
The Network Kit –1

11 The Network Kit

Network Names, Addresses, and Services. 5
Overview . 5

Terms and Tools. . 5
Functions . 6

Thegethostbyname() Function 7
Thegethostbyaddr() Function 7
Thehostent Structure. 7
h_errno and theherror() Function 8

Network Sockets . .13
Overview .13
Thesocket() Function . .13

Thesocket() Arguments 14
Sorts of Sockets. 15

Other Functions .16
Thebind() Arguments 17
listen() Closer . .22
accept() Examined. 22
The Arguments25

The Mail Daemon .29
Overview .29

The Mail Daemon and the Mail Server29
Sending and Retrieving Mail 30
Other Mail Daemon Features30

Functions .31

Mail Messages (BMailMessage) 37
Overview .37
 Creating a Mail Reader . .38

Asking the Daemon to Get New Mail 38
Getting Messages from the Database38

The Example Refined—E-Mail Status39
Let the Browser do the Work40
Creating BMailMessage Objects41

Displaying the Contents of a Message 42

2 – The Network Kit

The E-Mail Table .43
Constructor and Destructor .44
Member Functions. .45

The Network Kit –3

11 The Network Kit

The Network Kit is divided into two domains:

• The Kit provides a collection of global C functions that let you communicate with
other computers through the TCP or UDP protocols. With a few exceptions, the
names and intents of the functions adhere to the precedent set by the BSD
network/socket implementation. Note, however, that some BSD-defined functions
are not yet implemented.

• The Kit also provides C functions and a class (BMailMessage) that let you talk to
the mail daemon, and send and receive mail messages. With the functions and the
class, you should be able to write a fully-featured mail-reading and -writing
application.

The network and socket documentation can be found in the sections “Network Names,
Addresses, and Services” on page 5, and “Network Sockets” on page 13. In addition, you
can find some further socket examples and tips in the “Be Engineering Insights” column of
the Be Newsletter, issues 19 and 30.

Functions that access the mail daemon, the process that makes the mail system run, are
documented in “The Mail Daemon” on page 29. The BMailMessage class is documented
in “Mail Messages (BMailMessage)” on page 37.

4 – The Network Kit

The Network Kit –5

Network Names, Addresses, and
Services

Declared in: <net/netdb.h>
<net/socket.h>

Overview

The functions described below let you look up the names, addresses, and other
information about the computers and services that the local computer knows about, and let
you retrieve information about the current user’s account. Also defined here are functions
that performInternet Protocol (IP) address format conversion.

You use the functions defined here to find the information you need so you can form a
connection to some other machine. Connecting to other machines is described in
“Network Sockets” on page 13.

Terms and Tools

Throughout the following function descriptions, anIP address is the familiar four-byte,
dot-separated numeric identifier. For example,

192.0.0.1

The bytes in a multi-byte address are always given innetwork byte order (big-endian).
The current BeBox is also big-endian, so you don’t have to convert IP address values—but
for portability and forward-compatibility, you may want to. See the group of functions
with the obsessively shortened names (ntohs(), htohl(), etc.) for more information on such
transformations.

An IP name is the three-element “machine.domain.extension” case-insensitive text name:

decca.be.com

The two most important functions described below,gethostbyname() and
gethostbyaddr(), retrieve information about computers (“hosts”) that can be reached
through the network. Host information is typically (and primarily) gotten from the
Domain Name Server(DNS), a service that’s usually provided by a server computer that’s
responsible for tasks such as mail distribution and direct communication with theInternet
Provider Service(IPS).

Functions Network Names, Addresses, and Services

6 – The Network Kit

You can also provide host information by adding to your computer’s /boot/system/hosts
file. This is a text file that contains the IP addresses and names of the hosts that you want
your computer to know about. Each entry in the file lists, in order on a single line, a host’s
IP address, IP name, and other names (aliases) by which it’s also known. For example:

Example /boot/system/hosts entries
192.0.0.1 phaedo.racine.com fido phydough
205.123.5.12 playdo.mess.com plywood funfactory

The amount of whitespace separating the elements is arbitrary. The only killing point is
that there mustn’t be any leading whitespace before the IP address.

If you’re connected to DNS, then you shouldn’t need thehosts file. If you’re not
connected to a network at all, the only way to get information about other machines is
through thehosts file, but it won’t do you much good—you won’t be able to use the
information to connect to other machines. The archetypal situation in which thehosts file
becomes useful is if your BeBox is connected to some other machine (we’ll call it Brand
X), and the Brand X machine is supposed to be connected to a DNS machine, but this
latter connection is down (or the DNS machine isn’t running). If you have an entry in
your BeBoxhosts file that identifies the Brand X machine, you’ll still be able to look up
the machine’s address and connect to it, despite the absence of DNS.

Functions

gethostbyname(), gethostbyaddr(), herror()
struct hostent *gethostbyname(const char *name)
struct hostent *gethostbyaddr(const char *address, int length, int type)
void herror(const char *string)

The twogethostby...() functions retrieve information about a particular host machine,
stuff the information into a global “host entry” structure, and then return a pointer to that
structure. To get this information, the functions talks to the Domain Name Server. If DNS
doesn’t respond or doesn’t know the desired host, the functions then look for an entry in
the file/boot/system/hosts. See “Terms and Tools” on page 5 for more information on
DNS and thehosts file.

herror() generates a human-readable message that describes the most recentgethostby...()
error, and prints it to standard error.

Note: Becausegethostbyname() andgethostbyaddr() use a global structure to return
information, the functions arenot thread safe.

Network Names, Addresses, and Services Functions

The Network Kit –7

The gethostbyname() Function

gethostbyname()’s name argument is aNULL-terminated, case-insensitive host name that
must be no longer thanMAXHOSTNAMELEN (64) characters (not counting theNULL). The
name can be:

• An entire “machine.domain.extension” IP name—“mybox.me.com”, for example.

• Just the machine name portion—“mybox” (DNS only). In this case, the domain and
extension of the local machine are automatically appended. (If you’re looking up an
IP name in thehosts file, the domain and extensionaren’t appended for you.)

• A host name alias. Aliases are alternate names by which a host is known. Your
DNS should provide a means for declaring aliases; you can also declare them in
yourhosts file.

The gethostbyaddr() Function

gethostbyaddr()’s address argument is a pointer to a complete IP address given in its
natural format (but cast to achar *; note that the argument’s type declarationdoesn’t mean
that the function wants the address converted to a string).length is the length ofaddress
in bytes;type is a constant that gives the format of the address.

For IP format, the first argument is a four-byte integer,length is always 4, and type is
AF_INET (“AddressFormat:InterNET”). The following gets thehostent for a hard-coded
address:

/* This is the hex equivalent of 192.0.0.1
ulong addr = 0xc0000001;
struct hostent *theHost;

theHost = gethostbyaddr((char *)&addr, 4, AF_INET);

If you have an address stored as a string, you can use theinet_addr() function to convert it
to an integer:

ulong addr = inet_addr("192.0.0.1");
struct hostent *theHost;

theHost = gethostbyaddr((char *)&addr, 4, AF_INET);

The hostent Structure

If a gethostby...() function fails, it returnsNULL; otherwise, it returns a pointer to a global
hostent structure. Thehostent structure (which isn’ttypedef’d) looks like this:

Functions Network Names, Addresses, and Services

8 – The Network Kit

struct hostent {
char *h_name;
char **h_aliases;
int h_addrtype;
int h_length;
char **h_addr_list;

};

The fields are:

• h_name is the IP name of the host (or the “official” name given in thehosts file).

• h_aliases is aNULL-terminated array of other names by which the host is known.
These names aren’t necessarily in IP name format; typically, they’re single-word
names.

• h_addrtype identifies the format of the addresses listed inh_addr_list. Currently,
the type is alwaysAF_INET.

• h_length is the length, in bytes, of the host’s address. InAF_INET format, the address
is four bytes long

• h_addr_list is aNULL-terminated array of pointers to the addresses by which the host
is known. Host addresses are given in network byte order.

As a convenience, the globalh_addr constant is a fake field that points to the first item in
theh_addr_list field. Keep in mind thath_addr must be treated as a structure field—it
must point off ahostent structure. Also, make sure you dereference theh_addr “field”
properly. For example:

ulong ip_address;
struct hostent *theHost;

theHost = gethostbyname("fido");
ip_address = *(ulong *)theHost->h_addr;

As a demonstration of theh_addr definition, the final line is the same as

ip_address = *(ulong *)theHost->h_addr_list[0];

Keep in mind that thehostent structure that’s pointed to by thegethostby...() functions is
global to your application’s address space. If you want to cache the structure, you should
copy it as soon as it’s returned to you.

h_errno and the herror() Function

The host look-up functions use a global error variable (an integer), calledh_errno, to
register errors. You can look at theh_errno value directly in your code after a host
function fails (the potentialh_errno values are listed below). Alternatively, you can use
theherror() function which prints, to standard error, its argument followed by a system-
generated string that describes the current state ofh_errno.

Network Names, Addresses, and Services Functions

The Network Kit –9

The values thath_errno can take, and the correspondingherror() strings, are:

Value Meaning

HOST_NOT_FOUND “unknown host name”
TRY_AGAIN “host name server busy”
NO_RECOVERY “unrecoverable system error”
NO_DATA “no address data is available for this host name”
anything else “unknown error”

Note that whileh_errno is set when something goes wrong, it isn’t cleared if all is well.
For example, ifgethostbyname() can’t find the named host,h_errno is set to
HOST_NOT_FOUND and the function returnsNULL. If, in an immediately subsequent call,
the function succeeds, a pointer to a validhostent is returned, buth_errno will still report
HOST_NOT_FOUND.

The moral of this tale is that you shouldonly checkh_errno (or callherror()) if the network
function call has failed, or clear it yourself before eachgethostby...() call. Or both:

struct hostent *host_ent;

h_errno = 0;
if (!(host_ent = gethostbyname("a.b.c"))

herror("Error");

Furthermore,h_errno might be legitimately set to a new error code even if the
gethostby...() function succeeds. For example, if DNS can’t be reached but the desired
host is found in thehosts file, h_errno will be set toTRY_AGAIN, yet the returnedhostent
will be legitimate (it won’t beNULL).

