 636119 The value of the mineseen counter reflects the last myseq sequence
number the remote router has acknowledged receiving from the router.
The remote router stores this value in its yourseen counter and sends that
value in a keepalive packet to the router.

yourseen 515032 The yourseen counter reflects the value of the myseq sequence number
the router has received in a keepalive packet from the remote router.

line up The connection between the routers is maintained. Value changes to
“line down” if the values of the myseq and myseen fields in a keepalive
packet differ by more than three. Value returns to “line up” when the
interface is reset. If the line is in loopback mode, (“looped”) appears
after this field.

router# debug serial interface

Serial1: HDLC myseq 636119, mineseen 636119, yourseen 515032, line up
Serial1: HDLC myseq 636120, mineseen 636120, yourseen 515033, line up
Serial1: HDLC myseq 636121, mineseen 636121, yourseen 515034, line up
Serial1: HDLC myseq 636122, mineseen 636122, yourseen 515035, line up
Serial1: HDLC myseq 636123, mineseen 636123, yourseen 515036, line up
Serial1: HDLC myseq 636124, mineseen 636124, yourseen 515037, line up
Serial1: HDLC myseq 636125, mineseen 636125, yourseen 515038, line up
Serial1: HDLC myseq 636126, mineseen 636126, yourseen 515039, line up

Serial1: HDLC myseq 636127, mineseen 636127, yourseen 515040, line up
Serial1: HDLC myseq 636128, mineseen 636127, yourseen 515041, line up
Serial1: HDLC myseq 636129, mineseen 636129, yourseen 515042, line up

Serial1: HDLC myseq 636130, mineseen 636130, yourseen 515043, line up
Serial1: HDLC myseq 636131, mineseen 636130, yourseen 515044, line up
Serial1: HDLC myseq 636132, mineseen 636130, yourseen 515045, line up
Serial1: HDLC myseq 636133, mineseen 636130, yourseen 515046, line down
Serial1: HDLC myseq 636127, mineseen 636127, yourseen 515040, line up
Serial1: HDLC myseq 636128, mineseen 636127, yourseen 515041, line up
Serial1: HDLC myseq 636129, mineseen 636129, yourseen 515042, line up

S
25

61

1 missed
keepalive

3 missed
keepalives;
line goes
down and
interface is
reset

 Debug Commands 2-203

debug serial interface

Table 2-66 describes additional error messages that the debug serial interface command can
generate for HDLC.

Table 2-66 Debug Serial Interface Error Messages for HDLC

Debug Serial Interface for HSSI
On an HSSI interface, the debug serial interface command can generate the following additional
error message:

HSSI0: Reset from 0x nnnnnnn

This message indicates that the HSSI hardware has been reset. The 0xnnnnnnn variable is the
address of the routine requesting that the hardware be reset; this value is useful only to development
engineers.

Field Description

Illegal serial link type code xxx, PC
= 0xnnnnnn

This message is displayed if the router attempts to send a packet
containing an unknown packet type.

Illegal HDLC serial type code xxx,
PC = 0xnnnnn

This message is displayed if an unknown packet type is received.

Serial 0: attempting to restart This message is displayed periodically if the interface is down. The
hardware is then reset to hopefully correct the problem.

Serial 0: Received bridge packet
sent to nnnnnnnnn

This message is displayed if a bridge packet is received over a serial
interface configured for HDLC, and bridging is not configured on
that interface.

2-204 Debug Command Reference

debug serial interface

Debug Serial Interface for ISDN Basic Rate
Table 2-67 describes error messages that the debug serial interface command can generate for
ISDN Basic Rate.

Table 2-67 Debug Serial Interface Message Descriptions for ISDN Basic Rate

Message Description

BRI: D-chan collision A collision on the ISDN D-channel has occurred; the
software will retry transmission.

Received SID Loss of Frame Alignment int. The ISDN hardware has lost frame alignment. This
usually indicates a problem with the ISDN network.

Unexpected IMP int: ipr = 0xnn The ISDN hardware received an unexpected interrupt.
The 0xnn variable indicates the value returned by the
interrupt register.

BRI(d): RX Frame Length Violation. Length = n

BRI(d): RX Nonoctet Aligned Frame

BRI(d): RX Abort Sequence

BRI(d): RX CRC Error

BRI(d): RX Overrun Error

BRI(d): RX Carrier Detect Lost

Any of these messages can be displayed when a
receive error occurs on one of the ISDN channels. The
(d) indicates which channel it is on. These messages
can indicate a problem with the ISDN network
connection.

BRI0: Reset from 0xnnnnnnn The BRI hardware has been reset. The 0xnnnnnnn
variable is the address of the routine that requested that
the hardware be reset; it is useful only to development
engineers.

BRI(d): Bad state in SCMs scm1 = x scm2 = x
scm3 = x

BRI(d): Bad state in SCONs scon1 = x scon2 = x
scon3 = x

BRI(d): Bad state ub SCR; SCR = x

Any of these messages can be displayed if the ISDN
hardware is not in the proper state. The hardware is
then reset. If the message is displayed constantly, it
usually indicates a hardware problem.

BRI(d): Illegal packet encapsulation = n This message is displayed if a packet is received, but
the encapsulation used for the packet is not recognized.
It can indicate that the interface is misconfigured.

 Debug Commands 2-205

debug serial interface

Debug Serial Interface for an MK5025 Device
Table 2-68 describes the additional error messages that the debug serial interface command can
generate for an MK5025 device.

Table 2-68 Debug Serial Interface Message Descriptions for an MK5025 Device

Debug Serial Interface for SMDS Encapsulation
When encapsulation is set to SMDS, debug serial interface displays SMDS packets that are sent
and received, as well as any error messages resulting from SMDS packet transmission.

The error messages that the debug serial interface command can generate for SMDS follow.

The following message indicates that a new protocol requested SMDS to encapsulate the data for
transmission. SMDS is not yet able to encapsulate the protocol.

SMDS: Error on Serial 0, encapsulation bad protocol = x

The following message indicates that SMDS was asked to encapsulate a packet, but no
corresponding destination E.164 SMDS address was found in any of the static SMDS tables or in
the ARP tables:

SMDS send: Error in encapsulation, no hardware address, type = x

The following message indicates that a protocol such as CLNS or IP has been enabled on an SMDS
interface, but the corresponding multicast addresses have not been configured. The n variable
displays the link type for which encapsulation was requested. This value is only significant to Cisco
as an internal protocol type value.

SMDS: Send, Error in encapsulation, type= n

The following messages can occur when a corrupted packet is received on an SMDS interface. The
router expected x, but received y.

SMDS: Invalid packet, Reserved NOT ZERO, x y

Message Description

MK5(d): Reset from 0xnnnnnnnn This message indicates that the hardware has been reset. The
0xnnnnnnn variable is the address of the routine that requested
that the hardware be reset; it is useful only to development
engineers.

MK5(d): Illegal packet encapsulation = n This message is displayed if a packet is received, but the
encapsulation used for the packet is not recognized. Possibly
an indication that the interface is misconfigured.

MK5(d): No packet available for packet
realignment

This message is displayed in cases where the serial driver
attempted to get a buffer (memory) and was unable to do so.

MK5(d): Bad state in CSR0 = (x) This message is displayed if the hardware is not in the proper
state. The hardware is then reset. If this message is displayed
constantly, it usually indicates a hardware problem.

MK5(d): New serial state = n This message is displayed to indicate that the hardware has
interrupted the software. It displays the state that the hardware
is reporting.

MK5(d): DCD is down.

MK5(d): DCD is up.

If the interrupt indicates that the state of carrier has changed,
one of these messages is displayed to indicate the current state
of DCD.

2-206 Debug Command Reference

debug serial interface

SMDS: Invalid packet, TAG mismatch x y
SMDS: Invalid packet, Bad TRAILER length x y

The following messages can indicate an invalid length for an SMDS packet:

SMDS: Invalid packet, Bad BA length x
SMDS: Invalid packet, Bad header extension length x
SMDS: Invalid packet, Bad header extension type x
SMDS: Invalid packet, Bad header extension value x

The following messages are displayed when the debug serial interface command is enabled:

Interface Serial 0 Sending SMDS L3 packet:
SMDS: dgsize: x type:0 xn src: y dst: z

If the debug serial interface command is enabled, the following message can be displayed when a
packet is received on an SMDS interface, but the destination SMDS address does not match any on
that interface:

SMDS: Packet n, not addressed to us

 Debug Commands 2-207

debug ser ial packet

debug serial packet
Use the debug serial packet EXEC command to display more detailed serial interface debugging
information than you can obtain using debug serial interface command. The no form of this
command disables debugging output.

debug serial packet
no debug serial packet

Syntax Description
This command has no arguments or keywords.

Command Mode
EXEC

Usage Guidelines
The debug serial packet command generates output that is dependent on the type of serial interface
and the encapsulation that is running on that interface. The hardware platform also can impact debug
serial packet output.

Sample Display
The debug serial packet command displays output for only SMDS encapsulations.

Debug Serial Packet for SMDS Encapsulation
Figure 2-111 shows sample output when SMDS is enabled on the interface.

Figure 2-111 Sample Debug Serial Packet Output for SMDS

router# debug serial packet

Interface Serial2 Sending SMDS L3 packet:
SMDS Header : Id: 00 RSVD: 00 BEtag: EC Basize: 0044
Dest:E18009999999FFFF Src:C12015804721FFFF Xh:04030000030001000000000000000000
SMDS LLC : AA AA 03 00 00 00 80 38
SMDS Data : E1 19 01 00 00 80 00 00 0C 00 38 1F 00 0A 00 80 00 00 0C 01 2B 71
SMDS Data : 06 01 01 0F 1E 24 00 EC 00 44 00 02 00 00 83 6C 7D 00 00 00 00 00
SMDS Trailer : RSVD: 00 BEtag: EC Length: 0044

As Figure 2-111 shows, when encapsulation is set to SMDS, debug serial packet displays the entire
SMDS header (in hex), as well as some payload data on transmit or receive. This information is
useful only when you have an understanding of the SMDS protocol. The first line of the output
indicates either Sending or Receiving.

2-208 Debug Command Reference

debug source-bridge

debug source-bridge
Use the debug source-bridge EXEC command to display information about packets and frames
transferred across a source-route bridge. The no form of this command disables debugging output.

debug source-bridge
no debug source-bridge

Syntax Description
This command has no arguments or keywords.

Command Mode
EXEC

Sample Display
Figure 2-112 shows sample debug source-bridge output for peer bridges using TCP as a transport
mechanism. The remote source-route bridging (RSRB) network configuration has ring 2 and ring 1
bridged together through remote peer bridges. The remote peer bridges are connected via a serial
line and use TCP as the transport mechanism.

Figure 2-112 Sample Debug Source-Bridge Output in TCP Environment

router# debug source-bridge

RSRB: remote explorer to 5/131.108.250.1/1996 srn 2 [C840.0021.0050.0000]
RSRB: Version/Ring XReq sent to peer 5/131.108.250.1/1996
RSRB: Received version reply from 5/131.108.250.1/1996 (version 2)
RSRB: DATA: 5/131.108.250.1/1996 Ring Xchg Rep, trn 2, vrn 5, off 18, len 10
RSRB: added bridge 1, ring 1 for 5/131.108.240.1/1996
RSRB: DATA: 5/131.108.250.1/1996 Explorer trn 2, vrn 5, off 18, len 69
RSRB: DATA: 5/131.108.250.1/1996 Forward trn 2, vrn 5, off 0, len 92
RSRB: DATA: forward Forward srn 2, br 1, vrn 5 to peer 5/131.108.250.1/1996

Explanations for individual lines of ouptut in Figure 2-112 follow.

The following line indicates that a remote explorer frame has been sent to IP address 131.108.250.1
and like all RSRB TCP connections, has been assigned port 1996. The bridge belongs to ring
group 5. The explorer frame originated from ring number 2. The routing information field (RIF)
descriptor has been generated by the local station and indicates that the frame was sent out via
bridge 1 onto virtual ring 5.

RSRB: remote explorer to 5/131.108.250.1/1996 srn 2 [C840.0021.0050.0000]

The following line indicates that a request for remote peer information has been sent to IP address
131.108.250.1, TCP port 1996. The bridge belongs to ring group 5.

RSRB: Version/Ring XReq sent to peer 5/131.108.250.1/1996

The following line is the response to the version request previously sent. The response is sent from
IP address 131.108.250.1, TCP port 1996. The bridge belongs to ring group 5.

RSRB: Received version reply from 5/131.108.250.1/1996 (version 2)

 Debug Commands 2-209

debug sour ce-bridge

The following line is the response to the ring request previously sent. The response is sent from IP
address 131.108.250.1, TCP port 1996. The target ring number is 2, virtual ring number is 5, the
offset is 18, and the length of the frame is 10 bytes.

RSRB: DATA: 5/131.108.250.1/1996 Ring Xchg Rep, trn 2, vrn 5, off 0, len 10

The following line indicates that bridge 1 and ring 1 were added to the source-bridge table for IP
address 131.108.250.1, TCP port 1996.

RSRB: added bridge 1, ring 1 for 5/131.108.250.1/1996

The following line indicates that a packet containing an explorer frame came across virtual ring 5
from IP address 131.108.250.1, TCP port 1996. The packet is 69 bytes in length. This packet is
received after the Ring Exchange information was received and updated on both sides.

RSRB: DATA: 5/131.108.250.1/1996 Explorer trn 2, vrn 5, off 18, len 69

The following line indicates that a packet containing data came across virtual ring 5 from IP address
131.108.250.1 over TCP port 1996. The packet is being placed on the local target ring 2.The packet
is 92 bytes in length.

RSRB: DATA: 5/131.108.250.1/1996 Forward trn 2, vrn 5, off 0, len 92

The following line indicates that a packet containing data is being forwarded to the peer that has IP
131.108.250.1 address belonging to local ring 2 and bridge 1. The packet is forwarded via virtual
ring 5. This packet is sent after the Ring Exchange information was received and updated on both
sides.

RSRB: DATA: forward Forward srn 2, br 1, vrn 5 to peer 5/131.108.250.1/1996

Figure 2-113 shows sample debug source-bridge output for peer bridges using direct encapsulation
as a transport mechanism. The RSRB network configuration has ring 1 and ring 2 bridged together
through peer bridges. The peer bridges are connected via a serial line and use TCP as the transport
mechanism.

Figure 2-113 Sample Debug Source-Bridge Output in Direct Encapsulation Environment

router# debug source-bridge

RSRB: remote explorer to 5/Serial1 srn 1 [C840.0011.0050.0000]
RSRB: Version/Ring XReq sent to peer 5/Serial1
RSRB: Received version reply from 5/Serial1 (version 2)
RSRB: IFin: 5/Serial1 Ring Xchg, Rep trn 0, vrn 5, off 0, len 10
RSRB: added bridge 1, ring 1 for 5/Serial1

Explanations for individual lines of output in Figure 2-113 follow.

The following line indicates that a remote explorer frame was sent to remote peer Serial1, which
belongs to ring group 5. The explorer frame originated from ring number 1. The routing information
field (RIF) descriptor 0011.0050 was generated by the local station and indicates that the frame was
sent out via bridge 1 onto virtual ring 5.

RSRB: remote explorer to 5/Serial1 srn 1 [C840.0011.0050.0000]

The following line indicates that a request for remote peer information was sent to Serial1. The
bridge belongs to ring group 5.

RSRB: Version/Ring XReq sent to peer 5/Serial1

2-210 Debug Command Reference

debug source-bridge

The following line is the response to the version request previously sent. The response is sent from
Serial 1. The bridge belongs to ring group 5 and the version is 2.

