
DECpacketprobe 90
User’s Information

Order Number: EK–DERMN–UG. A01

Revision/Update Information: This is a new manual.

Digital Equipment Corporation
Maynard, Massachusetts

First Edition, August 1993

Digital Equipment Corporation makes no representations that the use of its products in the
manner described in this publication will not infringe on existing or future patent rights, nor do
the descriptions contained in this publication imply the granting of licenses to make, use, or sell
equipment or software in accordance with the description.

© Digital Equipment Corporation 1993.

All rights reserved.
Printed in U.S.A.

FCC NOTICE: The equipment described in this manual generates, uses, and may emit radio
frequency energy. The equipment has been type tested and found to comply with the limits for
a Class A computing device pursuant to Part 15 of FCC Rules, which are designed to provide
reasonable protection against such radio frequency interference when operated in a commercial
environment. Operation of this equipment in a residential area may cause interference, in which
case the user at his own expense may be required to take measures to correct the interference.

The following are trademarks of Digital Equipment Corporation: DEC, DECbridge, DECconnect,
DEChub, DECpacketprobe, DECserver, Digital, POLYCENTER, ThinWire, ULTRIX, and the
DIGITAL logo.

Motorola is a registered trademark of Motorola, Inc.

All other trademarks and registered trademarks are the property of their respective holders.

This document was prepared using VAX DOCUMENT, Version 2.1.

Contents

About This Manual . vii

Part I Product Overview

1 Overview

1.1 Features . 1–1
1.2 Description . 1–2
1.3 How DECpacketprobe 90 Works . 1–2
1.4 Standards . 1–4
1.4.1 RMON–MIB . 1–4
1.4.2 Protocols . 1–6
1.5 Community Strings for the DECpacketprobe 90 1–7
1.6 LEDs and Connectors . 1–8

Part II Installation and Configuration Procedures

2 Installation

2.1 Inventory . 2–1
2.2 Standalone Installation . 2–1
2.2.1 Tabletop Installation . 2–1
2.2.2 Wallmount Installation . 2–2
2.3 Backplane Installation . 2–6
2.4 Powerup and Reset . 2–8

iii

3 Configuration

3.1 Console Session . 3–1

4 Problem Solving

4.1 Performance Considerations . 4–1
4.2 Troubleshooting the DECpacketprobe 90 4–2

Part III RMON–MIB Reference

5 Remote Network Monitoring Management Information
Base

5.1 Overview of SNMP and Dot Notation 5–1
5.2 The Network Management Framework 5–4
5.3 Managed Objects . 5–4
5.4 Overview of Remote Network Monitoring 5–5
5.4.1 Remote Network Monitoring Goals 5–5
5.4.2 Structure of the RMON–MIB . 5–6
5.4.3 Control of Remote Network Monitoring Devices 5–7
5.4.4 Resource Sharing Among Multiple Management

Stations . 5–7
5.4.5 Row Addition Among Multiple Management

Stations . 5–9

6 Statistics Group

7 History Group

8 Alarm Group

9 Host Group

iv

10 Host Top N Group

11 Matrix Group

12 Filter Group

13 Packet Capture Group

14 Event Group

A Specifications and Parts

A.1 Dimensions . A–1
A.2 Environmental Specifications . A–2
A.2.1 Operating Environment . A–2
A.2.2 Shipping Environment . A–2
A.3 Electrical Specifications . A–3
A.3.1 Power Supply (H7827–BA) . A–3
A.3.2 Input Voltage . A–3
A.4 Console Connector Pin-Out (RS–232/DB9) A–4
A.5 Replacement Parts . A–4

B Documentation and Ordering Information

B.1 Related Documentation . B–1
B.2 Ordering Information . B–1

Index

Figures

1–1 Sample DECpacketprobe 90 Configuration 1–3
1–2 The DECpacketprobe 90 Module 1–8
2–1 Removing the Back Cover . 2–2
2–2 Mounting Hole Locations . 2–3
2–3 Connecting the Cables . 2–5
2–4 DECpacketprobe 90 Backplane Installation 2–7

v

Tables

1–1 RMON–MIB Ethernet Groups 1–5
1–2 DECpacketprobe 90 LEDs and Connectors 1–9
3–1 Console Actions . 3–3
3–2 Object Variables . 3–3
4–1 Problem Solving a DECpacketprobe 90 Standalone

Unit . 4–2
4–2 Problem Solving a DECpacketprobe 90 in a DEChub

90 or 900 Backplane . 4–3
5–1 Decimal Definitions for the Object Identifier Prefix . . . 5–3
5–2 Decimal Definitions for Groups in RMON–MIB 5–3

vi

About This Manual

Introduction
This manual describes how to install, configure, use, and troubleshoot the
DECpacketprobe 90 agent module. The DECpacketprobe 90 implements the
Ethernet Remote Network Monitoring Information Base (RMON–MIB). It can be
used in a standalone operation or in the DEChub 90 or DEChub 900 Ethernet
backplane.

Intended Audience
This manual is intended for experienced network managers.

Organization
This manual is organized as follows:

Part I, Product Overview

• Chapter 1 provides an overview of the DECpacketprobe 90. It also describes
its features, LEDs, and connectors.

Part II, Installation and Configuration Procedures

• Chapter 2 describes how to install the DECpacketprobe 90 as a standalone
unit or in a DEChub 90 or DEChub 900 backplane.

• Chapter 3 provides configuration information for correct operation of the
DECpacketprobe 90.

• Chapter 4 discusses conditions that may affect DECpacketprobe 90
performance. It also contains basic troubleshooting information.

vii

Part III, RMON–MIB Reference

• Chapter 5 discusses the Remote Network Monitoring Management
Information Base (RMON–MIB).

• Chapter 6 contains the Statistics group parameters.

• Chapter 7 contains the History group parameters.

• Chapter 8 contains the Alarm group parameters.

• Chapter 9 contains the Host group parameters.

• Chapter 10 contains the Host Top N group parameters.

• Chapter 11 contains the Matrix group parameters.

• Chapter 12 contains the Filter group parameters.

• Chapter 13 contains the Packet Capture group parameters.

• Chapter 14 contains the Event group parameters.

Appendixes

• Appendix A contains DECpacketprobe 90 specifications and a parts list.

• Appendix B contains information about related documentation and ordering.

viii

Part I
Product Overview

1
Overview

This chapter provides an overview of the DECpacketprobe 90 module. It lists
the features of the module, describes the LEDs and connectors, and provides
information about community strings.

1.1 Features
The following list summarizes the features of the DECpacketprobe 90:

• Implements the Remote Network Monitoring (RFC 1271) Management
Information Base (MIB).

• Can be installed as a standalone unit or in a DEChub 90 or DEChub 900
backplane.

• Needs no downline load at powerup.

• Is downline loadable for firmware upgrades (TFTP protocol).

• Can be directly managed through SNMP.

• Stores MIB settings in battery-backed RAM.

• Provides an out-of-band console port.

• Allows hot-swapping of modules.

Overview 1–1

1.2 Description
The DECpacketprobe 90 module is a network management agent designed for
IEEE 802.3 CSMA/CD networks. It uses Simple Network Management Protocol
(SNMP) and has one each of the following ports:

• 10Base2 (ThinWire)

• 10BaseT (shielded or unshielded, twisted-pair)

• Asynchronous RS–232 (DB9)

The ThinWire port and the twisted-pair port comply with IEEE 802.3 standards.

The DECpacketprobe 90 is a self-contained module that uses a Motorola
68ECO30 central processing unit (CPU). The DECpacketprobe 90 can operate
in a standalone configuration with a 5-volt power supply, or in a DEChub 90 or
DEChub 900 Ethernet backplane.

Figure 1–1 shows a typical configuration of the DECpacketprobe 90 in an
Ethernet local area network (LAN).

1.3 How DECpacketprobe 90 Works
DECpacketprobe 90 agents gather a wide variety of statistical information about
network operation. An agent gathers the information by examining each packet
passed on a network segment. Segment statistics are stored in counters within
the agent. The counters are continuously updated and reset at powerup.

In addition to statistics, the agent captures and stores network traffic
information. You can examine these individual packets or sequences of packets to
identify and isolate network operational software or hardware problems.

A typical network consists of multiple network segments with one
DECpacketprobe 90 connected to each segment. You can control the agent
from a centrally located network management station designated as the ‘‘client.’’
The client has a user interface that permits you to request and examine data
from a selected agent. You can have multiple clients active to perform network
diagnostic functions from multiple locations such as primary and secondary
network management centers.

1–2 Overview

Figure 1–1 Sample DECpacketprobe 90 Configuration

Workstation Workstation DECserver

DECbridge 90
Work Group Bridge

BackboneEthernet

Computer 1 Computer 2 Server

PC

LJ-03390-TI0

ThinWire SegmentWork Group

DECpacketprobe 90DECrepeater 90T DECserver 90L

Work Group

DECpacketprobe 90DECrepeater 90 FA

Overview 1–3

1.4 Standards
DECpacketprobe 90 agents are based on widely accepted industry standards.
Communications between agents and clients are performed using Simple Network
Management Protocol (SNMP). The statistical information gathered is defined by
the Remote Network Monitoring Management Information Base (RMON–MIB) as
defined for Ethernet networks.

In addition to the Ethernet RMON–MIB groups (RFC 1271), DECpacketprobe 90
supports:

• MIBII System and Interface groups (RFC 1213)

• Enterprise-specific MIB extensions

DECpacketprobe 90 does not support the following MIBII groups:

• Address translation

• IP

• ICMP

• TCP

• UDP

• EGP

• Transmission

• SNMP

1.4.1 RMON–MIB
The RMON–MIB is a standard developed under the auspices of the Internet
Engineering Task Force (IETF) as an extension of their pioneering work in the
development of SNMP. This standard provides a data object base compatible with
the widest range of network needs, and permits independent developers to design
network monitoring equipment that interoperates.

Table 1–1 describes the nine RMON–MIB groups for Ethernet that DECpacketprobe
90 supports. A detailed description of the RMON–MIB and the Ethernet groups
is in Part III of this manual.

1–4 Overview

Table 1–1 RMON–MIB Ethernet Groups

This group . . . Allows you to . . .

Alarms Set a wide variety of thresholds and sampling intervals on any
statistic to create an alarm condition. You may set threshold
values as:

• An absolute value

• A rising value

• A falling value

• A delta value so that each node or segment may be fully
customized

Events Create entries in the monitor log and generate SNMP traps from
the agent to the client for selected events. You can initiate events
by setting a crossed threshold on any counter or from a specific
packet match count. The log includes the time of day for each
event and a description of the event.

Filters Define specific packet match filters that serve as a stop/start
mechanism for all packet capture functions and events. You may
combine filters with AND, NOT, or OR functions to capture either
broad or unique network events.

History Obtain a historical representation of statistics based on user-
defined sample intervals and bucket counters for customized trend
analysis.

Host Table Gather information for all nodes retrievable under SNMP for
non-SNMP devices by means of a host table. A table for each node
includes a variety of node statistics for each active node, including
the relative time the node was discovered.

HostTopN Perform a user-defined study of sorted host statistics providing
detailed information on the top n occurrences (where n is a
number supplied by you). Performed locally by the agent, this
function substantially reduces network traffic.

Packet Capture Perform further analysis using matched packets captured and
stored under the control of selected filters. Buffer sizes may be
user-selected and may wrap or stop when full. You may upload
captured packets to a centralized client that, if equipped with
protocol decode software, will allow you to perform complete
protocol analysis.

(continued on next page)

Overview 1–5

Table 1–1 (Cont.) RMON–MIB Ethernet Groups

This group . . . Allows you to . . .

Statistics Obtain an array of operational statistics including the following:

• Packets

• Octets

• Broadcasts

• Collisions

• Dropped packets

• Fragments

• CRCalignment errors

• Undersize/oversize

Traffic Matrix Obtain a matrix that shows the amount of traffic and the number
of errors between any pair of nodes. Retrieved by either source or
destination address.

1.4.2 Protocols
The DECpacketprobe 90 has a single IP address. It implements the protocols
required for SNMP-based access. The following protocols are used:

• Simple Network Management Protocol (SNMP)

• Address Resolution Protocol (ARP)

• Internet Protocol (IP)

• User Datagram Protocol (UDP)

• Telnet File Transfer Protocol (TFTP)

Note

TFTP is for network loading of upgrades.

1–6 Overview

1.5 Community Strings for the DECpacketprobe 90
A community, in SNMP, is a set of manageable attributes that are managed as
a group. Normally, there is a one-community-to-one-agent relationship. The
manageable attributes are usually contained within a single hardware device,
or within a single enclosure, when referenced with hubs. The single hardware
device, or the collection of devices within a hub, is treated as one community.
A particular manageable entity is uniquely identified on the network by the
combination of an IP address and a community string.

A community string is a sequence of ASCII characters that is checked by the
SNMP agent for access control to the manageable entity. The community string
can be thought of as a password. Two strings are associated with a given
community: the read-only string and the read/write string. For a GET or a GET
NEXT operation, the agent accepts either the read-only or the read/write string.
However, for a SET operation, the agent accepts only the read/write string.

Each community for a DECpacketprobe 90 is identified by a unique community
address string for each standalone unit or module installed in a DEChub 90 or
900 backplane.

The easiest way to keep track of the modules with community address strings is
to use a similar name for the DECpacketprobe 90 and community address string.
The community string name can be up to 32 characters. A community string
consists of any printable characters and is case-sensitive. Here are two examples
of naming schemes:

MyHUBFloor3Room27

COMM_LAB_HUB_3

For more information about communities, see Chapter 5.

Overview 1–7

1.6 LEDs and Connectors
Figure 1–2 shows the DECpacketprobe 90 and Table 1–2 describes its LEDs and
connectors.

Figure 1–2 The DECpacketprobe 90 Module

LKG-8011-93I

10

8

9

6

7

2

3

1

5

4

1–8 Overview

Table 1–2 DECpacketprobe 90 LEDs and Connectors

Item Icon Description

! DC OK indicator — Monitors the voltage.
On: The +5.0 Vdc voltage is normal.
Off: The voltage is abnormal (as when a power failure occurs).

" Network activity indicator — Indicates network activity.
Flashing: Network activity.
Off: No network activity.

Network OK indicator — Monitors the network port.
On: The network port is properly terminated.
Off: The network port is not properly terminated.

$ Not used.

% 10BaseT Ethernet connector — Connects the agent to the twisted-
pair segment. Not used when the agent is installed in the DEChub 90
or 900 backplane.

& Asynchronous serial port (RS–232) connector — Provides an
interface to the DECpacketprobe 90 through a console terminal or
terminal emulation program.

' Port 0 network connector (BNC) — Connects the agent to the
ThinWire segment. Not used when the agent is installed in the
DEChub 90 or 900 backplane.

(Backplane connector — Provides network and power connections to
the DECpacketprobe 90 when it is installed in the DEChub 90 or 900
backplane.

