
The Device Kit –1

9 The Device Kit

Introduction . 5

The GeekPort and its Classes . 7

BA2D and BD2A . 9
Overview . 9

The GeekPort . 9
The ADC . .10
The DAC . .10

BA2D . .11
BD2A . .12

Constructor and Destructor .13
Member Functions. .13

BDigitalPort . .17
Overview .17

BDigitalPort Objects .18
Using Both Digital Ports at the Same Time. 19
Overdriving an Output Pin 20

Constructor and Destructor .20
Member Functions. .21

BJoystick .23
Overview .23
Data Members . .23
Constructor and Destructor .24
Member Functions. .24

BSerialPort .27
Overview .27
Constructor and Destructor .27
Member Functions. .28

Constants and Defined Types . .35
Constants .35
Defined Types .37

2 – The Device Kit

Developing a Device Driver. .39
Overview .39
Recommended Reading . .40

Developing a Kernel-Loadable Driver 41
Entry Points .42

Driver Initialization . .42
Device Declarations. .43

Static Drivers . .44
Dynamic Drivers45

Hook Functions . .46
Opening and Closing a Device46
Reading and Writing Data 47
Controlling the Device47

Control Operations .48
B_GET_SIZE andB_SET_SIZE 48
B_SET_BLOCKING_IO

andB_SET_NONBLOCKING_IO. 48
B_GET_READ_STATUS andB_GET_WRITE_STATUS48
B_GET_GEOMETRY 49
B_FORMAT. .49

Exported Functions .49
Support Kit Functions. 50
Kernel Kit Functions .50
C Library Functions. .52
System Calls .53
Kernel Functions for Drivers 53

Installation . .54

Functions for Drivers . .55

Constants and Defined Types for Kernel-Loadable Drivers69
Constants .69
Defined Types .70

Developing a Driver for a Graphics Card 77
Entry Point. .77

Main Control Operations 78
B_OPEN_GRAPHICS_CARD78
B_CLOSE_GRAPHICS_CARD 79
B_SET_INDEXED_COLOR 79
B_GET_GRAPHICS_CARD_HOOKS 79
B_GET_GRAPHICS_CARD_INFO80
B_GET_REFRESH_RATES 81

The Device Kit –3

B_GET_SCREEN_SPACES. 81
B_CONFIG_GRAPHICS_CARD 82
B_SET_SCREEN_GAMMA 82

Control Operations for Cloning the Driver83
B_GET_INFO_FOR_CLONE. 83
B_GET_INFO_FOR_CLONE_SIZE 84
B_SET_CLONED_GRAPHICS_CARD 84
B_CLOSE_CLONED_GRAPHICS_CARD 85

Control Operations for Manipulating the Frame Buffer . .85
B_PROPOSE_FRAME_BUFFER 86
B_SET_FRAME_BUFFER86
B_SET_DISPLAY_AREA 87
B_MOVE_DISPLAY_AREA 87

Hook Functions . .87
Index 0: Defining the Cursor. 88
Index 1: Moving the Cursor89
Index 2: Showing and Hiding the Cursor 89
Index 3: Drawing a Line with an 8-Bit Color 90
Index 4: Drawing a Line with a 32-Bit Color 90
Index 5: Drawing a Rectangle

with an 8-Bit Color 91
Index 6: Drawing a Rectangle

with a 32-Bit Color 91
Index 7: Copying Pixel Data. 91
Index 8: Drawing a Line Array

with an 8-Bit Color 92
Index 9: Drawing a Line Array

with a 32-Bit Color 92
Index 10: Synchronizing Drawing Operations . . .93
Index 11: Inverting Colors93

Exported Functions .94
Installation . .95

Constants and Defined Types for Graphics Card Drivers97
Constants .97
Defined Types .98

4 – The Device Kit

Device Kit Inheritance Hierarchy

BObject
(Support Kit)

BDigitalPort

BA2D

BSerialPort

BD2A

BJoystick

The Device Kit –5

9 The Device Kit

The Device Kit contains software for controlling various input/output devices and for
writing your own device drivers. You’ll find two kinds of software documented in this
chapter:

• Encapsulated interfaces to some of the ports found on the back of the BeBox.
Currently, this part of the kit contains five classes—BJoystick, BSerialPort,
BDigitalPort, BA2D (analog to digital), and BD2A (digital to analog). A BJoystick
object represents a joystick connection to the BeBox. A BSerialPort object can
represent any of the four RS–232 serial ports that are visible on the back of the
machine. The other three classes represent particular functions of the GeekPort™.

These classes are all part of the shared system library,libbe.so. Their header files
are collected inDeviceKit.h and are precompiled with the header files of other kits.

• The programming interfaces and protocols for developing your own drivers for
input/output devices. All drivers are dynamically loaded, add-on modules that run
as extensions either of the kernel or of a specific server. Most drivers run as part of
the kernel, but drivers for graphics cards extend the Application Server and printer
drivers connect to the Print Server.

The programming interfaces for device drivers arenot included in the master
DeviceKit.h header file or the precompiled headers; this part of the Kit doesn’t
belong to the Be system library. A driver links only against its host module (or
perhaps statically against a private library), not against the system library.

If you’re interested in the interface to a joystick or serial port, you need read only about
the BJoystick or BSerialPort class. If you’re interested in the GeekPort interface, there’s a
small section that introduces the port and its three classes; look at it before turning to the
particular class that interests you. If you’re interesting in writing a device driver, skip the
first part of the chapter and begin with “Developing a Device Driver” on page 39.

6 – The Device Kit

The Device Kit –7

The GeekPort and its Classes

The GeekPort is a piece of hardware that communicates with external devices. Depending
on how you use the GeekPort’s ports, you can get up to 24 independent data paths:

• Four 12-bit analog input channels.
• Four 8-bit analog output channels
• Two 8-bit wide digital ports (16 paths, total) that can act as inputs or outputs.

To provide high-level access to these data paths, the Device Kit defines three classes:

• The BA2D class (“analog to digital”) lets you get at the analog input channels.
• The BD2A class (“digital to analog”) does the same for the analog output channels.
• The BDigitalPort class lets you configure, read, and write the digital ports.

The signals and data that these classes read and write appear at the GeekPort connector, a
37-pin female connector that you’ll find at the back of every BeBox. In addition to the
pins that correspond to the analog and data paths, the GeekPort provides power and
ground pins. Everything you need to feed your external gizmo is right there.

The GeekPort connector’s pins are assigned thus:

The BA2D, BD2A, and BDigitalPort class descriptions re-visit this illustration to provide
more detailed examinations of the specific GeekPort pins.

18 7 6 5 4 3 216 15 14 13 12 11 10 919 18 17

26 25 24 23 22 21 2034 33 32 31 30 29 28 2737 36 35

ground

digital port B digital port A+5v +5v+12v-12v

analog analog inputanalog output
output

reference

analog
input

reference

The GeekPort and its Classes

8 – The Device Kit

The Device Kit –9

BA2D and BD2A

Derived from: public BObject

Declared in: <device/A2D.h>
<device/D2A.h>

Overview

The BA2D and BD2A classes let you talk to the GeekPort’s analog-to-digital converter
(ADC) and digital-to-analog converter (DAC). Before we examine the classes, let’s visit
the GeekPort.

The GeekPort

The GeekPort provides four channels of simultaneous analog-to-digital (a/d) and four
channels of simultaneous digital-to-analog (d/a) conversion. The signals that feed the
ADC arrive on pins 25-28 of the GeekPort connector; the signals that are produced by the
DAC depart through pins 29-32 (as depicted below). Pins 24 and 33 are DC reference
levels (ground) for the a/d and d/a signals, respectively (don’t use pins 24 or 33 as power
grounds):

In the illustration, the a/d and d/a pins are labelled (“A2D1”, “A2D2”, etc.) as they are
known to the BA2D and BD2A classes.

If you’ve read the GeekPort hardware specification, you’ll have discovered that the ADC
can be placed in a few different modes (the DAC is less flexible). The BA2D and BD2A
classes (more accurately, the ADC and DAC drivers) refine the GeekPort specification, as
described in the following sections.

Note: Keep in mind that the a/d and d/a converters that the GeekPort uses arenot part of
the Crystal codec that’s used by the audio software (and brought into your application
through the Media Kit). The two sets of converters are completely separate and can be

a/d signalsd/a signals

18 7 6 5 4 3 216 15 14 13 12 11 10 919 18 17

26 25 24 23 22 21 2034 33 32 31 30 29 28 2737 36 35

a/d DCd/a DC

A
2

D
1

A
2

D
2

A
2

D
3

D
2

A
4

D
2

A
3

D
2

A
2

D
2

A
1

A
2

D
4

reference reference

Overview BA2D and BD2A

10 – The Device Kit

used independently and simultaneously. If you’re doing on-board high-fidelity sound
processing (or generation) in real time, you should stick with the Crystal convertors.

The ADC

The ADC accepts signals in the range [0, +4.096] Volts, performs a linear conversion,
and spits out unsigned 12-bit data. The 4.096V to 12-bit conversion produces a
convenient one-digital-step per milliVolt of input.

A/d conversion is performed on-demand: When you read a value from the ADC, the
voltage that lies on the specified pin is immediately sampled (this is the “Single Shot”
mode described in the GeekPort hardware specification). In other words, the ADC doesn’t
perform a sample and hold—it doesn’t constantly and regularly measure the voltages at its
inputs. Nonetheless, youcan’t retrieve samples at an arbitrarily high frequency simply by
reading in a tight loop. This is because of the “sampling latency”: When you ask for a
sample, it takes the driver about ten milliseconds to process the request, not counting the
(slight) overhead imposed by the C++ call (from your BA2D object). Therefore, the
fastest rate at which you can get samples from the ADC is a bit less than 100 kHz.

Furthermore, the ADC driver “fakes” the four channels of a/d conversion. In reality,
there’s only one ADC data path; the driver multiplexes the path to create four independent
signals. This means that the optimum 100 kHz sampling frequency is divided by the
number of channels that you want to read. If all four channels are being read at the same
time, you’ll find that successive samples on aparticular channel arrive slightly less often
than once every 40 milliseconds (a rate of < 25 kHz).

Finally, the ADC hardware is shared by the GeekPort and the two joysticks. This
cooperative use shouldn’t affect your application—you can treat the ADC as if it were all
your own—but this increases the multiplexing. In general, joysticks shouldn’t need to
sample very often, so while the theoretical “worst hit” on the ADC is a sample every 60
milliseconds, the reality should be much better. If we can assume that a joystick-reading
application isn’t oversampling, then the BA2D “sampling latency” should stay near the 10
milliseconds per channel measurement.

The DAC

The DAC accepts 8-bit unsigned data and converts it, in 16 mV steps, to an analog
signal in the range [0, +4.080] Volts. Again, the quantization is linear. The DAC output
isn’t filtered; if you need to smooth the stair-step output, you have to build a filter into
the gizmo that you’re connecting to the GeekPort.

Each of the d/a pins is protected by an in-series 4.7 kOhm resistor; however, pin 33, the
d/a DC reference (ground) pin, is not similarly impeded. If you want to attach an op-amp
circuit to the DAC output, you should hang a 4.7 kOhm resistor on the ground pin that
you’re using.

BA2D and BD2A Overview

The Device Kit –11

When you write a digital sample to the DAC, the specified pin is immediately set to the
converted voltage. The pin continues to produce that voltage until you write another
sample.

Unlike the ADC, the DAC is truly a four-channel device, so there’s no multiplexing
imposition to slow things down. Furthermore, writing to the DAC is naturally faster than
writing to the ADC. You should be able to write to the DAC as frequently as you want,
without worrying about a hardware-imposed “sampling latency.”

BA2D

The BA2D class lets you create objects that can read the GeekPort’s a/d channels. Each
BA2D object can read a single channel at a time; if you want to read all four channels
simultaneously, you have to create four separate objects.

To retrieve a value from one of the a/d channels, you create a new BA2D object, open it on
the channel you want (using the labels shown above), and then (repeatedly) invoke the
object’sRead() function. When you’re through reading, you callClose() so some other
object can open the channel.

Reading is a one-shot deal: For eachRead() invocation, you get a singleushort that stores
the 12-bit ADC value in its least significant 12 bits. To get a series of successive values,
you have to put theRead() call in a loop. Keep in mind that there’s no sampling rate or
other automatic time tethering. For example, if you want to read the ADC every tenth of a
second, you have to impose the waiting period yourself (by snoozing between reads, for
example).

The outline of a typical a/d-reading setup is shown below:

#include <A2D.h>

void ReadA2D1()
{

ushort val;
BA2D *a2d = new BA2D();

if (a2d->Open("A2D1") <= 0)
return;

while (/* whatever */) {

/* Read() returns the number of bytes that were
 * read; a successful read returns the value 2.
 */
if (a2d->Read(&val) != 2)

break;

/* Apply val here. */
...

Overview BA2D and BD2A

12 – The Device Kit

/* Snooze for a bit. */
snooze(1000);

}
a2d->Close();
delete a2d;

}

BD2A

Creating and using a BD2A object follows the same outline as shown above, but instead of
reading aushort value, you write auchar. TheWrite() function returns 1 if successful:

#include <D2A.h>

void WriteD2A1()
{

uchar val;
BD2A *d2a = new BD2A();

if (d2a->Open("D2A1") <= 0)
return;

while (/* whatever */) {
/* Get an 8-bit value from somewhere. */
val = ...;

if (d2a->Write(val) != 1)
break;

snooze(1000);
}
d2a->Close();
delete d2a;

}

The DAC performs a “sample and hold”: The voltage that the DAC produces on a
particular channel (and to which it sets the appropriate GeekPort pin) is maintained until
anotherWrite() call (on the same channel) changes the setting. Furthermore, the “hold”
persists across BD2A objects: Neither closing nor deleting a BD2A object affects the
voltage that’s produced by the corresponding GeekPort pin.

The BD2A class also implements aRead() function. This function returns the value that
was most recently written to the particular DAC channel.

BA2D and BD2A Constructor and Destructor

The Device Kit –13

Constructor and Destructor

BA2D(), BD2A()
long BA2D(void)

long BD2A(void)

Creates a new object that can open an ADC or DAC channel (respectively). The particular
channel is specified in a subsequentOpen() call. Constructing a new BA2D or BD2A
object doesn’t affect the state of the ADC or DAC.

~BA2D(), ~BD2A()
virtual ~BA2D(void)

virtual ~BD2A(void)

Closes the channel that the object holds open (if any) and then destroys the object.

Important: Deleting a BD2A objectdoesn’t affect the DAC channel’s output voltage. If
you want the voltage cleared (for example), you have to set it to 0 explicitly before
deleting (or otherwise closing) the BD2A object.

Member Functions

Open(), IsOpen(), Close()
long Open(const char *name)

bool IsOpen(void)

void Close(void)

Open() opens the named ADC (BA2D) or DAC (BD2A) channel. The channel names (as
you would pass them toOpen())are:

BA2D Channels BD2A Channels

“A2D1” “D2A1”
“A2D2” “D2A2”
“A2D3” “D2A3”
“A2D4” “D2A4”

See the GeekPort connector illustration, above, for the correspondences between the
channel names and the GeekPort connector pins.

Each channel can only be held open by one object at a time; you should close the channel
as soon as you’re finished with it. Furthermore, each BA2D or BD2A object can only hold
one channel open at a time. When you invokeOpen(), the channel that the object

Member Functions BA2D and BD2A

14 – The Device Kit

currently has open is automatically closed—even if the channel that you’re attempting to
open is the channel that the object already has open.

Opening an ADC or DAC channel doesn’t affect the data in the channel itself. In
particular, when you open a DAC channel, the channel’s output voltage isn’t changed.

Open() returns a positive integer if the channel is successfully opened; otherwise, it
returnsB_ERROR.

IsOpen() returnsTRUE if the object holds its assigned channel open channel is successfully
opened. Otherwise, it returnsFALSE.

Close() does the obvious without affecting the state of the ADC or DAC channel. If you
want to set a DAC channel’s output voltage to 0 (for example), you must explicitly write
the value before invokingClose().

Read()
BA2D:

long Read(ushort *adc_12_bit)

BD2A:
long Read(uchar *dac_8_bit)

BA2D’s Read() function causes the ADC to sample and convert (within a 12-bit range)
the voltage level on the GeekPort pin that corresponds to the object’s ADC channel. The
12-bit unsigned value is returned by reference in theadc_12_bit argument.

BD2A’s Read() returns, by reference in dac_8_bit, the value that was most recently
written to the object’s particular DAC channel. The value needn’t have been written by
this object—it could have been written by the channel’s previous opener.

Important: The BD2ARead() function returns a value that’s cached by the DAC
driver—it doesn’t actually tap the GeekPort pin to see what value it’s currently carrying.
This should only matter to the clever few who will attempt (unsuccessfully) to use the d/a
pins as input paths.

The object must open an ADC or DAC channel before callingRead(). The functions
returnB_ERROR if a channel isn’t open, or if, for any other reason, the read failed.
Otherwise they return the number of bytes that were read: 2 in the case of a BA2D, 1 for a
BD2A object. Note that it’s not an error to read the DAC before a value has been written
to it.