RSRB: Received version reply from 5/Serial1 (version 2)

The following line is the response to the ring request previously sent. The response is sent from
Serial1. The target ring number is 2, virtual ring number is 5, the offset is 0, and the length of the
frame is 39 bytes.

RSRB: IFin: 5/Serial1 Ring Xchg Rep, trn 2, vrn 5, off 0, len 39

The following line indicates that bridge 1 and ring 1 were added to the source-bridge table for
Serial1.

RSRB: added bridge 1, ring 1 for 5/Serial1

 Debug Commands 2-211

debug source event

debug source event
Use the debug source event EXEC command to display information on source-route bridging
activity. The no form of this command disables debugging output.

debug source event
no debug source event

Syntax Description
This command has no arguments or keywords.

Command Mode
EXEC

Usage Guidelines
Output of the debug source bridge command is identical to the output of this command.

Note In order to use the debug source event command to display traffic source-routed through an
interface, you first must disable fast switching of SRB frames with the no source-bridge
route-cache interface configuration command.

Sample Display
Figure 2-114 shows sample debug source event output.

Figure 2-114 Sample Debug Source Event Output

router# debug source event

RSRB0: forward (srn 5 bn 1 trn 10), src: 8110.2222.33c1 dst: 1000.5a59.04f9
[0800.3201.00A1.0050]
RSRB0: forward (srn 5 bn 1 trn 10), src: 8110.2222.33c1 dst: 1000.5a59.04f9
[0800.3201.00A1.0050]
RSRB0: forward (srn 5 bn 1 trn 10), src: 8110.2222.33c1 dst: 1000.5a59.04f9
[0800.3201.00A1.0050]
RSRB0: forward (srn 5 bn 1 trn 10), src: 8110.2222.33c1 dst: 1000.5a59.04f9
[0800.3201.00A1.0050]
RSRB0: forward (srn 5 bn 1 trn 10), src: 8110.2222.33c1 dst: 1000.5a59.04f9
[0800.3201.00A1.0050]

Table 2-69 describes significant fields shown in Figure 2-114.

Table 2-69 Debug Source Event Field Descriptions

Field Description

RSRB0: Indication that this RIF cache entry is for the Token Ring 0 interface, which
has been configured for remote source-route bridging. (SRB1, in contrast,
would indicate that this RIF cache entry is for Token Ring 1, configured for
source-route bridging.)

2-212 Debug Command Reference

debug source event

Examples of other debug source event messages follow.

In the following example messages, SRBn or RSRBn denotes a message associated with interface
Token Ring n. An n of 99 denotes the remote side of the network.

SRBn: no path, s: <src MAC addr>d: <dst MAC addr>rif: <rif>

In the preceding example, a bridgeable packet came in on interface Token Ring n but there was
nowhere to send it. This is most likely a configuration error. For example, an interface has source
bridging turned on, but it is not connected to another source bridging interface or a ring group.

In the following example, a bridgeable packet has been forwarded from Token Ring n to the target
ring. The two interfaces are directly linked.

SRBn: direct forward (srn <ring>bn <bridge>trn <ring>)

In the following examples, a proxy explorer reply was not generated because there was no way to
get to the address from this interface. The packet came from the node with the first <address>.

SRBn: br dropped proxy XID, <address> for <address>, wrong vring (rem)
SRBn: br dropped proxy TEST, <address> for <address>, wrong vring (rem)
SRBn: br dropped proxy XID, <address> for <address>, wrong vring (local)
SRBn: br dropped proxy TEST, <address> for <address>, wrong vring (local)
SRBn: br dropped proxy XID, <address> for <address>, no path
SRBn: br dropped proxy TEST, <address> for <address>, no path

In the following example, an appropriate proxy explorer reply was generated on behalf of the second
<address>. It is sent to the first <address>.

SRBn: br sent proxy XID, <address> for <address>[<rif>]
SRBn: br sent proxy TEST, <address> for <address>[<rif>]

The following example indicates that the broadcast bits were not set, or that the routing information
indicator on the packet was not set:

SRB<unit#>: illegal explorer, s: <srcMACaddr> d: <destMACaddr> rif:
<RIFstring>

The following example indicates that the direction bit in the RIF field was set, or that an odd packet
length was encountered. Such packets are dropped.

SRB<unit #>: bad explorer control, D set or odd

The following example indicates that a spanning explorer was dropped because the spanning option
was not configured on the interface:

SRB<unit #>: span dropped, input off, s: <src mac addr> d: <dest mac addr>
rif: <rif string>

forward Forward (normal data) packet, in contrast to a control packet containing
proprietary Cisco bridging information.

srn 5 Ring number of the packet’s source ring.

bn 1 Bridge number of the bridge this packet traverses.

trn 10 Ring number of the packet’s target ring.

src: 8110.2222.33c1 Source address of the route in this RIF cache entry.

dst: 1000.5a59.04f9 Destination address of the route in this RIF cache entry.

[0800.3201.00A1.0050] RIF string in this RIF cache entry.

Field Description

 Debug Commands 2-213

debug source event

The following example indicates that a spanning explorer was dropped because it had traversed the
ring previously:

SRB<unit #>: span violation, s: <src mac addr> d: <dest mac addr> rif:
<rif string>

The following example indicates that an explorer was dropped because the maximum hop count
limit was reached on that interface:

SRB<unit #>: max hops reached - <hop cnt>, s: <src mac addr> d: <dest mac addr>
rif: <rif string>

The following example indicates that the ring exchange request was sent to the indicated peer. This
request tells the remote side which rings this node has and asks for a reply indicating which rings
that side has.

RSRB: sent RingXreq to <ring group>/<ip addr>

The following example indicates that a message was sent to the remote peer. The <label> variable
can be AHDR (active header), PHDR (passive header), HDR (normal header), or DATA (data
exchange), and <op> can be Forward, Explorer, Ring Xchg, Req, Ring Xchg, Rep, Unknown Ring
Group, Unknown Peer, or Unknown Target Ring.

RSRB: <label>: sent <op> to <ring group>/<ip addr>

The following example indicates that the remote bridge and ring pair were removed from or added
to the local ring group table because the remote peer changed:

RSRB: removing bn <bridge> rn <ring> from <ring group>/<ip addr>
RSRB: added bridge <bridge>, ring <ring> for <ring group>/<ip addr>

The following example shows miscellaneous remote peer connection establishment messages:

RSRB: peer <ring group>/<ip addr> closed [last state n]
RSRB: passive open <ip addr>(remote port) -> <local port>
RSRB: CONN: opening peer <ring group>/<ip addr>, attempt n
RSRB: CONN: Remote closed <ring group>/<ip addr> on open
RSRB: CONN: peer <ring group>/<ip addr> open failed, <reason>[code]

The following example shows that an explorer packet was propagated onto the local ring from the
remote ring group:

RSRBn: sent local explorer, bridge <bridge> trn <ring>, [rif]

The following messages indicate that the remote source-route bridging code found the packet was
in error:

RSRBn: ring group <ring group> not found
RSRBn: explorer rif [rif] not long enough

The following example indicates that a buffer could not be obtained for a ring exchange packet; this
is an internal error.

RSRB: couldn’t get pak for ringXchg

The following example indicates that a ring exchange packet was received that had an incorrect
length; this is an internal error.

RSRB: XCHG: req/reply badly formed, length <pak length>, peer <peer id>

The following example indicates that a ring entry was removed for the peer; the ring was possibly
disconnected from the network, causing the remote router to send an update to all its peers.

RSRB: removing bridge <br #> ring <ring #> from <peer name> <ring type>

2-214 Debug Command Reference

debug source event

The following example indicates that a ring entry was added for the specified peer; the ring was
possibly added to the network, causing the other router to send an update to all its peers.

RSRB: added bridge <br #>, ring <ring #> for <peer id>

The following example indicates that no memory was available to add a ring number to the ring
group specified; this is an internal error.

RSRB: no memory for ring element <ring group #>

The following example indicates that memory was corrupted for a connection block; this is an
internal error.

RSRB: CONN: corrupt connection block

The following example indicates that a connector process started, but that there was no packet to
process; this is an internal error.

RSRB: CONN: warning, no initial packet, peer: <ip addr> <peer pointer>

The following example indicates that a packet was received with a version number different from
the one present on the router:

RSRB: IF New version. local=<local version #>, remote=<remote version>,
<pak op code> <peer id>

The following example indicates that a packet with a bad op code was received for a direct
encapsulation peer; this is an internal error.

RSRB: IFin: bad op <op code> (op code string) from <peer id>

The following example indicates that the virtual ring header will not fit on the packet to be sent to
the peer; this is an internal error:

RSRB: vrif_sender, hdr won't fit

The following example indicates that the specified peer is being opened. The retry count specifies
the number of times the opening operation is attempted.

RSRB: CONN: opening peer <peer id> <retry count>

The following example indicates that the router, configured for FST encapsulation, received a
version reply to the version request packet it had sent previously:

RSRB: FST Rcvd version reply from <peer id> (version #)

The following example indicates that the router, configured for FST encapsulation, sent a version
request packet to the specified peer:

RSRB: FST Version Request. op = <opcode>, <peer id>

The following example indicates that the router received a packet with a bad op code from the
specified peer; this is an internal error.

RSRB: FSTin: bad op <opcode> (op code string) from <peer id>

The following example indicates that the TCP connection between the router and the specified peer
is being aborted:

RSRB: aborting <ring group #>/<peer id> (vrtcpd_abort called)

 Debug Commands 2-215

debug source event

The following example indicates that an attempt to establish a TCP connection to a remote peer
timed out:

RSRB: CONN: attempt timed out

The following example indicates that a packet was dropped because the ring group number in the
packet did not correlate with the ring groups configured on the router:

RSRB<unit #>: ring group <ring group #> not found

2-216 Debug Command Reference

debug span

debug span
Use the debug span EXEC command to display information on changes in the spanning-tree
topology when debugging a transparent bridge. The no form of this command disables debugging
output.

debug span
no debug span

Syntax Description
This command has no arguments or keywords.

Command Mode
EXEC

Usage Guidelines
This command is useful for tracking and verifying that the spanning-tree protocol is operating
correctly.

Sample Display—IEEE Spanning Tree
Sample debug span output for an IEEE BPDU packet follows:

ST: Ether4 0000000000000A080002A02D6700000000000A080002A02D6780010000140002000F00

Figure 2-115 shows the preceding debug span output broken up by fields and labeled to aid
documentation.

Figure 2-115 Sample Debug Span Output for an IEEE BPDU Packet

Table 2-70 describes significant fields shown in Figure 2-115.

Table 2-70 Debug Span Field Descriptions for an I EEE BPDU Packet

Field Description

ST: Indication that this is a spanning tree packet.

Ether4 Interface receiving the packet.

(A) 0000 Indication that this is an IEEE BPDU packet.

(B) 00 Version.

(C) 00 Command mode:

00 indicates config BPDU.

80 indicates the Topology Change Notification (TCN) BPDU.

(D) 00 Topology change acknowledgment:

00 indicates no change.

80 indicates a change notification.

ST: Ether4 0000 00 00 00 000A 080002A02D67 00000000 000A 080002A02D67 80 01 0000 1400 0200 0F00
 A B C D E F G H I J K L M N O S

25
75

 Debug Commands 2-217

debug span

Sample Display—DEC Spanning Tree
Sample debug span output for a DEC BPDU packet follows:

ST: Ethernet4 E1190100000200000C01A2C90064008000000C0106CE0A01050F1E6A

Figure 2-116 shows the preceding debug span output broken up by fields and labeled to aid
documentation.

Figure 2-116 Sample Debug Span Output

Table 2-71 describes significant fields shown in Figure 2-116.

Table 2-71 Debug Span Field Descr iptions for a DEC BPDU Packet

(E) 000A Root priority.

(F) 080002A02D67 Root ID.

(G) 00000000 Root path cost (0 means the sender of this BPDU packet is the root
bridge).

(H) 000A Bridge priority.

(I) 080002A02D67 Bridge ID.

(J) 80 Port priority.

(K) 01 Port No. 1.

(L) 0000 Message age in 256ths of a second (0 seconds, in this case).

(M) 1400 Maximum age in 256ths of a second (20 seconds, in this case).

(N) 0200 Hello time in 256ths of a second (2 seconds, in this case).

(O) 0F00 Forward delay in 256ths of a second (15 seconds, in this case).

Field Description

ST: Indication that this is a spanning tree packet.

Ethernet4 Interface receiving the packet.

(A) E1 Indication that this is a DEC BPDU packet.

(B) 19 Indication that this is a DEC Hello packet. Possible values are as
follows:

0x19—DEC Hello

0x02—Topology change notification (TCN)

(C) 01 DEC version.

(D) 00 Flag that is a bit field with the following mapping:

1—TCN

2—TCN acknowledgment

8—Use short timers

(E) 0002 Root priority.

Field Description

E1 19 01 00 0002 00000C01A2C9 0064 0080 00000C0106CE 0A 01 05 0F 1E 6A
A B C D E F G H I J K L M N O S

25
76

2-218 Debug Command Reference

debug span

(F) 00000C01A2C9 Root ID (MAC address).

(G) 0064 Root path cost (translated as 100 in decimal notation).

(H) 0080 Bridge priority.

(I) 00000C0106CE Bridge ID.

(J) 0A Port ID (in contrast to interface number).

(K) 01 Message age (in seconds).

(L) 05 Hello time (in seconds).

(M) 0F Maximum age (in seconds).

(N) 1E Forward delay (in seconds).

(O) 6A Not applicable.

Field Description

 Debug Commands 2-219

debug sse

debug sse
Use the debug sse EXEC command to display information for the Silicon Switching Engine (SSE)
processor. The no form of this command disables debugging output.

debug sse
no debug sse

Syntax Description
This command has no arguments or keywords.

Command Mode
EXEC

Usage Guidelines
By using the debug sse command, you can observe statistics and counters maintained by the SSE.

Sample Display
Figure 2-117 shows sample debug sse output.

Figure 2-117 Sample Debug SSE Output

router# debug sse
SSE: IP number of cache entries changed 273 274
SSE: IP number of cache entries changed 273 274
SSE: bridging enabled
SSE: interface Ethernet0/0 icb 0x30 addr 0x29 status 0x21A040 protos 0x11
SSE: interface Ethernet0/1 icb 0x33 addr 0x29 status 0x21A040 protos 0x11
SSE: interface Ethernet0/2 icb 0x36 addr 0x29 status 0x21A040 protos 0x10
SSE: interface Ethernet0/3 icb 0x39 addr 0x29 status 0x21A040 protos 0x11
SSE: interface Ethernet0/4 icb 0x3C addr 0x29 status 0x21A040 protos 0x10
SSE: interface Ethernet0/5 icb 0x3F addr 0x29 status 0x21A040 protos 0x11
SSE: interface Hssi1/0 icb 0x48 addr 0x122 status 0x421E080 protos 0x11
SSE: cache update took 316ms, elapsed 320ms

Explanations for representative lines of output in Figure 2-117 follow.

The following line indicates that the SSE cache is being updated due to a change in the IP fast
switching cache:

SSE: IP number of cache entries changed 273 274

The following line indicates that bridging functions were enabled on the SSE:

SSE: bridging enabled

The following lines indicate that the SSE is now loaded with information about the interfaces:

SSE: interface Ethernet0/0 icb 0x30 addr 0x29 status 0x21A040 protos 0x11
SSE: interface Ethernet0/1 icb 0x33 addr 0x29 status 0x21A040 protos 0x11
SSE: interface Ethernet0/2 icb 0x36 addr 0x29 status 0x21A040 protos 0x10
SSE: interface Ethernet0/3 icb 0x39 addr 0x29 status 0x21A040 protos 0x11
SSE: interface Ethernet0/4 icb 0x3C addr 0x29 status 0x21A040 protos 0x10
SSE: interface Ethernet0/5 icb 0x3F addr 0x29 status 0x21A040 protos 0x11
SSE: interface Hssi1/0 icb 0x48 addr 0x122 status 0x421E080 protos 0x11

2-220 Debug Command Reference

debug sse

The following line indicates that the SSE took 316 ms of processor time to update the SSE cache.
The value of 320 ms represents the total time elapsed while the cache updates were performed.

