#$Nomenclature and common abbreviations

Here are a few of the abbreviations/etc used in this article:

Term	Meaning

ctor	constructor

copy-ctor	copy constructor (also "X(const X&)", pronounced "X-X-ref")

dtor	destructor

fn	function

fns	functions

ptr	pointer, a C/C++ construct declared by: int * p;

ref	reference, a C++ construct declared by: int & r;

const	a C++ keyword which is short for "constant"

OO	object-oriented

OOP	object-oriented programming

OOPL	object-oriented programming language

method	an alternate term for "member function"

message	an alternate term for "invoking a member function"

nil	the "zero" or "empty" pointer ("NULL" in C, "0" in C++)

�
#$What books are available for C++?

Lots, with more just about every other week. Here are a few in no particular order (comments are my own):

"The C++ Programming Language, second edition", Stroustrup, Addison/Wesley

	A rich, in-depth intro text; covers rudiments of OOD as well as OOP

	ISBN 0-201-12078-X

"A C++ Primer, 2nd edition", Lippman, Addison/Wesley

	1st ed. considered std intro-C++ text; does not assume C; has some OOD

	ISBN 0-201-54848-8

"Annotated C++ Reference Manual", Ellis and Stroustrup, Addison/Wesley

	Heavy reading; definitely not for beginners; gives *ALL* the details.

	ISBN 0-201-51459-1

"Advanced C++ Programming Styles and Idioms", Coplien, Addison-Wesley, 1992

	ref-counting, wrappers, functionoids, "Self"/"Smalltalk" styles, etc

	ISBN 0-201-54855-0

"A C++ Toolkit", Shapiro, Prentice Hall

	Provides many small stand-alone classes; code is publically usable

	ISBN 0-13-127663-8

"Mastering C++", Horstmann, Wiley

	Wiley hasn't sent me one to review yet, but I hear it's great

"Teach Yourself C++", Stevens, MIS Press

	An easy-to-read short book for C++ beginners

	ISBN 1-558-28027-8

"A C++ Primer, first edition", Lippman, Addison/Wesley

	Slightly out-of-date; solidly reference quality wrt the language proper

	ISBN 0-201-16487-6

"Programming in C++", Dewhurst and Stark, Prentice Hall

	How-to-use C++, shows many idioms of the language

"Using C++", Eckel, McGraw-Hill

	Shows some of the ways C++ can be used as a better C; MS-DOS

"Data Abstraction and OO Programming in C++", Gorlen/Orlow/Plexico, Wiley

	Describes how to use NIHCL (see question on "NIHCL")

	ISBN 0-471-92346-X

"An Intro to OO Programming", Tim Budd, Addison-Wesley, 1991

	Covers OOP in general; compares/contrasts several OOPLs including C++

	ISBN 0-201-54709-0

"Object-Oriented Design with Applications", Grady Booch, Benjamin/Cummings,1991

	Excellent 1st book on OO design; read on Classification and Abstraction

	ISBN 0-8053-0091-0

"Object-Orientation: Concepts, Languages, Databases, User interfaces",

	Khoshafian and Abnous, J.Wiley, 1990

	ISBN 0-471-51801-8

"The Waite Group's C++ Programming", Berry

"An Introduction to Object-Oriented Programming and C++", Weiner & Pinson, A/W

"Object-Oriented Program Design with Examples in C++", Mullin, Addison-Wesley

"Hands-on C++ Programming", Isaac and Miller, Addison-Wesley

"C++ for C Programmers", Pohl, Benjamin/Cummings

"The C++ Programming Language, first edition", Stroustrup, Addison/Wesley

	Out of date but a classic; get it to find out where the language "was"

	ISBN 0-201-12078-X

"The C++ Answer Book", Hansen, Addison/Wesley

	Answers to the exercises in Stroustrup's first ed; solid "how-to" text

	ISBN 0-201-11497-6

"Turbo C++ DiskTutor", Greg Voss and Paul Chui, McGraw-Hill

	ISBN 0-07-881526-6

"Object-Oriented Software Construction", Meyer, Prentice Hall

	Chaps 1-4 are about OOP in general; the rest is about Eiffel language

	ISBN 0-13-629049-3

Conference proceedings:

	Proceedings of the "OOPSLA" conferences

	Proceedings of the "C++ At Work" conferences

	Proceedings of the "USENIX C++" conferences

Periodicals:

	The C++ Report

	Journal of Object-Oriented Programming

	Journal of C++

	the working papers of the ANSI-C++ committee

Usenix newsgroups and mailing lists:

	comp.lang.c++

	comp.std.c++

	comp.object

	BIX

	Turbo-C++ mailing list

�
#$Is C++ backward compatible with ANSI C?

Almost.

C++ is as close as possible to compatible with C but no closer. In practice, the major difference is that C++ requires prototypes, and that "f()" declares a function that takes no parameters, while ANSI-C rules state that "f()" declares a function that takes any number of parameters of any type. There are some very subtle differences as well, like the sizeof a char literal being equal to the sizeof a char (in ANSI-C, sizeof('x') is the sizeof an int). Structure "tags" are in the same namespace as other names in C++, but C++ has some warts to take care of backward compatibility here.

�
#$Where can I ftp a copy of the latest ANSI C++ draft standard?

ANSI standards and/or drafts are NOT available in machine readable form. There is NOT an "ftp" site that has a copy. You can get a paper copy ($65) from:

 X3 Secretariat

 CBEMA

 1250 I Street NW

 Suite 200

 Washington, DC 20005

 202-626-5738

Ask for the latest version of "Working Paper for Draft Proposed American National Standard for Information Systems -- Programming Language C++."

�
#$Are there any C++ standardization efforts underway?

Yes; ANSI (American) and ISO (International) groups are working closely with each other. The ANSI-C++ committee is called "X3J16". The ISO C++ standards group is called "WG21". The major players in the ANSI/ISO C++ standards process includes just about everyone:

AT&T, IBM, DEC, HP, Sun, MS, Borland, Zortech, Apple, OSF, etc ad nauseum. About 70 people attend each meeting. People come from USA, UK, Japan, Germany, Sweden, Denmark, France, ... (all have "local" committees sending official representatives and conducting "local" meetings).

�
#$Who uses C++?

Lots and lots of companies and government sites. Lots.

Statistically, 5 people became new C++ programmers while you read the words of the previous FAQ.

�
#$What are some advantages of C++?

GROWTH OF C++: C++ is by far the most popular OOPL. The number of C++ users is doubling every 7.5 to 9 months. Knowing C++ is a good resume-stuffer (but use it as an OOPL rather than just as a better C).

ENCAPSULATION: Hiding our data structures allows us to change one chunk of a system without breaking other chunks. We provide our software chunks (we call them "classes") with safe interfaces. Users of a chunk use its interface only.The relatively volatile "implementation" of this interface is "encapsulated" ("put into a capsule") to prevent users from becoming reliant on its temporary decisions. In simple C, this was done by making a module's data "static", thus preventing another module from accessing our module's bits.

MULTIPLE INSTANCES: The typical C solution to encapsulation (see above) doesn't support multiple instances of the data (it's hard to make multiple instances of a module's "static" data). If we needed multiple instances in C, we used a "struct" (but this doesn't support "encapsulation"). In C++, we can have both multiple instances and encapsulation via a "class": the "public" part

of a class contains the class's interface (normally these are a special kind of function called a "member function"), and the "private" part of a class contains the class's implementation (typically these are where the bits live).

INLINE FUNCTION CALLS: In straight C, you can achieve "encapsulated structs" by putting a "void*" in a struct (the access functions use pointer casts). This forfeits type safety, and also imposes a function call to access even trivial fields of the struct (if you allowed direct access to

the struct's fields, the underlying data structure would be difficult to change since too many chunks would RELY on it being the "old" way). Function call overhead is small, but can add up. C++ classes allow function calls to be expanded "inline," so you have:

	1) safety of encapsulation

	2) convenience of multiple instances

	3) speed of direct access.

Furthermore the parameter types of these inline functions are checked by the compiler, an improvement over C's #define macros.

OVERLOADING OPERATORS: C++ lets you overload the standard operators on a class, which lets users exploit their intuition (e.g., "myString + yourString" might do string concatenation, "myDate++" might increment the date, "z1 * z2" might multiply complex numbers z1 and z2,

"a[i]" might access the "i"th element of the "linked list" called "a", etc. You can even have "smart pointers" that could "point" to a disk record or wherever ("x = *p" could "dereference" such a pointer, which could seek to the location on disk where p "points" and return its value"). This

allows users to progrom in the language of the problem domain rather than in the language of the machine.

INHERITANCE: We still have just scratched the surface. In fact, we haven't even gotten to the "object-oriented" part yet! Suppose you have a Stack data type with operations push, pop, etc. Suppose you want an InvertableStack, which is "just like" Stack except it also has an "invert"

operation. In "C" style, you'd have to either (1) modify the existing Stack module (trouble if

"Stack" is being used by others), or (2) copy Stack into another file and text edit that file (results in lots of code duplication, another chance to break something tricky in the Stack part of invertableStack, and especially twice as much code to maintain). C++ provides a much

cleaner solution: inheritance. You say "InvertableStack inherits everything from Stack, and

InvertableStack adds the invert operation." Done. Stack itself remains "closed" (untouched, unmodified), and InvertableStack doesn't duplicate the code for push/pop/etc.

POLYMORPHISM AND DYNAMIC BINDING: The real power of OOP isn't just inheritance, but is the ability to pass an InvertableStack around as if it actually were a Stack. This is "safe" since (in C++ at least) the is-a relation follows public inheritance (i.e., a InvertableStack is-a Stack that can also invert itself). Polymorphism and dynamic binding are easiest to understand from an

example, so here's a "classic": a graphical draw package might deal with Circles, Squares,

Rectangles, general Polygons, and Lines. All of these are Shapes. Most of the draw package's functions need a "Shape" parameter (as opposed to some particular kind of shape like Square). E.g., if a Shape is picked by a mouse, the Shape might get dragged across the screen and placed into a new location. Polymorphism and dynamic binding allow the code to work correctly

even if the compiler knows only that the parameter is a "Shape" without knowing the exact kind of Shape it is. Furthermore suppose the "pick_and_drag(Shape*) function just mentioned was compiled on Tuesday, and on Wednesday you decide to add the Hexagon shape. Strange as it sounds, pick_and_drag() will still work with Hexagons, even though the Hexagon didn't even exist when pick_and_drag() was compiled!! (it's not really "amazing" once you understand how the C++ compiler does it -- but it's still very convenient!)

�
#$What is C++? What is OOP?

OO programming techniques are the best way we know of to develop large, complex software applications and systems.

C++ is an OO programming language. C++ can be used both as an OOPL and simply

"as a better C." However if you use it "as a better C," don't expect to get the benefits of object-oriented programming.

OO hype: the software industry is "failing" to meet demands for large, complex software systems. But this "failure" is actually due to our SUCCESSES: our successes have propelled users to ask for more. Unfortunately we created a market hunger that the "structured" analysis,

design and programming techniques couldn't satisfy. This required us to create a better paradigm.

�
#$What is a class?

A class defines a data type, much like a struct would be in C. In a CompScience sense, a type consists of two things: a set of values *and* a set of operations which operate on those values. Thus "int' all by itself isn't a true "type' until you add operations like "add two ints" or "int*int", etc. In exactly the same way, a "class" provides a set of (usually "public") operations, and a set of (usually non-public) data bits representing the abstract values that instances of the type can have. From a C language perspective, a "class" is a "struct" whose members default to "private".

�
#$What is an object?

An object is a region of storage with associated semantics. After the declaration "int i;", we say that "i is an object of type int". In C++/OOP, "object" is usually used to mean "an instance of a class". Thus a classdefines the behavior of possibly many objects (instances).

�
#$What is a reference?

A reference is an alias (an alternate name) for an object. It is frequently used for pass-by-reference; ex:

	void swap(int& i, int& j)

	{

	 int tmp = i;

	 i = j;

	 j = tmp;

	}

	main()

	{

	 int x, y;

	 //...

	 swap(x,y);

	}

Here "i" and "j" are aliases for main's "x" and "y" respectively. The effect is as if you used the C style pass-by-pointer, but the "&" is moved from the caller into the callee. Pascal enthusiasts will recognize this as a VAR param.

�
#$What happens if you assign to a reference?

Assigning to a reference changes the referred-to value, thus a ref is an "Lvalue" (something that can appear on the "Left-hand-side of an assignment statement) for the referred-to value. This insight can be pushed a bit farther by allowing references to be *returned*, thus allowing function calls on the left hand side of an assignment stmt.

�
#$How can you reseat a reference to make it refer to a different object?

Unlike a pointer, once a reference is bound to an object, it can NOT be "reseated" to another object. The reference itself isn't an object; you can't separate the reference from the referred-to-object. Ex: "&ref" is the address of the referred-to-object, not of the reference itself.

�
#$When should I use references, and when should I use pointers?

Old line C programmers sometimes don't like references since the reference semantics they provide isn't *explicit* in the caller's code. After a bit of C++ experience, however, one quickly realizes this "information hiding" is an asset rather than a liability. In particular, reuse-centered OOP tends to migrate the level of abstraction away from the language of the machine toward the language of the problem.

References are usually preferred over ptrs whenever you don't need "reseating" (see early question on "How can you reseat a reference"). This usually means that references are most useful in a class' public interface. References then typically appear on the skin of an object, and pointers on the inside.

The exception to the above is where a function's parameter or return value needs a "sentinel" reference. This is usually best done by returning/taking a pointer, and giving the nil ptr (0) this special significance (references should always alias *objects*, not a dereferenced nil ptr).

�
#$What are inline fns? What are their advantages? How are they declared?

An inline function is a function which gets textually inserted by the compiler, much like a macro. Like macros, performance is improved by avoiding the overhead of the call itself, and (especially!) by the compiler being able to optimize *through* the call ("procedural integration"). Unlike macros, arguments to inline fns are always evaluated exactly once, so the "call" is semantically like a regular function call only faster. Also unlike macros, argument types are checked and necessary conversions are performed correctly.

Beware that overuse of inline functions can cause code bloat, which can in turn have a negative performance impact in paging environments.

They are declared by using the "inline" keyword when the function is defined:

	inline void f(int i, char c) { /*...*/ } //an inline function

or by including the function definition itself within a class:

	class X {

	public:

	 void f(int i, char c) { /*...*/ } //inline function within a class

	};

or by defining the member function as "inline" outside the class:

	class X {

	public:

	 void f(int i, char c);

	};

	//...

	inline void X::f(int i, char c) {/*...*/} //inline fn outside the class

Generally speaking, a function cannot be defined as "inline" after it has been called. Inline functions should be defined in a header file, with "outlined" functions appearing in a ".C" file (or .cpp, etc; see question on file naming conventions).

�
#$What is a constructor? Why would I ever use one?

Objects are required to establish and maintain their own internal coherence. The "maintaining" part is done by ensuring self-consistency is restored after any operation completes (ex: by incrementing the link count after adding a new link to a linked list). The part about "establishing coherence" is the job of a constructor.

Constructors are like "init functions"; they build a valid object. The constructor turns a pile of incoherent arbitrary bits into a living object.

Minimally it initializes any internally used fields that are needed, but it may also allocate resources (memory, files, semaphores, sockets, ...).

A constructor is like a "factory": it builds objects from dust.

"ctor" is a typical abbreviation for constructor.

�
#$What are destructors really for? Why would I ever use them?