Be aware thatTRY_AGAIN is used as a blanket “DNS doesn’t know” state,regardless of
the reason why. In other words,h_errno is set toTRY_AGAIN if DNS is actually down, if
your machine isn’t connected to the network, or if DNS simply doesn’t know the
requested host. You can use this fact to tell whether a (successful) look-up was performed
through DNS or thehosts file:

struct hostent *host_ent;

h_errno = 0;
if (!(host_ent = gethostbyname("a.b.c"))

herror("Error");
else

if (h_errno == TRY_AGAIN)
/* The hosts file was used. */

else
/* DNS was used. */

Keep in mind thath_errno is global; be careful if you’re using it in a multi-threaded
program.

Functions Network Names, Addresses, and Services

10 – The Network Kit

gethostname(), getusername(), getpassword()
int gethostname(char *name, unsigned intlength)
int getusername(char *name, unsigned intlength)
int getpassword(char *password, unsigned intlength)

These functions retrieve, and copy into their first arguments, the name of the local
computer, the name of the current user, and the current user’s encoded password,
respectively. In all three case,length gives the maximum number of characters that the
functions should copy. If the length of the desired element is less thanlength, the copied
string will beNULL-terminated.

The functions return the number of characters that were actually copied (not counting the
NULL terminator). If there’s an error—and such should be rare—thegethostname() and
getusername() functions return 0 and point their respective name arguments toNULL.
getpassword(), sensing an error, copies “*” into the password argument and returns -1
(thus you can tell the difference between aNULL password—which would legitimately
return 0—and an error).

All three bits of information (host name, user name, and password) are taken from the
settings that are declared through theNetwork preferences application.

A typical use ofgethostname() is to follow the call withgethostbyname() in order to
retrieve the address of the local host, as shown below:

/* To fill a need, we invent the gethostaddr() function. */
long gethostaddr(void)
{

struct hostent *host_ent;
char host_name[MAXHOSTNAMELEN];

if (gethostname(host_name, MAXHOSTNAMELEN) == 0)
return -1;

if ((host_ent = gethostbyname(host_name)) == NULL)
return -1;

return *(long *)host_ent.h_addr;
}

Keep in mind that since host name information is taken from Network preferences, there’s
no guarantee that the name that’s returned bygethostname() will match an entry that
DNS or thehosts file knows about.

getservbyname()
struct servent *getservbyname(const char *name, const char *protocol)

You pass in the name of a service (such as “ftp”) that runs under a particular protocol
(such as “tcp”), andgetservbyname() returns a pointer to aservent structure that
describes the service.

Network Names, Addresses, and Services Functions

The Network Kit –11

Theservent structure is:

struct servent {
char *s_name;
char **s_aliases;
int s_port;
char *s_proto;

};

• s_name is the name of the service.

• s_aliases is aNULL-terminated array of other names by which the services is known.

• s_port is the port number on which the service runs (given in network byte order)

• s_proto names the protocol (“tcp”, “udp”, etc.) that supports the service.

Currently, the function recognizes only two services: “ftp” and “telnet”. Both run under
the “tcp” protocol; thus, the only valid calls to getservbyname() are:

getservbyname("ftp", "tcp");

and

getservbyname("telnet", "tcp");

Such calls point to (separate) pre-definedservent structures that look like this:

field ftp structure telnet structure

s_name “ftp” “telnet”
s_aliases NULL NULL
s_port 21 23
s_proto “tcp” “tcp”

If you ask for a service other than these two, the function returnsNULL. Although the two
servent structures are separate entities, they are both global to your application. In theory,
this means thegetservbyname() function isn’t thread-safe. However, since the structures
are hard-coded and separate, there’s little danger in using them unprotected in a multi-
threaded program.

inet_addr(), inet_ntoa()
unsigned longinet_addr(const char *addr)
char *inet_ntoa(struct in_addraddr)

These functions convert addresses from ASCII to IP format and vice versa. Neither of
them consults the DNS or the hosts file to perform the conversion—in other words, they
perform the conversions without regard for an address’ correspondence to an actual
machine.

Functions Network Names, Addresses, and Services

12 – The Network Kit

inet_addr() converts from ASCII to IP:

ulong addr = inet_addr("192.0.0.1");

The result of this call (addr) would be appropriate as the initial argument to
gethostbyaddr() (for example). The returned address is in network byte order.

inet_ntoa() converts the other way: It takes an IP address and converts it into an ASCII
string. Note that the address that you pass in must first be placed in thes_addr field of the
argumentin_addr structure (s_addr is the structure’s only field). For example:

in_addr addr;
char addr_buf[16];

addr.s_addr = 0xc0000001;
strcpy(addr_buf, inet_ntoa(addr));

Here,addr_buf will contain the (NULL-terminated) string “192.0.0.1”.inet_ntoa() isn’t
thread-safe; if you want to cache the string that it returns you must copy it, as shown in the
example. Given the IP format, the string thatinet_ntoa() returns is guaranteed to be no
more than 16 characters long (four 3-character address components, three dots, and a
NULL).

ntohs(), ntohl(), htons(), htonl()
shortntohs(shortval)
long ntohl(longval)
shorthtons(shortval)
long htonl(longval)

These macros convert values between host and network byte order:

Macro Meaning

ntohs() network short to host short
ntohl() network long to host long
htons() host short to network short
htonl() host long to network long

Network byte order is big-endian; the host byte order is machine-dependent. The current
BeBox is big-endian, so these macros are, essentially, no-ops: They return their respective
arguments without conversion. To be scrupulous, however, you should convert all multi-
byte values that you write to or get from the Internet. For example, a truly “safe” call to
gethostbyaddr() (for example) would look like this:

ulong addr = htonl(inet_addr("192.0.0.1");
struct hostent *theHost;

theHost = gethostbyaddr((char *)&addr, 4, AF_INET);

The Network Kit –13

Network Sockets

Declared in: <net/socket.h>

Overview

Sockets are entry ways onto a network. To transmit data to another machine, you create a
socket, tell it how to find the other computer, and then tell it to send. To receive data, you
do the opposite: You create a socket, tell it who to listen to (in some cases), and then wait
for data to come pouring in.

Socket concepts are mixed in with regular function descriptions; thesocket() function,
which is where any socket user must start, is described first. The description gives a
general overview of the different types of sockets, how you use them, and where to go to
next. The other socket functions are then listed in a separate section, in the expected
alphabetical order.

The socket implementation (and philosophy) follows the precedent established by
4.2BSD. In particular, the API presented here bends many of the Be naming and calling
conventions in order to make porting existing programs easier.

The socket() Function

socket(), closesocket()
int socket(int family, int type, int protocol)

int closesocket(int socket)

Thesocket() function returns a token (a non-negative integer) that represents the local end
of a connection to another machine. Freshly returned, the token is abstract and unusable;
to put the token to use, you have to pass it as an argument to other functions—such as
bind() andconnect()—that know how to establish a connection (however temporary)
over the network. (The function’s arguments are examined in a separate section, below.)

A successfulsocket() call returns a non-negative integer—keep in mind that 0 is a valid
socket token. Also keep in mind that socket tokens arenot file descriptors (this violates
the BSD tradition). Upon failure,socket() returns -1 and sets the globalerrno variable to
one of these values:

The socket() Function Network Sockets

14 – The Network Kit

Value Meaning

EAFNOSUPPORT format was other thanAF_INET.
EPROTOTYPE type andprotocol mismatch.
EPROTONOSUPPORT Unrecognizedtype or protocol value.

closesocket() closes a socket’s connection (if it’s the type of socket that can hold a
connection) and frees the resources that have been assigned to the socket. When you’re
done with the sockets that you’ve created, you should pass each socket token to
closesocket()—no socket, no matter how abstract or how you use it, is exempt from the
need to be closed. In regard to this universal need, you should be aware that this extends
to sockets that are created through theaccept() function (which we’ll get to later).

closesocket() returns less-than-zero if its argument is invalid.

The socket() Arguments

socket()’s three arguments, all of which take predefined constants as values, describe the
type of communication the socket can handle:

• family takes a constant the describes the network address format that the socket
understands. Currently, it must beAF_INET (the Internet address format).

• Thetype constant must be eitherSOCK_STREAM or SOCK_DGRAM. The constant
describes (roughly) the “persistence” of the connection that can be formed through
this socket. TheSOCK_STREAM constant means the impending connection (which is
formed through aconnect() or bind() call) will remain open until told to close.
SOCK_DGRAM describes a “datagram” socket; the connection through a datagram
socket is open while data is being sent (typically throughsendto()) or received
(similarly, recvfrom()). It’s closed at all other times (note, however, that you still
have to callclosesocket() on a datagram socket when you’re done with it).

• protocol describes the “messaging” protocol, a description that’s closely related to
the socket type. Although there are threeprotocol constants (IPPROTO_TCP,
IPPROTO_UDP, andIPPROTO_ICMP), values that you would actually use are either 0
or, less commonly,IPPROTO_ICMP. More specifically, if you set thetype to be
SOCK_STREAM, then aprotocol of 0 automatically sets the messaging protocol to
IPPROTO_TCP—this is the “natural” messaging protocol for a stream socket.
Similarly, IPPROTO_UDP is the natural protocol for theSOCK_DGRAM type. Note
that it’s an error to ask for a “udp stream” or a “tcp datagram”—in other words, you
can’t specifySOCK_STREAM with IPPROTO_UDP, or SOCK_DGRAM with
IPPROTO_TCP.