SSE: cache update took 316ms, elapsed 320ms

 Debug Commands 2-221

debug standby

debug standby
Use the debug standby EXEC command to display hot standby protocol state changes. The no form
of this command disables debugging output.

debug standby
no debug standby

Syntax Description
This command has no arguments or keywords.

Command Mode
EXEC

Usage Guidelines
The debug standby command displays hot standby protocol state changes and debugging
information regarding transmission and receipt of hot standby protocol packets. Use this command
to determine whether hot standby routers recognize one another and take the proper actions.

Sample Display
Figure 2-118 shows sample debug standby output.

Figure 2-118 Sample Debug Standby Output

router# debug standby

SB: Ethernet0 state Virgin -> Listen
SB: Starting up hot standby process
SB:Ethernet0 Hello in 198.92.72.21 Active pri 90 hel 3 hol 10 ip 198.92.72.29
SB:Ethernet0 Hello in 198.92.72.21 Active pri 90 hel 3 hol 10 ip 198.92.72.29
SB:Ethernet0 Hello in 198.92.72.21 Active pri 90 hel 3 hol 10 ip 198.92.72.29
SB:Ethernet0 Hello in 198.92.72.21 Active pri 90 hel 3 hol 10 ip 198.92.72.29
SB: Ethernet0 state Listen -> Speak
SB:Ethernet0 Hello out 198.92.72.20 Speak pri 100 hel 3 hol 10 ip 198.92.72.29
SB:Ethernet0 Hello in 198.92.72.21 Active pri 90 hel 3 hol 10 ip 198.92.72.29
SB:Ethernet0 Hello out 198.92.72.20 Speak pri 100 hel 3 hol 10 ip 198.92.72.29
SB:Ethernet0 Hello in 198.92.72.21 Active pri 90 hel 3 hol 10 ip 198.92.72.29
SB:Ethernet0 Hello out 198.92.72.20 Speak pri 100 hel 3 hol 10 ip 198.92.72.29
SB:Ethernet0 Hello in 198.92.72.21 Active pri 90 hel 3 hol 10 ip 198.92.72.29
SB: Ethernet0 state Speak -> Standby
SB:Ethernet0 Hello out 198.92.72.20 Standby pri 100 hel 3 hol 10 ip 198.92.72.29
SB:Ethernet0 Hello in 198.92.72.21 Active pri 90 hel 3 hol 10 ip 198.92.72.29
SB:Ethernet0 Hello out 198.92.72.20 Standby pri 100 hel 3 hol 10 ip 198.92.72.29
SB:Ethernet0 Hello in 198.92.72.21 Active pri 90 hel 3 hol 10 ip 198.92.72.29
SB:Ethernet0 Hello out 198.92.72.20 Standby pri 100 hel 3 hol 10 ip 198.92.72.29
SB:Ethernet0 Hello in 198.92.72.21 Active pri 90 hel 3 hol 10 ip 198.92.72.29
SB: Ethernet0 Coup out 198.92.72.20 Standby pri 100 hel 3 hol 10 ip 198.92.72.29
SB: Ethernet0 state Standby -> Active
SB:Ethernet0 Hello out 198.92.72.20 Active pri 100 hel 3 hol 10 ip 198.92.72.29
SB:Ethernet0 Hello in 198.92.72.21 Speak pri 90 hel 3 hol 10 ip 198.92.72.29
SB:Ethernet0 Hello out 198.92.72.20 Active pri 100 hel 3 hol 10 ip 198.92.72.29
SB:Ethernet0 Hello in 198.92.72.21 Speak pri 90 hel 3 hol 10 ip 198.92.72.29
SB:Ethernet0 Hello out 198.92.72.20 Active pri 100 hel 3 hol 10 ip 198.92.72.29

2-222 Debug Command Reference

debug standby

Table 2-72 describes significant fields shown in Figure 2-118.

Table 2-72 Debug Standby Field Descriptions

Explanations for representative lines of output in Figure 2-118 follow.

The following line indicates that the router is initiating the hot standby protocol. The standby ip
interface configuration command enables hot standby.

SB: Starting up hot standby process

The following line indicates that a state transition occurred on the interface:

SB: Ethernet0 state Listen -> Speak

Field Description

SB An abbreviation for “standby.”

Ethernet0 The interface on which a hot standby packet was sent or received.

Hello in Hello packet received from the specified IP address.

Hello out Hello packet sent from the specified IP address.

pri Priority advertised in the hello packet.

hel Hello interval advertised in the hello packet.

hol Holddown interval advertised in the hello packet.

ip address Hot standby group IP address advertised in the hello packet.

state Transition from one state to another.

Coup out address Coup packet sent by the router from the specified IP address.

 Debug Commands 2-223

debug stun packet

debug stun packet
Use the debug stun packet EXEC command to display information on packets traveling through
the serial tunnel (STUN) links. Use the no form of this command to disable debugging output.

debug stun packet [group] [address]
no debug stun packet [group] [address]

Syntax Description

Command Mode
EXEC

Usage Guidelines
Because using this command is processor intensive, it is best to use it after hours, rather than in a
production environment. It is also best to turn this command on by itself, rather than use it in
conjunction with other debug commands.

Sample Display
Figure 2-119 shows sample debug stun packet output.

 group (Optional) Decimal integer assigned to a group. Using this
option limits output to packets associated with the specified
STUN group.

address (Optional) Output is further limited to only those packets
containing the specified STUN address. The address
argument is in the appropriate format for the STUN
protocol running for the specified group.

2-224 Debug Command Reference

debug stun packet

Figure 2-119 Sample Debug STUN Packet Output

Explanations for individual lines of output from Figure 2-119 follow.

The following line describes an X1 type of packet:

STUN sdlc: 0:00:04 Serial3 NDI: (0C2/008) U: SNRM PF:1

Table 2-73 describes significant fields shown in this line of debug stun packet output.

Table 2-73 Debug STUN Packet Field Descriptions

Field Description

STUN sdlc: Indication that the STUN feature is providing the
information.

0:00:04 Time elapsed since receipt of previous packet.

Serial3 Interface type and unit number reporting the event.

NDI: The type of cloud separating the SDLC end nodes.
Possible values follow:

NDI—Network input

SDI—Serial link

0C2 SDLC address of the SDLC connection.

008 A modulo value of 8.

router# debug stun packet

STUN sdlc: 0:00:04 Serial3 NDI: (0C2/008) U: SNRM PF:1
STUN sdlc: 0:00:04 Serial3 NDI: (0C2/008) U: SNRM PF:1
STUN sdlc: 0:00:01 Serial3 SDI: (0C2/008) U: UA PF:1
STUN sdlc: 0:00:00 Serial3 SDI: (0C2/008) S: RR PF:1 NR:000
STUN sdlc: 0:00:00 Serial3 SDI: (0C2/008) S: RR PF:1 NR:000
STUN sdlc: 0:00:00 Serial3 SDI: (0C2/008) S: RR PF:1 NR:000
STUN sdlc: 0:00:00 Serial3 SDI: (0C2/008) S: RR PF:1 NR:000
STUN sdlc: 0:00:00 Serial3 SDI: (0C2/008) S: RR PF:1 NR:000
STUN sdlc: 0:00:00 Serial3 SDI: (0C2/008) S: RR PF:1 NR:000
STUN sdlc: 0:00:00 Serial3 SDI: (0C2/008) S: RR PF:1 NR:000
STUN sdlc: 0:00:00 Serial3 SDI: (0C2/008) S: RR PF:1 NR:000
STUN sdlc: 0:00:00 Serial3 SDI: (0C2/008) S: RR PF:1 NR:000
STUN sdlc: 0:00:00 Serial3 SDI: (0C2/008) S: RR PF:1 NR:000
STUN sdlc: 0:00:00 Serial3 SDI: (0C2/008) S: RR PF:1 NR:000
STUN sdlc: 0:00:00 Serial3 NDI: (0C2/008) I: PF:1 NR:000 NS:000
STUN sdlc: 0:00:00 Serial3 SDI: (0C2/008) I: PF:1 NR:001 NS:000
STUN sdlc: 0:00:00 Serial3 SDI: (0C2/008) S: RR PF:1 NR:001
STUN sdlc: 0:00:00 Serial3 SDI: (0C2/008) S: RR PF:1 NR:001
STUN sdlc: 0:00:00 Serial3 SDI: (0C2/008) S: RR PF:1 NR:001
STUN sdlc: 0:00:00 Serial3 SDI: (0C2/008) S: RR PF:1 NR:001

S
25

63

X3 type
of packet

X1 type
of packet

X2 type
of packet

 Debug Commands 2-225

debug stun packet

The following line of output describes an X2 type of packet:

STUN sdlc: 0:00:00 Serial3 SDI: (0C2/008) S: RR PF:1 NR:000

All the fields in the previous line of output match those for an X1 type of packet, except the last field,
which is additional. NR:000 indicates a receive count of 0; the range for the receive count is 0 to 7.

The following line of output describes an X3 type of packet:

STUN sdlc: 0:00:00 Serial3 SDI: (0C2/008) S:I PF:1 NR:000 NS:000

All fields in the previous line of output match those for an X2 type of packet, except the last field,
which is additional. NS:000 indicates a send count of 0; the range for the send count is 0 to 7.

U:SNRM The frame type followed by the command or
response type. In this case it is an Unnumbered
frame that contains an SNRM (Set Normal
Response Mode) command. The possible frame
types are as follows:

I—Information frame

S—Supervisory frame. The possible commands
and responses are: RR (Receive Ready), RNR
(Receive Not Ready), and REJ (Reject).

U—Unnumbered frame. The possible commands
are: UI (Unnumbered Information), SNRM,
DISC/RD (Disconnect/Request Disconnect),
SIM/RIM, XID Exchange Identification), TEST.
The possible responses are UA (unnumbered
acknowledgment), DM (Disconnected Mode), and
FRMR (Frame Reject Mode)

PF:1 Poll/Final bit.

0—Off

1—On

Field Description

2-226 Debug Command Reference

debug tftp

debug tftp
Use the debug tftp EXEC command to display Trivial File Transfer Protocol (TFTP) debugging
information when encountering problems netbooting or using the configure network or write
network commands. The no form of this command disables debugging output.

debug tftp
no debug tftp

Syntax Description
This command has no arguments or keywords.

Command Mode
EXEC

Sample Display
Figure 2-120 shows sample debug tftp output from the EXEC command write network .

Figure 2-120 Sample Debug TFTP Output

router# debug tftp

TFTP: msclock 0x292B4; Sending write request (retry 0), socket_id 0x301DA8
TFTP: msclock 0x2A63C; Sending write request (retry 1), socket_id 0x301DA8
TFTP: msclock 0x2A6DC; Received ACK for block 0, socket_id 0x301DA8
TFTP: msclock 0x2A6DC; Received ACK for block 0, socket_id 0x301DA8
TFTP: msclock 0x2A6DC; Sending block 1 (retry 0), socket_id 0x301DA8
TFTP: msclock 0x2A6E4; Received ACK for block 1, socket_id 0x301DA8

Table 2-74 describes significant fields shown in the first line of output from Figure2-120.

Table 2-74 Debug TFTP Field Descriptions

Message Descri ption

TFTP: This entry describes a TFTP packet.

msclock 0x292B4; Internal timekeeping clock (in milliseconds).

Sending write request
(retry 0)

The TFTP operation.

socket_id 0x301DA8 Unique memory address for the socket for the TFTP connection.

 Debug Commands 2-227

debug token ring

debug token ring
Use the debug token ring EXEC command to display messages about Token Ring interface activity.
The no form of this command disables debugging output.

debug token ring
no debug token ring

Syntax Description
This command has no arguments or keywords.

Command Mode
EXEC

Usage Guidelines
This command reports several lines of information for each packet sent or received and is intended
for low traffic, detailed debugging.

The Token Ring interface records provide information regarding the current state of the ring. These
messages are only displayed when the debug token events command is enabled.

The debug token ring command invokes verbose Token Ring hardware debugging. This includes
detailed displays as traffic arrives and departs the unit.

Note It is best to use this command only on router/bridges with light loads.

Sample Display
Figure 2-121 shows sample debug token ring output.

Figure 2-121 Sample Debug T oken Ring Output

router# debug token ring

TR0: Interface is alive, phys. addr 5000.1234.5678
TR0: in: MAC: acfc: 0x1105 Dst: c000.ffff.ffff Src: 5000.1234.5678 bf: 0x45
TR0: in: riflen 0, rd_offset 0, llc_offset 40
TR0: out: MAC: acfc: 0x0040 Dst: 5000.1234.5678 Src: 5000.1234.5678 bf: 0x00
TR0: out: LLC: AAAA0300 00009000 00000100 AAC00000 00000802 50001234 ln: 28
TR0: in: MAC: acfc: 0x1140 Dst: 5000.1234.5678 Src: 5000.1234.5678 bf: 0x09
TR0: in: LLC: AAAA0300 00009000 00000100 AAC0B24A 4B4A6768 74732072 ln: 28
TR0: in: riflen 0, rd_offset 0, llc_offset 14
TR0: out: MAC: acfc: 0x0040 Dst: 5000.1234.5678 Src: 5000.1234.5678 bf: 0x00
TR0: out: LLC: AAAA0300 00009000 00000100 D1D00000 FE11E636 96884006 ln: 28
TR0: in: MAC: acfc: 0x1140 Dst: 5000.1234.5678 Src: 5000.1234.5678 bf: 0x09
TR0: in: LLC: AAAA0300 00009000 00000100 D1D0774C 4DC2078B 3D000160 ln: 28
TR0: in: riflen 0, rd_offset 0, llc_offset 14
TR0: out: MAC: acfc: 0x0040 Dst: 5000.1234.5678 Src: 5000.1234.5678 bf: 0x00
TR0: out: LLC: AAAA0300 00009000 00000100 F8E00000 FE11E636 96884006 ln: 28

Table 2-75 describes significant fields shown in the second line of output from Figure 2-121.

2-228 Debug Command Reference

debug token ring

Table 2-75 Debug Token Ring Field Descr iptions—Part 1

Table 2-76 describes significant fields shown in the third line of output from Figure 2-121.

Table 2-76 Debug Token Ring Field Descr iptions—Part 2

Table 2-77 describes significant fields shown in the fifth line of output from Figure 2-121.

Table 2-77 Debug Token Ring Field Descr iptions—Part 3

Message Descri ption

TR0: Name of the interface associated with the Token Ring event.

in: Indication of whether the packet was input to the interface (in) or output from
the interface (out).

MAC: The type of packet, as follows:

MAC—Media Access Control

LLC—Link Level Control

acfc: 0x1105 Access Control, Frame Control bytes, as defined by the IEEE 802.5 standard.

Dst: c000.ffff.ffff Destination address of the frame.

Src: 5000.1234.5678 Source address of the frame.

bf: 0x45 Bridge flags for internal use by technical support staff.

Message Descr iption

TR0: Name of the interface associated with the Token Ring event.

in: Indication of whether the packet was input to the interface (in) or output from
the interface (out).

riflen 0 Length of the RIF field (in bytes).

rd_offset 0 Offset (in bytes) of the frame pointing to the start of the RIF field.

llc_offset 40 Offset in the frame pointing to the start of the LLC field.