BA2D and BD2A Member Functions

The Device Kit –15

Write()
BD2A only:

long Write(uchardac_8_bit)

Sends thedac_8_bit value to the object’s DAC channel. The DAC converts the value to
an analog voltage in the range [0, +4.080] Volts and sets the corresponding GeekPort pin.
The pin continues to produce the voltage until another Write() call—possibly by a different
BD2A object—changes the setting.

The DAC’s conversion is linear: Each digital step corresponds to 16 mV at the output.
The analog voltage midpoint, +2.040V, can be approximated by a digital input of 0x7F
(which produces +2.032V) or 0x80 (+2.048V).

If the object isn’t open, this function returnsB_ERROR, otherwise it returns 1 (specifically,
the number of bytes that were written).

Member Functions BA2D and BD2A

16 – The Device Kit

The Device Kit –17

BDigitalPort

Derived from: public BObject

Declared in: <device/DigitalPort.h>

Overview

The BDigitalPort class is the programmer’s interface to the GeekPort’s twodigital ports.
Each digital port is an 8-bit wide device that can be set for input or output. The following
illustration shows the disposition of the GeekPort connector pins as they are assigned to
the digital ports:

Each pin in a digital port transmits the value of a single bit; the pins are labelled by bit
position. Thus, A0 is the least significant bit of digital port A, and A7 is its most
significant bit. You can use any of the seven ground pins (1, 6, 8, 10, 12, 14, and 19) in
your digital port circuit. The unmarked pins (24-33) are the analog ports; see “BA2D and
BD2A” on page 9 for more information on these ports.

Devices that you connect to the digital ports should send and (expect to) receive voltages
that are below 0.8 Volts or above 2.0 Volts. These thresholds correspond, respectively, to
the greatest value for digital 0 and the least for digital 1 (as depicted below). The
correspondence to bit value for voltages between these limits is undefined.

Although there’s no lower voltage limit for digital 0, nor upper limit for digital 1, the
BeBox outputs voltages that are no less than 0 Volts, nor no more than +5 Volts. Your
input device can exceed this range without damaging the BeBox circuitry: Excessive
input emf is clipped to fall within [-0.5V, +5.5V].

18 7 6 5 4 3 216 15 14 13 12 11 10 919 18 17

26 25 24 23 22 21 2034 33 32 31 30 29 28 2737 36 35

ground

digital port B
B2B4B6 B0

B3B5B7 B1

digital port A
A5 A3 A1A7

A4 A2 A0A6

+5v +5v+12v-12v

Volts: -0.5 +0.8 +2.0

0 1undefined

. . .

Digital Value:

+5.5. . .

Overview BDigitalPort

18 – The Device Kit

Be aware that behind each digital port pin lies a 1 kOhm resistor.

BDigitalPort Objects

To access a digital port, you construct a BDigitalPort object, open it on the port you want,
assign the object to work as either an input or an output, and then read or write a series of
bytes from or to the object.

In the following example, we open and read from digital port A:

#include <DigitalPort.h>

void ReadDigitalPortA()
{

char val;
BDigitalPort *dPortA = new BDigitalPort();

if (dPortA->Open("DigitalA") <= 0 ||
dPortA->SetAsInput() != B_NO_ERROR) {
~dPortA;
return;

}

while (/* whatever */) {

/* Read() returns the number of bytes that were
 * read; a successful read returns the value 1.
 */
if (dPortA->Read(&val) != 1)

break;

/* Do something with the value. */
...

/* Snooze for a bit. */
snooze(1000);

}
dPortA->Close();
delete dPortA;

}

As shown here, the BDigitalPort is constructed without reference to a specific port. It’s
not until you actually open the object (throughOpen()) that you have to identify the port
that you want; identification is by name, “DigitalA” or “DigitalB”. TheRead() function
returns only one value per invocation, and is untimed—if you don’t provide some sort of
tethering (as we do withsnooze(), above) the read loop will spin as fast as possible.

To safeguard against an inadvertant burst of equipment-destroying output, the digital port
is set to be an input when it’s opened, and automatically reset to be an input when you
close it.

BDigitalPort Overview

The Device Kit –19

Using Both Digital Ports at the Same Time

To access both digital ports at the same time, you have to construct two BDigitalPort
objects. One of the objects can be used as an output and the other an input, both as
outputs, or both as inputs.

In the following example, digital port A is used to write data to an external device, while
digital port B is used for acknowledgement signalling: Before each write we set port B to
0, and after the write we wait for port B to be set to 1. We’re assuming that the external
device will write a 1 to port B when it’s ready to receive the next 8-bits of data.

void WriteAndAck()
{

char val;
BDigitalPort *dPortA = new BDigitalPort();
BDigitalPort *dPortB = new BDigitalPort();

if (dPortA->Open("DigitalA") <= 0 ||
dPortA->SetAsOutput() != B_NO_ERROR)
goto error_tag;

if (dPortB->Open("DigitalB") <= 0 ||
dPortB->SetAsOutput() != B_NO_ERROR) {
goto error_tag;

while (/* whatever */) {

/* Clear the acknowledgement signal. */
val = 0;
if (dPortB->Write(&val) != 1)

break;

/* Reset val to the data we want to send. */
val = ...;

if (dPortA->Write(val) != 1)
break;

/* Reset digital port B to be an input. */
if (dPortB->SetAsInput() != B_NO_ERROR)

break;

/* Wait for the acknowledgement. */
while (1) {

if (dPortB->Read(&val) != 1)
goto error_tag;

if (val == 1)
break;

snooze(1000);
}

Constructor and Destructor BDigitalPort

20 – The Device Kit

/* Reset digital port B to be an output. */
if (dPortB->SetAsOutput() != B_NO_ERROR)

break;
}

error_tag:
delete dPortA;
delete dPortB;

}

Notice that the acknowledgement signal only takes one bit of digital port B. This leaves
seven bits that the external device can use to send additional data (triggers or gates, for
example). The restriction in this scheme, given the structure shown above, is that this
additional data would have to be synchronized with the acknowledgement signal.

By extension, if the data that you want to write to the external device is, at most, only
seven-bits wide, then you could rewrite this example to use a single port: You would mask
one of the bits as the acknowledgment carrier, and let the other seven bits carry the data,
toggling the port between input and ouput as needed; the actual implementation is left as
an exercise for the reader.

Overdriving an Output Pin

One of the features of the digital ports is that you can “overdrive” a pin from the outside.
This means that you can set a port to be an output, and then force a voltage back onto the
pin from an external device and read that voltage with theRead() functionwithout having
to reset the port to be an input. Keep in mind that there’s a 1 KOhm resistor behind the pin
(on the BeBox side), so your “overdrive” circuit has to be hot enough to balance the
resistance.

When you overdrive an output pin, the voltage on the pin is altered for as long as the
external force keeps it there. If you write an “opposing” value to an overdriven pin
(throughWrite()), the written value won’t pull the pin—the overdriven value will still be
enforced. As soon as the overdrive voltage is removed, the pin will produce the voltage
that was more recently written to it by theWrite() function.

Constructor and Destructor

BDigitalPort()
long BDigitalPort(void)

Creates a new object that can open one of the digital ports. The particular port is specified
in a subsequentOpen() call.

BDigitalPort Member Functions

The Device Kit –21

~BDigitalPort
virtual ~BDigitalPort(void)

Destroys the object, but not before closing the port that the object holds open (if any).

Deleting a BDigitalPort object sets the port (at the driver level) to be an input. The values
at the port’s pins are, at that point, undefined.

Member Functions

Open(), IsOpen(), Close()
long Open(const char *name)

bool IsOpen(void)

void Close(void)

Open() opens the named digital port; thename argument should be either “DigitalA” or
“DigitalB”. See the GeekPort illustration in the “Overview” section for the
correspondences between the port names and the GeekPort connector pins.

A digital port can only be held open by one BDigitalPort object at a time; you should close
the port as soon as you’re finished with it. Furthermore, each BDigitalPort object can only
hold one port open at a time. When you invokeOpen(), the port that the object currently
has open is automatically closed—even if the port that you’re attempting to open is the
port that the object already has open.

When you open a digital port, the device is automatically set to be an input. If you want
the port to be an output, you must follow this call with a call to SetAsOutput(). Just to be
safe, it couldn’t hurt to explicitly set the port to be an input (through SetAsInput()) if that’s
what you want.

Open() returns a positive integer if the named port is successfully opened. Otherwise, it
returnsB_ERROR.

IsOpen() returnsTRUE if the object currently has a port open, andFALSE if not.

Close() does the obvious. When a digital port is closed, it’s set to be an input at the driver
level.

Read()
long Read(char *buf)

Reads the data that currently lies on the digital ports pins, and returns this data as a single
word inbuf. Although you usually read a digital port that’s been set to be an input, it’s
also possible to read an output port. In any case, the port must be open.

Member Functions BDigitalPort

22 – The Device Kit

If the port was successfully read, the function returns 1 (the number of bytes read).
Otherwise, it returnsB_ERROR.

SetAsInput(), SetAsOutput(), IsInput(), IsOutput()
long SetAsInput(void)

long SetAsOutput(void)

bool IsInput(void)

bool IsOutput(void)

SetAsInput() and SetAsOutput() set the object’s port to act as an input or output. They
returnB_ERROR if the object isn’t open, andB_NO_ERROR otherwise.

IsInput() andIsOutput() returnTRUE andFALSE much as you would expect them to.

Write()
long Write(charvalue)

Sendsvalue to the object’s port. The port continues to produce the written data until
another Write() call changes the setting.

The object must be open as an output for this function to succeed. Success is indicated by
a return value of 1 (the number of bytes that were written). Failure returnsB_ERROR.

The Device Kit –23

BJoystick

Derived from: public BObject

Declared in: <device/Joystick.h>

Overview

A BJoystick object provides an interface to a joystick connected to the BeBox. There are
two joystick ports on the back of the machine, one above the other. With the aid of a
simple Y connector, each of them can support two joysticks for a total of four ports.

Unlike the event and message-driven interface to the mouse and keyboard, the interface to
a joystick is strictly demand-driven. An application must repeatedly poll the state of the
joystick by calling the BJoystick object’sUpdate() function. Update() queries the port
and updates the object’s data members to reflect the current state of the joystick.

Data Members

doubletimestamp The time of the most recent update, as measured in
microseconds from the time the machine was last booted.

shorthorizontal The horizontal position of the joystick at the time of the last
update.

shortvertical The vertical position of the joystick at the time of the last
update.

bool button1 TRUE if the first button was pressed at the time of the last
update, andFALSE if not.

bool button2 TRUE if the second button was pressed at the time of the last
update, andFALSE if not.

horizontal andvertical values can range from 0 through 4,095, but joysticks typically
don’t use the full range and some don’t register all values within the range that is used.
The scale is not linear—identical increments in different parts of the range can reflect
differing amounts of horizontal and vertical movement. The exact variance from linearity
and the extent of the usable range are partly characteristics of the individual joystick and
partly functions of the BeBox hardware < which will be more fully documented in a later
release >.

Constructor and Destructor BJoystick

24 – The Device Kit

Constructor and Destructor

BJoystick()
BJoystick(void)

Initializes the BJoystick object so that all values are set to 0. Before using the object, you
must callOpen() to open a particular joystick port. For the object to register any
meaningful values, you must callUpdate() to query the open port.

See also: Open(), Update()

~BJoystick()
virtual ~BJoystick(void)

Closes the port, if it was not closed already.

Member Functions

Open(), Close()
long Open(const char *name)

void Close(void)

These functions open thename joystick port and close it again. There are two ports on the
back panel of the BeBox, and they have names that correspond to their labels on the
machine (and inThe Be User’s Guide diagram):

“joystick1” (on the top)
“joystick2” (on the bottom)

By attaching a Y cable to a machine port, you can make it support two joysticks. Cables,
therefore, add two additional ports:

“joystick3” (on the top)
“joystick4” (on the bottom)

The cable maps the bottom row of pins on a machine port to the top row on a cable port.
Therefore, the first two names listed above correspond to the top row of pins on a machine
port; the last two names correspond to the bottom row of pins.

If it’s able to open the port,Open() returns a positive integer. If unable or if thename isn’t
valid, it returnsB_ERROR. If thename port is already open,Open() tries to close it first,
then open it again.

To be able to obtain joystick data, a BJoystick object must have a port open.

BJoystick Member Functions

The Device Kit –25

Update()
long Update(void)

Updates the data members of the object so that they reflect the current state of the joystick.
An application would typically callUpdate() periodically to poll the condition of the
device, then read the values of the data members.

This function returnsB_ERROR if the BJoystick object doesn’t have a port open, and
B_NO_ERROR if it does.

Member Functions BJoystick

26 – The Device Kit

The Device Kit –27

BSerialPort

Derived from: public BObject

Declared in: <device/SerialPort.h>

Overview

A BSerialPort object represents an RS-232 serial port connection to the BeBox. There are
four such ports on the back of the machine.

Through BSerialPort functions, you can read data received at a serial port and write data
over the connection. You can also configure the connection—for example, set the number
of data and stop bits, determine the rate at which data is sent and received, and select the
type of flow control (hardware or software) that should be used.

To read and write data, a BSerialPort object must first open one of the serial ports by
name. For example:

BSerialPort *connection = new BSerialPort;
if (connection->Open("serial2") > 0) {
 . . .
}

The BSerialPort object communicates with the driver for the port it has open. The driver
maintains an input buffer of 1K bytes to collect incoming data and an output buffer half
that size to hold outgoing data. When the object reads and writes data, it reads from and
writes to these buffers.

Constructor and Destructor

BSerialPort()
BSerialPort(void)

Initializes the BSerialPort object to the following default values:

• Hardware flow control (seeSetFlowControl())
• A data rate of 19,200 bits per second (seeSetDataRate())
• A serial unit with 8 bits of data, 1 stop bit, and no parity (seeSetDataBits())
• Blocking, but with a timeout of 0.0 microseconds, for reading data (seeRead())

Member Functions BSerialPort

28 – The Device Kit

The new object doesn’t represent any particular serial port. After construction, it’s
necessary to open one of the ports by name.

The type of flow control must be decided before a port is opened. But the other default
settings listed above can be changed before or after opening a port.

See also: Open()

~BSerialPort()
virtual ~BSerialPort(void)

Makes sure the port is closed before the object is destroyed.

Member Functions

ClearInput(), ClearOutput()
void ClearInput(void)

void ClearOutput(void)

These functions empty the serial port driver’s input and output buffers, so that the contents
of the input buffer won’t be read (by theRead() function) and the contents of the output
buffer (after having been written byWrite()) won’t be transmitted over the connection.

The buffers are cleared automatically when a port is opened.

See also: Read(), Write(), Open()

Close() see Open()

DataBits() see SetDataBits()

DataRate() see SetDataRate()

FlowControl() see SetFlowControl()

IsCTS()
bool IsCTS(void)

ReturnsTRUE if the Clear to Send (CTS) pin is asserted, andFALSE if not.

BSerialPort Member Functions

The Device Kit –29

IsDCD()
bool IsDCD(void)

ReturnsTRUE if the Data Carrier Detect (DCD) pin is asserted, andFALSE if not.

IsDSR()
bool IsDSR(void)

ReturnsTRUE if the Data Set Ready (DSR) pin is asserted, andFALSE if not.

IsRI()
bool IsRI(void)

ReturnsTRUE if the Ring Indicator (RI) pin is asserted, andFALSE if not.

Open(), Close()
long Open(const char *name)

void Close(void)

These functions open thename serial port and close it again. Ports are identified by names
that correspond to their labels on the back panel of the BeBox:

“serial1”
“serial2”
“serial3”
“serial4”

To be able to read and write data, the BSerialPort object must have a port open. It can
open first one port and then another, but it can have no more than one open at a time. If it
already has a port open whenOpen() is called, that port is closed before an attempt is
made to open thename port. (Thus, bothOpen() andClose() close the currently open
port.)

Open() can’t open thename port if some other entity already has it open. (If the
BSerialPort itself hasname open,Open() first closes it, then opens it again.)

If it’s able to open the port,Open() returns a positive integer. If unable, it returns
B_ERROR.

When a serial port is opened, its input and output buffers are emptied and the Data
Terminal Ready (DTR) pin is asserted.

See also: Read()

Member Functions BSerialPort

30 – The Device Kit

ParityMode() see SetDataBits()

Read(), SetBlocking(), SetTimeout()
long Read(void *buffer, longmaxBytes)

void SetBlocking(boolshouldBlock)

void SetTimeout(doubletimeout)

Read() takes incoming data from the serial port driver and places it in the databuffer
specified. In no case will it read more thanmaxBytes—a value that should reflect the
capacity of thebuffer; it returns the actual number of bytes read.Read() fails if the
BSerialPort object doesn’t have a port open.

The number of bytes thatRead() reads before returning depends not only onmaxBytes,
but also on theshouldBlock flag and thetimeout set by the other two functions.