Destructors are used to release any resources allocated by the object's constructor. Ex: a Lock class might lock a semaphore, and the destructor will release that semaphore. The usual "resource" being acquired in a constructor (and subsequently released in a destructor) is dynamically allocated memory.

"dtor" is a typical abbreviation for destructor

�
#$What is operator overloading?

Operator overloading allows the basic C/C++ operators to have user-defined meanings on user-defined types (classes). They are syntactic sugar for equivalent function calls; ex:

	class X {

	 //...

	public:

	 //...

	};

	X add(X, X);	//a top-level function that adds two X's

	X mul(X, X);	//a top-level function that multiplies two X's

	X f(X a, X b, X c)

	{

	 return add(add(mul(a,b), mul(b,c)), mul(c,a));

	}

Now merely replace "add" with "operator+" and "mul" with "operator*":

	X operator+(X, X);	//a top-level function that adds two X's

	X operator*(X, X);	//a top-level function that multiplies two X's

	X f(X a, X b, X c)

	{

	 return a*b + b*c + c*a;

	}

�
#$What operators can/cannot be overloaded?

Most can be overloaded. The only C operators that can't be are "." and "?:" (and "sizeof", which is technically an operator). C++ adds a few of its own operators, most of which can be overloaded except "::" and ".*".

Here's an example of the subscript operator (it returns a reference). First withOUT operator overloading:

	class Vec {

	 int data[100];

	public:

	 int& elem(unsigned i) { if (i>99) error(); return data[i]; }

	};

	main()

	{

	 Vec v;

	 v.elem(10) = 42;

	 v.elem(12) += v.elem(13);

	}

Now simply replace "elem" with "operator[]":

	class Vec {

	 int data[100];

	public:

	 int& operator[](unsigned i) { if (i>99) error(); return data[i]; }

	}; //^^^^^^^^^^--formerly "elem"

	main()

	{

	 Vec v;

	 v[10] = 42;

	 v[12] += v[13];

	}

�
#$Can I create a "**" operator for "to-the-power-of" operations?

No.

The names of, precedence of, associativity of, and arity of operators is fixed by the language. There is no "**" operator in C++, so you cannot create one for a class type.

If you doubt the wisdom of this approach, consider the following code:

	x = y ** z;

Looks like your power operator? Nope. z may be a ptr, so this is actually:

	x = y * (*z);

Lexical analysis groups characters into tokens at the lowest level of the compiler's operations, so adding new operators would present an implementation nightmare (not to mention the increased maintenance cost to read the code!).

Besides, operator overloading is just syntactic sugar for function calls. It does not add fundamental power to the language (although this particular syntactic sugar can be very sweet, it is not fundamentally necessary). I suggest you overload "pow(base,exponent)", for which a double precision version is provided by the ANSI-C <math.h> library.

By the way: operator^ looks like a good candidate for to-the-power-of, but it has neither the proper precedence nor associativity.

�
#$What is a "friend"?

Friends can be either functions or other classes. The class grants friends unlimited access privileges.

�
#$Do "friends" violate encapsulation?

Friends can be looked at three ways: (1) they are not class members and they therefore violate encapsulation of the class members by their mere existence, (2) a class' friends are absorbed into that class' encapsulation barrier, and (3) any time anyone wants to do anything tricky they textedit the header file and add a new friend so they can get right in there and fiddle 'dem bits.

No one argues that (3) is a Good Thing, and for good reasons. The arguments for (1) always boil down to the rather arbitrary and somewhat naive view that a class' member functions "should" be the *only* functions inside a class' encapsulation barrier. I have not seen this view bear fruit by enhancing software quality. On the other hand, I have seen (2) bear fruit by lowering the *overall* coupling in a software system. Reason: friends can be used as "liaisons" to provide safe, screened access for the whole world, perhaps in a way that the class syntactically or semantically isn't able to do for itself.

Conclusion: friend functions are merely a syntactic variant of a class' public access functions. When used in this manner, they don't violate encapsulation any more than a member function violates encapsulation. Thus a class' friends and members *are* the encapsulation barrier, as defined by the class itself.

I've actually seen the "friends always violate encapsulation" view *destroy* encapsulation: programmers who have been taught that friends are inherently evil want to avoid them, but they have another class or fn that needs access to some internal detail in the class, so they provide a member fn which exposes the class' internal details to the PUBLIC! Private decisions should stay private, and only those inside your encapsulation barrier (your members, friends, and [for "protected" things] your subclasses) should have access.

�
#$What are some advantages/disadvantages of using friends?

The advantage of using friends is generally syntactic. Ie: both a member fnand a friend are equally privileged (100% vested), but a friend function can be called like f(obj), where a member is called like obj.f(). When it's not for syntactic reasons (which is not a "bad" reason -- making an abstraction's syntax more readable lowers maintenance costs!), friends are used when two or more classes are designed to be more tightly coupled than you want for "joe public" (ex: you want to allow class "ListIter" to have more privilege with class "List" than you want to give to "main()").

Friends have three disadvantages. The first disadvantage is that they add to the global namespace. In contrast, the namespace of member functions is buried within the class, reducing the chance for namespace collisions for functions.

The second disadvantage is that they aren't inherited. That is, the "friendship privilege" isn't inherited. This is actually an advantage when it

comes to encapsulation. Ex: I may declare you as my friend, but that doesn't mean I trust your kids.

The third disadvantage is that they don't bind dynamically. Ie: they don't respond to polymorphism. There are no virtual friends; if you need one, have a friend call a hidden (usually "protected:") virtual member fn. Friends that take a ptr/ref to a class can also take a ptr/ref to a publically derived class object, so they act as if they are inherited, but the friendship *rights* are not inherited (the friend of a base has no special access to a class derived from that base).

�
#$What does it mean that "friendship is neither inherited nor transitive"?

This is speaking of the access privileges granted when a class declares a friend.

The access privilege of friendship is not inherited:

	 * I may trust you, but I don't necessarily trust your kids.

	 * My friends aren't necessarily friends of my kids.

	 * Class "Base" declares f() to be a friend, but f() has no special access rights with class "Derived".

The access privilege of friendship is not transitive:

		 * I may trust you, and you may trust Sam, but that doesn't necessarily mean that I trust Sam.

 	 * A friend of a friend is not necessarily a friend.

�
#$When would I use a member function as opposed to a friend function?

Use a member when you can, and a friend when you have to.

Like in real life, my family members have certain privileges that my friends do not have (ex: my family members inherit from me, but my friends do not, etc). To grant privileged access to a function, you need either a friend or a member; there is no additional loss of encapsulation one way or the other. Sometimes friends are syntactically better (ex: in class "X", friend fns allow the "X" param to be second, while members require it to be first). Another good use of friend functions are the binary infix arithmetic operators. Ex: "aComplex + aComplex" probably should be defined as a friend rather than a member, since you want to allow "aFloat + aComplex" as well (members don't allow promotion of the left hand arg, since that would change the class of the object that is the recipient of the message).

�
#$How can I provide printing for a "class X"?

Provide a friend operator<<:

 class X {

 int i; //just for illustration

 public:

 friend ostream& operator<<(ostream& o, const X& x) { return o << x.i; }

 //...

 };

We use a friend rather than a member since the "X" parameter is 2nd, not 1st.

Input is similar, but the signature is:

	istream& operator>> (istream& i, X& x); //not "const X& x" !!

�
#$Why should I use <iostream.h> instead of the traditional <stdio.h>?

See next question.

�
#$Printf/scanf weren't broken; why "fix" them with ugly shift operators?

The overloaded shift operator syntax is strange at first sight, but it quickly grows on you. However syntax is just syntax; the real issues are deeper. Printf is arguably not broken, and scanf is perhaps livable despite being error prone, however both are limited with respect to what C++ I/O can do. C++ I/O (left/right shift) is, relative to C (printf/scanf):

	 type safe -- type of object being I/O'd is known statically by the compiler rather than via dynamically tested '%' fields

	less error prone -- redundant info has greater chance to get things wrong C++ I/O has no redundant '%' tokens to get right

	faster -- printf is basically an "interpreter" of a tiny language whose constructs mainly include '%' fields. the proper low-level routine is chosen at runtime based on these fields. C++ I/O picks these routines statically based on actual types of the args

	extensible -- perhaps most important of all, the C++ I/O mechanism is Extensible to new user-defined data types (imagine the chaos if

everyone was simultaneously adding new incompatible '%' fields to printf and scanf?!). Remember: we want to make user-defined 	types (classes) look and act like "built-in" types.

	subclassable -- ostream and istream (the C++ replacements for FILE*) are real classes, and hence subclassable. This means you can have other user defined things that look and act like streams, yet that do whatever strange and wonderful things you want. You automatically

get to use the zillions of lines of I/O code written by users you	don't even know, and they don't need to know about your "extended

stream' class. Ex: you can have a "stream" that writes to a memory area (incore formatting provided by the standard class "strstream"),

or you could have it use the stdio buffers, or [you name it...].

�
#$Does "delete ptr" delete the ptr or the pointed-to-data?

The pointed-to-data.

"delete" really means "delete the thing pointed to by." The same abuse of English occurs when "free"ing the memory pointed to by a ptr in C ("free(p)" really means free_the_stuff_pointed_to_by(p)").

�
#$Can I free() ptrs alloc'd with "new" or "delete" ptrs alloc'd w/ malloc()?

No.

It is perfectly legal, moral, and wholesome to use malloc/free and new/delete in the same program, but it is illegal, immoral, and despicable to free a pointer allocated via new, or to delete a pointer allocated via malloc.

�
#$Why should I use "new" instead of trustworthy old malloc()?

Constructors/destructors, type safety, overridability.

Constructors/destructors: unlike "malloc(sizeof(Fred))", "new Fred()" calls Fred's constructor. Similarly, "delete p" calls "*p"'s destructor.

Type safety: malloc() returns a "void*" which isn't type safe. "new Fred()" returns a ptr of the right type (a "Fred*").

Overridability: "new" is an operator that can be overridden by a class, while "malloc" is not overridable on a per-class basis.

�
#$Why doesn't C++ have a "realloc()" along with "new" and "delete"?

To save you from disaster.

When realloc() has to copy the allocation, it uses a BITWISE copy operation, which will tear most C++ objects to shreds. C++ objects should be allowed to copy themselves: they use their own copy constructor or assignment operator.

�
#$How do I allocate / unallocate an array of things?

Use new[] and delete[]:

	Thing* p = new Thing[100];

	//...

	delete [] p; //older compilers require you to use "delete[100]p"

Any time you allocate an array of things (ie: any time you use the "[...]" in the "new" expression) you *!*MUST*!* use the "[]" in the "delete" statement.

The fact that there is no syntactic difference between a ptr to a thing and a ptr to an array of things is an artifact we inherited from C.

�
#$What if I forget the "[]" when "delete'ing array allocated via "new X[n]"?

All life comes to a catastrophic end.

It is the programmer's --not the compiler's-- responsibility to get the connection between new[] and delete[] correct. If you get it wrong, neither a compile-time nor a run-time error message will be generated by the compiler. Heap corruption is a likely result. Or worse. Your program will probably die.

�
#$What's the best way to create a "#define macro" for "NULL" in C++?

The best way is: don't do it.

The most portable way to compare against the nil ptr is to compare against "0". Some programmers use a #define to set NULL to "0", but that can conflict with the way the standard libraries #define NULL. There is no portable way to define a "const" ptr called "NULL" that can be compared against any arbitrary ptr -- the literal "0" is acceptable for this however.

�
#$How can I handle a constructor that fails?

Throw an exception.

Constructors don't have a return type, so it's not possible to use error codes. The best way to signal constructor failure is therefore to throw an exception.

Before C++ had exceptions, we signaled constructor failure by putting the object into a "half baked" state (e.g., by setting an internal status bit).There was a query ("inspector") method to check this bit, that allowed clients to discover whether they had a live object. Other member functions would also check this bit, and, if the object wasn't really alive, do a no-op (or perhaps something more obnoxious such as "abort()"). This was really ugly.

#$How can I compile-out my debugging print statements?

This will NOT work, since comments are parsed before the macro is expanded:

	#ifdef DEBUG_ON

	 #define DBG

	#else

	 #define DBG //

	#endif

	DBG cout << foo;

This is the simplest technique:

	#ifdef DEBUG_ON

	 #define DBG(anything) anything

	#else

	 #define DBG(anything) /*nothing*/

	#endif

Then you can say:

	//...

	DBG(cout << "the value of foo is " << foo << '\n');

	// ^-- ";' outside ()

Any commas in your "DBG()" statement must be enclosed in a "()":

	DBG(i=3, j=4);	//<---- C-preprocessor will generate error message

	DBG(i=3; j=4);	//<---- ok

There are also more complicated techniques that use variable argument lists, but these are primarily useful for "printf()' style (see question on the pros and cons of <iostream.h> as opposed to <stdio.h> for more).

�
#$What is "const correctness"?

A good thing.

Const correctness uses the keyword "const" to ensure const objects don't get mutated. E.g., if function "f()" accepts a "String", and "f()" wants to promise not to change the "String", you:

	* can either pass by value: void f(String s) { /*...*/ }

 	* or by constant reference: void f(const String& s) { /*...*/ }

 	* or by constant pointer: void f(const String* sptr) { /*...*/ }

 	* but NOT by non-const ref: void f(String& s) { /*...*/ }

 	* NOR by non-const pointer: void f(String* sptr) { /*...*/ }

Attempted changes to "s" within a fn that takes a "const String&" are flagged as compile-time errors; neither run-time space nor speed is degraded.

Declaring the "constness" of a parameter is just another form of type safety. It is almost as if a constant String, for example, "lost" its various mutative operations. If you find type safety helps you get systems correct (it does; especially in large systems), you'll find const correctness helps also.

�
#$Is "const correctness" a good goal?

Declaring the "constness" of a parameter is just another form of type safety. It is almost as if a constant String, for example, "lost" its various mutative operations. If you find type safety helps you get systems correct (especially large systems), you'll find const correctness helps also.

Short answer: yes, const correctness is a good goal.

�
#$Is "const correctness" tedious?

Type safety requires you to annotate your code with type information. In theory, expressing this type information isn't necessary -- witness untyped languages as an example of this. However in practice, programmers often know in their heads a lot of interesting information about their code, so type safety (and, by extension, const correctness) merely provide structured ways to get this information into their keyboards.

Short answer: yes, const correctness is tedious.

�
#$Should I try to get things const correct "sooner" or "later"?

At the very, very, VERY beginning.

Back-patching const correctness results in a snowball effect: every "const" you add "over here" requires four more to be added "over there."

�
#$What is a "const member function"?

A member function that inspects (rather than mutates) its object.

 class Fred {

 public:

 void f() const;

 }; // ^^^^^--- this implies "fred.f()" won't change "fred"

This means that the ABSTRACT (client-visible) state of the object isn't going to change (as opposed to promising that the "raw bits of the object"s struct aren't going to change). C++ compilers aren't allowed to take the "bitwise" interpretation, since a non-const alias could exist which could modify the state of the object (gluing a "const" ptr to an object doesn't promise the object won't change; it promises only that the object won't change VIA THAT POINTER).

"const" member functions are often called "inspectors." Non-"const" member functions are often called "mutators."

�
#$What is an "inspector"? What is a "mutator"?

 An inspector inspects and a mutator mutates. These different categories of member fns are distinguished by whether the member fn is "const" or not.

�
#$What is "casting away const in an inspector" and why is it legal?