Message Descr iption

TR0: Name of the interface associated with the Token Ring event.

out: Indication of whether the packet was input to the interface (in) or output from
the interface (out).

LLC: The type of frame, as follows:

MAC—Media Access Control

LLC—Link Level Control

AAAA0300 This and the octets that follow it indicate the contents (hex) of the frame.

ln: 28 The length of the information field (in bytes).

 Debug Commands 2-229

debug vines arp

debug vines arp
Use the debug vines arp EXEC command to display debugging information on all Virtual
Integrated Network Service (VINES) Address Resolution Protocol (ARP) packets that the router
sends or receives. The no form of this command disables debugging output.

debug vines arp
no debug vines arp

Syntax Description
This command has no arguments or keywords.

Command Mode
EXEC

Sample Display
Figure 2-122 shows sample debug vines arp output.

Figure 2-122 Sample Debug VINES ARP Output

router# debug vines arp

VNSARP: received ARP type 0 from 0260.8c43.a7e4
VNSARP: sending ARP type 1 to 0260.8c43.a7e4
VNSARP: received ARP type 2 from 0260.8c43.a7e4
VNSARP: sending ARP type 3 to 0260.8c43.a7e4 assigning address 3001153C:8004
VSARP: received ARP type 0 from 0260.8342.1501
VSARP: sending ARP type 1 to 0260.8342.1501
VSARP: received ARP type 2 from 0260.8342.1501
VSARP: sending ARP type 3 to 0260.8342.1501 assigning address 3001153C:8005,
 sequence 143C, metric 2

In Figure 2-122, the first four lines show a non-sequenced ARP transaction and the second four lines
show a sequenced ARP transaction. Within the first group of four lines, the first line shows that the
router received an ARP request (type 0) from indicated station address 0260.8c43.a7e4. The second
line shows that the router is sending back the ARP service response (type 1), indicating that it is
willing to assign VINES Internet addresses. The third line shows that the router received a VINES
Internet address assignment request (type 2) from address 0260.8c43.a7e4. The fourth line shows
that the router is responding (type 3) to the address assignment request from the client and assigning
it the address 3001153C:8004.

Within the second group of four lines, the sequenced ARP packet also includes the router’ current
sequence number and the metric value between the router and the client.

Table 2-78 describes significant fields shown in Figure2-122.

2-230 Debug Command Reference

debug vines arp

Table 2-78 Debug VINES ARP Field Descriptions

Field Description

VNSARP: Indicates that this is a Banyan VINES nonsequenced ARP message.

VSARP: Indicates that this is a Banyan VINES sequenced ARP message.

received ARP type 0 Indicates that an ARP request of type 0 was received. Possible type
values follow:

0—Query request. The ARP client broadcasts a type 0 message to
request an ARP service to respond.

1—Service response. The ARP service responds with a type 1 message
to an ARP client’s query request.

2—Assignment request. The ARP client responds to a service response
with a type 2 message to request a Banyan VINES Internet address.

3—Assignment response. The ARP service responds to an assignment
request with a type 3 message that includes the assigned Banyan VINES
Internet address.

from 0260.8c43.a7e4 Indicates the source address of the packet.

 Debug Commands 2-231

debug vines echo

debug vines echo
Use the debug vines echo EXEC command to display information on all MAC-level echo packets
that the router sends or receives. Banyan VINES interface testing programs make use of these echo
packets. The no form of this command disables debugging output.

debug vines echo
no debug vines echo

Syntax Description
This command has no arguments or keywords.

Note These echo packets do not include network layer addresses.

Command Mode
EXEC

Sample Display
Figure 2-123 shows sample debug vines echo output.

Figure 2-123 Sample Debug VINES Echo Output

router# debug vines echo

VINESECHO: 100 byte packet from 0260.8c43.a7e4

Table 2-79 describes the fields shown in Figure2-123.

Table 2-79 Debug VINES Echo Field Descriptions

Field Description

VINESECHO Indication that this is a debug vines echo message.

100 byte packet Packet size in bytes.

from 0260.8c43.a7e4 Source address of the echo packet.

2-232 Debug Command Reference

debug vines ipc

debug vines ipc
Use the debug vines ipc EXEC command to display information on all transactions that occur at the
VINES IPC layer, which is one of the two VINES transport layers. The no form of this command
disables debugging output.

debug vines ipc
no debug vines ipc

Syntax Description
This command has no arguments or keywords.

Command Mode
EXEC

Usage Guidelines
You can use the debug vines ipc command to discover why an IPC layer process on the router is not
communicating with another IPC layer process on another router or Banyan VINES server.

Sample Display
Figure 2-124 shows sample debug vines ipc output for three pairs of transactions. For more
information about these fields or their values, refer to Banyan VINES documentation.

Figure 2-124 Sample Debug VINES IPC Output

router# debug vines ipc

VIPC: sending IPC Data to Townsaver port 7 from port 7
 r_cid 0, l_cid 1, seq 1, ack 0, length 12
VIPC: received IPC Data from Townsaver port 7 to port 7
 r_cid 51, l_cid 1, seq 1, ack 1, length 32
VIPC: sending IPC Ack to Townsaver port 0 from port 0
 r_cid 51, l_cid 1, seq 1, ack 1, length 0

Table 2-80 describes the fields shown in Figure2-124.

 Debug Commands 2-233

debug vines ipc

Table 2-80 VINES IPC Field Descriptions

Field Description

VIPC: Indicates that this is output from the debug vines ipc command.

sending Indicates that the router is either sending an IPC packet to another router
or has received an IPC packet from another router.

IPC Data to Indicates the type of IPC frame:

Acknowledgment

Data

Datagram

Disconnect

Error

Probe

Townsaver port 7 Indicates the machine name as assigned using the VINES host
command, or IP address of the other router. Also indicates the port on
that machine through which the packet has been transmitted.

from port 7 Indicates the port on the router through which the packet has been
transmitted.

r_cid 0, l_cid 1, seq 1, ack 0,
length 12

Indicates the values for various fields in the IPC layer header of this
packet. Refer to Banyan VINES documentation for more information.

2-234 Debug Command Reference

debug vines netrpc

debug vines netrpc
Use the debug vines netrpc EXEC command to display information on all transactions that occur
at the VINES NetRPC layer, which is the VINES Session/Presentation layer. The no form of this
command disables debugging output.

debug vines netrpc
no debug vines netrpc

Syntax Description
This command has no arguments or keywords.

Command Mode
EXEC

Usage Guidelines
You can use the debug vines netrpc command to discover why a NetRPC layer process on the router
is not communicating with another NetRPC layer process on another router or Banyan server.

Sample Display
Figure 2-125 shows sample debug vines netrpc output. For more information about these fields or
their values, refer to Banyan VINES documentation.

Figure 2-125 Sample Debug VINES NetRPC Output

router# debug vines netrpc

VRPC: sending RPC call to Townsaver
VRPC: received RPC return from Townsaver

Table 2-81 describes the fields shown in the first line of output in Figure 2-125.

 Debug Commands 2-235

debug vines netrpc

Table 2-81 Debug VINES NetRPC Field Descriptions

Field Description

VRPC: Indicates that this is output from the debug vines netrpc command.

sending RPC Indicates that the router is either sending a NetRPC packet to another
router or has received a NetRPC packet from another router.

call Indicates the transaction type:

abort

call

reject

return

return address

search

search all

Townsaver Indicates the machine name as assigned using the VINES host command
or IP address of the other router.

2-236 Debug Command Reference

debug vines packet

debug vines packet
Use the debug vines packet EXEC command to display general VINES debugging information.
This information includes packets received, generated, and forwarded, as well as failed access
checks and other operations. The no form of this command disables debugging output.

debug vines packet
no debug vines packet

Syntax Description
This command has no arguments or keywords.

Command Mode
EXEC

Sample Display
Figure 2-126 shows sample debug vines packet output.

Figure 2-126 Sample Debug VINES Packet Output

router# debug vines packet

VINES: s=30028CF9:1 (Ether2), d=FFFFFFFF:FFFF, rcvd w/ hops 0
VINES: s=3000CBD4:1 (Ether1), d=3002ABEA:1 (Ether2), g=3002ABEA:1, sent
VINES: s=3000CBD4:1 (Ether1), d=3000B959:1, rcvd by gw
VINES: s=3000B959:1 (local), d=3000CBD4:1 (Ether1), g=3000CBD4:1, sent

The following information describes selected lines of output from Figure 2-126.

Table 2-82 describes the fields shown in the first line of output.

Table 2-82 Debug VINES Packet Field Descr iptions

Field Description

VINES: Indicates that this is a Banyan VINES packet.

s = 30028CF9:1 Indicates source address of the packet.

(Ether2) Indicates the interface through which the packet was received.

d = FFFFFFFF:FFFF Indicates that the destination is a broadcast address.

rcvd w/ hops 0 Indicates that the packet was received because it was a local broadcast packet.
The remaining hop count in the packet was zero (0).

 Debug Commands 2-237

debug vines packet

In the following line, the destination is the address 3002ABEA:1 associated with interface Ether2.
Source address 3000CBD4:1 sent a packet to this destination through the gateway at address
3000ABEA:1.

VINES: s=3000CBD4:1 (Ether1), d=3002ABEA:1 (Ethernet2), g=3002ABEA:1, sent

In the following line, the router being debugged is the destination address (3000B959:1):

VINES: s=3000CBD4:1 (Ether1), d=3000B959:1, rcvd by gw

In the following line, (local) indicates that the router being debugged generated the packet:

VINES: s=3000B959:1 (local), d=3000CBD4:1 (Ether1), g=3000CBD4:1, sent

2-238 Debug Command Reference

debug vines routing

debug vines routing
Use the debug vines routing EXEC command to display information on all VINES RTP update
messages sent or received and all routing table activities that occur in the router. The no form of this
command disables debugging output.

debug vines routing [verbose]
no debug vines routing

Syntax Description

Command Mode
EXEC

Sample Displays
Figure 2-127 shows sample debug vines routing output.

Figure 2-127 Sample Debug VINES Routing Output

Figure 2-128 shows sample debug vines routing verbose output.

Figure 2-128 Sample Debug VINES Routing Ver bose Output

router# debug vines routing verbose

VRTP: sending update to Broadcast on Ethernet0
 network 30011E7E, metric 0020 (0.4000 seconds)
 network 30015800, metric 0010 (0.2000 seconds)
 network 3003148A, metric 0020 (0.4000 seconds)
VSRTP: generating change update, sequence number 0002C795
 network Router9 metric 0010, seq 00000000, flags 09
 network RouterZZ metric 0230, seq 00052194, flags 02
VSRTP: sent update to Broadcast on Hssi0
VSRTP: received update from LabRouter on Hssi0
 update: type 00, flags 07, id 000E, ofst 0000, seq 15DFC, met 0010
 network LabRouter from the server
 network Router9 metric 0020, seq 00000000, flags 09
VSRTP: LabRouter-Hs0-HDLC up -> up, change update, onemore

Figure 2-128 describes two VINES routing updates; the first includes two entries and the second
includes three entries. The following information describes selected lines of output.

verbose (Optional) Provides detailed information about the contents
of each update.

router# debug vines routing

VSRTP: generating change update, sequence number 0002C791
VSRTP: sent update to Broadcast on Hssi0
VSRTP: received update from LabRouter on Hssi0
VSRTP: LabRouter-Hs0-HDLC up -> up, change update, onemore
VRTP: sending update to Broadcast on Ethernet0
VSRTP: generating null update
VSRTP: Sending update to Aloe on Hssi0

S
28

54
Update sent

Update received

 Debug Commands 2-239

debug vines routing

The following line shows that the router sent a periodic routing update to the broadcast address
FFFFFFFF:FFFF through the Ethernet0 interface:

VRTP: sending update to Broadcast on Ethernet0

The following line indicates that the router knows how to reach network 30011E7E, which is a
metric of 0020 away from the router. The value that follows the metric (0.4000 seconds) interprets
the metric in seconds.

network 30011E7E, metric 0020 (0.4000 seconds)

The following lines show that the router sent a change routing update to the Broadcast addresses on
the Hssi0 interface using the Sequenced Routing Update Protocol (SRTP) routing protocol:

VSRTP: generating change update, sequence number 0002C795
VSRTP: Sending update to Broadcast on Hssi0

The lines in between the previous two indicate that the router knows how to reach network Router9,
which is a metric of 0010 (0.2000 seconds) away from the router. The sequence number for Router9
is zero, and according to the 0x08 bit in the flags field, is invalid. The 0x01 bit of the flags field
indicates that Router9 is attached via a LAN interface.

network Router9 metric 0010, seq 00000000, flags 09

The next lines indicate that the router can reach network RouterZZ, which is a metric of 0230
(7.0000 seconds) away from the router. The sequence number for RouterZZ is 0052194. The 0x02
bit of the flags field indicates that RouterZZ is attached via a WAN interface.

network RouterZZ metric 0230, seq 00052194, flags 02

The following line indicates that the router received a routing update from the router LabRouter
through the Hssi0 interface:

VINESRTP: received update from LabRouter on Hssi0

The following line displays all SRTP values contained in the header of the SRTP packet. This is a
type 00 packet, which is a routing update, and the flags field is set to 07, indicating that this is a
change update (0x04) and contains both the beginning (0x01) and end (0x02) of the update. This
overall update is update number 000E from the router, and this fragment of the update contains the
routes beginning at offset 0000 of the update. The sending router’s sequence number is currently
00015DFC, and its configured metric for this interface is 0010.

update: type 00, flags 07, id 000E, ofst 0000, seq 00015DFC, met 0010

The following line implies that the server sending this update is directly accessible to the router
(even though VINES servers do not explicitly list themselves in routing updates). Because this is an
implicit entry in the table, the other information for this entry is taken from the previous line.

network LabRouter from the server

As the first actual entry in the routing update from LabRouter, the following line indicates that
Router9 can be reached by sending to this server. This network is a metric of 0020 away from the
sending server.

network Router9 metric 0020, seq 00000000, flags 09

2-240 Debug Command Reference

debug vines service

debug vines service
Use the debug vines service EXEC command to display information on all transactions that occur
at the VINES Service (or applications) layer. The no form of this command disables debugging
output.

debug vines service
no debug vines service

Syntax Description
This command has no arguments or keywords.

Command Mode
EXEC

Usage Guidelines
You can use the debug vines service command to discover why a VINES Service layer process on
the router is not communicating with another Service layer process on another router or Banyan
server.

Note Because the debug vines service command provides the highest level overview of VINES
traffic through the router, it is best to begin debugging using this command, and then proceed to use
lower-level VINES debug commands as necessary.

Sample Display
Figure 2-129 shows sample debug vines service output.

Figure 2-129 Sample Debug VINES Service Output

As Figure 2-129 suggests, debug vines service lines of output appear as activity pairs—either a
sent/response pair as shown, or as a received/sent pair.

Table 2-83 describes the fields shown in the second line of output in Figure2-129. For more
information about these fields or their values, refer to Banyan VINES documentation.

router# debug vines service

VSRV: Get Time Info sent to Townsaver
VSRV: Get Time Info response from Townsaver, time: 01:47:54 PDT Apr 29 1993
VSRV: epoch SS@Aloe@Servers-10, age: 0:15:15

S
25

65

Sent/
Response
pair

 Debug Commands 2-241

debug vines service

Table 2-83 Debug VINES Service Field Descriptions—Part 1

Table 2-84 describes the fields shown in the third line of output in Figure2-129. This line is an
extension of the first two lines of output. For more information about these fields or their values,
refer to Banyan VINES documentation.

Table 2-84 Debug VINES Service Field Descriptions—Part 2

Field Description

VSRV: Indicates that this is output from the debug vines service command.