SetBlocking() determines whetherRead() should block and wait formaxBytes of data to
arrive at the serial port if that number isn’t already available to be read. If theshouldBlock
flag isTRUE, Read() will block. However, ifshouldBlock is FALSE, Read() will take
however many bytes are waiting to be read, up to the maximum asked for, then return
immediately. If no data is waiting at the serial port, it returns without reading anything.

SetTimeout() sets a time limit on how longRead() will block while waiting for data to
arrive at the input buffer. Thetimeout is relevant toRead() only if theshouldBlock flag is
TRUE. (However, the time limit also applies to theWaitForInput() function, which always
blocks if the limit is greater than 0.0, regardless of theshouldBlock flag.)

Thetimeout is expressed in microseconds and is limited to 25,500,000.0 (25.5 seconds);
it’s set to the maximum value if a greater amount of time is specified. Differences less
than 100,000.0 microseconds (0.1 second) are not recognized; they’re rounded to the
nearest tenth of a second. If thetimeout is set to 0.0 microseconds,Read() (and
WaitForInput()) will not block.

The defaultshouldBlock setting isTRUE, but the defaulttimeout is 0.0, which prevents
blocking in any case. < In future releases, the default timeout will be an infinite amount of
time; it won’t impose a time limit on blocking. >

Like the standardread() system function,Read() returns the number of bytes it succeeded
in placing in thebuffer, which may be 0. It returnsB_ERROR (–1) if there’s an error of any
kind—for example, if the BSerialPort object doesn’t have a port open. It’s not considered
an error if a timeout expires.

See also: Write(), Open(), WaitForInput()

SetBlocking() see Read()

BSerialPort Member Functions

The Device Kit –31

SetDataBits(), SetStopBits(), SetParityMode(),
DataBits(), StopBits(), ParityMode()

void SetDataBits(data_bitscount)

void SetStopBits(stop_bitscount)

void SetParityMode(parity_modemode)

data_bitsDataBits(void)

stop_bitsStopBits(void)

parity_modeParityMode(void)

These functions set and return characteristics of the serial unit used to send and receive
data. SetDataBits() sets the number of bits of data in each unit. Thecount can be:

B_DATA_BITS_7 or
B_DATA_BITS_8

The default isB_DATA_BITS_8.

SetStopBits() sets the number of stop bits in each unit. It can be:

B_STOP_BITS_1 or
B_STOP_BITS_2

The default isB_STOP_BITS_1.

SetParityMode() sets whether the serial unit contains a parity bit and, if so, the type of
parity used. The mode can be:

B_EVEN_PARITY,
B_ODD_PARITY, or
B_NO_PARITY

The default isB_NO_PARITY.

SetDataRate(), DataRate()
void SetDataRate(data_ratebitsPerSecond)

data_rateDataRate(void)

These functions set and return the rate (in bits per second) at which data is both
transmitted and received. Permitted values are:

B_0_BPS B_200_BPS B_4800_BPS
B_50_BPS B_300_BPS B_9600_BPS
B_75_BPS B_600_BPS B_19200_BPS
B_110_BPS B_1200_BPS B_38400_BPS
B_134_BPS B_1800_BPS B_57600_BPS
B_150_BPS B_2400_BPS B_115200_BPS

Member Functions BSerialPort

32 – The Device Kit

The default data rate isB_19200_BPS. If the rate is set to 0 (B_0_BPS), data will be sent and
received at an indeterminate number of bits per second.

SetDTR()
long SetDTR(boolpinAsserted)

Asserts the Data Terminal Ready (DTR) pin if thepinAsserted flag isTRUE, and de-asserts
it if the flag isFALSE.

See also: SetRTS()

SetFlowControl(), FlowControl()
void SetFlowControl(ulongmask)

ulongFlowControl(void)

These functions set and return the type of flow control the driver should use. There are
two possibilities:

B_SOFTWARE_CONTROL Control is maintained through XON and XOFF
characters inserted into the data stream.

B_HARDWARE_CONTROL Control is maintained through the Clear to Send
(CTS) and Request to Send (RTS) pins.

Themask passed toSetFlowControl() and returned byFlowControl() can be just one of
these constants—or it can be a combination of the two, in which case the driver will use
both types of flow control together. It can also be 0, in which case the driver won’t use any
flow control. B_HARDWARE_CONTROL is the default.

SetFlowControl() should be called before a specific serial port is opened. You can’t change
the type of flow control the driver uses in midstream.

SetParityMode() see SetDataBits()

SetRTS()
long SetRTS(boolpinAsserted)

Asserts the Request to Send (RTS) pin if thepinAsserted flag isTRUE, and de-asserts it if
the flag isFALSE.

See also: SetDTR()

BSerialPort Member Functions

The Device Kit –33

SetStopBits() see SetDataBits()

SetTimeout() see Read()

StopBits() see SetDataBits()

WaitForInput()
long WaitForInput(void)

Waits for input data to arrive at the serial port and returns the number of bytes available to
be read.

If data is ready to be read when this function is called, it immediately returns without
blocking and reports how many bytes there are. If data hasn’t arrived, it blocks and waits
for the first bytes to be transmitted. When they’re detected, it immediately reports how
many have arrived.

This function doesn’t respect the flag set bySetBlocking(); it blocks even if blocking is
turned off for theRead() function. However, it does respect the timeout set by
SetTimeout(). If the timeout expires before input data arrives at the serial port, it returns 0.
A timeout of 0.0 microseconds doesn’t giveWaitForInput() enough time to block; it returns
immediately.

See also: Read()

Write()
long Write(const void *data, longnumBytes)

Writes up tonumBytes of data to the serial port’s output buffer. This function will be
successful in writing the data only if the BSerialPort object has a port open. The output
buffer holds a maximum of 512 bytes.

Like thewrite() system function,Write() returns the actual number of bytes written, which
will never be more thannumBytes, and may be 0. If it fails (for example, if the
BSerialPort object doesn’t have a serial port open) or if it’s interrupted before it can write
anything, it returnsB_ERROR (–1).

See also: Read(), Open()

Member Functions BSerialPort

34 – The Device Kit

The Device Kit –35

Constants and Defined Types

This section lists all the constants and types defined for the BJoystick, BSerialPort,
BDigitalPort, BA2D, and BD2A classes—though, in fact, only the BSerialPort class relies
on any defined constants or types. Everything listed here is explained more fully in the
descriptions of the member functions of that class.

Constants

data_bits Constants
<device/SerialPort.h>

Enumerated constant

B_DATA_BITS_7
B_DATA_BITS_8

These constants name the possible number of data bits in a serial unit.

See also: BSerialPort::SetDataBits()

data_rate Constants
<device/SerialPort.h>

Enumerated constant Enumerated constant

B_0_BPS B_1200_BPS
B_50_BPS B_1800_BPS
B_75_BPS B_2400_BPS
B_110_BPS B_4800_BPS
B_134_BPS B_9600_BPS
B_150_BPS B_19200_BPS
B_200_BPS B_38400_BPS
B_300_BPS B_57600_BPS
B_600_BPS B_115200_BPS

These constants give the possible rates—in bits per second (bps)—at which data can be
transmitted and received over a serial connection.

See also: BSerialPort::SetDataRate()

Constants Constants and Defined Types

36 – The Device Kit

Flow Control Constants
<device/SerialPort.h>

Enumerated constant

B_SOFTWARE_CONTROL
B_HARDWARE_CONTROL

These constants form a mask that records the method(s) of flow control the serial port
driver should use.

See also: BSerialPort::SetFlowControl()

parity_mode Constants
<device/SerialPort.h>

Enumerated constant

B_NO_PARITY
B_ODD_PARITY
B_EVEN_PARITY

These constants list the possibilities for parity when transmitting data over a serial
connection.

See also: BSerialPort::SetDataBits()

stop_bits Constants
<device/SerialPort.h>

Enumerated constant

B_STOP_BITS_1
B_STOP_BITS_2

These constants name the possible number of stop bits in a serial unit.

See also: BSerialPort::SetDataBits()

Constants and Defined Types Defined Types

The Device Kit –37

Defined Types

data_bits
<device/SerialPort.h>

typedef enum { . . . }data_bits

This type is used to set and return the number of data bits in a serial unit.

See also: “data_bits Constants” above,BSerialPort::SetDataBits()

data_rate
<device/SerialPort.h>

typedef enum { . . . }data_rate

This type is used to set and return the rate at which data is sent and received through a
serial connection.

See also: “data_rate Constants” above,BSerialPort::SetDataRate()

parity_mode
<device/SerialPort.h>

typedef enum { . . . }parity_mode

This type is used to set and return the type of parity that should be used when sending and
receiving data.

See also: “parity_mode Constants” above,BSerialPort::SetDataBits()

stop_bits
<device/SerialPort.h>

typedef enum { . . . }stop_bits

This type is used to set and return the number of stop bits in a serial unit.

See also: “stop_bits Constants” above,BSerialPort::SetDataBits()

Defined Types Constants and Defined Types

38 – The Device Kit

The Device Kit –39

Developing a Device Driver

A device driver ties an input/output hardware device to the computer’s operating system.
To develop a driver, you have to know about both ends of that link:

• On the one hand, you need to be thoroughly familiar with the hardware device and
its particular interface.

• On the other hand, you must understand the operating system and the demands it
places on the driver.

Hardware specifications and manuals can provide you with the first kind of information;
this documentation can help only with the second—that is, with information specific to the
Be operating system. On the next page, you’ll see a list of recommended documentation
for the DMA controller, the PCI bus, and other hardware found inside the BeBox. This
book is concerned solely with how a driver must be structured to work with Be system
software.

Overview

On the BeBox, device drivers run as dynamically loaded add-on modules—as extensions
of a host component of the operating system. The Application Server, the part of the
operating system that’s responsible for all graphics operations, is the host for graphics card
drivers. The Print Server hosts drivers for printers. The kernel acts as the host for all other
drivers. The kernel and the two servers load drivers on demand, and can unload them
when they’re no longer needed.

Because drivers are linked to their hosts and run in the host’s address space, they must
play by the host’s rules. The kernel and servers impose three different kinds of restrictions
on loadable drivers:

• A driver must be constructed so that it can respond to its host. It has to be able to
inform the host of the device or devices it drives, and it has to provide functions that
the host can call to operate the driver. As an add-on module, a driver lacks an
independent main thread of execution (and amain() function). Instead, it provides
the host with entry points to driver functionality and responds only to the host’s
instructions.

• A driver can call only those functions that it implements itself or that the host makes
available to it. It cannot, for example, link against the shared system library and call
any function it wants from the Kernel Kit or Storage Kit. It might statically link
against a private library, but it typically links only to the host and is limited to
calling functions that the host exports.

Recommended Reading Developing a Device Driver

40 – The Device Kit

• The driver must be compiled as an add-on module and it must be installed in a
directory where the host expects to find it.

Although the kernel, the Application Server, and the Print Server all impose these three
kinds of restrictions on their loadable drivers, they each impose a different set of
restrictions. The kernel’s rules are not the Application Server’s rules, and the Application
Server’s are not the same as the Print Server’s.

To learn the rules that apply to the type of driver you intend to develop, begin with the
section listed in the following chart:

To develop: Go to:

A driver for a graphics card “Developing a Driver for a Graphics Card”
on page 77

A driver for a printer < Wait until the next release, or contact Be
developer support. The interface for
printer drivers is under development and
not yet documented. >

All other drivers “Developing a Kernel-Loadable Driver”
on page 41

Recommended Reading

For information on the PCI bus:

PCI Local Bus Specification, revision 2.1, June 1, 1995, PCI Special Interest Group,
PO Box 14070, Portland OR 97214, (800) 433-5177 or (503) 797-4207

For information on the ISA bus, ISA 8259 interrupt controller, and ISA-standard 8237
DMA controller:

82378 System I/O (SIO), August 1994, order number 290473-004, Intel
Corporation, 2200 Mission College Boulevard, PO Box 58119, Santa Clara,
CA 95052

For information on the SCSI common access method (CAM):

Draft Proposed American National StandardSCSI-2 Common Access Method
Transport and SCSI Interface Module, ASC X3T–10, revision 12, December 14,
1994, American National Standards Institute, 11 West 42nd Street, New York,
NY 10036

The Device Kit –41

Developing a
Kernel-Loadable Driver

At the most basic level, devices (other than graphics cards) are controlled by system calls
that the kernel traps and translates for the driver. Five different kinds of functions control
input/output devices on the BeBox:

open() Opens a device for reading or writing.
close() Closes a device that was previously opened.
read() Reads data from the device.
write() Writes data to the device.
ioctl() Formats, initializes, queries, and otherwise controls the device.

All these functions, exceptioctl(), are Posix-compliant. Instead ofioctl(), Posix defines a
set of functions liketcsetattr() andtcflush() to control data terminals. These functions are
supported, but they can be treated as special cases ofioctl(). (Posix also defines afcntl()
function for file control that has the same syntax asioctl().)

Whenopen(), close(), read(), write(), or ioctl() is called for a device, the kernel expects a
driver to do the work that’s required. Each driver must implement a set of functions that
correspond directly to the five system calls. Everything the driver does to operate the
device is initiated through one of these functions.

Because drivers run in the kernel’s address space as extensions of the kernel, they must
conform to the kernel’s expectations. Separate sections discuss the three types of
restrictions that the kernel imposes on drivers:

• “Entry Points” on page 42 describes how drivers must be constructed to work with
the kernel. The driver must provide the kernel with entry points to its functionality
and follow the kernel’s instructions.

• “Exported Functions” on page 49 discusses the kinds of functions that the kernel
exports for drivers. These include some from the Kernel Kit, Support Kit, and
standard C library, and some that are defined especially for drivers. The driver is
limited to calling functions that it itself implements or that the kernel exports.

• “Installation” on page 54 discusses how to compile a driver and install it on the
BeBox. The driver must be installed where the kernel can find it.

The exported functions that the kernel defines specifically for drivers are documented
following these three sections.

Entry Points Developing a Kernel-Loadable Driver

42 – The Device Kit

Entry Points

The kernel loads a device driver when it’s needed—typically when someone first attempts
to open the device for reading or writing. Opening a device is a prerequisite to using it.

To theopen() function, drivers are identified by a fictitious pathname beginning with
/dev/. For example, this code opens the parallel port driver for writing:

int fd = open("/dev/parallel", O_WRONLY);

The first thing the kernel must do is match the device name—“/dev/parallel” in this case—
to a driver; it must find a driver for the device. The driver might be one that has already
been loaded, or it might be one that the kernel must search for and load. Loadable drivers
reside in the/system/drivers directory; this is where the kernel looks for drivers and
where they all must be installed.

Once a driver has been located and loaded, the kernel begins communicating with it—first
to get information from it and test whether it’s the right driver, then to initialize it and have
it open the device.

One key piece of information that the kernel needs from the driver is the names of all its
devices. Another is a list of the functions it can call to exercise those devices. For each
device, the driver implements a set of hook functions that open the device, control it, read
data from it, write data to it, and perhaps eventually close it. These hooks correspond to
the system functions discussed above.

To give the kernel initial access to this information, drivers make declarations—of
functions and data structures—using names the kernel will look for. Five such names will
be discussed in the following sections:

init_driver() Initializes the driver after it’s loaded.
uninit_driver() Cleans up after the driver before it’s unloaded.
devices Declares the devices and their hook functions.
publish_device_names() Lists the devices the driver handles.
find_device_entry() Associates a device with its hook functions.

These are the main entry points for driver control.

Driver Initialization

Immediately after loading a driver, the kernel gives it a chance to initialize itself. If the
driver implements a function calledinit_driver(), the kernel will call it before proceeding
with anything else—before asking the driver to open a device. The function should expect
no arguments and return eitherB_ERROR or B_NO_ERROR:

long init_driver(void)

A return ofB_ERROR means that the driver can’t continue; the kernel will consequently
unload it. A return ofB_NO_ERROR means that all is well; the kernel will continue by

Developing a Kernel-Loadable Driver Entry Points

The Device Kit –43

asking the driver to open a device. The absence of aninit_driver() function is equivalent to
a return ofB_NO_ERROR.

init_driver() might go a long way toward initializing the data structures the driver uses to
do its work—for example, setting up needed semaphores. However, details specific to a
particular device should be left to the hook function that opens that device.

When the kernel is about to get rid of a driver, it gives the driver a chance to undo what
init_driver() did. If the driver implements a function calleduninit_driver(), the kernel will
call it immediately before unloading the driver. This function has the same syntax as the
initialization function:

long uninit_driver(void)

This function can do nothing to prevent the driver from being unloaded. It should simply
clean up after the driver—for example, delete semaphores—and returnB_NO_ERROR.

Driver initialization and its opposite happen just once—when the driver is loaded and
unloaded. In contrast, devices might be opened and closed many times while the driver
continues to reside in the kernel.

Device Declarations

For the kernel to find the driver for a given device, all drivers must declare the names of
the devices they control. For the kernel to be able to communicate with the driver to
operate the device, every driver must declare a set of device-specific hook functions the
kernel can call.