As implied by the preceding description, the most typical socket calls are:

/* Create a stream TCP socket. */
long tcp_socket = socket(AF_INET, SOCK_STREAM, 0);

/* Create a datagram UDP socket. */
long udp_socket = socket(AF_INET, SOCK_DGRAM, 0);

Network Sockets The socket() Function

The Network Kit –15

ICMP messages are, traditionally, sent through “raw” sockets. The Network Kit doesn’t
currently support such sockets, so you should use datagram sockets instead:

/* Create a datagram icmp socket. */
long icmp_socket = socket(AF_INET, SOCK_DGRAM, IPPROTO_ICMP);

Sorts of Sockets

There are only two socket type constants:SOCK_STREAM andSOCK_DGRAM. However, if
we look at the way sockets are used, we see that there are really five different categories of
sockets, as illustrated below.

The labelled ovals represent individual computers that are attached to the network. The
solid circles represent individual sockets. The numbers near the sockets are keys to the
socket categories, which are examined in the following:

1. The stream listener socket. A stream listener socket provides access to a service that’s
running on the “listener” machine (you might want to think of the machine as being
a “server.”) The listener socket waits for client machines to “call in” and ask to be
served. In order to listen for clients, the listener must callbind(), which “binds” the
socket to an IP address and machine-specific port, and thenlisten(). Thus primed,
the socket waits for a client message to show up by sitting in anaccept() call.

2. The stream client socket. A stream client socket asks for service from a server machine
by attempting to connect to the server’s listener socket. It does this through the
connect() function. A stream client can be bound (you can call bind() on it), but it’s
not mandatory.

3. The “accept” socket. When a stream listener hears a client in an accept() call, the
function call creates yet another socket called the “accept” socket. Accept sockets
are valid sockets, just like those you create throughsocket(). In particular, you have
to remember to close accept sockets (throughclosesocket()) just as you would the
sockets you explicitly create. Note that you can’t bind an accept socket—the socket
is bound automatically by the system.

listener

Streams (TCP)
Datagrams (UDP)

client

senderreceiver

client client

“accept”
sockets

1

2 2 2

3
33

54

Other Functions Network Sockets

16 – The Network Kit

4. The datagram receiver socket. A datagram receiver socket is sort of like a stream
listener: It callsbind() and waits for “senders” to send messages to it. Unlike the
stream listener, the datagram receiverdoesn’t have to calllisten() or accept().
Furthermore, when a datagram sender sends a message to the receiver, there’s no
ancillary socket created to handle the message (there’s no UDP analog to the TCP
accept socket).

5. The datagram sender socket. A datagram sender is the simplest type of socket—all it
has to do is identify a datagram receiver and send messages to it, through the
sendto() function. Binding a datagram sender socket is optional.

Returning to the illustration, notice that the paths connecting the stream socket clients to
the stream listener (through the accept sockets) are “double arrow-headed.” This indicates
that TCP communication is two-way: Once the link between a client and the listener has
been established (throughbind()/listen()/accept() on the listener side, andconnect() on
the client side), the two machines can talk to each other through respective and
complementary send() andrecv() calls.

Communication along a UDP path, on the other hand, is one-way, as indicated by the
direction of the arrow. The datagram sender can send messages (through sendto()), and
the datagram receiver can receive them (throughrecvfrom()), but the receiver can’t send
message back to the sender. However, you can simulate a two-way UDP conversation by
binding both sockets. This doesn’t change the definition of the UDP path, or the
capabilities of the two types of datagram sockets, it simply means that a bound datagram
socket can act as a receiver (it can callrecvfrom()) or as a sender (it can callsendto()).

Note: To be complete, it should be mentioned that datagram sockets can also invoke
connect() and then pass messages throughsend() andrecv(). The datagram use of these
functions is a convenience; its advantages are explained in the description of thesendto()
function.

Other Functions

bind()
int bind(int socket, struct sockaddr *interface, int size)

Thebind() function creates an association between a socket and an “interface,” where an
interface is a combination of an IP address and a port number. Binding is, primarily, an
in-coming message primer: When a message sender (whether it’s a stream client or a
datagram sender) sends a message, it tags the message with an IP address and a port
number. The receiving machine—the machine with the tagged IP address—delivers the
message to the socket that’s bound to the tagged port.

The necessity of the bind operation, therefore, depends on the type of socket; referring to
the five categories of sockets enumerated in the socket() function description (and

Network Sockets Other Functions

The Network Kit –17

illustrated in the charming picture found there), the “do I need to bind?” question is
answered thus:

1. Stream listener socketsmust be bound. Furthermore, after binding a listener socket,
you must then call listen() and, when a client calls,attach().

2. Stream client socketscan be bound, but they don’t have to be. If you’re going to bind
a client socket, you should do sobefore you callconnect(). The advantages of
binding a stream client escape me at the moment. In any case, the client doesn’t
have to bind to the same port number as the listener—the listener’s binding and the
client’s binding are utterly separate entities (let alone that they are on different
machines). However, the client doesconnect to the interface that the listener is
bound to.

3. Stream attach socketsmust notbe bound.

4. Datagram receiver socketsmust be bound.

5. Datagram sender sockets don’thave to be bound...but if you’re going to turn around
and use the socket as a receiver, then you’ll have to bind it.

Once you’ve bound a socket, you can’t unbind it. If you no longer want the socket to be
bound to its interface, the only thing you can do is close the socket (closesocket()) and
start all over again.

Also, a particular interface can be bound to by only one socket at a time. Furthermore, in
the current Be implementation of sockets, a single socket can only bind to one interface at
a time. This differs with the BSD socket implementation which sets the expectation for a
socket to be able to bind to more than one interface. Consider it a bug that will be fixed in
a subsequent release. If you need to bind to more than one interface, you’ll need, instead,
to create more than one socket and bind each one separately. An example of this is given
later in this function description.

The bind() Arguments

bind()’s first argument is the socket that you’re attempting to bind. This is, typically, a
socket of typeSOCK_STREAM. The address/port combination (or “interface”) to which
you’re binding the socket is passed through theinterface argument. This is typed as a
sockaddr structure, but, in reality, you have to create and pass asockaddr_in structure
cast as asockaddr. Thesockaddr_in structure is defined as:

struct sockaddr_in {
unsigned short sin_family;
unsigned short sin_port;
struct in_addr sin_addr;
char sin_zero[4];

};

• sin_family is the same as the address format constant that used to create the socket
(the first argument tosocket()). Currently, it’s alwaysAF_INET.

Other Functions Network Sockets

18 – The Network Kit

• sin_port is the port number that the socket will bind to, given in network byte order.
Valid port numbers are between 1 and 65535; numbers up to 1024 are reserved for
services such asftp andtelnet. If you’re not implementing a standard service, you
should choose a port number above 1024. The actual value of the port number is
meaningless, but keep in mind that the port number must be unique for a particular
address; only one socket can be bound to a particular address/port combination.

Note: Currently, there’s no system-defined mechanism for allowing a client/sender
machine to ask a listener/receiver machine for its port numbers. Therefore, when
you create a networked application, you either have to hard-code the port numbers
or, better yet, provide default port numbers that the user (or a system administrator)
can easily change.

• sin_addr is anin_addr structure that stores, in itss_addr field, the IP address of the
socket’s machine. As always, the address is in network byte order. You can use an
address of 0 to tell the binding mechanism to find an address for you. By
convention, binding to address 0 (which is conveniently symbolized by the
INADDR_ANY address) means that you want to bind toevery address by which your
computer is known, including the “loopback” (address 127.0.0.1, or the constant
INADDR_LOOPBACK).

On the BeBox, currently, this global-binding convention isn’t implemented; instead,
when you bind toINADDR_ANY, thebind() function binds to thefirst available
interface (where “availability” means the address/port combination is currently
unbound). Internet interfaces are considered before the loopback interface. If you
want to bind to all interfaces, you have to create a separate socket for each. An
example of this is given later.

• sin_zero is padding. To be safe, you should fill it with zeros.

Thesize argument is the size, in bytes, of the second argument.

If the bind() call is successful, theinterface argument is set to contain the actual address
that was used. If the socket can’t be bound, the function returns less-than-zero, and sets
the globalerrno to EABDF if thesocket argument is invalid; for all other errors,errno is set
to -1.

The following example shows an unexceptional use of thebind() function. The example
uses the fictitiousgethostaddr() function that was defined in the description of the
gethostname() function in “Network Names, Addresses, and Services”.

Network Sockets Other Functions

The Network Kit –19

struct sockaddr_in sa;
int sock;
long host_addr;

/* Create the socket. */
if ((sock = socket(AF_INET, SOCK_STREAM, 0)) < 0)

/* error */

/* Set the address format for the imminent bind. */
sa.sin_family = AF_INET;

/* We'll choose an arbitrary port number. */
sa.sin_port = htonl(2125);

/* Get the address of the local machine. If the address can't
 * be found (the function looks it up based on the host name),
 * then we use address INADDR_ANY.
 */
if ((host_addr = (ulong)gethostaddr()) == -1)

host_addr = INADDR_ANY;
sa.sin_addr.s_addr = host_addr;

/* Clear sin_zero. */
memset(sa.sin_zero, 0, sizeof(sa.sin_zero));

/* Bind the socket. */
if (bind(sock, (struct sockaddr *)&sa, sizeof(sa)) < 0)

/* error */

As mentioned earlier, the bind-to-all-interfaces convention (by asking to bind to address 0)
isn’t currently implemented. Thus, if thegethostaddr() call fails in the example, the
socket will be bound to the first address by which the local computer is known.

