
Message Protocols –1

A. Message Protocols

System Messages . 3
System Management Messages 3

B_HANDLERS_REQUESTED 4
B_QUIT_REQUESTED 4

Application Messages. 4
B_ABOUT_REQUESTED 4
B_ACTIVATE . 5
B_APP_ACTIVATED 5
B_ARGV_RECEIVED 5
B_PANEL_CLOSED 5
B_PULSE . 6
B_QUIT_REQUESTED 6
B_READY_TO_RUN. 6
B_REFS_RECEIVED 6

Interface Messages . 7
B_KEY_DOWN . 7
B_KEY_UP . 9
B_MINIMIZE . 9
B_MOUSE_DOWN 9
B_MOUSE_MOVED 10
B_MOUSE_UP .11
B_PANEL_CLOSED12
B_PULSE . .12
B_QUIT_REQUESTED13
B_SAVE_REQUESTED13
B_SCREEN_CHANGED. 14
B_VALUE_CHANGED 14
B_VIEW_MOVED 14
B_VIEW_RESIZED. 15
B_WINDOW_ACTIVATED. 15
B_WINDOW_MOVED 16
B_WINDOW_RESIZED 16
B_WORKSPACE_ACTIVATED16
B_WORKSPACES_CHANGED 17
B_ZOOM .17

2 – Message Protocols

Standard Messages .18
Reply Messages . .18

B_HANDLERS_INFO 18
B_MESSAGE_NOT_UNDERSTOOD18
B_NO_REPLY. .19

Editing Messages .19
B_CUT, B_COPY, andB_PASTE19
B_SIMPLE_DATA19

Interapplication Messages . .20

Message Protocols –3

A. Message Protocols

This appendix details the formats for all public messages produced and understood by Be
system software. The list includes all system messages, all other messages that might find
their way to your application (for example, through a drag and drop operation), and all
messages that you can deliver to a Be application or a Be-defined class.

For information on the messaging system, see “Messaging” inThe Application Kit
chapter.

System Messages

Messages that are dispatched and handled in a message-specific manner are known as
system messages. For the most part, these are messages that the system produces and that
applications are expected to respond to (by implementing a hook function matched to the
message), but some are messages that applications must produce themselves. They fall
into three categories:

• System-management messages can be delivered to any BLooper,
• Application messages are consigned to the BApplication object, and
• Interface messages are reported to BWindow objects.

For information on the place of system messages in the messaging system, see “System
Messages” in the introduction toThe Application Kit chapter.

System Management Messages

System management messages are concerned with running the messaging system. The
BLooper class in the Application Kit declares hook functions for two such messages. (See
also “System Management Messages” on page 15 ofThe Application Kit chapter.)

System Messages

4 – Message Protocols

B_HANDLERS_REQUESTED

This message asks a target BHandler to supply BMessenger objects as proxies for other
BHandlers. The BLooper dispatches it by calling the target’sHandlersRequested()
function; the target should respond with aB_HANDLERS_INFO reply.

TheHandlersRequested() functions implemented in the Application and Interface Kits
look for the following data entries in the message. See those functions for details.

Data name Type code Description

“index” B_LONG_TYPE An index into a list of BHandlers kept by
the target BHandler.

“name” B_STRING_TYPE The name of a BHandler.

“class” B_STRING_TYPE The name of a class derived from
BHandler or “BHandler” itself.

Since applications initiateB_HANDLERS_REQUESTED messages, they are free to use
whatever protocols prove useful for requesting BHandler proxies. The data entries listed
above are simply those that the Be-defined functions expect.

B_QUIT_REQUESTED

This message contains no data. It simply asks a BLooper to quit its message loop and
destroy itself. The Blooper dispatches the message by calling its ownQuitRequested()
function.

This message is reinterpreted by the BApplication object to mean a request to quit the
application and by a BWindow object to mean a request to close the window. It’s
therefore also listed under “Application Messages” and “Interface Messages” below.