These declarations are made in adevice_entry structure that maps the device name to the
set of hook functions. This structure is declared indevice/Drivers.h and contains the
following fields:

const char *name The name of the device—for example, “/dev/serial”.
This is the same name that’s passed toopen().
Driver code can assign any name it wants to the
device, but it must begin with the “/dev/” prefix,
which distinguishes devices from ordinary files.

device_open_hookopen The function that the kernel should call to open the
device. The kernel will invoke this function to
respond toopen() system calls.

device_close_hookclose The function that should be called to close the
device. It corresponds to theclose() system call.

device_control_hookcontrol The function that the kernel should call to control the
device, including querying the driver for information
about it. The kernel will invoke this function to
respond toioctl() calls.

Entry Points Developing a Kernel-Loadable Driver

44 – The Device Kit

device_io_hookread The function that should be called to read data from
the device. The kernel will invoke this function to
respond to theread() system call.

device_io_hookwrite The function that should be called to write data to the
device. It corresponds to thewrite() system call.

(The five functions are described in more detail under “Hook Functions” below.)

A driver declares onedevice_entry structure for each device it can drive. If it can handle
more than one device, it must provide adevice_entry structure for each one. If it permits
a device to be referred to by more than one name, it must provide a structure for each
name it recognizes.

There are two ways for a driver to provide the kernel with the information in a
device_entry structure: If the list of devices is known at compile time, the driver can
declare them statically. If the list might change at run time, it can return them
dynamically.

Static Drivers

Most drivers are designed to handle a fixed set of known devices—perhaps a single device
or perhaps many. Such drivers should declare a null-terminated array ofdevice_entry
structures under the global namedevices:

device_entrydevices[]

For example, the serial port driver might declare adevices array that looks like this:

device_entry devices[7] = {
 {"/dev/serial1", open_func, close_func, control_func,
 read_func, write_func},
 {"/dev/serial2", open_func, close_func, control_func,
 read_func, write_func},
 {"/dev/serial3", open_func, close_func, control_func,
 read_func, write_func},
 {"/dev/serial4", open_func, close_func, control_func,
 read_func, write_func},
 {"/dev/com3", open_com_func, close_func, control_com_func,
 read_func, write_func},
 {"/dev/com4", open_com_func, close_func, control_com_func,
 read_func, write_func},
 0
};

In this case, the driver handles the four serial ports seen on the back of the BeBox, each of
which it identifies by a different name. It can also control “com3” and “com4” ports on an
add-on board.

As this example illustrates, the hook functions declared in adevice_entry structure are
specific to the device. For the most part, the serial port driver above uses the same set of

Developing a Kernel-Loadable Driver Entry Points

The Device Kit –45

functions to operate all the devices, but declares special functions for opening and
controlling “com3” and “com4”.

Note also that the array is null terminated.

Dynamic Drivers

A driver can also providedevice_entry information dynamically. Instead of adevices
array, it implements two functions,publish_device_names() andfind_device_entry().

The first of these functions should be declared as follows:

char **publish_device_names(const char *deviceName)

If passed a proposeddeviceName that matches the name of a device the driver handles, or
if passed aNULL device name, this function should return a null-terminated array of all the
names of all the devices that it handles. For example, the serial port driver described
above would return the following array:

"/dev/serial1",
"/dev/serial2",
"/dev/serial3",
"/dev/serial4",
"/dev/com3",
"/dev/com4",
0

However, if the proposed device name doesn’t match any that the driver handles,
publish_device_names() should returnNULL.

While publish_device_names() informs the kernel of the devices that the driver handles,
find_device_entry() returns entry information about a particular device. It has the
following form:

device_entry *find_device_entry(const char *deviceName)

If passed the name of a device that the driver knows about, this function should return the
device_entry for that name. If thedeviceName doesn’t match one of the driver’s devices,
it should returnNULL.

The kernel first callspublish_device_names() during the boot sequence to find what
devices the driver handles. It may call the function again to update the list when it tries to
match a driver to a specific device. If a match is made, it callsfind_device_entry() to get
the list of hook functions for the device.

Entry Points Developing a Kernel-Loadable Driver

46 – The Device Kit

Hook Functions

The five hook functions that are declared in adevice_entry structure can have any names
that you want to give them, provided that they don’t clash with names that the kernel
exports (see “Exported Functions” on page 49). However, their syntax is strictly
prescribed by the kernel (through type definitions found indevice/Drivers.h).

The five functions have two points in common: First, they each return an error code,
which should be 0 (B_NO_ERROR) if there is no error. The error value is passed through as
the return value for theopen(), close(), read(), write(), or ioctl() system call that caused
the kernel to invoke the driver function. The driver should return error values that are
compatible with ones that are expected from those functions.

Second, all five functions are passed information identifying the device. As their first
argument, they receive a pointer to adevice_info structure (also defined in
device/Drivers.h), which contains just two fields:

device_entry *entry Thedevice_entry structure for the device that’s
being operated on. This is a copy of information that
the driver declared in itsdevices array or that its
find_device_entry() function returned.

void *private_data Arbitrary data that describes the device. This data is
a way for the driver to record information about the
device and have it persist between function calls.
Although the kernel stores this data and passes it to
the driver, the driver initializes it and maintains it; the
kernel doesn’t query or modify it.

Thus, all of the device-specific hook functions have the same return types and initial
arguments:

long function(device_info *info, . . .)

Differences among the functions are discussed below.

Opening and Closing a Device

The function that opens a device is of typedevice_open_hook and the one that closes it is
of typedevice_close_hook. They’re defined as follows:

typedef long (*device_open_hook)(device_info *info, ulongflags)

typedef long (*device_close_hook)(device_info *info)

Theflags mask that’s passed to theopen() system call is passed through to the device
function. It typically will contain a flag likeO_RDONLY, O_RDWR, or O_WRONLY.

Since the hook function that opens the device is the first one that’s called, it might set up
thedevice_info description of the device (to the extent thatinit_driver() hasn’t already

Developing a Kernel-Loadable Driver Entry Points

The Device Kit –47

done so). It might also use that description, or some static data, to record whether or not
the device is currently open. Typically, only one process can have a device open at a time.
If the hook function sees that the device is already open, it can refuse to open it again.

Whatever values these functions return will also be returned by theopen() andclose()
system calls.

Reading and Writing Data

The driver functions that read data from and write data to a device must be of type
device_io_hook, which is defined as follows:

typedef long (*device_io_hook)(device_info *info,
void *buffer, ulongnumBytes, ulongposition)

The function that reads data from the device should place up tonumBytes of data into the
specifiedbuffer. The hook that writes to the device should takenumBytes of data from the
buffer. These functions should read and write the data beginning at theposition offset on
the device. The offset is meaningful for some drivers (mostly drivers for storage devices),
but can be ignored by others (such as a serial port driver).

Whatever values these functions return will also be returned by theread() andwrite()
system calls.

Controlling the Device

The hook function that initializes, formats, queries, and otherwise controls a device is of
typedevice_control_hook, defined as follows:

typedef long (*device_control_hook)(device_info *info, ulongop, void *data)

The second argument,op, is a constant that specifies the particular control operation that
the function should perform. The third argument,data, points either to some information
that the control function needs to carry out theop operation or to a data structure that it
should fill in with information that the operation requests. The interpretation of the data
pointer depends entirely on the nature of the operation and will differ from operation to
operation; theop anddata arguments go hand-in-hand.

For example, if theop code isSET_CONFIG, data might point to a structure with values
that the control function should use to re-configure the device. If the operation is
GET_ENABLED_STATE, data might point to an integer that the function would be expected to
set to either 1 or 0. If it’sRESTART, data might simply beNULL.

The kernel defines a number of control operations (which are explained in the next
section). These are operations that the kernel might call upon any driver to perform.

If you define your own control operations (for anioctl() call on your driver), you should be
sure that they aren’t confused with any that the kernel currently defines—or any that it will
define in the future. We pledge that all system-defined control constants will have values

Entry Points Developing a Kernel-Loadable Driver

48 – The Device Kit

belowB_DEVICE_OP_CODES_END. The constants you define should be increments above
this value. For example:

enum {
 REPORT_STATUS = B_DEVICE_OP_CODES_END + 1,
 SET_TIMER,
 . . .
}

If a control function doesn’t recognize theop code it’s passed or can’t perform the
requested operation, it should returnB_ERROR (–1).

Control Operations

Several control operations are defined by the kernel. The kernel can request any driver to
perform these operations, even in the absence of anioctl() call. A control function should
respond to as many of these requests as it can. It should respond to inappropriate or
unrecognized requests by returningB_ERROR.

The set of system-defined control operations is described below.

B_GET_SIZE and B_SET_SIZE

These control operations request the driver to get and set the memory capacity of the
physical device. The capacity is measured in bytes and is recorded as aulong integer. For
aB_GET_SIZE request, the control function should write this number to the location referred
to by thedata pointer. ForB_SET_SIZE, data will be the requested number of bytes (not a
pointer to it).

B_SET_BLOCKING_IO and B_SET_NONBLOCKING_IO

These operations determine whether or not the driver should block when reading and
writing data. B_SET_BLOCKING_IO requests the driver to put itself in blocking mode. Its
read function should wait for data to arrive if none is readily available and its write
function should wait for the device to be ready to accept data if it’s not immediately free to
take it. IfB_SET_NONBLOCKING_IO is requested, the read function should return
immediately if there is no data available to read and the write function should return
immediately if the device isn’t ready to accept written data.

For these operations, thedata argument doesn’t contain a meaningful value.

B_GET_READ_STATUS and B_GET_WRITE_STATUS

These control operations request the driver to report whether or not it’s ready to read and
write without blocking. The control function should respond by placingTRUE or FALSE as a
ulong integer in the location thatdata points to.

Developing a Kernel-Loadable Driver Exported Functions

The Device Kit –49

For B_GET_READ_STATUS, it should respondTRUE if there’s data waiting to be read, and
FALSE if not. ForB_GET_WRITE_STATUS, it should respondTRUE if the device is free to
accept data, andFALSE if not.

B_GET_GEOMETRY

Thisop code requests the driver to supply information about the physical configuration of
the device; it’s generally appropriate only for mass storage devices. The control function
should write the requested information into thedevice_geometry structure that thedata
pointer refers to. Adevice_geometry structure contains the following fields:

ulongbytes_per_sector The number of bytes in each sector of storage.

ulongsectors_per_track The number of sectors in each track.

ulongcylinder_count The number of cylinders.

ulonghead_count The number of heads.

bool removable Whether or not the storage medium can be removed
(TRUE if it can be,FALSE if not).

bool read_only Whether or not the medium can be read but not
written (TRUE if it cannot be written,FALSE if it can).

bool write_once Whether or not the medium can be written once, after
which it becomes read-only (TRUE if it can be written
only once,FALSE if it cannot be written or can be
written more than once).

B_FORMAT

This operation requests the control function to format the device. Thedata argument
doesn’t contain any valid information.

Exported Functions

After a driver has been loaded, it runs as part of the kernel in the kernel’s address space. It
therefore is restricted to calling functions (a) that it implements or (b) that the kernel
makes available to it. The driver links against the kernel alone; it cannot also
independently link to something else, even the standard C library.

Exported Functions Developing a Kernel-Loadable Driver

50 – The Device Kit

The kernel exports five kinds of functions so that they’re available to a driver:

• Support Kit functions, such asread_32_swap() andatomic_or(). Like the error
constants and data types that are defined in the Support Kit, these functions are
available to drivers.

• Standard kernel functions, such asarea_for() andwrite_port(), that were
documented in the chapter on the Kernel Kit. Because the driver runs in the kernel’s
address space, it accesses these functions directly, not through the Kit. For this
reason, not all of the functions are available to drivers; there are some services the
kernel can provide to others, but not to itself.

• Library functions that the kernel incorporates. These are functions from the
standard C library that have been adopted by the kernel and that the kernel, in turn,
exports to the driver. They’re a small, selected subset of library functions.

• Standard system calls, such asread() andioctl().

• Special functions that are implemented specifically for device drivers.

Functions from all five groups are listed in the sections below. Special driver functions are
documented in detail in the section entitled “Functions for Drivers” on page 55.

Support Kit Functions

The kernel exports the following Support Kit functions:

read_16_swap() atomic_and()
read_32_swap() atomic_or()
write_16_swap() atomic_add()
write_32_swap() real_time_clock()

See the chapter on the Support Kit for descriptions of these functions.

Kernel Kit Functions

Most functions from the Kernel Kit are available to drivers. However, a few are not,
sometimes because it would make no sense for a driver to call the function, and sometimes
because it’s difficult for the kernel to provide its very basic services to its own modules. In
some cases, a special function is defined for drivers that takes the place of the missing Kit
function. For example,spawn_thread() can’t spawn a thread in the kernel. Since drivers
run in the kernel, they need to use the specialspawn_kernel_thread() instead. Similarly,
debugger() can’t be used to debug the kernel. Drivers should callkernel_debugger()
instead.

Developing a Kernel-Loadable Driver Exported Functions

The Device Kit –51

The following Kernel Kit functions are exported for drivers:

Semaphores

create_sem() get_sem_info()
acquire_sem() get_nth_sem_info()
acquire_sem_etc() get_sem_count()
release_sem() set_sem_owner()
release_sem_etc() delete_sem()

Threads

find_thread() suspend_thread()
rename_thread() resume_thread()
set_thread_priority() wait_for_thread()
get_thread_info() exit_thread()
get_nth_thread_info() kill_thread()

Teams

kill_team()
get_team_info()
get_nth_team_info()

Ports

create_port() find_port()
read_port() port_count()
read_port_etc() port_buffer_size()
write_port() port_buffer_size_etc()
write_port_etc() set_port_owner()
get_port_info() delete_port()
get_nth_port_info()

Time

snooze()
system_time()

Other

area_for()
get_system_info()

Exported Functions Developing a Kernel-Loadable Driver

52 – The Device Kit

C Library Functions

The kernel exports a small number of functions from the standard C library. They include:

Functions declared in stdlib.h

atof() malloc()
atoi() calloc()
atol() free()
strtod() abs()
strtol() div()
strtoul() labs()
bsearch() ldiv()
qsort()

Functions and macros declared in ctype.h

isalnum() ispunct()
isalpha() isspace()
iscntrl() isprint()
isdigit() isgraph()
isxdigit()
islower() tolower()
isupper() toupper()

Functions declared in string.h

strlen() strspn()
strcat() strcspn()
strncat() strstr()
strcpy() strpbrk()
strncpy() memset()
strcmp() memchr()
strncmp() memcmp()
strchr() memcpy()
strrchr() memmove()

Functions declared in stdio.h

sprintf()
vsprintf()

The driver accesses these functions from the kernel, not from the library.

Developing a Kernel-Loadable Driver Exported Functions

The Device Kit –53

System Calls

The kernel also exports the five system calls that control devices:

open()
close()
read()
write()
ioctl()

Kernel Functions for Drivers

The kernel defines the following functions especially for drivers. For full documentation
of these functions, see “Functions for Drivers” on page 55.

Spinlocks:

acquire_spinlock()
release_spinlock()

Disabling interrupts:

disable_interrupts()
restore_interrupts()

Interrupt handling:

set_io_interrupt_handler() set_isa_interrupt_handler()
disable_io_interrupt() disable_isa_interrupt()
enable_io_interrupt() enable_isa_interrupt()

Memory management:

lock_memory() isa_address()
unlock_memory() ram_address()
get_memory_map()

ISA DMA:

start_isa_dma() lock_isa_dma_channel()
start_scattered_isa_dma() unlock_isa_dma_channel()
make_isa_dma_table()

PCI:

read_pci_config()
write_pci_config()
get_nth_pci_info()

Debugging:

dprintf()
set_dprintf_enabled()
kernel_debugger()

Installation Developing a Kernel-Loadable Driver

54 – The Device Kit

Hardware versions:

motherboard_version()
io_card_version()

SCSI common access method:

xpt_init() xpt_action()
xpt_ccb_alloc() xpt_bus_register()
xpt_ccb_free() xpt_bus_deregister()

Other

spin()
spawn_kernel_thread()

Installation

The driver must be compiled as an add-on image, which in practical terms is much the
same as compiling a shared library.The Kernel Kit chapter explains add-on images, and
the MetrowerksCodeWarrior manual gives compilation instructions. In summary, you’ll
need to specify the following options for the linker (asLDFLAGS in themakefile):

• Instruct the linker to produce an add-on image by listing the–G (or–sharedlibrary)
option.

• Disable the default behavior of linking against the shared system library by
including the–nodefaults option.

• Export the driver’s entry points so that the kernel can access them. The simplest
way to do this is to export everything with the–export all option.

• Link the driver against the kernel by specifying the/system/kernel file. This is the
only file that the driver should be linked against.

For the kernel to be able to find the compiled driver, it must be installed in the
/system/drivers directory. This is the only place that the kernel looks for drivers to load.

When an attempt is made to open a device, the kernel first looks for its driver among those
that are already loaded. Failing that, it looks on a floppy disk (in/fd/system/drivers).
Failing to find one there, it looks next on the boot disk (in/boot/system/drivers).

If the /system/drivers directory contains more than one driver for the same device, it’s
indeterminate which one will be loaded.

You can give your driver any name you wish, as long as it doesn’t match the name of
another file in/system/drivers.