) Power connector — Receives +5.0 volts from the DECpacketprobe
90 power supply. Not used when the agent is installed in the DEChub
90 or 900 backplane.

+> Back cover — Used with standalone units only. It covers the
backplane connector and mounting assembly.

Overview 1–9

Part II
Installation and Configuration

Procedures

2
Installation

This chapter describes how to install the DECpacketprobe 90 as a standalone
unit, or in a DEChub 90 or DEChub 900 backplane.

2.1 Inventory
You should have received the following items:

• 1 DECpacketprobe 90

• 2 mounting screws

• 1 power supply and ac power cord (if the DECpacketprobe 90 is ordered for
standalone use)

2.2 Standalone Installation
The DECpacketprobe 90 can be installed either on a tabletop or on a wall. The
location should be within 2 meters (6 feet) of a power outlet that supplies the
correct voltage (Appendix A).

When operating as a standalone unit, the DECpacketprobe 90 receives power
from a separate power supply. This power supply connects to the unit by a cable
with a 7-pin connector. There is one universal autosensing power supply with
power cords appropriate to local convention.

2.2.1 Tabletop Installation
For tabletop installation, place the DECpacketprobe 90 on a table and connect
the cables as described in Section 2.2.2.

Installation 2–1

2.2.2 Wallmount Installation
To install the DECpacketprobe 90 on a wall:

1. Remove the back cover (Figure 2–1).

a. Insert a small screwdriver into the top mounting hole on the cover.

b. Lift the latch with the screwdriver.

c. Pull the cover away and down from the top of the unit.

Figure 2–1 Removing the Back Cover

LKG-8010-93I

2–2 Installation

2. Use the mounting holes on the back cover (Figure 2–2, !) to determine the
placement for the mounting screws on the wall.

3. Secure the back cover to the wall using the mounting screws (Figure 2–2, ").

The screws should be tight enough to provide resistance when you remove the
cover from the wall. Do not make them so tight that the cover is distorted or
cannot be removed from the wall.

Figure 2–2 Mounting Hole Locations

LKG-8015-93I

2

2

1

1

Installation 2–3

4. Remove the back cover from the wall, attach the cover to the unit, then mount
the unit onto the mounting screws.

5. Connect the cables (Figure 2–3).

a. Connect the Ethernet ThinWire T-connector to the port 0 BNC network
connector !.

or

Connect the twisted-pair connector as shown ".

b. Connect the cable from the power supply (H7827–BA) to the 7-pin power
connector on the DECpacketprobe 90 #.

c. Connect a terminal to the front panel asynchronous port $. This
connection allows console management.

2–4 Installation

Figure 2–3 Connecting the Cables

PJ,D120
SCALE 46% 85%

LJ-03389-TI0

Terminal

2

4

1

D
E

C
p

a
cke

tp
ro

b
e

 9
03

Installation 2–5

2.3 Backplane Installation
To install the DECpacketprobe 90 in a DEChub 90 or 900 Ethernet backplane:

1. Remove the back cover (Figure 2–1).

2. Install the DECpacketprobe 90 in the backplane (Figure 2–4). Place the lower
mounting tab, located on the back of the DECpacketprobe 90, into any slot of
the backplane.

3. Rock the unit until it clicks into place.

Note

The DECpacketprobe 90 can be installed into or removed from the
DEChub 90 or 900 Ethernet backplane while power is supplied to the
backplane. This procedure is referred to as a ‘‘hot swap.’’

2–6 Installation

Figure 2–4 DECpacketprobe 90 Backplane Installation

LKG-8014-93I

Installation 2–7

2.4 Powerup and Reset
Upon initial powerup of the DECpacketprobe 90, the DC OK LED lights. After
approximately 5 seconds, the network activity LED lights with intensity that is
proportional to the amount of network activity on the port.

Upon powerup and reset, the DECpacketprobe 90 performs self-test out of ROM.
The unit enters an operational mode if an IP address has been established. If an
IP address has not been established, the unit does not attempt to obtain its IP
address. You can establish one with a terminal through the console port.

If the unit encounters no FLASH image or a corrupted image during powerup or
reset, the unit enters the monitor mode. While the unit is in monitor mode, you
can access error information and logs through the console port.

To verify the operating mode, start a console sesion. The console screen indicates
whether the unit is operating from FLASH nonvolatile RAM (NVRAM) or
EPROM. The DECpacketprobe 90 should always operate out of FLASH NVRAM
with one exception, during a FLASH update.

See Chapter 3 for information about starting a console session to set an IP
address, access error information, or check the operating mode.

2–8 Installation

3
Configuration

The DECpacketprobe 90 agent software starts to run upon initial installation. At
this point, you must initialize the following agent parameters:

• IP address

• Net mask

• Gateway address

The procedure is done from the console. During the console session, you can also
access and change some of the read/write parameters of the agent.

3.1 Console Session
Since the module comes preloaded with the agent software, you may initiate a
session with the agent through use of the agent console port. To start a console
session, connect a terminal to the console port on the DECpacketprobe 90 and
press Return twice.

The following screen is displayed:

****** DEC PacketProbe 90 Ethernet Probe Rev 1.0 ******

Executing from FLASH

[1] Change IP Address
[2] Change Net Mask
[3] Change Default Gateway Address
[4] Change Read Community
[5] Change Write Community
[9] Change TFTP Server Address
[10] Update Software
[11] Enter Command-line Mode
[12] Reset Agent

Selection#:

Configuration 3–1

• Selections 1 through 9 allow you to view or change the corresponding
information. When you choose one of these selections, the current state of the
parameter is displayed. To change the state of the parameter, enter the new
information and press Return . To make no change, simply press Return .

• Selection 10 allows you to update the firmware in FLASH NVRAM. To be
updated, the DECpacketprobe 90 must be connected to a TFTP server and
the server must have the update image loaded.

• Selection 11 allows you to enter the command-line mode to access or change
agent parameters. Table 3–1 describes the permissible actions in command-
line mode, and Table 3–2 describes each object variable that you can associate
with the actions.

Entering help at the command-line prompt (%) displays the following help
screen:

%help

Syntax: action object [arg,...]
actions

get: display the value of an object
set: change the value of an object

do: perform an agent operation
help: display this menu
quit: exit command-line mode

objects
agent agent_contact agent_location agent_name
agent_options eventlog gw_addr if_options
interface ip_addr max_captsize max_host
max_log max_matrix myu_size net_mask
nvram read_community reset speed
tftp tftp_timeout tftp_server write_community

%

• Selection 12 allows you to reset the agent and saves the current agent
parameters in battery-backed RAM.

3–2 Configuration

Table 3–1 Console Actions

Action Description

get Retrieves the value of the designated object.

set Sets the value of the designated object.

do Produces an action in the agent.

help Provides a list of permissible commands and command objects.

quit Exits from the command-line mode.

Table 3–2 Object Variables

Variable Description

agent A composite list of the agent parameters and descriptions.

agent_contact An ASCII text string corresponding to the MIBII system group
variable sysContact.

agent_location An ASCII text string corresponding to the MIBII system group
variable sysLocation.

agent_name An ASCII text string corresponding to the MIBII system group
variable sysName.

agent_options The object variables that can be obtained through command-line
mode.

eventlog A log maintained at the agent. Includes a list of the most recent
events that have occurred at the agent. These events are stored as
they occur.

gw_addr Gateway address.

if_options Not currently used.

interface IP address, gateway address, and net mask address.

ip_addr IP address.

max_captsize Not currently used.

max_host Decimal value specifying the maximum number of entries in each
instance of the RMON–MIB hostTable and hostTimeTable. The agent
removes the least recently seen host entries when this number is
exceeded. The default value is 500.

max_log Decimal value specifying the maximum number of entries in the
RMON–MIB logTable. The default value is 500.

(continued on next page)

Configuration 3–3

Table 3–2 (Cont.) Object Variables

Variable Description

max_matrix Decimal value specifying the maximum number of entries in each
instance of the RMON–MIB matrixDSTable and matrixSDTable.
The agent removes the least recently seen matrix entries when this
number is exceeded. The default value is 4000.

myu_size Not currently used.

net_mask Address for a network structure.

nvram Not currently used.

read_community Read community string.

reset Agent reset.

speed Baud rate.

tftp Utility for agent updates.

tftp_timeout Value specifying the response timeout from the TFTP server.

tftp_server Address for the TFTP server.

write_community Write community string.

3–4 Configuration

4
Problem Solving

This chapter describes the conditions that influence the performance of the
DECpacketprobe 90. It also provides information for solving problems related to
the DECpacketprobe 90 when used as a standalone unit, or when installed in a
DEChub 90 or 900 backplane.

4.1 Performance Considerations
Protocol monitoring and analysis is a real-time function. Every packet and event
on the segment being monitored by the DECpacketprobe 90 must be examined,
evaluated, and counted. In some cases, a sequence of filters must be applied
to the data before specific action such as counts or data storage take place. In
addition, irregular events such as packet fragments, jabbers, and collisions must
be recognized, counted, and discarded.

The capability of the DECpacketprobe 90 to process all packets and handle all
other requirements in real-time depends on many factors. The most common
factors are the:

• Fundamental speed of the processor

• Arrival rate of data and events on the segment

• Amount of work the agent has been configured to do by the client

• Amount of processor time that must be devoted to other concurrently running
programs

Predicting the specific performance of an agent is impossible due to the great
number of variables in a normal network configuration.

Problem Solving 4–1

At some point, the agent will not be able to respond as required to all the network
traffic. An example is when one agent is performing different functions under the
direction of two or more clients. Under these conditions, the following may occur:

• Response to user inquiries from the client may slow down.

• Some packets will be missed. The number of occasions when one or more
packets is missed is in the dropEvents statistic.

4.2 Troubleshooting the DECpacketprobe 90
To determine the cause of a problem with the DECpacketprobe 90:

1. Verify the installation of the DECpacketprobe 90.

2. Verify the IP, net mask, and gateway addresses.

Installation must meet the configuration information given in Chapter 3.

3. Note the fault condition.

4. Verify that the DECpacketprobe 90 is operating from FLASH NVRAM.

5. Isolate the problem.

Use Table 4–1 to solve problems related to a standalone DECpacketprobe
90.

Use Table 4–2 to solve problems related to a DECpacketprobe 90 installed
in a DEChub 90 or 900 backplane.

Table 4–1 Problem Solving a DECpacketprobe 90 Standalone Unit

If . . . Then . . . Do this . . .

All LEDs are off. Check the ac power
connection.

Check that the power supply is
properly plugged into the power
outlet. Check the power to the
power outlet.

Check the power supply. Check the 7-pin connector to the
power supply. If the connections
are okay, replace either the power
supply (for 120 V operation)
or both the power supply cord
and power supply (for 220 V
operation).

(continued on next page)

4–2 Problem Solving

Table 4–1 (Cont.) Problem Solving a DECpacketprobe 90 Standalone Unit

If . . . Then . . . Do this . . .

All LEDs flicker. The DECpacketprobe 90
is not receiving the correct
voltages.

Connect the DECpacketprobe 90
to the correct power supply or
replace the power supply.

The network activity
LED is off.

There is low network
activity or no network
activity.

Ensure that network activity is
present and that the segment is
properly terminated.

If the network activity LED
still fails to light

Turn the agent off and on by
unplugging and replugging the
power supply. Check that the
network activity LED comes on
momentarily.

If the network activity LED
lights momentarily, the
network activity LED
portion of testing has
passed.

Replace the DECpacketprobe 90.

If the network activity LED
fails to light.

Replace the DECpacketprobe 90.

Table 4–2 Problem Solving a DECpacketprobe 90 in a DEChub 90 or 900
Backplane

If . . . Then . . . Do this . . .

The power LED is off. The DECpacketprobe 90 is
not receiving +5 V.

Check the power LED on the
DEChub 90 or 900 power supply.

If the power LED on the
DEChub 90 or 900 is off,
there is a problem with the
DEChub 90 or 900 power
supply.

See the problem solving
procedures in the owner’s manual
for the DEChub 90 or DEChub
900.

If the power LED on the
DEChub 90 or 900 power
supply is on, are other
component power LEDs off?
If other components are on,
the DECpacketprobe 90 has
a power problem.

Try reseating the DECpacketprobe
90 in either the same slot or the
other slot.

(continued on next page)

Problem Solving 4–3

Table 4–2 (Cont.) Problem Solving a DECpacketprobe 90 in a DEChub 90 or 900
Backplane

If . . . Then . . . Do this . . .

If the power LED on the
DEChub 90 or 900 power
supply is on, are other
component power LEDs off?
If other components are off,
the DEChub 90 or 900 has
a power problem.

See the problem solving
procedures in the owner’s manual
for the DEChub 90 or DEChub
900.

If the power LED turns on
when reseated in the same
slot, the DECpacketprobe
90 was not properly seated.

Make sure that the DECpacketprobe
90 is properly seated in the slot.

If the power LED turns on
when reseated in another
slot, the problem is with the
DEChub 90 or 900.

See the problem solving
procedures in the owner’s manual
for the DEChub 90 or DEChub
900.

If the DECpacketprobe
90 does not turn on in
a known good slot, the
DECpacketprobe 90 is
defective.

Replace the DECpacketprobe 90.

The port 0 network
activity LED is off.

The DECpacketprobe 90
or any other unit in the
DEChub 90 or 900 may not
be connected to an active
segment.

Connect a known active segment
to a port (other than port 0) on
any unit in the DEChub 90 or
900.

If the DECpacketprobe 90
is connected to a known
active segment and the
port 0 LED is off, the
DECpacketprobe 90 is
defective.

Replace the DECpacketprobe 90.

4–4 Problem Solving

Part III
RMON–MIB Reference

5
Remote Network Monitoring

Management Information Base

This chapter includes a detailed description of the functions and acknowledgment
objects that have been defined by the Internet Engineering Task Force (IETF).
This information was derived from a draft memo produced by the Remote
Monitoring Working Group of the IETF dated November 1991, and that was
submitted to the RFC editor as an experimental extension to the SNMP MIB.

5.1 Overview of SNMP and Dot Notation
Over the last few years, SNMP has become the protocol of choice for the
management of internet work resources. As its name implies, it has the
advantage of simplicity and great flexibility for a wide variety of applications.
The addition of the RMON–MIB subgroup under SNMP has resulted in a
standard framework for performing network diagnostics. For an overview
of SNMP and its use in network management, see The Simple Book: An
Introduction to Management of TCP/IP-based Internets, Marshall T. Rose,
Prentice Hall, Englewood Cliffs, NJ, 1991.

SNMP is an application-layered protocol, running over UDP that sits on top of IP
in the TCP/IP protocol stack. It was developed in the late 1980s by a committee
of the Internet Activities Board and has undergone revisions and enhancements
since that time. SNMP is a protocol that network management stations use
to poll network devices that are equipped with ‘‘agents’’ that collect and store
information in a Management Information Base (MIB). Agents send information
to the network management station when requested and otherwise act on the
direction of the centralized control.

