
The Storage Kit –1

3 The Storage Kit

Introduction . 5

BDatabase . 7
Overview . 7

Finding a BDatabase . 7
BDatabase as a Key to the Storage Server 8

The Database Side: BTable, BRecord, and BQuery . 8
The File System Side: BVolume and BStore 9

Finding and Creating Tables 9
Constructor and Destructor . 9
Member Functions. .10

BDirectory .15
Overview .15

Browsing the File System. 15
Descending the Hierarchy 15
Getting Many Files at a Time. 16
Path Names and File Names 18

Modifying the File System 18
Constructor and Destructor .19
Member Functions. .19

BFile . .25
Overview .25

BFile Data. .25
Locating and Creating Files. 26
Opening and Closing Files 27
Reading and Writing Files 27

Hook Functions .28
Constructor and Destructor .28
Member Functions. .28

BQuery .37
Overview .37

Defining a Query .37
The Table List .38

2 – The Storage Kit

The Predicate . .38
Complex Predicates 39

Fetching . .39
Live Queries. .40

Preparing your Application for a Live Query 40
Hook Functions .42
Constructor and Destructor .42
Member Functions. .42

BRecord. .49
Overview .49

Creating a New Record49
Setting Data in the BRecord 50
Committing a BRecord51

Record ID Numbers. .51
Record ID Fields 51

The Record Ref Structure52
Comparing Refs 52

Retrieving an Existing Record 53
Data Examination. 53
Updating a BRecord 53
Data Modification 53

Extra Fields . .54
Constructor and Destructor .55
Member Functions. .56

BResourceFile .63
Overview .63

Creating a Resource File 63
Accessing Resource Data63

Identifying a Resource within a Resource File64
Data Format .64
Data Ownership 64

Constructor and Destructor .65
Member Functions. .66

BStore . .71
Overview .71

Files, Records, and BStores71
How to Set a Ref 72
Altering the File System 72
Passing Files to Other Threads73

Custom Files .73
Adding Data to a File Record 74
File Record Caveats 75

The Store Creation Hook 75

The Storage Kit –3

Other Hook Providers 76
Hook Data .76
Hook Function Rules77

Constructor and Destructor .77
Member Functions. .77
Operators .81

BTable. .83
Overview .83

Creating a Table . .84
Adding Fields to a Table 84

Field Keys .85
Field Flags .86

Table Inheritance .86
Type and App . .87
Using a BTable .87

BTables and BRecords87
BTable and BQuery. 88

Constructor and Destructor .88
Member Functions. .89

BVolume .93
Overview .93

Retrieving a BVolume. 93
Mounting and Unmounting94
The File System . .95

Volumes in Path Names 95
The Database .96

Constructor and Destructor .96
Member Functions. .97
Global Functions. .99

Global Functions, Constants, and Defined Types 101
Global Functions. . 101
Constants . 103
Defined Types . 105

System Tables and Resources. 107
System Tables . 107
System Resources . 111

4 – The Storage Kit

Storage Kit Inheritance Hierarchy

BObject
(Support Kit)

BStore

BVolume

BDirectory

BTable

BDatabase

BFile

BRecord

BQuery

BResourceFile

The Storage Kit –5

3 The Storage Kit

The Storage Kit lets your application store and retrievepersistent data. Persistent data
doesn’t disappear with your application; it’s stored on a long-term storage device, such as
a hard disk, floppy disk, CD-ROM, and so on, so you can return to it later.

The classes provided by the Kit fall into three categories:

• The database classes (BDatabase, BTable, BRecord, and BQuery) let you store data
as “structured entries” orrecords. The content of a record—the number of
individual datums it contains, and the type of values each datum can assume—
depends on the record’s structure. The description of this structure is given by the
table to which the record conforms. Because records ares structured, you can easilyr
and quickly locate a specific record based on the values that are stored in the record.

• The file system classes (BStore, BDirectory, BFile, and BResourceFile) provide a
means for storing data in files. The data in a file can be unstructured (instances of
BFile) or structured (BResourceFile).

• Instances of the BVolume class represent the actual storage devices themselves.
BVolumes objects are used in both database and file-system applications.

It’s suggested that you explore the Storage Kit with by visiting the BVolume class
description, and then proceed to the database or file system classes in the orders given
above.

6 – The Storage Kit

The Storage Kit –7

BDatabase

Derived from: public BObject

Declared in: <storage/Database.h>

Overview

A BDatabase object represents a collection of structured, persistent data called adatabase.
Each BDatabase object that you introduce to your application corresponds to an actual
database and gives you access to it. Databases are contained withinvolumes, where a
volume is a storage medium such as a hard disk, floppy disk, or CD-ROM. The
relationship between databases and volumes is one-to-one: Each volume contains exactly
one database. Part of the system’s disk-formatting routine includes the creation of a
database for the volume on the disk.

Finding a BDatabase

You never construct BDatabase objects yourself; instead, you ask the system to construct
them and return them to you. There are two ways to do this:

• You can ask a BVolume object for its BDatabase.The BVolumeDatabase()
function returns the BDatabase object that represents the volume’s database. Of
course, this methodology merely shifts the burden to finding BVolume objects: You
can walk down your application’s “volume list” through repeated calls to the global
volume_at() function. You can then pluck the BDatabase from each BVolume, as
demonstrated below:

void DatabasePlucker(BList *dList)
{

BVolume this_vol;
BDatabase *this_db;
long index;

for (index = 0; this_vol = volume_at(index); index++)
{

this_db = this_vol.Database();
dList->AddItem(this_db);

}
}

• You can retrieve a BDatabase based on a database ID. Every database is identified
by a unique integer of typedatabase_id. By passing a valid database ID to the

Overview BDatabase

8 – The Storage Kit

globaldatabase_for() function, you can retrieve the BDatabase object that
represents the identified database.

An important feature of Database ID numbers is that they’re persistent: If you cache
a database_id value and reboot your machine, the cached valued will refer to the
same database when your machine comes back up. You can retrieve a BDatabase’s
ID number (thedatabase_id value of the underlying database) through theID()
function.

Just as you never construct BDatabase objects, so do you not destroy them. These tasks
are performed automatically by the Storage Kit.

After you’ve retrieved a BDatabase object, you may wonder what you should do with it.
A BDatabase has essentially two purposes: It acts as a key to the Storage Server, and it
lets you find and create tables (BTable objects). These activities are described below.

BDatabase as a Key to the Storage Server

Every transaction with the Storage Server requires a database ID—every time you retrieve
a record or search for a file (as two examples), you need to tell the Storage Server which
database to look in. Curiously, however, BDatabase objects don’t appear in your
application very often. This is because almost every Storage Kit object is created (or
“validated” for whatever that means to the object) in reference to a paticular BDatabase
which it (the newly created object) remembers for future use. In other words, BDatabase
objects show up when you’re creating other objects, but you can pretty much ignore them
beyond that.

To give you a better idea of how this works, the following sections examine the
relationships between BDatabase objects and instances of the other Storage Kit classes.

The Database Side: BTable, BRecord, and BQuery

These three classes, along with BDatabase itself, comprise the “database” side of the
Storage Kit. BTable objects are created for you—each BDatabase object contains a list of
BTable objects (as described in the next section). This proprietary relationship (between a
BTable and the BDatabase that “owns” it) means that a BTable always knows how to get
to a database.

BRecord objects are born knowing about the facts of lfe: Each of the four versions of the
BRecord constructor takes an argument that, directly or indirectly, identifies a database.

Unlike the others, a BQuery object can be constructed without reference to a database.
But but such an object is essentially useless until you tell it which database it should
operate on.

BDatabase Constructor and Destructor

The Storage Kit –9

The File System Side: BVolume and BStore

BVolume and BStore along with BStore’s derivations, BDirectory, BFile, and
BResourceFile, are the Storage Kit’s file system classes. The relationship between
databases and volumes was described earlier: A BVolume object always knows its
database.

The BStore class is similar to BQuery in that you can create an instance of (a class derived
from) BStore without reference to a database, but the object will be useless until its
database is set. You do this by setting the object’srecord_ref structure. The structure
uniquely identifies a record in a database by listing (as structure fields) the database ID and
the record ID (record ID numbers are unique within a database). record_ref structures (or
refs) are the primary means for identifying a file; they’re visited again in the BStore class
description.

Finding and Creating Tables

As mentioned earlier, BTable objects live within BDatabase objects: When you “open” a
database (by asking for the BDatabase that represents it), the tables that are stored within
are automatically represented in your BDatabase object as BTable objects. To get a
BTable from a BDatabase, you can ask for it by name, through theFindTable() function, or
you can step through the BDatabase’s “table list” by usingCountTables() andTableAt().

To create a table, you call theCreateTable() function. The function tells the Storage
Server to manufacture a table in the database, and then constructs a BTable object to
represent it, adds it to the BDatabase’s table list, and returns the new object.

A BDatabase’s table list can fall out of step with the database. Specifically, your object’s
table list isn’t automatically updated when another application adds a new table to the
database. To update your object’s table list, you call BDatabase’sSync() function.

Constructor and Destructor

The BDatabase constructor and destructor are private. You never construct BDatabase
objects directly; instead, you retrieve them from the system through the global
database_for() function, or through BVolume’sDatabase() function.

Member Functions BDatabase

10 – The Storage Kit

Member Functions

CountTables()
long CountTables(void)

Returns the number of BTables in the BDatabase’s table list.

See also: TableAt(), FindTable(), Sync()

CreateTable()
BTable *CreateTable(char *tableName)
BTable *CreateTable(char *tableName, char *parentName)
BTable *CreateTable(char *tableName, BTable *parentTable)

Creates a table in the database, names ittableName, and constructs (and returns) a BTable
object to represent it. The table that’s created by the first version of this function will be
empty—it won’t contain any fields. In the other two versions, the new table will “inherit”
the fields of the parent table (there’s no functional difference between these two
versions—they simply give you two ways to designate the parent table).

The BDatabase doesn’t check to make sure that the name of the new table is unique: You
can create a table with a given name even if that name identifies an existing table. If you
want to make sure that your table’s name won’t collide with that of an existing table, you
should callFindTable() first—and if you really want to be scrupulous, you should call
Sync() just before that:

/* Create a uniquely-named table called "Phylum". */
a_db->Sync();
if (a_db->FindTable("Phylum") == NULL)

a_table = a_db->CreateTable("Phylum");

Furthermore, if you designate a parent but the parent isn’t found, the new table is created
without a parent. Again, you can check to make sure that the parent exists:

/* Create a uniquely-named table that inherits from the
 * existing table called "Kingdom".
 */
a_db->Sync();
if (a_db->FindTable("Phylum") == NULL &&

a_db->FindTable("Kingdom") != NULL)
a_table = a_db->CreateTable("Phylum", "Kingdom");

If CreateTable() can’t create the table—this should only happen if the Storage Server can
no longer communicate with the database—it returnsNULL.

You never explicitly delete a BTable object. Constructing and deleting BTable objects is
the BDatabase’s responsibility.

See also: FindTable()

BDatabase Member Functions

The Storage Kit –11

FindTable()
BTable *FindTable(char *table_name)

Looks in the BDatabase’s table list for the BTable that represents the named table.
Returns the BTable if it’s there;NULL if not. The table list includes all tables that live in
the database—it isn’t just a compilation of tables that were created by this particular
object.

If you want to make sure that the list is up-to-date before looking for a table, you should
first call BDatabase’sSync() function.

See also: TableAt(), Sync()

ID()
database_idID(void)

Returns an identifier that uniquely and persistently identifies the BDatabase’s database.
The value is meaningful system-wide—you can send it to other applications so they can
find the same database, for example. The persistence of the value is eternal: The database
that’s identified by a particulardatabase_id number today will still be identified by that
number long after you’ve forgotten everything you ever knew.

Database ID numbers appear most commonly as thedatabase fields ofrecord_ref
structures. Arecord_ref structure uniquely identifies a record among all records in all
databases.

See also: BStore::SetRef()

IsValid()
bool IsValid(void)

ReturnsTRUE if the BDatabase’s database is (still) available; otherwise, it returnsFALSE.
The object will become invalid if the volume on which the database lives is unmounted.

Warning: Currently, this function always returnsTRUE.

PrintToStream()
void PrintToStream(void)

Displays, to standard output, information about the BTables that are contained in the
BDatabase’s table list. The information is displayed in this format:

| index -table < name>, id #
| fieldName1
| fieldName2

Member Functions BDatabase

12 – The Storage Kit

| fieldName3
...

For example, if the first BTable in the list is named “Shirts” and contains fields named
“color,” “texture,” and “buttonCount,” the display will look like this:

| 0-table <Shirts>, id 0
| | color
| | texture
| | buttonCount

A BTable that inherits from another BTable is indented beneath its parent, and repeats the
inherited fields:

| 0-table <Shirts>, id 0
| | color
| | texture
| | buttonCount
| | 1-table <TackyShirts>, id 1
| | | color
| | | texture
| | | buttonCount
| | | hasStripes
| | | isHawaiian

PrintToStream() is meant to be used as a debugging tool and party game.

Sync()
void Sync(void)

Synchronizes the BDatabase object with the database that it represents by doing the
following:

• Updates the BDatabase’s table list so its contents match that of the database’s list.

• Makes sure that all “committed” record data (in the sense of the word as defined by
the BRecord class) has been flushed to the underlying storage media (in other
words, it writes your changes to the disk).

