Digital ATM Starter Kit
for LAN Emulation Developers

Programmer’s Reference

Revision: 1.0
Date: October 2, 1995
Authors: Theodore L. Ross

Douglas M. Washabaugh

(c) Copyright. Digital Equipment Corporation, 1995. All Rights Reserved.

Permission is hereby granted to use, copy, modify, or enhance this software freely, aslong as the
foregoing copyright of Digital Equipment Corporation and this notice are retained on the software.
This software may not be distributed or sublicensed for afee. Digital makes this software
avalable"AS|S" and without warranties of any kind.

Digital Equipment Corporation

Revision History

Revison | Date Author | Comments
1.0 2-Oct-95 TLR Initial Release
DMW
2 Digital Equipment Corporation

Table of Contents

L. INTRODUGCTION ...uttiiiiiee ittt e e s s et e e e e e e st ettt e e e e eeessasabbbseeeaaeesaaasbtaeeeeaessaassstsreeeasssannnes 5
2. STARTER KIT CONTENTS.ottt ettt e e e e s s et e e e e e e e e e s nabbbaeeeeeeeseenarrseeeeaeeas 5
3. ARCHITECTURAL OVERVIEW OF THE SOFTWAREotvviiiiiiieeeee et 7
3.1 STATIC CODE STRUGCTUREceiiittttttteeeesieittreeeesesssiaisttesessasssaassttsseesaesssaattsssesaesssaassssssesssessanssrssseeeens 7
N N R Ko N Y= B g 1 = Vo= USSR 7
3.1.1.2Upper Datalink INEITACE.eiieertieeiteese ettt st s st e saeentesaeesbeeneesaeeseeennens 7
3.1.1.2 LOWESr POrt DIiVEr INEEITACE......cuei ettt ettt et et ate e s ae e e sae e et e e sabe e saeeebeeenteeenns 8

B L LB UME INEEITACE. .. .ictie ittt ettt ettt et e st e e s e s bt e et e e st e e saee e sbeeeabeesabe e sabeesbeeesbeeesseesaeeeseeenteeesseennes 8
3.1.2 TOP LEVEl COMPONENES.eiitieiieitiesiieee st steeste e et esteete st e steestesseesseesbeessesseesseesesssesseenseensesseenses 8
3.1.2.1 CONNECHION IMANAGENe.teeeeeieeitiesteeiesteesteeseesteestesseesbeebesaeesteebesaeesbeensesaeesaeentesseesaeensesseeseeeneesseessesneens 8
3122 LAN EMUIAHON CHIENE......iiiciieciie ettt et ettt et e st e e sate e saeeebeeenbeesabeesaeeenteeenreennns 8

1T BZRC 31V = o 1 0o LAY oo LU = SRRSO 8
124 SVC IMOUUIE.......oetee ettt ettt ettt et e et e st e e sae e e ebe e e abeesabeesaeeebeeeabeeesseesaseeseeenteeasneenses 9
3.1.3 LAN Emulation Client INTEITACES........cccvuiiiiiie ittt etre ettt e st e st e s e eare e e sbbe e e eabeeeseareeeens 9
3.1.3.1 The Upper Data Link INTErfaCE.coiiieiieeeeese ettt e s 9

T G T I 4 SN o (o) 1 01 = SRS 9
3.1.4 LAN Emulation Client COMPONENTS.........ciuiieriirieiesieniesieseeteseeiesee e ssesseessesseessesseessesnseses 10

G 3 R D - = N\ o o LU 10

3.1 4.2 CONIOl MOQUIE ...ttt ettt ettt s e e s be e e be e sabe e saee e beeenbeesabeesaseebaeenbeessbeenseeans 10

G I B A o Y/ o o (1 YO 10

3.2 DYNAMIC OBJECT STRUCTURE.0ttettieeeiiiiuttreeeeeessiaisttseessesssaaistsssessesssimsstsseessesssammsssssesesssamsssssssseeens 10
3.3 EXECUTION BEHAVIOR ..vveeiieeiiiiittiteeeee e e s s setbteee e e e s s sseattbeeeesesssaaasbbaeesseeesaassbbaeeeeaessaasstaseeeeaessaassrreeeeaanss 11
3.3. 1 PaCKEL TraNSIMISSIONuvviiiieiiieeeitiee e e ebee e e st e e e st e e e s sab e e e sbbeeessabeeeesaabeeessbbesessabeeeesasbeeessnsreeesans 12
3.3.1.1 Transmission t0 an UNKNOWN AQArESS.........cceeiciieiiie i esieeetee sttt te e s re e sreessbeesbe e saneesaeeesbesenreean 12
3.3.1.2 Transmission t0 A RESOIVEA AGAIESSicciii ettt e e s be e sare e saeeesbeeenreean 13
I o Vo B 2 L= = o] 1 o o SRR 14
3.3.2.1 Reception Of aData Frame.......cciooiiieiee ettt et st b et sae e e ne e saee e 14
3.3.2.2 Reception of an LE-ARP RESPONSE FraME.........cooiiieiieieiiesie ettt nns 15

4, MUTUAL EXCLUSION REQUIREMENTS.... ..ottt ettt et sntnn e 16
B.THE LINK STATE MAGCHINE ...ttt br e e e e s s naataae e e e e e s s e ennbareeeeaeeas 16
6. IMPLEMENTING THE OPERATING SYSTEM SERVICES.........ccooiieeieee ittt 17
6.1 UTL_OS MODULE CREATION AND DELETIONc.uuiiieiiiieeeistieeeestieeessteeeesssteeasssseeessssassssnnsnsessnssnsenns 17
B.2 TIMER SERVICESciccuttteitteeesieittteeeeeee st settteeeseesssaasbtaseessasssaasstbaeesaeeesaasbbsaeeaaessaassbseeseaessaassssreneeaenns 18
6.3 REGISTER ACCESS SERVICES.uuttttttteeetiiittreeeeeessiaattsseessessiamistsssessesssimissssessesssamstsssessesssamssssssseeeens 18
6.4 MEMORY ALLOCATION SERVICES .1veeiieeeiiiiutireeeeeeesiiittseeeesesssaastsssessesssassssssesssesssamsssssessessssmssssssseeesss 18
B.5 PRINTING SERVICES. ... uttttitieeiiiiiittteeteeeesiiettteeeseesssaatttaeessesssaastsseeseasssaasstbseesaaessaasstssesseaessanssrrenreeenns 18
6.6 BUFFER HANDLING SERVICES.uttttiiieeeiiiititeeeeeessissttteeessesssaastsssessesssaasstssssssesssamsssssssssesssenssssssseesens 19
7. IMPLEMENTING THE LOWER PORT DRIVER ..ottt 19
7.1 MANAGING BUFFER POOLScctiiiiiiiiiiiiittieiteeteeeesteesesessesssnnnnnns 19
7.2 DRIVER INITIALIZATION . 11tttteeetieittreeteeeesisestreeeseesssaasstsseessesssaastssressesssaasstssesesasssansstssseseasssenssssrsneeeens 19
7.2.1 Establishing Linkage with the Connection Managerccovvveereieeneneeieseeesesee e 19
7.2.2 Allocating a Default BUFfEr POOLccuiiiiieiiiiesce e 20
7.3V C SETUPAND TEARDOWNuuttieitieeesiiittreeeeeessiaattseeeesesssaasstsssessesssaasstssssssesssamssssssesesssamssssssseeeens 20
7.4 PACKET TRANSMISSION .11eeiieeeiiiiuttreeeeeessiaattreeeesessiaastsseessssssamsstsssessesssaaisssssssesssamsssssseeesssemmssssseeeens 20
7.4.1 Possible Return Codes fOr TranSMiTcecoiveiiiiriee et e e sree s sree e ebee e eaee s s sareeserbeesenbeeeenres 20
7.4.2 Internal vs, External Transmit PACKELS..........cueeiiiii ittt sree e e e saee e 21