But let’s say that you really do want to bind to all interfaces. To do this, you have to create
separate sockets for each interface, then callbind() on each one. In the example below, we
create a series of sockets, and then bind each socket to an interface that specifies address 0.
In doing this, we depend on the “firstavailable interface” rule to find the next interface for
us. Keep in mind that a successfulbind() re-writes the contents of thesockaddr argument
(most importantly, it resets the 0 address component). Thus, we have to re-initialize the
structure each time through the loop:

/* Declare an array of sockets. we’ll create as many as ten. /
#define MAXSOCKETS
int socks[MAXSOCKETS];
int sockN;
int bind_res;

struct sockaddr_in sock_addr;

for (sockN = 0; sockN < MAXSOCKETS; sockN++)
{

(socks[sockN] = socket(AF_INET, SOCK_STREAM, 0));
if (socks[sktr] < 0) {

perror("socket");

Other Functions Network Sockets

20 – The Network Kit

goto sock_error;
}

/* Initialize the structure. */
sa.sin_family =AF_INET;
sa.sin_port = htonl(2125);
sa.sin_addr.s_addr = 0;
memset(sa.sin_zero,0,sizeof(sa.sin_zero));

bind_res = bind(socks[sockN],
(struct sockaddr *)&sa,
sizeof(sa));

/* A bind error means we've run out of addresses. */
if (bind_res < 0) {

closesocket(socks[sockN--]);
break;

}
}

/* Use the bound socket (listen, accept, recv/send). */
...

sock_error:
for (;sockN >=0 sockN--)

closesocket(socks[sockN]);

To ask a socket about the address and port to which it is bound you use the
getsockname() function, described elsewhere.

connect()
int connect(int socket, struct sockaddr *remote_interface, int remote_size)

The meaning of theconnect() function depends on the type of socket that’s passed as the
first argument:

• If it’s a stream client, thenconnect() attempts to form a connection to the socket
that’s specified byremote_interface. The remote socket must be a bound stream
listener. A client socket can only be connected to one listener at a time. Note that
you can’t callconnect() on a stream listener.

• If it’s a datagram socket (either a sender or a receiver),connect() simply caches the
remote_interface information in anticipation of subsequentsend() andrecv() calls.
By usingconnect(), a datagram avoids the fuss of filling in the remote information
that’s needed by the “normal” datagram message functions,sendto() and
recvfrom(). Note that a datagram may only callsend() andrecv() if it has first
calledconnect().

Theremote_interface argument is a pointer to asockaddr_in structure cast as asockaddr
pointer. Theremote_size value gives the size ofremote_interface. See thebind() function
for a description of thesockaddr_in structure.

Network Sockets Other Functions

The Network Kit –21

Currently, you can’t disconnect a connected socket. If you want to connect to a different
listener, or re-set a datagram’s interface information, you have to close the socket and start
over.

When you attempt toconnect() a stream client, the listener must respond with an
accept() call. Having gone through this dance, the two sockets can then pass messages to
each other through complementarysend() andrecv() calls. If the listener doesn’t respond
immediately to a client’s attempt to connect, the client’sconnect() call will block. If the
listener doesn’t respond within (about) a minute, the connection will time out. If the
listener’s acceptance queue is full, the client will be refused andconnect() will return
immediately.

If connect() fails, it returns less-than-zero, and setserrno to a descriptive constant:

errno Value Meaning

EISCONN The socket is already connected.
ECONNREFUSED The listener rejected the connection.
ETIMEDOUT The connection attempt timed out.
ENETUNREACH The client can’t get to the network.
EBADF Thesocket argument is invalid.
-1 All other errors.

getsockname()
int getsockname(int socket, struct sockaddr *interface, int size)

getsockname() returns, by reference ininterface, asockaddr_in structure that contains
the interface information for the bound socket given bysocket. The*size argument gives
the size of the interface structure;*size is reset, on the way out, to the size of the interface
argument as it’s passed back. Note that thesockaddr_in pointer that you pass as the
second argument must be cast as a pointer to asockaddr structure:

struct sockaddr_in interface;
int size = sizeof(interface);

/* We'll assume "sock" is a valid socket token. */
if (getsockname(sock, (struct sockaddr*)&interface, &size) < 0)

/* error */

If getsockname() fails, the function returns less-than-zero and setserrno to one of the
following constants:

errno Value Meaning

EINVAL The *size value (going in) wasn’t big enough.
EBADF Thesocket argument is invalid.
-1 All other errors.

Other Functions Network Sockets

22 – The Network Kit

listen(), accept()
int listen(int socket, int acceptance_count);

int accept(int socket, struct sockaddr *client_interface, int *client_size)

After you’ve bound a stream listener socket to an interface (throughbind()), you then tell
the socket to start “listening” for clients that are trying to connect. You then pass the
socket toaccept(); the function blocks until a client connects to the listener (the client
does this by calling connect, passing a description of the interface to which the listener is
bound).

Whenaccept() returns, the value that it returns directly is a new socket token; this socket
token represents an “accept” socket that was created as a proxy (on the local machine) for
the client. To receive a message from the client, or to send a message to the client, the
listener must pass the accept socket to the respective stream messaging functions,recv()
andsend().

A listener only needs to invokelisten() once; however, it can accept more than one client
at a time. Often, a listener will spawn an “accept” thread that loops over theaccept() call.

Note that only stream listeners need to invokelisten() andaccept(). None of the other
socket types (enumerated in thesocket() description) need to call these functions.

listen() Closer

int listen(int socket, int acceptance_count);

listen() takes two arguments: The first is the socket that you want to have start listening.
The second is the length of the listener’s “acceptance count.” This is the number of clients
that the listener is willing to accept at a time. If too many clients try to connect at the same
time, the excess clients will be refused—the connection isn’t automatically retried later.

After the listener starts listening, it must process the client connections within a certain
amount of time, or the connection attempts will time out.

If listen() succeeds, the function returns 0; otherwise it returns less-than-zero and sets the
globalerrno to a descriptive constant. Currently, the onlyerrno value thatlisten() uses,
other than -1, isEBADF, which means the socket argument is invalid.

accept() Examined

int accept(int socket, struct sockaddr *client_interface, int *client_size)

The arguments toaccept() are the socket token of the listener (socket), a pointer to a
sockaddr_in structure cast as asockaddr structure (client_interface), and a pointer to an
integer that gives the size of theclient_interface argument (client_size).

Network Sockets Other Functions

The Network Kit –23

Theclient_interface structure returns interface information (IP address and port number)
of the client that’s attempting to connect. See thebind() function for an examination of
thesockaddr_in structure.

The*client_size argument is reset to give the size ofclient_interface as it’s passed back by
the function.

The value thataccept() returns directly is a token that represents the accept socket. After
checking the token value (where less-than-zero indicates an error), you must cache the
token so you can use it in subsequentsend() andrecv() calls.

When you’re done talking to the client, remember to callclosesocket() on the accept
socket thataccept() returned. This frees a slot in the listener’s acceptance queue,
allowing a possibly frustrated client to connect to the listener.

If accept() fails, it returns less-than-zero (as mentioned above) and setserrno to one of
the following constants:

errno Value Meaning

EINVAL The listener socket isn’t bound.
EWOULDBLOCK The acceptance queue is full.
EBADF Thesocket argument is invalid.
-1 All other errors.

select()
int select(int socket_range,

struct fd_set *read_bits,
struct fd_set *write_bits,
struct fd_set *exception_bits,
struct timeval *timeout)

Theselect() function returns information about selected sockets. Thesocket_range
argument tells the function how many sockets to check: It only checks the first
(socket_range - 1) sockets. You don’t have to be exact with this value; typically, you set
the argument to 32. Note that asocket_range value of 0doesn’t select the first socket
(which will have a token of 0). You have to pass a value of at least 1.

The fd_set structure that types the next three arguments is simply a 32-bit mask that
encodes the sockets that you’re interested in; this refines the range of sockets that was
specified in the first argument. You should use theFD_OP() macros to manipulate the
structures that you pass in:

• FD_ZERO(set) clears the mask given byset.
• FD_SET(socket, set) adds a socket to the mask.
• FD_CLEAR(socket, set) clears a socket from the mask.
• FD_ISSET(socket, set) returns non-zero if the given socket is already in the mask.

Other Functions Network Sockets

24 – The Network Kit

The function passes socket information back to you by resetting the threefd_set
arguments. The arguments themselves represent the types of information that you can
check:

• read_bits tells you if a socket is “ready to read.” In other words, it tells you if a
socket has a in-coming message waiting to be read.

• write_bits tells you if a socket is “ready to write.”

• exception_bits tells you if there’s an exception pending on the socket.

Note: Currently, onlyread_bits is implemented. You should passNULL as thewrite_bits
andexception_bits arguments.

select() doesn’t return until at least one of thefd_set-specified sockets is ready for one of
the requested operations. To avoid blocking forever, you can provide a time limit in the
final argument, passed as atimeval structure.

In the following example function implementation, we check if a given datagram socket
has a message waiting to be read. Theselect() times out after two seconds:

bool can_read_datagram(int socket)
{

struct timeval tv;
struct fd_set fds;
int n;

tv.tv_sec = 2;
tv.tv_usec = 0;

/* Initialize (clear) the socket mask. */
FD_ZERO(&fds);

/* Set the socket in the mask. */
FD_SET(socket, &fds);
select(s + 1, &fds, NULL, NULL, &tv);

/* If the socket is still set, then it's ready to read. */
return FD_ISSET(socket, &fds);

}

If select() experiences an error, it returns -1; if the function times out, it returns 0.
Otherwise—explicitly, ifany of the selected sockets was found to be ready—it returns 1.

send(), recv()
int send(int socket, const char *buf, int size, int flags)
int recv(int socket, char *buf, int size, int flags)

These functions are used to send data to a remote socket, and to receive data that was sent
by a remote socket.send() andrecv() calls must be complementary: After socket A sends

Network Sockets Other Functions

The Network Kit –25

to socket B, socket B needs to callrecv() to pick up the data that A sent.send() sends its
data and returns immediately.recv() will block until it has some data to return.

Thesend() andrecv() functions can be called by stream or datagram sockets. However,
there are some differences between the way the functions work when used by these two
types of socket:

• For a stream listener and a stream client to transmit messages, the listener must
have previously calledbind(), listen(), accept(), and the client must have called
connect(). Having been properly connected, the two sockets can send and receive
as if they were peers.

For stream sockets,send() andrecv() can both block:send() blocks if the amount
of data that’s sent overwhelms the receiver’s ability to read it, andrecv() blocks if
there’s no message waiting to be read. You can tell arecv() to be non-blocking by
setting the sending socket’s no-block socket option (seesetsockopt()). The
no-block option doesn’t apply to sending.