Get Time Info Indicates one of three packet types:

Get Time Info

Time Set

Time Sync

response from Indicates whether the packet was sent to another router, a response from
another router, or received from another router.

Townsaver Indicates the machine name as assigned using the VINES host
command, or IP address of the other router.

time: 01:47:54 PDT Apr 29 1993 Indicates the current time in hours:minutes:seconds and current date.

Field Description

VSRV: Output from the debug vines service command.

epoch Line of output that describes a VINES epoch.

SS@Aloe@Servers-10 Epoch name.

age: 0:15:15 Epoch—elapsed time since the time was last set in the network.

2-242 Debug Command Reference

debug vines state

debug vines state
Use the debug vines state EXEC command to display information on the VINES SRTP state
machine transactions. The no form of this command disables debugging output.

debug vines state
no debug vines state

Syntax Description
This command has no arguments or keywords.

Command Mode
EXEC

Usage Guidelines
This command provides a subset of the information provided by the debug vines routing command,
showing only the transactions made by the SRTP state machine. Refer to the debug vines routing
command for descriptions of output from the debug vines state command.

 Debug Commands 2-243

debug vines table

debug vines table
Use the debug vines table EXEC command to display information on all modifications to the
VINES routing table. The no form of this command disables debugging output.

debug vines table
no debug vines table

Syntax Description
This command has no arguments or keywords.

Command Mode
EXEC

Usage Guidelines
This command provides a subset of the information produced by the debug vines routing command,
as well as some more detailed information on table additions and deletions.

Sample Display
Figure 2-130 shows sample debug vines table output.

Figure 2-130 Sample Debug VINES Table Output

router# debug vines table

VINESRTP: create neighbor 3001153C:8004, interface Ethernet0

Table 2-85 describes significant fields shown in Figure2-130.

Table 2-85 Debug VINES Table Field Descriptions

Field Description

VINESRTP: Indicates that this is a debug vines routing or debug vines table
message.

create neighbor 3001153C:8004 Indicates that the client at address 3001153C:8004 has been added to the
Banyan VINES neighbor table.

interface Ethernet 0 Indicates that this neighbor can be reached through the router interface
named Ethernet0.

2-244 Debug Command Reference

debug x25 all

debug x25 all
Use the debug x25 all EXEC command to display information on all X.25 traffic, including data,
control messages, and flow control (RR and RNR) packets. The no form of this command disables
debugging output.

debug x25 all
no debug x25 all

Syntax Description
This command has no arguments or keywords.

Command Mode
EXEC

Usage Guidelines
This command is particularly useful for diagnosing problems encountered when placing calls.

The debug x25 all output includes data, control messages, and flow control packets for all of the
router’s virtual circuits. The debug x25 events and debug x25 vc commands provide a subset of this
output.

Caution Because debug x25 all displays all X.25 traffic, it is processor intensive and can render
the router useless. Only use debug x25 all when the aggregate of all X.25 traffic is fewer than five
packets per second.

Sample Display
Figure 2-131 shows sample debug x25 all output.

 Debug Commands 2-245

debug x25 all

Figure 2-131 Sample Debug X25 All Output

router# debug x25 all

Serial2: X25 O R3 RESTART (5) 8 lci 0 cause 7 diag 0
Serial2: X25 I R3 RESTART (5) 8 lci 0 cause 0 diag 0
Serial2: X25 I P1 CALL REQUEST (11) 8 lci 1024
From (2): 49 To(2): 46
 Facilities: (0)
 Call User Data (4): 0xCC 00 00 00 (ip)
Serial2: X25 O P4 CALL CONNECTED (3) 8 lci 1024
Serial2: X25 I P4 DATA (103) 8 lci 1024 PS 0 PR 0
Serial2: X25 O D1 DATA (103) 8 lci 1024 PS 0 PR 1
Serial2: X25 I D1 DATA (103) 8 lci 1024 PS 1 PR 0
Serial2: X25 O D1 DATA (103) 8 lci 1024 PS 1 PR 2
Serial2: X25 I D1 RR (3) 8 lci 1024 PR 2
Serial2: X25 I D1 DATA (103) 8 lci 1024 PS 2 PR 2
Serial2: X25 O D1 DATA (103) 8 lci 1024 PS 2 PR 3
Serial2: X25 I D1 CLEAR REQUEST (5) 8 lci 1024 cause 0 diag 122
Serial2: X25 O D1 CLEAR CONFIRMATION (3) 8 lci 1024
XOT: X25 O D1 PVC-SETUP, waiting to connect (29) <Serial2 pvc 3><Serial2 pvc 1> 2/1 128/64
XOT: X25 I D1 PVC-SETUP, connected (29) <Serial2 pvc 3><Serial2 pvc 1> 2/1 128/64
Serial2: X25 O D1 RESET REQUEST (5) 8 lci 3 cause 15 diag 0
Serial2: X25 I D1 RESET CONFIRMATION (3) 8 lci 3

Figure 2-131 shows a typical exchange of packets between two X.25 devices on a network. The first
line of output in Figure 2-131 describes a RESTART packet. Table 2-86 describes the fields in this
line of output.

Table 2-86 Debug X25 All Field Descriptions

Field Description

Serial2 The interface on which the X.25 event occured. Events that occur on an
X.25-over-TCP connection report XOT.

X25 That this message describes an X.25 event.

O Indication of whether the X.25 message was input (I) or output (O)
through the interface.

R3 State of the virtual circuit. Possible values follow:

D1—Flow control ready

D2—DTE reset request

D3—DCE reset indication

P1—Idle

P2—DTE waiting for DCE to connect CALL

P3—DCE waiting for DTE to accept CALL

P4—Data transfer

P5—CALL collision

2-246 Debug Command Reference

debug x25 all

R3 (Continued) P6—DTE clear request

P7—DCE clear indication

R1—Packet level ready

R2—DTE restart request

R3—DCE restart indication

X1—Nonstandard state for a virtual circuit in hold-down

See Annex B of the 1984 ITU-T X.25 Recommendation for more
information on these states.

RESTART The type of X.25 packet. Possible values follow:

CALL CONNECTED

CALL REQUEST

CLEAR CONFIRMATION

CLEAR REQUEST

DATA

DIAGNOSTIC

ILLEGAL

INTR CONFIRMATION

INTR (interrupt)

PVC-SETUP

REGISTRATION

REGISTRATION CONFIRMATION

RESET CONFIRMATION

RESET REQUEST

RESTART

RESTART CONFIRMATION

RNR (Receiver Not Ready)

RR (Receiver Ready)

(5) Number of bytes in the packet.

8 Modulo of the virtual circuit. Possible values are 8 or 128.

lci 0 Virtual circuit number. See Annex A of the 1984 ITU-T X.25
Recommendation for information on VC assignment.

cause 7 Code indicating the event that triggered the packet. The cause field can
only appear in entries for CLEAR REQUEST, RESET REQUEST, and
RESTART packets. Possible values for the cause field can vary,
depending on the type of packet. Refer to the “X.25 Cause and
Diagnostic Codes” appendix for explanations of these codes.

diag 0 Code providing an additional hint as to what, if anything, went wrong.
The diag field can only appear in entries for CLEAR REQUEST,
DIAGNOSTIC (as “error 0”), RESET REQUEST and RESTART
packets. Because of the large number of possible values, they are listed
in the “X.25 Cause and Diagnostic Codes” appendix.

Field Description

 Debug Commands 2-247

debug x25 all

Table 2-87 describes the PS and PR fields that can appear in a debug x25 all display.

Table 2-87 Debug X25 All PS and PR Field Descr iptions

In Figure 2-131, notice also that the CALL REQUEST packet precedes three other lines of output
that have a unique format.

Serial2: X25 I P1 CALL REQUEST (11) 8 lci 1024
From (2): 49 To(2): 46
 Facilities: (0)
 Call User Data (4): 0xCC 00 00 00 (ip)
Serial2: X25 O P4 CALL CONNECTED (3) 8 lci 1024

These lines indicate that the CALL REQUEST packet has a two-digit source address, 49, and a
two-digit destination address, 46. These are X.121 addresses that can be from 0 to 15 digits in length.
The Facilities field is (0) bytes in length, indicating that no X.25 facilities are being requested. The
optional call user data field is 4 bytes in length. Any encapsulation protocol identification (PID) in
the Call User Data will have the encoding values printed and identified. Multiprotocol Virtual
Circuits can also have PID information in Data packets; the debug output for these packets will also
describe the PID.

The two lines of output in Figure 2-131 that begin with XOT are shown below.

XOT: X25 O D1 PVC-SETUP, waiting to connect (29) <Serial2 pvc 3><Serial2 pvc 1> 2/1 128/64
XOT: X25 I D1 PVC-SETUP, connected (29) <Serial2 pvc 3><Serial2 pvc 1> 2/1 128/64

These lines of output do not describe standard X.25 packets. Instead, they describe messages that
represent a tunneled PVC setup between two routers. Table 2-88 describes the fields these two lines
of output.

Table 2-88 Debug X25 All Field Descript ions for Packets Representing Tunneled PVC
Activity

Field Description

PS 0 Packet send sequence number; used for flow control of the outgoing
packet stream. Present only in DATA packets.

PR 0 Packet receive sequence number used for flow control of the incoming
packet stream by indicating the PS value that the sender next expects to
see.

Field Description

XOT This message travels over a TCP connection.

X25 This message describes an X.25 event.

O Indication of whether the X.25 message was input (I) or output (O)
through the connection.

D1 State of the permanent virtual circuit. Possible values follow.

D1—Flow control ready

D2—DTE reset request

D3—DCE reset indication

See Annex B of the 1984 ITU-T X.25 Recommendation for more
information on these states.

2-248 Debug Command Reference

debug x25 all

wait to connect State of the PVC. Some of these strings only apply to PVCs that are
remotely tunneled over a TCP connection. The %X25-3-PVCBAD
system error message (as documented in the System Error Messages
publication), and the show x25 vc command (as documented in the
Router Products Command Reference publication) also use these PVC
state strings. Possible values follow:

awaiting PVC-SETUP reply

can’t support flow control values

connected

dest. disconnected

dest. interface is not up

dest. PVC configuration mismatch

mismatched flow control values

no such dest. interface

no such dest. PVC

non-X.25 dest. interface

PVC setup protocol error

PVC/TCP connect timed out

PVC/TCP connection refused

PVC/TCP routing error

trying to connect via TCP

waiting to connect

(29) Incoming/outgoing message size (in bytes).

<Serial2 pvc 3> Interface and PVC number that originated the message (originator).

<Serial2 pvc 1> Interface and PVC number that responded to that message (responder).

2/1 Window sizes (in packets).

128/64 Maximum packet sizes (in bytes).

Field Description

 Debug Commands 2-249

debug x25 events

debug x25 events
Use the debug x25 events EXEC command to display information on all X.25 traffic except X.25
data or acknowledgment packets. The no form of this command disables debugging output.

debug x25 events
no debug x25 events

Syntax Description
This command has no arguments or keywords.

Command Mode
EXEC

Usage Guidelines
The debug x25 events command is useful for debugging X.25 problems, because it shows changes
that occur in the virtual circuits handled by the router. Because most X.25 connectivity problems
stem from errors that CLEAR or RESET virtual circuits, you can use debug x25 events to identify
these errors.

While debug x25 all output includes both data and control messages for all of the router’s virtual
circuits, debug x25 events output includes only control messages for all of the router’s VCs. In
contrast, debug x25 vc output filters the output for a single VC number. Thus, debug x25 events
output is a subset of debug x25 all output, and debug x25 vc output modifies either of them to
further limit the output.

Note Because debug x25 events displays a subset of all X.25 traffic, it is safer to use than debug
x25 all during production hours.

Sample Display
Figure 2-132 shows sample debug x25 events output.

Figure 2-132 Sample Debug X25 Events Output

router# debug x25 events

Serial2: X25 I R3 RESTART (5) 8 lci 0 cause 0 diag 0
Serial2: X25 I P1 CALL REQUEST (11) 8 lci 1024
From (2): 49 To(2): 46
 Facilities: (0)
 Call User Data (4): 0xCC 00 00 00 (ip)
Serial2: X25 O P4 CALL CONNECTED (3) 8 lci 1024
Serial2: X25 I D1 CLEAR REQUEST (5) 8 lci 1024 cause 0 diag 122
Serial2: X25 O D1 CLEAR CONFIRMATION (3) 8 lci 1024
Serial2: X25 O D1 RESET REQUEST (5) 8 lci 1 cause 0 diag 122
Serial2: X25 I D1 RESET CONFIRMATION (3) 8 lci 1

See the debug x25 all command description for information on the fields in debug x25 events
output.

2-250 Debug Command Reference

debug x25 vc

debug x25 vc
Use the debug x25 vc EXEC command to display information on traffic for a particular virtual
circuit in order to solve any connectivity or performance problems it is exhibiting. The no form of
this command removes the filter for a particular virtual circuit from the debug x25 all or debug x25
events output.

debug x25 vc number
no debug x25 vc number

Syntax Description

Command Mode
EXEC

Usage Guidelines
Because no interface is specified, traffic on any VC that has the specified number is reported.

The debug x25 vc command limits the output of debug x25 all or debug x25 events output to the
packets occurring on a particular VC number. This command modifies the operation of the
debug x25 all or debug x25 events commands, so one of those commands must be used with
debug x25 vc to produce output.

VC 0 cannot be specified. It is used for X.25 service messages, such as RESTART packets, not VC
traffic. VC0 can be monitored only when no VC filter is used.

Note Because debug x25 vc only displays traffic for a small subset of virtual circuits, it is safe to
use even under heavy traffic conditions, as long as events for that virtual circuit are fewer than
25 packets per second.

Sample Display
Figure 2-133 shows sample debug x25 vc output.

Figure 2-133 Sample Debug X25 VC Output

router# debug x25 vc 1
X25 debugging output restricted to VC1
router# debug x25 events
X25 special event debugging is on
router# show debug
X.25 (debugging restricted to VC number 1):
 X25 special event debugging is on

Serial0: X25 0 P2 CALL REQUEST (19) 8 lci 1
 From(14): 31250000000101 To(14): 31109090096101
 Facilities (0)
Serial0: X25 I P2 CLEAR REQUEST (5) 8 lci 1 cause diag 122

See the debug x25 all command description for information on the fields in debug x25 vc output.

number VC number associated with the virtual circuit(s) you want to monitor

 Debug Commands 2-251

debug xns packet

debug xns packet
Use the debug xns packet EXEC command to display information on XNS packet traffic, including
the addresses for source, destination, and next hop router of each packet. The no form of this
command disables debugging output.

debug xns packet
no debug xns packet

Syntax Description
This command has no arguments or keywords.

Command Mode
EXEC

Usage Guidelines
To gain the fullest understanding of XNS routing activity, you should enable debug xns routing and
debug xns packet together.

Sample Display
Figure 2-134 shows sample debug xns packet output.

Figure 2-134 Sample Debug XNS Packet Output.

router# debug xns packet

XNS: src=5.0000.0c02.6d04, dst=5.ffff.ffff.ffff, packet sent
XNS: src=1.0000.0c00.440f, dst=1.ffff.ffff.ffff, rcvd. on Ethernet0
XNS: src=1.0000.0c00.440f, dst=1.ffff.ffff.ffff, local processing

Table 2-89 describes significant fields shown in Figure2-134.