Calling Sync() is the only way to update the BDatabase’s table list, whereas it isn’t
necessary toSync() in order write committed data. Such data will (eventually) be written
to the disk as a matter of routine (within seconds, typically);Sync(), in this regard, is a sop
for the anxious.

See also: BRecord::Commit()

BDatabase Member Functions

The Storage Kit –13

TableAt()
BTable *TableAt(long index)

Returns the index’th BTable object in the BDatabase’s table list (zero-based).

If you want to make sure that the list is up-to-date before looking for a table, you should
first call BDatabase’sSync() function.

See also: CountTables(), Sync()

VolumeID()
long VolumeID(void)

Returns the ID of the volume that contains the database that’s represented by this
BDatabase object.

Member Functions BDatabase

14 – The Storage Kit

The Storage Kit –15

BDirectory

Derived from: public BStore

Declared in: <storage/Directory.h>

Overview

The BDirectory class defines objects that represent directories in a file system. A
directory can contain files and other directories, and is itself contained within a directory
(its “parent”). As with all BStore objects, a BDirectory is useless until its ref is set.

You use BDirectory objects to browse the file system, and to create and remove files (and
directories). These topics are examined in the following sections. After that it’s nap time.

Browsing the File System

Directories are the essence of a hierarchical file system. By placing directories inside
other directories, you increase the depth of the hierarchy (currently, the nesting can be 64
levels deep). Some of the rules that govern the Be file system hierarchy are:

• Every file system has exactly one “root” directory. The root directory stands at the
base of the hierarchy: If you ask any file for its parent, and then ask the parent for
its parent, and so on, the directory you arrive at, when you run out of parents, is the
root directory.

• Except for the root directory, every file system entity (every file and directory) has
exactly one parent (every file is contained in exactly one directory).

• As a corollary to this, the hierarchy’s nesting is directed and acyclic: If you follow a
path of directories, you won’t find yourself re-tracing your steps. (Note that the Be
file system doesn’t currently support symbolic links; such links can cause cyclic
recursion)

Descending the Hierarchy

If we wanted to browse an entire file system, we get a root directory, and recursively ask
for its contents and the contents of the directories it contains.

First, we get a root directory from a volume by calling BVolume’sGetRootDirectory()
function; in the example here, we get the root directory of the boot volume:

Overview BDirectory

16 – The Storage Kit

/* We'll get the root directory of the boot volume. */
BVolume boot_vol = boot_volume();
BDirectory root_dir;

boot_vol.GetRootDirectory(&root_dir);

Since the Be file system is acyclic, we can implement the hierarchy descent in a single
recursive function. In this simple implementation we ask the argument directory for its
contents (first its files, then its directories), print the name of each entry, and then re-call
the function for each of its directories. Thelevel argument is used to indent the names to
make the nesting clear:

void descend(BDirectory *dir, long nest_level)
{

long index = 0, nester;
BFile a_file;
BDirectory a_dir;
char name_buf[B_FILE_NAME_LENGTH];

First we print the name of this directory (followed by a distinguishing slash):

dir->GetName(name_buf);
for (nester = 0; nester < nest_level; nester++)

printf(" ");
printf("%s/\n", name_buf);

Now we get the files;GetFile() returnsB_ERROR when the index argument is out-of-
bounds:

while (dir->GetFile(index++, &a_file) == B_NO_ERROR) {
a_file.GetName(name_buf);
for (nester = 0; nester < nest_level + 1; nester++)

printf(" ");
printf("%s\n", name_buf);

}

Finally, we calldescend() for each sub-directory:

index = 0;
while (dir->GetDirectory(index++, &a_dir) == B_NO_ERROR)

descend(&a_dir, nest_level + 1);
}

The example demonstrates the use ofGetFile() andGetDirectory(). There are two
versions of each of these functions: The version of each shown here gets the index’th item
in the calling directory. The other version finds an item by name (see theGetFile()
description for details).

Getting Many Files at a Time

GetFile() andGetDirectory() are reasonably efficient—but they’re not as fast asGetFiles()
andGetDirectories(). As their names imply, the latter functions retrieve more than one

BDirectory Overview

The Storage Kit –17

item at a time; each set of files that’s retrieved requires fewer messages to the Storage
Server, thus the retrieval is much faster than getting each file individually.

TheGetFiles() function doesn’t retrieve files as BFile objects; instead, it writes their
record_refs into a vector that you pass (as arecord_ref pointer) to the function. You then
use therecord_ref values to refer BFile objects to the underlying files. (This is also true,
modulo store type, forGetDirectories().)

Here, we modify thedescend() function to useGetFiles() andGetDirectories():

void descend(BDirectory *dir, long nest_level)
{

long index, nester;
BFile a_file;
BDirectory a_dir;
long file_count, dir_count;
record_ref *ref_vector;
char name_buf[B_FILE_NAME_LENGTH];

dir->GetName(name_buf);
for (nester = 0; nester < nest_level; nester++)

printf(" ");
printf("%s/\n", name_buf);

We have to allocate the ref vector; rather than do it twice (once for files, once for
directories), we grab enough to accommodate the larger of the two sets. TheCountFiles()
andCountDirectories() functions, used below, do pretty much what we expect:

file_count = dir->CountFiles();
dir_count = dir->CountDirectories();
ref_vector = (record_ref *)malloc(sizeof(record_ref) *

 max(dir_count, file_count));

GetFiles() gets the refs for the files. The first two arguments are 1) an offset into the
directory’s list of files, and 2) the number of refs we want to retrieve.

dir->GetFiles(0, file_count, ref_vector);

for (index = 0; index < file_count; index++) {
if (a_file.SetRef(ref_vector[index]) < B_NO_ERROR)

continue;
a_file.GetName(name_buf);
for (nester = 0; nester < nest_level+1; nester++)

printf(" ");
printf("%s\n", name_buf);

}

Overview BDirectory

18 – The Storage Kit

Now do the same for directories:

dir->GetDirectories(0, dir_count, ref_vector);

for (index = 0; index < dir_count; index++) {
if (a_dir.SetRef(ref_vector[index]) < B_NO_ERROR)

continue;
descend(&a_dir, nest_level + 1);

}
/* Don't forget to free the vector. */
free(ref_vector);

}

Path Names and File Names

Although record_refs are the common currency for finding and accessing files in the file
system, it’s also possible to get around using path names and file names. The BDirectory
class provides a number of functions that operate on names:

• GetFile() and GetDirectory(), as mentioned above, come in flavors that take names
rather than indices. The functions look for a file or directory, within the invoked-
upon BDirectory, that goes by the name given in the first argument.

• GetRefForPath() takes a path name as its first argument and returns, by reference in
its second argument, therecord_ref that identifies the named file or directory.

• Contains() is a convenient boolean function that takes a name as it’s only argument
and returnsTRUE if the invoked-upon BDirectory contains an item of that name.

Modifying the File System

The BDirectory class provides functions that let you create new files and add them to the
files system, and remove existing files.

• To create a new file, you call theCreate() function.
• To remove an existing file, you callRemove().

While BDirectory’sRemove() is theonly way to programatically remove an item from the
file system, files can be created as copies of other files through BFile’s CopyTo() function.
You can’t copy a directory.

BDirectory Constructor and Destructor

The Storage Kit –19

Constructor and Destructor

BDirectory()
BDirectory(record_refref)
BDirectory(void)

The two BDirectory constructors create and return pointers to newly created BDirectory
objects. The version that takes a record_ref argument attempts to refer the new object to
the argument; the no-argument version creates an unreferenced object. In the latter case,
you must set the BDirectory’s ref in a subsequent manipulation. This you can do thus:

• By invoking the object’sSetRef() function (the function is inherited from the BStore
class).

• By passing the object as an argument to the BDirectory functionsCreate() or
GetDirectory().

• By passing it as an argument to BVolume’sGetRootDirectory() function.

~BDirectory()
virtual ~BDirectory(void)

Destroys the BDirectory object; thisdoesn’tremove the directory that the object
corresponds to. (To remove a directory, use BDirectory’sRemove() function; note that
you can’t remove a volume’s root directory.)

Member Functions

Contains()
bool Contains(const char *name)

Looks in the BDirectory for a file or directory namedname. If the item is found, the
function returnsTRUE, otherwise it returnsFALSE. If you need to know whether the item is
a file or a directory, you should follow this call (if it returnsTRUE) with a call to
IsDirectory(), passing the same name:

if (aDir->Contains("Something"))
if (aDir->IsDirectory("Something"))

/* It's a directory. */
else

/* It's a file. */

See also: IsDirectory(), GetFile(), GetDirectory()

Member Functions BDirectory

20 – The Storage Kit

CountDirectories() see CountFiles()

CountFiles(), CountDirectories(), CountStores()
long CountFiles(void)
long CountDirectories(void)
long CountStores(void)

Returns a count of the number of files, directories, or both that are contained in this
BDirectory.

See also: GetFile(), GetFiles()

CountStores() see CountFiles()

Create()
long Create(const char *newName,

BStore *newItem,
const char *tableName= NULL,
store_creation_hook*hookFunc= NULL,
void *hookData = NULL)

Creates a new file system item, names itname, and adds it to the directory represented by
this BDirectory. The ref of thenewItem argument is set to represent the added item.
newItem must either be a BFile or BDirectory object—the object’s class dictates whether
the function will create a file or a directory.

The other three arguments (tableName, hookFunc, andhookData) are infrequently used—
you should only need them if you want your file system records to conform to a custom
tables. See “The Store Creation Hook” on page 73 (in the BStore class) for more
information.

The function returnsB_NO_ERROR if the item was successfully created.

GetDirectory() see GetFile()

BDirectory Member Functions

The Storage Kit –21

GetFile(), GetDirectory()
long GetFile(const char *name, BFile *file)
long GetFile(long index, BFile *file)
long GetDirectory(const char *name, BDirectory *dir)
long GetDirectory(long *index, BDirectory *dir)

Looks for the designated file or directory (contained in this BDirectory) and, if it’s found,
sets the second argument’s ref to represent it. The second argument must point to an
allocated object—these functions won’t allocate it for you.

Thename versions of the functions search for the appropriate item with the given name.
For example, the call

BFile *aFile = new BFile();
if (aDir->GetFile("something", aFile) < B_NO_ERROR)

/* Not found. */

looks for a file named “something”. It ignores directories. Similarly, theGetDirectory()
function looks for a named directory and ignores files. As implied by the example, the
function returnsB_NO_ERROR if the named item was found.

The index versions return theindex’th file or directory. For example, this

if (aDir->GetFile(0, aFile) < B_NO_ERROR)
...

gets the first file, while this

BDirectory *aSubDir = new BDirectory();
if (aDir->GetDirectory(0, aSubDir) < B_NO_ERROR)

...

gets the first directory.

The index versions return a less-than-B_NO_ERROR value if the index is out-of-bounds.

See also: Contains(), IsDirectory(), GetFiles()

GetFiles(), GetDirectories(), GetStores()
long GetFiles(long index, longcount, record_ref *refVector)
long GetDirectories(long index, longcount, record_ref *refVector)
long GetStores(long index, longcount, record_ref *refVector)

These functions retrieve a vector of refs that identify some number of files, directories, or
both within the this BDirectory. Theindex andcount arguments tell the functions where,
within a list of items, to start plucking refs and how many refs to pluck; the plucked refs
are placed inrefVector. For example,GetFiles() makes a list of all the file refs in this
BDirectory; it then places, inrefVector, theindex’th through the (index+count)’th refs.

Member Functions BDirectory

22 – The Storage Kit

If you setindex andcount such that all or part of the desired range is out-of-bounds, these
functions don’t complain: They retrieve as many refs as are in-bounds and return those to
you. Thus, the number of refs that are passed back to you may be less than the number
you asked for.

You must allocaterefVector before you pass it into these functions. It’s the caller’s
responsibility to free the vector.

The functions returnB_ERROR if the BDirectory’s ref hasn’t been set. Otherwise, they
returnB_NO_ERROR.

See “Getting Many Files at a Time” on page 16 for an example of the use ofGetFiles() and
GetDirectories().

See also: GetFile()

GetRefForPath()
long GetRefForPath(const char *pathName, record_ref *ref)

Searches for the files that’s named by the given path name. If the file is found, it’s ref is
placed inref (which must be allocated before it’s passed in).

If the path is relative, the search starts at this BDirectory (the path name is appended to the
path that leads to this object). If it’s absolute, the search starts at the root directory. In the
absolute case, the receiving BDirectory doesn’t figure into the search: An absolute path
name search invoked on any BDirectory object yields the same result.

Path names are constructed by concatenating directory and file names separated by slashes
(“/”). Absolute path names have an initial slash; relative path names don’t. Keep in mind
that an absolute path name must include the root directory name.

Warning: This function fails if the path name ends in a slash, even if it otherwise
identifies a legitimate directory.

The function returnsB_NO_ERROR if a ref was successfully found; otherwise, it returns
B_ERROR. Note that the BDirectory’s ref must be set for this function to succeed, even if
the path name is absolute.

IsDirectory()
bool IsDirectory(const char *name)

ReturnsTRUE if the BDirectory contains a directory namedname; if the object doesn’t
contain an item with that name, if the item is a file, or if other impediments obtain, the
function returnsFALSE.