In current C++, const member fns are allowed to "cast away the const-ness of the "this" ptr". Programmers use (some say "misuse") this to tickle internally used counters, cache values, or some other non-client-visible change. Since C++ allows you to use const member fns to indicate the abstract/meaning-wise state of the object doesn't change (as opposed to the concrete/bit-wise state), the "meaning" of the object shouldn't change during a const member fn.

Those who believe "const" member fns shouldn't be allowed to change the bits of the struct itself call the "abstract const" view "Humpty Dumpty const" (Humpty Dumpty said that words mean what he wants them to mean). The response is that a class' public interface *should* mean exactly what the class designer wants it to mean, in Humpty Dumpty's words, "nothing more and nothing less". If the class designer says that accessing the length of a List doesn't change the List, then one can access the length of a "const" List (even though the "len()"member fn may internally cache the length for future accesses).

Some proposals are before the ANSI/ISO C++ standards bodies to provide syntax that allows individual data members to be designated as "can be modified in a const member fn" using a prefix such as "~const". This would blend the best of the "give the compiler a chance to cache data across a const member fn", but only if aliasing can be solved (see next question).

�
#$But doesn't "cast away const" mean lost optimization opportunities?

If the object is constructed in the scope of the const member fn invocation, and if all the non-const member function invocations between the object's construction and the const member fn invocation are statically bound, and if every one of these invocations is also "inline"d, and if the ctor itself is "inline", and if any member fns the ctor calls are inline, then the answer is "Yes, the soon-to-be-standard interpretation of the language would prohibit a very smart compiler from detecting the above scenario, and the register cache would be unnecessarily flushed". The reader should judge whether the above scenario is common enough to warrant a language change which would break existing code.

�
#$What is inheritance?

Inheritance is what separates abstract data type (ADT) programming from OOP. It is not a "dark corner" of C++ by any means. In fact, everything discussed so far could be simulated in your garden variety ADT programming language (ex: Ada, Modula-2, C [with a little work], etc). Inheritance and the consequent polymorphism are the two big additions which separate a language like Ada from an object-oriented programming language.

�
#$Ok, ok, but what is inheritance?

Human beings abstract things on two dimensions: part-of and kind-of. We say that a Ford Taurus is-a-kind-of-a Car, and that a Ford Taurus has parts such as Engine, Tire, etc. The part-of hierarchy has been a first class part of software since the ADT style became relevant, but programmers have had to whip up their own customized techniques for simulating kind-of (usually in an ad hoc manner). Inheritance changes that; it adds "the other" major dimension of decomposition.

An example of "kind-of decomposition", consider the genus/species biology charts. Knowing the internal parts of various fauna and flora is important for certain applications, but knowing the groupings (kinds, categories) is equally important.

�
#$How do you express inheritance in C++?

By the ": public" syntax:

 class Car : public Vehicle {

 //^^^^^^^^---- ": public" is pronounced "is-a-kind-of-a"

 //...

 };

We state the above relationship in several ways:

 	* Car is "a kind of a" Vehicle

 	* Car is "derived from" Vehicle

 	* Car is "a specialized" Vehicle

 	* Car is the "subclass" of Vehicle

 	* Vehicle is the "base class" of Car

 	* Vehicle is the "superclass" of Car (this not as common in the C++ community)

�
#$What is "incremental programming"?

In addition to being an abstraction mechanism that makes is-a-kind-of relationships explicit, inheritance can also be used as a means of "incremental programming". A derived class inherits all the representation (bits) of its base class, plus all the base class' mechanism (code). Another device (virtual functions, described below) allows derived classes to selectively override some or all of the base class' mechanism (replace and/or enhance the various algorithms).

This simple ability is surprisingly powerful: it effectively adds a "third dimension" to programming. After becoming fluent in C++, most programmers find languages like C and Ada to be "flat" (a cute little book, "Flatland", aptly describes those living in a two dimensional plane, and their disbelief about a strange third dimension that is somehow neither North, South, East nor West, but is "Up").

As a trivial example, suppose you have a Linked List that is too slow, and you wish to cache its length. You could "open up" the List "class" (or "module"), and modify it directly (which would certainly be appropriate for such a simple situation), but suppose the List's physical size is critical, and some important client cannot afford to add the extra machine word to every List. Another option would be to textually copy the List module and modify the copy, but this increases the amount of code that must be maintained, and also presumes you have access to the internal source code of the List module. The OO solution is to realize that a List that caches its length is-a-kind-of-a List, so we inherit:

	class FastList : public List {

	 int length;	//cache the length here

	public:

	 //override operations so the cache stays "hot"

	};

�
#$Should I pointer-cast from a derived class to its base class?

Yes.

A derived class is a specialized version of the base class ("Derived is a kind-of Base"). The upward conversion is perfectly safe, and happens all the time (if I am pointing at a car, I am in fact pointing at a vehicle):

 void f(Vehicle* v);

 void g(Car* c) { f(c); } //perfectly safe; no cast

Note that the answer to this FAQ assumes we're talking about "public" inheritance; see below on "private/protected" inheritance for "the other kind".

�
#$Derived* --> Base* works ok; why doesn't Derived** --> Base** work?

C++ allows a Derived* to be converted to a Base*, since a Derived object is a kind of a Base object. However trying to convert a Derived** to a Base** is (correctly) flagged as an error (if it was allowed, the Base** could be dereferenced (yielding a Base*), and the Base* could be made to point to an object of a DIFFERENT derived class. This would be an error.

As a corollary, an array of Deriveds is-NOT-a-kind-of array of Bases. At Paradigm Shift, Inc. we use the following example in our C++ training sessions:

 "A bag of apples is NOT a bag of fruit".

If a bag of apples COULD be passed as a bag of fruit, someone could put a banana into the bag of apples!

�
#$Does array-of-Derived is-NOT-a-kind-of array-of-Base mean arrays are bad?

Yes, "arrays are evil" (jest kidd'n :-).

There's a very subtle problem with using raw built-in arrays. Consider this:

 void f(Base* arrayOfBase)

 {

 arrayOfBase[3].memberfn();

 }

 main()

 {

 Derived arrayOfDerived[10];

 f(arrayOfDerived);

 }

The compiler thinks this is perfectly type-safe, since it can convert a Derived* to a Base*. But in reality it is horrendously evil: since Derived might be larger than Base, the array index in f() not only isn't type safe, it may not even be pointing at a real object! In general it'll be pointing somewhere into the innards of some poor Derived.

The root problem is that C++ can't distinguish between a ptr-to-a-thing and a ptr-to-an-array-of-things. Naturally C++ "inherited" this feature from C.

NOTE: if we had used an array-like CLASS instead of using a raw array (e.g., an "Array<T>" rather than a "T[]"), this problem would have been properly trapped as an error at compile time rather than at run-time.

�
#$What is a "virtual member function"?

A virtual function allows derived classes to replace the implementation provided by the base class. The compiler ensures the replacement is always called whenever the object in question is actually of the derived class, even if the object is accessed by a base pointer rather than a derived pointer. This allows algorithms in the base class to be replaced in the derived class, even if users don't know about the derived class.

Note: the derived class can partially replace ("override") the base class method (the derived class method can invoke the base class version if desired).

�
#$What's the big deal of separating interface from implementation?

Separating interface from implementation is a key to reusable software. Interfaces are a company's most valuable resources. Designing an interface takes longer than whipping together a concrete class which fulfills that interface. Furthermore interfaces require the resources of more expensive people (for better and worse, most companies separate "designers" from "coders"). Since they're so valuable, they should be protected from being tarnished by data structures and other artifacts of the implementation (any data structures you put in a class can never be "revoked" by a derived class, which is why you want to "separate" the interface from the implementation).

�
#$What is dynamic dispatch? Static dispatch?

In the following discussion, "ptr" means either a pointer or a reference.

When you have a ptr to an object, there are two distinct types in question: the static type of the ptr, and the dynamic type of the pointed-to object (the object may actually be of a class that is derived from the class of the ptr).

The "legality" of the call is checked based on the static type of the ptr, which gives us static type safety (if the type of the ptr can handle the member fn, certainly the pointed-to object can handle it as well, since the pointed-to object is of a class that is derived from the ptr's class).

Suppose ptr's type is "List" and the pointed-to object's type is "FastList". Suppose the fn "len()" is provided in "List" and overridden in "FastList". The question is: which function should actually be invoked: the function attached to the pointer's type ("List::len()") or the function attached to the object itself ("FastList::len()")?

If "len()" is a virtual function, as it would be in the above case, the fn attached to the object is invoked. This is called "dynamic binding", since the actual code being called is determined dynamically (at run time).

On the other hand, if "len()" were non-virtual, the dispatch would be resolved statically to the fn attached to the ptr's class.

�
#$Can I override a non-virtual fn?

It's legal, but it ain't moral.

Experienced C++ programmers will sometimes redefine a non-virtual fn for efficiency (the alternate implementation might make better use of the derived class' resources), or to get around the hiding rule (see below, and ARM sect.13.1). However the client-visible effects must be IDENTICAL, since non-virtual fns are dispatched based on the static type of the ptr/ref rather than the dynamic type of the pointed-to/referenced object.

�
#$Can I "revoke" or "hide" public member fns inherited from my base class?

Never never never do this. Never. NEVER!

Attempting to hide (eliminate, revoke) inherited public member functions is an all-too-common design error. It usually stems from muddy thinking.

�
#$Is a "Circle" a kind-of an "Ellipse"?

Not if Ellipse promises to be able to change its size asymmetrically.

For example, suppose Ellipse has a "setSize(x,y)" method, and suppose this method promises "the Ellipse's width() will be x, and its height() will be y". In this case, Circle can't be a kind-of Ellipse. Simply put, if Ellipse can do something Circle can't, then Circle can't be a kind of Ellipse.

This leaves two potential (valid) relationships between Circle and Ellipse:

 	* Make Circle and Ellipse completely unrelated classes.

 	* Derive Circle and Ellipse from a base class representing "Ellipses that can't 	 NECESSARILY perform an unequal-setSize operation."

In the first case, Ellipse could be derived from class "AsymmetricShape" (with setSize(x,y) being introduced in AsymmetricShape), and Circle could be derived from "SymmetricShape," which has a setSize(size) member fn.

In the second case, class "Oval" could only have "setSize(size)" which sets both the "width()" and the "height()" to "size", then derive both Ellipse and Circle from Oval. Ellipse --but not Circle-- adds the "setSize(x,y)" operation (see the "hiding rule" for a caveat if the same method name "setSize()" is used for both operations).

�
#$Are there other options to the "Circle is/isnot kind-of Ellipse" dilemma?

If you claim that all Ellipses can be squashed asymmetrically, and you claim that Circle is a kind-of Ellipse, and you claim that Circle can't be squashed asymmetrically, clearly you've got to adjust (revoke, actually) one of your claims. Thus you've either got to get rid of "Ellipse::setSize(x,y)", get rid of the inheritance relationship between Circle and Ellipse, or admit that your "Circle"s aren't necessarily circular.

Here are the two most common traps new OO/C++ programmers regularly fall into. They attempt to use coding hacks to cover up a broken design (they redefine Circle::setSize(x,y) to throw an exception, call "abort()", or choose the average of the two parameters, or to be a no-op). Unfortunately all these hacks will surprise users, since users are expecting "width() ==x" and "height() == y".

The only rational way out of this would be to weaken the promise made by Ellipse's "setSize(x,y)" (e.g., you'd have to change it to, "This method MIGHT set width() to x and height() to y, or it might do NOTHING"). Unfortunately this dilutes the contract into dribble, since the user can't rely on any meaningful behavior. The whole hierarchy therefore begins to be worthless (it's hard to convince someone to use an object if you have to shrug your shoulders when asked what the object does for them).

�
#$Why can't I access "private" things in a base class from a derived class?

To protect you from future changes to the base class.

Derived classes do not get access to private members of a base class. This effectively "seals off" the derived class from any changes made to the private members of the base class.

�
#$What's the difference between "public:", "private:", and "protected:"?

"Private:" is discussed in the previous section, and "public:" means "anyone can access it." The third option, "protected:", makes a member (either data member or member fn) accessible to subclasses.

�
#$How can I protect subclasses from breaking when I change internal parts?

A class has two distinct interfaces for two distinct sets of clients:

 	* its "public:" interface serves unrelated classes.

 	* its "protected:" interface serves derived classes.

Unless you expect all your subclasses to be built by your own team, you should consider making your base class's bits be "private:", and use "protected:" inline access functions to access these data. This way the private bits can change, but the derived class's code won't break unless you change the protected access functions.

�
#$Why does my base ctor get *base*'s virtual fn instead of the derived version?

During the Base class's constructor, the object isn't yet a Derived, so if "Base::Base()" calls a virtual function "virt()", the "Base::virt()" will be invoked, even if "Derived::virt()" exists.

Similarly, during Base's destructor, the object is no longer a Derived, so when Base::~Base() calls "virt()", "Base::virt()" gets control, NOT the "Derived::virt()" override.

You'll quickly see the wisdom of this approach when you imagine the disaster if "Derived::virt()" touched a member object from the Derived class.

�
#$Does a derived class dtor need to explicitly call the base destructor?

No, never explicitly call a destructor (where "never" means "rarely").

A derived class's destructor (whether or not you explicitly define one) AUTOMATICALLY invokes the destructors for member objects and base class subobjects. Member objects are destroyed in the reverse order they appear within the class, then base class subobjects are destroyed in the reverse order that they appear in the class's list of base classes.

You should explicitly call a destructor ONLY in esoteric situations, such as when destroying an object created by the "placement new operator."

�
#$How do you express "private inheritance"?

When you use ": private" instead of ": public". Ex:

	class Foo : private Bar {

	 //...

	};

�
#$How are "private derivation" and "containment" similar? dissimilar?

Private inheritance is a syntactic variant of composition (has-a).

E.g., the "car has-a engine" relationship can be expressed using composition:

 class Engine {

 public:

 Engine(int numCylinders);

 void start(); //starts this Engine

 };

 class Car {

 public:

 Car() : e_(8) { } //initializes this Car with 8 cylinders

 void start() { e_.start(); } //start this Car by starting its engine

 private:

 Engine e_;

 };

The same "has-a" relationship can also be expressed using private inheritance:

 class Car : private Engine {

 public:

 Car() : Engine(8) { } //initializes this Car with 8

cylinders

 Engine::start; //start this Car by starting its engine

 };

There are several similarities between these two forms of composition:

	* in both cases there is exactly one Engine member object contained in a Car.

	* in neither case can users (outsiders) convert a Car* to an Engine*.

There are also several distinctions:

	* the first form is needed if you want to contain several Engines per Car.

 	* the second form can introduce unnecessary multiple inheritance.

 	* the second form allows members of Car to convert a Car* to an Engine*.

 	* the second form allows access to the "protected" members of the base class.

 	* the second form allows Car to override Engine's virtual functions.

Note that private inheritance is usually used to gain access into the "protected:" members of the base class, but this is usually a short-term solution (translation: a band-aid; see below).

�
#$Should I pointer-cast from a "privately" derived class to its base class?

The short answer: no, but yes too (better read the long answer!)

>From "inside" the privately derived class (ie: in the body of members or friends of the privately derived class), the relationship to the base class is known, and the upward conversion from PrivatelyDer* to Base* (or PrivatelyDer& to Base&) is safe and doesn't need a cast.

>From "outside" the privately derived class, the relationship to "Base" is a "private" decision of "PrivatelyDer", so the conversion requires a cast. Clients should not exercise this cast, since private derivation is a private implementation decision of the privately derived class, and the coercion will fail after the privately derived class privately chooses to change this private implementation decision.