Digital Equipment Corporation 3

7.4.3 Prepending the LAN EmuUIation HEAAEXcccveiiiieiinieseee et 21

7D P A CK ET RECEPTIONcutttttteseessssssessnsnns 22
7.6 REPORTING LINK STATUS TO THE CONNECTION IMANAGER......ccetttteeeeereesssssssssessssssssssssssssssssssssssssssssnnes 22
8. INTERFACING TO THE SIGNALING PROTOCOL STACK ..oooteiiiiiieeieeeereeeeeeeeeeesesesssssssessssneee 22
8.1 CONNECTING THE TOP OF THE SIGNALING STACK ...vvvevterereessne 23
8.2 CONNECTING THE BOTTOM OF THE QSAAL FUNCTION....ciiiitiiieiiiiee e s stie e e sstiee e s stee e e s sntee e e snnvee e s snreeeenns 23
8.3 USING NON-TRILLIUM SIGNALINGevvttteeersessnes 23
O. INITIALIZING THE SYSTEM ..ooieiiiiiiiiiiieieetteeeeeeeseseeeessseseessesssssssssssssssssssssssssssssssmsresmmrrsrr.. 23
10. CREATING AND MANAGING LAN EMULATION CLIENTS ..., 24
11. USING THE UPPER DATALINK INTERFACE. ... 24
11,1 RECEIVE ADDRESS FILTERS. ... iiiiiiettiii i ee ittt e e e e e et e e e st e e st s e e e s s ee s bbbt e eesse e s bbbt eeesseessbaaseeaasens 24

O O Y [0 o= o A = o TR 25

O A = 0T To (o= o = o [T 25

11.1.3 PromiSCUOUS ENADIE.........cooceeeiii ettt ettt ettt e e e s st a e e e e s s s b b e e e e s s eabbaeeessesnreeeeas 25

11.1.4 Managing the Multicast Address TAblecccoiieiiiieie i 25
11.2 RECEPTION OF DATA PACKETS ..o oo 25
11.3 TRANSMISSION OF DATA PACKETS. ..o i i it 25
12. UME SERVICES REQUIRED BY THE LEC...... e e 26
12.1 OBTAINING REGISTERED ATIM ADDRESSES.......cci ittt eeeee ettt ettt ettt 26
12.2 OBTAINING THE UNI VERSIONccoiiiii et 26
FIGURE 1 - STATIC CODE STRUCTURE = TOPLEVEL ..ccooiiee oottt 7
FIGURE 2 - STATIC CODE STRUCTURE - LAN EMULATION CLIENT .cceeiieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee e 9
FIGURE 3 - DYNAMIC OBJIECT STRUCTUREccceiieeeeeeeee ettt ettt ettt 11
FIGURE 4 - TRANSMISSION TO AN UNKNOWN ADDRESS.....ccutttiiiieiiiettiiiiieesiiestiieesisessiiesseessa 12
FIGURES - TRANSMISSION TO A RESOLVED ADDRESScccttttiiiieiiiettiiiiieesiiestiieesssestiieessesssieasee 13
FIGURE 6 - RECEPTION OF A DATA FRAMEccci i 14
FIGURE 7 - RECEPTION OF AN LE-ARP RESPONSE FRAMEuvuuiiiiiiiiiiiiii ettt eetbs s e s s s eaabaa s e e aaaes 15

4 Digital Equipment Corporation

1. Introduction

The Digital ATM Sarter Kit for LAN Emulation Developersis a collection of software modules
that implement ATM connection management and the ATM Forum LAN Emulation Client. This
programmer’ sreference isintended to aid in the process of porting theDigital ATM Sarter Kit
software into aLAN Emulation Client installation.

The programmer’ s reference is organized as follows:

e Section 2 describes the contents of theDigital ATM Sarter Kit. It providesalist of source
fileswith a brief explanation of the contents of each.

» Section 3 provides a detailed architectural overview of theDigital ATM Sarter Kitincluding
static software structure, dynamic object structure, and several execution scenarios. The
purpose of this section isto familiarize the reader with how the software works. This
understanding is not necessary for porting the code but is often desirable and is therefore
supplied.

» Sections 4 through the end of the document describe the external software interfaces and
provide specific information as to how to port the software into aworking system.

This programmer’ s reference does not contain actua function prototypes or type definitions. This
information iswell documented in the C header files. Thisisa convention that has been followed
to ensure that the detailed technical documentation is up-to-date and accurate.

2. Starter Kit Contents

The Digital ATM Sarter Kit consists of three major software components. The Connection
Manager, the Mapping Storage Module, and the LAN Emulation Client Module. Also included
are anumber of definition include files and utility modules. The utilities are divided into two
categories: Operating System Independent and Operating System Specific. Lastly, several filesare
provided to aid in connecting a signaling stack to the code.

It is strongly recommended that the common files (i.e. those that are not specific to the hardware
platform or operating system) be used unmodified. The more modifications that are made to the
common files, the more difficult it will be to incorporate any upgrades that may become available
in the future.

Table 1 containsalist of C sourcefilesthat are included in theDigital ATM Sarter Kit. The
filenames shown in italics are the files most likely to need modification when porting the code. Not
all italicized files need modification depending on the platform and operating system that the
software will run on.

Tablel-List of Filesin ATM Starter Kit

Module Filename Description
Connection Manager cm.h General management interface to the Connection
Manager
cm_sap.h Upper NSAP client interface to the Connection Manager
cm_svc.h Interface to Top of Signaling Stack
cm_drv.h Lower Port Driver interface to the Connection Manager
cm.c Implementation of the Connection Manager

