
Abstract
We analyze the behavior of the Ethernet in networks with a
small number of active stations, and describe what is known as
the Ethernet capture effect, where a station transmits consecu-
tive packets exclusively for a prolonged period despite other
stations contending for access. The capture effect causes tran-
sient unfairness, which results in substantial performance
degradation. We report measurements using TCP/IP that show
the performance degradation. A solution is proposed that ef-
fectively overcomes the capture effect. The proposed
algorithm, which we call the Capture Avoidance Binary Expo-
nential Backoff (CABEB), uses the standard Binary
Exponential Backoff (BEB) with enhancements for collision
resolution in the special case when a station attempts to cap-
ture the channel subsequent to an uninterrupted consecutive
transmit. Using a detailed simulation, we show the efficacy of
the CABEB algorithm over the standard BEB in overcoming
the unfairness resulting from stations capturing the channel.
The CABEB improves throughput for protocols like TCP/IP,
reduces variability in the channel access latency and elimi-
nates packet discards due to excessive collisions in a 2-node
network. The algorithm is a modification that is compliant with
the Ethernet/802.3 standards. For networks with a large num-
ber of active stations, the CABEB performs as well as the
standard BEB algorithm. Our study places emphasis on the
workload and network configuration that is the worst case
relative to the Ethernet capture effect to show that the pro-
posed algorithm is a substantial improvement over the existing
backoff algorithm.

1. Introduction

Ethernets have been in widespread use for over a decade now

[8]. It has been the core technology enabling distributed com-

puting, and networking for the desktop, server and backbone

over the years. It has met the performance needs of applica-

tions and systems, and has been a robust and inexpensive local

area network so that computer systems have begun to have an

interface to it as a default [2]. The algorithms for controlling

access to the Ethernet network have been examined by a large

number of researchers over the years (e.g., [7,13]), and al-

though improvements have been suggested for niche applica-

tions [6], there has been no significant change in these algo-

rithms for the last decade. The analysis and solution proposed

in this paper is equally applicable to the 10 Mbit/second Eth-

ernet/802.3 networks and the 100 Mbit/second Fast Ethernet

standard being proposed in the IEEE 802.3u Committee [4].

We now have begun to see the proliferation of smaller work

group and point-point Ethernet links between servers or end-

systems and a switching node, that allows for the migration

from a shared network to networks where nodes are primarily

connected through switches or other interconnecting devices

(routers, bridges, repeaters). This has resulted in increased use

of Ethernets as point-point link with 2 nodes and connecting

small work groups. With this subtly altered usage pattern of

Ethernets, we choose to once again re-examine the efficacy of

the algorithms for channel access. This is needed also because

computer systems connected to these networks have become

substantially faster and can transmit and receive packets back-

to-back on the Ethernet with ease. The performance degrada-

tion suffered by these systems due to the well-known Ethernet

Capture Effect is significant for a network with small number

of nodes, especially for a 2 node network.

The Ethernet Capture Effect is the behavior wherein under

high load, one station is able to hold on to the channel to

transmit packets consecutively, in spite of other station(s) con-

tending for access. This is particularly acute in the case of a

2-node network, with one station receiving an unfair share of

the channel bandwidth over a transient period. The number of

packets consecutively transmitted by the node capturing the

channel can potentially be hundreds of packets or more, if the

station has this large number of appropriate size packets to

transmit. The capture effect is due to the transient unfairness

of the standard Binary Exponential Backoff (BEB) used in the

Ethernet/802.3 network [1], for collision resolution (we use

the terms Ethernet, 802.3 and CSMA/CD networks inter-

changeably). The degree of transient unfairness is severe for

small numbers of contending stations and it reduces quickly as

the number of active stations increases (we use the words

node and station interchangeably). It also has severe perform-

ance repercussions even with protocols using window flow

control with a modest maximum window size of 32K or 64K

The Ethernet Capture Effect: Analysis and Solution
K. K. Ramakrishnan and Henry Yang
Distributed Systems Architecture and Performance

Digital Equipment Corporation
550 King Street, Littleton, MA.
rama,yang@erlang.enet.dec.com

To Appear: Proceedings of IEEE 19th Conference on Local Computer Networks, MN, Oct. 1994.

bytes, such as TCP/IP. The capture effect results in the chan-

nel being unnecessarily idle, thus reducing the overall

throughput achieved by applications. The transient unfairness

also results in the access latency seen by a station to have sub-

stantially increased variability, which is bad for emerging ap-

plications such as multimedia networking.

We study in this paper the impact of the Ethernet capture ef-

fect on the performance of popular protocols such as TCP/IP

[9,10] and UDP/IP [11] in networks with a small number of

nodes, and suggest that there is a clear need to consider modi-

fications to overcome such performance degradation. The con-

clusions from the analysis are equally applicable to networks

with a large number of nodes, but where a small number of ac-

tive nodes are the source of bursty traffic for a given period of

time. We then provide a solution to the capture effect problem

of the BEB, which we term the Capture Avoidance Binary Ex-

ponential Backoff algorithm (CABEB), which we believe has

all the properties needed to overcome the performance degra-

dation without violating in any way the letter or spirit of the

Ethernet/802.3 standards for access to the network. The CA-

BEB is an extension of the standard BEB, where it uses the

standard BEB algorithm for all cases of collision resolution

except for one. The CABEB for collision resolution minimizes

the occurrence of capture by a station by using an enhanced

backoff algorithm when a collision occurs on the second

packet of what is termed as an uninterrupted consecutive

transmit by a station. This is when a station is able to transmit

a second packet without another station transmitting an inter-

vening packet.

We show that the CABEB algorithm is significantly superior

to the standard BEB algorithm in the 2-node environment for

the various ways that the channel may be used (e.g., TCP/IP-

like window flow-controlled interaction; UDP/IP-like uncon-

trolled transmission of an unlimited number of packets). We

emphasize in our study the worst case environments, both in

workload and network configuration, relative to the Ethernet

capture effect. We also show that the behavior of the new CA-

BEB algorithm is at least as good as the standard BEB algo-

rithm when we increase the number of stations from 2 to a rea-

sonably large number (13 as reported in this paper). The

CABEB algorithm has been incorporated without much diffi-

culty in some of Digital Equipment Corporation’s newer Eth-

ernet interfaces and chips [15, 16].

In the next section we provide motivation for studying the

problem through the analysis of a measurement experiment

with 2 nodes in the network and outline the consequences of

the Ethernet capture effect on emerging networking applica-

tions that depend on the availability of reasonable real-time

characteristics for the network. Section 3 provides a descrip-

tion of the performance metrics we use as the basis to compare

different algorithms for efficacy in using the network. We

then describe the Ethernet Capture Effect in detail. We study

the algorithms using a simulation, which we describe briefly

in Section 5. Section 6 presents the results of a simulation for

2-node as well as multiple nodes for both the standard BEB

and our proposed CABEB algorithm. Section 7 summarizes

the work.