Bottom line: only a class and its friends have the right to convert a ptr to a derived class into a ptr to its private base class. They don't need a cast, since the relationship with the base class is accessible to them. No one else can convert such ptrs without pointer-casts, so no one else should.

�
#$Should I pointer-cast from a "protected" derived class to its base class?

Generally, No.

From a method or friend of a privately derived class, the relationship to the base class is known, and the upward conversion from PrivatelyDer* to Base* (or PrivatelyDer& to Base&) is safe; no cast is needed or recommended.

However users of PrivateDer should avoid this unsafe conversion, since it is based on a "private" decision of PrivateDer, and is subject to change without notice.

�
#$What are the access rules with "private" and "protected" inheritance?

Take these classes as examples:

	class B { /*...*/ };

	class D_priv : private B { /*...*/ };

	class D_prot : protected B { /*...*/ };

	class D_publ : public B { /*...*/ };

	class Client { B b; /*...*/ };

Public and protected parts of B are "private" in D_priv, and are "protected" in D_prot. In D_publ, public parts of B are public (D_prot is-a-kind-of-a B), and protected parts of B remain protected in D_publ. Naturally *none* of the subclasses can access anything that is private in B. Class "Client" can't even access the protected parts of B (ie: it's "sealed off").

It is often the case that you want to make some but not all inherited member functions public in privately/protectedly derived classes. Ex: to make member fn B::f(int,char,float) public in D_prot, you would say:

	class D_prot : protected B {

	 //...

	public:

	 B::f; //note: not B::f(int,char,float)

	};

There are limitations to this technique (can't distinguish overloaded names, and you can't make a feature that was "protected" in the base "public" in the derived). Where necessary, you can get around these by a call-through fn:

	class D_prot : protected B {

	public:

	 short f(int i, char c, float f) { return B::f(i,c,f); }

	};

�
#$Do most C++ programmers use composition or private inheritance?

Composition.

Normally you don't WANT to have access to the internals of too many other classes, and private inheritance gives you some of this extra power (and responsibility). But private inheritance isn't evil; it's just more expensive to maintain, since it increases the probability that someone will change something that will break your code.

A legitimate, long-term use for private inheritance is when you want to build a class Fred that uses code in a class Wilma, and the code from class Wilma needs to invoke methods from your new class, Fred. In this case, Fred calls non-virtuals in Wilma, and Wilma calls (usually pure) virtuals in itself, which are overridden by Fred. This would be much harder to do with composition.

 class Wilma {

 protected:

 void fredCallsWilma()

 { cout << "Wilma::fredCallsWilma()\n"; wilmaCallsFred(); }

 virtual void wilmaCallsFred() = 0;

 };

 class Fred : private Wilma {

 public:

 void barney()

 { cout << "Fred::barney()\n"; Wilma::fredCallsWilma(); }

 protected:

 virtual void wilmaCallsFred()

 { cout << "Fred::wilmaCallsFred()\n"; }

 };

�
#$How do I separate interface from implementation in C++ (like Modula-2)?

Use an ABC (see next question for what an ABC is).

�
#$What is an ABC ("abstract base class")?

At the design level, an ABC corresponds to an abstract concept. If you asked a

Mechanic if he repaired Vehicles, he'd probably wonder what KIND-OF Vehicle you had in mind. Chances are he doesn't repair space shuttles, ocean liners, bicycles, or nuclear submarines. The problem is that the term "Vehicle" is an abstract concept (e.g., you can't build a "vehicle"

unless you know what kind of vehicle to build). In C++, class Vehicle would be an ABC, with Bicycle, SpaceShuttle, etc, being subclasses (an OceanLiner is-a-kind-of-a Vehicle). In real-world OOP, ABCs show up all over the place.

As programming language level, an ABC is a class that has one or more pure virtual member functions (see next FAQ). You cannot make an object (instance) of an ABC.

�
#$What is a "pure virtual" member function?

Some member functions exist in concept, but can't have any actual defn. Ex: Suppose I asked you to draw a Shape at location (x,y) that has size 7.2. You'd ask me "what kind of shape should I draw", since circles, squares, hexagons, etc, are drawn differently. In C++, we indicate the existence of the "draw()" method, but we recognize it can only be defined in subclasses:

	class Shape {

	public:

	 virtual void draw() const = 0;

	 //... ^^^--- "=0" means it is "pure virtual"

	};

This pure virtual makes "Shape" an ABC. The "const" says that invoking the "draw()" method won't change the Shape object (ie: it won't move around on the screen, change sizes, etc). If you want, you can think of it as if the code were at the nil pointer.

Pure virtuals allow you to express the idea that any actual object created from a [concrete] class derived from the ABC *will* have the indicated member fn, but we simply don't have enough information to actually *define* it yet. They allow separation of interface from implementation, which ultimately allows functionally equivalent subclasses to be produced that can "compete" in a free market sense (a technical version of "market driven economics").

�
#$How can I provide printing for an entire hierarchy rooted at "class X"?

Provide a friend operator<< that calls a protected virtual function:

 class X {

 protected:

 virtual void print(ostream& o) const; //or "=0;" if "X" is abstract

 public:

 friend ostream& operator<<(ostream& o,const X& x) {x.print(o); return o;}

 //...

 };

Now all subclasses of X merely provide their own "print(ostream&)const" member function, and they all share the common "<<" operator. Friends don't bind dynamically, but this technique makes them *act* as if they were.

�
#$What is a "virtual destructor"?

In general, a virtual fn means to start at the class of the object itself, not the type of the pointer/ref ("do the right thing based on the actual class of" is a good way to remember it). Virtual destructors (dtors) are no different: start the destruction process "down" at the object's actual class,

rather than "up" at the ptr's class (ie: "destroy yourself using the *correct* destruction routine").

Virtual destructors are so valuable that some people want compilers to holler at you if you forget them. In general there's only one reason *not* to make a class' dtor virtual: if that class has no virtual fns, the introduction of the first virtual fn imposes typically 4 bytes overhead in the size of each object (there's a bit of magic for how C++ "does the right thing", and it boils down to an extra ptr per object called the "virtual table pointer" or "vptr").

�
#$What is a "virtual constructor"?

Technically speaking, there is no such thing. You can get the effect you desire by a virtual "clone()" member fn (for copy constructing), or a "fresh()" member fn (also virtual) which constructs/creates a new object of the same class but is "fresh" (like the "default" [zero parameter] ctor would do).

The reason ctors can't be virtual is simple: a ctor turns raw bits into a living object. Until there's a living respondent to a message, you can't

expect a message to be handled "the right way". You can think of ctors as "class" [static] functions, or as "factories" which churn out objects.

Thinking of ctors as "methods" attached to an object is misleading.

Here is an example of how you could use "clone()" and "fresh()" methods:

	class Set { //normally this would be a template

	public:

	 virtual void insert(int);	//Set of "int"

	 virtual int remove();

	 //...

	 virtual Set& clone() const = 0;	//pure virtual; Set is an ABC

	 virtual Set& fresh() const = 0;

	 virtual ~Set() { }	//see on "virtual destructors" for more

	};

	class SetHT : public Set {

	 //a hash table in here

	public:

	 //...

	 Set& clone() const { return *new SetHT(*this); }

	 Set& fresh() const { return *new SetHT(); }

	};

"new SetHT(...)" returns a "SetHT*", so "*new" returns a SetHT&. A SetHT is-a Set, so the return value is correct. The invocation of "SetHT(*this)" is that of copy construction ("*this" has type "SetHT&"). Although "clone()" returns a new SetHT, the caller of clone() merely knows he has a Set, not a SetHT (which is desirable in the case of wanting a "virtual ctor"). "fresh()" is similar, but it constructs an "empty" SetHT.

Clients can use this as if they were "virtual constructors":

	void client_code(Set& s)

	{

	 Set& s2 = s.clone();

	 Set& s3 = s.fresh();

	 //...

	 delete &s2;	//relies on destructor being virtual!!

	 delete &s3;	// ditto

	}

This fn will work correctly regardless of how the Set is implemented (hash table based, AVL tree based, etc).

See above on "separation of interface from implementation" for more.

�
#$What are some good C++ coding standards?

Thank you for reading this answer rather than just trying to set your own coding standards.

But please don't ask this question on comp.lang.c++. Nearly every software engineer has, at some point, felt that coding standards are or can be used as a "power play." Furthermore some attempts to set C++ coding standards have been made by those unfamiliar with the language and/or paradigm, so the standards end up being based on what WAS the state-of-the-art when the standards setters where writing code. Such impositions generate an attitude of mistrust for coding standards.

Obviously anyone who asks this question on comp.lang.c++ wants to be trained so they DON'T run off on their own ignorance, but nonetheless the answers tend to generate more heat than light.

�
#$Are coding standards necessary? sufficient?

Coding standards do not make non OO programmers into OO programmers; only training and experience do that. If coding standards have merit, it is that they discourage the petty fragmentation that occurs when large organizations coordinate the activities of diverse groups of programmers.

But you really want more than a coding standard. The structure provided by coding standards gives neophytes one less degree of freedom to worry about, however pragmatics go well beyond pretty-printing standards. Organizations need a consistent PHILOSOPHY of design and implementation. E.g., strong or weak typing? references or ptrs in interfaces? stream I/O or stdio? should C++ code call our C? vise versa? how should ABCs be used? should inheritance be used as an implementation technique or as a specification technique? what testing strategy should be employed? inspection strategy? should interfaces uniformly have a "get" and/or "set" method for each data member? should interfaces be designed from the outside-in or the inside-out? should errors be handled by try/catch/throw or return codes? etc.

What is needed is a "pseudo standard" for detailed DESIGN. I recommend a three-pronged approach to achieving this standardization: training, mentoring, and libraries. Training provides "intense instruction," mentoring allows OO to be caught rather than just taught, and a high quality C++ class library provides "long term instruction." There is a thriving commercial market for all three kinds of "training." Advice by organizations who have been through the mill is consistent: Buy, Don't Build. Buy libraries, buy training, buy tools, buy consulting. Companies who have attempted to become a self-taught tool-shop as well as an application/system shop have found success difficult.

Few argue that coding standards are "ideal," or even "good," however they are necessary in the kind of organizations/situations described above.

The following FAQs provide some basic guidance in conventions and styles.

�
#$Should our organization determine coding standards from our C experience?

No!

No matter how vast your C experience, no matter how advanced your C expertise, being a good C programmer does not make you a good C++ programmer. Converting from C to C++ is more than just learning the syntax and semantics of the "++" part of C++. Organizations who want the promise of OOP, but who fail to put the "OO" into OOP, are fooling themselves; the balance sheet will show their folly.

C++ coding standards should be tempered by C++ experts. Asking comp.lang.c++ is a start (but don't use the term "coding standard" in the question; instead simply say, "what are the pros and cons of this technique?"). Seek out experts who can help guide you away from pitfalls. Get training. Buy libraries and see if "good" libraries pass your coding standards. Do NOT set standards by yourself unless you have considerable experience in C++. Having no standard is better than having a bad standard, since improper "official" positions "harden" bad brain traces. There is a thriving market for both C++ training and libraries from which to pool expertise.

One more thing: whenever something is in demand, the potential for charlatans increases. Look before you leap. Also ask for student-reviews from past companies, since not even expertise makes someone a good communicator. Finally, select a practitioner who can teach, not a full time teacher who has a passing knowledge of the language/paradigm.

�
#$Should I declare locals in the middle of a fn or at the top?

Declare near first use.

An object is initialized (constructed) the moment it is declared. If you don't have enough information to initialize an object until half way down the fn, you can either initialize it to an "empty" value at the top then "assign" it later, or initialize it correctly half way down the fn. It's cheaper (in runtime performance) to get it right the first time than to build it once, tear it down, and build it again. Simple examples show a factor of 350% speed hit for simple classes like "String". Your mileage may vary; surely the overall system degradation will be less that 300+%, but there WILL be degradation. UNNECESSARY degradation.

A common retort to the above is: "we"ll provide "set" methods for every datum in our objects, so the cost of construction will be spread out." This is worse than the performance overhead, since now you're introducing a maintenance nightmare. Providing "set" methods for every datum is tantamount to public data: you've exposed your implementation technique to the world. The only thing you've hidden is the physical NAMES of your member objects, but the fact that you're using a List and a String and a float (for example) is open for all to see. Maintenance generally consumes far more resources than run-time CPU.

Locals should be declared near their first use. Sorry that this isn't familiar to C experts, but "new" doesn't necessarily mean "bad."

�
#$What source-file-name convention is best? "foo.C"? "foo.cc"? "foo.cpp"?

If you already have a convention, use it. If not, consult your compiler to see what the compiler expects. Typical answers are: ".C", ".cc", ".cpp", or ".cxx" (naturally the ".C" extension assumes a case-sensitive file system to distinguish ".C" from ".c").

At Paradigm Shift, Inc., we use ".C" in our Makefiles even on case-insensitive file systems (on case-insensitive file systems, we supply the compiler option that means "assume all .c files are C++ source files"; e.g., "-Tdp" for IBM CSet++, "-cpp" for Zortech C++, "-P" for Borland C++, etc).

�
#$What header-file-name convention is best? "foo.H"? "foo.hh"? "foo.hpp"?

The naming of your source files is cheap since it doesn't effect your source code. Your substantial investment is your source code. Therefore the names of your header files must be chosen with much greater care. The preprocessor will accept whatever name you give it in the #include line, but whatever you choose, you will want to plan on sticking with it for a long time, since it is more expensive to change (though certainly not as difficult as, say, porting to a new language).

Almost all vendors ship their C++ header files using a ".h" extension, which

means you can reliably do things like:

		#include <iostream.h>

Well, *almost*. There are one or two vendors that provide <iostream.hpp>. A few #ifdef"s, suffice. There are also tools that recognize the language of a file by its extension rather than its contents (gnu emacs looks in the first few lines for a string magic token in a comment identifying the language). Some of these extension-based tools use ".hh" or ".H" to identify C++ headers, however most of the world is leaning toward ".h" for C++ headers. C++ specific information in a ".h" that is to be shared with a C compiler can be #ifdef'd sing:

	#ifdef __cplusplus /*all C++ compilers define _cplusplus*/

		 // ... C++ specific stuff here ...

	#endif

�
#$Are there any lint-like guidelines for C++?

Yes, there are some practices which are generally considered dangerous. However none of these are universally "bad," since situations arise when even the worst of these is needed:

	* a class "Fred"s assignment operator should return "*this" as an "Fred&" (allows chaining of assignments)

 	* a class with any virtual fns ought to have a virtual destructor

 	* a class with any of {destructor, assignment operator, copy constructor} generally needs all 3

 	* a class "Fred"s copy constructor and assignment operator should have "const" in the parameter: respectively "Fred::Fred(const Fred&)" and "Fred& Fred::operator=(const Fred&)".

 	* always use initialization lists for class sub-objects rather than assignment the performance difference for user-defined classes can be substantial (3x!)

 	* many assignment operators should start by testing if "we" are "them"; e.g.,

 Fred& Fred::operator= (const Fred& fred)

 {

 if (this == &fred) return *this;

 //...normal assignment duties...

 return *this;

 }

sometimes there is no need to check, but these situations generally correspond to when there's no need for an explicit user-specified assignment op (as opposed to a compiler-synthesized assignment-op).