The Device Kit –55

Functions for Drivers

The kernel exports a number of functions for the benefit of device drivers. These are
functions that drivers can call to do their work; they’re not functions that are available to
applications. Although implemented by the kernel, they’re not part of the Kernel Kit. The
device driver accesses these functions directly from the kernel, not through a library.

acquire_spinlock(), release_spinlock()
<device/KernelExport.h>

void acquire_spinlock(spinlock *lock)

void release_spinlock(spinlock *lock)

These functions acquire and release thelock spinlock. Spinlocks, like semaphores, are
used to protect critical sections of code that must remain on the same processor for a single
path of execution—for example, code that atomically accesses a hardware register or a
shared data structure. A common use for spinlocks is to protect data structures that both
an interrupt handler and normal driver code must access.

However, spinlocks work quite differently from semaphores. No count is kept of how
many times a thread has acquired the lock, for example, so calls toacquire_spinlock() and
release_spinlock() should not be nested. More importantly,acquire_spinlock() spins
while attempting to acquire the lock; it doesn’t block or release its hold on the CPU.

These functions assume that interrupts have been disabled. They should be nested within
calls todisable_interrupts() andrestore_interrupts() as follows:

spinlock lock;
cpu_status former = disable_interrupts();
acquire_spinlock(&lock);
/* critical code goes here */
release_spinlock(&lock);
restore_interrupts(former);

These two pairs of functions enable the thread to get into the critical code without
rescheduling. Disabling interrupts ensures that the thread won’t be preemptively
rescheduled. Becauseacquire_spinlock() doesn’t block, it provides the additional
assurance that the thread won’t be voluntarily rescheduled.

Executing the critical code under the protection of the spinlock guarantees that no other
thread will execute the same code at the same time on another processor. Spinlocks
should be held only as long as necessary and released as quickly as possible.

See also: create_spinlock()

Functions for Drivers

56 – The Device Kit

create_spinlock(), delete_spinlock()
<device/KernelExport.h>

spinlock *create_spinlock(void)

void delete_spinlock(spinlock *lock)

< These functions will, when implemented and exported, produce and destroy spinlocks.
Currently, they’re declared but not exported. To create a spinlock at present, simply
declare aspinlock variable and pass a pointer to it toacquire_spinlock(). >

See also: acquire_spinlock()

disable_interrupts(), restore_interrupts()
<device/KernelExport.h>

cpu_statusdisable_interrupts(void)

void restore_interrupts(cpu_statusstatus)

These functions disable interrupts at the CPU (the one the caller is currently running on)
and restore them again.disable_interrupts() prevents the CPU from being interrupted and
returns its previous status—whether or not interrupts were already disabled before the
disable_interrupts() call. restore_interrupts() restores the previousstatus of the CPU,
which should be the value thatdisable_interrupts() returned. Passing the status returned
by disable_interrupts() to restore_interrupts() allows these functions to be paired and
nested.

As diagrammed below, individual interrupts can be enabled and disabled at two other
hardware locations.disable_isa_interrupt() andenable_isa_interrupt() work at the ISA

Functions for Drivers

The Device Kit –57

standard 8259 interrupt controller, anddisable_io_interrupt() andenable_io_interrupt()
act at the Be-defined I/O interrupt controller that combines ISA and PCI interrupts.

Interrupts that have been disabled bydisable_interrupts() must be reenabled by
restore_interrupts().

See also: acquire_spinlock(), set_io_interrupt_handler(), set_isa_interrupt_handler()

disable_io_interrupt() see set_io_interrupt_handler()

disable_isa_interrupt() see set_isa_interrupt_handler()

dprintf(), set_dprintf_enabled(), kernel_debugger()
<device/KernelExport.h>

void dprintf(const char *format, ...)

bool set_dprintf_enabled(boolenabled)

void kernel_debugger(const char *string)

dprintf() is a debugging function that has the same syntax and behavior as standard C
printf(), except that it writes its output to the fourth serial port (“/dev/serial4”) at a data rate
of 19,200 bits per second. By default,dprintf() is disabled.

set_dprintf_enabled() enablesdprintf() if theenabled flag isTRUE, and disables it if the
flag isFALSE. It returns the previous enabled state. Calls to this function can be nested by

8259 ISA

Be I/O
interrupt
controller

interrupt
controller

ISA

PCI interrupts
and other Be devices

interruptsdisable_interrupts()

CPU

restore_interrupts()

disable_io_interrupt()
enable_io_interrupt()

disable_isa_interrupt()
enable_isa_interrupt()

Functions for Drivers

58 – The Device Kit

caching the return value of a call that disables printing and passing it to the paired call that
restores the previous state.

kernel_debugger() drops the calling thread into a debugger that writes its output to the
fourth serial port at 19,200 bits per second, just asdprintf() does. This debugger
producesstring as its first message; it’s not affected byset_dprintf_enabled().

kernel_debugger() is identical to thedebugger() function documented in the Kernel
Kit, except that it works in the kernel and engages a different debugger. Drivers should
use it instead ofdebugger().

See also: debugger() in the Kernel Kit

enable_io_interrupt() see set_io_interrupt_handler()

enable_isa_interrupt() see set_isa_interrupt_handler()

get_memory_map()
<device/KernelExport.h>

long get_memory_map(void *address, ulongnumBytes,
physical_entry *table, longnumEntries)

Locates the separate pieces of physical memory that correspond to the contiguous buffer
of virtual memory beginning ataddress and extending fornumBytes. Each piece of
physical memory is described by aphysical_entry structure. It has just two fields:

void *address The address of a block of physical memory.

ulongsize The number of bytes in the block.

This function is passed a pointer to atable of physical_entry structures. It fills in the table,
stopping when the entire buffer of virtual memory has been described or whennumEntry
entries in the table have been written, whichever comes first.

If the table provided isn’t big enough, you’ll need to callget_memory_map() again and
ask it to describe the rest of the buffer. If the table is too big, this function sets thesize
field of the entry following the last one it needed to 0. This indicates that it has finished
mapping the entireaddress buffer.

Memory should be locked while it is being mapped. Before callingget_memory_map(),
call lock_memory() to make sure that it all stays in place:

physical_entry table[count];
lock_memory(someAddress, someNumberOfBytes, FALSE);
get_memory_map(someAddress, someNumberOfBytes, table, count);
. . .
unlock_memory(someAddress, someNumberOfBytes);

Functions for Drivers

The Device Kit –59

< This function consistently returnsB_NO_ERROR. >

See also: lock_memory(), start_isa_dma()

get_nth_pci_info()
<device/PCI.h>

long get_nth_pci_info(long index, pci_info *info)

This function looks up the PCI device atindex and provides a description of it in the
pci_info structure thatinfo refers to. Indices begin at 0 and there are no gaps in the list.

Thepci_info structure contains a number of fields that report values found in the
configuration register space for the device and it also describes how the device has been
mapped into the system. The following fields are common to all devices:

ushortvendor_id An identifier for the manufacturer of the device.

ushortdevice_id An identifier for the particular device of the vendor,
assigned by the vendor.

ucharbus The bus number.

uchardevice The number that identifies the location of the device
on the bus.

ucharfunction The function number in the device.

ucharrevision A device-specific version number, assigned by the
vendor.

ucharclass_api The type of specific register-level programming
interface for the device (the lower byte of the class
code field).

ucharclass_sub The specific type of function the device performs (the
middle byte of the class code field).

ucharclass_base The broadly-defined device type (the upper byte of
the class code field).

ucharline_size The size of the system cache line, in units of 32-bit
words.

ucharlatency The latency timer for the PCI bus master.

ucharheader_type The header type.

ucharbist The contents of the register for the built-in self test.

ucharu A union of structures, one for each header type.

Functions for Drivers

60 – The Device Kit

Currently, there’s only one header (type 0x00), but in the future there may be others.
Consequently, header-specific information is recorded in a union of structures, one for
each header type. The union (named simplyu) at present has just one member, a structure
for the current header (namedh0):

typedef struct {
. . .
union {

struct {
. . .

} h0;
} u;

} pci_info

The fields of theh0 structure are:

ulongcardbus_cis The CardBus CIS pointer.

ushortsubsystem_id The vendor-assigned identifier for the add-in card
containing the device.

ushortsubsystem_vendor_id The identifier for manufacturer of the add-in card that
contains the device.

ulongrom_base The base address for the expansion ROM, as viewed
from the host processor.

ulongrom_base_pci The base address for the expansion ROM, as viewed
from the PCI bus. This is the address a bus master
would use.

ulongrom_size The amount of memory in the expansion ROM, in
bytes.

ulongbase_registers[6] The base addresses of requested memory spaces and
I/O spaces, as viewed from the host processor.

ulongbase_registers_pci[6] The base addresses of requested memory spaces and
I/O spaces, as viewed from the PCI bus. This is the
address a bus master would use.

ulongbase_register_sizes[6] The sizes of requested memory spaces and I/O
spaces.

ucharbase_register_flags[6] The flags from the base-address registers.

Functions for Drivers

The Device Kit –61

ucharinterrupt_line The interrupt line. This number identifies the
interrupt associated with the device. See
set_io_interrupt_handler().

ucharinterrupt_pin The interrupt pin that the device uses.

ucharmin_grant The minimum burst period the device needs,
assuming a clock rate of 33 MHz.

ucharmax_latency The maximum frequency at which the device needs
access to the PCI bus.

In device/PCI.h, you’ll find a number of constants that you can use to test various fields of
a pci_info structure. See thePCI Local Bus Specification, published by the PCI Special
Interest Group (Portland, OR) for more information on the configuration of a PCI device.

get_nth_pci_info() returnsB_NO_ERROR if it successfully describes a PCI device, and
B_ERROR if it can’t find the device (for example, ifindex is out-of-range).

See also: read_pci_config()

io_card_version() see motherboard_version()

isa_address()
<device/KernelExport.h>

void *isa_address(longoffset)

Returns the virtual address corresponding to the specifiedoffset in the ISA I/O address
space. By passing anoffset of 0, you can find the base address that’s mapped to the ISA
address space.

kernel_debugger() see dprintf()

lock_isa_dma_channel(), unlock_isa_dma_channel()
<device/KernelExport.h>

long lock_isa_dma_channel(longchannel)

long unlock_isa_dma_channel(longchannel)

These functions reserve an ISA DMAchannel and release a channel previously reserved.
They returnB_NO_ERROR if successful, andB_ERROR if not. Like semaphores, these
functions work only if all participating parties adhere to the protocol.

Functions for Drivers

62 – The Device Kit

There are 7 ISA DMA channels. In general, they’re used as follows:

Channel Use

0 Unreserved, available
1 Unreserved, available
2 Reserved for the floppy disk controller
3 Reserved for the parallel port driver
5 Reserved for IDE
6 Reserved for sound
7 Reserved for sound

Channel 4 is taken by the system; it cannot be used.

lock_memory(), unlock_memory()
<device/KernelExport.h>

long lock_memory(void *address, ulongnumBytes, boolwillChange)

long unlock_memory(void *address, ulongnumBytes)

lock_memory() makes sure that all the memory beginning at the specified virtualaddress
and extending fornumBytes is resident in RAM, and locks it so that it won’t be paged out
until unlock_memory() is called. It pages in any of the memory that isn’t resident at the
time it’s called.

ThewillChange flag should beTRUE if any part of the memory range will be altered while
it’s locked—especially if the hardware device will do anything to modify the memory,
since that won’t otherwise be noticed by the system and the modified pages may not be
written. ThewillChange flag should beFALSE if the memory won’t change while it’s
locked.

Each of these functions returnsB_NO_ERROR if successful andB_ERROR if not. The main
reason thatlock_memory() would fail is that you’re attempting to lock more memory than
can be paged in.

make_isa_dma_table() see start_isa_dma()

motherboard_version(), io_card_version()
<device/KernelExport.h>

long motherboard_version(void)

long io_card_version(void)

These functions return the current versions of the motherboard and of the I/O card.

Functions for Drivers

The Device Kit –63

ram_address()
<device/KernelExport.h>

void *ram_address(void *physicalAddress)

Returns the address of a physical block of system memory (RAM) as viewed from the PCI
bus. If passedNULL as thephysicalAddress, this function returns a pointer to the first byte
of RAM; otherwise it returns a pointer to thephysicalAddress.

This information is needed by bus masters—components, such as the ethernet and some
SCSI controllers, that can perform DMA reads and writes (directly read from and write to
system memory without CPU intervention).

Memory must be locked when calling this function. For example:

physical_entry table[count];
void *where;

lock_memory(someAddress, someNumberOfBytes, FALSE);
get_memory_map(someAddress, someNumberOfBytes, table, count);
where = ram_address(table[i].address)
. . .
unlock_memory(someAddress, someNumberOfBytes);

See also: get_memory_map(), lock_memory()

read_pci_config(), write_pci_config()
<device/PCI.h>

long read_pci_config(ucharbus, uchardevice, ucharfunction,
longoffset, longsize)

void write_pci_config(ucharbus, uchardevice, ucharfunction,
longoffset, longsize, longvalue)

These functions read from and write to the PCI configuration register space. Thebus,
device, andfunction arguments can be read from thebus, device, andfunction fields of
thepci_info structure provided byget_nth_pci_info(). They identify the configuration
space that belongs to the device.

Theoffset is an offset to the location in the 256-byte configuration space that is to be read
or written andsize is the number of bytes to be read from that location or written to it.
Permitted sizes are 1, 2, and 4 bytes.read_pci_config() returns the bytes that are read,
write_pci_config() writessize bytes ofvalue to theoffset location.

See also: get_nth_pci_info()

release_spinlock() see acquire_spinlock()

Functions for Drivers

64 – The Device Kit

restore_interrupts() see disable_interrupts()

set_dprintf_enabled() see dprintf()

set_io_interrupt_handler(),
disable_io_interrupt(), enable_io_interrupt()

<device/KernelExport.h>

long set_io_interrupt_handler(long interrupt,
interrupt_handlerfunction, void *data)

long disable_io_interrupt(long interrupt)

long enable_io_interrupt(long interrupt)

These functions manage interrupts at the Be-designed I/O interrupt controller that
combines ISA and PCI interrupts. Theinterrupt can be an ISA IRQ value or the
interrupt_line field read from thepci_info structure provided byget_nth_pci_info().

set_io_interrupt_handler() installs the handlerfunction that will be called each time the
specifiedinterrupt occurs. This function should have the following syntax:

bool handler(void *data)

Thedata that’s passed toset_io_interrupt_handler() will be passed to the handler function
each time it’s called. It can be anything that might be of use to the handler, orNULL. This
function should always returnTRUE.

set_io_interrupt_handler() itself returnsB_NO_ERROR if successful in installing the
handler, andB_ERROR if not.

disable_io_interrupt() disables the namedinterrupt, andenable_io_interrupt() reenables it.
Both functions returnB_ERROR for an invalidinterrupt number, andB_NO_ERROR
otherwise. Neither function takes into account the disabled or enabled state of the
interrupt as it might be affected by other functions, such asdisable_isa_interrupt() or
restore_interrupts(). An interrupt that has been disabled bydisable_io_interrupt() must be
reenabled byenable_io_interrupt().

See also: get_nth_pci_info(), disable_interrupts()

Functions for Drivers

The Device Kit –65

set_isa_interrupt_handler(),
disable_isa_interrupt(), enable_isa_interrupt()

<device/KernelExport.h>

long set_isa_interrupt_handler(long interrupt,
interrupt_handlerfunction, void *data)

long disable_isa_interrupt(long interrupt)

long enable_isa_interrupt(long interrupt)

These functions manage interrupts at the 8259 ISA-compatible interrupt controller. The
interrupt is identified by its standard IRQ value.

set_isa_interrupt_handler() installs the handlerfunction for the specifiedinterrupt. This
function should take one argument and return abool:

bool handler(void *data)

The argument is the samedata that’s passed toset_isa_interrupt_handler(); it can be any
kind of data thefunction might need, orNULL. The return value indicates whether the
interrupt was handled—TRUE if it was andFALSE if not. By returningFALSE, the handler
function can indicate that the device didn’t generate the interrupt. The system can then try
a different handler installed for a different device at the same interrupt number.
< However, this architecture is not currently supported, so the handler function should
always returnTRUE. >

set_isa_interrupt_handler() returnsB_NO_ERROR if it can install the handler for the
interrupt, andB_ERROR if not.

disable_isa_interrupt() disables the specified ISAinterrupt, andenable_isa_interrupt()
reenables it. Both functions returnB_ERROR if the interrupt passed is not a valid IRQ
value. Neither function considers whether the interrupt might be disabled or enabled by
some other function, such asdisable_io_interrupt(). An interrupt that has been disabled by
disable_isa_interrupt() must be reenabled byenable_isa_interrupt().

ISA interrupts can also be managed at the Be-designed interrupt dispatcher that controls
PCI interrupts. The Be interrupt controller is somewhat faster than the edge-sensitive ISA
controller. If your device can generate a level-sensitive interrupt, it should use the
counterpartset_io_interrupt_handler() function instead ofset_isa_interrupt_handler().
However, if it depends on the edge-sensitive ISA interrupt controller widely found in the
PC world, it needs to use these ISA functions.