See also: Contains()

BDirectory Member Functions

The Storage Kit –23

Remove()
long Remove(BStore *anItem)

Removes the given item from the object’s directory, removes the item’s record from the
database, and frees the (disk) space that it was using. IfanItem is a BFile, the object is
closed before it’s removed. The item must be a member of the target BDirectory.

You can’t remove a volume’s root directory (it doesn’t have a parent, so there’s no way to
try). Also, you can’t remove a directory that isn’t empty.

The function returnsB_NO_ERROR if the item was successfully removed; otherwise, it
returnsB_ERROR.

Member Functions BDirectory

24 – The Storage Kit

The Storage Kit –25

BFile

Derived from: public BStore

Declared in: <storage/File.h>

Overview

The BFile class defines objects that represent files in the file system. Files are containers
of data that live in directories. A file can live in only one directory at a time.

BFile inherits from BStore; the basic concepts of how file system objects work are
explained in the BStore description. The most important points, applied to BFiles, are
these:

• Every item in the file system has a database record associated with it. The record
contains information about the item, such as its name and where it’s located.

• A record is uniquely identified across all databases by itsrecord_ref structure.
Posing as a value, arecord_ref is called a “ref”.

• A BFile object is associated with an actual file by referring to the ref of the file’s
record. This association can be performed through the BFile constructor, through
theBStore::SetRef() function, as well as through a number of other BStore-related
functions.

• More than one BFile object can be associated with (or can “refer to”) the same
underlying file. This is simply a matter of setting the refs of the various BFile
objects to the same value.

• Conversely, the same BFile object can be re-used to refer to any number of different
files (although only one file at a time).

BFile Data

BFiles contain “flat” or unstructured data. They’re commonly used to store ASCII
documents, for example. If you want to associate structured header information with a file
(if you want a complementary “resource fork”), you can do one (or more) of the
following:

• Use an instance of BResourceFile. The BResourceFile class inherits from BFile.
The data in a BResourceFile is completely structured; the structure can be defined
dynamically. Each “slot” in the structure of a BResourceFile is called aresource.

Overview BFile

26 – The Storage Kit

To use a BResourceFile so that it emulates a data/resource fork pair, you would
install the flat data as one of the file’s resources. An important drawback to using a
BResourceFile is that the structureis the file, thus the file may not be portable to
other computers. Note that executable files are automatically created as resource
files.

• You can create your own BFile-derived class. What you do in your class to
“specialize” your files is up to you. To help in the effort, BFile provides a
FileCreated() hook function that’s automatically invoked when you create a new file
as an instance of your class (specifically, it’s invoked as part of BDirectory’s
Create() and BFile’sCopyTo() functions).

• You can create your own table to which your BFiles’ records conform. The function
that creates wholly new files (BDirectory’sCreate()) lets you set the name the table
that’s used to create the file’s record. You would then supply a “store creation hook”
that modifies the fields that you’ve defined as new files are created. The store
creation hook, which was explained in the BStore class, is a call-back function (it
isn’t a class hook function) that you pass as an argument to BDirectory’sCreate(),
BStore’sMoveTo(), and BFile’sCopyTo() functions.

• You can add “extra” entries to the BFile’s record. This is performed through
BRecord’sSetExtra() function. The advantage of an extra entry is that it doesn’t
have to be part of the definition of the table to which the record conforms—in other
words, extra entries can be added (and removed) dynamically without re-defining
the record’s table. A single record can hold any number of extra entries.

• Use theSetTypeAndApp() function. If all you want to do is be able to identify the
“type” or “creator” of a file, you can use BFile’sSetTypeAndApp() and
GetTypeAndApp() functions (where the “App” in the function name means the
same as the traditional “creator”). The advantage of this approach is that you can
avoid everything described heretofore: You don’t need to force the file’s data into a
non-portable structure, and you don’t have fuss with the file’s record.

Locating and Creating Files

Most of the functions that locate, create, and otherwise “externally” manipulate files are
defined by the BStore and BDirectory classes. The most important of these are:

Defined in BStore:

• SetRef() is the fundamental function that establishes a “link” between a file and a
BFile object. BFile augments this function (and so it’s listed among the “Member
Functions” section, below), but the primary documentation for it is in the BStore
class.

• MoveTo() moves a file from one directory to another.

BFile Overview

The Storage Kit –27

Defined in BDirectory

• GetFile() locates a file by name or index (into a directory) and refers a BFile to it.
• Create() creates a new file in the file system, and refers a BFile to it.
• Remove() removes a file from the file system.

The BFile class itself adds two whole-cloth file manipulation functions:

• CopyTo() creates a new file as a copy of the receiving BFile.

• SwitchWith() takes two files (the receiving BFile and a BFile that you pass as an
argument) and switches their contents. This function is provided as an efficient way
for an application to make back-up copies of the files that it’s writing.

Opening and Closing Files

Before examining or manipulating a file, you have to open the BFile that refers to it by
calling theOpen() function. The object remains open until theClose() function is called.

TheOpen() function takes a single argument that you use to specify the file’s “open
mode”. The constants that represent these modes are:

• B_READ_ONLY. In this mode, your BFile can read the file’s contents, but it can’t
write into the file. Other BFile objects are allowed to open the file while your BFile
has it open in read-only mode.

• B_READ_WRITE lets your object read and write the file. Again, other objects can also
open the file.

• B_EXCLUSIVE gives you exclusive access (for reading and writing) to the file. No
other BFile can open the file while your object has it open in this mode.

Reading and Writing Files

BFile’s Read() andWrite() functions are the means by which you examine and modify the
data that lies in a file. They operate much as you would expect: For example, the BFile
must be open in the appropriate mode, they read or write some number of bytes of data,
and successiveRead() or Write() calls read or write contiguous sections of the file.

An important point with regard toRead() andWrite() is that they’re not virtual. If you
create a BFile-derived class because, for example, you want to read in units oflongs rather
than bytes, you have to create your own reading function (which might invokeRead())
and give it a different name. (This is what the Media Kit’s BSoundFile class does: It
reads “frames” of sound through theReadFrames() function).

Hook Functions BFile

28 – The Storage Kit

Hook Functions

FileCreated() Invoked when a new file is created. You implement this
function in a BFile-derived class to perform class-specific
initialization. This initialization can include modification
of the new file’s BRecord.

Constructor and Destructor

BFile()
BFile(void)

The BFile constructor creates a new, unreferenced object, and returns a pointer to it. The
object won’t correspond to an actual file until its record ref is set. You can set the ref
directly by calling theSetRef() function, or you can allow the ref to be set as a side effect
by passing your BFile object as an argument to any of these functions:

• BFile::CopyTo()
• BDirectory::Create()
• BDirectory::GetFile()

~BFile()
virtual ~BFile(void)

Destroys the BFile object; thisdoesn’tremove the file that the object corresponds to (to
remove a file, use BDirectory’sRemove() function). The object is automatically closed
(through a call toClose()) before the object is destroyed.

See also: Close()

Member Functions

Close()
virtual longClose(void)

Closes the BFile. The object’s BRecord is automatically committed to the database when
you call this function.

You should be aware thatClose() is called automatically by the BFile destructor, and by
BDirectory’sRemove() function.

BFile Member Functions

The Storage Kit –29

The BFile must previously have been opened through anOpen() call. If the object isn’t
open (or, more broadly, if the BFile’s ref hasn’t been set),Close() returnsB_ERROR;
otherwise,B_NO_ERROR is returned.

See also: Open()

CopyTo()
long CopyTo(BDirectory*toDir,

const char *newName,
BFile *newFile,
store_creation_hook *createHook = NULL,
void *createData= NULL,
copy_status_hook *copyHook = NULL)

Makes a copy of the BFile’s file, moves the copy into the directory given bytoDir, names
it newName, and returns a new BFile object (by reference innewFile) that refers to the
new file.

ThenewName argumentmust be supplied—if you want to copy the file but retain the same
name as the original file, passthis_object->Name() as the argument’s value. You can also
copy a file into the same directory (by passingthis_object->Parent() as thetoDir
argument); in this case, however, you must supply a different name for the copied file.

The BRecord that’s created for the new BFile will conform to the same table as the
BRecord of the original BFile (by default, this is the Kit-defined “File” table).
Furthermore, the values in the new BRecord are copied from the original file’s BRecord
(with some obvious changes, such as the file’s name, its parent, and so on). The new
BRecord is committed just beforeCopyTo() returns. TheCopyTo() function automatically
commits the original object’s BRecord as well.

If the new BRecord conforms to a custom table, you may want to modify the new
BRecord before it’s committed. The two “create” arguments provide this ability:

• createHook is a pointer to a “store creation hook” function. The function is called
after the new BFile has been created and its BRecord’s values set, but before the
BRecord is committed. The new BFile is passed as the first argument to
createHook. The value returned bycreateHook is significant: If it returnsB_ERROR,
the copy operation is aborted;B_NO_ERROR lets it continue.

• createDatais a buffer of data that’s passed as the second (and final) argument to the
store creation hook function.

For more information on the use of the store creation hook mechanism, see “The Store
Creation Hook” on page 73.

The final argument,copyHook is a “copy status hook” function. This function, if supplied,
is invoked periodically as the copy operation progresses. The protocol for the hook is

long copy_status_hook_name(record_refref, int size_delta, void *no_op)

Member Functions BFile

30 – The Storage Kit

Theref argument is the ref of the file that’s being copied from;size_delta is the amount of
data that’s been copied from the source file into the destination file since the last time the
hook function was called; the final argument is currently unused. If the hook function
returns a value other thanB_NO_ERROR, the copy operation is halted, but the data that’s
already been copied isn’t erased.

The rules governing the ability to copy a file into a specific directory are the same as those
that apply to creating a file in that directory. Again, see theBDirectory::Create() function
for more information.

The target BFile must be closed for theCopyTo() function to work. If the BFile couldn’t
be copied (for whatever reason)B_ERROR is returned; otherwise,B_NO_ERROR is returned.

See also: SwitchWith(), BDirectory::Create(), BStore::MoveTo()

FileCreated()
virtual longFileCreated(void)

This is a hook function that’s automatically invoked when a new file is created.
Specifically, it’s invoked by BDirectory’sCreate() function and BFile’sCopyTo()
function. You can implement this function in a derived class to perform file-initialization
operations. The file that’s being created, in the context of the implementation, is referred
to by thethis pointer. The store creation hook that was passed toCreate() or CopyTo()
will already have been called and the file’s record will have been committed by the time
this function is invoked.

There are no restrictions on the operations that this function may perform; for example,
you can implement FileCreated() to open and write the file, or modify and commit the
file’s record. Keep in mind, however, that the file’s record will already have been
committed for the first time just before this function is invoked.

You can stop the file from being created by implementing the function to return a value
other thanB_NO_ERROR.

GetTypeAndApp() see SetTypeAndApp()

Open(), OpenMode(), IsOpen()
virtual longOpen(longmode)
long OpenMode(void)
bool IsOpen(void)

TheOpen() function opens the BFile so its file’s data can be read or written (or both). The
file remains open untilClose() is called.

The operations you can perform on an open file depend on themode argument:

BFile Member Functions

The Storage Kit –31

• If mode is B_READ_ONLY, you’ll be able to read the file, but not write it.

• If it’s B_READ_WRITE, you can read and write the file.

• If it’s B_EXCLUSIVE, you can read and write the fileand no other BFile object will be
able to open the file until you callClose(). (The other two modes don’t prevent the
file from being opened by other objects.)

Note that theB_EXCLUSIVE mode doesn’t prevent changes to the file that can be performed
while the file is closed. For example, some other actor can delete the file (through the
command line, Browser, or BDirectory’sRemove() function) while your BFile holds the
file open in exclusive mode.

If the BFile’s ref hasn’t been set, if some other BFile has the file open inB_EXCLUSIVE
mode, if the mode argument isn’t one of the values listed here, or if, for any other reason,
the file couldn’t be opened,Open() returnsB_ERROR. Upon success, it returns
B_NO_ERROR.

OpenMode() returns the mode that the file was opened with. In addition to the three
modes listed above, the function can also returnB_FILE_NOT_OPEN if the BFile isn’t open.

IsOpen() returnsTRUE if the BFile is open, andFALSE if not.

See also: Close(), Read(), Write(), Seek()

Read()
long Read(void *data, longdataLength)

Copies (at most)dataLength bytes of data from the file into thedata buffer. The function
returns the actual number of bytes that were read—this may be less than the amount
requested if, for example, you asked for more data than the file actually holds.

The BFile’s data pointer is moved forward by the amount that was read such that a
subsequentRead() would begin at the following “unread” byte. Freshly opened, the
pointer is set to the first byte in the file; you can reposition the pointer prior to aRead()
call through theSeek() function. Keep in mind that the same data pointer is used for
readingand writing data.

For this function to work, the BFile must already be open. If the object isn’t open, or if,
for any other reason, the file couldn’t be read, the function returnsB_ERROR.

See also: Open(), Seek(), Write()

Member Functions BFile

32 – The Storage Kit

Seek
long Seek(longbyteOffset, longrelativeTo)

Relocates the BFile’s data pointer. The location that you want the pointer to assume is
given as a certain number of bytes (byteOffset) relative to one of three positions in the
data. These three positions are represented by the following constants (which you pass as
the value ofrelativeTo):

• B_SEEK_TOP represents the beginning of the file.
• B_SEEK_MIDDLE represents the pointer’s current location.
• B_SEEK_BOTTOM represents the end of the file.