Remote Network Monitoring Management Information Base 5–1

SNMP has four operations:

• Get — Used to retrieve specific management information.

• Get-next — Used to retrieve management information relative to the
argument included in the command.

• Set — Used to manipulate information and establish base values.

• Trap — Used to report specified events.

The above commands are performed on data objects that are uniquely identified
by an Object Identifier. An Object Identifier is a sequence of decimal integer
values where each value is separated by a ‘‘dot.’’ Each decimal value, defined in
Table 5–1, represents a branch along a decision tree where the final step may be
considered a leaf. Therefore, each element of a MIB has its own unique address
using dot notation and also a textual description.

The prefix for an Object Identifier for an RMON instance is

1.3.6.1.2.1.16.

Within RMON–MIB, the groups are identified as described in Table 5–2. Using
the construction in Table 5–2, the Object Identifiers for a few typical objects are
as follows:

1.3.6.1.2.1.16.1.1.1.3.1 etherStatsDropEvents.1
1.3.6.1.2.1.16.1.1.1.4.1 etherStatsOctets.1

1.3.6.1.2.1.16.1.1.1.20.1 etherStatsOwner.1
1.3.6.1.2.1.16.6.1.1.6.3 matrixControlStatus.3

The following chapters, derived from the RMON–MIB standard document, can be
better understood in the context of the above description of the Object Identifier.
Each variable in the MIB is shown with its relative position for the entry using
the notation { xxxxxxEntry n }. For example:

etherStatsDropEvents is { etherStatsEntry 3 }
etherStatsOctets is { etherStatsEntry 4 }
matrixControlStatus is { matrixControEntry 6 }

In addition, the following chapters include the formal textual description for each
object in the RMON–MIB.

5–2 Remote Network Monitoring Management Information Base

Table 5–1 Decimal Definitions for the Object Identifier Prefix

Decimal
Position Description

1 iso (1) — International Standards Organization

2 identified-organization (3) — A defined organization as opposed to other
standards groups

3 dod (6) — Controlling body for TCP/IP

4 internet (1) — For internet applications

5 management (2) — A network management function

6 mib_2 (1) — Management Information Base
Note: MIB2 is a superset of MIB1.

7 rmon (16) — Remote monitoring

Table 5–2 Decimal Definitions for Groups in RMON–MIB

Decimal
Position Description

8 Consists of the following items:

statistics (1)
history (2)
alarm (3)
hosts (4)
hostTopN (5)
matrix (6)
filter (7)
capture (8)
event (9)
tokenRing (10)

9 Table (1) to (n) corresponding to control entries.

10 Entry (1) to (n) is the number of entries in the corresponding table.

11 Variable (1) to (n) depending on the group.

12 Instance (1) to (n) is a unique number for each instance of a control entry
for this object.

Remote Network Monitoring Management Information Base 5–3

5.2 The Network Management Framework
The Internet-Standard Network Management Framework consists of the
following components:

• RFC 1155 defines the Structure of Management Information (SMI). These are
the mechanisms used for describing and naming objects for the purpose of
management. RFC 1212 defines a more concise description mechanism that
is wholly consistent with the SMI.

• RFC 1156 defines MIBI. This is the core set of managed objects for the
Internet suite of protocols. RFC 1213 defines MIBII, an evolution of MIBI-
based on implementation experience and new operational requirements.

• RFC 1157 defines the SNMP. This is the protocol used for network access to
managed objects. The Framework permits new objects to be defined for the
purpose of experimentation and evaluation.

5.3 Managed Objects
Managed objects are accessed by way of a virtual information store, termed the
Management Information Base, or MIB. Objects in the MIB are defined using
the subset of Abstract Syntax Notation One (ASN.1) [7] defined in the SMI. In
particular, each object has a name, a syntax, and an encoding.

The name is an object identifier, an administratively assigned name, that specifies
an object type. The object type together with an object instance serves to uniquely
identify a specific instance of the object. A textual string is used, termed the
Object Descriptor, to also refer to the object type.

The syntax of an object type defines the abstract data structure corresponding to
that object type. The ASN.1 language is used for this purpose. However, the SMI
[3] purposely restricts the ASN.1 constructs that may be used. These restrictions
are made for simplicity.

The encoding of an object type is how that object type is represented using the
object type’s syntax. Implicitly tied to the notion of an object type’s syntax and
encoding is how the object type is represented when being transmitted on the
network.

The SMI specifies the use of the basic encoding rules of ASN.1 [8], subject to the
additional requirements imposed by the SNMP. The object types contained in the
RMON–MIB module are defined using the conventions defined in their SMI, as
amended by the extensions specified in [9,10].

5–4 Remote Network Monitoring Management Information Base

5.4 Overview of Remote Network Monitoring
Remote network monitoring devices are instruments that exist for the purpose
of managing a network. Often, these remote probes are standalone devices and
devote significant internal resources for the sole purpose of managing a network.
An organization may employ many of these devices (one per network segment)
to manage its internet. In addition, these devices may be used for a network
management service provider to access a client network, often geographically
remote.

5.4.1 Remote Network Monitoring Goals
Remote Network Monitoring goals include the following:

• Off-line Operation — Sometimes there are conditions when a management
station will not be in constant contact with its remote monitoring devices.
This is sometimes by design in an attempt to lower communications costs
(especially when communicating over a WAN or dialup link), or by accident as
network failures affect the communications between the management station
and the probe.

For this reason, this MIB allows a probe to be configured to perform
diagnostics and to collect statistics continuously, even when communication
with the management station may not be possible or efficient. The probe
may then attempt to notify the management station when an exceptional
condition occurs. Fault, performance, and configuration information may be
continuously accumulated and communicated to the management station
conveniently and efficiently, even in circumstances where communication
between management station and probe is not continuous.

• Pre-emptive Monitoring — Given the resources available on the monitor, it is
potentially helpful for it to run diagnostics continuously and to log network
performance. The monitor is always available at the onset of any failure.
It can notify the management station of the failure and can store historical
statistic information about the failure. This historical information can be
played back by the management station in an attempt to perform further
diagnosis into the cause of the problem.

• Problem Detection and Reporting — The monitor can be configured to
recognize conditions, most notably error conditions, and continuously to check
for them. When one of these conditions occurs, the event may be logged, and
management stations may be notified in a number of ways.

Remote Network Monitoring Management Information Base 5–5

• Value Added Data — Because a remote monitoring device represents a
network resource dedicated exclusively to network management functions,
and because it is located directly on the monitored portion of the network,
the remote network monitoring device has the opportunity to add significant
value to the data it collects. For instance, by highlighting those hosts on
the network that generate the most traffic or errors, the probe can give the
management station precisely the information it needs to solve a class of
problems.

• Multiple Managers — An organization may have multiple management
stations for different units of the organization, for different functions (for
example, engineering and operations), and in an attempt to provide disaster
recovery. Because environments with multiple management stations are
common, the remote network monitoring device has to deal with more than
its own management station, potentially using its resources concurrently.

5.4.2 Structure of the RMON–MIB
The objects are arranged into the following groups:

• Statistics

• History

• Alarm

• Host

• HostTopN

• Matrix

• Filter

• Packet Capture

• Event

• Token Ring

These groups are the basic unit of conformance. If a remote monitoring
device implements a group, it must implement all objects in that group. For
example, a managed agent that implements the Host group must implement the
hostControlTable, the hostTable, and the hostTimeTable.

All groups in this MIB are optional. Implementations of this MIB must also
implement the System and Interface groups of MIBII [6]. MIBII may also
mandate the implementation of additional groups.

These groups are defined to provide a means of assigning object identifiers, and to
provide a method for managed agents to know what objects they must implement.

5–6 Remote Network Monitoring Management Information Base

5.4.3 Control of Remote Network Monitoring Devices
Due to the complex nature of the available functions in these devices, the
functions often need user configuration. In many cases, the function requires
parameters to be set up for a data collection operation. The operation can proceed
only after these parameters are fully set up.

Many functional groups in this MIB have one or more control tables in which
to set up control parameters, and one or more data tables in which to place the
results of the operation. The control tables are typically read-write in nature. The
data tables are typically read-only. Because the parameters in the control table
often describe resulting data in the data table, many of the parameters can be
modified only when the control entry is invalid. Thus, the method for modifying
these parameters is to invalidate the control entry, causing its deletion and the
deletion of any associated data entries, and then to create a new control entry
with the proper parameters. Deleting the control entry also gives a convenient
method for reclaiming the resources used by the associated data.

Some objects in this MIB provide a mechanism to execute an action on the remote
monitoring device. These objects may execute an action as a result of a change in
the state of the object. For those objects in this MIB, a request to set an object to
the same value as it currently holds would thus cause no action to occur.

To facilitate control by multiple managers, resources have to be shared among the
managers. These resources are typically the memory and computation resources
that a function requires.

5.4.4 Resource Sharing Among Multiple Management Stations
When multiple management stations want to use functions that compete for
a finite amount of resources on a device, a method to facilitate this sharing of
resources is required. Potential conflicts include the following:

• Two management stations want to use simultaneously Resources that
together would exceed the capability of the device.

• A management station uses a significant amount of resources for a long
period of time.

• A management station uses resources and then crashes, forgetting to free the
resources so others may use them.

A mechanism is provided for each management station initiated function in this
MIB to avoid these conflicts and to help resolve them when they occur. Each
function has a label identifying the initiator (owner) of the function. This label is
set by the initiator to provide for the following possibilities:

• A management station may recognize resources it owns and no longer needs.

Remote Network Monitoring Management Information Base 5–7

• A network operator can find the management station that owns the resource
and negotiate for it to be freed.

• A network operator may decide to unilaterally free resources another network
operator has reserved.

• Upon initialization, a management station may recognize resources it had
reserved in the past. With this information it may free the resources if it no
longer needs them.

Management stations and probes should support any format of the owner string
dictated by the local policy of the organization. It is suggested that this name
contain one or more of the following:

• IP address

• Management station name

• Network manager’s name

• Location

• Phone number

This information will help users share the resources more effectively.

There is often default functionality that the device wants to set up. The resources
associated with this functionality are then owned by the device itself. In this
case, the device sets the relevant owner object to a string starting with ‘‘monitor’’.
Indiscriminate modification of the monitor-owned configuration by network
management stations is discouraged. In fact, a network management station
should only modify these objects under the direction of the administrator of the
probe, often the network administrator.

When a network management station wants to use a function in a monitor, it is
encouraged to first scan the control table of that function to find an instance with
similar parameters to share. This is especially true for those instances owned
by the monitor, that can be assumed to change infrequently. If a management
station decides to share an instance owned by another management station, it
should understand that the management station that owns the instance may
indiscriminately modify or delete it.

5–8 Remote Network Monitoring Management Information Base

5.4.5 Row Addition Among Multiple Management Stations
The addition of new rows is achieved using the method described in [9]. In
this MIB, rows are often added to a table in order to configure a function.
This configuration usually involves parameters that control the operation
of the function. The agent must check these parameters to make sure they
are appropriate given the restrictions defined in this MIB; as well as any
implementation-specific restrictions such as lack of resources. The agent
implementor may be confused as to when to check these parameters and when to
signal to the management station that the parameters are invalid. There are two
opportunities:

• When the management station sets each parameter object

• When the management station sets the entry status object to valid

If the latter is chosen, it would be unclear to the management station which of
the several parameters was invalid and caused the badValue error to be emitted.
Thus, wherever possible, the implementor should choose the former as it will
provide more information to the management station.

A problem can arise when multiple management stations attempt to set
configuration information simultaneously using SNMP. When this involves the
addition of a new conceptual row in the same control table, the managers may
collide, attempting to create the same entry. To guard against these collisions,
each such control entry contains a status object with special semantics that help
to arbitrate among the managers. If an attempt is made with the row addition
mechanism to create such a status object and that object already exists, an error
is returned. When more than one manager simultaneously attempts to create the
same conceptual row, only the first will succeed. The others will receive an error.

Remote Network Monitoring Management Information Base 5–9

6
Statistics Group

Implementation of the Statistics group is optional.

The Statistics group contains statistics measured by the probe for each monitored
interface on this device. These statistics take the form of free-running counters
that start from zero when a valid entry is created.

This group currently has statistics defined for the Ethernet interface. Each
etherStatsEntry contains statistics for one interface. The probe must create one
entry for each monitored interface on the device.

Statistics Group 6–1

etherStatsTable
{ statistics }

A list of Ethernet statistics entries.

etherStatsEntry
{ etherStatsTable 1 }

A collection of statistics kept for a particular Ethernet interface:

Entry Description

etherStatsIndex INTEGER (1 . . . 65535)

etherStatsDataSource Object Identifier

etherStatsDropEvents Counter

etherStatsOctets Counter

etherStatsPkts Counter

etherStatsBroadcastPkts Counter

etherStatsMulticastPkts Counter

etherStatsCRCAlignErrors Counter

etherStatsUndersizePkts Counter

etherStatsOversizePkts Counter

etherStatsFragments Counter

etherStatsJabbers Counter

etherStatsCollisions Counter

etherStatsPkts64Octets Counter

etherStatsPkts65to127Octets Counter

etherStatsPkts128to255Octets Counter

etherStatsPkts256to511Octets Counter

etherStatsPkts512to1023Octets Counter

etherStatsPkts1024to1518Octets Counter

etherStatsOwner OwnerString

etherStatsStatus INTEGER

etherStatsIndex
{ etherStatsEntry 1 }

The value of this object uniquely identifies this etherStats entry.

6–2 Statistics Group

etherStatsDataSource
{ etherStatsEntry 2 }

This object identifies the source of the data it is configured to analyze. This
source can be any Ethernet interface on this device. To identify a particular
interface, this object shall identify the instance of the ifIndex object, defined in
[4,6], for the desired interface.

For example, if an entry were to receive data from interface 1, this object would
be set to ifIndex.1.

The statistics in this group reflect all packets on the local network segment
attached to the identified interface.

This object may not be modified if the associated etherStatsStatus object is equal
to valid(1).

etherStatsDropEvents
{ etherStatsEntry 3 }

The total number of events where packets were dropped by the probe due to lack
of resources. Note that this number is not the number of packets dropped. It is
the number of times this condition has been detected.

etherStatsOctets
{ etherStatsEntry 4 }

The total number of octets of data (including those in bad packets) received on
the network (excluding framing bits but including FCS octets).

etherStatsPkts
{ etherStatsEntry 5 }

The total number of packets (including error packets) received.

etherStatsBroadcastPkts
{ etherStatsEntry 6 }

The total number of good packets received that were directed to the broadcast
address.

etherStatsMulticastPkts
{ etherStatsEntry 7 }

The total number of good packets received that were directed to a multicast
address. Note that this number does not include packets directed to the broadcast
address.