 	* in classes that define both "+=," "+" and "=," "a+=b" and "a=a+b" should generally do the same thing; ditto for the other identities of builtin types (e.g., a+=1 and ++a; p[i] and *(p+i); etc). This can be enforced by writing the binary ops using the "op=" forms; e.g.,

 Fred operator+ (const Fred& a, const Fred& b)

 {

 Fred ans = a;

 ans += b;

 return ans;

 }

This way the "constructive" binary ops don't even need to be friends. But it is sometimes possible to more efficiently implement common ops (e.g.,if class "Fred" is actually "String," and "+=" has to reallocate/copy string memory, it may be better to know the eventual length from the beginning).

�
#$Why does C++'s FAQ have a section on Smalltalk? Is this Smalltalk-bashing?

The two "major" OOPLs in the world are C++ and Smalltalk. Due to its popularity as the OOPL with the second largest user pool, many new C++ programmers come from a Smalltalk background. This section answers the questions:

 	* what's different about the two languages

 	* what must a Smalltalk-turned-C++ programmer know to master C++

This section does *!*NOT*!* attempt to answer the questions:

 	* which language is "better"?

 	* why is Smalltalk "bad"?

 	* why is C++ "bad"?

Nor is it an open invitation for some Smalltalk terrorist to slash my tires while I sleep (on those rare occasions when I have time to rest these days :-).

�
#$What's the difference between C++ and Smalltalk?

The most important differences are:

 	* static typing vs dynamic typing?

 	* must inheritance be used for subtyping only?

 	* value vs reference semantics?

The first two differences are illuminated in the remainder of this section; the third point is the subject of the section that follows.

If you're a Smalltalk programmer who wants to learn C++, you'd be very wise to study the next three FAQs carefully.

�
#$What is "static typing", and how is it similar/dissimilar to Smalltalk?

Static typing says the compiler checks the type-safety of every operation STATICALLY (at compile-time), rather than to generate code which will check things at run-time. For example, with static typing, the signature matching of fn arguments is checked, and an improper match is flagged as an error by the COMPILER, not at run-time.

In OO code, the most common "typing mismatch" is invoking a member function against an object which isn't prepared to handle the operation. E.g., if class "Fred" has member fn "f()" but not "g()", and "fred" is an instance of class "Fred", then "fred.f()" is legal and "fred.g()" is illegal. C++ (statically typed) catches the error at compile time, and Smalltalk (dynamically typed) catches the error at run-time. (Technically speaking, C++ is like Pascal--PSEUDO statically typed-- since ptr casts and unions can be used to violate the typing system; which reminds me: only use ptr casts and unions as often as you use "goto"s).

�
#$Which is a better fit for C++: "static typing" or "dynamic typing"?

If you want to use C++ most effectively, use it as a statically typed language.

C++ is flexible enough that you can (via ptr casts, unions, and #defines) make it "look" like Smalltalk. But don't. Which reminds me: try to avoid #define.

There are places where ptr casts and unions are necessary and even wholesome, but they should be used carefully and sparingly. A ptr cast tells the compiler to believe you. An incorrect ptr cast might corrupt your heap, scribble into memory owned by other objects, call nonexistent ethods, and cause general failures. It's not a pretty sight. If you avoid these and related constructs, you can make your C++ code both safer and faster, since anything that can be checked at compile time is something that doesn't have to be done at run-time.

Even if you're in love with dynamic typing, please avoid it in C++, or else please consider using another language that better supports your desire to defer typing decisions to run-time. C++ performs 100% of its type checking at compile time; it has NO built-in mechanism to do ANY type checking at run-time. If you use C++ as a dynamically typed OOPL, your life is in your own ands.

�
#$How can you tell if you have a dynamically typed C++ class library?

Hint #1: when everything is derived from a single root class, usually "Object."

Hint #2: when the container classes (List, Stack, Set, etc) are non-templates.

Hint #3: when the container classes (List, Stack, Set, etc) insert/extract elements as pointers to "Object" (you can put an Apple into such a container, but when you get it out, the compiler knows only that it is derived from Object, so you have to use a pointer cast to convert it back to an Apple*; and you better pray a lot that it really IS an Apple, cause your blood is on your own head).

You can make the pointer cast "safe" by using "dynamic_cast" (see earlier), but this dynamic testing is just that: dynamic. This coding style is the essence of dynamic typing in C++. You call a function that says "convert this Object into an Apple or give me NULL if its not an Apple," and you've got dynamic typing: you don't know what will happen until run-time.

When you use with templates to implement your containers, the C++ compiler can statically validate 99% of an application's typing information (the figure "99%" is apocryphal; some claim they always get 100%, those who need persistence get something less than 100% static type checking). The point is:C++ gets genericity from templates, not from inheritance.

�
#$Will "standard C++" include any dynamic typing primitives?

The ANSI/ISO C++ standardization committees are considering proposals to add type-safe pointer casts and other run-time type mechanisms into the C++ standard. When this happens, it will be easier to do run-time typing in those cases where it truly is needed (ex: for persistence), but hopefully the new syntax won't encourage abuses where if-then-else'ing the run-time type is used to replace a virtual function call.

Note that the effect of a down-cast and a virtual fn call are similar: in the member fn that results from the virtual fn call, the "this" ptr is a downcasted version of what it used to be (it went from ptr-to-Base to ptr-to-Derived). The difference is that the virtual fn call *always* works: it never makes the wrong "down-cast" and it automatically extends itself whenever a new subclass is created -- as if an extra "case" or "if/else" magically appearing in the weak typing technique. The other difference is that the client gives control to the object rather than reasoning *about* the object.

�
#$What is value and/or reference semantics, and which is best in C++?

With reference semantics, assignment is a pointer-copy (i.e., a REFERENCE). Value (or "copy") semantics mean assignment copies the value, not just the pointer. C++ gives you the choice: use the assignment operator to copy the value (copy/value semantics), or use a ptr-copy to copy a pointer (reference semantics). C++ allows you to override the assignment operator to do anything your heart desires, however the default (and most common) choice is to copy the VALUE.

Pros of reference semantics: flexibility and dynamic binding (you get dynamic binding in C++ only when you pass by ptr or pass by ref, not when you pass by value).

Pros of value semantics: speed. "Speed" seems like an odd benefit to for a feature that requires an object (vs a ptr) to be copied, but the fact of the matter is that one usually accesses an object more than one copies the object, so the cost of the occasional copies is (usually) more than offset by the benefit of having an actual object rather than a ptr to an object.

There are three cases when you have an actual object as opposed to a pointer to an object: local vars, global/static vars, and fully contained member objects in a class. The most important of these is the last ("composition").

More info about copy-vs-reference semantics is given in the next FAQs. Please read them all to get a balanced perspective. The first few have intentionally been slanted toward value semantics, so if you only read the first few of the following FAQs, you'll get a warped perspective.

Assignment has other issues (e.g., shallow vs deep copy) which are not covered here.

�
#$What is "virtual data", and how-can / why-would I use it in C++?

Virtual data allows a derived class to change the exact class of a base class's member object. Virtual data isn't strictly "supported" by C++, however it can be simulated in C++. It ain't pretty, but it works.

To simulate virtual data in C++, the base class must have a pointer to the member object, and the derived class must provide a "new" object to be pointed to by the base class's pointer. The base class would also have one or more normal constructors that provide their own referrent (again via "new"), and the base class's destructor would "delete" the referent.

For example, class "Stack" might have an Array member object (using a pointer), and derived class "StretchableStack" might override the base class member data from "Array" to "StretchableArray". For this to work, StretchableArray would have to inherit from Array, so Stack would have an "Array*". Stack's normal constructors would initialize this "Array*" with a "new Array", but Stack would also have a (possibly "protected:") constructor that would accept an "Array*" from a derived class. StretchableArray's constructor would provide a "new StretchableArray" to this special constructor.

Pros:

 	* Easier implementation of StretchableStack (most of the code is inherited).

 	* Users can pass a StretchableStack as a kind-of Stack.

Cons:

 	* Adds an extra layer of indirection to access the Array.

 	* Adds some extra freestore allocation overhead (both new and delete).

 	* Adds some extra dynamic binding overhead (reason given in next FAQ).

In other words, we succeeded at making OUR job easier as the implementor of StretchableStack, but all our users pay for it. Unfortunately the extra overhead was imposed on both users of StretchableStack AND on users of Stack.

See the FAQ after the next to find out how much the users "pay." Also: PLEASE read the few FAQs that follow the next one too (YOU WILL NOT GET A BALANCED PERSPECTIVE WITHOUT THE OTHERS).

�
#$What's the difference between virtual data and dynamic data?

The easiest way to see the distinction is by an analogy with "virtual fns":

A virtual member fn means the declaration (signature) must stay the same in subclasses, but the defn (body) can be overridden. The overriddenness of an inherited member fn is a static property of the subclass; it doesn't change dynamically throughout the life of any particular object, nor is it possible for distinct objects of the subclass to have distinct defns of the member fn.

Now go back and re-read the previous paragraph, but make these substitutions:

 	* "member fn" 	--> "member object"

 	* "signature" 	--> "type"

 	* "body" 	--> "exact class"

After this, you'll have a working definition of virtual data.

Another way to look at this is to distinguish "per-object" member functions from "dynamic" member functions. A "per-object" member fn is a member fn that is potentially different in any given instance of an object, and could be implemented by burying a function ptr in the object; this pointer could be "const", since the pointer will never be changed throughout the object's life. A "dynamic" member fn is a member fn that will change dynamically over time; this could also be implemented by a function ptr, but the fn ptr would not be const.

Extending the analogy, this gives us three distinct concepts for data members:

 	* virtual data: the defn ("class") of the member object is overridable in subclasses provided its declaration ("type") remains the same, and this overriddenness is a static property of the subclass.

 	* per-object-data: any given object of a class can instantiate a different conformal (same type) member object upon initialization (usually a "wrapper" object), and the exact class of the member object is a static property of the object that wraps it.

 	* dynamic-data: the member object's exact class can change dynamically over time.

The reason they all look so much the same is that none of this is "supported" in C++. It's all merely "allowed," and in this case, the mechanism for faking each of these is the same: a ptr to a (probably abstract) base class. In a language that made these "first class" abstraction mechanisms, the difference would be more striking, since they'd each have a different syntactic variant.

�
#$Should class subobjects be ptrs to freestore allocated objs, or should I use "composition"?

Composition.

Your member objects should normally be "contained" in the composite object (but not always; "wrapper" objects are a good example of where you want a ptr/ref; also the N-to-1-uses-a relationship needs something like a ptr/ref).

There are three reasons why fully contained member objects ("composition") has better performance than ptrs to freestore-allocated member objects:

 	* Extra layer to indirection every time you need to access the member object.

 	* Extra freestore allocations ("new" in constructor, "delete" in destructor).

 	* Extra dynamic binding (reason given below).

�
#$What are relative costs of the 3 performance hits of allocated subobjects?

The three performance hits are enumerated in the previous FAQ:

 	* By itself, an extra layer of indirection is small potatoes.

 	* Freestore allocations can be a performance issue (the performance of the

typical implementation of malloc degrades when there are many allocations; OO s/w can easily become "freestore bound" unless you're careful).

 	* The extra dynamic binding comes from having a ptr rather than an object. Whenever the C++ compiler can know an object's EXACT class, virtual fn calls can be STATICALLY bound, which allows inlining. Inlining allows zillions (would you believe half a dozen :-) optimization opportunities such as procedural integration, register lifetime issues, etc. The C++ compiler can know an object's exact class in three circumstances:

	local variables, global/static variables, and fully-contained member objects.

Thus fully-contained member objects allow significant optimizations that wouldn't be possible under the "member objects-by-ptr" approach. This is the main reason that languages which enforce reference-semantics have "inherent" performance challenges.

NOTE: PLEASE READ THE NEXT THREE FAQs TO GET A BALANCED PERSPECTIVE!

�
#$What is an "inline virtual member fn"? Are they ever actually "inlined"?

Yes but...

A virtual call via a ptr or ref is always resolved dynamically, which can never be inlined. Reason: the compiler can't know which actual code to call until run-time (i.e., dynamically), since the code may be from a derived class that was created after the caller was compiled.

Therefore the only time an inline virtual call can be inlined is when the compiler knows the "exact class" of the object which is the target of the virtual function call. This can happen only when the compiler has an actual object rather than a pointer or reference to an object. I.e., either with a local object, a global/static object, or a fully contained object inside a composite.

Note that the difference between inlining and non-inlining is normally MUCH more significant than the difference between a regular fn call and a virtual fn call. For example, the difference between a regular fn call and a virtual fn call is often just two extra memory references, but the difference between an inline function and a non-inline function can be as much as an order of magnitude (for zillions of calls to insignificant member fns, loss of inlining virtual fns can result in 25X speed degradation! [Doug Lea, "Customization in C++," proc Usenix C++ 1990]).

A practical consequence of this insight: don't get bogged down in the endless debates (or sales tactics!) of compiler/language vendors who compare the cost of a virtual function call on their language/compiler with the same on another language/compiler. Such comparisons are largely meaningless when compared with the ability of the language/compiler to "inline expand" member function calls. I.e., many language implementation vendors make a big stink about how good their dispatch strategy is, but if these implementations don't INLINE method calls, the overall system performance would be poor, since it is inlining --NOT dispatching-- that has the greatest performance impact.

NOTE: PLEASE READ THE NEXT TWO FAQs TO SEE THE OTHER SIDE OF THIS COIN!

�
#$Sounds like I should never use reference semantics, right?

Wrong.

Reference semantics are A Good Thing. We can't live without pointers. We just don't want our s/w to be One Gigantic Rats Nest Of Pointers. In C++, you can pick and choose where you want reference semantics (ptrs/refs) and where you'd like value semantics (where objects physically contain other objects etc). In a large system, there should be a balance. However if you implement absolutely EVERYTHING as a pointer, you'll get enormous speed hits.

Objects near the problem skin are larger than higher level objects. The IDENTITY of these "problem space" abstractions is usually more important than their "value." Thus reference semantics should be used for problem-space objects.

Note that these problem space objects are normally at a higher level of abstraction than the solution space objects, so the problem space objects normally have a relatively lower frequency of interaction. Therefore C++ gives us an IDEAL situation: we choose reference semantics for objects that need unique identity or that are too large to copy, and we can choose value semantics for the others. Thus the highest frequency objects will end up with value semantics, since we install flexibility where it doesn't hurt us (only), and we install performance where we need it most!

These are some of the many issues the come into play with real OO design. OO/C++ mastery takes time and high quality training.

�
#$Does the poor performance of ref semantics mean I should pass-by-value?

No. In fact, "NO!" :-)

The previous questions were talking about *subobjects*, not parameters. Pass-by-value is usually a bad idea when mixed with inheritance (larger subclass objects get "sliced' when passed by value as a base class object). Generally, objects that are part of an inheritance hierarchy should be passed by ref or by ptr, but not by value, since only then do you get the (desired) dynamic binding.

Unless compelling reasons are given to the contrary, subobjects should be by value and parameters should be by reference. The discussion in the previous few questions indicates some of the "compelling reasons" for when subobjects should be by reference.

�
#$How can I call a C function "f(int,char,float)" from C++ code?

Tell the C++ compiler that it is a C function:

 extern "C" void f(int,char,float);

Be sure to include the full function prototype. A block of many C functions can be grouped via braces, as in:

 extern "C" {

 void* malloc(size_t);

 char* strcpy(char* dest, const char* src);

 int printf(const char* fmt, ...);

 }

�
#$How can I create a C++ function "f()" that is callable by my C code?

The C++ compiler must know that "f(int,char,float)" is to be called by a C compiler using the same "extern C" construct detailed in the previous FAQ. Then you define the function in your C++ module:

 void f(int x, char y, float z)

 {

 //...