For example, the following moves the pointer five bytes forward from its present position:

aFile->Seek(5, B_SEEK_MIDDLE)

If byteOffset is negative, the pointer moves backwards. Here, the pointer is set to five
bytes from the end of the file:

aFile->Seek(-5, B_SEEK_BOTTOM)

If you seek to a position beyond the end of a file, the file is padded with uninitialized data
to make up the difference. For example, the following code doubles the size ofaFile:

aFile->Seek(aFile->Size() * 2, B_SEEK_TOP)

Keep in mind that the padding is uninitialized; if you want to pad the file with NULLs (for
example), you have to write them yourself.

The function returns the pointer’s new location, in bytes, reckoned from the beginning of
the file. You can use this fact to get the pointer’s current position in the file:

/* The inquisitive, no-op seek. */
long currentPosition = aFile->Seek(0, B_SEEK_MIDDLE);

Seek() is normally followed by aRead() or Write() call. Note that both of these functions
move the pointer by the amount that was read or written.

For the function to succeed, the BFile must already be open;B_ERROR is returned if the
object isn’t open.

Warning: Currently, seeking before the beginning of a fileisn’t illegal. Doing so doesn’t
affect the size or content of the file, but it does move the pointer to the requested
(negative) location. TheSeek() function will return this location as a negative number. A
subsequent read or write on that location will cause trouble.

See also: Open(), Read(), Write()

BFile Member Functions

The Storage Kit –33

SetRef()
virtual longSetRef(record_refref)
virtual longSetRef(BVolume *volume, record_idrecID)

Sets the BFile’s ref. The BStore class defines the basic operations of these functions.
These versions add a BFile-specific wrinkle: They close the object before setting the ref.

See also: BStore::SetRef()

SetTypeAndApp(), GetTypeAndApp()
long SetTypeAndApp(ulongtype, ulongapp)
long GetTypeAndApp(ulong *type, ulong *app)

These functions set and return, respectively, constants that represent the file’s contents (its
“type”), and the application that created the file. The Browser uses these constants to
display an icon for the file, and to launch the appropriate application when the file is
opened.

If the application that you’re designing creates new files, you should set the type and app
for these files throughSetTypeAndApp() (this information isn’t set automatically). The
app value must be an application signature. You can retrieve your application’s signature
throughBApplication::GetAppInfo().

When the Browser tells an application to open a file, the app can useGetTypeAndApp() to
look at the file’s type constant to determine how the file should be opened. You can use
one of the data type values declared inapp/AppDefs.h as thetype value, but understand
thattype needn’t be globally declared (as constrasted withapp): The type that you set can
be privately meaningful to the application.

If you want to set a file’s type so the Browser will take it to be an application, use the value
‘BAPP’. Theapp argument, in this case, is ignored (by the Browser, at least).

With regard to icons: The Icon World application lets you create the correspondence
between an application and its icon, as well as between the file types that the application
recognizes and the icon that’s displayed for each type. See “Notes on Developing a Be
Application” for more information on Icon World.

Note: In contrast to most of BFile’s other functions,SetTypeAndApp() and
GetTypeAndApp() operate properly if the BFile is closed. Moreover, the functions are
actually more reliable if the objectis closed.

Both functions returnB_ERROR if they fail, B_NO_ERROR otherwise. Note that theapp
value (forSetTypeAndApp()) isn’t checked to make sure that it identifies a recognized
application.

Member Functions BFile

34 – The Storage Kit

Size()
long Size(void)
long SetSize(longnewSize)

Size() returns the size of the file’s data, in bytes. The BFile needn’t be open.

SetSize() sets the size of the file, in bytes. The BFile must be open and writable.

The functions returnB_ERROR if the BFile’s ref hasn’t been set, or if the BFile’s record has
disappeared. In addition,SetSize() returnsB_ERROR if the file isn’t open in the proper
mode; otherwise it returnsB_NO_ERROR.

SwitchWith()
long SwitchWith(BFile *otherFile)

Causes the receiving BFile and the argument object to trade data. The files’ records are
not switched. Both objects must be closed.

SwitchWith() is provided as an efficient way to create a back-up file for files that your
application is writing. Here’s how you’re supposed to use it:

Let’s say you’ve written an application that can open, read, and write files. The user uses
your app to open a file called “MyText”. You application creates and opens a BFile
(MyTextFile) that refers to the file. It then allocates a buffer to hold the file’s data, and
copies the file’s data (or as much as it thinks it will need) into the buffer. It also creates a
second BFile (tmpFile) as a copy of the original (throughCopyTo()) called “tmp”. As the
user works, your application occasionally writes the current state of the buffer to the
tmpFile. When the user tells the application to save, the app closes both files and invokes
SwitchWith():

MyTextFile->SwitchWith(tmpFile)

Your app then re-openstmpFile (which now holds the previously saved version that it just
got fromMyTextFile) and brings it back up to date.

You could get the same result by callingCopyTo() (copying from the “tmp” file to the
original file) every time the user saves, but theSwitchWith() function is much faster.

See also: CopyTo()

Write()
 longWrite(const void *data, long length)

Copieslength bytes from thedata buffer into the object’s file. The data is copied starting
at the data pointer’s current position; the existing data at that position (and extending for
length bytes) is overwritten. The size of the file is increased, if necessary, to accommodate

BFile Member Functions

The Storage Kit –35

the new data. When this function returns, the data pointer will point to the first byte that
follows the newly copied data.

The function returns the number of bytes that were actually written; except in extremely
unusual situations, the returned value shouldn’t vary from the value you passed aslength.

The object must already be open for this function to succeed. If it isn’t open, or if, for any
other reason, the data couldn’t be written,B_ERROR is returned.

See also: Open(), Seek(), Read()

Member Functions BFile

36 – The Storage Kit

The Storage Kit –37

BQuery

Derived from: public BObject

Declared in: <storage/Query.h>

Overview

The BQuery class defines functions that let you search for records that satisfy certain
criteria. Querying is the primary means for retrieving, or “fetching,” records from a
database.

Defining a Query

To define a query, you construct a BQuery object and supply it with the criteria upon
which its record search will be based. This criteria consists of tables and a predicate:

• The set of tables that you specify restricts the range of candidate records: Only
those records that conform to one of the specified tables are considered in the
search. TheAddTable() andAddTree() functions tell a BQuery which tables to
consider.

• The predicate is a logical test that (typically) compares the value of a particular field
(in a record) to a constant value. You can also compare one field’s value to another
field’s value. A predicate is constructed by “pushing” fields, constants, and
operators on the BQuery’s “predicate stack” (using “reverse Polish notation,” as
explained in a later section). The predicate is optional.

Let’s say you want to find all records in the “People” table that have “age” values greater
than 12. The BQuery definition would look like this:

/* We'll assume that myDb is a valid BDatabase object. */
BQuery *teenOrMore = new BQuery();
BTable *people = myDb->FindTable("People");

/* Add the table to the BQuery. */
teenOrMore->AddTable(people);

/* Create the predicate. */
teenOrMore->PushField("age");
teenOrMore->PushLong(12);
teenOrMore->PushOp(B_GT);

Overview BQuery

38 – The Storage Kit

The Table List

A single BQuery, during a single fetch, can search in more than one table. When you call
AddTable(), the previously added table (if any) isn’t bumped out of the table list; instead,
the tables accumulate to widen the range of candidate records. However, all BTables that
you pass as arguments toAddTable() (for a single BQuery) must belong to the same
BDatabase object.

Another way to add multiple tables to a query is to use theAddTree() function. AddTree()
adds the table represented by the argument and all tables that inherit from it. Table
inheritance is explained in the BTable class specification.

You can’t selectively remove tables from a BQuery’s table list. If you feel the need to
remove tables, you have two choices: You can removeall tables (and the predicate)
through the Clear() function, or you can throw the BQuery object away and start from
scratch with a new one.

The Predicate

As mentioned earlier, the BQuery predicate is constructed using “reverse Polish
notation” (or “RPN”). In this construction, operators are “post-fixed”; in other words,
the operands to an operation are pushed first, followed by the operator that acts upon
them. That’s why the predicate used in the example, “age > 12”, was created by pushing
the elements in the order shown:

/* Predicate construction for "age > 12" */
teenOrMore->PushField("age");
teenOrMore->PushLong(12);
teenOrMore->PushOp(B_GT);

The query operators that you can use are represented by the following constants:

Constant Meaning

B_EQ equal
B_NE not equal
B_GT greater than
B_GE greater than or equal to
B_LT less than
B_LE less than or equal to
B_AND logical AND
B_OR logical OR
B_NOT negation
B_ALL wildcard (matches all records)

Except forB_ALL, the query operators expect to operate on two previously pushed
operands.B_ALL, which is used to retrieve all the records in the target tables, should be
pushed all by itself (throughPushOp()).

BQuery Overview

The Storage Kit –39

Complex Predicates

You can create complex predicates by using the conjunction operatorsB_AND andB_OR.
As with comparison operators, a conjunction operator is pushed after its operands; but
with the conjunctions, the two operands are the results of the two previous comparisons
(or previous complex predicates).

For example, let’s say you want to find the records for people that are between 12 and 36
years old. The programmatic representation of this notion, and its reverse Polish notation,
looks like this:

Programmatic expression: (“age” > 12) && (“age” < 36)

Reverse Polish Notation: “age” 12 B_ GT “age” 36 B_LT B_AND

The RPN version prescribes the order of the BQuery function calls:

/* Predicate construction for "(age > 12) and (age < 36)" */
teenOrMore->PushField("age");
teenOrMore->PushLong(12);
teenOrMore->PushOp(B_GT);

teenOrMore->PushField("age");
teenOrMore->PushLong(36);
teenOrMore->PushOp(B_LT);

teenOrMore->PushOp(B_AND);

Predicates can be arbitrarily deep; the complex predicate shown above can be conjoined
with other predicates (simple or complex), and so on.

Fetching

Once you’ve defined your BQuery, you tell it to perform its search by calling theFetch()
function:

if (teenOrMore->Fetch() != B_NO_ERROR)
/* the fetch failed */

When it’s told to fetch, a BQuery object sends the table and predicate information to the
Storage Server and asks it to find the satisfactory records. The winning records (identified
by their record IDs) are returned to the BQuery and placed in the BQuery’s record ID list,
which you can then step through usingCountRecordIDs() andRecordIDAt():

long num_recs = teenOrMore->CountRecordIDs();
record_id this_rec;

for (int i = 0; i < num_recs; i++)
this_rec = teenOrMore->RecordIDAt(i);

To turn the BQuery’s record IDs into BRecord objects, you pass the IDs to the BRecord
constructor:

Overview BQuery

40 – The Storage Kit

BList *teens = new BList();
long num_recs = teenOrMore->CountRecordIDs();
record_id this_rec;
BRecord *teen_rec;

for (int i = 0; i < num_recs; i++)
{

this_rec = teenOrMore->RecordIDAt(i);
teen_rec = BRecord new(people->Database(), this_rec);
teens->AddItem(teen_rec);

}

Live Queries

By default, a BQuery performs a “one-shot” fetch: EachFetch() call retrieves record IDs,
sets them in the BQuery’s record ID list, and that’s the end of it. Alternatively, you can
declare a BQuery to keep working—you can declare it to be “live”—by passingTRUE as
the argument to the constructor:

BQuery *live_q = new BQuery(TRUE);

When you tell a live BQuery to fetch, it searches for and retrieves record ID values, just as
in the default version, but then the Storage Server continues to monitor the database for
you, noting changes to records that would affect your BQuery’s results. If the data in a
record is modified such that the record now passes the predicate whereas before it didn’t,
or now doesn’t pass but used to, the Server automatically sends messages that will,
ultimately, update your BQuery’s record list to reflect the change. In short, a live
BQuery’s record list is always synchronized with the state of the database. But you have
to do some work first.

Preparing your Application for a Live Query

It was mentioned above that the Storage Server sends messages to update a live BQuery.
The receiver of these messages (BMessage objects) is your application object. In order to
get the update messages from your application over to your BQuery, you have to subclass
BApplication’sMessageReceived() function to recognize the Server’s messages. Below
are listed the messages (as they’re identified by the BMessagewhat field) that the function
needs to recognize:

what Value Meaning

B_RECORD_ADDED A record ID needs to be added to the record list.
B_RECORD_REMOVED An ID needs to be removed from the list.
B_RECORD_MODIFIED Data has changed in a record currently in the list.

The only thing yourMessageReceived() function needs to do to properly respond to a
Storage Server message is pass the message along in a call to the Storage Kit’s global
update_query() function, as shown below:

BQuery Overview

The Storage Kit –41

#include <Query.h>

void MyApp::MessageReceived(BMessage *a_message)
{

switch(a_message->what) {
case B_RECORD_ADDED :
case B_RECORD_REMOVED :
case B_RECORD_MODIFIED :

update_query(a_message);
break;

/* Other app-defined messages go here */
...
default:

BApplication::MessageReceived(a_message);
break;

}
}

update_query() finds the appropriate BQuery object and calls itsMessageReceived()
function. The default BQueryMessageReceived() implementation handles the
B_RECORD_ADDED andB_RECORD_REMOVED messages by manipulating the record list
appropriately. In the case of aB_RECORD_MODIFIED message, the BQuery does nothing.