Statistics Group 6–3

etherStatsCRCAlignErrors
{ etherStatsEntry 8 }

The total number of packets received that had a length (excluding framing bits
but including FCS octets) of between 64 and 1518 octets, inclusive, but were not
an integral number of octets in length or had a bad Frame Check Sequence (FCS).

etherStatsUndersizePkts
{ etherStatsEntry 9 }

The total number of packets received that were less than 64 octets long (excluding
framing bits but including FCS octets) and were otherwise well formed.

etherStatsOversizePkts
{ etherStatsEntry 10 }

The total number of packets received that were longer than 1518 octets (excluding
framing bits but including FCS octets) and were otherwise well formed.

etherStatsFragments
{ etherStatsEntry 11 }

The total number of packets received that were not an integral number of octets
in length or that had a bad Frame Check Sequence (FCS), and were less than 64
octets in length (excluding framing bits but including FCS octets).

etherStatsJabbers
{ etherStatsEntry 12 }

The total number of packets received that were longer than 1518 octets (excluding
framing bits but including FCS octets), and were not an integral number of octets
in length or had a bad Frame Check Sequence (FCS).

etherStatsCollisions
{ etherStatsEntry 13 }

The best estimate of the total number of collisions on this Ethernet segment.

etherStatsPkts64Octets
{ etherStatsEntry 14 }

The total number of packets (including error packets) received that were 64 octets
in length (excluding framing bits but including FCS octets).

6–4 Statistics Group

etherStatsPkts65to127Octets
{ etherStatsEntry 15 }

The total number of packets (including error packets) received that were between
65 and 127 octets in length inclusive (excluding framing bits but including FCS
octets).

etherStatsPkts128to255Octets
{ etherStatsEntry 16 }

The total number of packets (including error packets) received that were between
128 and 255 octets in length inclusive (excluding framing bits but including FCS
octets).

etherStatsPkts256to511Octets
{ etherStatsEntry 17 }

The total number of packets (including error packets) received that were between
256 and 511 octets in length inclusive (excluding framing bits but including FCS
octets).

etherStatsPkts512to1023Octets
{ etherStatsEntry 18 }

The total number of packets (including error packets) received that were between
512 and 1023 octets in length inclusive (excluding framing bits but including FCS
octets).

etherStatsPkts1024to1518Octets
{ etherStatsEntry 19 }

The total number of packets (including error packets) received that were between
1024 and 1518 octets in length inclusive (excluding framing bits but including
FCS octets).

etherStatsOwner
{ etherStatsEntry 20 }

The entity that configured this entry and is using the resources assigned to it.

etherStatsStatus
{ etherStatsEntry 21 }

The status of this etherStats entry.

Statistics Group 6–5

7
History Group

Implementation of the History group is optional.

The History group records periodic statistical samples from a network and stores
them for later retrieval. The historyControl table stores configuration entries
that each define an interface, polling period, and other parameters. Once samples
are taken, their data is stored in an entry in a media-specific table. Each such
entry defines one sample, and is associated with the historyControlEntry that
caused the sample to be taken. The media-specific table for Ethernet networks is
defined as etherHistoryTable.

If the probe keeps track of the time of day, it should start the first sample of
the history at such a time that when the next hour of the day begins, a sample
is started at that instant. This tends to make more user-friendly reports, and
enables comparison of reports from different probes that have relatively accurate
time of day.

The monitor is encouraged to add two history control entries per monitored
interface upon initialization that describe a short term and a long term polling
period. Suggested parameters are 30 seconds for the short term polling period
and 30 minutes for the long term polling period.

History Group 7–1

HistoryControl

historyControlTable
{ history 1 }

A list of history control entries.

historyControlEntry
{ historyControlTable 1 }

A list of parameters that set up a periodic sampling of statistics:

Entry Description

historyControlIndex INTEGER (1 . . . 65535)

historyControlDataSource OBJECT IDENTIFIER

historyControlBucketsRequested INTEGER (1 . . . 65535)

historyControlBucketsGranted INTEGER (1 . . . 65535)

historyControlInterval INTEGER (1 . . . 3600)

historyControlOwner OwnerString

historyControlStatus INTEGER

historyControlIndex
{ historyControlEntry 1 }

An index that uniquely identifies an entry in the historyControl table. Each such
entry defines a set of samples at a particular interval for an interface on the
device.

historyControlDataSource
{ historyControlEntry 2 }

This object identifies the source of the data for which historical data was collected
and placed in a media-specific table on behalf of this historyControlEntry. This
source can be any interface on this device. To identify a particular interface, this
object shall identify the instance of the ifIndex object for the desired interface.
For example, if an entry were to receive data from interface 1, this object would
be set to ifIndex.1.

The statistics in this group reflect all packets on the local network segment
attached to the identified interface.

This object may not be modified if the associated historyControlStatus object is
equal to valid(1).

7–2 History Group

historyControlBucketsRequested
{ historyControlEntry 3 }

The requested number of discrete time intervals where data is to be saved in the
part of the media-specific table associated with this historyControl entry.

When this object is created or modified, the probe should set historyControl-
BucketsGranted as closely to this object as is possible for the particular probe
implementation and available resources.

The default value for historyControlBuckets is 50.

historyControlBucketsGranted
{ historyControlEntry 4 }

The number of discrete sampling intervals where data shall be saved in the part
of the media-specific table associated with this historyControl entry.

When the associated historyControlBucketsRequested object is created or
modified, the probe should set this object as closely to the requested value as
is possible for the particular probe implementation and available resources.
The probe must not lower this value except as a result of a modification to the
associated historyControlBucketsRequested object.

There will be times when the actual number of buckets associated with this entry
is less than the value of this object. In this case, at the end of each sampling
interval, a new bucket will be added to the media-specific table.

When the number of buckets reaches the value of this object and a new bucket
is to be added to the media-specific table, the oldest bucket associated with this
historyControlEntry shall be deleted by the agent so that the new bucket can be
added.

When the value of this object changes to a value less than the current
value, entries are deleted from the media-specific table associated with this
historyControlEntry. Enough of the oldest of these entries shall be deleted by the
agent so that their number remains less than or equal to the new value of this
object.

When the value of this object changes to a value greater than the current value,
the number of associated media-specific entries may be allowed to grow.

History Group 7–3

historyControlInterval
{ historyControlEntry 5 }

The interval in seconds where the data is sampled for each bucket in the part of
the media-specific table associated with this historyControl entry. This interval
can be set to any number of seconds between 1 and 3600 (1 hour).

Because the counters in a bucket may overflow at their maximum value with no
indication, a prudent manager will take into account the possibility of overflow
in any of the associated counters. It is important to consider the minimum time
in which any counter could overflow on a particular media type and set the
historyControlInterval object to a value less than this interval. This is typically
most important for the ‘‘octets’’ counter in any media-specific table. For example,
on an Ethernet network, the etherHistoryOctets counter could overflow in about
one hour at the Ethernet’s maximum utilization.

This object may not be modified if the associated historyControlStatus object is
equal to valid(1).

The default value for historyControlInterval is 1800 (30 minutes).

historyControlOwner
{ historyControlEntry 6 }

The entity that configured this entry and is therefore using the resources assigned
to it.

historyControlStatus
{ historyControlEntry 7 }

The status of this historyControl entry. Each instance of the media-specific table
associated with this historyControlEntry will be deleted by the agent if this
historyControlEntry is not equal to valid(1).

7–4 History Group

EtherHistory

etherHistoryTable
{ history 2 }

A list of Ethernet history entries.

etherHistoryEntry
{ etherHistoryTable 1 }

An historical sample of Ethernet statistics on a particular Ethernet interface.
This sample is associated with the historyControlEntry that set up the
parameters for a regular collection of these samples:

Entry Description

etherHistoryIndex INTEGER (1 . . . 65535)

etherHistorySampleIndex INTEGER

etherHistoryIntervalStart TimeTicks

etherHistoryDropEvents Counter

etherHistoryOctets Counter

etherHistoryPkts Counter

etherHistoryBroadcastPkts Counter

etherHistoryMulticastPkts Counter

etherHistoryCRCAlignErrors Counter

etherHistoryUndersizePkts Counter

etherHistoryOversizePkts Counter

etherHistoryFragments Counter

etherHistoryJabbers Counter

etherHistoryCollisions Counter

etherHistoryUtilization INTEGER (0 . . . 10000)

etherHistoryIndex
{ etherHistoryEntry 1 }

The history of which this entry is a part. The history identified by a particular
value of this index is the same history as identified by the same value of
historyControlIndex.

History Group 7–5

etherHistorySampleIndex
{ etherHistoryEntry 2 }

An index that uniquely identifies the particular sample this entry represents
among all samples associated with the same historyControlEntry. This index
starts at 1 and increases by one as each new sample is taken.

etherHistoryIntervalStart
{ etherHistoryEntry 3 }

The value of sysUpTime at the start of the interval where this sample was
measured. If the probe keeps track of the time of day, it should start the first
sample of the history at such a time that when the next hour of the day begins,
a sample is started at that instant. Note that following this rule may require the
probe to delay collecting the first sample of the history, as each sample must be of
the same interval. Also note that the sample that is currently being collected is
not accessible in this table until the end of its interval.

etherHistoryDropEvents
{ etherHistoryEntry 4 }

The total number of events where packets were dropped by the probe due to lack
of resources during this interval. Note that this number is not the number of
packets dropped. It is the number of times this condition has been detected.

etherHistoryOctets
{ etherHistoryEntry 5 }

The total number of octets of data (including those in bad packets) received on
the network (excluding framing bits but including FCS octets).

etherHistoryPkts
{ etherHistoryEntry 6 }

The number of packets (including error packets) received during this sampling
interval.

etherHistoryBroadcastPkts
{ etherHistoryEntry 7 }

The number of good packets received during this sampling interval that were
directed to the broadcast address.

7–6 History Group

etherHistoryMulticastPkts
{ etherHistoryEntry 8 }

The number of good packets received during this sampling interval that were
directed to a multicast address. Note that this number does not include packets
addressed to the broadcast address.

etherHistoryCRCAlignErrors
{ etherHistoryEntry 9 }

The number of packets received during this sampling interval that had a length
(excluding framing bits but including FCS octets) between 64 and 1518 octets,
inclusive, but were not an integral number of octets in length or had a bad Frame
Check Sequence (FCS).

etherHistoryUndersizePkts
{ etherHistoryEntry 10 }

The number of packets received during this interval that were less than 64 octets
long (excluding framing bits but including FCS octets) and were otherwise well
formed.

etherHistoryOversizePkts
{ etherHistoryEntry 11 }

The number of packets received during this interval that were longer than 1518
octets (excluding framing bits but including FCS octets) but were otherwise well
formed.

etherHistoryFragments
{ etherHistoryEntry 12 }

The total number of packets received during this sampling interval that were
not an integral number of octets in length or that had a bad Frame Check
Sequence (FCS), and were less than 64 octets in length (excluding framing bits
but including FCS octets).

etherHistoryJabbers
{ etherHistoryEntry 13 }

The number of packets received during this interval that were longer than 1518
octets (excluding framing bits but including FCS octets), and were not an integral
number of octets in length or had a bad Frame Check Sequence (FCS).

History Group 7–7

etherHistoryCollisions
{ etherHistoryEntry 14 }

The best estimate of the total number of collisions on this Ethernet segment
during this interval.

etherHistoryUtilization
{ etherHistoryEntry 15 }

The best estimate of the mean physical layer network utilization on this interface
during this interval, in hundredths of a percent.

7–8 History Group

8
Alarm Group

Implementation of the Alarm group is optional.

The Alarm group requires the implementation of the Event group.

The Alarm group periodically takes statistical samples from variables in the
probe and compares them to configured thresholds. The alarm table stores
configuration entries that define each of the following parameters:

• Variable

• Polling period

• Threshold

If a sample is found to cross the threshold values, an event is generated. Only
variables that resolve to an ASN.1 primitive type of INTEGER (INTEGER,
Counter, Gauge, or TimeTicks) may be monitored in this way.

This function has a hysteresis mechanism to limit the generation of events. This
mechanism generates one event as a threshold is crossed in the appropriate
direction. No more events are generated for that threshold until the opposite
threshold is crossed.

In the case of sampling a deltaValue, a probe may implement this mechanism
with more precision if it takes a delta sample twice per period. Each time it
takes a sample, it compares the sum of the latest two samples to the threshold.
This allows the detection of threshold crossings that span the sampling boundary.
Note that this does not require any special configuration of the threshold value.
It is suggested that probes implement this more precise algorithm.

Alarm Group 8–1

alarmTable
{ alarm 1 }

A list of alarm entries.

alarmEntry
{ alarmTable 1 }

A list of parameters that set up a periodic checking for alarm conditions:

Entry Description

alarmIndex INTEGER (1 . . . 65535)

alarmInterval INTEGER

alarmVariable OBJECT IDENTIFIER

alarmSampleType INTEGER

alarmValue INTEGER

alarmStartupAlarm INTEGER

alarmRisingThreshold INTEGER

alarmFallingThreshold INTEGER

alarmRisingEventIndex INTEGER (1 . . . 65535)

alarmFallingEventIndex INTEGER (1 . . . 65535)

alarmOwner OwnerString

alarmStatus INTEGER

alarmIndex
{ alarmEntry 1 }

An index that uniquely identifies an entry in the alarm table. Each such entry
defines a diagnostic sample at a particular interval for an object on the device.

alarmInterval
{ alarmEntry 2 }

The interval in seconds where the data is sampled and compared with the rising
and falling thresholds. When setting this variable, care should be given to ensure
that the variable being monitored will not exceed 2^31 � 1 and roll over the
alarmValue object during the interval.

This object may not be modified if the associated alarmStatus object is equal to
valid(1).

8–2 Alarm Group

alarmVariable
{ alarmEntry 3 }

The object identifier of the particular variable to be sampled. Only variables that
resolve to an ASN.1 primitive type of INTEGER (INTEGER, Counter, Gauge,
or TimeTicks) may be sampled. SNMP access control is articulated entirely in
terms of the contents of MIB views. No access control mechanism exists that
can restrict the value of this object to identify only those objects that exist in a
particular MIB view. There is thus no acceptable means of restricting the read
access that could be obtained through the alarm mechanism. The probe must
only grant write access to this object in those views that have read access to all
objects on the probe.

During a set operation, if the supplied variable name is not available in the
selected MIB view, a badValue error must be returned. If at any time the variable
name of an established alarmEntry is no longer available in the selected MIB
view, the probe must change the status of this alarmEntry to invalid(4).

This object may not be modified if the associated alarmStatus object is equal to
valid(1).

alarmSampleType
{ alarmEntry 4 }

The method of sampling the selected variable and calculating the value to be
compared against the thresholds. If the value of this object is absoluteValue(1),
the value of the selected variable will be compared directly with the thresholds
at the end of the sampling interval. If the value of this object is deltaValue(2),
the value of the selected variable at the last sample will be subtracted from the
current value, and the difference compared with the thresholds.

This object may not be modified if the associated alarmStatus object is equal to
valid(1).

alarmValue
{ alarmEntry 5 }

The value of the statistic during the last sampling period. The value during the
current sampling period is not made available until the period is completed.