Application Messages

Application messages concern the application as a whole, rather than one specific window
or thread. They’re all received and handled by the BApplication object. See “Application
Messages” on page 16 in the introduction toThe Application Kit chapter for information
on when they’re produced and how they should be handled.

B_ABOUT_REQUESTED

This message contains no data entries. It requests the BApplication object to put a
window on-screen with information about the application. Applications should produce it
when the user chooses the “About . . .” item in the main menu. The BApplication object
dispatches the message by calling its ownAboutRequested() function.

System Messages

Message Protocols –5

B_ACTIVATE

This message contains no data entries. It instructs the application to make itself the active
application. The BApplication object dispatches it by callingActivate(), defined in the
BApplication class.

B_APP_ACTIVATED

This message informs the application that it has become the active application, or that it
has ceded that status to another application. The BApplication object dispatches the
message by callingAppActivated().

It contains one data entry:

Data name Type code Description

“active” B_BOOL_TYPE TRUE if the application has just become
the active application, andFALSE if it just
gave up that status.

B_ARGV_RECEIVED

This message passes the BApplication object command-line strings, typically ones the
user typed in a shell. The BApplication object dispatches it by callingArgvReceived().

The message has the two expected data entries for command-line arguments:

Data name Type code Description

“argc” B_LONG_TYPE The number of items in the “argv” array.
This will be the same number that
BMessage::GetInfo() for “argv” would
report.

“argv” B_STRING_TYPE The command-line strings. Each
argument is stored as an independent
item under the “argv” name—that is,
there’s an array of data items, each of
typechar *, rather than a single item of
typechar **.

B_PANEL_CLOSED

This message notifies the application that the file panel has been removed from the screen.
The BApplication object dispatches it by callingFilePanelClosed().

System Messages

6 – Message Protocols

The message has these data entries:

Data name Type code Description

“frame” B_RECT_TYPE The frame rectangle of the panel at the
time it was closed. (The user may have
resized it and relocated it on-screen.)
The rectangle is recorded in screen
coordinates.

“directory” B_REF_TYPE A record_ref reference to the last
directory displayed in the panel.

“marked” B_STRING_TYPE The item that was selected in the Filters
list when the panel closed.

“canceled” B_BOOL_TYPE TRUE if the panel was closed because the
user operated the “Cancel” button and
FALSE otherwise.

B_PULSE

This message contains no data entries. It’s posted at regularly spaced intervals as a kind of
timing mechanism. The BApplication object dispatches it by calling thePulse() function
declared in the BApplication class.

B_QUIT_REQUESTED

This message contains no data entries. Its dispatching (by callingQuitRequested()) is
defined in the BLooper class. When it gets the message, the BApplication object
interprets it to be a request to shut the entire application down, not just one thread. It
consequently promulgates similar messages to all BWindow objects.

B_READY_TO_RUN

This message contains no data entries. It’s delivered to the BApplication object to mark
the application’s readiness to accept message input after being launched. The
BApplication object dispatches it by callingReadyToRun().

B_REFS_RECEIVED

This message passes the application one or more references to database records. It’s
typically produced by the Browser when the user chooses some files for the application to
open. The BApplication object dispatches it by callingRefsReceived().

System Messages

Message Protocols –7

The message has one data entry, which might be an array of more than one item:

Data name Type code Description

“refs” B_REF_TYPE One or morerecord_ref items referring
to database records. Typically, the
records are for documents the
application is expected to open.

B_REFS_RECEIVED messages can also be dragged to and from Browser windows.

Interface Messages

Interface messages inform BWindow objects and their BViews about activity in the user
interface. Unlike application messages, most of which consist only of a command
constant, most interface messages contain data entries describing an event. They’re all
delivered to a BWindow object, which dispatches some to itself but most to its BViews.

See “Interface Messages” on page 41 inThe Interface Kit chapter for a discussion of the
events these messages report.