2. Problem Motivation

We first present some early measurement experiments per-

formed with Alpha AXP systems with Ethernet interfaces

that are compliant with the Ethernet/802.3 standards for ac-

cess to the channel. This provides some understanding of the

extent of the problem observed when a small number of actual

systems use the Ethernet, when they are capable of generating

significant load on the channel to expose the deficiencies of

the standard channel access algorithms.

2.1 Measurement Experiments Exhibiting the
Ethernet Capture Effect

We conducted several measurements of applications using

TCP/IP and UDP/IP to communicate between two systems.

This was performed with pairs of different Alpha AXP sys-

tems running DEC OSF/1. When measurements were per-

formed between two systems using the AMD LANCE Ether-

net interface [17], we saw that the overall throughput with

TCP/IP was markedly higher than with two Alpha AXP sys-

tems using an Ethernet interface chip (produced by Digital

Equipment Corporation, called the Third Generation Ethernet

Controller (TGEC) [14]) that is compliant with the behavior

allowed by the IEEE 802.3 standard.

We used a tool called ‘inett’ (which is similar to ttcp) for

benchmarking 2-node running TCP/IP or UDP/IP to measure

the throughput at the application level. Inett basically transfers

a specified number of messages of a given size, from the

user’s application space, using UDP/IP or TCP/IP. It also al-

lows for the specification of the size of the socket buffer on

the transmitter and receiver. The application transfers the data,

maintains timing and reports various performance measures at

the end of the experiment. We used this as the load generator

between two peer systems. We used a SNIFFER to monitor

data transfer over the Ethernet and also collected ‘netstat’ data

at the sender and receiver before and after the experiment [5].

Observing the throughput with TCP/IP, there were significant

differences in behavior between the measurements with the

DEC Ethernet Interface chip (TGEC) and those with the

LANCE. The overall throughput between Alpha AXP systems

with TGEC with TCP/IP was 6.82 Mbits/second with a re-

ported CPU utilization of 11 to 12% (both transmitter and re-

ceiver). The overall throughput between 2 Alpha AXP systems

with the LANCE with TCP/IP was 8.65 Mbits/second, with a

reported CPU utilization of about 13%. With the TGEC, we

also observed a higher rate of collisions.

When sending 1000 packets, with TCP/IP (with 32 KByte

socket buffer, 1460 byte user data) we observed with the

TGEC systems that at the sender there were overall 530 colli-

sions (386 single and 144 multiple collisions). On the receiver,

we observed 249 collisions (154 of these experienced multiple

collisions). On the other hand, with the LANCE systems, for

the same experiment, there were no collisions.

We first measured the raw capability of the systems to transmit

packets over the Ethernet, to ensure that there was no inherent

limitation with either the system or the Ethernet chip in trans-

mitting at the full rate. For this, we report the measurement

with each of the systems transmitting UDP packets as fast as

possible. The peak transmit rate with UDP, while sending

1460 byte user messages was 9.68 Mbits/second with the

TGEC based system. We measured this by sending 10,000

messages to ensure adequate statistical accuracy. We repeated

the identical experiment with a pair of LANCE based systems.

The peak transmit rate was comparable, 9.65 Mbits/second.

From these measurements, at a very high level, we concluded

that the TGEC system and the LANCE systems are both capa-

ble of transmitting close to the line rate on Ethernet.

At this point, looking at the actual packet sequence with a

SNIFFER Ethernet analyzer, we observed several interesting

characteristics with the TGEC systems. We saw many occur-

rences of a long sequence of data packets going from source to

destination before an almost corresponding long sequence of

acknowledgment packets in the reverse direction. For example,

with a 32 KByte socket buffer at either end, we saw several

occurrences of a full window’s worth of data packets flowing

in one direction and then a set of acks. flowing back in the

other direction.

A trace of 1000 data packets with TCP/IP and their associated

acknowledgments was collected. We focused on the time from

the last data packet in the stream to the time that the next ac-

knowledgment was observed on the wire. It showed a wide

distribution, ranging from 0.1 millisecond to a maximum of 46

milliseconds. We show below the actual time that the wire was

observed to be idle after each value of K (the number of con-

secutive data packets on the wire). Table 2 is only for values of

K of 20, 21 and 22. There were a few times of significance

even when the value of K was smaller, but what is shown is

sufficient to illustrate the behavior.

During the time to send 1000 TCP/IP data packets, the total

idle time during just the 16 occurrences of idle time on the

channel listed above (which is the contribution due to the re-

ceiver staying in backoff after the transmitter’s window has

closed and the ack. is still awaiting to be transmitted) adds up

to 268.6 milliseconds, (about 223 maximum size packets time

on the Ethernet). In fact, from the reported inett time, the ex-

periment took about 1.75 seconds total, including time for ex-

changing control packets, setting up the connections etc. The

idle time for these 16 occurrences (shown in Table 2.1) was al-

most 15.2% of the total time, possibly explaining the loss in

throughput. If we just removed this idle time the throughput

would be almost 8 Mbit/second, instead of 6.5 Mbits/second

Of course, we did not factor in the idle time observed in all the

other cases. We believe the ‘capture effect’ explains a substan-

tial part of the loss in throughput.

We then experimented with a pair of DEC Alpha AXP Work-

stations with the same version of OSF/1 with the LANCE Eth-

ernet interface, to see if this capture effect is exhibited. We did

not see such an extreme case.

We attributed the loss in throughput with TCP/IP to the ‘Ether-

net Capture Effect’ in which one station on the Ethernet un-

fairly captures the channel to transmit a large sequence of

packets, while the other station is experiencing a long collision

backoff delay due to consecutive collisions on the same

packet. Only at the end of the transmission of the large se-

quence (often equal to the complete window size of 21-22

packets), is the receiver is able to send the acknowledgments

Table 2.1: Number of consecutive data pkts. send and Idle

times observed on the channel between last data packet and

acknowledgment sent by TCP/IP receiver.

K: Number of
data pkts.

between acks.

Idle Time before Ack.,
individual occurrences

(milliseconds)

20 8.6; 13.1; 12.8; 17.4; 15.5; 1.3

21 14.6; 46.0; 18.2; 11.5; 11.4;
14.7; 10.2; 23.8; 45.8

22 3.7

back. Often the acks. are still in their, significantly large, back-

off interval. This results in idle times on the channel.

The behavior is observed with the TGEC because of its strict

conformance to the Ethernet/802.3 specification for IPG after a

transmission of a packet on the channel. With the LANCE, we

do not see such a severe behavior. This is attributable to the in-

ability of the LANCE to contend for the channel within the

minimum IPG interval, which is a behavior allowed by the

Ethernet/802.3 standard.

3. Performance Metrics

There are several performance metrics we use to examine the

efficacy of the different Ethernet access algorithms studied in

this paper. When considering a solution for the capture effect,

we attempt to compare our solution in all of the typical dimen-

sions - Throughput, Response Time, Access Latency, Percent-

age of Collisions, Percentage of Packets Discarded etc. In ad-

dition, we believe it is important to consider the fairness in

allocation of the channel carefully.