Alarm Group 8–3

alarmStartupAlarm
{ alarmEntry 6 }

The alarm that may be sent when this entry is first set to valid.

If . . . And . . . Then . . .

The first sample after this
entry becomes valid is
greater than or equal to
the risingThreshold

AlarmStartupAlarm is
equal to risingAlarm(1) or
risingOrFallingAlarm(3)

A single rising alarm will be
generated.

The first sample after this
entry becomes valid is
less than or equal to the
fallingThreshold

AlarmStartupAlarm is
equal to fallingAlarm(2) or
risingOrFallingAlarm(3)

A single falling alarm will be
generated.

This object may not be modified if the associated alarmStatus object is equal to
valid(1).

alarmRisingThreshold
{ alarmEntry 7 }

A threshold for the sampled statistic.

If . . . And . . . Then . . .

The current sampled
value is greater than or
equal to this threshold

The value at the last
sampling interval was less
than this threshold

A single event will be
generated.

The first sample after this
entry becomes valid is
greater than or equal to
this threshold

The associated alarm-
StartupAlarm is equal
to risingAlarm(1) or
risingOrFallingAlarm(3)

A single event will also be
generated.

After a rising event is generated, another such event will not be generated until
the sampled value falls below this threshold and reaches the alarmFallingThresh-
old.

This object may not be modified if the associated alarmStatus object is equal to
valid(1).

8–4 Alarm Group

alarmFallingThreshold
{ alarmEntry 8 }

A threshold for the sampled statistic.

If . . . And . . . Then . . .

The current sampled
value is less than or equal
to this threshold

The value at the last
sampling interval
was greater than this
threshold

A single event will be
generated.

The first sample after this
entry becomes valid is
less than or equal to this
threshold

The associated alarm-
StartupAlarm is equal
to fallingAlarm(2) or
risingOrFallingAlarm(3)

A single event will also be
generated.

After a falling event is generated, another such event will not be generated until
the sampled value rises above this threshold and reaches the alarmRisingThresh-
old.

This object may not be modified if the associated alarmStatus object is equal to
valid(1).

alarmRisingEventIndex
{ alarmEntry 9 }

The index of the eventEntry that is used when a rising threshold is crossed. The
eventEntry identified by a particular value of this index is the same as identified
by the same value of the eventIndex object. If there is no corresponding entry in
the eventTable, then no association exists. In particular, if this value is zero, no
associated event will be generated, as zero is not a valid event index.

This object may not be modified if the associated alarmStatus object is equal to
valid(1).

alarmFallingEventIndex
{ alarmEntry 10 }

The index of the eventEntry that is used when a falling threshold is crossed. The
eventEntry identified by a particular value of this index is the same as identified
by the same value of the eventIndex object. If there is no corresponding entry in
the eventTable, then no association exists. In particular, if this value is zero, no
associated event will be generated, as zero is not a valid event index.

This object may not be modified if the associated alarmStatus object is equal to
valid(1).

Alarm Group 8–5

alarmOwner
{ alarmEntry 11 }

The entity that configured this entry and is using the resources assigned to it.

alarmStatus
{ alarmEntry 12 }

The status of this alarm entry.

8–6 Alarm Group

9
Host Group

Implementation of the Host group is optional.

The Host group discovers new hosts on the network by keeping a list of source
and destination MAC addresses seen in good packets. For each of these
addresses, the Host group keeps a set of statistics. The hostControlTable controls
which interfaces this function is performed on, and contains some information
about the process. On behalf of each hostControlEntry, data is collected on
an interface and placed in both the hostTable and the hostTimeTable. If the
monitoring device finds itself short of resources, it may delete entries as needed.
It is suggested that the device delete the least recently used entries first. The
hostTable contains entries for each address discovered on a particular interface.
Each entry contains statistical data about that host. This table is indexed by the
MAC address of the host, through which a random access may be achieved.

The hostTimeTable contains data in the same format as the hostTable, and must
contain the same set of hosts, but is indexed using hostTimeCreationOrder rather
than hostAddress. The hostTimeCreationOrder is an integer that reflects the
relative order in which a particular entry was discovered and inserted into the
table. As this order (index) is among those entries currently in the table, the
index for a particular entry may change if an (earlier) entry is deleted. Thus, the
association between hostTimeCreationOrder and hostTimeEntry may be broken
at any time.

The hostTimeTable has two important uses. The first is the fast download of this
potentially large table. Because the index of this table runs from 1 to the size of
the table, inclusive, its values are predictable. This allows very efficient packing
of variables into SNMP PDUs and allows a table transfer to have multiple
packets outstanding. These benefits increase transfer rates tremendously.

The second use of the hostTimeTable is the efficient discovery by the management
station of new entries added to the table. After the management station has
downloaded the entire table, it knows that new entries will be added immediately
after the end of the current table. It can thus detect new entries there and
retrieve them easily.

Host Group 9–1

Because the association between hostTimeCreationOrder and hostTimeEntry
may be broken at any time, the management station must monitor the related
hostControlLastDeleteTime object. When the management station thus detects
a deletion, it must assume that any such associations have been broken, and
invalidate any it has stored locally. This includes restarting any download of
the hostTimeTable that may have been in progress, as well as rediscovering the
end of the hostTimeTable so that it may detect new entries. If the management
station does not detect the broken association, it may continue to refer to
a particular host by its creationOrder while unwittingly retrieving the data
associated with another host entirely. If this happens while downloading the host
table, the management station may fail to download all of the entries in the table.

hostControlTable
{ hosts 1 }

A list of host table control entries.

hostControlEntry
{ hostControlTable 1 }

A list of parameters that set up the discovery of hosts on a particular interface
and the collection of statistics about these hosts:

Entry Description

hostControlIndex INTEGER (1 . . . 65535)

hostControlDataSource OBJECT IDENTIFIER

hostControlTableSize INTEGER

hostControlLastDeleteTime TimeTicks

hostControlOwner OwnerString

hostControlStatus INTEGER

hostControlIndex
{ hostControlEntry 1 }

An index that uniquely identifies an entry in the hostControl table. Each entry
defines a function that discovers hosts on a particular interface and places
statistics about them in the hostTable and the hostTimeTable on behalf of this
hostControlEntry.

9–2 Host Group

hostControlDataSource
{ hostControlEntry 2 }

This object identifies the source of the data for this instance of the host function.
This source can be any interface on this device. To identify a particular interface,
this object shall identify the instance of the ifIndex object for the desired
interface. For example, if an entry were to receive data from interface 1, this
object would be set to ifIndex.1.

The statistics in this group reflect all packets on the local network segment
attached to the identified interface.

This object may not be modified if the associated hostControlStatus object is equal
to valid(1).

hostControlTableSize
{ hostControlEntry 3 }

The number of hostEntries in the hostTable and the hostTimeTable associated
with this hostControlEntry.

hostControlLastDeleteTime
{ hostControlEntry 4 }

The value of sysUpTime when the last entry was deleted from the portion of the
hostTable associated with this hostControlEntry. If no deletions have occurred,
this value shall be zero.

hostControlOwner
{ hostControlEntry 5 }

The entity that configured this entry and is using the resources assigned to it.

hostControlStatus
{ hostControlEntry 6 }

The status of this hostControl entry.

If this object is not equal to valid(1), all associated entries in the hostTable,
hostTimeTable, and the hostTopNTable shall be deleted by the agent.

hostTable
{ hosts 2 }

A list of host entries.

Host Group 9–3

hostEntry
{ hostTable 1 }

A collection of statistics for a particular host that has been discovered on an
interface of this device:

Entry Description

hostAddress OCTET STRING

hostCreationOrder INTEGER (1 . . . 65535)

hostIndex INTEGER (1 . . . 65535)

hostInPkts Counter

hostOutPkts Counter

hostInOctets Counter

hostOutOctets Counter

hostOutErrors Counter

hostOutBroadcastPkts Counter

hostOutMulticastPkts Counter

hostAddress
{ hostEntry 1 }

The physical address of this host.

hostCreationOrder
{ hostEntry 2 }

An index that defines the relative ordering of the creation time of hosts captured
for a particular hostControlEntry. This index shall be between 1 and n, where n
is the value of the associated hostControlTableSize.

The ordering of the indexes is based on the order of each entry’s insertion into the
table, where entries added earlier have a lower index value than entries added
later.

It is important to note that the order for a particular entry may change as
an (earlier) entry is deleted from the table. Because this order may change,
management stations should make use of the hostControlLastDeleteTime
variable in the hostControlEntry associated with the relevant portion of the
hostTable. By observing this variable, the management station may detect the
circumstances where a previous association between a value of hostCreationOrder
and a hostEntry may no longer hold.

9–4 Host Group

hostIndex
{ hostEntry 3 }

The set of collected host statistics of which this entry is a part. The set of
hosts identified by a particular value of this index is associated with the
hostControlEntry as identified by the same value of hostControlIndex.

hostInPkts
{ hostEntry 4 }

The number of packets without errors transmitted to this address since it was
added to the hostTable.

hostOutPkts
{ hostEntry 5 }

The number of packets including errors transmitted by this address since it was
added to the hostTable.

hostInOctets
{ hostEntry 6 }

The number of octets transmitted to this address since it was added to the
hostTable (excluding framing bits but including FCS octets), except for those
octets in packets that contained errors.

hostOutOctets
{ hostEntry 7 }

The number of octets transmitted by this address since it was added to the
hostTable (excluding framing bits but including FCS octets), including those
octets in packets that contained errors.

hostOutErrors
{ hostEntry 8 }

The number of error packets transmitted by this address since this host was
added to the hostTable.

hostOutBroadcastPkts
{ hostEntry 9 }

The number of good packets transmitted by this address that were directed to the
broadcast address since this host was added to the hostTable.

Host Group 9–5

hostOutMulticastPkts
{ hostEntry 10 }

The number of good packets transmitted by this address that were directed to
a multicast address since this host was added to the hostTable. Note that this
number does not include packets directed to the broadcast address.

hostTimeTable
{ hosts 3 }

A list of time-ordered host table entries.

hostTimeEntry
{ hostTimeTable 1 }

A collection of statistics for a particular host that has been discovered on an
interface of this device. This collection includes the relative ordering of the
creation time of this object:

Entry Description

hostTimeAddress OCTET STRING

hostTimeCreationOrder INTEGER (1 . . . 65535)

hostTimeIndex INTEGER (1 . . . 65535)

hostTimeInPkts Counter

hostTimeOutPkts Counter

hostTimeInOctets Counter

hostTimeOutOctets Counter

hostTimeOutErrors Counter

hostTimeOutBroadcastPkts Counter

hostTimeOutMulticastPkts Counter

hostTimeAddress
{ hostTimeEntry 1 }

The physical address of this host.

9–6 Host Group

hostTimeCreationOrder
{ hostTimeEntry 2 }

An index that uniquely identifies an entry in the hostTime table among those
entries associated with the same hostControlEntry. This index shall be between 1
and n, where n is the value of the associated hostControlTableSize.

The ordering of the indexes is based on the order of each entry’s insertion into the
table, where entries added earlier have a lower index value than entries added
later. Thus, the management station has the ability to learn of new entries added
to this table without downloading the entire table.

It is important to note that the index for a particular entry may change as
an (earlier) entry is deleted from the table. Because this order may change,
management stations should make use of the hostControlLastDeleteTime
variable in the hostControlEntry associated with the relevant portion of the
hostTimeTable. By observing this variable, the management station may detect
the circumstances where a download of the table may have missed entries, and
where a previous association between a value of hostTimeCreationOrder and a
hostTimeEntry may no longer hold.

hostTimeIndex
{ hostTimeEntry 3 }

The set of collected host statistics of which this entry is a part. The set of
hosts identified by a particular value of this index is associated with the
hostControlEntry as identified by the same value of hostControlIndex.

hostTimeInPkts
{ hostTimeEntry 4 }

The number of packets without errors transmitted to this address since it was
added to the hostTimeTable.

hostTimeOutPkts
{ hostTimeEntry 5 }

The number of packets including errors transmitted by this address since it was
added to the hostTimeTable.

hostTimeInOctets
{ hostTimeEntry 6 }

The number of octets transmitted to this address since it was added to the
hostTimeTable (excluding framing bits but including FCS octets), except for those
octets in packets that contained errors.

Host Group 9–7

hostTimeOutOctets
{ hostTimeEntry 7 }

The number of octets transmitted by this address since it was added to the
hostTimeTable (excluding framing bits but including FCS octets), including those
octets in packets that contained errors.

hostTimeOutErrors
{ hostTimeEntry 8 }

The number of error packets transmitted by this address since this host was
added to the hostTimeTable.

hostTimeOutBroadcastPkts
{ hostTimeEntry 9 }

The number of good packets transmitted by this address that were directed to the
broadcast address since this host was added to the hostTimeTable.

hostTimeOutMulticastPkts
{ hostTimeEntry 10 }

The number of good packets transmitted by this address that were directed to a
multicast address since this host was added to the hostTimeTable. Note that this
number does not include packets directed to the broadcast address.

9–8 Host Group

10
Host Top N Group

Implementation of the Host Top N group is optional.

The Host Top N group requires the implementation of the Host group.

The Host Top N group is used to prepare reports that describe the hosts that are
at the top of a list that has been ordered by one of their statistics. The available
statistics are samples of one of their base statistics, over an interval specified by
the management station. Thus, these statistics are rate based. The management
station also selects how many such hosts are reported.

The hostTopNControlTable is used to initiate the generation of such a report. The
management station may select the parameters of such a report. For example:

• Which interface

• Which statistic

• How many hosts

• The start time of the sampling

• The stop time of the sampling

When the report is prepared, entries are created in the hostTopNTable associated
with the relevant hostTopNControlEntry. These entries are static for each report
after it has been prepared.

Host Top N Group 10–1

hostTopNControlTable
{ hostTopN 1 }

A list of top N host control entries.

hostTopNControlEntry
{ hostTopNControlTable 1 }

A set of parameters that control the creation of a report of the top N hosts
according to several metrics:

Entry Description

hostTopNControlIndex INTEGER (1 . . . 65535)

hostTopNHostIndex INTEGER (1 . . . 65535)

hostTopNRateBase INTEGER

hostTopNTimeRemaining INTEGER

hostTopNDuration INTEGER

hostTopNRequestedSize INTEGER

hostTopNGrantedSize INTEGER

hostTopNStartTime TimeTicks

hostTopNOwner OwnerString

hostTopNStatus INTEGER

hostTopNControlIndex
{ hostTopNControlEntry 1 }

An index that uniquely identifies an entry in the hostTopNControl table. Each
entry defines one top N report prepared for one interface.

hostTopNHostIndex
{ hostTopNControlEntry 2 }

The host table where a top N report will be prepared on behalf of this entry. The
host table identified by a particular value of this index is associated with the
same host table as identified by the same value of hostIndex.

This object may not be modified if the associated hostTopNStatus object is equal
to valid(1).