If you want to handle modified records in your application, you can create your own
BQuery-derived class and re-implementMessageReceived(). To get the identity of the
record, you retrieve, from the BMessage, thelong data named “rec_id”. The following
code demonstrates the general look of such a function:

/* Re-implementation of MessageReceived() for MyQuery,
 * a BQuery-derived class
 */
void MyQuery::MessageReceived(BMessage *a_message)
{

record_id rec;

rec = a_message->FindLong("rec_id");

switch(a_message->what) {
case B_RECORD_MODIFIED :

/* do something with the record */
break;

case B_RECORD_ADDED:
case B_RECORD_REMOVED:

/* Pass the other two message types to BQuery. */
BQuery::MessageReceived(a_message);
break;

}
...

Keep in mind that you don’t have to derive your own class to take advantage of the live
query mechanism. Simply getting to theupdate_query() step is enough to keep the your
BQuery’s record list up-to-date.

Hook Functions BQuery

42 – The Storage Kit

Hook Functions

MessageReceived() Can be overridden to handle live BQuery notifications.

Constructor and Destructor

BQuery()
BQuery(bool live = FALSE)

Creates a new BQuery object and returns it to you. Iflive is TRUE, the BQuery’s record list
is kept in sync with the state of the database (after the object performs its first fetch). If it’s
FALSE, the database isn’t monitored.

See the class description for more information on live BQuery objects.

~BRecord()
~BRecord(void)

Frees the memory allocated for the object’s record list. If this is a live BQuery, the Storage
Server is informed of the object’s imminent destruction (so it won’t send back any more
database-changed notifications).

Member Functions

AddRecordID()
void AddRecordID(record_idid)

Tells the BQuery to consider the argument record to be a winner, whether it passes the
predicate or not. You call this functionbefore you fetch; after the fetch, you’ll find thatid
has been added to the record list (and will be monitored, if this is a live query). You can
call this function any number of times and so add multiple “predicate-exempt” records,
but you can add each specific record only once (duplicate entries are automatically
squished to a single representative).

The set of exempt records isn’t forgotten after the BQuery performs a fetch. For example,
in the following sequence of calls...

query->AddRecordID(MyRecord);
query->Fetch();
query->Fetch();

... you don’t have to “re-prime” the second fetch by re-addingMyRecord.

BQuery Member Functions

The Storage Kit –43

Conversely,AddRecordID() doesn’tinstantly add the record to the BQuery’s record list:
The records that you add throughAddRecordID() aren’t put in the record list until you call
Fetch(). For example, in this sequence:

query->AddRecordID(MyRecord);
query->Fetch();
query->AddRecordID(YourRecord);

... MyRecord is in query’s record list, butYourRecord isn’t.

Although this isn’t the normal way to add records to the list—normally, you define the
BQuery’s predicate and then fetch records—it can be useful if you want to “fine-tune” the
record list. For example, if you want to monitor a particular record through a live query
regardless of whether that record passes the BQuery’s predicate, you can add it through
this function.

Important: Currently, theAddRecordID() function is slightly flawed: The records that
you add through this functionmust conform to one of the BQuery’s tables.

AddTable(), AddTree
void AddTable(BTable *a_table)
void AddTree(BTable *a_table)

Adds one or more BTable objects to the BQuery’s table list. The first version adds just the
BTable identified by the argument. The second adds the argument and all BTables that
inherit from it (where “inheritance” is meant as it’s defined by the BTable class).

You can add as many BTables as you want; invocations of these functions augment the
table list. However, any BTable that you attempt to add must belong to the same
BDatabase object.

There’s no way to remove BTables from the table list. If you tire of a BTable, you throw
the BQuery away and start over.

See also: CountTables(), TableAt()

Clear()
 void Clear(void)

Erases the BQuery’s predicate (the table list and record lists are kept intact). Although this
function can be convenient in some cases, it usually better to create a new BQuery for
each distinct predicate that you want to test.

Member Functions BQuery

44 – The Storage Kit

CountRecordIDs()
long CountRecordIDs(void)

Returns the number of records in the BQuery’s record list. If the object isn’t live, the
value returned by this function will remain constant between fetches; if it’s live, it may
change at any time.

See also: RecordIDAt()

CountTables()
long CountTables(void)

Returns the number of BTables in the BQuery’s table list.

See also: TableAt()

Fetch(), FetchOne()
long Fetch(void)
long FetchOne(void)

Tests the BQuery’s predicate against the records in the designated tables (in the database),
and fills the record list with the record ID numbers of the records that pass the test:

• Fetch() tests all candidate records.

• FetchOne() stops after it finds the first winner. This is a convenient function if all
you want to do is verify that there isany record that fulfills the predicate, or if you
know that there’s only one.

Note: Currently,FetchOne() doesn’t—it simply invokesFetch(). Single record fetching
will be added in a subsequent release.

The object’s record list is cleared before the winning records are added to it.

If the BQuery is live,Fetch() turns on the Storage Server’s database monitoring;
FetchOne() doesn’t.

Fetching is performed in the thread in which theFetch() function is called; the function
doesn’t return until all the necessary records have been tested. The on-going monitoring
requested by a live query is performed in the Storage Server’s thread.

Both functions returnB_NO_ERROR if the fetch was successfully executed (even if no
records were found that pass the predicate); B_ERROR is returned if the fetch couldn’t be
performed.

See also: RunOn()

BQuery Member Functions

The Storage Kit –45

FieldAt()
char *FieldAt(long index)

Returns a pointer to theindex’th field name that you pushed onto the predicate stacked.
The pointed-to string belongs to the query—you shouldn’t modify or free it. The string
itself is a copy of the string that you used to push the field; in other words, the names that
are returned byFieldAt() are the same names that you used as arguments in previous
PushField() calls. If index is out of bounds, the function returns NULL.

Field names are kept in the order that they were pushed.FieldAt(0), for example returns
the first field name that you pushed on the stack.

This function is provided, mainly, as an aid to interface design. It’s not meant as a
diagnostic tool.

FromFlat() see ToFlat()

HasRecordID()
bool HasRecordID(record_idid)

ReturnsTRUE if the argument is present in the object’s record list. Otherwise it returns
FALSE.

See also: RecordIDAt(), CountRecordIDs()

IsLive()
bool IsLive(void)

ReturnsTRUE if the BQuery is live. You declare a BQuery to be live (or not) when you
construct it. You can’t change its persuasion thereafter.

MessageReceived()
virtual voidMessageReceived(BMessage *a_message)

Invoked automatically by the update_query() function, as discussed in “Live Queries” on
page 40. You never call this function directly, but you can override it in a BQuery-derived
class to change its behavior. The messages it can receive (as defined by theirwhat fields)
are these:

what Value Meaning

B_RECORD_ADDED A record ID needs to be added to the record list.
B_RECORD_REMOVED A record ID needs to be removed from the list.
B_RECORD_MODIFIED Data has changed in a record in the list.

Member Functions BQuery

46 – The Storage Kit

The default responses to the first two messages do the right thing with regard to the record
list: The specified record ID is added to or removed from the BQuery’s record list. The
default response to the modified message, however, is to do nothing.

The record that has been added, removed, or modified is identified by its record ID in the
BMessage’s “rec_id” slot:

record_id rec = a_message->FindLong("rec_id");

PrintToStream()
void PrintToStream(void)

Prints the BQuery’s predicate to standard output in the following format:

arg count = count
element_type element_value
element_type element_value
element_type element_value
...

element_type is one of “longarg”, “strarg”, “field”, or “op”.element_value gives the
element’s value as declared when it was pushed. The order in which the elements are
printed is the order in which they were pushed onto the stack.

PushLong(), PushDouble(), PushString(), PushField(), PushOp()
void PushLong(longvalue)
void PushDouble(doublevalue)
void PushString(const char *string)
void PushField(const char *field_name)
void PushOp(query_opoperator)

These functions push elements onto the BQuery’s predicate stack. The first four push
values (or, in the case ofPushField(), potential values), that are operated on by the
operators that are pushed throughPushOp().

The query_op constants are:

Constant Meaning

B_EQ equal
B_NE not equal
B_GT greater than
B_GE greater than or equal to
B_LT less than
B_LE less than or equal to
B_AND logical AND
B_OR logical OR

BQuery Member Functions

The Storage Kit –47

B_NOT negation
B_ALL wildcard (matches all records)

Predicate construction is explained in “The Predicate” on page 38. Briefly, it’s based on
the “reverse Polish notation” convention in which the two operands to an operation are
pushed first, followed by the operator. The result of an operation can be used as one of the
operands in a subsequent operation.

See also: FieldAt()

RecordIDAt()
record_idRecordIDAt(long index)

Returns theindex’th record ID in the object’s record list. The record list is empty until the
object performs a fetch.

See also: CountRecordIDs()

RunOn()
bool RunOn(record_idrecord)

Tests the record identified by the argument against the BQuery’s predicate. If the record
passes, the function returnsTRUE, otherwise it returnsFALSE. The record IDisn’t added to
the record list, even if it passes. You use this function to quickly and platonically test
records—it isn’t as serious as fetching.

See also: Fetch()

SetDatabase()
void SetDatabase(Database *db)

Sets the BQuery’s database to the argument. You use this function after you’ve called
FromFlat() to tell the BQuery which database it should fetch from when next it fetches. As
explained in theFromFlat() description, a flattened query doesn’t remember the identity of
its database.

TableAt()
BTable *TableAt(long index)

Returns theindex’th BTable in the object’s table list.

See also: CountTables()

Member Functions BQuery

48 – The Storage Kit

ToFlat(), FromFlat()
char *ToFlat(long *size)
void FromFlat(char *flatQuery)

These functions “flatten” and “unflatten” a BQuery’s query.ToFlat() flattens the query: It
transforms the BQuery’s table and predicate information into a string. The flattened string
is returned directly byToFlat(); the length of the flattened string is returned by reference in
thesize argument.

FromFlat() sets the object’s query as specified by theflatQuery argument. The argument,
unsurprisingly, should have been created through a previous call toToFlat(). Any query
information that already resides in the calling object is wiped out.

The one piece of information that isn’t translated through a flattened query is the identity
of the database upon which the query is based. For flattening and unflattening to work
properly, the database of the BQuery that callsFromFlat() must match that of the BQuery
that flattened the query. You can use theSetDatabase() function after callingFromFlat()
to set the object’s database.

You use these functions to store your favorite queries, or to transmit query information
between BQuery objects in separate applications.

See also: SetDatabase()

The Storage Kit –47

BRecord

Derived from: public BObject

Declared in: <storage/Record.h>

Overview

A BRecord represents arecord in a database. A record is a collection of values that,
considered together, describe a single, multi-faceted “thing.” The thing that a record
describes depends on thetable to which the record conforms. For example, each record
that conforms to the “File” table would describe different attributes of a specific file: its
name, size, the directory it’s contained in, and so on. A single record can store as much as
32 kilobytes of data (but, to be safe, you should try to keep your records a wee bit smaller
than that).

A BRecord object lets you examine and modify the values that are collected in a record.
But first, you have to associate the BRecord object with the record that you want to inspect
or alter. How you make this association depends on whether you’re creating a new record
that you wish to add to the database, or retrieving an existing record from the database.
These topics are discussed separately in the following sections.

Creating a New Record

You create a new record in reference to a specific table (within a particular database). In
your application, you create this reference by passing a BTable object to the BRecord
constructor. For example, the following code constructs a BRecord object that conforms
to the “Employee” table (the table was created in an example in the BTable class
description):

/* We'll assume the existence of the a_db BDatabase object. */
BTable *employee_table = a_db->FindTable("Employee");
BRecord *employee_record = new BRecord(employee_table);

By conforming to a BTable, a BRecord is given appropriately-sized “slots” that will hold
data for each of thefields defined by the table. For example, the “Employee” table (as
defined in an example in the BTable class description) has three fields:

• Thechar * field “name” names a specific employee.

• The long field “extension” identifies the employee’s telephone extension.

Overview BRecord

48 – The Storage Kit

• Therecord_id field “manager” identifies some other record (possibly in another
table) that contains information about the employee’s manager (this explained at
length later in this class description).

Theemployee_record object, therefore, can accommodate values for these three fields.
In a freshly created BRecord, the value for each field isNULL (cast as appropriate for the
data type of the field).

Important: You must explicitly delete the BRecord objects that you construct in your
application. Some of the operations that a BRecord performs (such as committing or
removing) might lead you to think that you’ve “given” the object to the Storage Server,
and that you’re absolved from the responsibility of destruction. You haven’t; you’re not.

Setting Data in the BRecord

To put data in a BRecord object, you use itsSet...() functions; these functions are named
for the type of data that they implant:

• SetLong() places a long value in the BRecord.
• SetDouble() places a double value.
• SetString() copies a string.
• SetRecordID() places a arecord_id value.
• SetTime() places a double that measures time since January 1, 1970.
• SetRaw() copies an arbitrarily long buffer of “raw” data (typevoid *).

Each of these functions designates, as its first argument, the table field that’s used to refer
to the data. There are two ways to make this designation: by a field’s name, or by its field
key (as defined by the BTable class).