B_KEY_DOWN

This message reports that the user pressed a character key on the keyboard. It’s dispatched
by calling theKeyDown() function of the target BView, generally the window’s focus
view. Most keys produce repeatedB_KEY_DOWN messages—as long as the user keeps
holding the key down and doesn’t press another key.

Each message contains the following data entries:

Data name Type code Description

“when” B_DOUBLE_TYPE When the key went down, as measured
in microseconds from the time the
machine was last booted.

“key” B_LONG_TYPE The code for the key that was pressed.

“modifiers” B_LONG_TYPE A mask that identifies which modifier
keys the user was holding down and
which keyboard locks were on at the
time of the event.

“char” B_LONG_TYPE The character that’s generated by the
combination of the key and modifiers.

System Messages

8 – Message Protocols

“states” B_UCHAR_TYPE A bitfield that records the state of all
keys and keyboard locks at the time of
the event. Although declared as
B_UCHAR_TYPE, this is actually an array
of 16 bytes.

For most applications, the “char” code is sufficient to distinguish one sort of user action on
the keyboard from another. It reflects both the key that was pressed and the effect that the
modifiers have on the resulting character. For example, if the Shift key is down when the
user presses theA key, or if Caps Lock is on, the “char” produced will be uppercase ‘A’
rather than lowercase ‘a’. If the Control key is down, it will be theB_HOME character. A
section ofThe Interface Kit chapter, “Keyboard Information” on page 47, discusses the
mapping of keys to characters in more detail.

The “modifiers” mask explicitly identifies which modifier keys the user is holding down
and which keyboard locks are on at the time of the event. The mask is formed from the
following constants, which are explained under “Modifier Keys” on page 51 in the
introduction toThe Interface Kit chapter.

B_SHIFT_KEY B_COMMAND_KEY B_CAPS_LOCK
B_LEFT_SHIFT_KEY B_LEFT_COMMAND_KEY B_SCROLL_LOCK
B_RIGHT_SHIFT_KEY B_RIGHT_COMMAND_KEY B_NUM_LOCK

B_CONTROL_KEY B_OPTION_KEY
B_LEFT_CONTROL_KEY B_LEFT_OPTION_KEY B_MENU_KEY
B_RIGHT_CONTROL_KEY B_RIGHT_OPTION_KEY

The mask is empty if no keyboard locks are on and none of the modifiers keys are being
held down.

The “key” code is an arbitrarily assigned number that identifies which character key the
user pressed. All keys on the keyboard, including modifier keys, have key codes (but only
character keys produce key-down events). The codes for the keys on a standard keyboard
are shown in the “Key Codes” section on page 48 inThe Interface Kit chapter.

The “states” bitfield captures the state of all keys and keyboard locks at the time of the
key-down event. (At other times, you can obtain the same information through BView’s
GetKeys() function.)

Although it’s declared asB_UCHAR_TYPE, the bitfield is really an array of 16 bytes,

uchar states[16];

with one bit standing for each key on the keyboard. For most keys, the bit records whether
the key is up or down. However, the bits corresponding to keys that toggle keyboard locks
record the current state of the lock. To learn how to read the “states” array, see “Key
States” on page 56 inThe Interface Kit chapter.

System Messages

Message Protocols –9

B_KEY_UP

< Key-up messages are not currently reported. >

B_MINIMIZE

This message instructs a BWindow to “minimize” itself—to replace the window on-screen
with a small token—or to remove the token and restore the full window. The message is
produced when the user double-clicks the window tab or the window token and is
dispatched by calling the BWindow’sMinimize() function.

It contains the following data:

Data name Type code Description

“when” B_DOUBLE_TYPE When the user acted, as measured in
microseconds from the time the machine
was last booted.

“minimize” B_BOOL_TYPE A flag that’sTRUE if the window should
be minimized to a token representation,
andFALSE if it should be restored to the
screen from its minimized state.