10–2 Host Top N Group

hostTopNRateBase
{ hostTopNControlEntry 3 }

hostTopNInPkts(1)
hostTopNOutPkts(2)
hostTopNInOctets(3)
hostTopNOutOctets(4)
hostTopNOutErrors(5)
hostTopNOutBroadcastPkts(6)
hostTopNOutMulticastPkts(7)

The variable for each host on which the hostTopNRate variable is based.

This object may not be modified if the associated hostTopNStatus object is equal
to valid(1).

hostTopNTimeRemaining
{ hostTopNControlEntry 4 }

The number of seconds left in the report currently being collected. When this
object is modified by the management station, a new collection is started, possibly
aborting a currently running report. The new value is used as the requested
duration of this report, which is loaded into the associated hostTopNDuration
object.

When this object is set to a nonzero value, any associated hostTopNEntries shall
be made inaccessible by the monitor. While the value of this object is nonzero,
it decrements by one per second until it reaches zero. During this time, all
associated hostTopNEntries shall remain inaccessible. At the time that this
object decrements to zero, the report is made accessible in the hostTopNTable.
Thus, the hostTopNTable needs to be created only at the end of the collection
interval.

The default value of hostTopNTimeRemaining is 0 (zero).

hostTopNDuration
{ hostTopNControlEntry 5 }

The number of seconds this report has collected during the last sampling interval.
If this report is currently being collected, the number of seconds this report is
being collected during this sampling interval.

When the associated hostTopNTimeRemaining object is set, this object shall be
set by the probe to the same value and shall not be modified until the next time
the hostTopNTimeRemaining is set.

This value shall be zero if no reports have been requested for this hostTopNCon-
trolEntry. The default value of hostTopNDuration is 0 (zero).

Host Top N Group 10–3

hostTopNRequestedSize
{ hostTopNControlEntry 6 }

The maximum number of hosts requested for the top N table.

When this object is created or modified, the probe should set hostTopNGranted-
Size as closely to this object as is possible for the particular probe implementation
and available resources.

The default value for hostTopNRequestedSize is 10.

hostTopNGrantedSize
{ hostTopNControlEntry 7 }

The maximum number of hosts in the top N table.

When the associated hostTopNRequestedSize object is created or modified, the
probe should set this object as closely to the requested value as is possible for
the particular implementation and available resources. The probe must not lower
this value except as a result of a set to the associated hostTopNRequestedSize
object.

Hosts with the highest value of hostTopNRate shall be placed in this table in
decreasing order of this rate until there is no more room or until there are no
more hosts.

hostTopNStartTime
{ hostTopNControlEntry 8 }

The value of sysUpTime when this top N report was last started. In other words,
this is the time that the associated hostTopNTimeRemaining object was modified
to start the requested report.

hostTopNOwner
{ hostTopNControlEntry 9 }

The entity that configured this entry and is using the resources assigned to it.

hostTopNStatus
{ hostTopNControlEntry 10 }

The status of this hostTopNControl entry.

If this object is not equal to valid(1), all associated hostTopNEntries shall be
deleted by the agent.

10–4 Host Top N Group

hostTopNTable
{ hostTopN 2 }

A list of top N host entries.

hostTopNEntry
{ hostTopNTable 1 }

A set of statistics for a host that is part of a top N report:

Entry Description

hostTopNReport INTEGER (1 . . . 65535)

hostTopNIndex INTEGER (1 . . . 65535)

hostTopNAddress OCTET STRING

hostTopNRate INTEGER

hostTopNReport
{ hostTopNEntry 1 }

This object identifies the top N report of which this entry is a part. The set of
hosts identified by a particular value of this object is part of the same report as
identified by the same value of the hostTopNControlIndex object.

hostTopNIndex
{ hostTopNEntry 2 }

An index that uniquely identifies an entry in the hostTopNTable among those in
the same report. This index is between 1 and n, where n is the number of entries
in this table.

Increasing values of hostTopNIndex shall be assigned to entries with decreasing
values of hostTopNRate until index N is assigned to the entry with the lowest
value of hostTopNRate or there are no more hostTopNEntries.

hostTopNAddress
{ hostTopNEntry 3 }

The physical address of this host.

hostTopNRate
{ hostTopNEntry 4 }

The amount of change in the selected variable during this sampling interval. The
selected variable is this host’s instance of the object selected by hostTopNRate-
Base.

Host Top N Group 10–5

11
Matrix Group

Implementation of the Matrix group is optional.

The Matrix group consists of the matrixControlTable, matrixSDTable, and
the matrixDSTable. These tables store statistics for a particular conversation
between two addresses. As the device detects a new conversation, including those
to a non-unicast address, it creates a new entry in both of the matrix tables. It
must only create new entries based on information received in good packets.
If the monitoring device finds itself short of resources, it may delete entries as
needed. It is suggested that the device delete the least recently used entries first.

Matrix Group 11–1

matrixControlTable
{ matrix 1 }

A list of information entries for the traffic matrix on each interface.

matrixControlEntry
{ matrixControlTable 1 }

Information about a traffic matrix on a particular interface:

Entry Description

matrixControlIndex INTEGER (1 . . . 65535)

matrixControlDataSource OBJECT IDENTIFIER

matrixControlTableSize INTEGER

matrixControlLastDeleteTime TimeTick

matrixControlOwner OwnerString

matrixControlStatus INTEGER

matrixControlIndex
{ matrixControlEntry 1 }

An index that uniquely identifies an entry in the matrixControl table. Each such
entry defines a function that discovers conversations on a particular interface
and places statistics about them in the matrixSDTable and the matrixDSTable on
behalf of this matrixControlEntry.

matrixControlDataSource
{ matrixControlEntry 2 }

This object identifies the source of the data from which this entry creates a traffic
matrix. This source can be any interface on this device. To identify a particular
interface, this object shall identify the instance of the ifIndex object for the
desired interface. For example, if an entry were to receive data from interface 1,
this object would be set to ifIndex.1.

The statistics in this group reflect all packets on the local network segment
attached to the identified interface.

This object may not be modified if the associated matrixControlStatus object is
equal to valid(1).

11–2 Matrix Group

matrixControlTableSize
{ matrixControlEntry 3 }

The number of matrixSDEntries in the matrixSDTable for this interface. This
must also be the value of the number of entries in the matrixDSTable for this
interface.

matrixControlLastDeleteTime
{ matrixControlEntry 4 }

The value of sysUpTime when the last entry was deleted from the portion of the
matrixSDTable or matrixDSTable associated with this matrixControlEntry. If no
deletions have occurred, this value shall be zero.

matrixControlOwner
{ matrixControlEntry 5 }

The entity that configured this entry and is therefore using the resources assigned
to it.

matrixControlStatus
{ matrixControlEntry 6 }

The status of this matrixControl entry. If this object is not equal to valid(1), all
associated entries in the matrixSDTable and the matrixDSTable shall be deleted
by the agent.

matrixSDTable
{ matrix 2 }

A list of traffic matrix entries indexed by source and destination MAC address.

matrixSDEntry
{ matrixSDTable 1 }

A collection of statistics for communications between two addresses on a
particular interface:

Entry Description

matrixSDSourceAddress OCTET STRING

matrixSDDestAddress OCTET STRING

matrixSDIndex INTEGER (1 . . . 65535)

matrixSDPkts Counter

matrixSDOctets Counter

matrixSDErrors Counter

Matrix Group 11–3

matrixSDSourceAddress
{ matrixSDEntry 1 }

The source physical address.

matrixSDDestAddress
{ matrixSDEntry 2 }

The destination physical address.

matrixSDIndex
{ matrixSDEntry 3 }

The set of collected matrix statistics of which this entry is a part. The set of
matrix statistics identified by a particular value of this index is associated
with the same matrixControlEntry as identified by the same value of
matrixControlIndex.

matrixSDPkts
{ matrixSDEntry 4 }

The number of packets transmitted from the source address to the destination
address (this number includes error packets).

matrixSDOctets
{ matrixSDEntry 5 }

The number of octets (excluding framing bits but including FCS octets) contained
in all packets transmitted from the source address to the destination address.

matrixSDErrors
{ matrixSDEntry 6 }

The number of error packets transmitted from the source address to the
destination address.

Traffic matrix tables from destination to source always goes through destination.

matrixDSTable
{ matrix 3 }

A list of traffic matrix entries indexed by destination and source MAC address.

11–4 Matrix Group

matrixDSEntry
{ matrixDSTable 1 }

A collection of statistics for communications between two addresses on a
particular interface:

Entry Description

matrixDSSourceAddress OCTET STRING

matrixDSDestAddress OCTET STRING

matrixDSIndex INTEGER (1 . . . 65535)

matrixDSPkts Counter

matrixDSOctets Counter

matrixDSErrors Counter

matrixDSSourceAddress
{ matrixDSEntry 1 }

The source physical address.

matrixDSDestAddress
{ matrixDSEntry 2 }

The destination physical address.

matrixDSIndex
{ matrixDSEntry 3 }

The set of collected matrix statistics of which this entry is a part. The set of
matrix statistics identified by a particular value of this index is associated
with the same matrixControlEntry as identified by the same value of
matrixControlIndex.

matrixDSPkts
{ matrixDSEntry 4 }

The number of packets transmitted from the source address to the destination
address (this number includes error packets).

matrixDSOctets
{ matrixDSEntry 5 }

The number of octets (excluding framing bits but including FCS octets) contained
in all packets transmitted from the source address to the destination address.

Matrix Group 11–5

matrixDSErrors
{ matrixDSEntry 6 }

The number of error packets transmitted from the source address to the
destination address.

11–6 Matrix Group

12
Filter Group

Implementation of the Filter group is optional.

The Filter group allows packets to be captured with an arbitrary filter expression.
A logical data and event stream or ‘‘channel’’ is formed by the packets that match
the filter expression.

This filter mechanism allows the creation of an arbitrary logical expression with
which to filter packets. Each filter associated with a channel is ORed with the
others. Within a filter, any bits checked in the data and status are ANDed with
respect to other bits in the same filter. The NotMask also allows for checking
for inequality. Finally, the channelAcceptType object allows for inversion of the
whole equation.

The channel can be turned on or off, and can also generate events when packets
pass through it.

Filter Group 12–1

filterTable
{ filter 1 }

A list of packet filter entries.

filterEntry
{ filterTable 1 }

A set of parameters for a packet filter applied on a particular interface:

Entry Description

filterIndex INTEGER (1 . . . 65535)

filterChannelIndex INTEGER (1 . . . 65535)

filterPktDataOffset INTEGER

filterPktData OCTET STRING

filterPktDataMask OCTET STRING

filterPktDataNotMask OCTET STRING

filterPktStatus INTEGER

filterPktStatusMask INTEGER

filterPktStatusNotMask INTEGER

filterOwner OwnerString

filterStatus INTEGER

filterIndex
{ filterEntry 1 }

An index that uniquely identifies an entry in the filter table. Each entry defines
one filter that is to be applied to every packet received on an interface.

filterChannelIndex
{ filterEntry 2 }

This object identifies the channel of which this filter is a part. The filters
identified by a particular value of this object are associated with the same channel
as identified by the same value of the channelIndex object.

12–2 Filter Group

filterPktDataOffset
{ filterEntry 3 }

The offset from the beginning of each packet where a match of packet data will
be attempted. This offset is measured from the point in the physical layer packet
after the framing bits, if any. For example, in an Ethernet frame, this point is at
the beginning of the destination MAC address.

This object may not be modified if the associated filterStatus object is equal to
valid(1).

The default value for filterPktDataOffset is 0 (zero).

filterPktData
{ filterEntry 4 }

The data that is to be matched with the input packet.

For each packet received, this filter and the accompanying filterPktDataMask
and filterPktDataNotMask will be adjusted for the offset. The only bits relevant
to this match algorithm are those that have the corresponding filterPktDataMask
bit equal to one. The following three rules are then applied to every packet:

Rule If . . . And . . . Then . . .

1 The packet is too short Does not have data
corresponding to part of
the filterPktData

The packet will fail this
data match.

2 The bit from the packet
is not equal to the
corresponding bit from
the filterPktData

For each relevant bit
from the packet with
the corresponding
filterPktDataNotMask
bit set to zero

The packet will fail this
data match.

3 For every relevant
bit from the packet
with the corresponding
filterPktDataNotMask
bit set to one

The bit from the
packet is equal to the
corresponding bit from
the filterPktData

The packet will fail this
data match.

Any packets that have not failed any of the three matches above have passed this
data match. This object may not be modified if the associated filterStatus object
is equal to valid(1).

Filter Group 12–3

filterPktDataMask
{ filterEntry 5 }

The mask that is applied to the match process. After adjusting this mask for
the offset, only those bits in the received packet that correspond to bits set in
this mask are relevant for further processing by the match algorithm. The offset
is applied to filterPktDataMask in the same way it is applied to the filter. For
the purposes of the matching algorithm, if the associated filterPktData object is
longer than this mask, this mask is conceptually extended with 1 bits until it
reaches the length of the filterPktData object.

This object may not be modified if the associated filterStatus object is equal to
valid(1).

filterPktDataNotMask
{ filterEntry 6 }

The inversion mask that is applied to the match process. After adjusting this
mask for the offset, those relevant bits in the received packet that correspond
to bits cleared in this mask must all be equal to their corresponding bits in the
filterPktData object for the packet to be accepted. In addition, at least one of
those relevant bits in the received packet that correspond to bits set in this mask
must be different to its corresponding bit in the filterPktData object.

For the purposes of the matching algorithm, if the associated filterPktData object
is longer than this mask, this mask is conceptually extended with 0 bits until it
reaches the length of the filterPktData object.

This object may not be modified if the associated filterStatus object is equal to
valid(1).

filterPktStatus
{ filterEntry 7 }

The status that is to be matched with the input packet. The only bits relevant to
this match algorithm are those that have the corresponding filterPktStatusMask
bit equal to one.

The following two rules are then applied to every packet:

1. For each relevant bit from the packet status with the corresponding
filterPktStatusNotMask bit set to zero, if the bit from the packet status is
not equal to the corresponding bit from the filterPktStatus, then the packet
will fail this status match.

12–4 Filter Group

2. If for every relevant bit from the packet status with the corresponding
filterPktStatusNotMask bit set to one, the bit from the packet status is
equal to the corresponding bit from the filterPktStatus, then the packet will
fail this status match.

Any packets that have not failed one of the two matches above have passed this
status match.

The value of the packet status is a sum. This sum initially takes the value zero.
Then, for each error (E) that has been discovered in this packet, 2 raised to a
value representing E is added to the sum. The errors and the bits that represent
them are dependent on the media type of the interface that this channel is
receiving packets from.

The errors defined for a packet captured off of an Ethernet interface are as
follows:

0 — Packet is longer than 1518 octets
1 — Packet is shorter than 64 octets
2 — Packet experienced a CRC or Alignment error

For example, an Ethernet fragment would have a value of 6 (2^1 + 2^2).

As this MIB is expanded to new media types, this object will have other media-
specific errors defined.