• If you want to callsend() or recv() through a datagram socket, you must first
connect() the socket. In addition, a receiving datagram socket must also be bound
to an interface (throughbind()). See theconnect() description for more
information on what that function means to a datagram socket.

Datagram sockets never block onsend(), but they can block in arecv() call. As
with stream sockets, you can set a datagram socket to be non-blocking (for the
recv(), as well as forrecvfrom()) throughsetsockopt().

The Arguments

The arguments tosend() andrecv() are:

• socket is, for datagrams and stream client sockets, the local socket token. In other
words, when a datagram or stream client wants to send or receive data, it passes its
own socket token as the first argument. The recipient of asend(), or the sender of a
recv() is, for these sockets, well-known: Its the socket that’s identified by the
previousconnect() call.

For a stream listener,socket is the “accept socket” that was previously returned by
anaccept() call. A stream listener can send and receive data from more than one
client at the same time (or, at least, in rapid succession).

• buf is a pointer to the data that’s being sent, or is used to hold a copy of the data that
was received.

• size is the allocated size ofbuf, in bytes.

• flags is currently unused. For now, set it to 0.

Other Functions Network Sockets

26 – The Network Kit

A successfulsend() returns the number of bytes that were send; a successfulrecv() returns
the number of bytes that were received. If asend() or recv() fails, it returns less-than-zero
and setserrno to a descriptive constant:

errno Value Meaning

EWOULDBLOCK The call would block on a non-blocking socket
(recv() only).

EINTR The local socket was interrupted.

ECONNRESET The remote socket disappeared (send() only).

ENOTCONN The socket isn’t connected.

EBADF Thesocket argument is invalid.

EADDRINUSE The interface specified in the previous connect is busy
(datagram sockets only).

-1 All other errors.

sendto(), recvfrom()
int sendto(int socket,

char *buf,
int size,
int flags,
 struct sockaddr *to,
int tolen)

int recvfrom(int socket,
char *buf,
int size,
int flags,
 struct sockaddr *from,
int *fromlen)

These functions are used by datagram sockets (only) to send and receive messages. The
functions encode all the information that’s needed to find the recipient or the sender of the
desired message, so you don’t need to callconnect() before invoking these functions.
However, a datagram socket that wants to receive message must first callbind() (in order
to fix itself to an interface that can be specified in a remote socket’ssendto() call).

The four initial arguments to these function are similar to those forsend() andrecv(); the
additional arguments are the interface specifications:

• For sendto(), theto argument is a sockaddr_in structure pointer (cast as a pointer to
a sockaddr structure) that specifies the interface of the remote socket that you’re
sending to. Thetolen argument is the size of theto argument.

Network Sockets Other Functions

The Network Kit –27

• For recvfrom(), thefrom argument returns the interface for the remote socket that
sent the message thatrecvfrom() received.*fromlen is set to the size of thefrom
structure. As always, the interface structure is asockaddr_in cast as a pointer to a
sockaddr.

sendto() never blocks. recvfrom(), on the other hand, will block until a message arrives,
unless you set the socket to be non-blocking through thesetsockopt() function.

You can “broadcast” a message to all interfaces that can be found by settingsendto()’s
target address toINADDR_BROADCAST.

As an alternative to these functions, you can call connect() on a datagram socket and then
call send() and recv(). Theconnect() call caches the interface information provided in its
arguments, and uses this information the subsequent send() andrecv() calls to “fake” the
analogoussendto() andrecvfrom() invocations. For sending, the implication is obvious:
The target of the send() is the interface supplied in theconnect(). The implication for
receiving bears description: When youconnect() and then callrecv() on a datagram
socket, the socket will only accept messages from the interface given in theconnect()
call.

You can mixsendto()/recvfrom() calls with send()/recv(). In other words, connecting a
datagram socket doesn’t prevent you from callingsendto() andrecvfrom().

A successfulsendto() returns the number of bytes that were send; a successfulrecvfrom()
returns the number of bytes that were received. If asendto() or recvfrom() calls fails,
less-than-zero is returned and errno is set to a descriptive constant:

errno Value Meaning

EWOULDBLOCK The call would block on a non-blocking socket
(recvfrom() only).

EINTR The local socket was interrupted.

EBADF Thesocket argument is invalid.

EADDRNOTAVAIL The specified interface is unrecognized.

-1 All other errors.

setsockopt()
int setsockopt(int socket, int level, int option, char *data, unsigned intsize)

setsockopt() lets you set certain “options” that are associated with a socket. Currently, the
Network Kit only recognizes one option: It lets you declare a socket to be blocking or
non-blocking. A blocking socket will block in a recv() or recvfrom() call if there’s no data
to retrieve. A non-blocking socket returns immediately, even if it comes back
empty-handed.

Note that a socket’s blocking state appliesonly to recv() andrecvfrom() calls.

Other Functions Network Sockets

28 – The Network Kit

The function’s arguments are:

• socket is the socket that you’re attempting to affect.

• level is a constant that indicates where the option is enforced. Currently,level
should always beSOL_SOCKET.

• option is a constant that represents the option you’re interested in. The only option
constant that does anything right now isSO_NONBLOCK. (Two other constants—
SO_REUSEADDR andSO_DEBUG—are recognized, but they aren’t currently
implement.)

• data points to a buffer that’s used to toggle or otherwise inform the option. For the
SO_NONBLOCK option (and other boolean options), you fill the buffer with zeroes if
you want to turn the option off (the socket will block), and non-zeros if you want to
turn it on (the socket won’t block). In the case of a boolean option, a single byte of
zero/non-zero will do.

• size is the size of thedata buffer.

The function returns 0 if successful; otherwise, it returns less-than-zero and sets errno to a
descriptive constant:

errno Value Meaning

ENOPROTOOPT Unrecognizedlevel or option argument.

EBADF Thesocket argument is invalid.

-1 All other errors.

Keep in mind that attempting to set theSO_REUSEADDR or SO_DEBUG option won’t
generate an error, but neither will it do anything.

The Network Kit –29

The Mail Daemon

Declared in: <net/E-Mail.h>

Overview

Every Be machine has a mail daemon; this is a local process that’s responsible for
retrieving mail from and sending mail to a mail server. The mail server that the daemon
talks to is a networking application that’s either part of your Internet Service Provider’s
services, or that’s running on a local “mail repository” machine. The functions described
in this section tell you how to manage the mail daemon’s connection with the mail
server—how to tell the daemon which mail server to talk to, how to command the daemon
to send and retrieve mail, how to automate mail retrieval, and so on.

All the functions that are described here (but one) are promoted to user-land through the
E-mail preferences application (the one exception is theforward_mail() function). Indeed,
the operations that these functions perform are rightly regarded as belonging to the user.
The only reason that you would need to call the daemon functions—with the exceptions of
forward_mail() and, possibly,check_for_mail()—is if you want to build your own E-mail
preferences application. (forward_mail() andcheck_for_mail() could legitimately be
worked into a mail-reading or -composing application.)

The architecture of the E-mail message itself isn’t discussed here; for such information
see “Mail Messages (BMailMessage)” on page 37.

The Mail Daemon and the Mail Server

The mail daemon can talk to two different mail servers:

• ThePost Office Protocol (“POP”) server manages individual mail accounts. When
the Be mail daemon wants to retrieve mail that’s been sent to a user, it must tell the
mail server which POP account it’s retrieving mail for.

• TheSimple Mail Transfer Protocol (“SMTP”) server manages mail that’s being sent
out into the world (and that will, eventually, find its way to a POP server).

The POP and the SMTP servers are identified by their hosts’ names (in other words, the
names of the machines on which the servers are running). The mail daemon can only talk
to one POP and one SMTP server at a time, but can talk to the two of them simultaneously.
Typically—nearly exclusively—the POP and SMTP servers reside on the same machine,
and so are identified by the same name.

Overview The Mail Daemon

30 – The Network Kit

To set the identities of the POP and SMTP mail servers, you fill in the fields of a
mail_account structure and pass the structure to theset_mail_account() function. As the
name of the structure implies,mail_account encodes more than just the names of the
servers’ hosts. It also identifies a specific user’s POP mail account; the complete
definition of the structure is this:

typedef struct
{

char pop_name[B_MAX_USER_NAME_LENGTH];
char pop_password[B_MAX_USER_NAME_LENGTH];
char pop_host[B_MAX_HOST_NAME_LENGTH];
char smtp_host[B_MAX_HOST_NAME_LENGTH];

} mail_account;

The POP user information that’s stored in themail_account structure (in other words, the
pop_name andpop_password fields) is used only for the POP server; it has no
significance for the SMTP server.

Sending and Retrieving Mail

Messages that are retrieved (from the mail server) by the mail daemon are stored in the
database, from whence they are plucked and displayed by a mail-reading application (a
“mail reader”; Be supplies a simple mail reader called BeMail). Similarly, messages that
the user composes (in a mail composition application) and sends are placed in the database
until the mail daemon comes along and passes them on to the mail server.

Sending and retrieving mail is the mail daemon’s most important function. Both actions
(server-to-database and database-to-server transmission) are performed through the
check_for_mail() function. This is the mail daemon’s fundamental “do something”
function. All other function either prime the daemon

Other Mail Daemon Features

The other mail structures and functions define the other features that are provided by the
mail daemon. These features are:

• A mail delivery schedule. Themail_schedule structure (passed through the
set_mail_schedule() function) lets you tell the daemon how often and during which
periods (week days only, every day, and so on) it should automatically check for
newly arrived mail and send newly composed mail. Technically, the mail schedule
tells the daemon how often to invokecheck_for_mail().

• Mail notification. Themail_notification structure (passed through the
set_mail_notification() function) lets you tell the daemon how you would like it to
tap you on the shoulder when it has new mail for you to read. Would you like it to
display an alert panel? Squawk at you? Both?

The Mail Daemon Functions

The Network Kit –31

• A settable mail reader. Theset_mail_reader() function lets you identify the
application that you would like to use to read in-coming mail. (Be provides a
default mail reader/composition program called BeMail.)

• Mail forwarding. Theforward_mail() function lets you re-send in-coming mail to
some other account.