• Fairness: Fairness in providing access to the channel to
the different stations that are contending to transmit is an
important issue. Since we are considering a single re-
source being accessed by multiple stations that are placing
an infinite demand on it, the allocation is fair when all the
contending stations get an equal share. We evaluate
whether an algorithm is fair or not by looking at all of the
metrics outlined above for each of the different stations
on the network. We break up the consideration of Fairness
into two sub-classes:

— Long-term Fairness: When the average, variance and
other measures for throughput, response time, access
latency and other metrics are equal for stations plac-
ing an identical demand (offered load) on the chan-
nel, over the long term, then we consider the algo-
rithm to have long-term fairness.

— Transient Fairness: Even though the long-term aver-
age behavior of an algorithm may be fair in provid-
ing equal allocations to all the stations placing a de-
mand on the channel, there may be transient unfair-
ness in the allocations provided to stations over
shorter time windows. We consider an algorithm to
have transient fairness when the metrics such as
throughput, response time, access latency and other
metrics are equal for stations placing an identical de-
mand on the channel over an arbitrarily small time
window that spans at least n packet transmission
times, where n is the number of stations contending
for access to the channel. For example, when two
stations that have identical size packets to send are
contending for access to the channel, then an algo-

rithm that provides alternating access to the stations
to transmit is considered to have transient fairness.
In these terms, when an algorithm allows a station to
lock out the other station from transmitting packets
for multiple opportunities, it is considered to have
transient unfairness. A good measure of the transient
unfairness of the algorithm is the number of consecu-
tive transmits by a station even when another station
is contending for access.

4. Problem Description: The Ethernet Capture
Effect

Briefly, the ‘capture effect’ is as follows: Consider two sta-

tions on the Ethernet, each with a significant amount of data to

transmit and able to achieve the minimum IPG rules. Let us

say station 1 (with data1) and station 2 (with ack1) both at-

tempt to transmit simultaneously (within a slot time of 51.2

microseconds). Each station has a collision counter, n, which is

zero to start with. They experience a collision, incrementing n

to 1. Each station picks a backoff time value which is uni-

formly distributed from 0 to (2n-1) slots. This is now 0 or 1. If

station 2 picks a backoff value of 1 (50% probability), and sta-

tion 1 picks a backoff of 0, then subsequently station 1 suc-

cessfully transmits its packet - data1. Station 2 waits for com-

pletion of data1 before attempting again to transmit ack1. The

collision counter at station 2 remains at 1 while the collision

counter at station 1 is reset to 0. If station 1 has another packet

to send, data2, this will now contend for the channel with

ack1. If these collide, the backoff values chosen are: for station

1: 0 or 1 slots. For station 2: 0, 1, 2 or 3 slots since the colli-

sion counter is 2 at this station. So, there is a higher likelihood

for station 1 to succeed when resolving this collision and trans-

mit data2, while ack1 from station 2 will begin deferral when

it completes it’s backoff interval. We compute below, the

probabilities for this behavior and show that with high prob-

ability one of the stations in the 2-node Ethernet can ‘capture’

the channel for an unfair amount of time. This would happen

till a maximum number of collisions, 16, is encountered for a

packet (station 2’s ack) at which point the packet is discarded.

Station 2 now starts again with a collision counter value of 0

and potential long-term fairness may be achieved when station

2 attempts to resend ack1. Note that if station 1 completes

transmitting a stream of packets during such a capture epoch,

and station 2 is still in backoff, the channel is idle for this pe-

riod of time.

In the case of a TCP flow, the capture effect results in the

sender waiting for the acknowledgment after having transmit-

ted all of packets in the window. This results in a larger overall

elapsed time to complete the transfer of a certain amount of

data.

For a two node network, the contention between the two nodes

results in one winning to transmit a packet. After transmitting

the first packet, the node has a progressively higher probability

of winning future collision attempts for a back to back transmit

case. The following shows the probability of winning a colli-

sion after a node (Node A) has previously won the collision

between the two nodes.

Probability (Node A winning) = 1 - (3 * 2-(n+1)) (1)

Probability (Node B winning) = 2-(n+1) (2)

 where n = # collision attempts

 = (2,...,9) for collision attempts 2 to 9

 = 10 for collision attempts 10-15

Under heavy load, a two node network exhibits the worst case

for the capture effect, where one node captures the channel.

As shown in Table 4.1, after Node A has won a collision the

probability of Node A continuing to win any subsequent colli-

sions quickly approaches 1. Node A is more likely to be able

to transmit packets back to back and win most of the collisions

with Node B. During this epoch of Node A’s capture, Node B

will spend most of its time in the retransmission backoff state.

Given its low probability of winning any collision during this

epoch, Node B will eventually suffer 16 collisions before it

aborts the transmission of the packet. After aborting the

packet, Node B will attempt to transmit a new packet with

collision Prob(A win) Prob(B win)

2 0.625 0.125

3 0.8125 0.0625

4 0.90625 0.0315

5 0.95313 0.0156

6 0.97656 0.00781

7 0.98828 0.00391

8 0.99414 0.00195

9 0.99707 0.00098

10 - 15 0.99707 0.00098

Table 4.1: Two Node Network - probability of collision
resolution

equal probability of winning a collision, as Node A. A new ep-

och of capture begins with the winner of the next collision.

This sequence is repeated with a winner starting each new ep-

och of capture. Although this results in significant transient un-

fairness, the long-term throughput achieved by the two stations

may in fact show no long-term unfairness. For implementa-

tions with good random number generators for the backoff al-

gorithm, the two nodes should have close to equal number of

chances of capturing the channel when observed over a reason-

ably long period.

4.1 The Solution: The Capture Avoidance BEB
Algorithm
We will briefly describe the standard BEB algorithm. When

transmitting a packet, a station uses the standard BEB algo-

rithm for collision resolution, when it encounters a collision.

After detecting a collision, the station retries the transmission

by backing off a random number of slot times before attempt-

ing to transmit the packet. The scheduling of the retransmis-

sions is determined by a controlled randomization process

called "truncated binary exponential backoff". A slot time is

512 bit time (e.g., 51.2 µseconds for 10 Mbps system and 5.12

µseconds for 100 Mbps system). The number of slot times to

delay before the nth retransmission attempt is chosen as a uni-

formly distributed random integer r in the range 0 <= r < 2k,

where k = min (n,10). As the number of collision attempts in-

crease for the same packet, the station delays its retransmission

based on the truncated binary exponential function. The re-

transmission is aborted after 16 collisions on any given packet,

and this is called an excessive collision error.

The CABEB executes the standard BEB for all the collision

cases except for a special case. If a station transmits a first

packet and begins to transmit a second packet and the station

has not received a collision or a fragment or a packet between

the first packet and the beginning of the second packet, we call

this an uninterrupted consecutive transmit. The CABEB proc-

esses this uninterrupted consecutive transmit using an en-

hanced BEB algorithm to solve the capture effect problem.