Table 2-89 Debug XNS Packet Field Descriptions

Field Description

XNS: Indicates that this is an XNS packet.

src = 5.0000.0c02.6d04 Indicates that the source address for this message is 0000.0c02.6d04 on
network 5.

dst = 5.ffff.ffff.ffff Indicates that the destination address for this message is the broadcast
address ffff.ffff.ffff on network 5.

packet sent Indicates that the packet to destination address 5.ffff.ffff.ffff in
Figure 2-134, as displayed using the debug xns packet command, was
queued on the output interface.

rcvd. on Ethernet0 Indicates that the router just received this packet through the Ethernet0
interface.

local processing Indicates that the router has examined the packet and determined that it
must process it, rather than forwarding it.

2-252 Debug Command Reference

debug xns routing

debug xns routing
Use the debug xns routing EXEC command to display information on XNS routing transactions.
The no form of this command disables debugging output.

debug xns routing
no debug xns routing

Syntax Description
This command has no arguments or keywords.

Command Mode
EXEC

Usage Guidelines
To gain the fullest understanding of XNS routing activity, enable debug xns routing and debug xns
packet together.

Sample Display
Figure 2-135 shows sample debug xns routing output.

Figure 2-135 Sample Debug XNS Routing Output

router# debug xns routing

XNSRIP: sending standard periodic update to 5.ffff.ffff.ffff via Ethernet2
 network 1, hop count 1
 network 2, hop count 2

XNSRIP: got standard update from 1.0000.0c00.440f socket 1 via Ethernet0
 net 2: 1 hops

Table 2-90 describes significant fields shown in Figure2-135.

 Debug Commands 2-253

debug xns routing

Table 2-90 Debug XNS Routing Field Descriptions

Field Description

XNSRIP: This is an XNS routing packet.

sending standard periodic update Router indicates that this is a periodic XNS routing information update.

to 5.ffff.ffff.ffff Destination address is ffff.ffff.ffff on network 5.

via Ethernet2 Name of the output interface.

network 1, hop count 1 Network 1 is one hop away from this router.

got standard update from
1.0000.0c00.440f

Router indicates that it has received an XNS routing information update
from address 0000.0c00.440f on network 1.

socket 1 The socket number is a well-known port for XNS. Possible values
include

1—routing information

2—echo

3—router error

A P P E N D I X

 X.25 Cause and Diagnostic Codes A-1

X.25 Cause and Diagnostic Codes

A

This appendix covers the X.25 cause and diagnostic codes, as referred to in the debug x25 all
command of the “Debug Commands” chapter. For more information on these codes, see the 1984
ITU-T X.25 Recommendation.

Note The ITU-T carries out the functions of the former Consultative Committee for International
Telegraph and Telephone (CCITT).

Note The router reports the decimal value of a cause or diagnostic code, whereas other X.25
equipment may report these codes in hexadecimal notation. For this reason, this appendix lists both
the decimal and hexadecimal values of the cause and diagnostic codes.

Table A-1 describes the differences between our implementation of certain X.25 network-generated,
“international problem” diagnostic fields and the definitions provided in Annex E of ITU-T
Recommendation X.25. The Annex E Table E-1/X.25 includes the complete diagnostic field listing.

Table A-1 Annex E Internat ional Problem Diagnostic Code Differences

Decimal
Value

Annex E, Rec. X.25 Diagnostic
Description

Cisco Proprietary Definition of
Diagnostic Codes

112 International problem Not used.

113 Remote network problem Not used.

114 International protocol problem Not used.

115 International link out of order Indicates one of the following failures: failed
when initializing a switched PVC; in TCP
tunneling, failed when initiating or resetting a
PVC; or, failed when PAD PVC circuit was
initiated or reset.

116 International link busy Not used.

117 Transit network facility problem Not used.

118 Remote network facility problem Not used.

A-2 Debug Command Reference

X.25 Cause Codes

X.25 Cause Codes
A cause code indicates an event that triggered an X.25 packet. The cause code can only appear in
entries for CLEAR REQUEST, REGISTRATION CONFIRMATION, RESET REQUEST, and
RESTART packets. Possible values for the cause code can vary, depending on the type of packet.
Because the REGISTRATION exchange is not supported, those cause codes are not documented in
this section.

119 International routing problem Indicates the following failure: in TCP
tunneling of X.25 when session is closed by
network.

120 Temporary routing problem Indicates the following failure: when tunneling
X.25 through TCP/IP and the remote network
is identified as unreachable.

121 Unknown called DNIC Not used.

122 Maintenance action (may apply to
maintenance action within a national
network

For CMNS, indicates the following: router fails
to route the call due to setup or unreachability
of destination; when VC is cleared using the
clear x25-vc EXEC command; when router
CLEARs a VC when its idle timer expires.

Decimal
Value

Annex E, Rec. X.25 Diagnostic
Description

Cisco Proprietary Definition of
Diagnostic Codes

 X.25 Cause and Diagnostic Codes A-3

X.25 Cause Codes

Table A-2 describes the meanings of cause codes for CLEAR REQUEST packets.

Table A-2 Cause Code Descr iptions for CLEAR REQUEST Packets

Table A-3 describes the meanings of cause codes for RESET REQUEST packets.

Table A-3 Cause Code Descr iptions for RESET R EQUEST Packets

Code
(Hex)

Code
(Dec) Descr iption

00 0 (or 128 to 255) DTE originated

01 1 Number busy

03 3 Invalid facility request

05 5 Network congestion

09 9 Out of order

0B 11 Access barred

0D 13 Not obtainable

11 17 Remote procedure error

13 19 Local procedure error

15 21 RPOA out of order

19 25 Reverse charging not accepted

21 33 Incompatible destination

29 41 Fast select not accepted

39 57 Ship absent

Code
(Hex)

Code
(Dec) Descr iption

00 0 (or 128 to 255) DTE originated

01 1 Out of order

03 3 Remote procedure error

05 5 Local procedure error

07 7 Network congestion

09 9 Remote DTE operational

0F 15 Network operational

11 17 Incompatible destination

1D 29 Network out of order

A-4 Debug Command Reference

X.25 Diagnostic Codes

Table A-4 describes the meanings of cause codes for RESTART packets.

Table A-4 Cause Code Descr iptions for RESTART Packets

X.25 Diagnostic Codes
The X.25 diag (diagnostic) code provides an additional hint as to what, if anything, went wrong. This
code can only appear in entries for CLEAR REQUEST, DIAGNOSTIC, RESET REQUEST, and
RESTART packets. Unlike the cause codes, the diag codes do not vary depending upon the type of
packet.

Note These diagnostic codes can be produced by any equipment handling a given virtual circuit,
and are then propagated through all equipment handling that virtual circuit. Thus, receipt of a
diagnostic code may not indicate a problem with the router.

Table A-5 describes the meanings of possible diag codes.

Table A-5 X.25 Diagnostic Field Code Descriptions

Code
(Hex)

Code
(Dec) Descr iption

00 0 (or 128 to 255) DTE restarting

01 1 Local procedure error

03 3 Network congestion

07 7 Network operational

7F 127 Registration/cancellation confirmed

Code
(Hex)

Code
(Dec) Description

00 00 No additional information

01 01 Invalid P(S)

02 02 Invalid P(R)

10 16 Packet type invalid

11 17 Packet type invalid for state R1

12 18 Packet type invalid for state R2

13 19 Packet type invalid for state R3

14 20 Packet type invalid for state P1

15 21 Packet type invalid for state P2

16 22 Packet type invalid for state P3

17 23 Packet type invalid for state P4

18 24 Packet type invalid for state P5

19 25 Packet type invalid for state P6

1A 26 Packet type invalid for state P7

 X.25 Cause and Diagnostic Codes A-5

X.25 Diagnostic Codes

1B 27 Packet type invalid for state D1

1C 28 Packet type invalid for state D2

1D 29 Packet type invalid for state D3

20 32 Packet not allowed

21 33 Unidentifiable packet

22 34 Call on one-way logical channel

23 35 Invalid packet type on a permanent virtual circuit

24 36 Packet on unassigned LCN

25 37 Reject not subscribed to

26 38 Packet too short

27 39 Packet too long

28 40 Invalid GFI (General Format Identifier)

29 41 Restart or registration packet with nonzero LCI

2A 42 Packet type not compatible with facility

2B 43 Unauthorized interrupt confirmation

2C 44 Unauthorized interrupt

2D 45 Unauthorized reject

30 48 Timer expired

31 49 Timer expired for incoming call

32 50 Timer expired for clear indication

33 51 Timer expired for reset indication

34 52 Timer expired for restart indication

35 53 Timer expired for call deflection

40 64 Call setup, clearing, or registration problem

41 65 Facility code not allowed

42 66 Facility parameter not allowed

43 67 Invalid called address

44 68 Invalid calling address

45 69 Invalid facility length

46 70 Incoming call barred

47 71 No logical channel available

48 72 Call collision

49 73 Duplicate facility requested

4A 74 Nonzero address length

4B 75 Nonzero facility length

4C 76 Facility not provided when expected

4D 77 Invalid ITU-T-specified DTE facility

4E 78 Maximum number of call redirections or deflections exceeded

Code
(Hex)

Code
(Dec) Description

A-6 Debug Command Reference

X.25 Diagnostic Codes

Diagnostic codes with values of 80 or greater in hexadecimal, or with values of 128 or greater in
decimal, are specific to a particular network. To learn the meanings of these codes, contact the
administrator for that network.

50 80 Miscellaneous

51 81 Improper cause code for DTE

52 82 Octet not aligned

53 83 Inconsistent Q bit setting

54 84 NUI (Network User Identification) problem

70 112 International problem

71 113 Remote network problem

72 114 International protocol problem

73 115 International link out of order

74 116 International link busy

75 117 Transit network facility problem

76 118 Remote network facility problem

77 119 International routing problem

78 120 Temporary routing problem

79 121 Unknown called DNIC

7A 122 Maintenance action (clear x25 vc command issued)

Code
(Hex)

Code
(Dec) Description

A P P E N D I X

 ISDN Switch Types, Codes, and Values B-1

ISDN Switch Types, Codes, and
Values

B

This appendix contains a list of the supported switch types. It also contains the ISDN cause codes,
ISDN bearer capability values, and progress description field values that are valid within the debug
commands for ISDN.

Note The ITU-T carries out the functions of the former Consultative Committee for International
Telegraph and Telephone (CCITT).

Table B-1 lists the ISDN switch types supported by the ISDN interface.

Table B-1 Suppor ted ISDN Switch Types

Identifier Descr iption

basic-1tr6 German 1TR6 ISDN switches

basic-5ess AT&T basic rate switches

basic-dms100 NT DMS-100 basic rate switches

basic-net3 NET3 ISDN switches (UK and others)

basic-ni1 National ISDN-1 switches

basic-nwnet3 Norway Net3 switches

basic-nznet3 New Zealand Net3 switches

basic-ts013 Australian TS013 switches

none No switch defined

ntt Japanese NTT ISDN switches

primary-4ess AT&T 4ESS switch type for the U.S. (ISDN PRI only)

primary-5ess AT&T 5ESS switch type for the U.S. (ISDN PRI only)

primary-dms100 NT DMS-100 switch type for the U.S. (ISDN PRI only)

vn2 French VN2 ISDN switches

vn3 French VN3 ISDN switches

primary-ntt INS-Net 1500 for Japan

primary-net5 NET5 ISDN PRI switches (Europe)

B-2 Debug Command Reference

Table B-2 lists the ISDN cause code fields that display in the following format within the debug
commands:

i=0xy1y2z1z2a1a2

Table B-2 ISDN Cause Code Fields

Table B-3 lists descriptions of the cause value field of the cause information element. The notes
referred to in the Diagnostics column follow the table.

Table B-3 ISDN Cause Values

Field Value—Description

0x The values that follow are in hexadecimal.

y1 8—ITU-T standard coding.

y2 0—User

1—Private network serving local user

2—Public network serving local user

3—Transit network

4—Public network serving remote user

5—Private network serving remote user

7—International network

A—Network beyond internetworking point

z1 Class of cause value.

z2 Value of cause value.

a1 (Optional) Diagnostic field that is always 8.

a2 (Optional) Diagnostic field that is one of the following values:

0—Unknown

1—Permanent

2—Transient

Cause Value Cause
Number Cause DiagnosticsClass Value

0 0 0 0 0 0 1 1 Unallocated (unassigned) number Note 12

0 0 0 0 0 1 0 2 No route to specified transit network Transit network identity (Note 11)

0 0 0 0 0 1 1 3 No route to destination Note 12

0 0 0 0 1 1 0 6 Channel unacceptable

0 0 0 0 1 1 1 7 Call awarded and being delivered in
an established channel

0 0 1 0 0 0 0 16 Normal call clearing Note 12

0 0 1 0 0 0 1 17 User busy

0 0 1 0 0 1 0 18 No user responding

0 0 1 0 0 1 1 19 No answer from user (user alerted)

 ISDN Switch Types, Codes, and Values B-3

0 0 1 0 1 0 1 21 Call rejected Note 12. User supplied diagnostic
(Note 4)

0 0 1 0 1 1 0 22 Number changed

0 0 1 1 0 1 0 26 Non-selected user clearing

0 0 1 1 0 1 1 27 Designation out of order

0 0 1 1 1 0 0 28 Invalid number format

0 0 1 1 1 0 1 29 Facility rejected Facility identification (Note 1)

0 0 1 1 1 1 0 30 Response to STATUS ENQUIRY

0 0 1 1 1 1 1 31 Normal, unspecified

0 1 0 0 0 1 0 34 No circuit/channel available Note 10

0 1 0 0 1 1 0 38 Network out of order

0 1 0 1 0 0 1 41 Temporary failure

0 1 0 1 0 1 0 42 Switching equipment congestion

0 1 0 1 0 1 1 43 Access information discarded Discarded information element
identifier(s) (Note 6)

0 1 0 1 1 0 0 44 Requested circuit/channel not
available

Note 10

0 1 0 1 1 1 1 47 Resources unavailable, unspecified

0 1 1 0 0 0 1 49 Quality of service unavailable Table B-2

0 1 1 0 0 1 0 50 Requested facility not subscribed Facility identification (Note 1)

0 1 1 1 0 0 1 57 Bearer capability not authorized Note 3

0 1 1 1 0 1 0 58 Bearer capability not presently
available

Note 3

0 1 1 1 1 1 1 63 Service or option not available,
unspecified

1 0 0 0 0 0 1 65 Bearer capability not implemented Note 3

1 0 0 0 0 1 0 66 Channel type not implemented Channel Type (Note 7)

1 0 0 0 1 0 1 69 Requested facility not implemented Facility Identification (Note 1)

1 0 0 0 1 1 0 70 Only restricted digital information
bearer capability is available

1 0 0 1 1 1 1 79 Service or option not implemented,
unspecified

1 0 1 0 0 0 1 81 Invalid call reference value

1 0 1 0 0 1 0 82 Identified channel does not exist Channel identity

1 0 1 0 0 1 1 83 A suspended call exists, but this call
identity does not

1 0 1 0 1 0 0 84 Call identity in use

1 0 1 0 1 0 1 85 No call suspended

1 0 1 0 1 1 0 86 Call having the requested call
identity has been cleared

Clearing cause

1 0 1 1 0 0 0 88 Incompatible destination Incompatible parameter (Note 2)

Cause Value Cause
Number Cause DiagnosticsClass Value

B-4 Debug Command Reference

Note 1: The coding of facility identification is network dependent.

Note 2: Incompatible parameter is composed of incompatible information element identifier.

Note 3: The format of the diagnostic field for cause 57, 58, and 65 is shown in the ITU-T Q.931
specification.

Note 4: User-supplied diagnostic field is encoded according to the user specification, subject to the
maximum length of the cause information element. The coding of user-supplied diagnostics should
be made in such a way that it does not conflict with the coding described in Table B-2.

Note 5: New destination is formatted as the called party number information element, including
information element identifier. Transit network selection may also be included.