Continuing our employee record example, we begin to put data in the new BRecord by
setting data for the “name” and “extension” fields:

/* We'll designate the "extension" field by the field's name.
*/
employee_record->SetLong("extension", 123);

For variety, we’ll set the “name” field by its field key:

field_key name_key = employee_table->FieldKey("name");
employee_record->SetString(name_key, "Mingo, Lon");

In most cases, there’s no difference between the two methods of designating a field (by
name or field key); you can use which ever is more convenient. The one instance in which
there is a distinction is if you have a table with similarly named fields that are typed
differently, in which case, the fields willonly be distinguishable by field key. For
example, if your table has a long field named “info” and a string field that’s also named
“info”, you would distinguish between the fields by using their keys.

BRecord Overview

The Storage Kit –49

Committing a BRecord

The data that you set in a BRecord isn’t seen by the database (and so can’t be seen by other
applications) until youcommit the data through BRecord’sCommit() function:

record_id mingo_id = employee_record->Commit();

The function sends the object’s data back to the Storage Server, which places it in the
database; the Server creates a new record to hold the data if necessary. Therecord_id
value that the function returns uniquely identifies the record within its database (as
explained in the next section).

Important: Notice that the BRecord in the example was committed with an “empty”
field: The “manager” field hasn’t yet been set. Because this is a new record, the value at
this field is, by default,NULL. Unfortunately, there’s no way to distinguish between a
defaultNULL and a legitimateNULL. For example, if our “Employee” table included along
“vacation days” field, the value (for that field) could legitimately be 0—it would look the
same as NULL. You wouldn’t be able to tell if the value was accurate, or if the field hadn’t
yet been filled in.

Record ID Numbers

A record is identified, within its database, by a record ID number (typerecord_id): Every
record in a given database has a different record ID. A BRecord knows the record ID of
the record it represents (you can get it through theID() function). But keep in mind that a
record ID identifies a record, not a BRecord; thus:

• Before you commit a new BRecord (more accurately, before you commit it for the
first time), the object won’t have a record ID because it doesn’t yet represent a real
record.

• More than one BRecord object can point to the same record: They can have the
same record ID value, even if the objects are in different applications. Because of
this, a record ID number can be passed between applications—in a BMessage,
typically—the number will have the same meaning (it will represent the same
record) in the other application as it does in yours.

Record ID Fields

One of the features of therecord_id type is that it can be used to define a table field. Just
as you can declare a table field to acceptlong or string data, you can declare a field to take
record ID values (through BTable’sAddRecordIDField() function). Through the use of a
record ID field, one record can point to another record. Although the two records must
reside in the same database, the two records needn’t conform to the same table. In fact,
you can’t designate, in the field definition, the table that the pointed-to record conforms to.

Returning to the example, the “manager” field in the “Employee” table is typed as a
record_id field. To set the value for this field in our employee record, we need to find the

Overview BRecord

50 – The Storage Kit

record ID of Lon Mingo’s manager. This is a job for a BQuery object, as explained in that
class.

The Record Ref Structure

Therecord_ref structure is similar to therecord_id number: It identifies a record in a
database. The difference between these two entities is that the record_ref structure
encodes the record IDand the database ID (the ID of the database in which the record
resides); the structure’s definition is

struct record_ref {
record_id record;
database_id database;

}

A record ref (or, simply, “ref”) is, therefore, more exacting in its identification of a record
than is the record ID. So why would you use a record ID if a ref is more precise?

• Generally speaking, refs are meant to be used in applications that want to access the
database but that don’t want to worry about the details of tables, queries, and so on.
More specifically, refs are used to identify and retrieve items from the file system.

• Record ID’s, on the other hand, are the common coin of “real” database
applications. For example, the BTable class defines aSetRecordIDField()—it
doesn’t have a function that sets a field that takes a ref. Similarly, BQuery objects
retrieve record ID numbers—they don’t retrieve refs. If you’re using BTables and
BQueries, you know which database you’re talking to, so you don’t need to encode
its identity in a cumbersome structure.

Comparing Refs

Therecord_ref structure defines the == and != comparison operators. This allows you to
compare two refs as values. For example, the following is legal:

record_ref a = a_record->Ref();
record_ref b = b_record->Ref();

if (a == b)
...

For two refs to be equal, theirdatabase fields must be the same and theirrecord fields
must be the same.

BRecord Overview

The Storage Kit –51

Retrieving an Existing Record

In addition to creating new (potential) records for you, the BRecord constructor can
retrieve an existing record from a database. To do this, you pass a BDatabase object and
record ID to the constructor:

BRecord(BDatabase *a_database, record_idrecord)

Typically, you fetch the record ID numbers that BQuery object and tell it which records to
fetch. The object retrieves record ID numbers which you then use here to actually get
records. (See the BQuery class for information on fetching.)

Data Examination

To examine the data in a BRecord, you ask for the value of a specific field (as defined by
the object’s BTable). This is accomplished by functions that take this form:

FindType(field_keykey)
FindType(char *field_name)

where Type is one of the six data types that a field can take (ergo FindLong(),
FindDouble(), FindRaw(), FindRecordID(), FindString(), andFindTime()). Each function
has two versions so you can designate the field by field key or by name. The functions
return the field’s data directly. The two pointer-returning functions (FindRaw() and
FindString()) return pointers to data that’s owned by the BRecord. You shouldn’t try to
modify BRecord data by writing to these pointers.

Updating a BRecord

Keep in mind that when you examine a BRecord’s data, you’re looking at the object’s
copy of the data that exists in the actual record in the database. If the actual record
changes—if a field’s value is modified, or if the record itself disappears—such changes are
not automatically reflected in the BRecord objects that point to the record. (“Live” queries,
as explained in the BQuery class, help in this regard, as they inform your application when
a change is made.)

If you want to be sure you have the most recent data in your BRecord before you examine
it, you should call theUpdate() function. Update() re-copies the record’s data into your
BRecord object. Note, however, that any uncommitted changes that you’ve made to the
BRecord are lost when you update.

Data Modification

Modifying data in a BRecord is also done in reference to specific fields. The suite of
modification functions mirrors those for examination, but with an additional argument that
specifies the value you want to set:

Overview BRecord

52 – The Storage Kit

SetType(field_keykey, data_type value)
SetType(char *field_name, data_type value)

For example, the functions that setlong data are:

SetLong(field_keykey, long value)
SetLong(char *field_name, long value)

The changes that you make to the object’s data aren’t sent back to the database until you
call Commit(). The one exception to this is if you remove the record altogether (through
theRemove() function). You don’t have to call Commit() after you callRemove().

Extra Fields

In addition to the fields that are defined by its table, a record can contain “extra” fields.
Extra fields are created and removed dynamically (through a BRecord object) without
affecting the record’s table definition. Extra fields are identified by name only, and the
data they contain is always untyped (it’s considered to be raw).

To add an extra field to a BRecord, you use theSetExtra() function. The function takes
three arguments: The name of the field that you’re adding, the data that you want the field
to contain, and the length of the data. For example, here we add two extra fields to the
employee record:

employee_record->SetExtra("motto",
(const void *)"I Am Mingo",
strlen("I Am Mingo"));

long age = 35;
employee_record->SetExtra("age",

(const void *)&age,
sizeof(long));

employee_record->Commit();

To find the data in an extra field, you pass the name of the field toFindExtra(). The
function returns a pointer to the data as it lies in the BRecord object—it doesn’t copy the
data. The function also returns the amount of data (in bytes) that the extra field is storing:

char *m_ptr, *motto;
long *a_ptr, age, size;

if ((m_ptr = (char *)FindExtra("motto", &size)) == NULL)
...

else {
motto = malloc(size+1); /* Add 1 for the NULL */
strncpy(motto, m_ptr, size);
motto[size] = '\0';

}

if ((a_ptr = (long *)FindExtra("age", &size) == NULL)
...

BRecord Constructor and Destructor

The Storage Kit –53

else
age = *a_ptr;

BRecord supplies the functionGetExtraInfo() so you can discover the names and sizes of a
record’s extra fields. The function takes an index (n) as its initial argument and returns a
pointer to then’th extra field’s name and the size of the field in its second and third
arguments. It returnsB_ERROR if the index is out-of-bounds. Here, we use the function to
iterate over all the extra fields in a record:

char *name;
long size;
long i = 0;

while (employee_record->GetExtraInfo(i++, &name, &size)
!= B_ERROR)

printf("Extra Field Name: %s; Size %d\n", name, size);

A single record can contain any number of extra fields; the only restoration is that they all
must have different names. If you callSetExtra() using a name that already exists, the
existing data is removed and the new data is installed. On the other hand, an extra field
can have the same name as a field in the record’s table: The BRecord object keeps the two
sets of fields separate, so it won’t get confused.

Since extra fields aren’t part of a table definition, you can’t declare them to be indexed (as
the term is used in the BTable class), and you can’t use them in a query predicate (see the
BQuery class).

Constructor and Destructor

BRecord()
BRecord(BDatabase *database, record_idid)
BRecord(record_refref)
BRecord(BTable *table)
BRecord(BRecord *record)

Creates a new BRecord object and returns it to you.

The first version of the constructor (the BDatabase andrecord_id version) is used to
acquire the record with the given ID from the specified database. The second version does
the same, but encodes the database and record identities as a single record_ref value.

The second version (BTable) constructs a BRecord that can accommodate values for the
fields that are declared in its BTable argument.

The third version copies the data from the argument BRecord into the new BRecord
(including the ref value).

Member Functions BRecord

54 – The Storage Kit

You should follow a call to the constructor with a call toError() to make sure the specified
record was found or created; the function returnsB_ERROR for failure andB_NO_ERROR for
success.

See also: Error()

~BRecord()
~BRecord(void)

Frees the memory allocated for the object’s copy of the database data. The object isnot
automatically committed by the destructor; if there are uncommitted changes, you must
explicitly commit them or they’ll be lost.

Note that you are responsible for deleting the BRecords that you’ve constructed. When
you commit or remove a record (when you call Commit() or Remove()), you’renot giving
the object to the Server.

Member Functions

Commit()
record_idCommit(void)

Sends the BRecord’s data back to the database. The function returns therecord_ref of the
record that the object represents. It does this as a convenience for new records, which will
be receiving fresh ref numbers; “old” records (records that were previously retrieved from
the database) don’t change ref values when they’re committed.

You should callError() immediately after callingCommit() to see if the operation was
successful (B_NO_ERROR). It will fail (B_ERROR) if the ref isn’t valid, if the record has
been locked by some other object, or if some other obstacle bars the path of ingress.

See also: Lock(), Update()

Database()
BDatabase *Database(void)

Returns the BDatabase object that represents the database that owns the table that defines
the record that killed the cat that ate the rat that’s represented by this BRecord.

BRecord Member Functions

The Storage Kit –55

Error()
long Error(void)

Returns an error code that symbolizes the success of the previous call to certain other
functions. The following functions set the code that’s returned here:

• the BRecord constructor
• Commit()
• Update()
• FindLong(), FindString(), ...
• SetLong(), SetString(), ...
• Remove()

In all cases, a return fromError() of B_NO_ERROR means that the previous call was
successful;B_ERROR means it failed.

After Error() returns the error code is automatically reset toB_NO_ERROR.

FindDouble() FindLong(), FindRaw(), FindRecordID(), FindString(),
FindTime()

double FindDouble(char *field_name)
double FindDouble(field_keykey)

long FindLong(char *field_name)
long FindLong(field_keykey)

void *FindRaw(char *field_name, long *size)
void *FindRaw(field_keykey, long *size)

record_id FindRecordID(char *field_name)
record_id FindRecordID(field_keykey)

const char *FindString(char *field_name)
const char *FindString(field_keykey)

double FindTime(char *field_name)
double FindTime(field_keykey)

These functions return the value of the designated field in the BRecord. None of these
functions check to make sure you’re returning the value in an appropriate data type, nor do
they perform any type conversion.

FindRaw() andFindString() return pointers to data that’s owned by the object. If you want
to manipulate or store the data, you must copy it before deleting the object. TheFindRaw()
functions also return, by reference insize, the amount of data that it points to.

You should always checkError() after calling one of these functions to make sure the call
was successful. The usual culprit, in a failure, is an illegitimate field specification. Asking
for the value of a non-existing field, for example, will fail.

Member Functions BRecord

56 – The Storage Kit

There is a subtle difference between the field name and field key versions of these
functions: If you ask for a value by field name, the data type given by the selected
function is used to locate the correct field. For example, if the “age” field storeslong data
but you ask for its value as a string ...

char *ageString = FindString("age");

... the function won’t be able to find a string-valued “age” field and so will fail (Error() will
returnB_ERROR). The analogous request by field key:

char *ageString = FindString(a_table->FieldKey("age"));

won’t appear to fail (Error() returnsB_NO_ERROR), even though it will return something
awful.

See also: SetDouble()

FindExtra() see SetExtra()

GetExtraInfo() see SetExtra()

IsNew()
bool IsNew(void)

ReturnsTRUE if the object was constructed to represent a new record, and hasn’t yet been
committed.

See also: the BRecord constructor

Ref()
record_refRef(void)

Returns therecord_ref structure of the BRecord’s record. This structure uniquely
identifies the record across all databases. This function always returns arecord_ref value,
even if the BRecord has never been committed (in which case the structure’srecord field
will be -1).