Digital Equipment Corporation 5

Mapping Module

map.h

Mapping module interface

map.c Implementation (linear search with reordering). May be
changed to another storage/search algorithm.
LAN Emulation Client | lec.h Interface to LAN Emulation Client module. Includes
management calls and upper datalink calls.
lec_ mgt.h Definitions of managable attributes within the LEC
module.
lec data.c | Implementation of the LEC data path. Handles transmit
and receive including multicast filters.
lec ctrl.h Interface to the LEC control subcomponent.
lec ctrl.c Implementation of the LEC control state machine.
Handles all LAN Emulation control protocols.
lec_arp.h Interface to the LEC ARP subcomponent.
lec arp.c Implementation of the LEC ARP function. Handlesthe
LE-ARP cache, ARP entry refresh and aging.
proxy.h Optional proxy interface for edge devices.
Interfacesto modules | line _up.h Interface to the line_up module (not supplied). This
that are not supplied. interface is needed because the LEC uses one call in the
interface to determine the operating UNI version. This
function needs to be implemented.
addr_reg.h | Interface to the address registration module (not
supplied). The LEC usesthisinterfaceto obtain ATM
addresses prior to operation. Thisinterface needsto be
implemented.
Signaling Interface svc.h Create and Destroy calls for SVC module
svc.c Implementation of SVC module
svc_info.h | Interfaceto signaling utilities
svc_info.c | Implementation of signaling utilities
Utilities, etc. g _types.h Genera purpose data type definitions
codes.h Return code definitions
g_endian.h | Macros for endian-independence
am.h ATM specific type definitions
system.h Glabal type definitions (not specific to any particular
interface)
af_lane.h ATM Forum LAN Emulation constants and type
definitions
utl.h Interface to OS-independent utilities
utl.c Implementation of OS-independent utilities
utl_osh Interface to OS-specific utilities
utl_os.c Implementation of OS-specific utilities (the file provided
isan example)
le disp.h Interface to display functions
6 Digital Equipment Corporation

‘ le disp.c ‘ Implementation of display functions
‘ g _event.h ‘ Interface to event reporting module
‘ g _event.c ‘ Implementation of event reporting module

3. Architectural Overview of the Software

3.1 Static Code Structure

Figure 1 shows the static structure of theDigital ATM Sarter Kit software. The static structure
illustrates how the various modules are connected together. This view does not show how object
instances are organized nor does it show how threads of execution flow through the software.

Figurel - Static Code Structure - Top Level

Upper Datalink

| | / Interface

Signaling 5 lec.h

e EEEETTE + | sve.c . .
: : LAN Emulation Client
QSAAL (contains subcomponents)

map.c

>- T o3

cm_svc.h cm_sap.h

Connection Manager (cm.c)

cm_drv.h

Lower Port Driver
Interface

3.1.1 Top Leve Interfaces

3.1.1.1 Upper Datalink Interface

The upper datalink interface is used to connect the LEC to the bases of protocol stacks at the data
link level. Thisinterfaceissimilar to the upper interface in NDIS, ODI, DLPI, and other network
device driver standards.

Thisisaregistration style interface that allows multiple logical network interfaces to be created.
Each logical interface becomes a separate LEC joined to a separate ELAN.

Digital Equipment Corporation 7

3.1.1.2 Lower Port Driver | nterface

The Lower Port Driver interface connects the Connection Manager to aphysical port driver. This
istypically adevice driver for an AAL5 ATM adapter. The interface provides callsfor VC setup
and teardown, and transmission and reception of packets.

3.1.1.3 UME Interface

The LAN Emulation Client requires some UME services (i.e. getting the current UNI version and
ATM address alocation). The Digital UME modules are not included in theDigital ATM Sarter
Kit but their interface definitions are. This allows an implementer to write the required UME
functionsto the interface required by the LAN Emulation Client module.

3.1.2 Top Level Components

3.1.2.1 Connection Manager

The Connection Manager plays a central rolein the architecture. All packetsthat flow in and out
of the ATM adapter go through the Connection Manager. It isresponsible for assigning VC
identifiers (VPI and VCI) to transmit packets and for demultiplexing receive packetsto the
appropriate upper-level components. Receive packet demultiplexing is done on the basis of the VC
identifier of the packet.

The Connection Manager provides a connection-oriented interface to Network Service Access
Points (NSAPs). Conceptually, NSAPs are the endpoints of VCs. An arbitrary number of NSAP
clients may register with the Connection Manager. NSAP clients may request the setup of PVCs
and SV Cs and may transmit and receive data on those channels.

3.1.2.2 LAN Emulation Client

The LAN Emulation Client module implementsthe LAN emulation standard asit appliesto ATM
end-stations. It handles initialization, joining of emulated LANS, the LE-ARP protocol, broadcast
and multicast of packets, and normal transmission and reception of unicast packets.

The LAN Emulation Client is based on the ATM Forum standard for LAN Emulation.

3.1.2.3 Mapping Module

The Mapping Module provides afast lookup data storage service that is used by the Connection
Manager and the LAN Emulation Client. The Connection Manager uses the services of this
module to keep lists of ATM addresses and VCs. The elements on each list are linked together
providing relationships between ATM addresses and VCs.

The LAN Emulation Client uses the Mapping Module to maintain alist of MAC addresses for
each emulated LAN that the module has joined. The entriesin the MAC address list become linked
to ATM address entries and V C entries as address resolution and V C setup are achieved
respectively. Thislinkage alowsthe LAN Emulation Client to determine which VC to use for
transmission based on asingle MAC address |ookup.

8 Digital Equipment Corporation

3.1.2.4 SVC Module

The SV C module provides an object-oriented shim between the Connection Manager and the
signaling stack. It connects both the top and bottom of the signaling stack to the Connection
Manager.

3.1.3 LAN Emulation Client Interfaces

Figure 2 - Static Code Structure - LAN Emulation Client

to UME interface to optional fast path

lec.h

|
lec_data.c lec_ctrl.h |:

proxy.h

lec_ctrl.c

|
lec_arp.h

lec_arp.c

to cm_sap interface to map interface

3.1.3.1 The Upper Data Link Interface

The Upper Data Link Interface is offered by the LAN Emulation Client Module to the upper data
link. Itisaregistration style interface. Before the datalink can usethe LAN Emulation Client, it
must register and in the process, join an emulated LAN. The registration call includes parameters
specifying which emulated LAN the driver wishestojoin.

3.1.3.2 TheProxy Interface

The use of thisinterfaceis optional. Itisused only in systems that behave as proxy clients (i.e.
LAN Emulation bridges and routers). Thisinterface provides access to proxy databases (like
bridge address databases) for two purposes:

e TheLEC may query the database to seeif it should respond to an incoming LE-ARP request;

* The database may contain VC information per address to implement a bridge/router fast-path.
Thisinterface alows the LEC to notify the database of changesto MAC addressto VC
relationships.

The proxy interface is provided so the LAN Emulation Client can function in an edge device with a
hardware implementation of bridging/routing. Rather than have the LAN Emulation Client
software handle each data packet, the hardware fast-path does so with the information provided

Digital Equipment Corporation 9

through the proxy interface. Inthiskind of installation, the LAN Emulation Client module need
only handle control packets and transmit packets addressed to unknown unicast addresses.

3.1.4 LAN Emulation Client Components

3.1.4.1 Data Module

The Data module implements the data path through the LAN Emulation Client. It causes alookup
to take place on each transmitted destination address and forwards or discards packets
appropriately. It also handles the receive address filters, deciding which received data packets are
to be discarded and which are to be passed up to the datalink.

3.1.4.2 Control Module
The Control module has the following responsibilities:
e Ithandlesall incoming LAN Emulation control frames;

e It formats and transmits all outgoing LAN Emulation control frames (sometimes on behalf of
the ARP module);

e Itimplementsthe LAN Emulation Client state machine which sequences all of the activities
involved in joining ELANS;

* It forwards destination address |ookup requests to the ARP module and provides the Data
modul e with the proper VCC to be used (if any) for packet transmission.

