
The Game Kit –1

10 The Game Kit

Introduction . 3

BWindowScreen . 5
Overview . 5
Hook Functions . 6
Constructor and Destructor . 6
Member Functions. . 7

2 – The Game Kit

The Game Kit –3

10 The Game Kit

The Game Kit is a collection of software that’s especially useful for developing games.
Currently, the collection consists of just one class, BWindowScreen, but it will grow in
future releases. A BWindowScreen object gives an application direct access to the
screen—that is, direct access to the driver for the graphics card so it can bypass the
Application Server, customize the card for the game, call graphics functions the driver
implements, and draw directly into the frame buffer.

Although designed with games in mind, nothing in the Game Kit is restricted to game
applications. Other kinds of applications can profitably take advantage of this Kit.

4 – The Game Kit

The Game Kit –5

BWindowScreen

Derived from: public BWindow

Declared in: <game/WindowScreen.h>

Overview

A BWindowScreen object has the dual nature its name implies: It’s both a window and an
object that provides direct access to the screen, bypassing the window system. When a
BWindowScreen object becomes the active window—which it does when constructed—it
establishes a direct connection to the graphics card driver for the screen, independent of
the Application Server. This permits the application to set up a game-specific graphics
environment on the card, call driver-implemented drawing functions, and directly
manipulate the frame buffer.

The Application Server’s graphic operations are suspended until the BWindowScreen
object gives up active window status. While it’s active, normal drawing operations have
no effect; application code can move windows and call upon BView objects to draw, but
nothing is rendered on-screen. Only the BWindowScreen object can provide access to the
frame buffer.

By constructing a BWindowScreen object, an application takes over the whole screen.
The object’s frame rectangle is as large as the screen, so that the Application Server will
automatically erase every pixel when the window becomes active and refresh everything
when it ceases to be the active window. While the BWindowScreen is active, nothing
except what the application draws will be visible to the user—no dock and no other
windows. The entire screen is the application’s canvas.

A BWindowScreen object remains a window while it has control of the screen; it stays
attached to the Application Server and its message loop continues to function. It gets
messages reporting the user’s actions on the keyboard and mouse, just like any other
active window. Because it covers the whole screen, it’s notified of all mouse and keyboard
events. < Messages that report mouse events are currently unreliable; the cursor is
reported at a static location, inhibiting mouse-moved messages and making mouse-down
and mouse-up messages inaccurate. >

This class respects workspaces. A BWindowScreen object releases its grip on the screen
when the user turns to another workspace and reestablishes its control when the user
returns to the workspace and it again becomes the active window. Short of quitting the
application, changing workspaces is the only way that the user can move in and out of the
game. Because other windows and applications aren’t visible while the BWindowScreen

Hook Functions BWindowScreen

6 – The Game Kit

object is connected to the screen, the usual methods of selecting another application
(picking it from the application list or clicking in one of its windows) are not available.

Hook Functions

ScreenConnected() Can be implemented to do whatever is necessary when the
BWindowScreen object obtains direct access to the frame
buffer for the screen, and when it loses that access.

Constructor and Destructor

BWindowScreen()
BWindowScreen(const char *title, ulongspace)

Initializes the BWindowScreen object by assigning the window atitle and specifying a
space configuration for the screen. The window won’t have a visible border or a tab in
which to display the title to the user. However, others—such as the Workspaces
application—can use the title to identify the window.

The window is constructed to fill the screen; its frame rectangle contains every screen
pixel when the screen is configured according to thespace argument. That argument
describes the pixel dimensions and bits-per-pixel depth of the screen that the
BWindowScreen object should establish when it first obtains direct access to the frame
buffer. It should be one of the following constants:

B_8_BIT_640x480 B_16_BIT_640x480 B_32_BIT_640x480
B_8_BIT_800x600 B_16_BIT_800x600 B_32_BIT_800x600
B_8_BIT_1024x768 B_16_BIT_1024x768 B_32_BIT_1024x768
B_8_BIT_1152x900 B_16_BIT_1152x900 B_32_BIT_1152x900
B_8_BIT_1280x1024 B_16_BIT_1280x1024 B_32_BIT_1280x1024
B_8_BIT_1600x1200 B_16_BIT_1600x1200 B_32_BIT_1600x1200

These are the same constants that can be passed toset_screen_space(), the Interface Kit
function that preference applications call to configure the screen. < Sixteen-bit depths are
not currently supported. >

The constructor assigns the window to the active workspace (B_CURRENT_WORKSPACE)
and callsShow() to immediately place it on-screen, make it the active window, and have it
take direct charge of the workspace screen. It fails if another BWindowScreen object in
any application already has established a direct screen connection for the same workspace.