See also: set_io_interrupt_handler(), disable_interrupts()

Functions for Drivers

66 – The Device Kit

spawn_kernel_thread()
<device/KernelExport.h>

thread_idspawn_kernel_thread(thread_entryfunc, const char *name,
longpriority, void *data)

This function is a counterpart tospawn_thread() in the Kernel Kit, which is not exported
for drivers. It has the same syntax as the Kernel Kit function, but is able to spawn threads
in the kernel itself.

See also: spawn_thread() in the Kernel Kit

spin()
<device/KernelExport.h>

void spin(doublemicroseconds)

Executes a delay loop lasting at least the specified number ofmicroseconds. It could last
longer, due to rounding errors, interrupts, and context switches.

start_isa_dma(), start_scattered_isa_dma(), make_isa_dma_table()
<device/KernelExport.h>

long start_isa_dma(longchannel, void *address, longtransferCount,
ucharmode, uchareMode)

long start_scattered_isa_dma(longchannel, isa_dma_entry *table,
ucharmode, uchareMode)

long make_isa_dma_table(void *address, longnumBytes,
ulongnumTransferBits,
isa_dma_entry *table, longnumEntries)

These functions initiate ISA DMA memory transfers for the specifiedchannel. They
engage the ISA 8237 DMA controller.

start_isa_dma() starts the transfer of a contiguous block of physical memory beginning at
the specifiedaddress. It requeststransferCount number of transfers, which cannot be
greater thanB_MAX_ISA_DMA_COUNT. Each transfer will move 8 or 16 bits of memory,
depending on themode andeMode flags. These arguments correspond to the mode and
extended mode flags recognized by the DMA controller.

The physical memoryaddress that’s passed tostart_isa_dma() can be obtained by calling
get_memory_map().

start_scattered_isa_dma() starts the transfer of a memory buffer that’s physically
scattered in various pieces. The separate pieces of memory are described by thetable
passed as a second argument and provided bymake_isa_dma_table().

Functions for Drivers

The Device Kit –67

make_isa_dma_table() provides a description of the separate chunks of physical memory
that make up the contiguous virtual buffer that begins ataddress and extends for
numBytes. This function anticipates a subsequent call tostart_scattered_isa_dma(),
which initiates a DMA transfer. It ensures that the information it provides is in the format
expected by the 8237 DMA controller. This depends in part on how many bits will be
transferred at a time. The third argument,numTransferBits, provides this information. It
can beB_8_BIT_TRANSFER or B_16_BIT_TRANSFER.

Each chunk of physical memory is described by aisa_dma_entry structure, which
contains the following fields (not that its arcane details matter, since you don’t have to do
anything with the information except pass it tostart_scattered_isa_dma()):

ulongaddress A physical memory address (in little endian format).

ushorttransfer_count The number of transfers it will take to move all the
physical memory at that address, minus 1 (in little
endian format). This value won’t be greater than
B_MAX_ISA_DMA_COUNT.

int flags.end_of_list:1 A flag that’s set to mark the last chunk of physical
memory corresponding to the virtual buffer.

make_isa_dma_table() is passed a pointer to atable of isa_dma_entry structures. It fills
in the table, stopping when the entire buffer of virtual memory has been described or when
numEntry entries in the table have been written, whichever comes first. It returns the
number of bytes from the virtualaddress buffer that it was able to account for in thetable.

start_isa_dma() andstart_scattered_isa_dma() both returnB_NO_ERROR if successful in
initiating the transfer, andB_ERROR if the channel isn’t free.

unlock_isa_dma_channel() see lock_isa_dma_channel()

unlock_memory() see lock_memory()

write_pci_config() see read_pci_config()

Functions for Drivers

68 – The Device Kit

xpt_init(), xpt_ccb_alloc(), xpt_ccb_free(), xpt_action(),
xpt_bus_register(), xpt_bus_deregister()

<device/CAM.h>

long xpt_init (void)

CCB_HEADER *xpt_ccb_alloc(void)

void xpt_ccb_free(void *ccb)

long xpt_action(CCB_HEADER *ccbHeader)

long xpt_bus_register(CAM_SIM_ENTRY *entryPoints)

long xpt_bus_deregister(longpathID)

These functions conform to the SCSI common access method (CAM) specification. See
the draft ANSI standardSCSI-2 Common Access Method Transport and SCSI Interface
Modules for information.

< The current implementation doesn’t support asynchronous callback functions. All CAM
requests are executed synchronously in their entirety. >

The Device Kit –69

Constants and Defined Types
for Kernel-Loadable Drivers

This section lists the constants and types that are defined for drivers the kernel loads.
Everything listed here was explained in the previous sections on “Developing a Kernel-
Loadable Driver” and “Functions for Drivers”.

Constants

Control Operations
<device/Drivers.h>

Enumerated constant

B_GET_SIZE
B_SET_SIZE
B_SET_NONBLOCKING_IO
B_SET_BLOCKING_IO
B_GET_READ_STATUS
B_GET_WRITE_STATUS
B_GET_GEOMETRY
B_FORMAT

B_DEVICE_OP_CODES_END = 9999

These constants name the control operations that the kernel defines. You should expect
the control hook function for any driver you develop to be called with these constants as
the operation code (op).

All system-defined control constants are guaranteed to have values less than
B_DEVICE_OP_CODES_END. Since additional constants might be defined for future
releases, any that you define should be greater thanB_DEVICE_OP_CODES_END.

See also: “Control Operations” on page 48

Defined Types Constants and Defined Types for Kernel-Loadable Drivers

70 – The Device Kit

ISA DMA Transfer Maximum
<device/KernelExport.h>

Defined constant Value

B_MAX_ISA_DMA_COUNT 0x10000

This constant indicates the maximum number of transfers for a single DMA request.

See also: start_isa_dma() on page 66

ISA DMA Transfer Sizes
<device/KernelExport.h>

Enumerated constant

B_8_BIT_TRANSFER
B_16_BIT_TRANSFER

These constants are passed tomake_isa_dma_table() to indicate the size of a single DMA
transfer.

See also: start_isa_dma() on page 66

Defined Types

cpu_status
<device/KernelExport.h>

typedef ulongcpu_status

This defined type is returned bydisable_interrupts() to record whether interrupts were
already disabled or not. It can be passed torestore_interrupts() to restore the previous
state.

See also: disable_interrupts() on page 56

device_close_hook
<device/Drivers.h>

typedef long (*device_close_hook)(device_info *info)

The hook function that the kernel calls to close a device must conform to this type.

See also: “Opening and Closing a Device” on page 46

Constants and Defined Types for Kernel-Loadable Drivers Defined Types

The Device Kit –71

device_control_hook
<device/Drivers.h>

typedef long (*device_control_hook)(device_info *info, ulongop, void *data)

The hook function for controlling a device must conform to this type.

See also: “Controlling the Device” on page 47

device_entry
<device/Drivers.h>

typedef struct {
const char *name;
device_open_hookopen;
device_close_hookclose;
device_control_hookcontrol;
device_io_hookread;
device_io_hookwrite;

} device_entry

This structure declares the name of a device and the hook functions that the kernel can call
to operate that device. The driver must provide onedevice_entry declaration for each of
its devices.

See also: “Device Declarations” on page 43

device_geometry
<device/Drivers.h>

typedef struct {
ulongbytes_per_sector;
ulongsectors_per_track;
ulongcylinder_count;
ulonghead_count;
bool removable;
bool read_only;
bool write_once;

} device_geometry

Drivers use this structure to report the physical configuration of a mass-storage device.

See also: “B_GET_GEOMETRY” on page 49

Defined Types Constants and Defined Types for Kernel-Loadable Drivers

72 – The Device Kit

device_info
<device/Drivers.h>

typedef struct {
device_entry *entry;
void *private_data;

} device_info

This structure contains publicly declared and private information about a device. It’s
passed as the first argument to each of the device-specific hook functions.

See also: “Hook Functions” on page 46

device_io_hook
<device/Drivers.h>

typedef long (*device_io_hook)(device_info *info, void *data, ulongnumBytes,
ulongposition)

The hook functions that the kernel calls to read data from or write it to a device must
conform to this type.

See also: “Reading and Writing Data” on page 47

device_open_hook
<device/Drivers.h>

typedef long (*device_open_hook)(device_info *info, ulongflags)

The hook function that opens a device must conform to this type.

See also: “Opening and Closing a Device” on page 46

Constants and Defined Types for Kernel-Loadable Drivers Defined Types

The Device Kit –73

interrupt_handler
<device/KernelExport.h>

typedef bool (*interrupt_handler)(void *data)

The functions that are installed to handle interrupts must conform to this type.

See also: set_io_interrupt_handler() on page 64,set_isa_interrupt_handler() on page 65

isa_dma_entry
<device/KernelExport.h>

typedef struct {
ulongaddress;
ushorttransfer_count;
ucharreserved;
struct {

int end_of_list:1;
int reserved:7;

} flags;
} isa_dma_entry

This structure is filled in bymake_isa_dma_table() and is passed unchanged to
start_scattered_isa_dma().

See also: start_isa_dma() on page 66

Defined Types Constants and Defined Types for Kernel-Loadable Drivers

74 – The Device Kit

pci_info
<device/PCI.h>

typedef struct {
ushortvendor_id;
ushortdevice_id;
ucharbus;
uchardevice;
ucharfunction;
ucharrevision;
ucharclass_api;
ucharclass_sub;
ucharclass_base;
ucharline_size;
ucharlatency;
ucharheader_type;
ucharbist;
ucharreserved;
union {

struct {
ulongcardbus_cis;
ushortsubsystem_id;
ushortsubsystem_vendor_id;
ulongrom_base;
ulongrom_base_pci;
ulongrom_size;
ulongbase_registers[6];
ulongbase_registers_pci[6];
ulongbase_register_sizes[6];
ucharbase_register_flags[6];
ucharinterrupt_line;
ucharinterrupt_pin;
ucharmin_grant;
ucharmax_latency;

} h0;
} u;

} pci_info

This structure reports values from the PCI configuration register space and describes how
the device has been mapped into the system.

See also: get_nth_pci_info() on page 59

Constants and Defined Types for Kernel-Loadable Drivers Defined Types

The Device Kit –75

physical_entry
<device/KernelExport.h>

typedef struct {
void *address;
ulongsize;

} physical_entry

This structure is used to describe a chunk of physical memory corresponding to some part
of a contiguous virtual buffer.

See also: get_memory_map() on page 58

spinlock
<device/KernelExport.h>

typedef vlongspinlock

This data type serves theacquire_spinlock()/release_spinlock() protocol.

See also: acquire_spinlock() on page 55

Defined Types Constants and Defined Types for Kernel-Loadable Drivers

76 – The Device Kit

The Device Kit –77

Developing a Driver for a
Graphics Card

Like other drivers, drivers for graphics cards are dynamically loaded modules—but
they’re loaded by the Application Server, the software component that’s responsible for
graphics operations, not by the kernel. Because they’re add-on modules, these drivers
share some similarities with other drivers:

• They lack amain() function, but must provide entry points where the host software
(the Application Server in this case) can access driver functionality.

• They’re mostly limited to calling functions that they implement themselves. They
don’t link against the system library or the host Application Server, < but they can
link against a private library that gives them the ability to make some system calls >.

• They must be compiled as add-on modules and installed in a place well-known to
the host.

Because the host module is the Application Server rather than the kernel, graphics card
drivers must follow protocols that the Server defines, not those that the kernel imposes on
other drivers. The entry points, exported functions, and installation directory are all
specific to graphics card drivers. Therefore, if you’re developing a driver for a graphics
card, disregard the preceding sections of this chapter dealing with kernel drivers and
follow the rules outlined in this section instead.

Control of a graphics card driver resides only with the host module; there are no functions
(like open() or ioctl()) through which a program can control the driver.

However, applications can get direct access to the graphics card through the
BWindowScreen class in the Game Kit. Access is provided by making a clone of the
graphics card driver and attaching it to the application. The original driver remains
running as part of the Application Server, but its connection to the screen is suspended
while the clone is active.

Entry Point

Every graphics card driver must implement a function calledcontrol_graphics_card().
This is the Application Server’s main entry point into the driver; it’s the function the

Entry Point Developing a Driver for a Graphics Card

78 – The Device Kit

Server calls to set up the driver, query it for information, pass it configuration instructions,
and generally control what it does. It has the following syntax:

long control_graphics_card(ulongop, void *data)

The first argument,op, names the operation the driver is requested to perform. The second
argument,data, points either to some information that will help the driver carry out the
request or to a location where it should write some information as a result of the operation.
The exact type of data in either case depends on the nature of the operation. Theop and
data arguments are inextricably linked.

The return value is an error code. In general, the control function should return
B_NO_ERROR if it can successfully respond to a particularop request, andB_ERROR if it
cannot. It should also respondB_ERROR to any undefinedop code requests it doesn’t
understand.

Main Control Operations

There are seventeen control operations that a driver’scontrol_graphics_card() function
can be requested to perform (seventeenop codes defined indevice/GraphicsCard.h).
Nine of these operations give the Application Server general control over the driver. The
other eight concern the cloning of the driver and the direct control of the frame buffer
through the Game Kit. Those operations are discussed under “Control Operations for
Cloning the Driver” and “Control Operations for Manipulating the Frame Buffer” below.
This sections lists and discusses the nine main control operations.

B_OPEN_GRAPHICS_CARD

Thisop code requests the driver to open and initialize the graphics card specified by the
data argument. If the driver can open the card, it should do so and returnB_NO_ERROR. If
it can’t, it should returnB_ERROR. Thedata pointer refers to agraphics_card_spec
structure with the following fields:

void *screen_base The beginning of memory on the graphics card. The
driver can locate the frame buffer somewhere in this
memory, but not necessarily at the base address.

void *io_base The base address for the I/O registers that control the
graphics card. Registers are addressed by 16-bit
offsets from this base address.

ulongvendor_id The number that identifies the manufacturer of the
graphics chip on the card.

ulongdevice_id A number that identifies the particular graphics chip
of that manufacturer.

If the driver can open the graphics card, it should take the opportunity to initialize any data
structures it might need. However, it should wait for further instructions—particularly a

Developing a Driver for a Graphics Card Entry Point

The Device Kit –79

B_CONFIG_GRAPHICS_CARD request—before initializing the frame buffer or turning on
the video display.

If the driver returnsB_ERROR, indicating that it’s not the driver for the specified graphics
card, it will immediately get a request to close the card as a prelude to being unloaded.

B_CLOSE_GRAPHICS_CARD

This operation notifies the graphics card driver that it’s about to be unloaded. Thedata
argument is meaningless (it doesn’t point to any valid information). The Application
Server ignores the return value and unloads the driver no matter what.

B_SET_INDEXED_COLOR

This operation is used to set up the palette of colors that can be displayed when the frame
buffer is 8 bits deep. It requests the driver to place a particular color at a particular
position in the list of 256 colors that’s kept on the card. Thedata argument points to a
indexed_color structure with two pieces of information:

long index The index of the color in the list. This value is used
as the color value in theB_COLOR_8_BIT color space.
Indices begin at 0.

rgb_colorcolor The full 32-bit color that should be associated with
the index.

A driver can expect a series ofB_SET_INDEXED_COLOR requests soon after it is opened. It
might get subsequent requests when an application (through the Game Kit) modifies the
color list, and when the game returns control to the Application Server.

B_GET_GRAPHICS_CARD_HOOKS

Thisop code requestscontrol_graphics_card() to supply the Application Server with an
array of function pointers. Each pointer is to a hook function that the Server can call to
carry out a specific graphics task. A total ofB_HOOK_COUNT (48 at present) pointers
must be written, although only a quarter of that number are currently used. The full array
should be written to the location thedata argument points to, withNULL values inserted for
undefined functions.

A later section, “Hook Functions” on page 87, describes the hook functions, the tasks they
should perform, their arguments and return types, and their positions in the array.

A driver can expect aB_GET_GRAPHICS_CARD_HOOKS request soon after it is opened,
and again any time the screen configuration changes. The hook functions can be tailored
to a specific screen dimension and depth.

Entry Point Developing a Driver for a Graphics Card

80 – The Device Kit

B_GET_GRAPHICS_CARD_INFO

Thisop code requests thecontrol_graphics_card() function to supply information about
the driver and the current configuration of the screen. Thedata argument points to a
graphics_card_info structure where it should write this information. This structure
contains the following fields:

shortversion The version of the Be architecture for graphics cards
that the driver was designed to work with. The
current version is 2.

shortid An identifier for the driver, understood in relation to
the version number. The Application Server doesn’t
check this number; it can be set to any value you
desire.

void *frame_buffer A pointer to the first byte of the frame buffer.

charrgba_order[4] The order of color components as the bytes for those
components are stored in video memory (in the frame
buffer). This array should arrange the characters
‘r’ (red), ‘g’ (green), ‘b’ (blue), and ‘a’ (alpha) in the
order in which those components are intermeshed for
each pixel in the frame buffer; a typical order is
“bgra”. This field is valid only for screen depths of
32 bits per pixel.

shortflags A mask containing flags that describe the ability of
the graphics card driver to perform particular tasks.

shortbits_per_pixel The depth of the screen in bits per pixel. Only 32-bit
(B_RGB_32_BIT) and 8-bit (B_COLOR_8_BIT) depths
are currently supported.

long bytes_per_row The offset, in bytes, between two adjacent rows of
pixel data in the frame buffer (the number of bytes
assigned to each row).

shortwidth The width of the frame buffer in pixels (the number
of pixel columns it defines).

shortheight The height of the frame buffer in pixels (the number
of pixel rows it defines).