3.1.4.3 ARP Module

The ARP (Address Resolution Protocol) module implements the LAN Emulation ARP (LEARP)
Cache. It hasthe following responsibilities:

» Ittracksthe age of each address entry and handles the two-tiered aging mechanism described in
the standard;

» It keepsthe LEARP entries up-to-date by generating LEARP requests (formatted and
transmitted by the Control module);

* It handlesincoming LE-ARP responses (parsed by the Control module);
* It calsfor the setup of data-direct VCCs,
* It handles the flush protocol;

* Itlooks up destination MAC addresses for the Control module and decides whether to discard,
flood, or directly transmit data frames based on their LEARP entries.

3.2 Dynamic Object Structure

Figure 3 illustrates the dynamic structure of objects in the architecture. In general, there must be a
single object of each major component created for each physical ATM port being serviced. For
each physical ATM port, there may be many logical Emulated LAN interfaces. Logica interfaces
appear to upper layers as separate network interfaces, just as though there were numerous physical
Ethernet or Token Ring portsin the system. Note that the mapping module does not appear in
Figure 3. Thisis because the mapping module is not instantiated per physical port. Itisan
abstract data type which is used by both the Connection Manager and the LAN Emulation Client
module. Instances of mapping data structures are allocated as they are needed.

10 Digital Equipment Corporation

Figure 3 - Dynamic Object Structure

jh

i o data link
L L | Y £, | -
SVC L L I. Lin 4] £, | -
Logical Interface

LAN Emulation Client

| =

/4
/4

Connection Manager

Physical ATM Interface

3.3 Execution Behavior

This section describes how threads of execution flow through the ATM modules. The scenarios
that are described cover arange of examplesto illustrate the operation of the modules.

Note that thisis not anillustration of how data packets flow or how protocols operate. It israther
a demonstration of how the various modulesinteract in some interesting scenarios.

Digital Equipment Corporation 11

3.3.1 Packet Transmission

3.3.1.1 Transmission to an Unknown Address

11.

12.

12

Figure4 - Transmission to an Unknown Address

data_link lec_data lec_ctrl lec_arp cm port_driver
1
2
3
4
5
8
9
10
11
12
13
14
15
16

. Thedata link delivers the packet to the LEC for transmission,
. Thelec_datamodule queriesthelec_ctrl module to determine what to do with the packet based

on the Destination Address,

. Thelec_ctrl module requests that the lec_arp module lookup the address in the LE-ARP cache.

The lec_arp module searches the LE-ARP cache but does not find the address there. It creates
anew LE-ARP entry for the address and requests that the lec_ctrl module send an LE-ARP
Request frame for that address.

. Thelec_ctrl module builds an LE-ARP Request frame and calls the Connection Manager to

request that the frame be sent on the control-direct VCC.

. The Connection Manager forwards the frame to the Lower Port Driver which copies the frame

into atransmit buffer and queues it for transmission.

. The Lower Port Driver returns success status to the Connection Manager.
. The Connection Manager returns success status to the lec_ctrl module.

. Thelec_ctrl module returnsto the lec_arp module.

10.

Thelec_arp module returnsto the lec_ctrl module summarizing the lookup with a"flood"
return command.

Thelec _ctrl returnsto the lec_data module with a return code indicating that the data packet
may be forwarded and provides the connection handle for the multicast-send VCC.

Thelec_data module calls the Connection Manager requesting that the data packet be sent on
the VCC provided by thelec_ctrl module.

Digital Equipment Corporation

13. The Connection Manager callsthe Lower Port Driver which queues the packet for
transmission.

14. The Lower Port Driver returns pending status indicating that the packet is queued but not
transmitted.

15. The Connection Manager returns pending status to the lec_data module.
16. Thelec_data module returns pending status to the data link.

3.3.1.2 Transmission to a Resolved Address

Figure5 - Transmission to a Resolved Address

data_link lec_data lec_ctrl lec_arp cm port_driver
1
2
3
4
5
6
7
8
9
10

1. Thedata link deliversthe packet to the LEC for transmission,

2. Thelec_datamodule queriesthelec ctrl module to determine what to do with the packet based
on the Destination Address,

3. Thelec_ctrl module requests that the lec_arp module lookup the address in the LE-ARP cache.

4. Thelec_arp module searches the LE-ARP cache for the address and finds a matching address
with an active and current data-direct VCC. It returns a code indicating that the data packet
may be forwarded data-direct and provides the connection handle for the data-direct VCC.

5. Thelec _ctrl module returnsto the lec_data module indicating that the packet may be
forwarded and provides the data-direct connection handle.

6. Thelec datamodule calls the Connection Manager requesting that the data packet be sent on
the VCC provided by thelec_ctrl module.

7. The Connection Manager calls the Lower Port Driver which queues the packet for
transmission.

8. The Lower Port Driver returns pending status indicating that the packet is queued but not
transmitted.

9. The Connection Manager returns pending status to the lec_data module.
10. Thelec_data module returns pending status to the data link.

Digital Equipment Corporation 13

3.3.2 Packet Reception

3.3.2.1 Reception of a Data Frame

Figure 6 - Reception of a Data Frame

data_link lec_data lec_ctrl lec_arp cm port_driver

1. TheLower Port Driver receives the packet from the hardware and passes it to the Connection
Manager along with the VPI and VCI of the channel on which the packet arrived.

2. The Connection Manager looks up the VPI/V Cl and determines that the channdl is bound to
thelec_datamodule (SAP client). It callsthelec_data modul€' s receive callback.

3. Thelec_data module checksthe LEC header to seeif the packet is a control packet. Itisnot
so it forwards the packet to the data link.

4. Thedatalink handles the packet and returns to the lec_data module.
5. Thelec_data module returns to the Connection Manager.
6. The Connection Manager returns to the Lower Port Driver.

14 Digital Equipment Corporation

3.3.2.2 Reception of an LE-ARP Response Frame

9.

10.
11.
12.
13.

Digital Equipment Corporation

Figure7 - Reception of an LE-ARP Response Frame

data_link lec_data lec_ctrl lec_arp sve cm port_driver
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

. The Lower Port Driver receives the packet from the hardware and passes it to the Connection

Manager along with the VPI and VCI of the channel on which the packet arrived.

. The Connection Manager looks up the VPI/VCI and determines that the channel is bound to

thelec_datamodule (SAP client). It callsthelec_data modul€' s receive callback.

. Thelec_data module sees that the packet arrived on a control VCC and forwardsit to the

lec_ctrl module for handling.

. Thelec_ctrl module decodes the packet and determinesit isan LE-ARP response. A cdl is

made to thelec_arp module informing it that an address has been resolved via LE-ARP.

. Thelec_arp module looks up the MAC address in the LE-ARP cache, associates the MAC

address with the newly learned ATM address. It also finds that there is no data-direct VCC
currently setup to that ATM address. Asaresult, it callsthelec_ctrl module to request that a
data-direct VCC be set up to the ATM address.

. Thelec_ctrl module callsthe svc module to request an SV C setup.
. The svc module handles the connection request, passing it through the signaling stack. The

request comes out the bottom of the stack as a SETUP message. The svc module calls the
Connection Manager to request that the message be transmitted on the signaling PV C (for
which it has a handle).