To be sure there wasn’t an error in constructing the object, call theError() function. If there
is an error, it’s likely to occur in this constructor, not the inherited BWindow constructor.

BWindowScreen Member Functions

The Game Kit –7

Since the object will probably have spawned a thread and will be running a message loop,
you’ll need to instruct it to quit. For example:

MyWindowScreen *screen =
 new MyWindowScreen("Glacier", B_8_BIT_1024x768);
if (Error() != B_NO_ERROR)
 screen->PostMessage(B_QUIT_REQUESTED);

If all goes well,Error() will return B_NO_ERROR (0).

See also: Error(), get_screen_info() in the Interface Kit

~BWindowScreen()
virtual ~BWindowScreen(void)

Closes the clone of the graphics card driver (through which the BWindowScreen object
established its connection to the screen), unloads it from the application, and cleans up
after it.

Member Functions

CanControlFrameBuffer()
bool CanControlFrameBuffer(void)

ReturnsTRUE if the graphics card driver permits applications to control the configuration
of the frame buffer, andFALSE if not. Control is exercised through four functions:

ProposeFrameBuffer()
SetFrameBuffer()
SetDisplayArea()
MoveDisplayArea()

A return ofTRUE means that all of these functions can communicate with the graphics card
driver and at least the first two of them will do something useful. A return ofFALSE means
that none of them will work.

See also: ProposeFrameBuffer(), SetDisplayArea()

CardHookAt()
inline graphics_card_hookCardHookAt(long index)

Returns a pointer to the function implemented by the graphics card driver and located at
index in its list of hook functions, orNULL if the graphics card driver doesn’t implement a
function at that index or the index is out-of-range.

Member Functions BWindowScreen

8 – The Game Kit

The hook functions are documented under “Hook Functions” on page 87 inThe Device
Kit chapter and are summarized briefly below. Currently, 12 functions are defined, from
index 0 through index 11. However, the first three, which set and manipulate the cursor,
are unavailable through the Game Kit; if you pass an index of 0, 1, or 2 toCardHookAt(),
it will return NULL.

The other hook functions are summarized by index in the chart below:

Index: What the function does: What arguments it takes:

3 Draws a line (8-bit depth) (longstartX, longstartY,
longendX, longendY,
ucharcolorIndex, boolclipToRect,
shortclipLeft, shortclipTop,
shortclipRight, shortclipBottom)

4 Draws a line (32-bit depth) (longstartX, longstartY,
longendX, longendY,
ulongcolor, boolclipToRect,
shortclipLeft, shortclipTop,
shortclipRight, shortclipBottom)

5 Draws a rectangle (8-bit depth) (longleft, longtop, longright, longbottom,
ucharcolorIndex)

6 Draws a rectangle (32-bit depth) (longleft, longtop, longright, longbottom,
ulongcolor)

7 Copies pixel data (blits) (longsourceX, longsourceY,
longdestinationX, longdestinationY,
longwidth, longheight)

8 Draws a line array (8-bit depth) (indexed_color_line *array, longnumItems,
boolclipToRect, shortclipLeft, shortclipTop,
shortclipRight, shortclipBottom)

9 Draws a line array (32-bit depth) (rgb_color_line *array, longnumItems,
boolclipToRect, shortclipLeft, shortclipTop,
shortclipRight, shortclipBottom)

10 Waits for drawing to finish none

11 Inverts the colors in a rectangle (longleft, longtop, longright, longbottom)

You must ensure that all coordinate values passed to these functions lie somewhere in the
frame buffer; the function will not do the checking for you. (Anx coordinate value is a
left-to-right index to a pixel column in the frame buffer and ay coordinate value is a top-
to-bottom index to a pixel row.)

For example, before calling the function at index 7, which blits a rectanglewidth pixels
wide andheight pixels high from (sourceX, sourceY) to (destinationX, destinationY), you

BWindowScreen Member Functions

The Game Kit –9

should be sure that the source and destination rectangles both lie entirely within the area
defined by the frame buffer.