All of these features (less mail-forwarding) can also be set by the user through the E-mail
preferences panel.

Functions

check_for_mail()
long check_for_mail(long *incoming_count)

Sends and retrieves mail. More specifically, this functions asks the mail daemon to
retrieve in-coming messages from the POP server and send out-going messages to the
SMTP server. The number of POP messages that were retrieved is returned, by reference,
in the argument. If you don’t need to know the in-coming count, you can (and should)
passNULL as theincoming_count argument; the function is (potentially) much faster if you
ignore the count in this manner.

If the mail world is unruffled, the function returnsB_NO_ERROR; otherwise, it returns one
of the following:

• B_MAIL_NO_DEMON. The mail demon isn’t running.
• B_MAIL_UNKNOWN_HOST. The named POP or SMTP mail server can’t be found.
• B_MAIL_ACCESS_ERROR. The connection to the POP or SMTP mail server failed.
• B_MAIL_UNKNOWN_USER. The POP server doesn’t recognize the user name.
• B_MAIL_WRONG_PASSWORD. The POP server doesn’t recognize the password.

In the cases where a name or password is unrecognized (B_MAIL_UNKNOWN_HOST,
...UNKNOWN_USER, and...WRONG_PASSWORD), the (mis)information is taken from the
mail_account structure that was passed to the daemon in the most recent
set_mail_account() call. Note that the validity of themail_account information isn’t
checked when you set the structure—it’s only checked when you actually attempt to use
the information (as, for example, here).

Functions The Mail Daemon

32 – The Network Kit

forward_mail()
long forward_mail(BRecord *msg,

char *recipients,
bool reset_sender= TRUE,
boolqueue= TRUE)

Forwards the mail message represented bymsg to the list of users given byrecipients.
msg is a BRecord object that encapsulates a single in-coming mail message. The user
account names listed inrecipients must be separated from each other by whitespace and/or
commas; the entire list must beNULL-terminated. Both of these entities (the BRecord-as-
mail-message, and the recipients list) are further explained in “Mail Messages
(BMailMessage)” on page 37.

If reset_sender is TRUE, the sender of the forwarded message is reset to be the current
recipient; otherwise the sender is left as is. For example, if Anton sends a message to
Bertrand and Bertrand forwards the message to Camille withreset_sender set toTRUE, the
message that Camille receives will appear to have been sent by Bertrand; if set toFALSE, it
will appear to have been sent by Anton.

Thequeue argument determines whether the messages is sent now (TRUE) or queued for
later transmission (FALSE). If you send the message now, all other out-going and in-
coming mail messages are transmitted as a matter of course (sending now is like calling
check_for_mail()). If the message is queued, it waits for the daemon to perform its
automatic check, or for the next explicitcheck_for_mail() call.

set_mail_account(), get_mail_account()
long set_mail_account(mail_account *account, boolsave= TRUE)
long get_mail_account(mail_account *account)

set_mail_account() function lets you set the identities of the POP and SMTP mail servers
that you want the mail daemon to use, and lets you set the (user-specific) POP account that
the daemon should monitor (when it looks for in-coming mail). All this information is set
by filling in the fields of themail_account structure which you pass as the first argument
to the function. The structure is defined as

typedef struct
{

char pop_name[B_MAX_USER_NAME_LENGTH];
char pop_password[B_MAX_USER_NAME_LENGTH];
char pop_host[B_MAX_HOST_NAME_LENGTH];
char smtp_host[B_MAX_HOST_NAME_LENGTH];

} mail_account;

• pop_name andpop_password areNULL-terminated strings (with a maximum
length of 32 characters) that identify the user account on the POP server. The
account must already exist; you can’t create a new POP account simply by filling a
mail_account structure and passing it throughset_mail_account(). Creating a POP
account is the responsibility of the Internet Service Provider.

The Mail Daemon Functions

The Network Kit –33

• pop_host is aNULL-terminated string (64 characters, max) that names the machine
on which resides the POP server, andsmtp_host is a similarly constructed string
that names the SMTP server’s machine. Normally, the servers are run on the same
machine. Again, you can’t make up a name here; you have to get the host names
from the Internet Service Provider.

Thesave argument sets the persistence of the mail account:

• If you save, this account will be used for all subsequent transactions with the mail
servers, and also becomes thedefault mail account. In this role, the account
information is remembered when you restart your computer (or otherwise kill and
restart the mail daemon).

• If you don’t save, this account will be used for subsequent transactions, but will be
forgotten when you shut down.

You can set the default mail account even if the mail daemon isn’t running. Currently, the
set_mail_account() function always returnsB_NO_ERROR.

get_mail_account() returns, by reference in its argument, a copy of the mail account
information that the daemon is currently set to use. If the daemon isn’t running, this
function returns the default mail account. In this case, the function returns
B_MAIL_NO_DAEMON, otherwise it returnsB_NO_ERROR.

Note that the validity of themail_account that you pass toset_mail_account() or that’s
copied into theget_mail_account() argument isn’t checked by these functions. The mail
account is only checked when you actually attempt to use the information; in other words,
when you attempt to send or retrieve mail.

set_mail_notification(), get_mail_notification()
long set_mail_notification(mail_notification *notification, boolsave= TRUE)
long get_mail_notification(mail_notification *notification)

set_mail_notification() establishes how you would like to be notified when new mail
arrives. There are two notification signals: the mail alert panel and the system beep. You
encode your preference by setting the fields of the argumentmail_notification structure:

typedef struct
{

bool alert;
bool beep;

} mail_notification;

Thesave argument, ifTRUE, registers the notification setting as the default—in other
words, the daemon will remember it when you shutdown the computer. This function
always returnsB_NO_ERROR.

get_mail_notification() returns, by reference, a copy of themail_notification structure
that’s currently being used by the mail daemon. If the daemon isn’t running, the function

Functions The Mail Daemon

34 – The Network Kit

hands you the default notification setting, and returns (directly)B_MAIL_NO_DAEMON;
otherwise it returnsB_NO_ERROR.

set_mail_reader(), get_mail_reader()
long set_mail_reader(ulongreader_sig, boolsave= TRUE)
long get_mail_reader(ulong *reader_sig)

set_mail_reader() tells the system which application to launch (or find) to display newly-
arrived mail. The application is identified by its signature. Thesave argument, ifTRUE,
registers the reader signature as the default—in other words, the daemon will remember it
when you shutdown the computer. This function always returnsB_NO_ERROR; note that
the function doesn’t check to make sure that the argument identifies an actual application.

get_mail_reader() returns, by reference, the signature of the application that the mail
daemon is currently using (or will next use) to display mail. If the daemon isn’t running,
the function hands you the default reader, and returns (directly)B_MAIL_NO_DAEMON;
otherwise it returnsB_NO_ERROR.

In the absence of any other provision, the mail daemon uses the Be mail reader, BeMail
(signature ‘MAIL’).

set_mail_schedule(), get_mail_schedule()
long set_mail_schedule(mail_schedule *schedule, boolsave= TRUE)
long get_mail_schedule(mail_schedule *schedule)

set_mail_schedule() lets you tell the mail daemon during what days and hours it should
automatically check for new mail, and how often it should check. You encode this
information by filling in the fields of the argumentmail_schedule structure:

typedef struct
{

long days;
long interval;
long start_time;
long end_time;

} mail_schedule;

• days is a constant that encodes the range of days. It can be one ofB_CHECK_DAILY,
B_CHECK_WEEKDAYS, or B_CHECK_NEVER. The first two should be obvious; setting
thedays field toB_CHECK_NEVER turns off the daemon’s automatic mail-checking
capability (and the other fields of the structure are ignored).

• start_time andend_time define the range of minutes, within the candidate days, that
the daemon checks for mail. For example, if you want the daemon to check for mail
only between 8 am and 6 pm, you would setstart_time to 480 (8 hours * 60 minutes)
andend_time to 1080 (18 hours * 60 minutes). Ifstart_time andend_time are the
same, then the daemon works around the clock.

The Mail Daemon Functions

The Network Kit –35

• interval is the frequency, in minutes, at which the mail daemon checks for mail. For
example, setting interval to 15 means that the daemon will automatically check for
new mail (and send out any unsent, recently composed messages) every 15 minutes
(within the range of minutes of the candidate days, as set in the other fields).

Functions The Mail Daemon

36 – The Network Kit

The Network Kit –37

Mail Messages (BMailMessage)

Derived from: public BObject

Declared in: <net/E-mail.h>

Overview

When the mail daemon retrieves new mail from the mail server, it stores the retrieved
messages in the boot volume’s database, creating a single record (a “mail record”) for each
message. A mail-reading program can then pull the mail record out of the database (as a
BRecord object) and display its contents.

Similarly, when the user composes new mail (on the BeBox) and submits the message for
sending, the message-composing application adds the message (again, encapsulated in a
mail record) to the database where it waits for the daemon to pick it up and send it to the
mail server. The scheme looks something like this:

If you’re writing a mail-reading or mail-writing application, then all you really need to
know is the definition of the table to which the mail message records conform. With this
knowledge, you can retrieve (“fetch”) and parse in-coming messages, and create and
submit (to the database) out-going messages. The mail message table is called “E-mail”,
and is described in “The E-Mail Table” on page 43.

The Network Kit also supplies a BMailMessage class that acts as a convenient wrapper
around mail records.

Mail Server

Be
Bo

x

Mail Daemon

Boot Volume

Mail
Reader

Mail
Writer

Database

Creating a Mail Reader Mail Messages (BMailMessage)

38 – The Network Kit

The following sections give you a “mail message” tutorial; we’ll step through the database
and mail message operations that you need to create a generic mail application. If you’re
already comfortable with database programming (and understand SMTP and POP), you
can skip the tutorial and head straight for the “E-mail” and BMailMessage specifications.

 Creating a Mail Reader

The design of a Be mail reader should follows this outline:

1. Ask the mail daemon to retrieve mail from the mail server.
2. Get the newly retrieved mail messages from the database.
3. Display the contents of the mail messages.