B_MOUSE_DOWN

This message reports that the user pressed a mouse button while the cursor was over the
content area of a window. It’s produced only for the first button the user presses—that is,
only if no other mouse buttons are down at the time. The BWindow dispatches it by
calling the target BView’sMouseDown() function.

The message contains the following information:

Data name Type code Description

“when” B_DOUBLE_TYPE When the mouse button went down, as
measured in microseconds from the time
the machine was last booted.

“where” B_POINT_TYPE Where the cursor was located when the
user pressed the mouse button, expressed
in the coordinate system of the target
BView—the view where the cursor was
located at the time of the event.

“modifiers” B_LONG_TYPE A mask that identifies which modifier
keys were down and which keyboard
locks were on when the user pressed the
mouse button.

System Messages

10 – Message Protocols

“buttons” B_LONG_TYPE A mask that identifies which mouse
button went down.

“clicks” B_LONG_TYPE An integer that counts the sequence of
mouse-down events for multiple clicks.
It will be 1 for a single-click, 2 for a
double-click, 3 for a triple-click, and so
on.

The “modifiers” mask is the same as for key-down events and is described under
“Modifier Keys” on page 51 inThe Interface Kit chapter.

The “buttons” mask identifies mouse buttons by their roles in the user interface. It may be
formed from one or more of the following constants:

B_PRIMARY_MOUSE_BUTTON
B_SECONDARY_MOUSE_BUTTON
B_TERTIARY_MOUSE_BUTTON

Because a mouse-down event is reported only for the first button that goes down, the mask
will usually contain just one constant.

The “clicks” integer counts clicks. It’s incremented each time the user presses the mouse
button within a specified interval of the previous mouse-down event, and is reset to 1 if the
event falls outside that interval. The interval is a user preference that can be set with the
Mouse preferences application.

Note that the only test for a multiple-click is one of timing between mouse-down events.
There is no position test—whether the cursor is still in the vicinity of where it was at the
time of the previous event. It’s left to applications to impose such a test where
appropriate.

B_MOUSE_MOVED

This message is produced when the user moves the cursor into, within, or out of a window.
Each message captures a small portion of that movement. Messages aren’t produced if the
cursor isn’t over a window or isn’t moving. The BWindow dispatches each message by
calling theMouseMoved() function of every BView the cursor touched in its path from its
last reported location.

The message contains the following data entries:

Data name Type code Description

“when” B_DOUBLE_TYPE When the event occurred, as measured in
microseconds from the time the machine
was last booted.

System Messages

Message Protocols –11

“where” B_POINT_TYPE The new location of the cursor, where it
has moved to, expressed in window
coordinates.

“area” B_LONG_TYPE The area of the window where the cursor
is now located.

“buttons” B_LONG_TYPE Which mouse buttons, if any, are down.

The “area” constant records which part of the window the cursor is over. It will be one of
the following constants:

B_CONTENT_AREA The cursor is over the content area of the window.

B_CLOSE_AREA The cursor is over the close button in the title tab.

B_ZOOM_AREA The cursor is over the zoom button in the title tab.

B_TITLE_AREA The cursor is inside the title tab, but not over either the
close button or zoom button.

B_RESIZE_AREA The cursor is over the area in the right bottom corner
where the window can be resized.

B_MINIMIZE_AREA < Currently unused. >

B_UNKNOWN_AREA It’s unknown where the cursor is, probably because it just
left the window.

The “buttons” mask is formed from one or more of the following constants:

B_PRIMARY_MOUSE_BUTTON
B_SECONDARY_MOUSE_BUTTON
B_TERTIARY_MOUSE_BUTTON

If no buttons are down, the mask is 0.

B_MOUSE_UP

This message reports that the user released a mouse button. It’s produced only for the last
button the user releases—that is, only if no other mouse button remains down. The
BWindow does not dispatch this message.

The message contains the following data entries:

Data name Type code Description

“when” B_DOUBLE_TYPE When the mouse button went up again,
as measured in microseconds from the
time the machine was last booted.