CardInfo()
inline graphics_card_info *CardInfo(void)

Returns a description of the current configuration of the graphics card, as kept by the
driver for the card. The returnedgraphics_card_info structure is defined in
device/GraphicsCard.h and contains the following fields:

shortversion The version of the Be architecture for graphics cards;
the current version is 2.

shortid An identifier for the driver.

void *frame_buffer A pointer to the first byte of the frame buffer.
Applications can use this pointer to draw directly to
the frame buffer.

charrgba_order[4] The characters ‘r’ (red), ‘g’ (green), ‘b’ (blue), and
‘a’ (alpha) ordered as those components are
intermeshed for each pixel in the frame buffer. This
field is valid only for screen depths of 32 bits per
pixel.

shortflags A mask formed from three flags (B_CRT_CONTROL,
B_FRAME_BUFFER_CONTROL, and
B_GAMMA_CONTROL) that describe the ability of the
graphics card driver to perform particular tasks.
B_FRAME_BUFFER_CONTROL matches the
CanControlFrameBuffer() function; the other two
flags aren’t important to the control exercised
through the BWindowScreen object.

shortbits_per_pixel The depth of the screen in bits per pixel.

long bytes_per_row The offset, in bytes, between two adjacent rows of
pixel data in the frame buffer (the number of bytes
assigned to each row).

shortwidth The width of the frame buffer in pixels (the number
of pixel columns it defines).

shortheight The height of the frame buffer measured in lines of
pixels (the number of pixel rows the frame buffer
defines).

The returned structure belongs to the BWindowScreen object and is provided for
information only; you should not modify any of its fields.

See“B_GET_GRAPHICS_CARD_INFO” on page 80 inThe Device Kit chapter for a fuller
description of thegraphics_card_info structure.

Member Functions BWindowScreen

10 – The Game Kit

ColorList() see SetColorList()

Disconnect() see Quit()

Error()
long Error(void)

Returns the error code for the last BWindowScreen operation—including constructing the
BWindowScreen object. The code will beB_NO_ERROR if the operation was successful
and some other value (currently justB_ERROR) if not. Most functions also return the error
code directly.

See also: the BWindowScreen constructor

FrameBufferInfo()
inline frame_buffer_info *FrameBufferInfo(void)

Returns a pointer to theframe_buffer_info structure that holds the application’s current
conception of the frame buffer. This may or may not capture the actual configuration of
the frame buffer. If the application has proposed a configuration (ProposeFrameBuffer())
but not yet set it (SetFrameBuffer()), the returned structure will reflect the proposal, not the
reality.

The frame_buffer_info structure is defined indevice/GraphicsCard.h and contains the
following fields:

shortbits_per_pixel The depth of the frame buffer; the number of bits
assigned to a pixel.

shortbytes_per_row The number of bytes required to store one row of
pixel data in the frame buffer.

shortwidth The width of the frame buffer in pixels (the number
of columns).

shortheight The height of the frame buffer in pixels (the number
of rows).

shortdisplay_width The width of the screen display in pixels (the number
of pixel columns shown on-screen).

shortdisplay_height The height of the screen display in pixels (the
number of pixel rows shown on-screen).

BWindowScreen Member Functions

The Game Kit –11

shortdisplay_x The horizontal position of the left top pixel shown
on-screen, where 0 is the leftmost column of pixels in
the frame buffer.

shortdisplay_y The vertical position of the left top pixel shown on-
screen, where 0 is the topmost row of pixels in the
frame buffer.

Note that the first four fields of this structure are identical to the last four of
graphics_card_info.

The returned structure belongs to the BWindowScreen object. Call functions like
ProposeFrameBuffer() to modify its fields; don’t modify them directly.

See “Control Operations for Manipulating the Frame Buffer” on page 85 inThe Device Kit
chapter for a fuller description of theframe_buffer_info structure.

See also: ProposeFrameBuffer(), SetDisplayArea(), CardInfo()

IOBase()
inline void *IOBase(void)

Returns a pointer to the base address for the input/output registers on the graphics card.
Registers are addressed by 16-bit offsets from this base address.

MoveDisplayArea() see SetDisplayArea()

ProposeFrameBuffer(), SetFrameBuffer()
long ProposeFrameBuffer(shortdepth, shortwidth,

short *height, short *bytesPerRow= NULL)

long SetFrameBuffer(shortheight)
long SetFrameBuffer(shortheight, shortdisplayWidth, shortdisplayHeight,

shortdisplayX= 0, shortdisplayY= 0)

These functions, in a two-step process, configure the frame buffer on the graphics card.
They work only if the driver for the graphics card allows custom configurations (as
reported byCanControlFrameBuffer()).

The first function proposes a possible configuration for the frame buffer and in return
receives information on how accommodating the graphics card driver will be. Based on
that information, the second function can set the dimensions and depth of the frame buffer.