Remove()
void Remove(void)

Removes the BRecord’s record from the database. The success of the removal is reported
in the value returned byError() (B_NO_ERROR if the record was removed,B_ERROR if it
wasn’t).

BRecord Member Functions

The Storage Kit –57

RemoveExtra() see SetExtra()

SetDouble(), SetLong(), SetRaw(), SetRecordID(), SetString(),
SetTime()

void SetDouble(char *field_name, doublevalue)
void SetDouble(field_keykey, doublevalue)

void SetLong(char *field_name, longvalue)
void SetLong(field_keykey, longvalue)

void SetRaw(char *field_name, void *ptr, longsize)
void SetRaw(field_keykey, void *ptr, longsize)

void SetRecordID(char *field_name, record_idvalue)
void SetRecordID(field_keykey, record_idvalue)

void SetString(char *field_name, char *ptr)
void SetString(field_keykey, char *ptr)

void SetTime(char *field_name, doublevalue)
void SetTime(field_keykey, doublevalue)

Sets the value of the designated field to the value given byvalue. These functions don’t
perform type checking or type conversion. (SeeFindDouble() for more information on
fields and types; the rules described there apply here.)

SetRaw() andSetString() copy the data that’s pointed to by theirptr arguments. The
SetString() pointer must point to aNULL-terminated string. You specify amount of data (in
bytes) that you wantSetRaw() to copy through the function’ssize argument. Keep in mind
that you can only store 32 kilobytes of data in a single record (in all its fields combined).

To gauge the success of the modification, check the value returned by Error(). If the field’s
value was successfully set,Error() returnsB_NO_ERROR; otherwise it returnsB_ERROR.

The value-setting functions don’t affect the actual record that the BRecord represents:
When you call aSetType() function, you’re modifying the BRecord’s copy of the data, not
the actual data that lives in the database. This means that you’re able to successfully call
these function if the record is locked, and if the BRecord doesn’t (yet) have a ref
(conditions under which many other functions fail). To write your change to the database,
you call BRecord’sCommit() function.

Keep in mind that a subsequentLock() call will wipe out the (uncommitted) changes that
you’ve made through these functions. This is an important point since many applications
will want to lock before committing. If you plan on locking, you should do sobefore
using these functions. In other words:

/* Lock, modify, commit, unlock. */
a_record->Lock();

a_record->SetLong("age", 9);
a_record->SetString("name", "Emma");

Member Functions BRecord

58 – The Storage Kit

...
a_record->Commit();
a_record->Unlock();

See also: FindLong()

SetExtra(), FindExtra(), RemoveExtra(), GetExtraInfo()
void SetExtra(const char *name, const void *data, longdataLength)

void *FindExtra(const char *name, long *dataLength)

void RemoveExtra(const char *name)

long GetExtraInfo(long index, char **name, long *dataLength)

These functions add, query, and remove the BRecord’s “extra” fields. Extra fields can be
added and removed dynamically; they aren’t part of the definition of the table to which the
record conforms. Extra fields are identified by names and can hold an arbitrary amount of
untyped data. The names of a record’s extra fields must be unique among themselves, but
can be the same as the record’s “normal” (table-defined) fields. For examples of these
functions, see “Extra Fields” on page 52.

SetExtra() creates a new extra field named name, or replaces the existing so-named field.
The data that the field holds is copied fromdata; the amount of data to copy is given by
dataLength. The extra data that you add through this function must be committed
(through theCommit() function) just like “normal” data.

FindExtra() finds the field namedname and returns a pointer to its data (directly). The
length of the data is passed back by reference through thedataLength argument. Keep in
mind that the function gives you a pointer to data that’s owned by the BRecord. You
shouldn’t modify or free the pointer. IfFindExtra() can’t find the named field, it returns
NULL.

RemoveExtra() removes the named field.

GetExtraInfo() retrieves information about theindex’th extra field: A pointer to the field’s
name is returned in*name, and the length of the field’s data is returned in*dataLength.
You shouldn’t allocate*name before passing it in—the pointer that’s passed back points
into the BRecord itself. By the same token you mustn’t free or modify *name. If index is
out of bounds,GetExtraInfo() returnsB_ERROR, and sets *name to point toNULL.
Otherwise, it returnsB_NO_ERROR.

Table()
BTable *Table(void)

Returns the BTable to which the BRecord conforms.

BRecord Member Functions

The Storage Kit –59

Update()
 void Update(void)

Copies the record’s data from the database into the BRecord. Any uncommitted changes
you have made to the data that’s currently held by the BRecord will be lost. The success
of the update is reported by the value returned by the Error() function (B_NO_ERROR means
success; B_ERROR indicates failure).

Member Functions BRecord

60 – The Storage Kit

The Storage Kit –63

BResourceFile

Derived from: public BFile

Declared in: <storage/ResourceFile.h>

Overview

The BResourceFile class defines structured files that contain a collection of data entries, or
resources. A single resource file can hold an unlimited number of resources; a single
resource within a resource file can contain an unlimited amount of data.

Creating a Resource File

A resource file (as it lies on the disk) is tagged with an identifying header that
distinguishes it (the file) from “plain” files. The distinction between a resource file and a
plain file is important: Although you can (inadvertently, one assumes) refer a
BResourceFile object to a plain file, you won’t be able to use the object to open the file.
Simply referring a BResourceFile object to an existing plain file willnot transform the file
into a resource file.

To create a new resource file—to create a file that’s given a resource header—you pass a
pointer to an allocated BResourceFile object to BDirectory’sCreate() function:

BResourceFile rFile;
aDirectory->Create("NewFile", &rFile);

You can also create a new resource file by copying an existing resource file through
BFile’s CopyTo() function.

The only files that are automatically created (by the system) as resource files are
executables: All applications and programs have the capacity to store resources.

Accessing Resource Data

After you’ve created (or otherwise obtained) a resource file, you open the BResourceFile
object that refers to it through theOpen() function (inherited from BFile), and then use the
ManipulateResource() functions (AddResource(), RemoveResource(), and so on) defined
by the BResourceFile class to examine and manipulate the file’s contents. Each of the
resource-affecting functions performs its magic on one resource at a time.

Overview BResourceFile

64 – The Storage Kit

BResourceFile doesn’t disqualify BFile’sRead() andWrite() functions—but you shouldn’t
use them. These functions will read and write the resource file as flat data, as if it were a
plain file. It’s your file, but this probably isn’t what you want. (To be a bit less
prohibitive, reading a resource file is safe and might be slightly informative).

When you’ve had enough of manipulating resources (and notWrite()-ing them), you
should close the resource file, through the inheritedClose() function.

Identifying a Resource within a Resource File

A single resource within a resource file is tagged with a data type, an ID, and a name:

• The data type is one of the Application Kit-defined types (B_LONG_TYPE,
B_STRING_TYPE, and so on) that characterize different types of data. The data type
that you assign to a resource doesn’t restrict the type of data that the resource can
contain, it simply serves as a way to label the type of data that you’re putting into
the resource so you’ll know how to cast it when you retrieve it.

• The ID is an arbitrary integer that you invent yourself. It need only be meaningful
to the application that uses the resource file.

• The name is optional, but can be useful: You can look up a resource by its name, if
it has one.

Taken singly, none of these tags needs to be unique: Any number of resources (within the
same file) can have the same data type, ID, or name. It’s thecombination of the data type
constant and the ID that uniquely identifies a resource within a file. The name, on the
other hand, is more of a convenience; it never needs to be unique when combined with the
data type or with the ID.

Data Format

All resource data is assumed to be “raw”: If you want to store aNULL-terminated string in
a resource, for example, you have to write theNULL as part of the string data, or the
application that reads the resource from the resource must apply theNULL itself. Put more
generally, the data in a resource doesn’t assume any particular structure or format, it’s
simply a vector of bytes.

Data Ownership

The resource-manipulating functions cause data to be read from or written to the
resource file directly and immediately. In other words, the BResourceFile object doesn’t
create its own “resource cache” that acts as an intermediary between your application
and the resource file. This has a couple of implications:

• Resource data that you retrieve from or write to a BResourceFile object belongs to
your application. For example, the data that’s pointed to by theFindResource()

BResourceFile Constructor and Destructor

The Storage Kit –65

function is allocated by the object for you—it’s your responsibility to free the data
when your finished with it. Similarly, the data that you pass toAddResource() (to
be added as a resource in the file) must be freed by your application after the
function returns.

• The individual changes that you make to the resources are visible to other
BResourceFiles (that are open on the same file) immediately as they are made. You
can’t, for example, bundle up a bunch of changes and then “commit” them all at the
same time.

Constructor and Destructor

BResourceFile()
BResourceFile(void)
BResourceFile(record_refref)

The BResourceFile constructor creates a new object and returns a pointer to it. You can
set the object’s ref by passing it as an argument here; without the argument, the object
won’t refer to a file—it will be essentially useless—until the ref is set. The methods by
which you set (or re-set) an unreferenced BResourceFile’s ref are the same as for a BFile:

• BStore::SetRef()
• BFile::CopyTo()
• BDirectory::Create()
• BDirectory::GetFile()

You can refer a BResourceFile object to any file; that is, you’reallowed to do so.
However, only those BResourceFile objects that refer to actual resource files are allowed
to be opened—theOpen() function will fail if the BResourceFile refers to a plain file.

Simply pointing the ref to a random file will not convert the file so that it can hold
resources. Resource files can only be created by passing a BResourceFile object to
BDirectory’s Create() function, or by copying an existing resource file throughCopyTo().

~BResourceFile()
virtual ~BResourceFile(void)

Destroys the BResourceFile object; thisdoesn’tremove the file that the object corresponds
to (to remove a file, use BDirectory’sRemove() function). The object is automatically
closed (through a call toClose()) before the object is destroyed.

Member Functions BResourceFile

66 – The Storage Kit

Member Functions

AddResource()
long AddResource(ulongtype,

long id,
void *data,
longdataLength,
const char *name= NULL)

Adds a new resource to the file. For this function to have an effect, the file must be open
for writing. The arguments are:

• type is one of the data type constants defined by the Application Kit (B_LONG_TYPE,
B_STRING_TYPE, and so on).

• id is the ID number that you want to assign to the resource. The value of the ID has
no meaning other than that which you application imbues it with; the only
restriction on the ID is that the combination of it and the data type constant must be
unique across all resources in this resource file.

• data is a pointer to the data that you want the resource to hold.

• dataLength is the length of thedata buffer, in bytes.

• name is optional, and needn’t be unique. Or even interesting.

Ownership of thedata pointer isn’t assigned to the BResourceFile object by this function;
afterAddResrouce() returns, your application can free or otherwise manipulate the buffer
thatdata points to without affecting the data that was written to the file.

If the combination oftype andid is already being used by a resource in this
BResourceFile, or if, for any other reason, the resource data couldn’t be written to the file,
the function returnsB_ERROR. Otherwise, it returnsB_NO_ERROR.

Warning: Currently,AddResource() will write over an existing resource. In this case,
the function returns a positive integer (specifically, it returns the number of bytes that it
just wrote), but itdoesn’t change the name of the resource. For now, you should call
RemoveResource() just before callingAddResource(), passing the sametype andid
arguments to both functions.

See also: WriteResource()

FileCreated()
virtual longFileCreated(void)

FileCreated() is a hook function, defined by BFile, that’s called when a new file is created.
BResourceFile implementsFileCreated() to put a magic number at the top of the resource
file. If you derive a class from BResourceFile and implement your own version of

BResourceFile Member Functions

The Storage Kit –67

FileCreated(), you should call BResourceFile’s version of the function before performing
your own initializations.

FindResource()
void *FindResource(ulongtype,

long id,
void *dataLength)

void *FindResource(ulongtype,
const char *name,
void *lengthFound)

Finds the resource identified by the first two arguments, and returns a pointer to a copy of
the resource’s data. The size of the data, in bytes, is returned by reference in
*lengthFound.

It’s the caller’s responsibility to free the pointed-to data.

If the first two arguments don’t identify an existing resource,NULL is returned.

See also: ReadResource()

GetResourceInfo()
bool GetResourceInfo(longbyIndex,

ulong *typeFound,
long *idFound,
char **nameFound,
long *lengthFound)

bool GetResourceInfo(ulongbyType,
longandIndex,
long *idFound,
char **nameFound,
long *lengthFound)

bool GetResourceInfo(ulongbyType,
longandId,
char **nameFound,
long *lengthFound)

bool GetResourceInfo(ulongbyType,
char *andName,
long *idFound,
long *lengthFound)

These functions return information about a specific resource, as identified by the first one
or two arguments:

• The first version (byIndex) searches for the n’th resource in the file.

Member Functions BResourceFile

68 – The Storage Kit

• The second (byType plusandIndex) searches for the n’th resource that has the given
type.

• The third (byType plusandId) looks for the resource with the unique combination of
type and ID.

• The third (byType plusandName) looks for the first resource that has the given type
and name.

The other arguments return the other statistics about the resource (if found). The pointer
that’s returned in *foundName belongs to the BResourceFile. Don’t free it.

The functions returnTRUE if a resource was found, andFALSE otherwise.

HasResource()
bool HasResource(ulongtype, long id)

bool HasResource(const char *name, ulongtype)

ReturnsTRUE if the resource file contains a resource as identified by the arguments,
otherwise it returnsNOPE.

Keep in mind that there may be more than one resource in the file with the samename and
type combination. Thetype andid combo, on the other hand, is unique.