Three constants are currently defined for theflags mask:

B_CRT_CONTROL Indicates that the driver is able to control, to any
extent, the position or the size of the CRT display on
the monitor—that there’s a provision for controlling
the CRT through software, not just hardware.

B_GAMMA_CONTROL Indicates that the driver is able to make gamma
corrections that compensate for the particular
characteristics of the display device.

Developing a Driver for a Graphics Card Entry Point

The Device Kit –81

B_FRAME_BUFFER_CONTROL Indicates that the driver allows clients to set arbitrary
dimensions for the frame buffer and to control which
portion of the frame buffer (the display area) is
mapped to the screen.

The driver will receive frequentB_GET_GRAPHICS_CARD_INFO requests. The
graphics_card_info structure it supplies should always reflect the values currently in
force.

B_GET_REFRESH_RATES

Thisop code askscontrol_graphics_card() to place the current refresh rate, as well as the
maximum and minimum rates, in therefresh_rate_info structure referred to by thedata
pointer. This structure contains the following fields:

float min The minimum refresh rate that the graphics card is
capable of, given the current configuration.

float max The maximum refresh rate that the graphics card is
capable of, given the current configuration.

float current The current refresh rate.

All values should be provided in hertz.

B_GET_SCREEN_SPACES

Thisop code requests the driver to supply a mask containing all possible configurations of
the screen space—all supported combinations of pixel depth and dimensions of the pixel
grid. The mask is formed from the following constants—which are defined in
interface/InterfaceDefs.h—and is written to the location indicated by thedata pointer:

B_8_BIT_640x480 B_16_BIT_640x480 B_32_BIT_640x480
B_8_BIT_800x600 B_16_BIT_800x600 B_32_BIT_800x600
B_8_BIT_1024x768 B_16_BIT_1024x768 B_32_BIT_1024x768
B_8_BIT_1152x900 B_16_BIT_1152x900 B_32_BIT_1152x900
B_8_BIT_1280x1024 B_16_BIT_1280x1024 B_32_BIT_1280x1024
B_8_BIT_1600x1200 B_16_BIT_1600x1200 B_32_BIT_1600x1200

For example, if the mask includesB_8_BIT_1600x1200, the driver can configure a frame
buffer that’s simultaneously 8 bits deep (theB_COLOR_8_BIT color space), 1,600 pixel
columns wide, and 1,200 pixel rows high. The mask should include all configurations that
the graphics card is capable of supporting.

< The Application Server currently doesn’t permit depths of 16 bits. >

(InterfaceDefs.h defines one other screen space,B_8_BIT_640x400, but this is reserved for
the default “supervga” driver provided by Be.)

Entry Point Developing a Driver for a Graphics Card

82 – The Device Kit

B_CONFIG_GRAPHICS_CARD

Thisop code asks the control function to configure the display according to the values set
in thegraphics_card_config structure that thedata argument points to. This structure
contains the following fields:

ulongspace The size of the pixel grid on-screen and the depth of
the frame buffer in bits per pixel. This field will be
one of the constants listed above for the
B_GET_SCREEN_SPACES control operation.

float refresh_rate The refresh rate of the screen in hertz.

ucharh_position The horizontal position of the CRT display on the
monitor.

ucharv_position The vertical position of the CRT display on the
monitor.

ucharh_size The horizontal size of the CRT display on the
monitor.

ucharv_size The vertical size of the CRT display on the monitor.

The most important configuration parameter is thespace field. The driver should
reconfigure the screen to the depth and size requested and returnB_NO_ERROR. If it can’t
carry out the request, it should returnB_ERROR.

Failure to comply with the other fields of thegraphics_card_config structure should not
result in aB_ERROR return value. The driver should come as close as it can to the
requested refresh rate. The last four fields are appropriate only for drivers that reported
that they could control the positioning of the CRT display (by setting theB_CRT_CONTROL
flag in response to aB_GET_GRAPHICS_CARD_INFO request).

The values for the four CRT configuration fields range from 0 through 100, with 50 as the
default. Values of less than 50 forh_position andv_position should move the display
toward the left and top; those greater than 50 should move it to the right and bottom.
Values of less than 50 forh_size andv_size should make the display narrower and shorter,
squeezing it into a smaller area; values greater than 50 should make it wider and taller.

B_SET_SCREEN_GAMMA

This operation asks the driver to set up a table for adjusting color values to correct for the
peculiarities of the display device. Thedata argument points to ascreen_gamma
structure with gamma corrections for each color component. It contains the following
three fields:

ucharred[256] Mappings for the red component.

uchargreen[256] Mappings for the green component.

ucharblue[256] Mappings for the blue component.

Developing a Driver for a Graphics Card Entry Point

The Device Kit –83

Each field is a component-specific array. The stated color value is used as an index into
the array; the value found at that index substitutes for the stated value. For example, if the
value atblue[152] is 154, all blue component values of 152 should be replaced by 154,
essentially adding to the blueness of the color as displayed.

Only drivers that indicated they could make gamma corrections (by setting the
B_GAMMA_CONTROL flag in response to aB_GET_GRAPHICS_CARD_INFO request) need
to respond toB_SET_SCREEN_GAMMA requests.

< The control function is currently not requested to perform this operation. >

Control Operations for Cloning the Driver

Normally, an application’s access to the screen is mediated by the Application Server. The
application can draw in windows the Server provides through BView objects with
graphics environments kept by the Server. The Application Server doesn’t let applications
communicate directly with the graphics card driver.

To give an application direct access to the screen, as the Game Kit does, the Application
Server must get out of the way and the driver must be attached directly to the application.
This is accomplished, not by detaching the driver from the Server, but by making a copy
of it—a clone—for the application. While the clone is active, the Server suspends its
graphic operations.

Graphics card drivers must therefore be prepared to clone themselves—to respond to the
four control operations described below. Two of the requests are made of a driver the
Application Server has loaded, and two are made of the clone.

B_GET_INFO_FOR_CLONE

Thisop code requestscontrol_graphics_card() to write information about the current state
of the driver to the location referred to by thedata pointer. This request is made of a
driver loaded by the Application Server; the information it provides is passed to the clone
(in aB_SET_CLONED_GRAPHICS_CARD request) so that the clone can duplicate the state of
the driver.

The driver should package the requested information in a data structure it defines; it can be
any structure you desire. The package should include all the driver’s variable settings—
everything from the current configuration of the screen to the location of the frame buffer

Entry Point Developing a Driver for a Graphics Card

84 – The Device Kit

in card memory. For example, if the structure is calledinfo_for_clone, driver code might
look something like this:

case B_GET_INFO_FOR_CLONE:
 ((info_for_clone *)data)->depth = info.bits_per_pixel;
 ((info_for_clone *)data)->height = info.height;
 ((info_for_clone *)data)->width = info.width;
 ((info_for_clone *)data)->row_byte = info.bytes_per_row;
 ((info_for_clone *)data)->frame_base = info.frame_buffer;
 ((info_for_clone *)data)->io_base = spec.io_base;
 ((info_for_clone *)data)->available_mem = unused_memory;
 ((info_for_clone *)data)->refresh_rate = rate.current;
 . . .
 break;

Of course, information that’s kept on the card itself, such as the current color map, does
not have to be duplicated for the clone.

Since an attempt is made to keep the driver and its clone in the same state, you can expect
numerousB_GET_INFO_FOR_CLONE requests while the clone is active.

B_GET_INFO_FOR_CLONE_SIZE

This operation requests the driver to inform the Application Server how many bytes of
information it will provide in response to aB_GET_INFO_FOR_CLONE request. The control
function should write the size of the data structure as along integer in the location that the
data pointer refers to. For example:

*((long *)data) = sizeof(info_for_clone);

This information enables the Application Server to allocate enough memory to hold the
data it will receive.

B_SET_CLONED_GRAPHICS_CARD

This operation sets up the clone. In thedata pointer, it passes the clone’s
control_graphics_card() function all the information that the driver provided in response
to aB_GET_INFO_FOR_CLONE request. The clone should read the information from the
data pointer and set all the parameters that are provided.

The clone receives aB_SET_CLONED_GRAPHICS_CARD request instead of a
B_OPEN_GRAPHICS_CARD notification when it first is created and loaded by the Game
Kit. It subsequently will receive the request many more times—whenever it must be
synchronized with the driver loaded by the Application Server.

Developing a Driver for a Graphics Card Entry Point

The Device Kit –85

B_CLOSE_CLONED_GRAPHICS_CARD

Thisop code is passed to the clone’scontrol_graphics_card() function to signal that the
clone is about to be unloaded. The clone receives this notification instead of
B_CLOSE_GRAPHICS_CARD. Thedata pointer should be ignored.

Control Operations for Manipulating the Frame Buffer

The BWindowScreen class of the Game Kit defines a set of four functions that give
applications more or less arbitrary control over the frame buffer:

ProposeFrameBuffer()
SetFrameBuffer()
SetDisplayArea()
MoveDisplayArea()

Each of these functions translates to an identically named operation that the driver’s
control_graphics_card() function can be requested to perform. Graphics card drivers
announce their ability to respond to these requests by including a constant in theflags field
of thegraphics_card_info structure they report in response to a
B_GET_GRAPHICS_CARD_INFO request. The constant isB_FRAME_BUFFER_CONTROL.

All four of the control operations use the same structure to pass data to the driver, though
they don’t all make use the same set of fields within the structure. The structure is called
frame_buffer_info and it contains the following fields:

shortbits_per_pixel The depth of the frame buffer; the number of bits
assigned to a pixel.

shortbytes_per_row The number of bytes that are used to store one row of
pixel data in the frame buffer.

shortwidth The width of the frame buffer in pixels (the total
number of pixel columns).

shortheight The height of the frame buffer in pixels (the total
number of pixel rows.

shortdisplay_width The width of the screen display in pixels (the number
of pixel columns displayed on-screen).

shortdisplay_height The height of the screen display in pixels (the
number of pixel rows displayed on-screen).

shortdisplay_x The pixel column in the frame buffer that’s mapped
to the leftmost column of pixels on the screen, where
columns are indicated by a left-to-right index
beginning with 0.

shortdisplay_y The pixel row in the frame buffer that’s mapped to
the topmost row of pixels on the screen, where rows
are indicated by a top-to-bottom index beginning
with 0.

Entry Point Developing a Driver for a Graphics Card

86 – The Device Kit

The first four fields of this structure are identical to the last four of thegraphics_card_info
structure. However,graphics_card_info is used only to return information to the host,
whereasframe_buffer_info can pass requests to the driver. It’s possible for those four
fields to be set to arbitrary values, so the frame buffer isn’t limited to the standard
configurations of depth, width, and height described under “B_GET_SCREEN_SPACES”
above. (Of course, the driver can reject proposed configurations that it can’t
accommodate.)

The last four fields of theframe_buffer_info structure distinguish between the frame buffer
itself and the part of the frame buffer that’s displayed on-screen—thedisplay area. This
distinction permits the display area to be moved and resized on a (possibly) much larger
area defined by the frame buffer. For buffered drawing, the frame buffer can be
partitioned into discrete sections and the display area moved from one to another. For
hardware scrolling, the display area can be moved repeatedly by small increments. For
simulated zooming, it’s size can be incrementally reduced or expanded.

Both areas are defined by a width (the number of pixel columns the area includes) and a
height (the number of pixel rows). The display area is located in the frame buffer by the
index to the column (display_x) and row (display_y) of its left top pixel. See the
SetDisplayArea() function on page 14 inThe Game Kit chapter for an illustration

The four operations that exercise control over the frame buffer are described below.

B_PROPOSE_FRAME_BUFFER

Thisop code proposes a particular width and depth for the frame buffer to the driver. The
only valid fields of theframe_buffer_info structure passed through thedata pointer are
bits_per_pixel andwidth. If the driver can configure a frame buffer with those
dimensions, it should fill in the rest of frame buffer description and returnB_NO_ERROR.
In thebytes_per_row field, it should write the minimum number of bytes required to store
each row of pixel data given the proposed depth and width. In theheight field, it should
report the maximum number of pixel rows it can provide given the other dimensions. The
fields of theframe_buffer_info structure that describe the display area can be ignored.

The driver should not actually configure the frame buffer in response to the proposal; it
should wait for aB_SET_FRAME_BUFFER instruction. B_PROPOSE_FRAME_BUFFER merely
tests the driver’s capabilities.

If the driver can’t accommodate a frame buffer with the proposed dimensions, it should
place –1 in thebytes_per_row andheight fields and returnB_ERROR.

B_SET_FRAME_BUFFER

This operation requests the driver’scontrol_graphics_card() function to configure the
frame buffer according to the description in theframe_buffer_info structure passed
through thedata pointer. All fields in the structure contain meaningful values and should
be read.

Developing a Driver for a Graphics Card Entry Point

The Device Kit –87

The specified configuration ought to have been previously tested through a
B_PROPOSE_FRAME_BUFFER operation, and therefore should be one the driver can
accommodate. If it’s not,control_graphics_card() should do nothing and returnB_ERROR.
If it can configure the frame buffer according to the request, it should returnB_NO_ERROR.

B_SET_DISPLAY_AREA

Thisop code requests the control function to set the display area, as specified by the last
four fields of theframe_buffer_info structure passed through thedata pointer. The other
fields should be ignored.

If the driver can map the display area as requested,control_graphics_card() should return
B_NO_ERROR. Otherwise, it should returnB_ERROR.

B_MOVE_DISPLAY_AREA

Thisop code requests the control function to move the display area without resizing it, as
specified by thedisplay_x anddisplay_y fields of theframe_buffer_info structure that the
data pointer refers to. The other fields of the structure should be ignored.

The driver should move the display area so that the left top pixel displayed on-screen is the
one located at (display_x, display_y) in the frame buffer and returnB_NO_ERROR. If it
can’t move the display area to that location, it should returnB_ERROR.

Hook Functions

A graphics card driver can implement hook functions to manage the cursor and perform
particular, well-defined drawing tasks on behalf of the Application Server. Drivers should
implement as many of these functions as they can to speed on-screen graphics
performance.

The driver informs the Application Server about these functions soon after it’s loaded
when itscontrol_graphics_card() function receives aB_GET_GRAPHICS_CARD_HOOKS
request (see page 79 above). In response to this request, the driver needs to place an array
of B_HOOK_COUNT (48) function pointers at the location thedata argument points to. The
request is repeated whenever the configuration of the frame buffer (its dimensions and
depth) changes. The driver can provide hook functions specific to a particular
configuration.

Currently, only the first 12 slots in the array are defined. These functions fall into four
groups:

• Indices 0–2: The first three functions define and manage the cursor. Drivers must
implement all three of these functions, or none of them. The Application Server
defers to driver-defined cursors because of the significant performance
improvements they offer.

Entry Point Developing a Driver for a Graphics Card

88 – The Device Kit

• Indices 3–9: The next seven hook functions take on specific drawing tasks, such as
stroking a minimum-width line or filling a rectangle. You can choose which of these
functions to implement.

• Index 10: The function at this index is used to synchronize the Application Server
with the driver. Drivers should implement it only if the Server might sometimes
need to wait for the driver to finish the drawing undertaken by any of the other hook
functions.

• Index 11: The final function inverts the colors in a rectangle.

Each undefined slot in the array of hook functions should be filled with aNULL pointer.
Similarly, the driver should place aNULL value in any defined slot if it can’t usefully
implement the function.

Although all pointers in the array are declared to be of typegraphics_card_hook,

typedef void (*graphics_card_hook)(void)

each function has its own set of arguments and returns a meaningful error value, declared
as along. The functions should be implemented to returnB_NO_ERROR if all goes well
and they’re successful in performing the task at hand, andB_ERROR if unsuccessful. It’s
better by far to place aNULL pointer in the array than to define a function that always
returnsB_ERROR.

The coordinate system that the Application Server assumes for all hook functions equates
one coordinate unit to one screen pixel. The origin is at the pixel in the left top corner of
the screen. In other words, anx coordinate value is a left-to-right index to a pixel column
and ay coordinate value is a top-to-bottom index to a pixel row.

The following sections discuss each of the hook functions in turn.

Index 0: Defining the Cursor

The function at index 0 is called to set the cursor image. It has the following syntax:

long define_cursor(uchar *xorMask, uchar *andMask, longwidth, longheight,
longhotX, longhotY)

The first two arguments,xorMask andandMask, together define the shape of the cursor.
Each mask has a depth of 1 bit per pixel, yielding a total of four possible values for each
cursor pixel. They should be interpreted as follows:

xorMask andMask meaning

0 0 Transparency; let the color of the screen pixel
under the cursor pixel show through.

1 0 Inversion; invert the color of the screen pixel.