The CABEB is compliant with the Ethernet/802.3 standard.

There are several back to back transmit cases of interest. The

first case is the uninterrupted consecutive transmit, where a

station transmits a second packet after it has successfully trans-

mitted a first packet and there were no other stations contend-

ing for the channel prior to the beginning of the second packet.

In the uninterrupted consecutive transmit case, the second

packet could encounter a collision. So, the conditions required

for this case are a station successfully transmitting a first

packet, the channel is idle (i.e., no packet is received, or frag-

ment or collision encountered) for an arbitrary period of time

after the first packet, and the station begins to transmit a sec-

ond packet (i.e., transmit the first bit of the preamble).

The second case of interest is where a station transmits a first

packet, then it receives one or more packets or fragments or

collisions, and then the station transmits a second packet. We

will call this case an interrupted consecutive transmit. For an

interrupted consecutive transmit, the station of interest (i.e., the

one that just transmitted a packet) is not involved in the colli-

sion.

The third case of interest here is when the second packet of an

uninterrupted consecutive transmit is involved in a collision

and the station wins the collision resolution to complete the

transmission of the second packet. An uninterrupted consecu-

tive transmit is the first portion of a captured transmit, where

the second packet of the uninterrupted consecutive transmit is

involved in a collision. We will call this case a captured trans-

mit. When a station does consecutive captured transmits for

multiple packets, we say that the stations has captured the

channel. A captured transmit occurs when the station winning

the collision resolution transmits the second packet. Figure 4.1

illustrates these cases.

The CABEB solves the capture effect problem by mini-
mizing the occurrence of captured transmits. This is
achieved by using an enhanced backoff algorithm when a
collision occurs on the second packet of an uninterrupted
consecutive transmit. For an interrupted consecutive
transmit or a transmit after an initialization, it uses the
standard BEB for collision resolution. It is intuitive that at
any given time on a CSMA/CD LAN, there can be no
more than one station in an uninterrupted consecutive
transmit state. This forms the basis for developing our so-
lution. For a CSMA/CD system with reliable collision de-
tection design only one station can have a successful
packet transmit (i.e., one with no collision) at any given
time. So, after a station has successfully transmitted a
packet and the channel is idle, this station is the only sta-
tion in the LAN that can initiate an uninterrupted consecu-
tive transmit. Given that an uninterrupted consecutive
transmit is the first portion of a captured transmit, the en-
hanced BEB algorithm tries to avoid this captured trans-
mit. For an interrupted consecutive transmit or transmis-
sion of a packet after initialization, the CABEB uses the
standard BEB. The enhanced backoff algorithm can be de-
scribed as follows. When transmitting a second packet of an
uninterrupted consecutive transmit, the station takes a backoff
of 2 slot times on the first collision. If the other colliding sta-
tion is transmitting a fresh packet (i.e., one that has not experi-
enced any collision), that station will draw a backoff of 0 or 1
slot time (according to the standard BEB) and hence its packet

is guaranteed to be transmitted.

 CABEB Algorithm

 n = collision attempts (0-15)

 r = standard BEB uniformly distributed random number

 k = BEB backoff range variable

 backoff = number of slot times to backoff

For collision resolution, the following procedure deter-
mines the backoff time.

 For an uninterrupted consecutive transmission,

 If n=1 then backoff = 2;

 If n=2 then backoff = 0;

 If n > 2 then backoff = r;

where 0 <= r < 2k, k = min (n, 10)

 For an interrupted consecutive transmission,

 backoff = r; where 0 <= r < 2k, k = min (n, 10)

Thus, the CABEB guarantees that a capture transmit does not

occur when both of the colliding packets are experiencing their

first collision. After the backoff of 2 slot times, the station is

1. Uninterrupted consecutive transmit

S1 Packet 1 S1 Packet 2

Time

Idle

2. Interrupted consecutive transmit

S1 Packet 1 S1 Packet 2

Time

 Collision or receive

3. Captured transmit

S1 Packet 1 S1 Packet 2

Time

 S1 Packet 2 w/Collision

Note: Station S1 is not involved in the collision.

Note: Station S1 is involved in the collision.

Figure 4.1: Examples of Transmit Cases

ready to retransmit the packet. If the packet collides for a sec-

ond time, the station draws a backoff of 0 slot times. Thus, the

station will retransmit immediately after the IPG. The selection

of 0 slot time on a second collision (of an uninterrupted con-

secutive transmit) allows the station to have a higher probabil-

ity of winning the second collision. If the same packet experi-

ences a third or subsequent collision, the station uses the

standard BEB for collision resolution from the 3rd to the 15th

collision. The following describes the algorithm more pre-

cisely.

The CABEB is not meant to be effective when one of the

packets involved in the collision has advanced beyond its sec-

ond collision attempt. In this case, the CABEB’s backoff of 2

slot times does not help because the other station may be back-

ing off a random number of slot times based on the collision

attempt and the standard BEB. For those cases where a col-

lided packet has advanced beyond its second collision attempt,

the CABEB behavior is similar to that of the standard BEB.

This is important as we would like the performance of the CA-

BEB to be no worse than the standard BEB algorithm when

the number of stations in the network is large.

For minimum size packets, the algorithm allows up to two

packet transmissions for every collision as the two stations al-

ternate their transmits. So, for minimum size packets with infi-

nite load case, the collision rate is 50%. For maximum size

packets, the algorithm only allow 1 packet transmission for

every collision. In this case, the collision rate is 100%. The

CABEB solves the capture effect problem at the slight expense

of collision overhead. It provides significant improvement in

fairness, packet discard rate and access latency.

The CABEB enhanced the standard BEB algorithm by modify-

ing the early stages of collision resolution (i.e., the first and

second collision of a packet). As a result, the enhanced algo-

rithm is most effective for a network with small number of sta-

tions, where the enhanced algorithm avoids a given packet

from advancing its number of collisions beyond two. This is

guaranteed for a two node case, as the algorithm allows the

two stations to alternate their transmits. In addition, the CA-

BEB maintains the same mean as the standard BEB for the re-

transmission backoff time for multiple collisions on any given

packet. This allows the algorithm to be compliant to the IEEE

802.3 standard. Another added advantage of maintaining the

same mean value for multiple collisions is that the behavior of

CABEB converges to the standard BEB for network with

larger number of stations, at high load when all of the stations

are active.

As will be shown later, the CABEB completely solves the cap-

ture effect problem for networks with small numbers of sta-

tions. For networks with a large number of stations, the CA-

BEB can still be useful when the number of active stations

involved in a burst of transmits is small.

5. Simulation Methodology

We used a CSIM [12] based simulation to examine the per-

formance of the proposed CABEB and standard BEB algo-

rithms. Details of the station awaiting the channel to be idle

before transmission of a packet, waiting for an IPG interval be-

fore beginning to transmit were all modeled. The collision

window was also modeled so that any two stations beginning

to transmit within that interval relative to each other experi-

ence a collision. All of the station characteristics in terms of

collision counter management, using it to go through the back-

off interval were also modeled. The physical extent of the Eth-

ernet was allowed to vary, as well as the kind of workload gen-

erated by the stations.