 }

The "extern C" line tells the compiler that the external information sent to the linker should use C calling conventions and name mangling (e.g., preceded by a single underscore). Since name overloading isn't supported by C, you can't make several overloaded fns simultaneously callable by a C program.

Caveats and implementation dependencies:

 	* your "main()" should be compiled with your C++ compiler (for static init).

 	* your C++ compiler should direct the linking process (for special libraries).

 	* your C and C++ compilers may need to come from same vendor and have compatible versions (i.e., needs same calling convention, etc.).

�
#$Why's the linker giving errors for C/C++ fns being called from C++/C fns?

See the previous two FAQs on how to use "extern "C"."

�
#$How can I pass an object of a C++ class to/from a C function?

Here's an example:

 /****** C/C++ header file: Fred.h ******/

 #ifdef __cplusplus /*"__cplusplus" is #defined if/only-if compiler is C++*/

 extern "C" {

 #endif

 #ifdef __STDC__

 extern void c_fn(struct Fred*); /* ANSI-C prototypes */

 extern struct Fred* cplusplus_callback_fn(struct Fred*);

 #else

 extern void c_fn(); /* K&R style */

 extern struct Fred* cplusplus_callback_fn();

 #endif

 #ifdef __cplusplus

 }

 #endif

 #ifdef __cplusplus

 class Fred {

 public:

 Fred();

 void wilma(int);

 private:

 int a_;

 };

 #endif

"Fred.C" would be a C++ module:

 #include "Fred.h"

 Fred::Fred() : a_(0) { }

 void Fred::wilma(int a) : a_(a) { }

 Fred* cplusplus_callback_fn(Fred* fred)

 {

 fred->wilma(123);

 return fred;

 }

"main.C" would be a C++ module:

 #include "Fred.h"

 int main()

 {

 Fred fred;

 c_fn(&fred);

 return 0;

 }

"c-fn.c" would be a C module:

 #include "Fred.h"

 void c_fn(struct Fred* fred)

 {

 cplusplus_callback_fn(fred);

 }

Passing ptrs to C++ objects to/from C fns will FAIL if you pass and get back something that isn't EXACTLY the same pointer. For example, DON'T pass a base class ptr and receive back a derived class ptr, since your C compiler won't understand the pointer conversions necessary to handle multiple and/or virtual inheritance.

�
#$Can my C function access data in an object of a C++ class?

Sometimes.

(First read the previous FAQ on passing C++ objects to/from C functions.)

You can safely access a C++ object's data from a C function if the C++ class:

 	* has no virtual functions (including inherited virtual fns)

 	* has all its data in the same access-level section (private/protected/public)

 	* has no fully-contained subobjects with virtual fns

If the C++ class has any base classes at all (or if any fully contained subobjects have base classes), accessing the data will TECHNICALLY be non-portable, since class layout under inheritance isn't imposed by the language. However in practice, all C++ compilers do it the same way: the base class object appears first (in left-to-right order in the event of multiple inheritance), and subobjects follow.

Furthermore, if the class (or any base class) contains any virtual functions, you can often (but less than always) assume a "void*" appears in the object either at the location of the first virtual function or as the first word in the object. Again, this is not required by the language, but it is the way "everyone" does it.

If the class has any virtual base classes, it is even more complicated and less portable. One common implementation technique is for objects to contain an object of the virtual base class (V) last (regardless of where "V" shows up as a virtual base class in the inheritance hierarchy). The rest of the object's parts appear in the normal order. Every derived class that has V as a virtual base class actually has a POINTER to the V part of the final object.

�
#$Why do I feel like I'm "further from the machine" in C++ as opposed to C?

Because you are.

As an OOPL, C++ allows you to model the problem domain itself, which allows you to program in the language of the problem domain rather than in the language of the solution domain.

One of C's great strengths is the fact that it has "no hidden mechanism": what you see is what you get. You can read a C program and "see" every clock cycle. This is not the case in C++; old line C programmers (such as many of us once were) are often ambivalent (can anyone say, "hostile") about this feature, but they soon realize that it provides a level of abstraction and economy of expression which lowers maintenance costs without destroying run-time performance.

Naturally you can write bad code in any language; C++ doesn't guarantee any particular level of quality, reusability, abstraction, or any other measure of "goodness." C++ doesn't try to make it impossible for bad programmers to write bad programs; it enables reasonable developers to create superior software.

�
#$What is the type of "ptr-to-member-fn"? Is it diffn't from "ptr-to-fn"?

A member fn of class X has type: Returntype (X::*)(Argtypes) while a plain function has type: Returntype (*) (Argtypes)

�
#$How can I ensure "X"s objects are only created with new, not on the stack?

Make sure the class's constructors are "private:", and define "friend" or "static" fns that return a ptr to the objects created via "new" (make the constructors "protected:" if you want to allow derived classes).

class Fred { //only want to allow dynamicly allocated Fred's

 public:

 static Fred* create() { return new Fred(); }

 static Fred* create(int i) { return new Fred(i); }

 static Fred* create(const Fred& fred) { return new Fred(fred);

}

 private:

 Fred();

 Fred(int i);

 Fred(const Fred& fred);

 virtual ~Fred();

 };

 main()

 {

 Fred* p = Fred::create(5);

 ...

 delete p;

 }

�
#$How do I pass a ptr to member fn to a signal handler,X event callback,etc?

Don't.

Because a member function is meaningless without an object to invoke it on, you can't do this directly (if The X Windows System was rewritten in C++, it would probably pass references to OBJECTS around, not just pointers to fns; naturally the objects would embody the required function and probably a whole lot more).

As a patch for existing software, use a top-level (non-member) function as a wrapper which takes an object obtained through some other technique (held in a global, perhaps). The top-level function would apply the desired member function against the global object.

E.g., suppose you want to call Fred::memfn() on interrupt:

 class Fred {

 public:

 void memfn();

 static void staticmemfn(); //a static member fn can handle it

 //...

 };

 //wrapper fn remembers the object on which to invoke memfn in a global:

 Fred* object_which_will_handle_signal;

 void Fred_memfn_wrapper() {

object_which_will_handle_signal->memfn(); }

 main()

 {

 /* signal(SIGINT, Fred::memfn); */ //Can NOT do this

 signal(SIGINT, Fred_memfn_wrapper); //Ok

 signal(SIGINT, Fred::staticmemfn); //Also Ok

 }

Note: static member functions do not require an actual object to be invoked, so ptrs-to-static-member-fns are type compatible with regular ptrs-to-fns (see ARM p.25, 158).

�
#$Why am I having trouble taking the address of a C++ function?

This is a corollary to the previous FAQ.

Long answer: In C++, member fns have an implicit parameter which points to the object (the "this" ptr inside the member fn). Normal C fns can be thought of as having a different calling convention from member fns, so the types of their ptrs (ptr-to-member-fn vs ptr-to-fn) are different and incompatible. C++ introduces a new type of ptr, called a ptr-to-member, which can be invoked only by providing an object (see ARM 5.5).

NOTE: do NOT attempt to "cast" a ptr-to-mem-fn into a ptr-to-fn; the result is undefined and probably disastrous. E.g., a ptr-to- member-fn is NOT required to contain the machine addr of the appropriate fn (see ARM, 8.1.2c, p.158). As was said in the last example, if you have a ptr to a regular C fn, use either a top-level (non-member) fn, or a "static" (class) member fn.

�
#$How do I declare an array of pointers to member functions?

Keep your sanity with "typedef".

 class Fred {

 public:

 int f(char x, float y);

 int g(char x, float y);

 int h(char x, float y);

 int i(char x, float y);

 //...

 };

 typedef int (Fred::*FredPtr)(char x, float y);

Here's the array of pointers to member functions:

 FredPtr a[4] = { &Fred::f, &Fred::g, &Fred::h, &Fred::i };

To call one of the member functions on object "fred":

 void userCode(Fred& fred, int methodNum, char x, float y)

 {

 //assume "methodNum" is between 0 and 3 inclusive

 (fred.*a[methodNum])(x, y);

 }

You can make the call somewhat clearer using a #define:

 #define callMethod(object,ptrToMethod)

((object).*(ptrToMethod))

 callMethod(fred, a[methodNum]) (x, y);

�
#$How can I insert/access/change elements from a linked list/hashtable/etc?

I'll use an "inserting into a linked list" as a prototypical example. It's easy to allow insertion at the head and tail of the list, but limiting ourselves to these would produce a library that is too weak (a weak library is almost worse than no library).

This answer will be a lot to swallow for novice C++'ers, so I'll give a couple of options. The first option is easiest; the second and third are better.

[1] Empower the "List" with a "current location," and methods such as advance(), backup(), atEnd(), atBegin(), getCurrElem(), setCurrElem(Elem), insertElem(Elem), and removeElem(). Although this works in small examples, the notion of "a" current position makes it difficult to access elements at two or more positions within the List (e.g., "for all pairs x,y do the following...").

[2] Remove the above methods from the List itself, and move them to a separate class, "ListPosition." ListPosition would act as a "current position" within a List. This allows multiple positions within the same List. ListPosition would be a friend of List, so List can hide its innards from the outside world (else the innards of List would have to be publicized via public methods in List). Note: ListPosition can use operator overloading for things like advance() and backup(), since operator overloading is syntactic sugar for normal methods.

[3] Consider the entire iteration as an atomic event, and create a class template to embodies this event. This enhances performance by allowing the public access methods (which may be virtual fns) to be avoided during the inner loop. Unfortunately you get extra object code in the application, since templates gain speed by duplicating code. For more, see [Koenig, "Templates as interfaces," JOOP, 4, 5 (Sept 91)], and [Stroustrup, "The C++ Programming Language Second Edition," under "Comparator"].

�
#$What's the idea behind "templates"?

A template is a cookie-cutter that specifies how to cut cookies that all look pretty much the same (although the cookies can be made of various kinds of dough, they'll all have the same basic shape). In the same way, a class template is a cookie cutter to description of how to build a family of classes that all look basically the same, and a function template describes how to build a family of similar looking functions.

Class templates are often used to build type safe containers (although this only scratches the surface for how they can be used).

�
#$What's the syntax / semantics for a "function template"?

Consider this function that swaps its two integer arguments:

 void swap(int& x, int& y)

 {

 int tmp = x;

 x = y;

 y = tmp;

 }

If we also had to swap floats, longs, Strings, Sets, and FileSystems, we'd get pretty tired of coding lines that look almost identical except for the type. Mindless repetition is an ideal job for a computer, hence a function template:

 template<class T>

 void swap(T& x, T& y)

 {

 T tmp = x;

 x = y;

 y = tmp;

 }

Every time we used "swap()" with a given pair of types, the compiler will go to the above definition and will create yet another "template function" as an instantiation of the above. E.g.,

 main()

 {

 int i,j; /*...*/ swap(i,j); //instantiates a swap for "int"

 float a,b; /*...*/ swap(a,b); //instantiates a swap for "float"

 char c,d; /*...*/ swap(c,d); //instantiates a swap for "char"

 String s,t; /*...*/ swap(s,t); //instantiates a swap for "String"

 }

(note: a "template function" is the instantiation of a "function template").

�
#$What's the syntax / semantics for a "class template"?

Consider a container class of that acts like an array of integers:

 //this would go into a header file such as "Array.h"

 class Array {

 public:

 Array(int len=10) : len_(len), data_(new int[len]){}

 ~Array() { delete [] data_; }

 int len() const { return len_; }

 const int& operator[](int i) const { data_[check(i)]; }

 int& operator[](int i) { data_[check(i)]; }

 Array(const Array&);

 Array& operator= (const Array&);

 private:

 int len_;

 int* data_;

 int check(int i) const

 { if (i < 0 || i >= len_) throw BoundsViol("Array", i, len_);

 return i; }

 };

Just as with "swap()" above, repeating the above over and over for Array of float, of char, of String, of Array-of-String, etc, will become tedious.

 //this would go into a header file such as "Array.h"

 template<class T>

 class Array {

 public:

 Array(int len=10) : len_(len), data_(new T[len]) { }

 ~Array() { delete [] data_; }

 int len() const { return len_; }

 const T& operator[](int i) const { data_[check(i)]; }

 T& operator[](int i) { data_[check(i)]; }

 Array(const Array<T>&);

 Array& operator= (const Array<T>&);

 private:

 int len_;

 T* data_;

 int check(int i) const

 { if (i < 0 || i >= len_) throw BoundsViol("Array", i, len_);

 return i; }

 };

Unlike template functions, template classes (instantiations of class templates) need to be explicit about the parameters over which they are instantiating:

 main()

 {

 Array<int> ai;

 Array<float> af;

 Array<char*> ac;

 Array<String> as;

 Array< Array<int> > aai;

 } // ^^^-- note the space; do NOT use

"Array<Array<int>>"

 // (the compiler sees ">>" as a single token).

�
#$What is a "parameterized type"?

Another way to say, "class templates."

A parameterized type is a type that is parameterized over another type or some value. List<int> is a type ("List") parameterized over another type ("int")..

�
#$What is "genericity"?

Yet another way to say, "class templates."

Not to be confused with "generality" (which just means avoiding solutions which are overly specific), "genericity" means class templates.

�
#$How can I fake templates if I don't have a compiler that supports them?

The best answer is: buy a compiler that supports templates. When this is not feasible, the next best answer is to buy or build a template preprocessor (ex: reads C++-with-templates, outputs C++-with-expanded-template-classes; such a system needn't be perfect; it cost my company about three man-weeks to develop such a preprocessor). If neither of these is feasible, you can use the macro preprocessor to fake templates. But beware: it's tedious; templates are a better solution wrt development and maintenance costs.

Here's how you'd declare my "Vec" example from above. First we define "Vec(T)" to concatenate the name "Vec" with that of the type T (ex: Vec(String) becomes "VecString"). This would go into a header file such as Vec.h:

	#include <generic.h>	//to get the "name2()" macro

	#define Vec(T) name2(Vec,T)

Next we declare the class Vec(T) using the name "Vecdeclare(T)" (in general you would postfix the name of the class with "declare", such as "Listdeclare" etc):

	#define Vecdeclare(T)						\

	class Vec(T) {							\

	 int xlen;							\

	 T* xdata;							\

	 int check(int i); /*return i if in bounds else throw*/	\

	public:								\

	 int len() const { return xlen; }	\

	 const T& operator[](int i) const { xdata[check(i)]; }	\

	 T& operator[](int i) { xdata[check(i)]; }	\

	 Vec(T)(int L=10): xlen(L), xdata(new T[L]) {/*...*/}\

	 ~Vec(T)() { delete [] xdata; }	\

	};

Note how each occurrence of "Vec" has the "(T)" postfixed. Finally we set up another macro that "implements" the non-inline member function(s) of Vec:

	//strangely enough this can also go into Vec.h

	#define Vecimplement(T)						\

	int Vec(T)::check(int i)					\

	{								\

	 if (i < 0 || i >= xlen) throw BoundsViol("Vec", i, xlen);	\

	 return i;							\

	}

When you which to use a Vec-of-String and Vec-of-int, you would say:

	#include "Vec.h" //pulls in <generic.h> too; see below...

	declare(Vec,String) //"declare()" is a macro defined in <generic.h>

	declare(Vec,int)

	Vec(String) vs; //Vec(String) becomes the single token "VecString"

	Vec(int) vi;

In exactly one source file in the system, you must provide implementations for the non-inlined member functions:

	#include "Vec.h"

	declare (Vec,String) declare (Vec,int) declare (Vec,float)

	implement(Vec,String) implement(Vec,int) implement(Vec,float)

Note that types whose names are other than a single identifier do not work properly. Ex: Vec(char*) creates a class whose name is "Vecchar*". The patch is to create a typedef for the appropriate type:

	#include "Vec.h"

	typedef char* charP;

	declare(Vec,charP)

It is important that every declaration of what amounts to "Vec<char*>" must all use exactly the same typedef, otherwise you will end up with several equivalent classes, and you"ll have unnecessary code duplication. This is the sort of tedium which a template mechanism can handle for you.