. The Connection Manager sends the signaling packet to the Lower Port Driver which copiesit

into atransmit buffer and queuesit.

The Lower Port Driver returns success status to the Connection Manager.
The Connection Manager returns success status to the svc module.

The svc modul e returns success status to the lec_ctrl module.

Thelec_ctrl module returns success status to the lec_arp module.
Thelec_arp module returnsto the lec_ctrl module.

15

14. Thelec_ctrl module returnsto the lec_data module.
15. Thelec_data module returns to the Connection Manager.
16. The Connection Manager returns to the Lower Port Driver.

4. Mutual Exclusion Requirements

The Digital ATM Sarter Kitcodeisinvoked exclusively by procedure calls. All callsinto the
code run to completion without blocking. It isassumed that there is at most one thread of
execution in the code at any given time per physical ATM port. When there are multiple physical
port instances, the data space for each instance is completely separate and there is no re-entrancy
problem.

For any given physical port instance, it is mandatory that calls into the ATM
code not pre-empt one ancther.

In message-based installations (like VxWorks) the mutual exclusion requirements are easy to mest.
The ATM modules may be collected into a single task with incoming messages being converted
into procedure calls. Since messages are handled serialy, there is no danger of violating the
requirement.

In pre-emptive multitasking environments it may be necessary to use alocking mechanism or raise
the interrupt priority level when entering the ATM code.

Timers must also meet the mutual exclusion requirement. Timer expirations result in procedure
calsintothe ATM code. Timer calls must not pre-empt threads of execution running in the same
physical port instance.

5. The Link State Machine

The state of the physical ATM link is maintained by the Connection Manager. Thelink state
changesin responseto link events. Link events are reported to the Connection Manager viathe
cmlink _event cal (definedincm h). When the Connection Manager changes the link state,
it notifies all of itsclients (viathe SAP_LI NK_STATUS CALLBACKinthecm sap. h
interface). Thelink state and link event values are defined insy st em h. Refer to Table 2 and

Table 3 for descriptions of the link states and link events.

Table?2 - Link State Values

Link State Description

LINK_DOWN The physical link isdown. Cellsare not being received on the ATM
interface.

LINK_PHY_UP The physical link isup. Cells are being received on the ATM interface.

LINK_LINE _UP The physical link is up and the "line-up" protocol has completed. Line-up
consists of aseries of ILMI getsto selected remote MIB objects. When
line-up is complete, the supported UNI version is known, and the supported
V C ranges are known.

LINK_SIG UP The physical link is up and the signaling transport isup. Oncethis stateis
reached, SV Cs may be requested.

16 Digital Equipment Corporation

Table3 - Link Event Values

Link Event Description
LINK_EVENT_PHY_DOWN The physical ATM interface has stopped receiving cells.
LINK_EVENT_PHY_UP The physical ATM interface has begun receiving cells.
LINK_EVENT_LINE UP The line-up protocol has compl eted.

LINK_EVENT_SIG UP The signaling transport has successfully connected with
its UNI peer.

LINK_EVENT_SIG DOWN The signaling transport has lost contact with its UNI
peer.

LINK_EVENT _RESET START The lower port device driver is resetting the physical
ATM interface.

LINK_EVENT _RESET COMPLETE | Thelower port device driver has completed resetting the
physical ATM interface.

The Connection Manager expectsthe link states to progress from LINK_DOWN through
LINK_SIG_UP (passing through LINK_PHY _UPand LINK_LINE_UP aong theway). The
changesin thelink state cause actionsto take place in the ATM system. For example, when the
Lower Port Driver detectsthat the ATM interface isreceiving cdlls, it reportsthe
LINK_EVENT_PHY_UP event to the Connection Manager. This causes atransition from
LINK_DOWN to LINK_PHY_UP which alertsthe UME (UNI Management Entity, not supplied
with the Digital ATM Starter Kit) to begin querying the UNI peer for line-up information which is
stored for later retrieval. Note that performing the line-up sequence is not mandatory. The UNI
version and other information can be manually entered or discovered in some other way. The only
thing that is mandatory isthat the LINK_EVENT_LINE_UP event be reported to the Connection
Manager after the link state transitionsto LINK_PHY _UP.

Thetransition from LINK_PHY_UPto LINK_LINE_UP causesthe signaling stack to initialize
(now that it knowswhich UNI version to use). When initialization is successful, it callsthe
Connection Manager and indicatesthe LINK_EVENT_SIG_UP event which causes the link state
totransitionto LINK_SIG_UP.

The LAN Emulation Client instances use the transition to LINK_SIG_UP astheir signal to begin
attempting to join their respective Emulated LANS.

6. Implementing the Operating System Services

The Digital ATM Sarter Kitrequiresthat basic operating system services be implemented for the
new environment. Theinterfaceto the basic OS servicesisdescribed inthefileut | _os. h. The
file utl_os.c contains an example implementation for Windows NT (running under user mode, not
kernel), and should be used as a starting point for your own implementation.

6.1 UTL_OS Module Creation and Deletion

Like many of the other modulesin the system, the OS utilities module is object-oriented. Typically,
the system creates an instance of the OS utilities for each physical ATM port in the system. This
supports environments like Novell Netware that provide separate memory pools for different NICs.
There is no reason why asingle instance of the OS utilities cannot support multiple ATM physical
ports, so this decision isleft to the discretion of the designer.

Digital Equipment Corporation 17

The functions:
e 0S_create,and
e o0s_destroy

must be implemented to provide the capability to create multiple instances of the OS utilities.
Refer to the function prototypes and documentation in the interface file ut | _os. h) for further
details.

6.2 Timer Services

There are two types of timer services provided. Thefirst typeisfor delaying for an extremely
small amount of time (on the order of microseconds). Although the common code does not use this
service, device specific code may require.

The second type of timer serviceis a calback mechanism. This enables the common code to set a
timer, and then be called back after a period of time. The implementation should:

e Support a granularity on the order of 100’s of milliseconds,
* Support a relatively large number of timers (on the order of 50).

Generally, there are two ways to implement timers. The first way, recommended for
implementations that can support a large number of timers, is to create and set a new timer for
each one requested. The second way, recommended for implementattamtbaupport a

large number of timers, is to set one master timer, and maintain a queue of entries, each entry
representing one timer.

6.3 Register Access Services

TheDigital ATM Sarter Kit code does not use the register access services. These calls appear for
the benefit of device driver developers. They need not be implemented to PadithleATM
Sarter Kit.

6.4 Memory Allocation Services

Memory allocation services support the allocation and deallocation of “standard” memory.
“Standard” memory has only a virtual address, not a physical address. For example, in a NIC
implementation, the NIC would not DMA to or from this type of memory. These routines are
typically implemented usingal | oc andf r ee (or reasonable facsimile thereof).

The function®s_nem confi g andos_nem st at s are not required for normal operation of

the software but provide useful testing capability. They can be used to limit the available memory
pool and to determine how many bytes have been allocated (peak and current). This feature is
most useful in verifying that there are no memory leaks.

6.5 Printing Services
Printing services are provided by a single @@l (pr i nt). The implementer can have this print
to a screen, file, or other destination.