Throughout the following step-by-step explanations, we’ll give both the general approach
and also look at what BeMail does.

(Note that this tutorial is incomplete.)

Asking the Daemon to Get New Mail

There are a couple of ways to ask the mail daemon to retrieve newly arrived mail from
the mail server:

• You can ask it explicitly by calling check_for_mail()
• You can wait for the mail schedule’s automatic invocation ofcheck_for_mail().

You probably want to do both of these: You should provide a means for the user to ask
that mail be retrieved right now, while also allowing the schedule to do its thing.
check_for_mail() andset_mail_schedule(), which declares the periodicity of automatic
mail retrieval, are described in “The Mail Daemon” on page 29. As explained there, the
mail schedule “belongs” to the user; its default presentation is through the E-Mail
preferences application.

BeMail doesn’t actually do anything about retrieving mail. It relies on the mail schedule,
and on the mail daemon’s “E-Mail Status” alert panel, which provides a “Check Now”
button (as in “check for mail now”).

Getting Messages from the Database

When new mail arrives, the mail daemon creates a database record to hold each new
message, and then commits the records to the database. The table that a mail record
conforms to is named “E-Mail”. This table is kept in the database that corresponds to the
boot volume. As a demonstration of these principles, the following example function
counts the number of mail messages that currently reside in the database:

Mail Messages (BMailMessage) Creating a Mail Reader

The Network Kit –39

#include <Database.h>
#include <Table.h>
#include <Volume.h>
#include <Query.h>

long count_all_email()
{

BVolume bootVol = boot_volume();
BDatabase *bootDb = boolVol.Database();
BTable *emailTable = bootDb->FindTable("E-Mail");
BQuery *emailQuery = new BQuery();
long result=0;

if (emailTable != NULL) {
emailQuery->AddTable(emailTable);
emailQuery->PushOp(B_ALL);
emailQuery->Fetch();
result = emailQuery->CountRecordIDs();

}
delete emailQuery;
return result;

}

Obviously, this example requires some knowledge of how the database works. You can
mosey on over to the Storage Kit documentation for the Tolstoy version, or you can read
between the lines of the following:

As mentioned above, the mail daemon transforms mail messages into “E-Mail”
conforming records, and then “commits” (in database lingo) these records to the boot
volume’s database. The first few lines of the example assemble the suspects: The boot
volume, the database from the boot volume, and the “E-Mail” table from the boot
database. If the table is found, then we construct a “query”—this is the vehicle that will let
us retrieve our records. The query is told which table to look in and which records in that
table to look for. This is done throughAddTable(emailTable) and thePushOp(B_ALL)
calls; in other words, we tell the query to look for all records in the “E-Mail” table. Then
we tell the query to “fetch,” or go out and actually get the records. Technically, it doesn’t
actually get records (this would be inefficient); instead, it gets record ID numbers. We
count the record ID numbers that it has retrieved (theCountRecordIDs() call) and return
the count.

The Example Refined—E-Mail Status

For the purposes of a mail reader—in other words, an application that wants to display
messages that are received from the mail server—retrievingall mail messages isn’t
quite right. The “E-Mail” table is used to store both in-coming and out-going messages.
So we have to fix our query to only count in-coming messages.

The in-coming/out-going nature of a particular message is stored as a string in the “Status”
field of the “E-Mail” table. The mail daemon understands three states: “New”,
“Pending”, and “Sent” (a fourth state, “Read”, is used by the BeMail application; we’ll get

Creating a Mail Reader Mail Messages (BMailMessage)

40 – The Network Kit

to it later). We’re only interested in “New” messages, so we change our query
accordingly:

long count_incoming_email()
{

/* declarations as above */

if (emailTable != NULL) {
emailQuery->AddTable(emailTable);

emailQuery->PushField("Status");
emailQuery->PushString("New");
emailQuery->PushOp(B_EQ);

emailQuery->Fetch();
result = emailQuery->CountRecordIDs();

}
delete emailQuery;
return result;

}

Here we’ve replaced thePushOp(B_ALL) call with a more refined predicate. Again, you
can turn to the Storage Kit (the BQuery class, specifically) for the full story on query
predicates. Briefly, predicates are expressed in RPN (“Reverse Polish Notation”).
According to RPN, the operands of an operation are “pushed” first, followed by the
operator. The evaluation of an operation becomes a valid operand for another operation.
The series of “pushes” in the example expresses the boolean evaluation

(status == "New")

In other words, we’re going to fetch all records (again, record IDs) that have a “Status”
field value of “New”.

Let the Browser do the Work

There’s one other way to identify mail records: Let the Browser do it. When you
“launch” the Browser-defined Mailbox, a query that looks a lot like the one we created
above is formed and fetched. The result of the query, the list of found record ID
numbers, is turned into a list of BRecord objects that are symbolically listed in the
Mailbox window. If the user double-clicks on one of the record icons, the mail daemon
passes the record’srecord_ref to the user-defined “mail reader.” By default, the mail
reader is BeMail. The user can select a different reader (yours) by dropping the reader’s
icon in the appropriate “icon well” in the E-Mail preferences panel. You can set the
reader identity programmatically through theset_mail_reader() function, although, as
with all E-Mail preferences, it’s nicer to let the user make the decision.

A mail reader application needs to be able “catch” the refs that are passed to it. It does this
in its implementation ofMessageReceived(). A simple implementation would look for
the message typeB_REFS_RECEIVED. The rest of this thought is left as an exercise for the
mind reader.

Mail Messages (BMailMessage) Creating a Mail Reader

The Network Kit –41

Creating BMailMessage Objects

So far, we’ve determined where we have to go to find in-coming messages, and counted
the messages that we found there, but we haven’t actually retrieved the messages
themselves. Here, we complete our message-retrieving example by fetching record IDs
(as before) and then constructing a BRecord for each ID. Having done that, we pass the
BRecord to the BMailMessage constructor. In the example, we’ll add each
BMailMessage to a BList (which is passed in to the function):

#include <E-mail.h>
/* and the others */

long get_new_email(BList *list)
{

BRecord *emailRecord;
BMailMessage *newMail;
long count;
record_id rec_id;

/* and the others */

if (emailTable != NULL) {
emailQuery->AddTable(emailTable);

emailQuery->PushField("Status");
emailQuery->PushString("New");
emailQuery->PushOp(B_EQ);

emailQuery->Fetch();
result = emailQuery->CountRecordIDs();

for (count=0; count < result; count++) {
rec_id = emailQuery->RecordIdAt(count);
emailRecord = new BRecord(bootDb, rec_id);
newMail = new BMailMessage(emailRecord);
list->AddItem(newMail);
delete emailRecord;

}
delete EmailQuery;
return result;

}

In thefor loop, we step through the query’s “record ID” list, creating a BRecord for each
ID. To construct a BRecord from a record ID, you need to pass the appropriate BDatabase
object; this is because record ID numbers are only valid within a specific database.
Having gotten a BRecord, we pass the object to the BMailMessage constructor; the
BMailMessage object copies all the data from the record into itself, such that the BRecord
is no longer needed. The BRecord object can (and, unless you have something up your
sleeve, should) be deleted after the BMailMessage object is constructed.

When our example function returns, the argument BList will contain all the
BMailMessage objects that we constructed, and the function will return the number of
messages directly (as before). Note that we should be a bit pickier about checking for

Creating a Mail Reader Mail Messages (BMailMessage)

42 – The Network Kit

errors; you will, no doubt, correct this oversight in your own mail reader. Also—and here
we’re just being fussy—keep in mind that by adding the BMailMessages to a BList, we
have implied that the BList is now responsible for these objects. More precisely, the entity
that calledget_new_mail() must delete the contents of the list when it’s done doing
whatever it does.

Displaying the Contents of a Message

The BMailMessage class provides a convenient object cover for mail records. By using
BMailMessage objects, you avoid most of the fuss of parsing database records.

When you construct a BMailMessage to represent an in-coming (or otherwise existing)
mail message, the contents of the message are copied into the object’s “fields.”
BMailMessage fields are similar to table fields in that they represent named categories of
data. The fields that are defined by the BMailMessage class approximate those of the “E-
Mail” table; however, you can add new fields that have no complement in the table—
adding a field to a BMailMessage object won’t extend the “E-Mail” table definition.

TheFindField() member function retrieves the data that’s stored for a particular field
within a BMailMessage object. The full protocol goes something like this:

long FindField(const char *field_name, void **data, long *length, long index=0)

The function works as you would expect: You pass in a field name, and the function
points *data at the contents of that field. The length of the data (in bytes) is returned in
length. The final argument (index) is used to disambiguate between fields that have the
same name (the exact value ofindex has no meaning other than ordinal position).

To useFindField() properly, you have to know the names of the fields that you can expect
to find there. The BMailMessage class defines a number of field names and provides
constants to cover them:

Field Name Constant

“To: ” B_MAIL_TO
“Cc: ” B_MAIL_CC
“Bcc: ” B_MAIL_BCC
“From: ” B_MAIL_FROM
“Date: ” B_MAIL_DATE
“Reply: ” B_MAIL_REPLY
“Subject: ” B_MAIL_SUBJECT
“Priority: ” B_MAIL_PRIORITY
“Content” B_MAIL_CONTENT

Each of the defined fields stores some number of bytes of “raw” (untyped) data. When
you callFindField(), the function points the second argument (data) to the raw data for the
named field, and returns the number of bytes of data in the third argument (length).

Mail Messages (BMailMessage) The E-Mail Table

The Network Kit –43

A particular field (i.e. a field with a particular name) can store more than one entry. The
final argument toFindField() (the argument namedindex) can be used to distinguish
between multiple entries in the same field.

(Here the master died. We’ll complete this tutorial and post it on the Be Web site very
soon.)