System Messages

12 – Message Protocols

“where” B_POINT_TYPE Where the cursor was located when the
user released the mouse button,
expressed in the coordinate system of the
target BView—the view where the
cursor was located when the button went
up.

“modifiers” B_LONG_TYPE A mask that identifies which of the
modifier keys were down and which
keyboard locks were in effect when the
user released the mouse button.

The “modifiers” mask is the same as for key-down events and is described under
“Modifier Keys” on page 51 inThe Interface Kit chapter.

B_PANEL_CLOSED

This message is delivered to the BWindow when the application or the user closes the save
panel associated with the window. The BWindow dispatches it by calling its own
SavePanelClosed() function.

The message contains the following data entries:

Data name Type code Description

“frame” B_RECT_TYPE The frame rectangle of the save panel at
the time the panel was closed. (The user
may have resized it and relocated it on-
screen before it was closed.) The
rectangle is specified in the screen
coordinate system.

“directory” B_REF_TYPE A record_ref reference to the last
directory displayed in the panel.

“canceled” B_BOOL_TYPE An indication of whether or not the panel
was closed by user. It’sTRUE if the user
closed the panel by operating the
“Cancel” button andFALSE otherwise.

B_PULSE

This message serves as a simple timing mechanism. It’s posted at regularly spaced
intervals and is dispatched by calling thePulse() function of every BView that wants to
participate.

System Messages

Message Protocols –13

The message typically lacks any data entries, but may contain this one:

Data name Type code Description

“when” B_DOUBLE_TYPE When the event occurred, as measured in
microseconds from the time the machine
was last booted.

B_QUIT_REQUESTED

This message is interpreted by a BWindow object as a request to close the window. It’s
dispatched by callingQuitRequested(), which is generally implemented by application
classes derived from BWindow.

When the Application Server produces the message (for example, when the user clicks the
window’s close button), it adds the following data entry:

Data name Type code Description

“when” B_DOUBLE_TYPE When the event occurred, as measured in
microseconds from the time the machine
was last booted.

However, this information is not crucial to the interpretation of the event. You don’t need
to add it toB_QUIT_REQUESTED messages that are posted in application code.

B_SAVE_REQUESTED

This message is delivered to a BWindow when the user operates the save panel to request
that a document be saved. It has the following data entries:

Data name Type code Description

“directory” B_REF_TYPE A record_ref reference to the directory
where the document should be saved.

“name” B_STRING_TYPE The name of the file in which the
document should be saved.

These entries are added to all messages reporting save-requested events. Generally, the
message hasB_SAVE_REQUESTED as itswhat data member. However, you can define a
custom message to report the event, one with another constant and additional data entries.

If the command constant isB_SAVE_REQUESTED, the message is dispatched by calling the
BWindow’s SaveRequested() function; otherwise, it’s not treated as a system message.
SeeRunSavePanel() in the BWindow class of the Interface Kit.

System Messages

14 – Message Protocols

B_SCREEN_CHANGED

This message reports that the screen configuration has changed. The BWindow dispatches
it by calling its ownScreenChanged() function.

The message contains these data entries:

Data name Type code Description

“when” B_DOUBLE_TYPE When the screen changed, as measured
in microseconds from the time the
machine was last booted.

“frame” B_RECT_TYPE A rectangle with the same dimensions as
the pixel grid the screen displays.

“mode” B_LONG_TYPE The color space of the screen—currently
B_COLOR_8_BIT or B_RGB_32_BIT.

B_VALUE_CHANGED

This message reports that the Application Server changed a value associated with a scroll
bar—something that will happen repeatedly as the user drags the scroll knob and presses
the scroll buttons. The BWindow dispatches it by calling the BScrollBar object’s
ValueChanged() function.

The message has these data entries:

Data name Type code Description

“when” B_DOUBLE_TYPE When the value changed, as measured in
microseconds from the time the machine
was last booted.