The implementer needs to be aware that printing larger amounts of text to a slow output device can
significantly slow down the response time of a driver, which may lead to unforeseen side-effects.

To avoid this problem, the implementer may choose to write the information to a memory buffer,
and have a separate lower priority process read the memory buffer and print the information.

18 Digital Equipment Corporation

6.6 Buffer Handling Services

The buffer handling services (os_buf f _hdr _get andos_buff _hdr_copy) providea
mechanism for the software to access the contents of receive buffers (these functions are never
used to copy headers from transmit buffers). The common code cannot access these buffers
directly because different implementations may have different formats of buffers. For example, in
an NDIS 3.0 implementation for an NT device driver, the buffers may be NDIS buffers for
transmit buffers, but flat memory for receive buffers.

Theos_buff _hdr get function copiesthefirst two octets from the received data packet. This
isused on every LAN Emulation packet received so it should execute quickly. The

os_buff _hdr_copy function copies avariable number of bytes from the front of the packet.
Thisisonly used for control packets so it need not be as efficient asos_buf f _hdr _get.

7. Implementing the Lower Port Driver

The Lower Port Driver interface is specified in thefilecm dr v. h. Refer to thisfile for function
prototypes and definitions that are needed to implement the Lower Port Driver.

7.1 Managing Buffer Pools

Buffer pools are used by the Lower Port Driver and the Connection Manager to group related VCs
together. Transmit channels may need to be grouped by quality of service and/or cdll rate to ensure
that fast flows don't get stuck behind slow or congested flows. Receive channds are typically
grouped by maximum frame size to increase the efficiency of memory buffer usage.

Buffer pools, as used in the Digital ATM Sarter Kit, are fairly generic and may be used in any one
of anumber of ways. If the ATM adapter uses transmit and receive queues that are not mapped
one-to-one to V Cs, buffer pools can be mapped to the queues. If the ATM adapter provides
gueuing per VC, only asingle default transmit buffer pool may be needed.

The designer of the Lower Port Driver decides how buffer pools are to be created and managed.
The Connection Manager isinformed of the creation and deletion of buffer pools through the
cm drv_pool _regi ster andcm drv_pool _der egi st er functionsrespectively.
Buffer pools may be dynamically registered and deregistered at any time. For proper functioning
of the ATM system however, there must always be a default transmit and receive buffer pool
registered.

7.2 Driver Initialization

The Connection Manager is the first module to be instantiated during the initialization of the ATM
subsystem (refer to section 9 for details on system initialization). The Lower Port Driver isthe
next moduleto beinitialized. In so doing, it must establish linkage with the Connection Manager
instance which is associated with the physical ATM interface served by the driver. The driver
must also allocate at least a default pair of buffer pools to be used by the Connection Manager in
setting up VCs.

7.2.1 Establishing Linkage with the Connection M anager

Since the Connection Manager instance is created firgt, its handle (the cm_handle€) is known during
lower driver initialization. The Connection Manager must be given the handle for the Lower Port
Driver before it can make any callsinto the driver. Thisisdoneusingthecm drv_confi g
function.

Digital Equipment Corporation 19

The Connection Manager must aso be provided with the addresses of severa callsinto the Lower
Port Driver. Thisisaccomplished whenthedriver callscm drv_cal | _regi ster.

7.2.2 Allocating a Default Buffer Pool

When the Connection Manager sets up VCsin the driver, it attempts to assign a transmit and
receive buffer pool to that VC. Because PVCsare set up very early in the system initialization
sequence (i.e. the signaling PV C is set up when the svc moduleis created), it isimportant to have
at least one default transmit and receive buffer pool available for the early PV Cs (signaling, ILMI,
and any PV Cs used for proprietary value-added features).

7.3 VC Setup and Teardown

The Lower Port Driver isresponsible for setting up and tearing down V Cs at the request of the
Connection Manager. Two of the entry points that the Lower Port Driver registers with the
Connection Manager are used for this purpose. They aredescribedincm drv. h as
DRV_CM VC_SETUP and DRV_CM VC_TEARDOWN.

Both the V C setup and teardown operations are considered asynchronous. Thisis because some
ATM adapters may take some time to perform the operations. For example, it may be necessary to
flush transmit packets out of a queue before the VC they are destined to can be considered closed.
There are two callsinto the Connection manager that are used to confirm the completion of VC
operations. They arecm drv_set up_cf mandcm dr v_t ear down_cf mand can be found
describedincm drv. h.

Even if VC setup and teardown operations are quick, the confirm functions must be called by the
Lower Port Driver before the Connection Manager will consider the VC in question to be setup or
torn down. It isacceptable for theDRV_CM VC_SETUP functiontocallcm drv_set up_cfm
before it returns to the Connection Manager (likewise for the VC teardown operation).

When the Connection Manager requests the setup of aVC, it provides the assigned transmit and
receive buffer pool contexts and a data structure (calledr equest ed_qos) describing the VC
characteristics. The Lower Port Driver must set up the VC with characteristics that are as close as
possible to the requested characteristics. When the setup is confirmed, the Lower Port Driver must
indicate to the Connection Manager what the actual VC characteristics are (viatheact ual _qgos
argument). Thisisrequired because hardware limitations may cause the achievable cell rate
resolution to differ from the resolution that the Connection Manager assumes. The Connection
Manager uses the actual_qos values to keep accurate track of what line resources are used and
what is still available.

7.4 Packet Transmission

When the Connection Manager wishes to transmit a packet to the ATM network, it invokes the
DRV_CM XM function in the Lower Port Driver. The call provides a pointer to the packet
structure, the length of the packet in bytes, the VPI and VCI of the channel to be used, and the
transmit buffer pool context to be used in the transmit. An additional 32-bit argument called
user dat aisprovided. The exact structure of the user datais specified inthesyst em h
header file.

7.4.1 Possible Return Codesfor Transmit

There are four possible status codes that may be returned by the Lower Port Driver's
DRV_CM XM call. They are:

20 Digital Equipment Corporation

« STATUS K_SUCCESS,
« STATUS K_PENDING,
« STATUS K_CONGESTED, and
« STATUS K_FAILURE.

STATUS K_SUCCESSi sreturned if the packet has been successfully transferred from the buffer
that was passed down inthe call. This can be aresult of a completed programmed-1O operation
across abus or if the packet is copied into another buffer for later transmission. The upper layers
will interpret STATUS_K_SUCCESS as confirmation that the buffer has been read and may be
overwritten.

STATUS_K_PENDING isreturned if the buffer has been successfully queued for transmission.
The upper layers will interpret this as an indication that the buffer is still owned by the driver and
may not be overwritten. In this case, the Lower Port Driver is obligated to invoke

cm drv_xnt _done later when the buffer has been copied. The Connection Manager will route
the transmit-done indication up to the original sender of the packet who can in turn put the buffer
back in afree pool.

STATUS _K_CONGESTED isreturned if the packet cannot be transmitted due to congestion (i.e.
full buffers, etc.). Inthis case, the buffer isreturned to the sender intact and the sender has the
option of discarding the packet or queuing it for alater retry.