�
#$Why are classes with static data members getting linker errors?

Static data members must be explicitly defined in exactly one module.

E.g.,

 class Fred {

 public:

 //...

 private:

 static int i_; //declares static data member "Fred::i_"

 //...

 };

The linker will holler at you ("Fred::i_ is not defined") unless you define (as opposed to declare) "Fred::i_" in (exactly) one of your source files:

 int Fred::i_ = some_expression_evaluating_to_an_int; or:

 int Fred::i_;

The usual place to define static data members of class "Fred" is file "Fred.C" (or "Fred.cpp", etc; whatever filename extension you use).

�
#$What's the difference between the keywords struct and class?

The members and base classes of a struct are public by default, while in class, they default to private. Note: you should make your base classes EXPLICITLY public, private, or protected, rather than relying on the defaults.

"struct" and "class" are otherwise functionally equivalent.

�
#$Why can't I overload a function by its return type?

If you declare both "char f()" and "float f()", the compiler gives you an error message, since calling simply "f()" would be ambiguous.

�
#$What is "persistence"? What is a "persistent object"?

A persistent object can live after the program which created it has stopped. Persistent objects can even outlive different versions of the creating program, can outlive the disk system, the operating system, or even the hardware on which the OS was running when they were created.

The challenge with persistent objects is to effectively store their method code out on secondary storage along with their data bits (and the data bits and method code of all member objects, and of all their member objects and base classes, etc). This is non-trivial when you have to do it yourself. In C++, you have to do it yourself. C++/OO databases can help hide the mechanism for all this.

�
#$Which newsgroup should I post my questions?

Comp.lang.c++ is the best place to discuss the C++ language itself (e.g., C++ code design, syntax, style). Other newsgroups exist for discussion of topics which are specific to a particular system (e.g., MS indows or UNIX) or topics which are not directly related to the C++ language (e.g., how to use your compiler). Here's a list of some very active newsgroups and excerpts from their Frequently Asked Questions lists.

These excerpts should give you an idea of the type of topics frequently discussed there.

comp.os.ms-windows.programmer.tools

This group is intended for discussions about the selection and use of tools for Windows software development.

comp.os.ms-windows.programmer.misc

This group is for all other discussions about Windows software development.

[There's one FAQ list for all the comp.os.ms-windows.programmer.* groups]

{bmc bullet.mrb}	FAQ 5.7.1. Accessing C++ classes in a DLL

{bmc bullet.mrb}	FAQ 6.1.1. A dialog as an MDI child window [with OWL]

{bmc bullet.mrb}	FAQ 6.2.1. Disabled menu choices become enabled [with MFC]

{bmc bullet.mrb}	FAQ 8.1.5. Using STRICT with windows.h

{bmc bullet.mrb}	FAQ 10. A programmer's bibliography

comp.os.msdos.programmer

Much of the traffic is about language products (chiefly from Borland and Microsoft).

{bmc bullet.mrb}	FAQ 301. How can I read a character without [waiting for] the Enter key?

{bmc bullet.mrb}	FAQ 412. How can I read, create, change, or delete the volume label?

{bmc bullet.mrb}	FAQ 504. How do I configure a COM port and use it to transmit data?

{bmc bullet.mrb}	FAQ 602. How can a C program send control codes to my printer?

{bmc bullet.mrb}	FAQ 606. How can I find the Microsoft mouse position and button status?

{bmc bullet.mrb}	FAQ 707. How can I write a TSR (terminate-stay-resident) utility?

{bmc bullet.mrb}	FAQ B0. How can I contact [Borland, Microsoft]?

Note: this FAQ is not available at rtfm.mit.edu; it is at Simtel (e.g., oak.oakland.edu) in /pub/msdos/info/faqp*.zip and Garbo (garbo.uwasa.fi) in /pc/doc-net/faqp*.zip]

comp.os.msdos.programmer.turbovision [Borland's character-mode framework]

comp.unix.programmer

{bmc bullet.mrb}	FAQ 4.5: How do I use popen() to open a process for reading AND writing?

{bmc bullet.mrb}	FAQ 4.6: How do I sleep() in a C program for less than one second?

comp.unix.solaris (covers SunOS 4.x and Solaris)

{bmc bullet.mrb}	FAQ 4: Signal Primer

{bmc bullet.mrb}	FAQ 5: Waiting for Children to Exit

gnu.g++.help

{bmc bullet.mrb}	FAQ: Where can I find a demangler?

{bmc bullet.mrb}	FAQ: Getting gcc/g++ binaries for Solaris 2.x

{bmc bullet.mrb}	FAQ: What documentation exists for g++ 2.x?

gnu.g++.bug [bug reports for g++ -- see the g++ docs]

comp.lang.c

{bmc bullet.mrb}	FAQ 1.10: I'm confused. NULL is guaranteed to be 0, but the null pointer is not?

{bmc bullet.mrb}	FAQ 2.3: So what is meant by the "equivalence of pointers and arrays" in C?

{bmc bullet.mrb}	FAQ 4.2: [Why doesn't "printf("%d\n," i++ * i++);" work?]

{bmc bullet.mrb}	FAQ 7.1: How can I write a function that takes a variable number of arguments? [stdarg.h or varargs.h]

{bmc bullet.mrb}	FAQ 10.4: How do I declare an array of pointers to functions returning pointers to functions returning pointers to characters?

Also check out the newsgroups comp.graphics, comp.sources.wanted, comp.programming, and comp.object (its FAQ is an excellent introduction and overview of OOP terms and concepts).

Remember that comp.std.c++ is for discussion DIRECTLY related to the evolving ANSI/ISO C++ Standard (see more below).

There's rarely a need to crosspost a question to one of the above newsgroups and comp.lang.c++ (readers in the system-specific newsgroups aren't programming in machine language, ya know). It's bad netiquette to crosspost widely because your problem is "really important." If you don't get an answer in the "right" newsgroup and feel you must post here, at least consider redirecting followups back to the appropriate newsgroup.

Before posting a question to any newsgroup you should read it's FAQ list. An answer to your question is likely to be there, saving you the time of posting and saving thousands of other people around the world the time of reading your question. People answering a FAQ are likely to be annoyed for having to answer it for the umpteenth time, or they're likely to be giving you a wrong or incomplete answer since they haven't read the FAQ either.

Frequently Asked Questions lists are available 24-hours a day via anonymous ftp (rtfm.mit.edu in /pub/usenet/comp.what.ever) or e-mail server (send a message with the line "help" to mail-server@rtfm.mit.edu). See the article "Introduction to the *.answers newsgroups" in the newsgroup news.answers or news.announce.newusers (which contains many other must-read articles) for more information.

�
#$How do I post a question about code that doesn't work correctly?

Here's some guidelines you should follow that will help people reading comp.lang.c++ help you with an answer to your programming problem.

1.	Please read the previous FAQ to make sure that your question is about the C++ language and not a question about programming on your system (e.g., graphics, printers, devices, etc.) or using your compilation environment (e.g., "the IDE crashes when I...," "how do you turn off warnings about...," "how do I tell it to link my libraries"). If you want to know why your virtual CmOk() function isn't being called in your OWL program, your question is probably more appropriate in the Windows programming newsgroup. If you can write a small stand-alone program which exhibits the same undesired compiler error or behavior as your OWL program, by all means post here in comp.lang.c++ since C++ programmers using other systems could be of help.

2.	Be descriptive in the subject line. "C++ problem" leaves a lot to the imagination. "Problem new'ing a multi-dimensional array" is good. Refrain from exclamation points, cries for HELPPP, and the once funny "SEX SEX SEX." If you think the problem is specific to your compiler, you might want to mention the compiler/version in the subject line.

3.	Post code that is complete and compilable. It's extremely difficult to debug or reconstruct a program from a human language description. By "complete code" I mean that any types and functions used are declared, headers are #include'd, etc. Please strip the code down to the bare essentials. We don't need a program that does something useful at run-time, or even links. We just need to be able to reproduce the undesired compiler error (possibly on a different compiler). By "compilable code" I mean that it doesn't contain a bunch of uncommented ellipses or line numbers at the beginning of each line:

	14: #include <iostream.h>

	15: class Foo { ... }; // this is annoying

Try to organize the code into one linear program instead of making us cut out and create header files. Be very careful if you are typing the code into your article -- it's often difficult to tell whether something is a typo or the real cause of the problem. Try using your editor's cut&paste or "insert file" feature instead.

4.	Mention what compiler, compiler version, and system you're using. I know, I just said that system-specific questions should go to a system-specific newsgroup, but compiler information is often very useful in diagnosing the problem: ("yeah, I remember Acme 1.2 having lots of problems in this area"). It also warns other users of that compiler about possible bugs.

5.	Show us the exact compiler and linker options and libraries you used when building your program.

6.	List the exact error message and where the error was given. "Virtual functions don't work" doesn't tell us whether its a compile-, link-, or run-time problem. If the problem is at run-time, give a good description of the behavior and any relevant information about your system setup.

7.	Include a working e-mail address in your signature. If the address in given your article's "From:" line is not correct, please notify your system administrator. Until it is fixed, add a "Reply-To:" line to your headers that uses your correct e-mail address.

8.	Please read the rest of this FAQ -- chances are your problem, or a closely related problem, is discussed here. Thank you and I hope these suggestions help you find a solution to your problem.

�
#$How should I handle resources if my constructors may throw exceptions?

Every data member inside your object should clean up its own mess.

If a constructor throws an exception, the object's destructor is NOT run. If your object has already done something that needs to be undone (such as allocating some memory, opening a file, or locking a semaphore), this "stuff that needs to be undone" MUST be remembered by a data member inside the object.

For example, rather than allocating memory into a raw "Fred*" data member, put the allocated memory into a "smart pointer" member object, and the destructor of this smart pointer will delete the Fred object when the smart pointer dies.

�
#$What do I do if I want to update an "invisible" data member inside a "const" member function?

Use "mutable", or use "const_cast".

A small percentage of inspectors need to make innocuous changes to data members

(e.g., a "Set" object might want to cache its last lookup in hopes of improving the performance of its next lookup). By saying the changes are "inocuous," I mean that the changes wouldn't be visible from outside the object's interface (otherwise the method would be a mutator rather than an inspector).

When this happens, the data member which will be modified should be marked as "mutable" (put the "mutable" keyword just before the data member's declaration; i.e., in the same place where you could put "const"). This tells the compiler that the data member is allowed to change during a const member function. If you can't use "mutable", you can cast away the constness of "this" via "const_cast". E.g., in "Set::lookup() const", you might say,

Set* self = const_cast<Set*>(this);

After this line, "self" will have the same bits as "this" (e.g., "self==this"), but "self" is a "Set*" rather than a "const Set*". Therefore you can use "self" to modify the object pointed to by "this".

�
#$Does "const_cast" mean lost optimization opportunities?

In theory, yes; in practice, no.

Even if a compiler outlawed "const_cast", the only way to avoid flushing the register cache across a "const" member function call would be to ensure that there are no non-const pointers that alias the object. This can happen only in rare cases (when the object is constructed in the scope of the const member fn invocation, and when all the non-const member function invocations between the object's construction and the const member fn invocation are statically bound, and when every one of these invocations is also "inline"d, and when the constructor itself is "inline"d, and when any member fns the constructor calls are inline).

�
#$How do you use inheritance in C++, and is that different from Smalltalk?

Some people believe that the purpose of inheritance is code reuse. In C++, this is wrong. Stated plainly, "inheritance is not 'for' code reuse."

The purpose of inheritance in C++ is to express interface compliance (subtyping), not to get code reuse. In C++, code reuse usually comes via composition rather than via inheritance. In other words, inheritance is mainly a specification technique rather than an implementation technique.

This is a major difference with Smalltalk, where there is only one form of inheritance (C++ provides "private" inheritance to mean "share the code but don't conform to the interface", and "public" inheritance to mean "kind-of"). The Smalltalk language proper (as opposed to coding practice) allows you to have the EFFECT of "hiding" an inherited method by providing an override that calls the "does not understand" method. Furthermore Smalltalk allows a conceptual "is-a" relationship to exist APART from the subclassing hierarchy (subtypes don't have to be subclasses; e.g., you can make something that is-a Stack yet doesn't inherit from class Stack).

In contrast, C++ is more restrictive about inheritance: there's no way to make a "conceptual is-a" relationship without using inheritance (the C++ work-around is to separate interface from implementation via ABCs). The C++ compiler exploits the added semantic information associated with public inheritance to provide static typing.

�
#$What are the practical consequences of the differences in Smalltalk/C++ inheritance?

Smalltalk lets you make a subtype that isn't a subclass, and allows you to make a subclass that isn't a subtype. This allows Smalltalk programmers to be very carefree in putting data (bits, representation, data structure) into a class (e.g., you might put a linked list into a Stack class). After all, if someone wants an array-based-Stack, they don't have to inherit from Stack; they could inherit such a class from Array if desired, even though an ArrayBasedStack is NOT a kind-of Array!

In C++, you can't be nearly as carefree. Only mechanism (method code), but not representation (data bits) can be overridden in subclasses. Therefore you're usually better off NOT putting the data structure in a class. This leads to a stronger reliance on Abstract Base Classes (ABCs).

I like to think of the difference between an ATV and a Maseratti. An ATV (all terrain vehicle) is more fun, since you can "play around" by driving through fields, streams, sidewalks, and the like. A Maseratti, on the other hand, gets you there faster, but it forces you to stay on the road. My advice to C++ programmers is simple: stay on the road. Even if you're one of those people who like the "expressive freedom" to drive through the bushes, don't do it in C++; it's not a good fit.

�
#$Do you need to learn a "pure" OOPL before you learn C++?

No (in fact, doing so might actually hurt you).

(Note that Smalltalk is a "pure" OOPL, and C++ is a "hybrid" OOPL). Before reading this, please read the previous FAQs on the difference between C++ and Smalltalk.

The "purity" of the OOPL doesn't make the transition to C++ any easier. In fact, the typical use of dynamic typing and non-subtyping inheritance can make it even harder for Smalltalk programmers to learn C++. Paradigm Shift, Inc., has taught OO technology to literally thousands of people, and we have noticed that people who want to learn C++ from a Smalltalk background usually have just as hard a time as those who've never seen inheritance before. In fact, those with extensive experience with a dynamically typed OOPL (usually but not always Smalltalk) might even have a HARDER time, since it's harder to UNLEARN habits than it is to learn the statically typed way from the beginning.

�
#$What is the NIHCL? Where can I get it?

NIHCL stands for "national-institute-of-health's-class-library." it can be acquired via anonymous ftp from [128.231.128.7] in the file pub/nihcl-3.0.tar.Z

NIHCL (some people pronounce it "N-I-H-C-L," others pronounce it like "nickel") is a C++ translation of the Smalltalk class library. There are some ways where NIHCL's use of dynamic typing helps (e.g., persistent objects). There are also places where its use of dynamic typing creates tension with the static typing of the C++ language.

See previous FAQs on Smalltalk for more.

�
#$Where can I get a copy of "STL"?

