
Application APIs –1

B. Application APIs

You can extend some Be applications by providing them with add-on modules, which they
will load and integrate into the set of features they provide for the user. Currently, the
Browser is the only Be application with a public API for add-on extensions.

The Browser

The Browser can accept add-on modules that deal with database records and that can be
invoked from menu items to carry out discrete tasks. The modules should be compiled as
on-add images (described inThe Kernel Kit chapter), and should be placed in the
/system/add-ons/Browser directory.

The Browser will create an item for its Add-Ons menu with the same name as the add-on
file. If the name ends in a hyphen plus one character, that character will be the keyboard
shortcut for the item. For example, if the file is

/system/add-ons/Browser/Recede in Time-r

the Browser will add a “Recede in Time” item to its Add-Ons menu and assign it
Command-r as a keyboard shortcut. The shortcut should not conflict with any that the
Browser already uses.

The Browser loads the add-on module whenever the user operates the item. The add-on
must provide the Browser with a single entry point, a function namedprocess_refs(). It
has the following syntax:

void process_refs(record_refdirectory, BMessage *message, void *data)

Thedirectory is a reference to the directory the Browser is currently displaying in the
active window. Themessage is a standardB_REFS_RECEIVED BMessage. It has a “refs”
entry withrecord_refs for all the items in the directory that are currently selected. The
data argument is unused at present; ignore it.

After it loads the add-on image, the Browser creates a thread for it and calls its
process_refs() function in that thread. Whenprocess_refs() returns, the Browser unloads
the image. The add-on should make sure that any additional threads that it spawned are
destroyed before it returns—especially any windows it displayed to the user.

The Browser

2 – Application APIs

< The Browser invokesprocess_refs() each time the user operates the menu item. If the
user operates the item a second time before the first invocation ofprocess_refs() returns,
two instances of the function will be executing, each in its own thread. Unfortunately,
when either instance returns, the Browser will unload the add-on image, leading to
predictable undesired consequences. This is a known bug that will be repaired in a future
release. >

To compile the add-on image, follow the directions for shared libraries in the Metrowerks
CodeWarrior manual. In summary, you should specify the following options to the linker:

• –G, to tell the linker to produce an add-on image.

• –export pragma, to tell it that your source code has#pragma directives exporting
theprocess_refs() symbol. Then surround the definition of the function with
directives that turn exporting on and off:

#pragma export on
void process_refs(record_ref dir, BMessage *msg, void *data)
{
 . . .
}
#pragma export off

This gives the Browser the access it needs to call the function.

You can link the module against the system library; you shouldn’t link it against the
Browser.

Once compiled, place the module in the/system/add-ons/Browser directory, as discussed
above. This is the only place the Browser looks for modules to load.