The E-Mail Table

The “E-Mail” database table defines records that hold mail messages. The fields in the
table mimic the information that’s found in an SMTP or POP mail message header. (See
“The Mail Daemon” on page 29 for more information on SMTP and POP). The table’s
fields are:

• “Status” takes a string that describes the “seen it” state of the message. The mail
daemon sets newly arrived in-coming messages to be “New”. Out-going messages
must have a status of “Pending” (this cues the daemon to send the message). After it
has sent a message, the daemon sets the status to “Sent”. Beyond these three states,
an application is free to invent and use its own—for example, BeMail uses “Read”
to mean a message that used to be “New”, but which the user has already looked at.

• “Priority” is an integer (along) that rates the message’s urgency.

• “From” is a string that names the sender of the message.

• “Subject” is a string that describes the topic of the letter.

• “Reply” is a string that gives the e-mail name to which a response to this message
should be sent.

• “When” is adouble that encodes the date and time at which this message was sent.

• “Enclosures” is an integer count of the number of MIME enclosures that the
message contains.

• “header” is the unaltered POP header from a received message; if you’re creating
mail records yourself (as opposed to using the BMailMessage class), you should
construct an SMTP header and add it to this field.

• “content” as a string is the unaltered content of the message.

• “content_file” as a record ID is used if the size of the content threatens to broach the
maximum size of a record. In this case, the content is written to a file, and
“content_file” gives the ID of that file.

• “enclosures” is a list of attributes (the field itself is typed as raw data) that describe
the individual MIME enclosures. There are three attributes per enclosure: a
record_ref that gives the location of the enclosure, stored as a file; aNULL-

Constructor and Destructor Mail Messages (BMailMessage)

44 – The Network Kit

terminated string that gives the MIME type, and aNULL-terminated MIME subtype
string.

• “mail_flags” is a long that encodes the message-is-pending and save-after-sending
states of the message. If the message is waiting to go out, the “mail_flags” value is
B_MAIL_PENDING; if it should be saved after it’s sent, thenB_MAIL_SAVE is added in.
After the message is sent, the record is destroyed if “mail_flags” doesn’t include
B_MAIL_SAVE, otherwise the “mail_flags” valued is set toB_MAIL_SENT. In all other
cases—if the message is in-coming, for example—“mail_flags” is 0.

Constructor and Destructor

BMailMessage()
BMailMessage(void)
BMailMessage(BRecord *record)
BMailMessage(BMailMessage *mail_message)

Creates and returns a new BMailMessage object.

The first version creates an empty, “abstract” message: The object doesn’t correspond to
the second creates an object that acts as a cover for the given BRecord, and the third
creates a copy (more or less) of its argument.

~BMailMessage()
virtual ~BMailMessage(void)

Destroys the BMailMessage, even if the object’s fields are “dirty.” For example, let’s say
you create a new BMailMessage with the intention of sending a message. You start to edit
the object—perhaps you fill in the “To: ” field—but then you delete the object. The
message that you were composing isn’t sent. In other words, the BMailMessage object
doesn’t try to second-guess your intentions: When you destroy the object, it lies down and
dies without whining about it.

Mail Messages (BMailMessage) Member Functions

The Network Kit –45

Member Functions

CountFields(), GetFieldName(), FindField()
long CountFields(char *name= NULL)

long GetFieldName(char **field_name, long index)

long FindField(char *field_name,
void **data,
long *length,
long index = 0)

These functions are used to step through and inspect the fields in a BMailMessage object.
A field is identified, primarily, by its name. However, a field can have more than one
entry, so a secondary identifier (an index) is also necessary. Through the combination of a
field name and an index, you can identify and retrieve a specific piece of data. The names
of the “standard” mail fields are listed in theSetField() description.

CountFields() returns the entry count for the named field. If the name argument isNULL,
the function returns the number of uniquely named fields in the object. Note that theNULL
argument version doesn’t necessarily return a count ofall fields. For example, if a
BMailMessage contains twoB_MAIL_TO fields (only), the call

CountFields(B_MAIL_TO);

will return 2, while the call

CountFields();

will return 1.

GetFieldName() returns, by reference in the field_nameargument, the name of the field
that occupies theindex’th place in the object’s list of uniquely named fields. Ifindex is
out-of-bounds, the function returns (directly)B_BAD_INDEX; otherwise, it returns
B_NO_ERROR.

FindField() return the data that lies in the field that’s identified byfield_name. If the object
contains more than one entry, you can use the index argument to differentiate them. The
data that’s found is returned by reference through*data; the*length value returns the
amount of data (in bytes) that*data is pointing to. It’s not a great idea to alter the pointed-
to data, but as long as you don’t exceed the existing length you’ll probably get away with
it.

If field_name doesn’t identify an existing field (in this object),B_MAIL_UNKNOWN_FIELD is
returned; if the index is out-of-bounds,B_BAD_INDEX is returned. Otherwise,
B_NO_ERROR is your reward.

See also: SetField()

Member Functions Mail Messages (BMailMessage)

46 – The Network Kit

Ref()
record_refRef(void)

Returns therecord_ref structure that identifies the record that lies behind this
BMailMessage object. Not every object corresponds to a record. In general, an in-coming
message (a BMailMessages that was constructed from a BRecord object) will have a ref,
but an out-going message won’t have a ref until the message is actually sent. As always
when dealing with refs, you mustn’t assume that the ref that’s returned here is actually
valid—the record may have been removed since the BMailMessage object was
constructed (or since the message was sent).

Send()
long Send(boolqueue = TRUE, boolsave= TRUE)

Creates a record for this BMailMessage object, fills in the object’s fields as appropriate for
an out-going message in SMTP format, and then adds the record to the “E-Mail” table. If
queue is TRUE, the record lies in the database until the mail daemon comes along of its own
accord; ifqueue is FALSE, the mail daemon is told to send the message (and all other
queued messages) right now. The BMailMessage’s internal status (as returned byStatus())
is setB_MAIL_QUEUED if queue isTRUE.

If save isTRUE, the record that holds the message remains in the database after the mail
daemon has done its job. Otherwise, the record is destroyed after the message is sent.

The mail record’s status is set to “Pending” by this function; when the mail daemon picks
up the message, it (the daemon) will destroy the record (if it’s not being saved), or change
the status to “Sent”.

If the BMailMessage doesn’t appear to have any recipients, theSend() function returns
B_MAIL_NO_RECIPIENT and the message isn’t sent. Ifqueue is FALSE, the function sends
the message and returns the value returned by its (automatic) invocation of
check_for_mail(). If the message is queued, the function returnsB_NO_ERROR.

SetField(), RemoveField()
void SetField(char *field_name,

void *data,
long length,
boolappend= FALSE)

long RemoveField(char *field_name, long index= 0)

These functions add and remove fields (or field entries) from the object.

SetField() adds a field namedfield_name. Thedata andlength arguments point to and
describe the length of the data that you want the field to contain (the length is given in
bytes). The final argument,append, states whether you want the data to be added (as a

Mail Messages (BMailMessage) Member Functions

The Network Kit –47

separate entry) to the data that already exists under the same name. Ifappend is FALSE, the
new data (the data that you’re passing in this function call) becomes the field’s only entry;
if it’s TRUE, and the field already exists, the “old” data isn’t clobbered, and the field’s
“entry count” is increased by one.

RemoveField() removes the data that corresponds to the given field name. If the field
contains more than one entry, you can selectively remove a specific entry through the use
of theindex argument. Iffield_name doesn’t identify an existing field (in this object),
B_MAIL_UNKNOWN_FIELD is returned; if the index is out-of-bounds,B_BAD_INDEX is
returned. Otherwise,B_NO_ERROR is returned.

The field names that are defined by the class are:

Field Name Constant

“To: ” B_MAIL_TO
“Cc: ” B_MAIL_CC
“Bcc: ” B_MAIL_BCC
“From: ” B_MAIL_FROM
“Date: ” B_MAIL_DATE
“Reply: ” B_MAIL_REPLY
“Subject: ” B_MAIL_SUBJECT
“Priority: ” B_MAIL_PRIORITY
“Content” B_MAIL_CONTENT

See also: FindField()

SetEnclosure(), GetEnclosure(), RemoveEnclosure(),
CountEnclosures()

void SetEnclosure(record_ref *ref,
const char *mime_type,
const char *mime_subtype)

 longGetEnclosure(record_ref **ref,
char **mime_type,
char **mime_subtype,
long index= 0);

 longRemoveEnclosure(record_ref *ref)

 longCountEnclosures(void)

These functions deal with a BMailMessage’s “enclosures.” An enclosure is a separate file
that’s included in the mail message. Enclosures are identified by index only—unlike a
BMailMessage’s fields, enclosures don’t have names. Every enclosure is tagged with a
MIME typifier. The MIME typifier is a human-readable string in the form “type/subtype”
that attempts to describe the data that the enclosure contains. As shown in the protocol
above, the BMailMessage class breaks the two MIME components apart so they can be set
(or retrieved) separately.

Member Functions Mail Messages (BMailMessage)

48 – The Network Kit

SetEnclosure() adds an enclosure to the object. Theref argument locates the enclosure’s
data; currently, the refs that you add may only refer to files. The other two arguments let
you tag the enclosure with MIME type and subtype strings. (Note that BeMail currently
tags all out-going enclosures as “application/befile”.)

GetEnclosure() returns, by reference through *ref, a pointer to the ref that represents the
object’sindex’th enclosure. The enclosure’s MIME type strings are pointed to by
*mime_type and *mime_subtype. The MIME strings that the arguments point to areNULL-
terminated for you. If index is out-of-boundsB_BAD_INDEX is returned (this includes the
no-enclosure case). Otherwise,B_NO_ERROR is returned.

RemoveEnclosure() removes the enclosure that’s identified by the argument. Ifref doesn’t
identify an existing enclosure, this function returnsB_BAD_INDEX (look for the error return
to change in a subsequent release). Otherwise, it returnsB_NO_ERROR.

CountEnclosures() returns the number of enclosures that are currently contained in the
object.

Status()
long Status(void)

Every BMailMessage has an internal state (that mustn’t be confused with its record’s
status field) that tells whether the record that represents the object is currently queued to be
sent. If it is, the status isB_MAIL_QUEUED, otherwise it’sB_MAIL_NOT_QUEUED.