Developing a Driver for a Graphics Card Entry Point

The Device Kit –89

0 1 White; replace the screen pixel with a white
cursor pixel.

1 1 Black; replace the screen pixel with a black
cursor pixel.

Inversion in its simplest form is accomplished by taking the complement of the color
index or of each color component. For example:

color = 255 - color;

< However, the results of inversion may not be very pleasing given the current color map.
Therefore, none of the Be-defined cursors will use inversion until a future release. It
would be better for your drivers to avoid it as well. The color map will be corrected in a
future release. >

The second two arguments,width andheight, determine the size of the cursor image in
pixels. Currently, the Application Server supports only one cursor size; they must be
16 pixels wide and 16 pixels high.

The (hotX, hotY) arguments define the hot pixel in the image—the pixel that’s used to
report the location of the cursor. They assume a coordinate system where the pixel at the
left top corner of the image is (0, 0) and the one at the right bottom corner is (15, 15).

This function should change the cursor image on-screen, if the cursor is currently
displayed on-screen. But if the cursor is hidden, it should not show it. Wait for explicit
calls to the next two functions to move the cursor or change its on-screen status.

Index 1: Moving the Cursor

The function at index 1 changes the location of the cursor image. It should expect two
arguments:

long move_cursor(longscreenX, longscreenY)

In response, this function should move the cursor so that its hot pixel corresponds to
(screenX, screenY).

Index 2: Showing and Hiding the Cursor

The function at index 2 shows and hides the cursor:

long show_cursor(boolflag)

If the flag argument isTRUE, this function should show the cursor image on-screen; if it’s
FALSE, it should remove the cursor from the screen.

< If this function is asked to show the cursor before the function at index 1 is called, it
should show it at (0, 0). >

Entry Point Developing a Driver for a Graphics Card

90 – The Device Kit

Index 3: Drawing a Line with an 8-Bit Color

The function at index 3 draws a straight line in theB_COLOR_8_BIT color space. It takes 10
arguments:

long draw_line_with_8_bit_depth(longstartX, longstartY, longendX, longendY,
ucharcolorIndex, boolclipToRect, shortclipLeft,
shortclipTop, shortclipRight, shortclipBottom)

The first four arguments define the starting and ending points of the line; it begins at
(startX, startY) and ends at (endX, endY). Both points are included within the line. The
fifth argument,colorIndex, is the color of the line; it’s an index into the map of 256 colors.

< In the current release, the second and third arguments are inverted; the first four
arguments are ordered:startX, endX, startY, endY. >

If the sixth argument,clipToRect, is TRUE, the function should draw only the portion of the
line that lies within the clipping rectangle defined by the last four arguments. The sides of
the rectangle are included within the drawing area—they’re inside the visible region;
everything outside the rectangle is clipped.

If clipToRect is FALSE, the final four arguments should be ignored.

This function should draw a line of minimal thickness, which means a line no thicker than
one pixel at any given point. If the line is more vertical than horizontal, only one pixel per
row between the start and end points should be colored; if it’s more horizontal than
vertical, only one pixel per column should be colored.

Index 4: Drawing a Line with a 32-Bit Color

The function at index 4 is like the one at index 3, except that it draws a line in the
B_RGB_32_BIT color space:

longdraw_line_with_32_bit_depth(longstartX, longstartY, longendX, longendY,
ulongcolor, boolclipToRect, shortclipLeft,
shortclipTop, shortclipRight, shortclipBottom)

The only difference between this and the previous function is thecolor argument. Here
the color is specified as a full 32-bit quantity with 8-bit red, green, blue, and alpha
components. Thecolor argument arranges the components in the order that the driver
asked for them (in thergba_order field of thegraphics_card_info structure that it
provided in response to aB_GET_GRAPHICS_CARD_INFO request).

Otherwise, this function should work just like the one at index 3. < And like the function
at index 3, the second and third arguments are inverted in the current release; the first four
arguments are ordered:startX, endX, startY, endY. >

Developing a Driver for a Graphics Card Entry Point

The Device Kit –91

Index 5: Drawing a Rectangle with an 8-Bit Color

The function at index 5 should be implemented to fill a rectangle with a color specified by
its index:

long draw_rect_with_8_bit_depth(long left, longtop, longright, longbottom,
ucharcolorIndex)

The left, top, right, andbottom sides of the rectangle should be included in the area being
filled.

Index 6: Drawing a Rectangle with a 32-Bit Color

The function at index 6, like the one at index 5, fills a rectangle:

long draw_rect_with_32_bit_depth(long left, longtop, longright, longbottom,
ulongcolor)

Thecolor value contains the four color components—red, green, blue, and alpha—
arranged in the natural order for the device (the same order that the driver recorded in the
rgba_order field of thegraphics_card_info structure it provided to the Application
Server).

The sides of the rectangle should be included in the area being filled.

Index 7: Copying Pixel Data

The function at index 7 should copy pixel values from a source rectangle on-screen to a
destination rectangle:

long blit(longsourceX, longsourceY, longdestinationX, longdestinationY,
longwidth, longheight)

The left top corner of the source rectangle is the pixel at (sourceX, sourceY). The left top
pixel of the destination rectangle is at (destinationX, destinationY). Both rectangles are
width pixels wide andheight pixels high, and both are guaranteed to always lie entirely
on-screen. Thewidth andheight arguments will always contain positive values.

Entry Point Developing a Driver for a Graphics Card

92 – The Device Kit

Index 8: Drawing a Line Array with an 8-Bit Color

The function at index 8 should draw an array of lines in theB_COLOR_8_BIT color space. It
takes the following set of arguments:

long draw_array_with_8_bit_depth(indexed_color_line *array, longnumItems,
boolclipToRect, shortclipLeft, shortclipTop,
shortclipRight, shortclipBottom)

The linearray holds a total ofnumItems. Each item is specified as anindexed_color_line
structure, which contains the following fields:

shortx1 Thex coordinate of one end of the line.

shorty1 They coordinate of one end of the line.

shortx2 Thex coordinate of the other end of the line.

shorty2 They coordinate of the other end of the line.

ucharcolor The color of the line, expressed as an index into the
color map.

The function should draw each line from (x1, y1) to (x2, y2) using thecolor specified for
that line.

If the clipToRect flag isTRUE, nothing should be drawn that falls outside the clipping
rectangle defined by the final four arguments. The sides of the rectangle are included in
the visible region. IfclipToRect is FALSE, the final four arguments should be ignored.

Each line in the array should be drawn with the minimal possible thickness, as described
under “Index 3: Drawing a Line with an 8-Bit Color” on page 90 above.

Index 9: Drawing a Line Array with a 32-Bit Color

The function at index 9 has the same syntax as the one at index 8, except for the first
argument:

long draw_array_with_32_bit_depth(rgb_color_line *array, longnumItems,
boolclipToRect, shortclipLeft, shortclipTop,
shortclipRight, shortclipBottom)

Here, each line in the array is specified as anrgb_color_line structure, rather than as an
indexed_color_line. The two structures differ only in how the color is specified:

shortx1 Thex coordinate of one end of the line.

shorty1 They coordinate of one end of the line.

shortx2 Thex coordinate of the other end of the line.

shorty2 They coordinate of the other end of the line.

rgb_colorcolor The color of the line, expressed as a full 32-bit value.

Developing a Driver for a Graphics Card Entry Point

The Device Kit –93

In all other respects, this function should work like the one at index 8.

Index 10: Synchronizing Drawing Operations

The Application Server calls the function at index 10 to synchronize its activities with the
driver. It takes no arguments:

long sync(void)

This function simply returns when the driver is finished modifying the frame buffer—
when it’s finished touching video RAM.

If any of the other hook functions works asynchronously—if it returns before the drawing
it’s asked to do is complete—the synchronizing function should wait until all drawing
operations have been completed before it returns. The return value is not important; the
Application Server ignores it.

However, if all the other hook functions are synchronous—if they don’t return until the
drawing is finished—this function would simply return; it would be empty. It’s better not
to implement such a function. It’s preferable to put aNULL pointer at index 10 and save the
Application Server a function call.

Therefore, your driver should implement this function only if at least one of the other hook
functions draws asynchronously.

Index 11: Inverting Colors

The function at index 11 should invert the colors in a rectangle. It has the following
syntax:

long invert_rect(long left, longtop, longright, longbottom)

Inversion is typically defined as taking the complement of each color component. For
example:

color.red = 255 - color.red;
color.green = 255 - color.green;
color.blue = 255 - color.blue;

The inversion rectangle includes the pixel columns and rows that four arguments
designate.

Exported Functions Developing a Driver for a Graphics Card

94 – The Device Kit

Exported Functions

Graphics card drivers are not linked against the Application Server, so the Server cannot
export functions to them. They are also not linked against any library. Consequently,
they’re generally limited to calling functions that they implement themselves.

However, in the current release, a graphics card driver can be statically linked against
scalls.o, located with the libraries in/develop/libraries. < A future release will replace
this file with a private library. >

Linking againstscalls.o makes it possible for the driver to call any system function. The
future library won’t be as liberal, however, so system calls should be limited to the
following functions:

Functions defined in the Kernel Kit

create_sem()
acquire_sem()
release_sem()
delete_sem()

system_time()
snooze()

spawn_thread()
resume_thread()

Functions defined in the Support Kit

atomic_add()

Other functions

dprintf() < accessed through the name_kdprintf_() >
set_dprintf_enabled() < accessed through the name_kset_dprintf_enabled_() >

Functions from the first two groups are documented in the respective chapters on the
Kernel Kit and the Support Kit. Functions in the last group are documented in the section
on “Functions for Drivers” in this chapter on page 55.

Developing a Driver for a Graphics Card Installation

The Device Kit –95

Installation

The graphics card driver should be compiled as an “add-on image,” as described inThe
Kernel Kit chapter. This means following the directions for compiling a shared library
presented in the MetrowerksCodeWarrior manual. In summary, you’ll need to specify the
following options for the linker (asLDFLAGS in themakefile):

• Tell the linker to produce an add-on image by including the–G (or –sharedlibrary)
option.

• Turn off the default behavior—which is to link against the Be system library,
libbe.so—by specifying the–nodefaults flag.

• Export the driver’s entry point,control_graphics_card(), so that the Application
Server can call it. The most direct way to do this is to surround its definition with
explicit directives that turn exporting on and off,

#pragma export on
long control_graphics_card(ulong op, void *data)
{
 . . .
}
#pragma export off

and inform the linker with an–export pragma flag.

• Specify thescalls.o file if you want your driver to call any of the system functions
listed under “Exported Functions” on page 94 above. Don’t link the driver against
any other file.

After the driver has been compiled, it should be installed in:

/system/add-ons/app_server

This is the only place where the Application Server will look for graphics card drivers to
load.

The Server first looks for a driver for the graphics card in anapp_server directory on a
floppy disk (/fd/system/add-ons/app_server). Failing to find one, it looks next on the
boot disk (/boot/system/add-ons/app_server).

When it searches each disk for a driver, the Application Server begins by looking for one
developed specifically for the installed graphics card. If there are more than one, it’s
indeterminate which one it will choose to load. If there aren’t any, the Server looks for the
generic driver calledsupervga. This driver should be able to do a minimal job of putting
a display on-screen, but probably won’t be able to exploit the full potential of the graphics
card.

You can give your driver any name you wish. However, the name “supervga” is reserved
for the generic driver provided by Be.

Installation Developing a Driver for a Graphics Card

96 – The Device Kit

The Device Kit –97

Constants and Defined Types
for Graphics Card Drivers

This section lists the various constants and types that are defined for graphics card drivers.
Explanations for all of them can be found in the preceding section, “Developing a Driver
for a Graphics Card”.

Constants

Control Operations
<device/GraphicsCard.h>

Enumerated constant Enumerated constant

B_OPEN_GRAPHICS_CARD B_GET_INFO_FOR_CLONE
B_CLOSE_GRAPHICS_CARD B_GET_INFO_FOR_CLONE_SIZE
B_GET_GRAPHICS_CARD_INFO B_SET_CLONED_GRAPHICS_CARD
B_GET_GRAPHICS_CARD_HOOKS B_CLOSE_CLONED_GRAPHICS_CARD
B_SET_INDEXED_COLOR
B_GET_SCREEN_SPACES B_PROPOSE_FRAME_BUFFER
B_CONFIG_GRAPHICS_CARD B_SET_FRAME_BUFFER
B_GET_REFRESH_RATES B_SET_DISPLAY_AREA
B_SET_SCREEN_GAMMA B_MOVE_DISPLAY_AREA

These constants define the various control operations that the Application Server or the
Game Kit can request a driver to perform.

See also: “Main Control Operations” on page 78

Hook Count
<device/GraphicsCard.h>

Defined constant Value

B_HOOK_COUNT 48

This constant is the number of hook function pointers that a driver must provide. Most
will be NULL pointers.

See also: “Hook Functions” on page 87

Defined Types Constants and Defined Types for Graphics Card Drivers

98 – The Device Kit

Info Flags
<device/GraphicsCard.h>

Defined constant

B_CRT_CONTROL
B_GAMMA_CONTROL
B_FRAME_BUFFER_CONTROL

These flags report the driver’s ability to control the CRT display, make gamma
corrections, and permit nonstandard configurations of the frame buffer.

See also: “B_GET_GRAPHICS_CARD_INFO” on page 80

Defined Types

frame_buffer_info
<device/GraphicsCard.h>

typedef struct {
shortbits_per_pixel;
shortbytes_per_row;
shortwidth;
shortheight;
shortdisplay_width;
shortdisplay_height;
shortdisplay_x;
shortdisplay_y;

} frame_buffer_info

This structure is used to pass information to the driver on how the frame buffer should be
configured.

See also: the BWindowScreen class in the Game Kit, “Control Operations for
Manipulating the Frame Buffer” on page 85 above

Constants and Defined Types for Graphics Card Drivers Defined Types

The Device Kit –99

graphics_card_config
<device/GraphicsCard.h>

typedef struct {
ulongspace;
float refresh_rate;
ucharh_position;
ucharv_position;
ucharh_size;
ucharv_size;

} graphics_card_config

This structure is used to pass the driver a set of parameters describing how the graphics
card should be configured.

See also: “B_CONFIG_GRAPHICS_CARD” on page 82

graphics_card_hook
<device/GraphicsCard.h>

typedef void (*graphics_card_hook)(void)

This is the general type declaration for a hook function. Specific hook functions will in
fact declare various sets of arguments and all return along error code rather thanvoid.

See also: “Hook Functions” on page 87

graphics_card_info
<device/GraphicsCard.h>

typedef struct {
shortversion;
shortid;
void *frame_buffer;
charrgba_order[4];
shortflags;
shortbits_per_pixel;
shortbytes_per_row;
shortwidth;
shortheight;

} graphics_card_info

Drivers use this structure to supply information about themselves and the current
configuration of the frame buffer to the Application Server and to the BWindowScreen
class in the Game Kit.

See also: “B_GET_GRAPHICS_CARD_INFO” on page 80

Defined Types Constants and Defined Types for Graphics Card Drivers

100 – The Device Kit

graphics_card_spec
<device/GraphicsCard.h>

typedef struct {
void *screen_base;
void *io_base;
ulongvendor_id;
ulongdevice_id;
ulong_reserved1_;
ulong_reserved2_;

} graphics_card_spec

This structure informs the driver about the graphics card and how it’s mapped into the
system.

See also: “B_OPEN_GRAPHICS_CARD” on page 78

indexed_color
<device/GraphicsCard.h>

typedef struct {
long index;
rgb_colorcolor;

} indexed_color

This structure is used to set up the list of 256 colors in theB_COLOR_8_BIT color space. It
locates a particular color at a particular index in the list.

See also: “B_SET_INDEXED_COLOR” on page 79

indexed_color_line
<device/GraphicsCard.h>

typedef struct {
shortx1;
shorty1;
shortx2;
shorty2;
ucharcolor;

} indexed_color_line

This structure defines a colored line in theB_COLOR_8_BIT color space.

See also: “Index 8: Drawing a Line Array with an 8-Bit Color” on page 92

Constants and Defined Types for Graphics Card Drivers Defined Types

The Device Kit –101

refresh_rate_info
<device/GraphicsCard.h>

typedef struct {
float min;
float max;
float current;

} refresh_rate_info

Drivers use this structure to report the current refresh rate, and the maximum and
minimum possible rates.

See also: “B_GET_REFRESH_RATES” on page 81

rgb_color_line
<device/GraphicsCard.h>

typedef struct {
shortx1;
shorty1;
shortx2;
shorty2;
rgb_colorcolor;

} rgb_color_line

This structure defines a colored line in theB_RGB_32_BIT color space.

See also: “Index 9: Drawing a Line Array with a 32-Bit Color” on page 92

screen_gamma
<device/GraphicsCard.h>

typedef struct {
ucharred[256];
uchargreen[256];
ucharblue[256];

} screen_gamma

This structure defines the table used to make gamma corrections for the screen display.

See also: “B_SET_SCREEN_GAMMA” on page 82

Defined Types Constants and Defined Types for Graphics Card Drivers

102 – The Device Kit