We looked at two different types of workload generated by the

stations. One was to emulate the behavior of UDP/IP or a simi-

lar connectionless transport protocol, where the station just

transmits as fast as allowed on the channel, and no acknowl-

edgments are generated by the receiver. For this case, we

model a varying number of stations on the network.

The other type of workload modeled emulates the behavior of

TCP/IP. We create pairs of stations that are the source and sink

of a TCP data stream. The acknowledgments generated by the

receiver is controlled so that 1 ack. is generated every 2 data

packets.

We have simulated effectively the worst case environment for

studying the capture effect. We consider the maximum allow-

able extent for the Ethernet, which results in the highest pen-

alty in throughput when a collision occurs. We also consider

the stations to be transmitting either minimum size packets or

maximum size packets, which also is looking at the boundary

cases for understanding the behavior of the algorithms. We

have also considered the stations to have an infinite load (inter-

arrival time of 67 µseconds so that the simulation is at least

stable) and essentially zero service time to send or receive

packets so that even one station can saturate the channel. This

is once again the worst case load for examining the behavior of

the backoff algorithms, when the effect of capturing the chan-

nel is at its extreme.

6. Results

We show that the CABEB algorithm provides substantial im-

provement in the performance of TCP-like protocols without

much degradation in throughput for UDP-like protocols. We

present results here where the load on the Ethernet is such that

it is saturated, with even one station presenting enough load to

fully utilize the channel. We only present results for stations

generating different fixed packet sizes, even though the simu-

lation is easily capable of having distributions for the packet

size. The motivation is to help in understanding the results, and

provide almost all of the intuition needed for designing the col-

lision resolution algorithm described here.

One performance criterion of importance is that of fairness in

access to the channel. We evaluate fairness in the access by

observing the mean throughput and the mean and variance in

the access latency to the channel. This is the time from when

the packet is at the head of the queue of packets to be transmit-

ted at the station to when it is successfully transmitted, includ-

ing the time to transmit the entire packet. A more important

and dramatic metric that exhibits the transient unfairness in

access to the channel is the number of packet discards and the

number of consecutive transmits for a station.

6.1 Performance of UDP-like datagram protocol
with CABEB algorithm
We first looked at the performance of a two station Ethernet

network, with both stations having an infinite amount of data

to transmit and using a UDP-like datagram protocol. The sta-

tions transmit fixed length packets, as fast as the channel ac-

cess algorithms will allow. If a packet was discarded because

of excessive collisions, then the packet is not retransmitted.

Further, when a station needs to transmit, it is not limited by

any flow control mechanism, and does not await an acknowl-

edgment from the receiver before transmission of the packet.

We chose to examine the behavior for an Ethernet with the

maximum physical extent (51.2 µseconds round trip propaga-

tion time) with the stations transmitting 64 or 1500 byte pack-

ets (including all headers). There was no host processing time

modeled, and as such only the channel access times and IPG,

preamble and packet times were simulated. We ran the UDP-

like simulations for 30 seconds in the 2-node case and for 5

seconds for the results relating to multiple nodes.

Table 6.1 shows the performance of a 2-station network using

such a datagram protocol, and using either the standard Binary

Exponential Backoff (BEB) algorithm as defined in 802.3

("Old") or the CABEB algorithm ("New"). With both the sta-

tions being old, we find that the throughput on the Ethernet

reaches over 7.56 Mbits/second with 64 byte packets. The per-

centage of packets experiencing one or more collisions en-

countered by each of the stations is in the range of 0.55%.

While the collision statistics are quite good with the old algo-

rithm, we found that station 1 discarded 79 and station 2 dis-

carded 83 packets each due to excessive collisions, while

transmitting a total of 443465 packets in the 30 seconds of

simulation. This meant a discard rate of 0.035% to 0.038% for

each station. This is a significant packet loss rate, especially

for datagram transport protocols, since the application has to

potentially retransmit the complete message. Another observa-

tion we make is that during each of these periods when a sta-

tion is going through the 16 collisions, it is not transmitting

any packets on the channel, and the other station transmits sev-

eral hundred of packets consecutively. The station losing the

collision resolution experiences a prolonged period of unfair-

ness. Even observing the average throughput achieved by the

two stations, we see that station 1 gets a throughput of 3.851

Mbits/second, while station 2 only achieves 3.717

Mbits/second, indicating that the capture effect in fact results

in unfairness that is not just a transient one.

Examining the case with the two stations being new, we ob-

serve that the throughput on the Ethernet reduces significantly,

down to 5.424 Mbits/second. This is due to an increase in the

number of collisions experienced by the two stations. The de-

terministic nature of the CABEB backoff algorithm results in

every other packet for a station encountering a collision. We

observe from the table that there are no packets discarded with

the CABEB algorithm. Furthermore, the throughput on the

Ethernet is divided in a completely fair way between the 2 sta-

tions. In fact, observing the time sequence of events in access-

ing the channel, we found that the stations alternated in access

to the channel. The statistics for the access times, both mean

and the variance, for the two stations are identical. Therefore,

the CABEB algorithm eliminates the capture of the channel by

a station in the 2-node network.

We also examined the performance with a mixture of station 1

being a new station and station 2 being an old station. We find

that the overall throughput degradation due to the new station

is not significant, achieving 7.542 Mbits/second compared to

7.568 Mbits/second with the old stations. There is however,

even more unfairness, with the new station receiving a greater

share of the Ethernet bandwidth. There are packet discards,

since repeated collisions are no longer eliminated with the in-

troduction of the old station. But, the new station experiences

fewer packet discards than the old station (0.032% vs.

0.042%).

We then consider the performance comparison between the

CABEB algorithm versus the standard BEB algorithm for the

stations transmitting 1500 byte packets. With the standard

BEB algorithm, the overall throughput achieved on the

Ethernet is 9.806 Mbits/second, while having a total of 151

packets discarded (out of 24516 packets transmitted). The per-

centage of packet loss due to excessive collisions has now

gone up to 0.53% (station 1) and 0.71% (station 2), which is

excessive. The unfairness due to the standard BEB old algo-

rithm is also significant, with station 1 getting 5.32

Mbits/second compared to only 4.486 Mbits/second for station

2.

Considering the CABEB algorithm, the throughput on the

Ethernet is slightly lower, reaching 9.446 Mbits/second This is

divided fairly between the 2 stations, as shown in Table 6.1.

There are no packets discarded by either of the stations. How-

ever, the collision rate with the CABEB algorithm is 100%, as

seen by the two stations. With the CABEB algorithm, each

station on completion of transmission collides with the loser of

the previous contention and then backs-off 2 slots deterministi-

cally. The losing station who is on the 2nd collision backs-off

0 slots, again deterministically, since it was the winner for the

previous packet. Thus, there is an alternation between the 2

stations when transmitting 1500 byte packets. Thus, every

packet encounters a collision for the 1500 byte packet case,

with the new CABEB algorithm. This contributes to the

slightly lower throughput with the new algorithm.