ProposeFrameBuffer() proposes two parameters for the frame buffer—depth, the number
of bits assigned to each pixel, andwidth, the number of pixels in one row of data (the total
number of pixel columns). If the driver can accommodate those two parameters, this

Member Functions BWindowScreen

12 – The Game Kit

function returnsB_NO_ERROR and reports on the two other parameters that define the
configuration. In the integer referred to byheight, it writes the maximum number of pixel
rows (the maximum number of pixels in one column) that the graphics card can provide at
the proposed depth and width. If abytesPerRow argument is provided, it reports the
minimum number of bytes the driver must dedicate to one row of pixel data at the
proposed width.

If the driver can’t accommodate the proposeddepth andwidth, ProposeFrameBuffer()
returnsB_ERROR and puts no useful information in the integers thatheight and
bytesPerRow refer to.

An application can callProposeFrameBuffer() any number of times to test possible
configurations. This function doesn’t make any changes in the frame buffer (though it
does set values in the structure thatFrameBufferInfo() returns). When the application finds
a configuration that it wants to use, it can callSetFrameBuffer() to set the desiredheight of
the frame buffer—the actual number of rows—plus the most recently proposeddepth and
width. The height set should not be greater than the maximum height reported by
ProposeFrameBuffer().

By default,SetFrameBuffer() sets the display area—the part of the frame buffer that’s
mapped to the screen—to be the same size as the frame buffer. In other words, it maps the
entire frame buffer to the screen.

If you want a display area that’s smaller than the frame buffer, you must set it explicitly by
passingSetFrameBuffer() adisplayWidth anddisplayHeight in pixels. The left top corner
of the display area will be located at pixel (0, 0), the first pixel in the first row of data. If
you want to locate it somewhere else, you must pass this function differentdisplayX and
displayY values.

The display area can subsequently be moved and resized through theMoveDisplayArea()
andSetDisplayArea() functions.

To locate the display area, all these functions assume a coordinate system in which an
x coordinate value is a left-to-right index to a pixel column in the frame buffer and a
y coordinate value is a top-to-bottom index to a pixel row.

See also: SetDisplayArea()

Quit(), Disconnect()
virtual voidQuit(void)

void Disconnect(void)

Quit() overrides the BWindow version of the same function to force the BWindowScreen
object to disconnect itself from the screen, so that it doesn’t quit while in control of the
frame buffer.

BWindowScreen Member Functions

The Game Kit –13

Disconnect() similarly causes the BWindowScreen object to give up its authority over the
graphics card driver, allowing the Application Server to reassert control. It doesn’t force
the application to quit.

AlthoughQuit() disconnects the object before quitting, this may not be soon enough for
your application. For example, if you need to destroy some drawing threads before the
BWindowScreen object is itself destroyed, you should get rid of them after the screen
connection is severed. You can force the object to disconnect itself by calling
Disconnect(). For example:

void MyWindowScreen::Quit()
{
 Disconnect();
 kill_thread(drawing_thread_a);
 kill_thread(drawing_thread_b);
 BWindowScreen::Quit();
}

Before breaking the screen connection, bothQuit() andDisconnect() cause the
BWindowScreen object to receive aScreenConnected() notification with a flag ofFALSE.
Neither function returns untilScreenConnected() returns and the connection is broken.

See also: ScreenConnected()

ScreenChanged()
virtual voidScreenChanged(BRectframe, color_spacemode)

Overrides the BWindow version ofScreenChanged() so that it does nothing. This
function is called automatically when the screen configuration changes. It’s not one that
you should call (or override) in application code.

See also: BWindow::ScreenChanged()

ScreenConnected()
virtual voidScreenConnected(boolconnected)

Implemented by derived classes to take action when the application gains direct access to
the screen and when it’s about to lose that access.

This function is called with theconnected flag set toTRUE immediately after the
BWindowScreen object becomes the active window and establishes a direct connection to
the graphics card driver for the screen. At that time, the Application Server’s connection
to the screen is suspended; drawing can only be accomplished through the screen access
that the BWindowScreen object provides.

It’s called with a flag ofFALSE just before the BWindowScreen object is scheduled to lose
its control over the screen and the Application Server’s control is reasserted. The
BWindowScreen’s connection to the screen is not broken untilScreenConnected()

Member Functions BWindowScreen

14 – The Game Kit

returns. It should delay returning until the application has finished all current drawing and
no longer needs direct screen access.

Note that wheneverScreenConnected() is called, the BWindowScreen object is
guaranteed to be connected to the screen; ifconnected is TRUE, it just became connected, if
connected is FALSE, it’s still connected but will be disconnected when the function returns.