“value” B_LONG_TYPE The new value of the object.

B_VIEW_MOVED

This message reports that a view moved within its parent’s coordinate system. Repeated
messages may be produced if the movement is caused by the user resizing the window,
which in turn resizes the parent view. The BWindow dispatches each one by calling its
FrameMoved() function.

The message contains the following data:

Data name Type code Description

“when” B_DOUBLE_TYPE When the view moved, as measured in
microseconds from the time the machine
was last booted.

System Messages

Message Protocols –15

“where” B_POINT_TYPE The new location of the left top corner of
the view’s frame rectangle, expressed in
the coordinate system of its parent.

B_VIEW_RESIZED

This message reports that a view has been resized. Repeated messages are produced if the
resizing is an automatic consequence of the window being resized. The BWindow
dispatches each one by calling itsFrameResized() function.

The message holds the following data.

Data name Type code Description

“when” B_DOUBLE_TYPE When the view was resized, as measured
in microseconds from the time the
machine was last booted.

“width” B_LONG_TYPE The new width of the view’s frame
rectangle.

“height” B_LONG_TYPE The new height of the view’s frame
rectangle.

“where” B_POINT_TYPE The new location of the left top corner of
the view’s frame rectangle, expressed in
the coordinate system of its parent. (A
“where” entry is present only if the view
was moved while being resized.)

The message has a “where” entry only if resizing the view also served to move it. The
new location of the view would first be reported in aB_VIEW_MOVED BMessage.

B_WINDOW_ACTIVATED

This message reports that the window has become the active window or has relinquished
that status. The BWindow dispatches the message by calling itsWindowActivated()
function, which notifies every BView with a similar function call.

The message contains two data entries:

Data name Type code Description

“when” B_DOUBLE_TYPE When the window’s status changed, as
measured in microseconds from the time
the machine was last booted.

System Messages

16 – Message Protocols

“active” B_BOOL_TYPE A flag that records the new status of the
window. It’s TRUE if the window has
become the active window, andFALSE if
it is giving up that status.

B_WINDOW_MOVED

This message reports that the window has been moved in the screen coordinate system.
Repeated messages are generated when the user drags a window. The BWindow
dispatches each one by calling itsWindowMoved() function.

The message has the following entries:

Data name Type code Description

“when” B_DOUBLE_TYPE When the window moved, as measured
in microseconds from the time the
machine was last booted.

“where” B_POINT_TYPE The new location of the left top corner of
the window’s content area, expressed in
screen coordinates.

B_WINDOW_RESIZED

This message reports that the window has been resized. It’s generated repeatedly as the
user moves a window border. The BWindow dispatches each message by calling
WindowResized().

The message holds these data entries:

Data name Type code Description

“when” B_DOUBLE_TYPE When the window was resized, as
measured in microseconds from the time
the machine was last booted.

“width” B_LONG_TYPE The new width of the window’s content
area.

“height” B_LONG_TYPE The new height of the window’s content
area.

B_WORKSPACE_ACTIVATED

This message reports that the active workspace has changed. It’s delivered to all
BWindow objects associated with the workspace that was previously active and with the
one just activated. Each BWindow dispatches the message by calling its own
WorkspaceActivated() function.

System Messages

Message Protocols –17

The message contains the following data:

Data name Type code Description

“when” B_DOUBLE_TYPE When the workspace was activated or
deactivated, as measured in
microseconds from the time the machine
was last booted.

“workspace” B_LONG_TYPE The workspace that’s the subject of the
message.

“active” B_BOOL_TYPE A flag that records the new status of the
workspace—TRUE if it has become the
active workspace, andFALSE if it has
ceased being the active workspace.

B_WORKSPACES_CHANGED

This message informs a BWindow object that the set of workspaces with which it is
associated has changed. The BWindow dispatches the message by calling its own
WorkspacesChanged() function.