Note 6: Locking and non-locking shift procedures described in the ITU-T Q.931 specification apply.
In principle, information element identifiers are in the same order as the information elements in the
received message.

Note 7: The following coding is used:

• Bit 8—extension bit

• Bit 7 through 5—spare

• Bit 4 through 1—according to Table 4-15/Q.931 octet 3.2, channel type in ITU-T Q.931
specification

Note 8: When only locking shift information element is included and no variable length information
element identifier follows, it means that the codeset in the locking shift itself is not implemented.

Note 9: The timer number is coded in IA5 characters. The following coding is used in each octet:

• Bit 8—Spare “0”

• Bit 7 through 1—IA5 character

1 0 1 1 0 1 1 91 Invalid transit network selection

1 0 1 1 1 1 1 95 Invalid message, unspecified

1 1 0 0 0 0 0 96 Mandatory information element is
missing

Information element identifier(s)
(Note 6)

1 1 0 0 0 0 1 97 Message type non-existent or not
implemented

Message type

1 1 0 0 0 1 0 98 Message not compatible with call
state or message type non-existent or
not implemented

Message type

1 1 0 0 0 1 1 99 Information element non-existent or
not implemented

Information element identifier(s)
(Notes 6, 8)

1 1 0 0 1 0 0 100 Invalid information element
contents

Information element identifier(s)
(Note 6)

1 1 0 0 1 0 1 101 Message not compatible with call
state

Message type

1 1 0 0 1 1 0 102 Recovery on timer expires Timer number (Note 9)

1 1 0 1 1 1 1 111 Protocol error, unspecified

1 1 1 1 1 1 1 127 Internetworking, unspecified

Cause Value Cause
Number Cause DiagnosticsClass Value

 ISDN Switch Types, Codes, and Values B-5

Note 10: Examples of the cause values to be used for various busy/congestion condition appear in
Annex J of the ITU-T Q.931 specification.

Note 11: The diagnostic field contains the entire transit network selection or network-specific
facilities information element, as applicable.

Table B-4 lists the ISDN bearer capability values that display in the following format within the
debug commands:

0x8890 for 64Kbps or 0x218F for 56 Kbps

Table B-4 ISDN Bearer Capability Values

Table B-5 lists the values of the Progress description field contained in the ISDN Progress indicator
information element.

Table B-5 Progress Description Field Values

All other values for the progress description field are reserved.

Field Value—Description

0x Indication that the values that follow are in hexadecimal

88 ITU-T coding standard; unrestricted digital information

90 Circuit mode, 64 Kbps

21 Layer 1, V.110/X.30

8F Synchronous, no in-band negotiation, 56Kbps

Bits Number Description

0000001 1 Call is not end-to-end ISDN, further call progress information may
be available in-band

0000010 2 Destination address is non-ISDN

0000011 3 Origination address is non-ISDN

0000100 4 Call has returned to the ISDN

0001000 8 In-band information or appropriate pattern now available.

I N D E X

 Index 1

A

access list filtering, DECnet 2-54
Address Resolution Protocol

See ARP
adjacencies in DECnet 2-52
adjacency problems 2-146
apple event-logging command 2-8
AppleTalk

apple event-logging command 2-8
ARP probes 2-2
cable range configuration mismatch 2-12
compatibility conflict 2-11
debug apple arp command 2-2
debug apple domain command 2-4
debug apple errors command 2-6
debug apple events command 2-8
debug apple nbp command 2-13
debug apple packet command

description 2-16
using with other commands 2-16

debug apple remap command 2-18
debug apple routing command 2-20
debug apple zip command

compared with debug apple-routing
command 2-22

description 2-22
discovery mode state changes, tracking 2-9
encapsulation problems 2-6
extended/nonextended networks 2-11
flapping routes 2-8
GetNetInfo requests 2-10, 2-17
MAC address 2-3
NBP

lookup request 2-14–2-15
routines, displaying 2-13

NBP name invalid 2-7
network address probe 2-10
network errors, displaying 2-6
network number range message 2-10
packets, displaying 2-16
router startup probe message 2-9
RTMP

display, description 2-21
errors 2-7
routines, displaying 2-20
update 2-23

seed/nonseed routers 2-11
slow switching, monitoring 2-16
source address, displaying 2-17
special events 2-8
ZIP

extended reply 2-23
routines 2-22
storm 2-22

zone list check 2-10
zone list incompatibility 2-6

AppleTalk Address Resolution Protocol
See AppleTalk ARP

ARP
MAC addresses, displaying 2-24
request type 2-230
transactions, display using debug arp 2-24

ARPA-style encapsulation 2-35
Asynchronous Transfer Mode

See ATM
ATM

completion codes, displayed 2-28
debug atm errors command 2-26
debug atm events command 2-27
debug atm packet command 2-30
packet length 2-31
transmission rates 2-28
virtual circuit indicator 2-31

B

Banyan VINES
See VINES

basic security options 2-114
bearer capability values B-5
BPDUs, investigating 2-216, 2-217
BRI, debug bri command 2-32
bridging problems

source-route bridging 2-211
spanning-tree topology 2-216

broadcast packets, MAC 2-34
buffers, internal 1-4

C

cache
See fast switching, NetBIOS, RIF, RSRB

call
information displayed in ISDN 2-136
problems, diagnosing 2-244
setup events 2-132
teardown events 2-133

cause codes
ISDN B-2–B-5
X.25 A-2–A-4

Challenge Handshake Authentication Protocol
See CHAP

Channel Interface Processor
See CIP

CHAP
authentication 2-183

2 Debug Command Reference

See also PPP
CIP

debug channel events command 2-38
debug channel packets command 2-40
packet display 2-40

CIR, investigating 2-80
Cisco Discovery Protocol

See CDP
clear x25 vc command A-6
command reference page sample xxiii
commands

See individual debug commands
committed information rate

See CIR
compatibility conflict in AppleTalk network 2-11
completion codes in ATM 2-29
configuration, display using write terminal command 1-2
configure network command, problems2-226
configure terminal command, message logging 1-3
Connectionless Network Service (CLNS)

See ISO CLNS
console line versus terminal lines 1-5
console line, limiting output on 1-4
console messages

controlling 1-4
logging 1-4

coup packet 2-222

D

daemon setup, syslog server 1-6
Data Link Connection Identifier

See DLCI
data link layer access limits, ISDN 2-136
DCD, monitoring state of 2-205
DDR

debug dialer command
description 2-60

received packets, analyzing 2-60
serial interface messages 2-60

dead interval for OSPF 2-101
debug 2-92, 2-99, 2-106
debug ? command 1-2
debug all command 1-2
debug apple arp command 2-2
debug apple domain command 2-4
debug apple errors command

description 2-6
using with other commands 2-7

debug apple events command
compared with apple event logging command 2-8
description 2-8
seed/nonseed routers 2-11

debug apple nbp command 2-13

debug apple packet command
description 2-16
using with other commands 2-16

debug apple remap command 2-18
debug apple routing command 2-20
debug apple zip command

compared with debug apple-routing command 2-22
description 2-22

debug arp command 2-24
debug atm errors command 2-26
debug atm events command 2-27
debug atm packet command 2-30
debug bri command 2-32
debug broadcast command 2-34
debug cdp command 2-37
debug channel events command 2-38
debug channel packets command 2-40
debug clns esis events command 2-42
debug clns esis packets command 2-43
debug clns events command 2-45
debug clns igrp packets command 2-47
debug clns packet command 2-49
debug clns routing command 2-50
debug command options, displaying 1-2
debug commands

caution for use 1-1
disabling all 1-2
documentation method 2-1
enabling all 1-2
entering 1-1
generating output 1-2
redirecting output 1-3
sample output 1-2
using the no form 1-1

debug compress command 2-51
debug decnet adj command 2-52
debug decnet connects command 2-54
debug decnet events command 2-56
debug decnet packet command 2-57
debug decnet routing command 2-58
debug dialer command 2-60
debug dspu activation command 2-62
debug dspu packet command 2-64
debug dspu state command 2-66
debug dspu trace command 2-68
debug eigrp fsm command 2-70
debug eigrp packet command 2-72
debug frame-relay command

compared with debug frame-relay packets
command 2-74, 2-81

description 2-74
debug frame-relay events command 2-77
debug frame-relay lmi command 2-78
debug frame-relay packets command

compared with debug frame-relay command 2-81

 Index 3

description 2-81
debug ip dvmrp command 2-83
debug ip eigrp command 2-86
debug ip icmp command 2-88
debug ip igmp command 2-92, 2-99, 2-106
debug ip igrp events command

compared with debug ip igrp transaction
command 2-93

description 2-93
debug ip igrp transaction command

compared with debug ip igrp events command 2-95
description 2-95
destination information 2-96

debug ip mpacket command 2-97
debug ip mrouting command 2-92, 2-99, 2-106
debug ip ospf events command 2-101
debug ip packet command 2-97, 2-102
debug ip pim command 2-92, 2-99, 2-106
debug ip rip command 2-109
debug ip routing command 2-111
debug ip security command 2-113
debug ip tcp driver command 2-115, 2-117
debug ip tcp driver-pak command2-115, 2-117
debug ip tcp transactions command2-119
debug ipx ipxwan command 2-121
debug ipx packet command 2-123
debug ipx routing command 2-125
debug ipx sap command 2-127
debug isdn event command 2-132
debug isdn-q921 command

description 2-136
using with other commands 2-136

debug isdn-q931 command 2-142
debug isis adj packets command2-146
debug isis spf statistics command 2-147
debug isis update packets command2-149
debug lapb command 2-151
debug lat packet command2-155
debug lex rcmd command 2-157
debug lnm events command2-160
debug lnm llc command 2-162
debug lnm mac command 2-165
debug local-ack state command 2-167
debug netbios-name-cache command2-169
debug output

See output from debug
debug packet command2-172
debug ppp chap command 2-183
debug ppp command 2-175
debug ppp error command 2-182
debug ppp negotiation command 2-178
debug qllc error 2-184
debug qllc event command2-185
debug qllc packet command 2-186
debug qllc state command 2-187

debug qllc timer command 2-188
debug qllc x25 command 2-189
debug rif command 2-190
debug sdlc command 2-193
debug sdlc local-ack command 2-197
debug sdllc command 2-199
debug serial interface command

description 2-201
HDLC messages 2-202
HSSI messages 2-203
ISDN Basic Rate messages 2-204
MK5025 device messages 2-205
SMDS messages 2-205

debug serial packet command
description 2-207
with SMDS enabled 2-207

debug source event command 2-211
debug source-bridge command 2-208, 2-211
debug span command2-216
debug sse command2-219
debug standby command2-221
debug status, displaying 1-1
debug stun packet command2-223
debug tftp command 2-226
debug token ring command 2-227
debug vines arp command 2-229
debug vines echo command 2-231
debug vines ipc command 2-232
debug vines netrpc command 2-234
debug vines packet command 2-236
debug vines routing command2-238, 2-243
debug vines service command 2-240
debug vines state command 2-242
debug vines table command 2-243
debug x25 2-184
debug x25 all command 2-244
debug x25 events command 2-249
debug x25 vc command 2-250
debug xns packet command 2-251
debug xns routing command2-252
DECnet

access list filtering 2-54
adjacency entry in routing table 2-52
adjacency state change 2-53
BDPU packet 2-217
debug decnet adj command 2-52
debug decnet connects command 2-54
debug decnet events command 2-56
debug decnet packet command 2-57
debug decnet routing command 2-58
debug lat packet command2-155
hello packet 2-217
LAT events, logging 2-155
max area parameter 2-56
max node parameter 2-56

4 Debug Command Reference

password and account information 2-55
Phase IV/Phase V converted packet 2-57
routing events, logging 2-58
routing updates, logging 2-57
spanning tree problems 2-217
unscheduled update event 2-58

decnet access-group command, used with connect packet
filtering 2-54

delay measurement in NetWare 2-126
diagnostics codes, X.25 A-4–A-6
Dial-on-Demand Routing

See DDR
Dijkstra algorithm 2-147
disable all debugging activity 1-2
disabling debug commands 1-1
discovery mode state changes, tracking 2-9
display output

See output from debug
displaying current debug status 1-1
displaying debug command options 1-2
DLCI

counts 2-81, 2-174
investigating 2-80, 2-82

document conventions xxii
downstream physical unit

See DSPU
DSPU

debug dspu activation command 2-62
debug dspu packet command 2-64
debug dspu state command 2-66
debug dspu trace command 2-68

dynamic addressing, Frame Relay 2-77

E

EIGRP
analyzing local and remote host traffic 2-72
debug eigrp fsm command 2-70
debug eigrp packet command 2-72
debug ip eigrp command 2-86

enabling all debugging 1-2
encapsulation

identifying styles 2-35
solving problems in AppleTalk 2-6
style, general packet debugging 2-172

enhanced IGRP
See EIGRP

error messages, ICMP 2-104
ES hello packets, displaying 2-42
ES-IS

debug clns esis events command 2-42
debug clns esis packets command 2-43
hello packet, displaying 2-42
See also ISO CLNS

explorer frame packet 2-209
explorer frame response 2-200
explorer packet 2-213

F

fast switching
cache entry 2-50
IPX packet information, displaying 2-123
RIF cache information, displaying 2-190
source-route bridging information, displaying2-211

flapping routes, identifying 2-8
frame event protocol state in SDLC 2-194
frame events, investigating 2-152
Frame Relay

analyzing end-to-end connection problems 2-77
ARP replies, displaying 2-77
debug frame-relay command

compared with debug frame-relay packets
command 2-74

description 2-74
debug frame-relay events command 2-77
debug frame-relay lmi command 2-78
debug frame-relay packets command 2-81
DLCI counts 2-81, 2-174
dynamic addressing 2-77
interface packets, displaying 2-81
LMI

exchanges 2-79
full status message 2-79
packets, displaying 2-78

multicast channel 2-77
packet type codes 2-75
received packets, analyzing 2-74
sent packets, analyzing 2-74, 2-81
unknown packet types 2-201

frame type names 2-152
FST encapsulation 2-214

G

GetNetInfo requests, tracking 2-10, 2-17

H

halt all debug activity 1-2
HDLC, debug serial interface command 2-202
hello interval for OSPF 2-101
hello packet

displaying DECnet 2-217
displaying ES-IS 2-42

 Index 5

displaying IS-IS 2-146
displaying ISO IGRP 2-47

High-level Data Link Control
See HDLC

High-Speed Serial Interface
See HSSI

host address, setting syslog server 1-5
host command 2-233, 2-235
hot standby protocol

See HSP
HSP

Coup packet 2-222
group IP address 2-222
state transition 2-222

HSSI, debug serial interface command2-203

I

IBM channel attach
See CIP

ICMP
code types 2-89
debug ip icmp command 2-88
end-to-end connection, analyzing 2-88
mask request message 2-90
packet types 2-89
security error messages in IPSO2-104
transactions, logging 2-88

IEEE spanning tree problems 2-216
IGRP

debug ip igrp events command 2-93
routing messages, displaying 2-93
routing transactions, displaying 2-95

Information Element Identifier, ISDN 2-134, 2-144
Integrated Services Digital Network

See ISDN
interface packets, displaying Frame Relay 2-81
Interior Gateway Routing Protocol

See IGRP
internal buffer, logging messages to 1-4
Internet Control Message Protocol