Derived classes typically use this function to regulate access to the screen. For example,
they may acquire a semaphore when theconnected flag isFALSE, so that application
threads won’t attempt direct drawing when the connection isn’t in place, and release the
semaphore for drawing threads to acquire when the flag isTRUE. For example:

void MyWindowScreen::ScreenConnected(bool connected)
{
 if (connected == FALSE)
 acquire_sem(directDrawingSemaphore);
 else
 release_sem(directDrawingSemaphore);
}

SetColorList(), ColorList()
void SetColorList(rgb_color *colors, longfirst = 0, longlast= 255)

inline rgb_color *ColorList(void)

These functions set and return the list of 256 colors that can be displayed when the frame
buffer has a depth of 8 bits per pixel (theB_COLOR_8_BIT color space).SetColorList()
passes an array of one or more colors to replacecolors currently in the list. The first color
in the array replaces the color at the specifiedfirst index in the list; the last color that’s
passed replaces the color at thelast index. ColorList() returns a pointer to the entire list of
256 colors.

SetColorList() alters the list of colors kept on the graphics card.ColorList() doesn’t return a
pointer to that list, but to a local copy. This list belongs to the BWindowScreen object; it
should be altered only by callingSetColorList().

See also: system_colors() in the Interface Kit

SetDisplayArea(), MoveDisplayArea()
long SetDisplayArea(shortwidth, shortheight, shortx = 0, shorty = 0)

long MoveDisplayArea(shortx, shorty)

These functions resize and move the display area, the portion of the frame buffer that’s
mapped to the screen. The area is defined by a rectanglewidth pixels wide andheight
pixels high located entirely within the frame buffer, as illustrated in miniature below. The
left top pixel in the rectangle is located at (x, y), wherex coordinate values are left-to-right

BWindowScreen Member Functions

The Game Kit –15

indices to a pixel column defined by the frame buffer andy coordinate values are top-to-
bottom indices to a pixel row.

For example, the frame buffer might define twice as many pixel rows as the screen
displays, so the display area can alternate between the top and bottom halves of the frame
buffer for a smooth transition between images. Or the dimensions of the display area can
be incrementally reduced to simulate a zoom effect as the size of on-screen pixels
becomes bigger.

Like ProposeFrameBuffer() andSetFrameBuffer(), these functions work only if the
graphics card driver permits application control over the frame buffer. It must also permit
a display area that’s smaller than the total area the frame buffer defines. If successful in
moving or resizing the display area, they returnB_NO_ERROR; if not, they returnB_ERROR.

See also: ProposeFrameBuffer(), CanControlFrameBuffer()

SetFrameBuffer() see ProposeFrameBuffer()

row 0
row 1
row 2
row 3

column 0
 column 1
 column 2
 column 3

display area area defined by the frame buffer

. . .

 . . .

(2, 16)

(28 × 19) (35 × 39)

Member Functions BWindowScreen

16 – The Game Kit

SetSpace()
long SetSpace(ulongspace)

Configures the screen space to one of the standard combinations of width, height, and
depth. The configuration is first set by the class constructor—permittedspace constants
are documented there—and it may be altered by theSetFrameBuffer() function in addition
to this one.

If the requested configuration is refused by the graphics card driver, this function returns
B_ERROR. If all goes well, it returnsB_NO_ERROR.

See also: the BWindowScreen constructor,ProposeFrameBuffer()

WindowActivated()
virtual voidWindowActivated(boolactive)

Overrides the BWindow version ofWindowActivated() to connect the BWindowScreen
object to the screen (give it control over the graphics card driver) when theactive flag is
TRUE.

This function doesn’t disconnect the BWindowScreen when the flag isFALSE, because
there’s no way for the window to cease being the active window without the connection
already having been lost.

Don’t reimplement this function in your application, even if you call the inherited version;
rely instead onScreenConnected() for accurate notifications of when the
BWindowScreen gains and loses control over the screen.

See also: BWindow::WindowActivated(), ScreenConnected()

WorkspaceActivated()
virtual voidWorkspaceActivated(longworkspace, boolactive)

Overrides the BWindow version ofWorkspaceActivated() to connect the
BWindowScreen object to the screen when theactive flag isTRUE and to disconnect it
when the flag isFALSE. User’s typically activate the game by activating the workspace in
which it’s running, and deactivate it by moving to another workspace.

Don’t override this function in your application; implementScreenConnected() instead.

See also: BWindow::WorkspaceActivated(), ScreenConnected()