For the purposes of this status matching algorithm, if the packet status is longer
than this object, filterPktStatus is conceptually extended with 0 bits until it
reaches the size of the packet status.

This object may not be modified if the associated filterStatus object is equal to
valid(1).

filterPktStatusMask
{ filterEntry 8 }

The mask that is applied to the status match process. Only those bits in the
received packet that correspond to bits set in this mask are relevant for further
processing by the status match algorithm. For the purposes of the matching
algorithm, if the associated filterPktStatus object is longer than this mask,
this mask is conceptually extended with 1 bits until it reaches the size of the
filterPktStatus. In addition, if a packet status is longer than this mask, this
mask is conceptually extended with 0 bits until it reaches the size of the packet
status.

This object may not be modified if the associated filterStatus object is equal to
valid(1).

Filter Group 12–5

filterPktStatusNotMask
{ filterEntry 9 }

The inversion mask that is applied to the status match process. Those relevant
bits in the received packet status that correspond to bits cleared in this mask
must all be equal to their corresponding bits in the filterPktStatus object for
the packet to be accepted. In addition, at least one of those relevant bits in the
received packet status that correspond to bits set in this mask must be different
to its corresponding bit in the filterPktStatus object for the packet to be accepted.

For the purposes of the matching algorithm, if the associated filterPktStatus
object or a packet status is longer than this mask, this mask is conceptually ex-
tended with 0 bits until it reaches the longer of the lengths of the filterPktStatus
object or the packet status.

This object may not be modified if the associated filterStatus object is equal to
valid(1).

filterOwner
{ filterEntry 10 }

The entity that configured this entry and is using the resources assigned to it.

filterStatus
{ filterEntry 11 }

The status of this filter entry.

channelTable
{ filter 2 }

A list of packet channel entries.

channelEntry
{ channelTable 1 }

A set of parameters for a packet channel applied on a particular interface:

Entry Description

channelIndex INTEGER (1 . . . 65535)

channelIfIndex INTEGER (1 . . . 65535)

channelAcceptType INTEGER

channelDataControl INTEGER

channelTurnOnEventIndex INTEGER (0 . . . 65535)

12–6 Filter Group

Entry Description

channelTurnOffEventIndex INTEGER (0 . . . 65535)

channelEventIndex INTEGER (0 . . . 65535)

channelEventStatus INTEGER

channelMatches Counter

channelDescription DisplayString (SIZE (0 . . . 127))

channelOwner OwnerString

channelStatus INTEGER

channelIndex
{ channelEntry 1 }

An index that uniquely identifies an entry in the channel table. Each entry
defines one channel as a logical data and event stream.

channelIfIndex
{ channelEntry 2 }

The value of this object uniquely identifies the interface on this remote network
monitoring device to which the associated filters are applied to allow data into
this channel. The interface identified by a particular value of this object is the
same interface as identified by the same value of the ifIndex object. The filters in
this group are applied to all packets on the local network segment attached to the
identified interface.

This object may not be modified if the associated channelStatus object is equal to
valid(1).

channelAcceptType
{ channelEntry 3 }

This object controls the action of the filters associated with this channel. If this
object is equal to acceptMatched(1), packets will be accepted to this channel
if they are accepted by both the packet data and packet status matches of an
associated filter. If this object is equal to acceptFailed(2), packets will be accepted
to this channel only if they fail either the packet data match or the packet status
match of each of the associated filters.

This object may not be modified if the associated channelStatus object is equal to
valid(1).

Filter Group 12–7

channelDataControl
{ channelEntry 4 }

This object controls the flow of data through this channel. If this object is on(1),
data, status, and events flow through this channel. If this object is off(2), data,
status, and events will not flow through this channel.

The default value for channelDataControl is off.

channelTurnOnEventIndex
{ channelEntry 5 }

The value of this object identifies the event that is configured to turn the
associated channelDataControl from OFF to ON when the event is generated.
The event identified by a particular value of this object is the same event as
identified by the same value of the eventIndex object. If there is no corresponding
entry in the eventTable, then no association exists. In fact, if no event is intended
for this channel, channelTurnOnEventIndex must be set to zero, a nonexistent
event index.

This object may not be modified if the associated channelStatus object is equal to
valid(1).

channelTurnOffEventIndex
{ channelEntry 6 }

The value of this object identifies the event that is configured to turn the
associated channelDataControl from ON to OFF when the event is generated.
The event identified by a particular value of this object is the same event as
identified by the same value of the eventIndex object. If there is no corresponding
entry in the eventTable, then no association exists. In fact, if no event is intended
for this channel, channelTurnOffEventIndex must be set to zero, a nonexistent
event index.

This object may not be modified if the associated channelStatus object is equal to
valid(1).

channelEventIndex
{ channelEntry 7 }

The value of this object identifies the event that is configured to be generated
when the associated channelDataControl is ON and a packet is matched. The
event identified by a particular value of this object is the same event as identified
by the same value of the eventIndex object. If there is no corresponding entry in
the eventTable, then no association exists. In fact, if no event is intended for this
channel, channelEventIndex must be set to zero, a nonexistent event index.

12–8 Filter Group

This object may not be modified if the associated channelStatus object is equal to
valid(1).

channelEventStatus
{ channelEntry 8 }

The event status of this channel.

If this channel is configured to generate events when packets are matched, a
means of controlling the flow of those events is often needed. When this object
is equal to eventReady(1), a single event may be generated, after which this
object will be set by the probe to eventFired(2). While in the eventFired(2) state,
no events will be generated until the object is modified to eventReady(1) (or
eventAlwaysReady(3)). The management station can thus easily respond to a
notification of an event by reenabling this object.

If the management station wants to disable this flow control and allow events to
be generated at will, this object may be set to eventAlwaysReady(3).

Note

Disabling the flow control is not recommended as it can result in high
network traffic or other performance problems.

The default value for channelEventStatus is eventReady.

channelMatches
{ channelEntry 9 }

The number of times this channel has matched a packet. Note that this object is
updated even when channelDataControl is set to OFF.

channelDescription
{ channelEntry 10 }

A comment describing this channel.

channelOwner
{ channelEntry 11 }

The entity that configured this entry and is using the resources assigned to it.

channelStatus
{ channelEntry 12 }

The status of this channel entry.

Filter Group 12–9

13
Packet Capture Group

Implementation of the Packet Capture group is optional.

The Packet Capture group requires implementation of the Filter group.

The Packet Capture group allows packets to be captured each time a filter is
matched. The bufferControlTable controls the captured packets output from a
channel that is associated with it. The captured packets are placed in entries in
the captureBufferTable. These entries are associated with the bufferControlEntry
on whose behalf they were stored.

Packet Capture Group 13–1

bufferControlTable
{ capture 1 }

A list of buffer control entries.

bufferControlEntry
{ bufferControlTable 1 }

A set of parameters that control the collection of a stream of packets that have
matched filters:

Entry Description

bufferControlIndex INTEGER (1 . . . 65535)

bufferControlChannelIndex INTEGER (1 . . . 65535)

bufferControlFullStatus INTEGER

bufferControlFullAction INTEGER

bufferControlCaptureSliceSize INTEGER

bufferControlDownloadSliceSize INTEGER

bufferControlDownloadOffset INTEGER

bufferControlMaxOctetsRequested INTEGER

bufferControlMaxOctetsGranted INTEGER

bufferControlCapturedPackets INTEGER

bufferControlTurnOnTime TimeTicks

bufferControlOwner OwnerString

bufferControlStatus INTEGER

bufferControlIndex
{ bufferControlEntry 1 }

An index that uniquely identifies an entry in the bufferControl table. The value
of this index shall never be zero. Each entry defines one set of packets that is
captured and controlled by one or more filters.

bufferControlChannelIndex
{ bufferControlEntry 2 }

An index that identifies the channel that is the source of packets for this
bufferControl table. The channel identified by a particular value of this index
is the same as identified by the same value of the channelIndex object.

This object may not be modified if the associated bufferControlStatus object is
equal to valid(1).

13–2 Packet Capture Group

bufferControlFullStatus
{ bufferControlEntry 3 }

This object shows whether the buffer has room to accept new packets or if it is
full.

If . . . And . . . Then . . .

The status is spaceAvail-
able(1)

– The buffer is accepting new
packets normally.

The status is full(2) The associated bufferCon-
trolFullAction object is
wrapWhenFull

The buffer is accepting new
packets by deleting enough of
the oldest packets to make room
for new ones as they arrive.

The status is full(2) The bufferControl-
FullAction object is
lockWhenFull

The buffer has stopped
collecting packets.

When this object is set to full(2), the probe must not later set it to spaceAvail-
able(1) except in the case of a significant gain in resources such as an increase of
bufferControlOctetsGranted. In particular, the wrap-mode action of deleting old
packets to make room for newly arrived packets must not affect the value of this
object.

bufferControlFullAction
{ bufferControlEntry 4 }

Controls the action of the buffer when it reaches the full status. When in the
lockWhenFull(1) state a packet is added to the buffer that fills the buffer, the
bufferControlFullStatus will be set to full(2) and this buffer will stop capturing
packets.

Packet Capture Group 13–3

bufferControlCaptureSliceSize
{ bufferControlEntry 5 }

The maximum number of octets of each packet that will be saved in this capture
buffer. For example:

If . . . And . . . Then . . .

A 1500 octet packet is
received by the probe

This object is set to 500 Only 500 octets of the packet
will be stored in the associated
capture buffer.

This variable is set to 0 – The capture buffer will save as
many octets as is possible.

This object may not be modified if the associated bufferControlStatus object is
equal to valid(1).

The default value for bufferControlCaptureSize is 100.

bufferControlDownloadSliceSize
{ bufferControlEntry 6 }

The maximum number of octets of each packet in this capture buffer that will be
returned in an SNMP retrieval of that packet. For example:

If . . . And . . . Then . . .

500 octets of a packet
have been stored in the
associated capture buffer,
the associated bufferCon-
trolDownloadOffset is
0

This object is set to 100 The captureBufferPacket object
that contains the packet will
contain only the first 100 octets
of the packet.

A prudent manager will take into account possible interoperability or
fragmentation problems that may occur if the download slice size is set too
large. In particular, conformant SNMP implementations are not required to
accept messages whose length exceeds 484 octets, although they are encouraged
to support larger datagrams whenever feasible.

The default value for bufferControlDownloadSliceSize is 100.

13–4 Packet Capture Group

bufferControlDownloadOffset
{ bufferControlEntry 7 }

The offset of the first octet of each packet in this capture buffer that will be
returned in an SNMP retrieval of that packet. For example:

If . . . And . . . Then . . .

500 octets of a packet
have been stored in the
associated capture buffer

This object is set to 100 The captureBufferPacket object
that contains the packet will
contain bytes starting 100
octets into the packet.

The default value for bufferControlDownloadOfset is 0 (zero).

bufferControlMaxOctetsRequested
{ bufferControlEntry 8 }

The requested maximum number of octets to be saved in this captureBuffer,
including any implementation-specific overhead. If this variable is set to –1, the
capture buffer will save as many octets as is possible.

When this object is created or modified, the probe should set bufferControlMax-
OctetsGranted as closely to this object as is possible for the particular probe
implementation and available resources. However, if the object has the special
value of –1, the probe must set bufferControlMaxOctetsGranted to –1.

The default value for bufferControlMaxOctetsRequested is –1.

bufferControlMaxOctetsGranted
{ bufferControlEntry 9 }

The maximum number of octets that can be saved in this captureBuffer, including
overhead. If this variable is –1, the capture buffer will save as many octets as
possible.

When the bufferControlMaxOctetsRequested object is created or modified, the
probe should set this object as closely to the requested value as is possible for the
particular probe implementation and available resources. However, if the request
object has the special value of –1, the probe must set this object to –1. The probe
must not lower this value except as a result of a modification to the associated
bufferControlMaxOctetsRequested object.

When this maximum number of octets is reached and a new packet is to be
added to this capture buffer and the corresponding bufferControlFullAction is set
to wrapWhenFull(2), enough of the oldest packets associated with this capture
buffer shall be deleted by the agent so that the new packet can be added. If the
corresponding bufferControlFullAction is set to lockWhenFull(1), the new packet

Packet Capture Group 13–5

shall be discarded. In either case, the probe must set bufferControlFullStatus to
full(2).

When the value of this object changes to a value less than the current
value, entries are deleted from the captureBufferTable associated with this
bufferControlEntry. Enough of the oldest of these captureBufferEntries shall be
deleted by the agent so that the number of octets used remains less than or equal
to the new value of this object.

When the value of this object changes to a value greater than the current value,
the number of associated captureBufferEntries may be allowed to grow.

bufferControlCapturedPackets
{ bufferControlEntry 10 }

The number of packets currently in this captureBuffer.

bufferControlTurnOnTime
{ bufferControlEntry 11 }

The value of sysUpTime when this capture buffer was first turned on.

bufferControlOwner
{ bufferControlEntry 12 }

The entity that configured this entry and is using the resources assigned to it.

bufferControlStatus
{ bufferControlEntry 13 }

The status of this buffer control entry.

captureBufferTable
{ capture 2 }

A list of packets captured off of a channel.

captureBufferEntry
{ captureBufferTable 1 }

A packet captured off of an attached network:

Entry Description

captureBufferControlIndex INTEGER (1 . . . 65535)

captureBufferIndex INTEGER

captureBufferPacketID INTEGER

13–6 Packet Capture Group

Entry Description

captureBufferPacketData OCTET STRING

captureBufferPacketLength INTEGER

captureBufferPacketTime INTEGER

captureBufferPacketStatus INTEGER

captureBufferControlIndex
{ captureBufferEntry 1 }

The index of the bufferControlEntry with which this packet is associated.

captureBufferIndex
{ captureBufferEntry 2 }

An index that uniquely identifies an entry in the captureBuffer table associated
with a particular bufferControlEntry. This index will start at 1 and increase by
one for each new packet added with the same captureBufferControlIndex.

captureBufferPacketID
{ captureBufferEntry 3 }

An index that describes the order of packets that are received on a particular
interface. The packetID of a packet captured on an interface is defined to be
greater than the packetIDs of all packets captured previously on the same
interface. As the captureBufferPacketID object has a maximum positive value of
2^31 � 1, any captureBufferPacketID object shall have the value of the associated
packet’s packetID mod 2^31.

captureBufferPacketData
{ captureBufferEntry 4 }

The data inside the packet. It starts at the beginning of the packet plus any
offset specified in the associated bufferControlDownloadOffset, including any link
level headers.

The length of the data in this object is . . . Minus . . .

The minimum length of the captured packet The offset

The length of the associated bufferControlCap-
tureSliceSize

The offset And the associated
bufferControlDownload-
SliceSize.

If this minimum is less than zero, this object shall have a length of zero.