See ICMP
Internet Group Management Protocol (IGMP) 2-92
Internet Protocol

See IP
Internet Protocol Security Option

See IPSO
Internetwork Packet Exchange

See IPX
IP

analyzing local and remote host traffic 2-102
analyzing TCP/IP performance problems 2-119
basic security options 2-114
debug ip icmp command 2-88

debug ip igrp events command 2-93
debug ip packet command 2-102
debug ip rip command 2-109
debug ip routing command 2-111
debug ip security command 2-113
general debugging information, displaying 2-102
ICMP transactions, logging 2-88
IGRP routing messages, displaying 2-95
IGRP routing transactions, displaying 2-93
IPSO security transactions, displaying 2-102
OSPF-related events, generating information 2-101
packet information 2-119
RIP routing transactions, logging2-109
RIP updates 2-109
routing transactions, logging 2-111
security classification 2-114
security failure message 2-104
subnet mask problems 2-101
TCP transactions, displaying2-119
See also OSPF
See also TCP

IPSO
analyzing datagram failures 2-72, 2-102
security actions table 2-103
security error message calculation2-103
security error messages2-104
security transactions 2-102
security transactions, displaying2-102
unclassified genser 2-103

IPX
debug ipx ipxwan command 2-121
debug ipx packet command 2-123
debug ipx routing command 2-125
debug ipx sap command 2-127
delay measurement in NetWare 2-126
displaying non-fast switched packets only 2-123
packet information 2-123
routing packet information 2-125
routing update timing 2-125
SAP

packet summary 2-128
packets 2-127
response type 2-129
updates 2-127

server service types 2-130
service detail message 2-128
socket number 2-129, 2-131
startup negotiations 2-121
ticks 2-126

ipx route-cache command 2-123
IS hello packets, displaying 2-42, 2-43
ISDN

Action indicator 2-138
assignment source point 2-140
Basic Rate problems 2-204

6 Debug Command Reference

bearer capability values B-5
bearer service 2-134
call information, displaying 2-136
call origin 2-134
call reference number 2-144
call setup events 2-132
call setup, displaying 2-142
call teardown events 2-133
call teardown, displaying 2-142
cause codes B-2–B-5
Channel Identifier 2-144
channel identifier 2-134
data link layer display limits 2-136
debug display format differences 2-132
debug isdn event command 2-132
debug isdn-921 command

description 2-136
using with other commands 2-136

debug isdn-q931 command 2-142
debug serial interface command 2-204
Identity Check Request message type2-139
Identity Check Response message type2-139
Identity Remove message type2-139
Identity Request message type2-138
Information command 2-140
Information Element Identifier 2-134, 2-144
layer 2 access procedures, displaying2-136
modulo 128 multiple frame acknowledged

operation 2-139
protocol discriminator 2-144
Receive Ready response 2-140
reference number 2-138
send sequence number 2-140
service access point 2-139
Service Profile IDentifier 2-140
show dialer command 2-132
switch types B-1
TEI value 2-139
user-side events, displaying 2-132

ISDN BRI
See BRI

IS-IS
debug isis spf statistics command 2-147
hello packet 2-146
route statistical information, displaying2-147
See also ISO CLNS

ISO CLNS
adjacency-related activities, displaying2-146
debug clns esis events command 2-42
debug clns esis packets command 2-43
debug clns events command 2-45
debug clns packet command 2-49
debug clns routing command 2-50
debug isis adj packets command2-146
debug isis update packets command 2-149

Dijkstra algorithm 2-147
ES hello packets, displaying 2-42
fast-switching cache entry 2-50
hold time, displaying 2-42
IS hello packets, displaying 2-43
ISH packets, displaying 2-42
IS-IS hello packet 2-146
link state packets 2-149
MAC address, displaying 2-45
NSAP

displaying 2-45, 2-49
identifier 2-149

PDUS and link state packets, displaying2-149
routing cache updates 2-50
routing table change indicator 2-50
sequence number packets 2-149
shortest path first algorithm 2-147
SNPA display 2-49
using debug clns-events to display ES-IS events 2-42

ISO IGRP
debug clns igrp packets command 2-47
hello packet display 2-47
Level 1 update display 2-47
Level 2 update display 2-48
metric display 2-48

K

keepalive
packet monitoring 2-202
timing values, serial connection 2-201

L

LAN Extender
debug lex rcmd command 2-157
lex interface 2-157

LAN Network Manager
See LNM

LAPB
events 2-151
frame type names 2-152
interface traffic, displaying 2-151

LAT
See DECnet

Level 1 update display, ISO-IGRP 2-47
Level 2 update display, ISO IGRP 2-48
LEX

See LAN Extender
link problems, using debug lapb to debug 2-151
link state packets, investigating 2-149
LLC

 Index 7

debug lnm llc command 2-162
software function level 2-163

LLC2, Token Ring problems 2-227
LMI

exchanges 2-79
full status message 2-79
packets, displaying 2-78

LNM
communication, displaying 2-162
debug lnm events command2-160
debug lnm llc command 2-162
debug lnm mac command 2-165
management communication, displaying2-165
Token Ring network, displaying events 2-160

Local Acknowledgment
monitoring frame types 2-197
state conditions 2-167

Local Management Interface for Frame Relay
See LMI

logging buffered command 1-4
logging command

redirecting error messages 1-3
setting up UNIX syslog 1-5

logging console command 1-4
logging monitor command 1-5
logging on command 1-3
logging trap command 1-5
Logical Link Control

See LLC
Logical Link Control, type 2

See LLC2

M

MAC
AppleTalk hardware address, displaying 2-3
ARP address, displaying 2-24
ARPA-style encapsulation 2-35
broadcast fields, described 2-35
broadcast packets, displaying 2-34
displaying ISO CLNS address 2-45
IP address, displaying 2-24
NetBIOS address, displaying 2-170
spanning tree root address 2-218
TCP/IP address, displaying 2-24

Magic Number 2-178, 2-180
mask request message, ICMP 2-90
max area parameter exceeded 2-56
max node parameter exceeded 2-56
Media Access Control

See MAC
message logging

choosing a destination 1-3
directing to console 1-3

enabling 1-3
keywords and levels 1-4
limiting output on console 1-4
limiting output on terminal lines 1-5
setting levels 1-3
setting trap level 1-5
to internal buffer 1-4
to UNIX syslog server 1-5

messages, ICMP 2-104
metric display, ISO IGRP 2-48
MK5025

debug serial interface command 2-205
device problems 2-205

monitor, logging messages to 1-5
multicast channel, Frame Relay 2-77
multicast IP

debug ip igmp command 2-92, 2-99, 2-106
debug ip mpacket command 2-97
debug ip mrouting command 2-92, 2-99, 2-106
debug ip pim command 2-92, 2-99, 2-106

N

Name Binding Protocol
See NBP

name caching activities, examining2-169
name not in NetBIOS cache 2-171
name-cache proxy 2-171
NBP

lookup request 2-14–2-15
name invalid 2-7
routines, displaying 2-13

neighbor reachability problems 2-8
NetBIOS

debug netbios-name-cache command 2-169
insufficient cache buffer space display 2-170
MAC address display 2-170
name caching activities, displaying2-169
name descriptions 2-170
name not in cache 2-171
name-cache proxy nonexistent 2-171

netbooting problems 2-226
NetRPC packet 2-235
network address probe 2-10
network traffic

debug priority over 1-2
generating with ping command 1-2

Novell
See IPX

NSAP
identifier 2-149
ISO CLNS display 2-45, 2-49

8 Debug Command Reference

O

Open Shortest Path First
See OSPF

options to debug command, displaying 1-2
OSI

See ISO CLNS
OSPF

dead interval 2-101
debug ip ospf events command 2-101
hello interval 2-101
IP-related events, generating information2-101
neighbors in same area 2-101
stub area 2-101
subnet mask problems 2-101

output from debug
caution using 1-2
generating 1-2
limiting 1-4
limiting on terminal lines 1-5
logging to internal buffer 1-4
redirect using command options 1-3
setting message levels 1-3
terminal lines versus console lines 1-5
to a UNIX syslog server 1-5
using the logging command 1-3

P

packet conversion, Phase IV/Phase V 2-57
packet length in ATM 2-31
packet link display 2-223
packet malformed in RIP 2-110
packet type codes, Frame Relay 2-75
packet types, X.25 2-246
PAP 2-183

debug ppp chap command 2-183
displaying exchanges 2-175

Password Authentication Protocol
See PAP

peer bridges 2-209
per-packet output, AppleTalk 2-16
Phase IV/Phase V converted packet 2-57
ping command, using to generate network traffic 1-2
Point-to-Point Protocol

See PPP
PPP

CHAP
authentication 2-183

debug ppp chap command 2-183
debug ppp error command 2-182
debug ppp negotiation 2-178
Magic Number 2-178, 2-180

packet exchange between ECHO and LQRs 2-177
Quality Protocol option 2-182
traffic, monitoring 2-175

Protocol Data Units
See PDUs

Protocol Independent Multicast (PIM) 2-106
protocols using TCP driver 2-115

Q

QLLC
debug qllc error 2-184
debug qllc event command2-185
debug qllc packet command 2-186
debug qllc state command 2-187
debug qllc timer command 2-188
debug qllc x25 command 2-189

R

remote peer message header types2-213
Remote Source-Route Bridging

See RSRB
RIF

cache problems 2-190
interface not configured 2-191
XID response 2-191

RIF cache entry 2-211
ring exchange packet 2-213
RIP

debug ip rip command 2-109
debug ip routing command 2-111
packet malformed 2-110
routing table updates 2-109
routing transactions 2-109
routing updated 2-111

router configuration, displaying 1-2
router, SDLLC support 2-199
routing algorithm

Dijkstra 2-147
shortest path first 2-147

routing cache updates 2-50
Routing Information Field

See RIF
routing information field 2-209
Routing Information Protocol

See RIP
Routing Table Maintenance Protocol

See RTMP
routing table updates, RIP 2-109
routing update timing, IPX 2-125
RSRB

 Index 9

debug source event command 2-211
explorer packet 2-213
FST encapsulation 2-214
message header types 2-213
RIF cache entry 2-211
ring exchange packet 2-213
virtual ring header 2-214

RTMP
display, description 2-21
packet, displaying 2-20
using debug apple routing to debug 2-20

RTMP update 2-23
RTP update messages 2-238

S

SAP problems 2-127
SAP response type 2-129
SAP updates in IPX 2-127
SDLC

debug sdlc command 2-193
debug sdlc local-ack command 2-197
frame event protocol state 2-194
frame type name 2-194
Local Acknowledgment information, displaying 2-

197
Local Acknowledgment state machine 2-198
SDLC frames, logging 2-193

SDLLC
data link layer, displaying 2-199
debug sdllc command 2-199
explorer frame response 2-200
feature definition 2-199

security classification 2-114
security error message calculation in IPSO2-103
security failure messages in IP 2-104
security, ICMP error messages 2-104
security, IPSO error messages2-104
seed/nonseed routers 2-11
sequence number packets, investigating 2-149
serial connection problems 2-201
serial debugging, interface support 2-201
serial timing problems 2-201
Serial Tunneling

See STUN
server service types in IPX 2-130
Service Advertisement Protocol

See SAP
service detail message in IPX 2-128
setting message logging trap level 1-5
shortest path first algorithm 2-147
show debugging command 1-1
show dialer command 2-132
show interface serial command 2-201

show logging command 1-4, 1-6
Silicon Switching Engine

See SSE
slow switching, monitoring AppleTalk 2-16
SMDS

debug serial interface command 2-205
debug serial packet command 2-207
encapsulation problems 2-205, 2-207

SNPA display, ISO CLNS 2-49
socket number in IPX 2-129, 2-131
source-bridge route-cache command missing 2-190
Source-Route Bridging

See SRB
source-route bridging problems 2-211
spanning tree

topology change notification 2-216
topology problems 2-216

SRB
debug source event command 2-211
debug source-bridge command 2-208
explorer frame 2-209
packet and frame information, displaying 2-208
peer bridges 2-209
routing information field 2-209
using TCP as transport 2-208

SSE, debug sse command 2-219
standby ip command 2-222
startup AppleTalk probe message 2-9
startup negotiations in an IPX WAN 2-121
state machine changes in TCP2-120
stub area 2-101
STUN

debug stun packet command2-223
packet link display 2-223
X1 packet type 2-224
X2 packet type 2-225

subnet mask problems 2-101
switch types, ISDN interface support B-1
Switched Multimegabit Data Service

See SMDS
Synchronous Data Link Control

See SDLC
syslog server

daemon setup 1-6
limiting messages to 1-5
logging messages to 1-5
setting host address 1-5
setting trap level 1-5
trap levels described 1-5

system diagnostics, enabling all 1-2

T

TCNs, monitoring 2-216, 2-217

10 Debug Command Reference

TCP
analyzing performance problems 2-119
debug ip tcp command 2-119
debug ip tcp driver command 2-115, 2-117
debug ip tcp driver-pak command2-115, 2-117
displaying transactions 2-119
driver activity identifier 2-115, 2-118
driver events, logging 2-115
driver operations, logging 2-117
header compression, investigating2-174
packet information 2-119
port number 2-116
protocols using driver 2-115
state machine changes 2-120
verbose debugging output 2-115
See also IP

TCP/IP
debug arp command 2-24
MAC addresses, displaying 2-24
network nodes not responding 2-24

terminal lines versus console line 1-5
terminal lines, limiting output on 1-5
terminal monitor command 1-5
TFTP

configure network command 2-226
debug tftp command 2-226
write network command 2-226

ticks, NetWare delay measurement 2-126
timing problems, serial connection 2-201
Token Ring

communication, displaying 2-162
debug token ring command 2-227
interface activity, displaying 2-227
management communication, displaying2-165
network events, displaying 2-160

Topology Change Notification
See spanning-tree, TCN

Transmission Control Protocol
See TCP

transmission rates for ATM 2-28
transparent bridging problems 2-216
trap level

described 1-5
setting 1-5

tunneling
See STUN

U

unclassified genser 2-103
undebug command 1-1
UNIX syslog server

daemon setup 1-6

limiting messages to 1-5
logging messages to 1-5
setting host address 1-5
setting trap level 1-5
trap levels described 1-5

unknown protocol problems
displaying 2-172
encapsulation styles 2-172

unscheduled update event, displaying 2-58

V

VINES
ARP packets, logging 2-229
ARP request type 2-230
debug vines arp command 2-229
debug vines echo command 2-231
debug vines ipc command 2-232
debug vines netrpc command 2-234
debug vines packet command 2-236
debug vines routing command2-238, 2-243
debug vines service command 2-240
debug vines state command 2-242
debug vines table command 2-243
general information, logging 2-236
host command 2-233, 2-235
IPC layer transactions, logging 2-232
MAC-level echo packets, logging 2-231
NetRPC layer transactions, logging 2-234
RTP update messages, logging 2-238
Service layer transactions, logging 2-240
SRTP state transactions, logging 2-242

virtual circuit display in ATM 2-31
virtual circuit states, X.25 2-245
virtual ring header, RSRB 2-214

W

write network command problems 2-226
write terminal command 1-2

X

X.25
cause codes A-2–A-4
debug lapb command 2-151
debug x25 all command 2-244
debug x25 events command 2-249
debug x25 vc command 2-250
diagnosing call problems 2-244
diagnostics codes A-4–A-6

 Index 11

LAPB
frame type names 2-152

LAPB events 2-151
LAPB interface traffic, displaying 2-151
packet types 2-246
traffic, displaying 2-244, 2-249
virtual circuit states 2-245
virtual circuit traffic, displaying 2-250

X1 packet type 2-224
X2 packet type 2-225
X25

clear x25 vc command A-6
XID response 2-191
XNS

debug xns packet command 2-251
debug xns routing command2-252
packet traffic, logging 2-251
routing transaction, displaying 2-252

Z

ZIP
extended reply 2-23
storm 2-22
using debug apple zip to debug 2-22

Zone Information Protocol
See ZIP

zone list incompatibility 2-6