STATUS _K_FAILURE isreturned if the packet cannot be transmitted due to some exceptional
circumstance (i.e. hardware errors, etc.). The buffer isreturned intact to the sender just as with the
STATUS K_CONGESTED status.

7.4.2 Internal vs. External Transmit Packets

The high order bit of the user data argument is called the "internal_source” bit. This bit indicates
the source of the packet and gives the Lower Port Driver information about the format of the
packet. If theinternal_source hit is set, the packet originated from within theDigital ATM Sarter
Kit code. Examples of internally generated packets include signaling packets and LAN Emulation
control packets.

Internally generated packets arrivein flat virtual memory space, MUST be copied into atransmit
buffer, and the return code resulting from a transmit of an internal packet MUST NOT be
STATUS _K_PENDING. Theinternal code that generates transmit packets will not wait for
transmit-done indications. It aways assumes that the buffers are writable upon completion of the
transmit function.

If the "internal_source" bit in the user dataiis clear, the packet is externally sourced. This means
that the packet came from the upper data link and passed through the LAN Emulation Client and
the Connection Manager. In this case, the Lower Port Driver knows what the format of the
transmit packet is (because it knows what was provided by the upper datalink). Non-internal
packets may be copied or queued as-is. If the Lower Port Driver returns STATUS _K_PENDING
status (and subsequent transmit-done indications), the upper data link must be able to handle the
transmit-done indications.

7.4.3 Prepending the LAN Emulation Header

Because the Digital ATM Sarter Kit does not know about the format of non-internal packets, it
does not prepend the two-octet LAN Emulation header to the outgoing packets. Instead, it supplies

Digital Equipment Corporation 21

the LAN Emulation header in the user data (in the low-order 16 bits) and relies on the Lower Port
Driver to prepend the header to the packet.

IMPORTANT: The LAN Emulation header provided in the user data appearsin host byte order.
The host-to-network convert routineht on16 (founding_endi an. h) must be used to convert
the LAN Emulation header to the proper byte ordering before it is prepended to the outgoing
packet.

The"add le header” bit in the user datais used to indicate that a header must be prepended to the
packet. Note that the"add le _header" bit is mutually exclusive with the "interna_source" packet.
The Lower Port Driver will never be required to prepend a LAN Emulation header to an internally
sourced packet.

7.5 Packet Reception

Packet reception is quite straight forward. Once the Lower Port Driver detects that a received
packet isin memory, it may callcm dr v_r cv to pass that packet up to the ATM subsystem.
Along with the received packet buffer, the Lower Port Driver must also provide the VPI/VCI over
which the packet arrived, the packet length in bytes, and auser datavalue. Currently thereisno
meaning to the user data on received packets so this value may simply be set to zero.

The packet that is passed to the Connection Manager must not contain any ATM Adaptation Layer
(AAL) related encapsulation. If the packets are AALS encapsulated, the Lower Port Driver must
strip off the AALS trailer and use the length field from the trailer as the length passed up to the
Connection Manager.

7.6 Reporting Link Status to the Connection Manager

The Lower Port Driver must periodically poll the ATM adapter to determine if the hardwareis
receiving cells. A reasonable poll rate is one per second. |If the Lower Port Driver detects a
change, it must notify the Connection Manager of that changeusingthecm | i nk_event call
(incm h).

When the ATM hardware begins receiving cells, the indicated link event should be
LINK_EVENT_PHY_UP and when cells stop being received, the event should be
LINK_EVENT_PHY_DOWN.

If the Lower Port Driver needs to reset the ATM hardware for any reason, it should issue a
LINK_EVENT_RESET_START prior to resetting and aLINK_EVENT_RESET_COMPLETE
once reset is complete. This causes the Connection Manager to re-establish all of the PV Csthat
were open before the reset began.

8. Interfacing to the Signaling Protocol Stack

Digita’s ATM cade currently uses the signaling stack supplied by Trillium Digital Systems, Inc.
Though any signaling stack can be interfaced to the ATM code, it will be easiest to use Trillium’s
stack.

The interface between the Connection Manager and Signaling is specifiedincm svc. h. The
glue that connects the signaling stack to the Connection Manager can befoundinsvc. ¢. The
signaling function actually uses two Connection Manager interfaces, thecm svc interface and the
cm _sap interface. Thecm sve interface connects to the upper interface of the signaling stack and
handles the signaling requests, indications, responses, and confirmations. Thecm_sap interface
connects to the bottom of the QSAAL layer of the signaling stack. It isused to establish the

22 Digital Equipment Corporation

signaling PV C (VPI=0, VCI=5) and to transmit and receive QSAAL packetsto and from the
physical ATM interface.

In installations with more than one physical ATM port, there must be a separate instance of the
Connection Manager created for each physical port. Likewise, there must be a separate instance of
Signaling created for each physical port. Thisis because each port hasits own VC space and there
must be a separate QSAAL transport connection running over each port.

8.1 Connecting the Top of the Signaling Stack

The top of the signaling stack provides services in the form of request, indication, response, and
confirmation messages. There are calls that pass between the Connection Manager and the SVC
module for each of the messages supported by UNI 3.0 and UNI 3.1. Thecodeinsvc. ¢ must be
provided to glue the signaling interface to the Connection Manager. No code changes are
necessary in the Connection Manager.

8.2 Connecting the Bottom of the QSAAL Function

The SV C module registers with thecm_sap interface of the Connection Manager and opens up the
signaling PVC. It then uses this interface to transmit and recelve QSAAL messages going between
the signaling stack and the network. This module also handles indicated changesin link state
(reported by the Connection Manager). When thelink state transitionsto LINK_LINE_UP, the
signaling stack isto beinitialized. The UNI version to be used can be manually configured or
determined vialLMI. When the QSAAL connection with the UNI peer has been successfully
brought up, the SV C module must signa to the Connection Manager the LINK_EVENT_SIG_UP
event (usingthecm | i nk_event call).

8.3 Using non-Trillium Signaling

The Trillium dependencies are not widely spread throughout theDigital ATM Sarter Kit code. |If
anon-Trillium signaling stack isto be used, the following routines will need to be changed:

e Allroutinesinsvc_i nfo. c,
e lc_conn_info _makeinlec ctrl.c,and
e lc_conn_info _checkinlec_ctrl.c

9. Initializing the System

System initialization is handled independently for each physical ATM adapter being supported.
Within each physical instance, the following creation order should be followed:

1. Create the Connection Manager instance,

2. Create the Lower Port Driver instance,

Initialize the Lower Port Driver instance,

Create the SV C instance,

Create the LAN Emulation Client instance,

. Allow the Lower Port Driver to begin checking to seeif cells are being received.
Logica LAN Emulation interfaces may be registered any time after step 5 has completed.

OUU'I-hOO

Digital Equipment Corporation 23

10. Creating and Managing LAN Emulation Clients

The system initialization sequence creates an instance of the LAN Emulation Client module for
each physical ATM interface that is present. Simply creating the instance is not sufficient to cause
an Emulated LAN to bejoined. An ELAN isjoined when the layer management function registers
with the LEC module (usingthel ec_r egi st er cal inl ec. h). Thereisno architectural limit
on how many logical interfaces can be registered on each physical interface. Itissimply a matter
of how much memory is available to hold the state data structures for each registered ELAN.
Furthermore, there is no temporal restriction on when logical interfaces may be registered and
deregistered. Logical interfaces may be added and removed dynamically throughout the life of the
system.