When considering the mixture of the new and old stations, we

see the throughput loss is reduced, and we achieve a through-

put of 9.771 Mbits/second, compared to 9.806 Mbits/second

with both the stations being old. The collision rate in fact

comes down significantly for the new station, and it also

achieves a higher throughput than the old station it is compet-

ing against. The packet discard rate does not drop substan-

tially, although the new station experiences fewer discards than

Station 1 Station 2Types of
stations

pkt size
(bytes)

Enet
tput

(Mbps)
Thruput
(Mbps)

Thruput
(Mbps)

New-New 64 5.424 2.712 2.712

Old-Old 64 7.568 3.851 3.717

New-Old 64 7.542 4.059 3.483

New-New 1500 9.446 4.723 4.723

Old-Old 1500 9.806 5.32 4.486

New-Old 1500 9.771 5.379 4.392

Table 6.1: UDP Performance with two New (CABEB) sta-
tions and/or Old (standard)stations (30 second simulation)

the old stations.

To understand the extent of transient unfairness of the stan-

dard BEB algorithm in comparison to our proposed CABEB

algorithm, we show the performance of the UDP-like protocol

with 2 and 3 stations in the network, in Table 6.2. One of the

more interesting metrics is the number of consecutive packets

transmitted by a station. With two stations, the CABEB algo-

rithm has both the mean and maximum number of consecutive

packets transmitted by a station (for a 5 second simulation run)

of 1, showing that it has not only long term fairness but also

transient fairness. In comparison, for the 64 byte packet case,

the standard BEB algorithm has a mean of 2812 packets trans-

mitted consecutively and (for the duration of the simulation) a

maximum of 6626 consecutively transmitted packets. Al-

though using the maximum is not generally used, we present it

to show the potential for the extent of transient unfairness with

the standard BEB algorithm.

Table 6.2 also shows the results with 3 identical nodes trans-

mitting packets of 64 or 1500 bytes. The mean number of con-

secutive packets transmitted by a station reduces somewhat, as

expected with 3 nodes, using the standard BEB - down to

1431.16 packets with 64 byte packets. The CABEB begins to

allow multiple packets to be transmitted by a station, as there

is a small increase in the probability that stations will go be-

yond 2 collisions and therefore approach the standard BEB be-

havior. A CABEB station transmits a mean of 7.42 packets

consecutively in the 3 node, 64 byte packet case. The benefit

of the CABEB reduces when we consider the 1500 byte packet

case with 3 nodes. The 2 slot backoff is masked by the packet

transmission time, and as a result, the CABEB algorithm with

multiple stations is unable to consistently show an advantage

over the BEB with large packets.

With 3 stations, the statistics for the access latency with the

CABEB vs. the standard BEB are comparable, indicating that

there is no penalty because of the CABEB algorithm relative to

the access latency or transient fairness.

6.2 Performance of UDP-like datagram protocol
with CABEB algorithm with multiple stations
In Figure 6.1, we show the overall Ethernet throughput with

UDP when multiple stations are attempting to transmit as fast

as possible on the channel. We vary the number of stations

from 2 to 13 stations, transmitting fixed length packets of 64 or

1500 bytes. All the stations are either old stations using the

standard BEB algorithm or the new CABEB algorithm. As the

number of stations increases from 2 to 13, the overall achieved

throughput goes down with both algorithms, as expected. With

1500 byte packets, the penalty paid for the fairness in access to

the channel by the CABEB algorithm is relatively small, and

reduces as we go to larger numbers of stations. When the

number of stations goes to 13, the difference between the old

and the new environments is small. However, when we ob-

serve the performance with the 64 byte packets, the penalty for

the new station environment is quite substantial, and appears

to not reduce too much with increasing number of stations.

The primary reason for the reduction in throughput is due to an

increase in the number of collisions. When we go to 13 sta-

tions, the percentage of collisions with the new CABEB algo-

rithm is 23.5%, with 64 byte packets, while with the old stan-

dard BEB algorithm, the collision rate is 7.8%. With 1500 byte

packets however, the difference in the collision rate is not as

significant, since the old environment already suffers a colli-

sion rate of 81.4 %. The new CABEB algorithm suffers a colli-

sion rate of a little over 100% (every packet successfully trans-

mitted as well as those discarded suffer a collision). There-

fore, the degradation going to the CABEB backoff algorithm is

not substantial for the 1500 byte packet case.

6.3 Performance of a TCP-like reliable, window
flow-controlled protocol with CABEB
One of the primary reasons for introducing the CABEB algo-

rithm is to enhance the performance of protocols such as TCP,

where the capture effect substantially reduces the performance

of such a window flow controlled, reliable transport protocol.

The acknowledgments are delayed due to the capture effect

while the transmitter has transmitted its complete window and

Consecutive Pkt.
Statistics.

Type of
stations

pkt.
size

(bytes) Mean #
Pkts.

Max. #
Pkts.

New-New 64 1.0 1.0

Old-Old 64 2812.8 6626.0

New-New 1500 1.0 1.0

Old-Old 1500 167.58 347.0

New-New-New 64 7.42 2882.0

Old-Old-Old 64 1431.16 3647.0

New-New-New 1500 78.0 202.0

Old-Old-Old 1500 77.1 159.0

Table 6.2: UDP Performance with New (CABEB) stations and
Old (standard)stations. (5 second simulation run).

thus the channel is idle for a long period of time. The CABEB

algorithm overcomes this.

Table 6.3 shows the performance with the CABEB algorithm

or the standard BEB algorithm when the transmitter is sending

packets of 64 or 1500 bytes, including all headers. The trans-

mit window is 50 packets. The receiver generates an acknowl-

edgment every other packet, and when an acknowledgment is

received, the window is allowed to advance by 2 packets. The

inter-arrival of packets to be transmitted at the source is suffi-

ciently small so that the station is able to saturate the Ethernet.

Acknowledgments are 64 bytes long, including all headers.

When both the stations are new stations using the CABEB al-

gorithm, the overall throughput achieved is 4.59 Mbits/second,

with the transmitting source getting a bandwidth of 2.772

Mbits/second. On the other hand, when both the stations are

the old standard BEB algorithm, the overall throughput is only

3.915 Mbits/second, and the source gets a throughput of only

2.083 Mbit/second. The number of packets transmitted on the

channel goes from 7646 packets/second with old stations to

8965 packets/second with new stations. The difference in the

overall collision rate now is much smaller: 46.5% packets ex-

perience collisions in the new environment versus 30.5% col-

lisions with the old environment. Thus, the CABEB achieves

Figure 6.1: UDP Performance with multiple New (CABEB)
stations and Old (standard)stations

10.00

5.00

6.00

7.00

8.00

9.00

2.00
3.00

4.00
5.00

6.00
7.00

8.00
9.00

10.00
11.00

12.00
13.00

Number of Stations

UDP Throughput with Multiple Stations

CABEB 64 byte

CABEB 1500 byte

Std. BEB 64 byte

Std. BEB 1500 byt e

Throughput

Mbits/sec

the desired effect of increasing the throughput of TCP.