Packet Capture Group 13–7

captureBufferPacketLength
{ captureBufferEntry 5 }

The actual length (off the wire) of the packet stored in this entry, including FCS
octets.

captureBufferPacketTime
{ captureBufferEntry 6 }

The number of milliseconds that had passed since this capture buffer was first
turned on when this packet was captured.

captureBufferPacketStatus
{ captureBufferEntry 7 }

A value which indicates the error status of this packet.

The value of this object is defined in the same way as filterPacketStatus. The
value is a sum. This sum initially takes the value zero. Then, for each error (E)
that has been discovered in this packet, 2 raised to a value representing E is
added to the sum.

The errors defined for a packet captured off of an Ethernet interface are as
follows:

0 Packet is longer than 1518 octets

1 Packet is shorter than 64 octets

2 Packet experienced a CRC or Alignment error

3 First packet in this capture buffer after it was detected that some packets were not
processed correctly

For example, an Ethernet fragment would have a value of 6 (2^1 + 2^2).

As this MIB is expanded to new media types, this object will have other media-
specific errors defined.

13–8 Packet Capture Group

14
Event Group

Implementation of the Event group is optional.

The Event group controls the generation and notification of events from this
device. Each entry in the eventTable describes the parameters of the event that
can be triggered. Each event entry is fired by an associated condition located
elsewhere in the MIB. An event entry may also be associated with a function
elsewhere in the MIB that will be executed when the event is generated. For
example, a channel may be turned on or off by the firing of an event.

Each eventEntry may optionally specify that a log entry be created on its behalf
whenever the event occurs. Each entry may also specify that notification should
occur by way of SNMP trap messages. In this case, the community for the trap
message is given in the associated eventCommunity object. The enterprise and
specific trap fields of the trap are determined by the condition that triggered the
event. Three traps are defined in PROBEwatch: risingAlarm, fallingAlarm, and
packetMatch. If the eventTable is triggered by a condition specified elsewhere,
the enterprise and specific trap fields must be specified for traps generated for
that condition.

Event Group 14–1

eventTable
{ event 1 }

A list of events to be generated.

eventEntry
{ eventTable 1 }

A set of parameters that describe an event to be generated when certain
conditions are met:

Entry Description

eventIndex INTEGER (1 . . . 65535)

eventDescription DisplayString (SIZE (0 . . . 127))

eventType INTEGER

eventCommunity OCTET STRING (SIZE (0 . . . 127))

eventLastTimeSent TimeTicks

eventOwner OwnerString

eventStatus INTEGER

eventIndex
{ eventEntry 1 }

An index that uniquely identifies an entry in the event table. Each entry defines
one event that is to be generated when the appropriate conditions occur.

eventDescription
{ eventEntry 2 }

A comment describing this event entry.

eventType
{ eventEntry 3 }

The type of notification that the probe will make about this event. In the case of
log, an entry is made in the log table for each event. In the case of snmp-trap, an
SNMP trap is sent to one or more management stations.

eventCommunity
{ eventEntry 4 }

If an SNMP trap is to be sent, it will be sent to the SNMP community specified
by this octet string. In the future, this table will be extended to include the party
security mechanism. This object shall be set to a string of length zero if that
mechanism is to be used to specify the destination of the trap.

14–2 Event Group

eventLastTimeSent
{ eventEntry 5 }

The value of sysUpTime at the time this event entry last generated an event. If
this entry has not generated any events, this value will be zero.

eventOwner
{ eventEntry 6 }

The entity that configured this entry and is using the resources assigned to it.

If this object contains a string starting with ‘‘monitor’’ and has associated entries
in the log table, all connected management stations should retrieve those log
entries, as they may have significance to all management stations connected to
this device.

eventStatus
{ eventEntry 7 }

The status of this event entry.

If this object is not equal to valid(1), all associated log entries shall be deleted by
the agent.

logTable
{ event 2 }

A list of events that have been logged.

logEntry
{ logTable 1 }

A set of data describing an event that has been logged:

Entry Description

logEventIndex INTEGER (1 . . . 65535)

logIndex INTEGER

logDescription DisplayString (SIZE (0 . . . 255))

logEventIndex
{ logEntry 1 }

The event entry that generated this log entry. The log identified by a particular
value of this index is associated with the same eventEntry as identified by the
same value of eventIndex.

Event Group 14–3

logIndex
{ logEntry 2 }

An index that uniquely identifies an entry in the log table among those generated
by the same eventEntries. These indexes are assigned beginning with 1 and
increase by one with each new log entry. The association between values of
logIndex and logEntries is fixed for the lifetime of each logEntry. The agent may
choose to delete the oldest instances of logEntry as required because of lack of
memory. It is an implementation-specific matter as to when this deletion may
occur.

logTime
{ logEntry 3 }

The value of sysUpTime when this log entry was created.

logDescription
{ logEntry 4 }

An implementation dependent description of the event that activated this log
entry.

14–4 Event Group

A
Specifications and Parts

This appendix provides the following specifications for DECpacketprobe 90:

• Physical dimensions

• Environmental specifications

• Electrical specifications

• Console connector pin-out

The appendix also lists the replacement parts for DECpacketprobe 90.

A.1 Dimensions
The following table lists the physical dimensions of DECpacketprobe 90:

Dimension Measurement

Height 3.5 cm (1.4 in)

Width 28.0 cm (11.0 in)

Depth 14.0 cm (5.5 in)

Weight 0.77 kg (1.7 lb)

Specifications and Parts A–1

A.2 Environmental Specifications
The DECpacketprobe 90 is designed to operate in an office environment or
equipment room environment, such as telephone closets or satellite equipment
rooms. It is not intended to operate in a sealed environment.

A.2.1 Operating Environment
The following table provides the operating environment specifications:

Condition Value

Temperature 5°C to 50°C (41°F to 122°F)

Maximum rate of change 20°C/hr (36°F/hr)

Relative humidity 10% to 95% (noncondensing)

Wet-bulb temperature 32°C (90°F) maximum

Dew point 2°C (36°F) minimum

Altitude Sea level to 2.4 km (8000 ft)

Air flow Convectively cooled. A minimum of 10 cm (4 inches) of space
must be provided on both ends of the unit for adequate air
flow.

A.2.2 Shipping Environment
The following table provides the shipping environment specifications:

Condition Value

Temperature –40°C to 66°C (–40°F to 151°F)

Relative humidity 10% to 95% (noncondensing)

Altitude Sea level to 4.9 km (16,000 ft)

A–2 Specifications and Parts

A.3 Electrical Specifications
The standalone DECpacketprobe 90 has a separate self-contained power supply
and a power cord.

A.3.1 Power Supply (H7827–BA)
The following table provides the power supply specifications:

Specification Value

Voltage (domestic) 104 Vac to 128 Vac (nominal 120 Vac)

Voltage (international) 208 Vac to 256 Vac (nominal 240 Vac)

AC cord length 6 ft

Current at 120 volts 0.25 A

Current at 240 volts 0.125 A

Frequency 50 Hz to 60 Hz

Power consumption 9 W

Output voltage 1 5.1 Vdc

Output voltage 2 12.0 Vdc

DC cord length 8 ft

Output current 1.8 A

A.3.2 Input Voltage
The following table provides the input voltage specifications:

Specification Value

Input voltages 4.75 to 5.25 Vdc

Input current 0.9 A

Specifications and Parts A–3

A.4 Console Connector Pin-Out (RS–232/DB9)
The following table provides the console connector pin-out:

Pin Signal

1 DCD

2 SD

3 RD

4 DTR

5 GND

6 DSR

7 RTS

8 CTS

9 RI

A.5 Replacement Parts
The following table lists the replacement parts and order numbers for
DECpacketprobe 90:

Replacement Part Order Number

DECpacketprobe 90 DERMN–MA

Power supply, 110/220 Vac H7827–BA

Back cover H0342–AA

A–4 Specifications and Parts

B
Documentation and Ordering

Information

This appendix lists documentation that is related to DECpacketprobe 90. It also
provides ordering information.

B.1 Related Documentation
You can order the following documents from Digital:

Document Title Order Number

DEChub 90 Owner’s Manual EK–DEHUB–OM

DEChub 900 Owner’s Manual EK–DH2MS–OM

Open DECconnect Building Wiring Components and Application
Catalog

EB–K2407–42

DECconnect System Planning and Configuration Guide EK–DECSY–CG

PROBEwatch for ULTRIX User’s Guide AA–Q0GAA–TE

POLYCENTER Network Manager 200 QA–VM9AA–GZ

POLYCENTER SNMP Manager 300 QA–YUGAB–GZ

B.2 Ordering Information
You can order replacement parts and documentation by mail, phone, or
electronically.

Need Help?
If you need help deciding which documentation best meets your needs, please call
1–800–DIGITAL (1–800–344–4825) and press 2 for technical assistance.

Documentation and Ordering Information B–1

Electronic Orders
To place an order through your account at the Electronic Store, dial 1–800–234–1998,
using a modem set to 2400 or 9600 baud. You must use a VT terminal or
terminal emulator set at 8 bits, no parity. If you need help, call 1–800–DIGITAL
(1–800–344–4825) and ask for an Electronic Store specialist.

Telephone or Direct Mail Orders
If you are from . . . Call . . . Or write . . .

U.S.A. DECdirect
Phone: 800–DIGITAL
(800–344–4825)
FAX: (603) 884–5597

Digital Equipment Corporation
P.O. Box CS2008
Nashua, NH 03061

Puerto Rico Phone: (809) 781–0505
FAX: (809) 749–8377

Digital Equipment Caribbean, Inc.
3 Digital Plaza, 1st Street
Suite 200
Metro Office Park
San Juan, Puerto Rico 00920

Canada Phone: 800–267–6215
FAX: (613) 592–1946

Digital Equipment of Canada Ltd.
100 Herzberg Road
Kanata, Ontario, Canada K2K 2A6
Attn: DECdirect Sales

International — Local Digital subsidiary or approved
distributor

Digital Personnel
You can order documentation by electronic mail. Contact the following
organizations for instructions:

If you need . . . Call . . . Contact . . .

Software documentation1DTN: 241–3023
(508) 874–3023

Software Supply Business
Digital Equipment Corporation
1 Digital Drive
Westminster, MA 01473

Hardware documen-
tation

DTN: 234–4325
(508) 351–4325
FAX: (508) 351–4467

Publishing & Circulation Services
Digital Equipment Corporation
NRO2–2/I5
444 Whitney Street
Northboro, MA 01532

1Call to request an Internal Software Order Form (EN–01740–07).

B–2 Documentation and Ordering Information

Index

A
Agent

managed, 1–2
unmanaged, 2–1
variables, 3–3

Air flow, operating, A–2
Alarm group, 8–1
Altitude

operating, A–2
shipping, A–2

B
Back cover

See Cover
Backplane

connector, 1–9
DEChub 90, 1–2
DEChub 900, 1–2

Backplane configuration
installation, 2–6 to 2–7
problem solving, 4–3

10Base2, 1–2
10BaseT, 1–2
BNC network connector, 1–9

C
Communities

description of, 1–7
naming community strings, 1–7

Configuration, 3–1
Connecting cables, 2–4
Connection, sample, 1–3
Connectors

backplane, 1–9
description of, 1–9
diagram of, 1–8
network (BNC), 1–9
power, 1–9

Console
action objects, 3–3
actions, 3–3
help screen, 3–2
main screen, 3–1
starting a session, 3–1

Cover
description of, 1–9
diagram of, 1–8
removal of, 2–2
replacement part, A–4

CSMA/CD, 1–2

D
DB9 pin-out, A–4
DC OK indicator, 1–9
DEChub 90, 1–2
DEChub 900, 1–2
Decimal definitions

for object identifier prefix, 5–3
for RMON–MIB object identifier, 5–3

DECpacketprobe 90
community strings, 1–7
how it works, 1–2
input current, A–3

Index–1

DECpacketprobe 90 (cont’d)
input voltage, A–3
replacement parts, A–4

Description, 1–2
Dew point, operating, A–2
Dimensions, A–1
Documentation

ordering, B–1
related, B–1

Dot notation, overview of, 5–1
DropEvents statistic, 4–2

E
Environmental specifications

operating, A–2
shipping, A–2

EtherHistory, 7–5
EtherStats, 6–2
Event group, 14–1

F
Features, 1–1
Filter group, 12–1

H
HistoryControl, 7–2
History group, 7–1
Host group, 9–1
Host Top N group, 10–1
Hot swap, 2–6

I
IEEE 802.3, 1–2
Indicators

DC OK, 1–9
network activity, 1–9
network OK, 1–9

Input current, A–3
Input voltage, A–3
Installation, 2–1

backplane configuration, 2–6 to 2–7
standalone unit, 2–1

Installation (cont’d)
tabletop, 2–1
wallmount, 2–2 to 2–5

Inventory, 2–1

L
LEDs

See also Indicators
description of, 1–9
diagram of, 1–8

M
Managed objects, 5–4
Matrix group, 11–1
Multiple management stations

potential conflicts, 5–7
resource sharing, 5–7
row addition, 5–9

N
Network

activity display, 1–9
connector (BNC), 1–9
CSMA/CD, 1–2
IEEE 802.3, 1–2
management framework, 5–4

O
Operating environment, specifications for,

A–2

P
Packet Capture group, 13–1
Parts, replacement, A–4
Performance, influences on, 4–1
Pin-out

DB9, A–4
RS–232, A–4

Power
connector, 1–9
120 Vac, 2–1

Index–2

Power (cont’d)
240 Vac, 2–1

Power supply, 2–1
current, A–3
frequency, A–3
output current, A–3
output voltage, A–3
power consumption, A–3
replacement part, A–4
specifications for, A–3
voltage, A–3

Powerup, 2–8
Problem solving, 4–2

backplane configuration, 4–3 to 4–4
performance conditions, 4–1
standalone unit, 4–2 to 4–3

Protocol
analysis, 4–1
monitoring, 4–1

R
Relative humidity

operating, A–2
shipping, A–2

Remote network monitoring
control of devices, 5–7
goals

multiple managers, 5–6
offline operation, 5–5
pre-emptive monitoring, 5–5
problem detection and reporting,

5–5
value added data, 5–5

management information base, 5–1
overview, 5–5

Removing the back cover, 2–2
Replacement parts

ordering, B–1
order numbers, A–4

Reset, 2–8
RFC

1155, 5–4
1156, 5–4
1157, 5–4

RMON–MIB, 1–4
groups, 1–4
Structure, 5–6

RS–232 pin-out, A–4

S
Sample connection, 1–3
Shipping environment, specifications for,

A–2
SNMP

Get, 5–2
Get-next, 5–2
overview of dot notation, 5–1
Set, 5–2
Trap, 5–2

Specifications, A–1 to A–3
dimensions, A–1
environmental, A–2
power supply, A–3

Standalone unit
installation, 2–1, 2–2 to 2–5
problem solving, 4–2

Standards, 1–4
Statistics group, 6–1

T
Tabletop installation, 2–1
Temperature

operating, A–2
maximum rate of change, A–2

shipping, A–2

W
Wallmount installation, standalone, 2–2

to 2–5
Weight, A–1

Index–3