When| ec_r egi st er iscaled, the caller suppliesall of the salient information about the
desired ELAN (i.e. frame type, maximum frame size, initialization method, etc.). Thisinformation
remains static until the interface is deregistered.

Each registered interface begins the join process when the state of the associated physical link
transitionsto LINK_SIG_UP. Thejoin process also commences at registration timeif the link
stateis aready equal to LINK_SIG_UP.

If thelink islogt (i.e. the link state transitions from LINK_SIG_UP) while ELANs are joined, each
affected logical interface will become unavailable until the link is restored and the ELANS can be
rejoined. A registered logical interface will repeatedly attempt to join an ELAN using the
parameters suppliedinthel ec_r egi st er cal.

11. Using the Upper Datalink Interface
Each logical ELAN interface has associated with it a context (supplied by layer management), an

elan_handle (supplied by the LEC module and returned by thel ec_r egi st er function), and
three callback functions:

« LEC EVENT_CALLBACK,
« LEC_RCV_CALLBACK, and
« LEC_XMT_DONE_CALLBACK.

The callback functions are always invoked using the ELAN context supplied at registration. The
LEC EVENT_CALLBACK isused by the LEC module to notify the data link of the status of the
logical interface. The interface can smply be available or unavailable. Whenthe ELAN join
process successfully completes, the LEC_EVENT_CALLBACK function is called to inform the
datalink that the interface is available and to provide the negotiated maximum frame size and the
name of the joined ELAN. If the registered interface becomes non-operational (due to loss of link
or loss of acontral VC), the LEC_EVENT_CALLBACK will be invoked to notify the data link
that the interface has become unavailable.

11.1 Receive Address Filters

Each registered logical interface has three address filters and a multicast addresstable. Thefilters
are controlled by enable flags that can be read and modified usingthel ec_filters_get and
l ec_filters_set functions(inl ec. h) respectively.

24 Digital Equipment Corporation

11.1.1 Multicast Enable

If the multicast enable flag is set, al packets with multicast destination addresses are received and
passed up to the datalink. If it isnot set, only packets with multicast destination addresses that are
found in the multicast address table are received.

11.1.2 Broadcast Enable

If the broadcast enable flag is set, all packets with broadcast destination addresses are received and
passed up to the datalink. If itisnot set, no broadcast packets are received.

11.1.3 Promiscuous Enable

If set, the promiscuous enable flag overrides the multicast and broadcast enable flags. In this case,
all received on data-direct and multicast VCCs are passed to the data link packets (except those
echoed by the Broadcast and Unknown Server). Promiscuous mode on LAN Emulationisless
interesting than on real broadcast LANSs (like ethernet). The only extra packets it will receive are
unicast packets that arrive on the multicast VCC but are not destined to this data link.

11.1.4 Managing the Multicast Address Table

There are two ways to manage the multicast address table. Addresses may be added and deleted
individually (usingl ec_ntast _add andl ec_ntast _del et e) or thewhole table may be
cleared and loaded in one operation (usingl ec_ntast | oad). Inboth cases, the contents of
thetable can beretrieved usingl ec_ntast _get .

11.2 Reception of Data Packets

The LEC_RCV_CALLBACK function is called when data packets destined to thisdata link are
received. Received packets either arrived on a data-direct VCC or arrived on amulticast VCC
with a destination address that matched the enabled address filters of the logical interface.

A pointer to the recelved packet buffer is passed by reference to the datalink. In other words, the
pp_pkt argument of the callback is apointer to a pointer to a buffer. The format of the buffer is
simply that which is supplied by the Lower Port Driver. TheDigital ATM Sarter Kit does not
place any requirements on the format of receive buffers. If the data link copies or otherwise
consumes the received buffer, it may return the same pointer to the caller (the LEC). If the
received buffer must be preserved beyond the scope of the receive callback, the data link must
either return afresh buffer or aNULL pointer (if there are no buffers available).

All packets received by the data link have atwo-byte LAN Emulation header in the first two bytes
of the packet. If the packets are to be passed up to atraditional datalink interface (i.e. NDIS,
ODl, etc.), the LAN Emulation header must first be stripped off.

11.3 Transmission of Data Packets

Data packets are transmitted by the datalink to alogical interface using thel ec_xnt call. The
elan_handle argument indicates which logical interface isto be used to transmit the packet. A
pointer to the transmit packet buffer is passed by value (unlike the receive packet buffers) in the
p_pkt argument. Theformat of the transmit buffer is simply that which is expected by the Lower
Port Driver. The Digital ATM Sarter Kit software is not concerned with the format of the buffer.

Because the LEC module needs to know the destination address of the transmit packet, the data
link must put the address of the DA field of the packet intheda argument of | ec_xmt . This

Digital Equipment Corporation 25

address must point to avirtually contiguous region of memory that contains the 6-byte destination
address of the packet. In the case of 802.5 interfaces, virtually contiguous region must include the
packet header from the destination address to the end of the route designator list. If the transmit
packet buffer is not virtually contiguous over the required range (which is highly unlikely), the
affected part of the packet header must be copied into avirtually contiguous buffer.

Unlike receive buffers which contain LAN Emulation headers, atransmit buffer need not contain a
LAN Emulation header. The LAN Emulation header is prepended by the Lower Port Driver (see
section 7.4.3 Prepending the LAN Emulation Header).

12. UME Services Required by the LEC

12.1 Obtaining Registered ATM Addresses

Each LAN Emulation Client instance must have an ATM Address with which to create SVCs and
register with the LAN Emulation Server. Theinterfacethat is used by the LAN Emulation Control
module to request ATM Addressesisdescribed inaddr _r eg. h. Since ILMI functionality is not
provided with the Digital ATM Sarter Kit, thisinterface must be used to connect to whatever
address registration function existsin the ATM installation.

12.2 Obtaining the UNI Version

Since The LAN Emulation Client module is responsible for initializing the signaling information
elements before requesting the setup of SV Cs, it must know the version of UNI (whether 3.0 or
3.1) that is being used on the physical link. Thisis because the AAL parameters are used
differently for the different UNI versions..

The UNI version being supported istypically discovered during the line-up phase of link
initialization. Since line-up is optional, thisinformation may be manually entered or discovered in
some other way.

The LAN Emulation Client will attempt to learn the UNI version prior to joining an Emulated
LAN. Thiswill happen only if thelink stateisLINK_SIG_UP. The call that isinvoked from the
LAN Emulationisl i ne_up_uni _versi on_get . Itsfunction prototype can befound in
line_up. h.

Since theline_up moduleis not supplied with theDigital ATM Sarter Kit, the use of the
line_up_handle in the above call isleft to the discretion of the implementer. Theline_up_handle
that ispassed to thel i ne_up_uni _ver si on_get functionissimply the same handle that
was supplied when the LEC module was created.

! Refer to the LAN Emulation Over ATM Specification, version 1.0, section 3.3.2.7.1.

26 Digital Equipment Corporation