Another important characteristic to observe is the channel ac-

cess latency. Because the window is only 50 packets wide,

there is no extended capture of the channel possible by either

of the stations (a station can at most send its full window of

packets, and then has to wait for an ack.). But, when the send-

ing station captures the channel for a period of time, the station

acting as the sink has to wait for transmitting the acknowledg-

ment and thus may see an increase in the mean access time.

Even more importantly, because only the packet at the head of

the queue of packets to be transmitted experiences the large ac-

cess time (and the rest of the queued packets after that are able

to get quick access, since the channel is either no longer cap-

tured or in fact may now be captured by this station), the vari-

ance in the channel access latency is important to observe.

With the new stations, the mean access latency at the source is

160 µseconds, while with the old stations it is 200 µseconds.

But even more striking is the variance in access latency at the

source, which goes up by an order of magnitude, from 36 (mil-

liseconds)2 with the new stations to 570 (milliseconds)2 with

the old stations. This shows that even with a small window of

50 small packets, the amount of time the source has to wait

when the sink (which sends 64 byte acks.) has captured the

channel is substantial. This variability would make interactive

applications, or other applications such as multimedia which

require small variability in the response times, to behave un-

Station 1
(source)

Station 2 (sink)Type
of

stn.

pkt.
size

bytes

Enet
tput

(Mbps)
Thruput
(Mbps)

Mean
Access
Time

(µsecs)

Thruput
(Mbps)

Mean
Access
Time

(µsecs)

N-N 64 4.59 2.772 160 1.818 250

O-O 64 3.915 2.083 200 1.832 200

N-O 64 5.134 3.422 130 1.711 120

O-N 64 3.914 2.108 190 1.806 220

N-N 1500 8.604 8.404 260 0.2 750

O-O 1500 7.623 7.354 210 0.27 1600

N-O 1500 9.439 9.242 130 0.197 120

O-N 1500 7.6 7.324 200 0.275 200

Table 6.3: 2-node TCP Performance (Window=50) with
New (CABEB) stations and/or Old (standard)stations

(simulation time is 30 seconds.)

acceptably with the old stations.

When we go to a mixture of new (source of TCP) and old (sink

of TCP) stations, the throughput achieved is even higher, go-

ing up to 5.134 Mbits/second. This occurs only when the new

station is the source, so that its polite behavior of deferring by

2 slots on the first collision after a capture allows the sink to

transmit the acknowledgment, and the overall data transfer

makes better progress. In fact, the channel access latency char-

acteristics show dramatic improvement. The mean access time

reduces slightly, but the variance reduces by 1 to 2 orders of

magnitude. This results in the substantial increase in through-

put. However, when the old station is the source and the new

station is the sink for TCP flow, the performance improvement

is lost, since the capture of the channel continues to be

achieved by the old station. The results are comparable to the

case when both stations are the old standard BEB case.

Table 6.3 also shows the performance with 1500 byte packets

for the different combinations of stations. We observe that the

throughput increase with the new CABEB algorithm is more

apparent. The throughput goes up from 7.623 Mbits/second

with old stations to 8.604 Mbits/second with new stations, a

12.87% increase. What is also more revealing is the mean and

variance in access latency. At the source and sink, the variance

in access latency goes up by an order of magnitude. Further-

more, at the receiver, where the station suffers because of the

capture of the channel, the mean access latency goes up by

more than a factor of 2 from 750 milliseconds to 1600 milli-

seconds. As noted with the 64 byte packet case, the throughput

in the mixed environment shows substantial improvement with

the new (source) and old (sink) combination where the effect

of capture is mitigated. There is no improvement when the

source is an old station and the sink is a new station.

7 CONCLUSIONS

Ethernet has gained significant popularity and has seen wide-

spread deployment and achieved a huge installed base in the

industry. Despite many proposals for modifications and im-

provements, we believe Ethernet works well and has proven its

interoperability and plug-and-play capability. Given the in-

creased in network bandwidth demand due to faster computer

systems, we see a trend towards proliferation of smaller work

group with even dedicated Ethernets (for two nodes), to reduce

the degree of sharing on the shared multiple access network.

Also, new applications and protocols are beginning to place

significant demand on the network, both in terms of through-

put and latency. In this paper, we have studied a known per-

formance issue with Ethernets, called the capture effect and its

impact on transport protocol or applications that use window

flow control.

The Ethernet capture effect is the behavior where one station

transmits consecutive packets exclusively for a prolonged pe-

riod of time, despite contention from other station(s). This is a

known behavior of the standard Binary Exponential Backoff

(BEB), when implementations follow the most aggressive be-

havior allowed by the standard. This behavior is most dramatic

at high loads with a small number of active nodes. We pre-

sented the problem based on our measurement experiments

with Alpha AXP systems running Digital’s OSF/1 operating

system and the TCP/IP protocol. We observed a throughput

degradation caused by TCP’s acknowledgments being held

back due to the capture effect. Stations suffered long periods

of backoff resulting in unnecessary idle periods on the channel.

These are symptoms of the capture effect.

With a detailed description and analysis of the capture effect

for the 2-node case, we showed that after a node has success-

fully transmitted a packet the node has a significantly higher

probability of winning subsequent transmit opportunities.

We consider several performance metrics which are critical in

understanding the efficacy of the backoff algorithms, including

a notion of transient unfairness. The Ethernet capture effect

contributes to dramatic transient unfairness. One direct meas-

ure of the capture effect is the number of consecutive transmit

packets by a given station. Another measure of the capture ef-

fect is the packet discard rate due to excessive collisions.

We presented our solution to the Ethernet capture effect, called

the Capture Avoidance BEB (CABEB) algorithm. Our primary

considerations in developing the solution is to interoperate

well with standard implementations and to be compliant with

the Ethernet/802.3 standard. The CABEB is an enhanced BEB

algorithm, where it uses BEB for all cases of collision resolu-

tion except for one. After a station has successfully transmitted

a packet and if the channel is idle prior to the station’s trans-

mission of a second packet, the station uses an enhanced back-

off algorithm for collision resolution for the second packet. In

this case, if the second packet experiences a collision, it uses a

fixed 2 slot backoff time for the first collision and a fixed 0

slot backoff for the second collision. For the third and subse-

quently collisions (for the second packet), it uses the standard

BEB algorithm for backoff. For a two node network, we

showed that this algorithm works in a deterministic manner

where the two nodes alternate their transmissions..