"STL" is the "Standard Templates Library". You can get a copy from:

STL HP official site:	ftp://butler.hpl.hp.com/stl

STL code alternate:	ftp://ftp.cs.rpi.edu/stl

STL code + examples:	http://www.cs.rpi.edu/~musser/stl.html

hacks for GCC-2.6.3:	ftp://ftp.uni-bremen.de/pub/.mount/ruin/C++/STL

Which_newsgroup_should_I_post_my_questions_

$ Which newsgroup should I post my questions?

How_do_I_post_a_question_about_code_that_doesn_t_work_correctly_

$ How do I post a question about code that doesn't work correctly?

How_should_I_handle_resources_if_my_constructors_may_throw_exceptions_

$ How should I handle resources if my constructors may throw exceptions?

What_do_I_do_if_I_want_to_update_an__invisible__data_member_inside_a__const__member_function_

$ What do I do if I want to update an "invisible" data member inside a "const" member function?

Does__const_cast__mean_lost_optimization_opportunities_

$ Does "const_cast" mean lost optimization opportunities?

How_do_you_use_inheritance_in_C____and_is_that_different_from_Smalltalk_

$ How do you use inheritance in C++, and is that different from Smalltalk?

What_are_the_practical_consequences_of_the_differences_in_Smalltalk_C___inheritance_

$ What are the practical consequences of the differences in Smalltalk/C++ inheritance?

Do_you_need_to_learn_a__pure__OOPL_before_you_learn_C___

$ Do you need to learn a "pure" OOPL before you learn C++?

What_is_the_NIHCL___Where_can_I_get_it_

$ What is the NIHCL? Where can I get it?

Where_can_I_get_a_copy_of__STL__

$ Where can I get a copy of "STL"?

Nomenclature_and_common_abbreviations

$ Nomenclature and common abbreviations

What_books_are_available_for_C___

$ What books are available for C++?

Is_C___backward_compatible_with_ANSI_C_

$ Is C++ backward compatible with ANSI C?

Where_can_I_ftp_a_copy_of_the_latest_ANSI_C___draft_standard_

$ Where can I ftp a copy of the latest ANSI C++ draft standard?

Are_there_any_C___standardization_efforts_underway_

$ Are there any C++ standardization efforts underway?

Who_uses_C___

$ Who uses C++?

What_are_some_advantages_of_C___

$ What are some advantages of C++?

What_is_C_____What_is_OOP_

$ What is C++? What is OOP?

What_is_a_class_

$ What is a class?

What_is_an_object_

$ What is an object?

What_is_a_reference_

$ What is a reference?

What_happens_if_you_assign_to_a_reference_

$ What happens if you assign to a reference?

How_can_you_reseat_a_reference_to_make_it_refer_to_a_different_object_

$ How can you reseat a reference to make it refer to a different object?

When_should_I_use_references__and_when_should_I_use_pointers_

$ When should I use references, and when should I use pointers?

What_are_inline_fns__What_are_their_advantages__How_are_they_declared_

$ What are inline fns? What are their advantages? How are they declared?

What_is_a_constructor___Why_would_I_ever_use_one_

$ What is a constructor? Why would I ever use one?

What_are_destructors_really_for___Why_would_I_ever_use_them_

$ What are destructors really for? Why would I ever use them?

What_is_operator_overloading_

$ What is operator overloading?

What_operators_can_cannot_be_overloaded_

$ What operators can/cannot be overloaded?

Can_I_create_a______operator_for__to_the_power_of__operations_

$ Can I create a “**' operator for “to-the-power-of' operations?

What_is_a__friend__

$ What is a “friend'?

Do__friends__violate_encapsulation_

$ Do “friends' violate encapsulation

What_are_some_advantages_disadvantages_of_using_friends_

$ What are some advantages/disadvantages of using friends?

What_does_it_mean_that__friendship_is_neither_inherited_nor_transitive__

$ What does it mean that “friendship is neither inherited nor transitive'?

When_would_I_use_a_member_function_as_opposed_to_a_friend_function_

$ When would I use a member function as opposed to a friend function?

How_can_I_provide_printing_for_a__class_X__

$ How can I provide printing for a “class X'?

Why_should_I_use__iostream_h__instead_of_the_traditional__stdio_h__

$ Why should I use <iostream.h> instead of the traditional <stdio.h>?

Printf_scanf_weren_t_broken__why__fix__them_with_ugly_shift_operators_

$ Printf/scanf weren't broken; why “fix' them with ugly shift operators?

Does__delete_ptr__delete_the_ptr_or_the_pointed_to_data_

$ Does “delete ptr' delete the ptr or the pointed-to-data?

Can_I_free___ptrs_alloc_d_with__new__or__delete__ptrs_alloc_d_w__malloc___

$ Can I free() ptrs alloc'd with “new' or “delete' ptrs alloc'd w/ malloc()?

Why_should_I_use__new__instead_of_trustworthy_old_malloc___

$ Why should I use “new' instead of trustworthy old malloc()?

Why_doesn_t_C___have_a__realloc____along_with__new__and__delete__

$ Why doesn't C++ have a “realloc()' along with “new' and “delete'?

How_do_I_allocate___unallocate_an_array_of_things_

$ How do I allocate / unallocate an array of things?

What_if_I_forget_the______when__delete_ing_array_allocated_via__new_X_n___

$ What if I forget the “[]' when “delete'ing array allocated via “new X[n]'?

What_s_the_best_way_to_create_a___define_macro__for__NULL__in_C___

$ What's the best way to create a “#define macro_ for _NULL_ in C___

How_can_I_handle_a_constructor_that_fails_

$ How can I handle a constructor that fails?

How_can_I_compile_out_my_debugging_print_statements_

$ How can I compile-out my debugging print statements?

What_is__const_correctness__

$ What is “const correctness'?

Is__const_correctness__a_good_goal_

$ Is “const correctness' a good goal?

Is__const_correctness__tedious_

$ Is “const correctness' tedious?

Should_I_try_to_get_things_const_correct__sooner__or__later__

$ Should I try to get things const correct “sooner' or “later'?

What_is_a__const_member_function__

$ What is a “const member function'?

What_is_an__inspector____What_is_a__mutator__

$ What is an “inspector'? What is a “mutator'?

What_is__casting_away_const_in_an_inspector__and_why_is_it_legal_

$ What is “casting away const in an inspector' and why is it legal?

But_doesn_t__cast_away_const__mean_lost_optimization_opportunities_

$ But doesn't 'cast away const' mean lost optimization opportunities?

What_is_inheritance_

$ What is inheritance?

Ok__ok__but_what_is_inheritance_

$ Ok, ok, but what is inheritance?

How_do_you_express_inheritance_in_C___

$ How do you express inheritance in C++?

What_is__incremental_programming__

$ What is “incremental programming'?

Should_I_pointer_cast_from_a_derived_class_to_its_base_class_

$ Should I pointer-cast from a derived class to its base class?

Derived______Base__works_ok__why_doesn_t_Derived_______Base___work_

$ Derived* --> Base* works ok; why doesn't Derived** --> Base** work?

Does_array_of_Derived_is_NOT_a_kind_of_array_of_Base_mean_arrays_are_bad_

$ Does array-of-Derived is-NOT-a-kind-of array-of-Base mean arrays are bad?

What_is_a__virtual_member_function__

$ What is a “virtual member function'?

What_s_the_big_deal_of_separating_interface_from_implementation_

$ What's the big deal of separating interface from implementation?

What_is_dynamic_dispatch___Static_dispatch_

$ What is dynamic dispatch? Static dispatch?

Can_I_override_a_non_virtual_fn_

$ Can I override a non-virtual fn?

Can_I__revoke__or__hide__public_member_fns_inherited_from_my_base_class_

$ Can I “revoke' or “hide' public member fns inherited from my base class?

Is_a__Circle__a_kind_of_an__Ellipse__

$ Is a “Circle' a kind-of an “Ellipse'?

Are_there_other_options_to_the__Circle_is_isnot_kind_of_Ellipse__dilemma_

$ Are there other options to the “Circle is/isnot kind-of Ellipse' dilemma?

Why_can_t_I_access__private__things_in_a_base_class_from_a_derived_class_

$ Why can't I access “private' things in a base class from a derived class?

What_s_the_difference_between__public_____private____and__protected___

$ What's the difference between “public:', “private:', and “protected:'?

How_can_I_protect_subclasses_from_breaking_when_I_change_internal_parts_

$ How can I protect subclasses from breaking when I change internal parts?

Why_does_base_ctor_get__base__s_virtual_fn_instead_of_the_derived_version_

$ Why does base ctor get *base*'s virtual fn instead of the derived version?

Does_a_derived_class_dtor_need_to_explicitly_call_the_base_destructor_

$ Does a derived class dtor need to explicitly call the base destructor?

How_do_you_express__private_inheritance__

$ How do you express “private inheritance'?

How_are__private_derivation__and__containment__similar__dissimilar_

$ How are “private derivation' and “containment' similar? dissimilar?

Should_I_pointer_cast_from_a__privately__derived_class_to_its_base_class_

$ Should I pointer-cast from a “privately' derived class to its base class?

Should_I_pointer_cast_from_a__protected__derived_class_to_its_base_class_

$ Should I pointer-cast from a “protected' derived class to its base class?

What_are_the_access_rules_with__private__and__protected__inheritance_

$ What are the access rules with “private' and “protected' inheritance?

Do_most_C___programmers_use_containment_or_private_inheritance_

$ Do most C++ programmers use containment or private inheritance?

How_do_I_separate_interface_from_implementation_in_C____like_Modula_2__

$ How do I separate interface from implementation in C++ (like Modula-2)?

What_is_an_ABC___abstract_base_class___

$ What is an ABC (“abstract base class')?

What_is_a__pure_virtual__member_function_

$ What is a “pure virtual' member function?

How_can_I_provide_printing_for_an_entire_hierarchy_rooted_at__class_X__

$ How can I provide printing for an entire hierarchy rooted at “class X'?

What_is_a__virtual_destructor__

$ What is a “virtual destructor'?

What_is_a__virtual_constructor__

$ What is a “virtual constructor'?

What_are_some_good_C___coding_standards_

$ What are some good C++ coding standards?

Are_coding_standards_necessary___sufficient_

$ Are coding standards necessary? sufficient?

Should_our_organization_determine_coding_standards_from_our_C_experience_

$ Should our organization determine coding standards from our C experience?

Should_I_declare_locals_in_the_middle_of_a_fn_or_at_the_top_

$ Should I declare locals in the middle of a fn or at the top?

What_source_file_name_convention_is_best___foo_C____foo_cc____foo_cpp__

$ What source-file-name convention is best? “foo.C'? “foo.cc'? “foo.cpp'?

What_header_file_name_convention_is_best___foo_H____foo_hh____foo_hpp__

$ What header-file-name convention is best? “foo.H'? “foo.hh'? “foo.hpp'?

Are_there_any_lint_like_guidelines_for_C___

$ Are there any lint-like guidelines for C++?

Why_does_C___s_FAQ_have_a_section_on_Smalltalk__Is_this_Smalltalk_bashing_

$ Why does C++'s FAQ have a section on Smalltalk? Is this Smalltalk-bashing?

What_s_the_difference_between_C___and_Smalltalk_

$ What's the difference between C++ and Smalltalk?

What_is__static_typing___and_how_is_it_similar_dissimilar_to_Smalltalk_

$ What is “static typing', and how is it similar/dissimilar to Smalltalk?

Which_is_a_better_fit_for_C_____static_typing__or__dynamic_typing__

$ Which is a better fit for C++: “static typing' or “dynamic typing'?

How_can_you_tell_if_you_have_a_dynamically_typed_C___class_library_

$ How can you tell if you have a dynamically typed C++ class library?

Will__standard_C____include_any_dynamic_typing_primitives_

$ Will “standard C++' include any dynamic typing primitives?

What_is_value_and_or_reference_semantics__and_which_is_best_in_C___

$ What is value and/or reference semantics, and which is best in C++?

What_is__virtual_data___and_how_can___why_would_I_use_it_in_C___

$ What is “virtual data', and how-can / why-would I use it in C++?

What_s_the_difference_between_virtual_data_and_dynamic_data_

$ What's the difference between virtual data and dynamic data?

Should_class_subobjects_be_ptrs_to_freestore_allocated_objs__or_contained_

$ Should class subobjects be ptrs to freestore allocated objs, or contained?

What_are_relative_costs_of_the_3_performance_hits_of_allocated_subobjects_

$ What are relative costs of the 3 performance hits of allocated subobjects?

What_is_an__inline_virtual_member_fn____Are_they_ever_actually__inlined__

$ What is an “inline virtual member fn'? Are they ever actually “inlined'?

Sounds_like_I_should_never_use_reference_semantics__right_

$ Sounds like I should never use reference semantics, right?

Does_the_poor_performance_of_ref_semantics_mean_I_should_pass_by_value_

$ Does the poor performance of ref semantics mean I should pass-by-value?

How_can_I_call_a_C_function__f____from_C___code_

$ How can I call a C function “f()' from C++ code?

How_can_I_create_a_C___function__f____that_is_callable_by_my_C_code_

$ How can I create a C++ function “f()' that is callable by my C code?

Why_s_the_linker_giving_errors_for_C_C___fns_being_called_from_C___C_fns_

$ Why's the linker giving errors for C/C++ fns being called from C++/C fns?

How_can_I_pass_an_object_of_a_C___class_to_from_a_C_function_

$ How can I pass an object of a C++ class to/from a C function?

Can_my_C_function_access_data_in_an_object_of_a_C___class_

$ Can my C function access data in an object of a C++ class?

Why_do_I_feel_like_I_m__further_from_the_machine__in_C___as_opposed_to_C_

$ Why do I feel like I'm “further from the machine' in C++ as opposed to C?

What_is_the_type_of__ptr_to_member_fn____Is_it_diffn_t_from__ptr_to_fn__

$ What is the type of “ptr-to-member-fn'? Is it diffn't from “ptr-to-fn'?

How_can_I_ensure__X_s_objects_are_only_created_with_new__not_on_the_stack_

$ How can I ensure “X's objects are only created with new, not on the stack?

How_do_I_pass_a_ptr_to_member_fn_to_a_signal_handler_X_event_callback_etc_

$ How do I pass a ptr to member fn to a signal handler,X event callback,etc?

Why_am_I_having_trouble_taking_the_address_of_a_C___function_

$ Why am I having trouble taking the address of a C++ function?

How_do_I_declare_an_array_of_pointers_to_member_functions_

$ How do I declare an array of pointers to member functions?

How_can_I_insert_access_change_elements_from_a_linked_list_hashtable_etc_

$ How can I insert/access/change elements from a linked list/hashtable/etc?

What_s_the_idea_behind__templates__

$ What's the idea behind “templates'?

What_s_the_syntax___semantics_for_a__function_template__

$ What's the syntax / semantics for a “function template'?

What_s_the_syntax___semantics_for_a__class_template__

$ What's the syntax / semantics for a “class template'?

What_is_a__parameterized_type__

$ What is a “parameterized type'?

What_is__genericity__

$ What is “genericity'?

How_can_I_fake_templates_if_I_don_t_have_a_compiler_that_supports_them_

$ How can I fake templates if I don't have a compiler that supports them?

Why_are_classes_with_static_data_members_getting_linker_errors_

$ Why are classes with static data members getting linker errors?

What_s_the_difference_between_the_keywords_struct_and_class_

$ What's the difference between the keywords struct and class?

Why_can_t_I_overload_a_function_by_its_return_type_

$ Why can't I overload a function by its return type?

What_is__persistence____What_is_a__persistent_object__

$ What is “persistence'? What is a “persistent object'?