The message has three data entries:

Data name Type code Description

“when” B_DOUBLE_TYPE When the set of workspaces associated
with the window changed, as measured
in microseconds from the time the
machine was last booted.

“old” B_LONG_TYPE The set of workspaces where the
window could appear before the change.

“new” B_LONG_TYPE The set of workspaces where the
window can appear after the change.

B_ZOOM

This message instructs the BWindow object to zoom the on-screen window to a larger
size—or to return it to its normal size. The message is produced when the user operates
the zoom button in the window’s title tab. The BWindow dispatches it by callingZoom(),
declared in the BWindow class.

Standard Messages

18 – Message Protocols

The message has just one data entry:

Data name Type code Description

“when” B_DOUBLE_TYPE When the zoom button was clicked, as
measured in microseconds from the time
the machine was last booted.

Standard Messages

The software kits produce a few standard messages that aren’t system messages—that
aren’t matched to a specific hook function. They’re classified below as:

• Messages that are sent as replies, sometimes automatically, to other messages, and
• Messages that convey editing instructions.

Reply Messages

The following three messages are sent as replies to other messages.

B_HANDLERS_INFO

The variousHandlersRequested() functions implemented in the Application and Interface
Kits send this message as a reply to aB_HANDLERS_REQUESTED system message, which
requests BMessenger proxies for BHandler objects. The reply message will contain one
of two possible data entries:

Data name Type code Description

“handlers” B_MESSENGER_TYPE An array of one or more BMessenger
objects corresponding to the BHandlers
specified in theB_HANDLERS_REQUESTED
message.

“error” B_LONG_TYPE An error code explaining why there is no
“handlers” array.

B_MESSAGE_NOT_UNDERSTOOD

This message doesn’t contain any data entries. It’s sent as a reply to messages that the
receiving thread’s chain of BHandlers does not recognize. SeeMessageReceived() in the
BHandler class.

Standard Messages

Message Protocols –19

B_NO_REPLY

This message doesn’t contain any data entries. It’s sent as a default reply to another
message when the original message is about to be deleted. The default reply is sent only if
a synchronous reply is expected and none has been sent. See theSendReply() function in
the BMessage class.

Editing Messages

A handful of messages pass editable data or give an instruction to edit currently selected
data. Because BTextViews are the only kit-defined objects that know how to display
editable data, they’re the only ones who can respond to these messages.

B_CUT, B_COPY, and B_PASTE

A BWindow posts these messages to its focus view (or to itself, if none of its views is
currently in focus) when the user presses the Command-x, Command-c, and Command-v
shortcuts. It puts only one data entry in the message:

Data name Type code Description

“when” B_DOUBLE_TYPE When the user pressed the keyboard
shortcut, as measured in microseconds
from the time the machine was last
booted.

BTextView objects respond to these messages. See the BTextView class in the Interface
Kit for details.

B_SIMPLE_DATA

This message is a package for a single data element. It can theoretically contain any type
of data, but only two entries are currently understood:

Data name Type code Description

“text” B_ASCII_TYPE A null-terminated string of characters.

“char” B_LONG_TYPE A single character.

A BTextView object can put this message together for a drag-and-drop operation, and can
understand the message when it’s dropped on or targeted to the view. When it produces
the message, it puts the text that’s currently selected into a “text” data entry, as described
above. It understands the message with either a “text” or a “char” data entry; it inserts the
characters at the current selection.

Interapplication Messages

20 – Message Protocols

Interapplication Messages

The messages that a user drags and drops on a view might have their source in any
application, including applications that come with the Be Operating System. Currently,
the Browser is the only source for a published, public message. It will probably be a
common source, since it permits users to drag representations of database records. The
message in which the Browser packages the dragged information is identical to one that
reports a refs-received event. It has a single entry named “refs” containing one or more
record_ref (B_REF_TYPE) items andB_REFS_RECEIVED as the command constant. See
“B_REFS_RECEIVED” above.