We studied through simulations, the behavior of the BEB and

the CABEB for 2 to 13 nodes with packet sizes of 64 bytes and

1500 bytes. We simulated the worst case environment for the

network with infinite load from all nodes, maximum physical

extent of the network, and minimum and maximum packet

sizes. We use these to study the worst case behavior of the

backoff algorithms, when the effect of capture is at its extreme.

We observed that for a UDP-like datagram protocol the CA-

BEB has absolutely no capture effect for a 2 node network.

However, it pays a price for achieving this fairness in having a

higher collision rate which results in lower throughput, espe-

cially for small packets. The BEB on the other other hand has

significant period of capture indicated by the number of con-

secutive transmits. We showed that the mean number of con-

secutive transmits grows up to 2812 minimum size packets,

and 167 maximum size packets. The discard rate due to exces-

sive collision is also lower for the CABEB. We also presented

the results of a network with a mixture of CABEB and BEB

stations where the performance is much closer to that of a two

node BEB.

We presented the performance of UDP-like datagram protocol

for multiple stations. We observed that the throughput of CA-

BEB for nodes 2-13 is lower than the BEB for 64 byte packets,

when the percentage cost of a collision is the highest. How-

ever, the degradation in throughput for 1500 byte packets is

not substantial. When we go to 6 nodes, the standard BEB still

has transient unfairness, as we found a mean value for the

number of consecutive transmits remain as high as 514.9 pack-

ets in contrast to 4.4 with the CABEB. Looking at the mean

channel access latency, we observed that the CABEB is

slightly higher than the BEB due to the collisions used by the

CABEB for alternating the transmit opportunity. The 95th per-

centile for the channel access latency with the CABEB is con-

sistently less than the BEB, which reflects the advantage

gained by the reduction in capture of the channel.

We studied the performance of a TCP-like protocol and

showed that the CABEB has a significant performance im-

provement over the BEB. For minimum size packets, we ob-

tained 4.59 Mbits/s with the CABEB, in contrast to 3.915

Mbits/s with the BEB. For maximum size packets, we obtained

8.604 Mbits/s with the CABEB, in contrast to 7.623 Mbits/s

with the BEB. For a mixture of stations (CABEB and BEB)

where the CABEB is the data source, we get even higher

throughput at 9.439 Mbits/s (maximum size packet) and 5.134

Mbits/s (minimum size packet). We believe this is due to the

polite behavior of the source node (CABEB) in allowing the

sink node (BEB) to return acknowledgments. When the source

node uses the standard BEB however, we see little improve-

ment. Thus, for a TCP-like protocol, there is a dramatic im-

provement in overall performance with CABEB, achieving our

goal.

The CABEB is an enhanced BEB that is compliant and in-

teroperates with the Ethernet/IEEE 802.3 standards. We be-

lieve that the simplicity in the enhancement to the BEB and the

performance benefits shown make the CABEB an attractive

improvement to CSMA/CD algorithm.

ACKNOWLEDGMENTS

We would like to thank the large number of people who helped
us along the way by introducing us to the problem, help under-
stand it and develop solutions for it. Tony Lauck and Bill
Hawe need special thanks for a lot of guidance and help
throughout this work. Chran-Ham Chang, Dave Cherkus, Mike
Cochran, John Forecast, Heather Gray, Philippe Klein, Jeff
Mogul, Ashok Nadkarni, Peter Smith, and Eric Werme all
helped in the measurement analysis and short-term fixes in dif-
ferent ways. Our thanks to Tony Jordan, Dave Fite, Mike
O’Connor, Avraham Menachem and Gady Daniely in enabling
our ideas to be incorporated into reality. We would like to
thank Paul Koning for reviewing the paper. The initial simula-
tion of the Ethernet by Vasmi Abidi and Dye-Jyun Ma helped
us get off the ground, and our thanks to them as well.

REFERENCES

1. ANSI/IEEE Standard 802.3-1985, "Carrier Sense Multi-
ple Access with Collision Detection" IEEE, October 1985.

2. Boggs, D. R., Mogul, J. C., Kent, C. A., "Measured Ca-
pacity of an Ethernet: Myths and Reality", Proceedings of
ACM Sigcomm ’88 Symposium on Communications Ar-
chitectures & Protocols, Stanford, CA., 1988 (Also as
Computer Communications Review, Vol. 18, No. 4, Au-
gust 1988).

3. Gonsalves, T. A., Tobagi, F. A., "On the Performance Ef-
fects of Station Locations and Access Protocol Parame-
ters in Ethernet Networks", IEEE Transactions on
Communications, Vol. 36, No. 4, April 1988: 441-449.

4. IEEE Fast Ethernet Standard, IEEE 802.3u Proposal for

100-Base-T Standard, IEEE Proposal, March 1994.

5. Leffler, S.J., McKusick, M. K., Karels, M. J., Quarter-
man, J. S., "The Design and Implementation of the 4.3
BSD UNIX Operating System", Addison-Wesley Publish-
ing Company, May 1989.

6. Marathe, M., "Design Analysis of a Local Area Network",
Proceedings of the Computer Networking Symposium,
December 1980.

7. Marathe, M., Kumar, S., "Analytical Models for an
Ethernet-like Local Area Network Link", Proceedings of
the 1981 ACM Sigmetrics Conference on Measurement
and Modeling of Computer Systems, 1981.

8. Metcalfe, R. M., Boggs, D. R., "Ethernet: Distributed
Packet Switching for Local Computer Networks", Com-
munications of the ACM, Vol. 19, No. 7, July 1976, 395-
404.

9. Postel, J. B., "Internet Protocol", RFC 791, SRI Network
Information Center, Menlo Park, CA., September 1981.

10. Postel, J. B., "Transmission Control Protocol", RFC 793,
SRI Network Information Center, Menlo Park, CA., Sep-
tember 1981.

11. Postel, J. B., "User Datagram Protocol", RFC 768, SRI
Network Information Center, Menlo Park, CA., August
1980.

12. Schwetman, H.D., "CSIM Reference Manual," MCC

Technical Report, ACA-ST-257-87 Rev 14, March 1990.

13. Tobagi, F. A., Hunt, V. B., "Performance Analysis of

Carrier Sense Multiple Access with Collision Detection",

Computer Networks 4 (1980): 245-259.

14. Digital Internal Document: "TGEC Specification", Part

Number:XX, 1991.

15. Digital Equipment Corporation, "DECchip 21040 Ether-

net LAN Controller for PCI: Data Sheet", Digital Equip-

ment Corporation Order Number: EC-N0280-72, Nov.

1993.

16. Digital Equipment Corporation, "EtherWORKS Turbo

PCI User Information", Digital Equipment Corporation

Order Number: EK-DE435-OM.A01, March 1994.

17. Advanced Micro Devices, "Am7990 Local Area Network

Controller for Ethernet (LANCE)", AMD Ethernet/IEEE

802.3 Family World Network Data Book/Handbook,

1992.

The following are trademarks of Digital Equipment Corpora-

tion: Alpha AXP, DEC OSF/1.

SNIFFER is a trademark of Network General Inc.