ReadResource()
long ReadResource(ulongtype,

long id,
void *data,
longoffset,
longdataLength)

Reads data from an existing resource (identified bytype andid) and places it in thedata
buffer. offset gives the location (measured in bytes from the start of the resource data)
from which the read commences, anddataLength is the number of bytes you want to read.
Thedata buffer must already be allocated and should be at leastdataLength bytes long.

You can ask for more data than the resource contains; in this case, the buffer is filled with
as much resource data as exists (or fromoffset to the end of the resource). However, note
well that the functiondoesn’t tell you how much data it actually read.

The function returnsB_ERROR if the buffer is only partially filled, or if the resource wasn’t
found. Otherwise, it returnsB_NO_ERROR.

See also: FindResource(), WriteResource()

BResourceFile Member Functions

The Storage Kit –69

RemoveResource()
long RemoveResource(ulongtype, long id)

Removes the resource identified by the arguments. The function returnsB_NO_ERROR if
the resource was successfully removed, andB_ERROR otherwise.

WriteResource()
long WriteResource(ulongtype,

long id,
void *data,
longoffset,
longdataLength)

Writes data into an existing resource, possibly overwriting the data that the resource
currently contains. Thetype andid arguments identify the target resource; this resource
must already be present in the file—WriteResource() doesn’t create a new resource if the
type/id combination fails to identify with a winner.

data is a pointer to the new data that you want to place in the resource;dataLength is the
length of the data buffer.offset gives the location at which you want the new data to be
written; the offset is taken as the number of bytes from the beginning of the existing
resource data. If the new data is placed such that it exceeds the size of the current resource
data, the resource grows to accommodate the new data.

You can’t use this function to “shrink” a resource. To remove a portion of data from a
resource, you have to remove the resource and then re-add it.

If type andid don’t identify an existing resource, of if the data couldn’t be written, for
whatever reason, this function returnB_ERROR. Otherwise, it returnsB_NO_ERROR.

See also: AddResource()

Member Functions BResourceFile

70 – The Storage Kit

The Storage Kit –69

BStore

Derived from: public BObject

Declared in: <storage/Store.h>

Overview

BStore is an abstract class that defines common functionality for its two subclasses, BFile
and BDirectory. You never construct direct instances of BStore, nor does the Storage Kit
“deliver” such BStore instances to your application. The BStore objects that you work
with will always be instances of BFile or BDirectory (or from a class derived from these).

Furthermore, you shouldn’t derive your own classes directly from BStore. If you want to
create your own file class, you should derive your class from BFile (or, possibly,
BResourceFile). Y

Note: Throughout this class description, the terms “file” and “item” are used generically
to mean an actual item in a file system. The characteristics ascribed to files (in the
following) apply to directories as well.

Files, Records, and BStores

Every file in the file system has a database record associated with it. The record contains
information about the file, such as its name, when it was created, the directory it lives in,
and so on. All file system activities are performed on the basis of these “file records.”
For example, if you want to locate a file, you have to locate the file’s record; passing the
record (albeit indirectly, as described below) to a BStore causes the object to “refer to” the
file on disk. Until the object is referred to a file, it’s abstract and useless.

A BStore’s record is established through a record ref. A record ref (or, simply,ref) is a
structure of typerecord_ref that uniquely identifies a record across all databases by listing
the record’s ID as well as the ID of its database:

struct record_ref {
record_id record;
database_id database;

}

The nicety of the ref is that it bundles up all the database information that a BStore needs,
allowing your application to ignore the details of database organization.

Overview BStore

70 – The Storage Kit

Note: Record refs aren’t used only to identify records that describe files. A record ref is
simply a means for a identifying a record, regardless of what that record signifies.

How to Set a Ref

BStore’s SetRef() function sets the calling object’s ref directly. This function is often used
in an implementation of BApplication’sRefsReceived() hook function.RefsReceived() is
invoked automatically when a ref is sent to your application in a BMessage. For example,
when the user drops a file icon on your application, your application receives the ref of the
file through aRefsReceived() notification.

In a typical implementation ofRefsReceived(), you would ask the ref if it represents a file
or directory, allocate a BFile or BDirectory accordingly, and then pass the ref to the object
in an invocation ofSetRef(). An example of this is given in the description of the
does_ref_conform() function, in the section “Global Functions, Constants, and Defined
Types” on page 99.

SetRef() isn’t the only way to refer an object to a file. The most important of the other
functions that perform this feat are listed below:

• BDirectory’s GetFile() sets the ref for its BFile argument. The function refers the
object to a file based on the file’s name, or index within the directory.
GetDirectory() performs an analogous reference for a BDirectory argument.

• BStore’sGetParent() sets the argument BDirectory to refer to the calling object’s
“parent” directory. This is the directory that contains the file that the object refers
to.

• BVolume’sGetRootDirectory() refers its BDirectory argument to the BVolume’s
root directory. This is the “starting-point” directory in the volume’s file system.

Using these functions, you can traverse an entire file system: Given a BVolume object,
you can descend the file system by callingGetRootDirectory(), and then iteratively and
recursively callingGetFile() andGetDirectory(). Given a BFile or BDirectory, you can
ascend the hierarchy through recursive calls toGetParent().

An example of file system browsing, and a discussion of the file system hierarchy is given
in the description of the BDirectory class.

Altering the File System

Continuing the list of ref-setting functions, the following group of Storage Kit functions
set refs as side-effects of altering the structure of the file system:

• BDirectory’sCreate() adds a new file to the file system. The BFile (or BDirectory)
that you pass to the function is referred to the new file (or directory).

BStore Overview

The Storage Kit –71

• Remove(), also defined by BDirectory, removes, from the file system, the file
referred to by the argument. This effectively “unsets” the argument object’s ref.

• BStore’sMoveTo() moves the calling object’s file to a new parent directory.

• BFile’s CopyTo() copies the calling object’s file and sets the ref of the argument
BFile to refer to the copy. Note that you can only copy files—you can’t copy
directories.

Passing Files to Other Threads

A file’s ref acts as a system-wide identifier for the file. If you want to “send” a file to some
other application, or to another thread in your own application—in other words, if you
want more than one process to operate asynchronously on the same file—you should
communicate the identity of the file by sending its ref. The thread that receives the ref
would construct its own BStore object and callSetRef(), in the manner of the
RefsReceived() function, described earlier.

You can’t retrieve a BStore’s ref directly from the object. Instead, you retrieve the object’s
record (through theRecord() function) and then retrieve the ref from the record (through
BRecord’sRef() function). The example below demonstrates this as it prepares a
BMessage to hold a ref that’s sent another application:

/* 'zapp' is the signature of the app that we want to send the
 * ref to.
 */
BMessenger *msngr = new BMessenger('zapp');

/* By declaring the BMessage to be a B_REFS_RECEIVED command,
 * the message will automatically show up (when sent) in the
 * other app's RefsReceived() function.
 */
BMessage *msg = new BMessage(B_REFS_RECEIVED);

/* Retrieve the ref from aFile (which is assumed to be
 * an extant BFile object).
 */
record_ref fileRef = aFile->Record()->Ref();

/* Add the ref to the BMessage and send it. */
msg->AddRef("refs", fileRef);
msngr->SendMessage(msg);

Custom Files

It’s possible to “customize” your files by, providing them with “custom” records. To do
this you need to understand a little bit about the database side of the Storage Kit. Before
continuing here, you should be familiar with the BRecord and BTable classes.

Overview BStore

72 – The Storage Kit

When you create a new file, a record that represents the file is automatically created and
added to the database. The table to which this record conforms depends on whether the
file is, literally, a file (as opposed to a directory): If it’s a file, the record conforms to the
“File” table; if it’s a directory, it conforms to “Folder.” (Resource files, as described in the
BResourceFile class, also conform to “File”.)

TheCreate() function, defined by BDirectory, lets you declare (by name) a table of your
own design as the table to which the new file’s record will conform. The only restriction
on the table is that it should inherit (in the table-inheritance sense) from either “File” or
“Folder” as the item that you’re creating is a file or a directory.

By creating and using your own “file tables,” you can augment the amount and type of
information that’s kept in a file’s record. In the example shown below, a “Image File”
table is defined and used to create a new file:

/* The BDatabase object aDB is assumed to exist. */
BTable *ImageTable = aDB->CreateTable("Image Table", "File");

SoundTable->AddLongField("Height");
SoundTable->AddLongField("Width");
SoundTable->AddStringField("Description");

/* Create a new "image file." The BDirectory object aDir
 * is assumed to exist.
 */
BFile myImageFile;
aDir->Create("Bug.image", &myImageFile, "Image Table");

Tables, remember, are defined for specific databases; the ImageTable definition shown
here is defined for theaDB database. Similarly, a directory is part of a specific file system.
If you designate a table when creating a new file, the table’s database and the directory’s
file system must belong to the same volume. Put programmatically, the database and
directory objects used above must be related thus:

aDB->Volume() == aDir->Volume()

Adding Data to a File Record

To add data to a file’s record, you get the record through BStore’sRecord() function, and
then call BRecord’s data-adding functions. For example:

BRecord *myImageRec = myIageFile->Record();

myImageRec->SetLong("Height", 256);
myImageRec->SetLong("Width", 512);
myImageRec->SetString("Description", "Bug squish");
myImageRec->Commit();

The Commit() call at the end of the example is essential: If you change a file’s record
directly, you must commit the changes yourself (but see “The Store Creation Hook” on
page 73 for an exception to this rule).

BStore Overview

The Storage Kit –73

File Record Caveats

If you create and use your own file records, heed the following:

• You may only change those fields that were added through your table. Because of
table-inheritance, your file records will contain a number of fields that were defined
by the “File” or “Folder” tables. Don’t touch these fields. They don’t belong to
you.

• Don’t mix BRecord function calls with BStore function calls. Almost all the BStore
(and BFile and BDirectory) functions update the file’s record (they call BRecord’s
Update()). If you’re in the middle of altering the BRecord and then call a seemingly
innocuous function—GetName(), for example—you’ll lose the BRecord changes
that you’ve made. You must call BRecord’sCommit() after making BRecord
changes and before you make subsequent BStore calls.

The Store Creation Hook

In some cases, you may want to change a new file’s record before the file becomes
“public.” Normally, when you call BDirectory’s Create() function, the system creates a
record for the file, fills in the fields that it knows about (in other words, it fills in the
fields that belong to the “File” or “Folder” table), commits the record, and then returns
the new BFile (or BDirectory) to you. (This would be the natural order of things in the
example shown above.)

The important point here is that the record is committedbefore you get a chance to touch
the fields that you’re interested in. If some application has a live query running (as defined
by the BQuery class), the incompletely filled-in record—which will be a candidate for the
query from the time that it’s committed by the system—may inappropriately pass the
query.

To give you access to the record before it’s committed,Create() lets you pass astore
creation hookfunction as an optional (fourth) argument. Such a function assumes the
following protocol:

long store_creation_hook_name(BStore *item, void *hookData)

Note that this is a global function; the store creation hook can’t be declared as part of a
class. Also, although store_creation_hook is declared (inStore.h) as atypedef, the
declaration is intended to be seen for its protocol only: You can’t declare a function as a
store_creation_hook type.

The store creation hook is called just after the file’s record is created, but before it’s
committed. The first argument is a BStore object that represents the new file. The record
changes shown in the previous example would be performed in a store creation hook thus:

/* Define a store creation hook function. */
long imageFileHook(BStore *item, void *hookData)
{

BRecord *myImageRec = item->Record();

Overview BStore

74 – The Storage Kit

myImageRec->SetLong("Height", 256);
myImageRec->SetLong("Width", 512);
myImageRec->SetString("Description", "Bug squish");
return B_NO_ERROR;

}

Note that youdon’t commit record changes that you make in a store creation hook.
They’ll be committed for you after the function returns. If the hook function returns a
value other than B_NO_ERROR, the store creation is aborted (by theCreate() function).

TheCreate() call with this hook function would look like this:

aDir->Create("Bug.image", &myImageFile, "Image Table",
 imageFileHook);

Other Hook Providers

All Storage Kit functions that create files provide a store creation hook mechanism.
These are:

• BFile::CopyTo()
• BDirectory::Create()
• BStore::MoveTo()

The details of the mechanism as demonstrated by theCreate() examples shown here apply
without modification to the other functions as well.

Hook Data

You can pass additional data to your hook function by supplying a buffer ofvoid * data as
the Create() function’s final argument. This “hook data” is passed as the second argument
to the hook function. Here, we redefine the hook function used above to accept an image
description string as hook data:

/* Define a store creation hook function. */
bool imageFileHook(BStore *item, void *hookData)
{

BRecord *myImageRec = item->Record();

myImageRec->SetLong("Height", 256);
myImageRec->SetLong("Width", 512);
myImageRec->SetString("Description", (char *)hookData);
return TRUE;

}

And here we callCreate(), passing it some hook data:

aDir->Create("Bug.image", &myImageFile, "Image Table",
 iamgeFileHook, (void *)"Bug squish");

BStore Constructor and Destructor

The Storage Kit –75

Hook Function Rules

The rules that govern the use and implementation of a store creation hook are similar to
those you follow when, in general, you modify a BStore’s record.

• The store creation hook mechanism is providedexclusively so you can get to your
own table fields in a new file’s record. You mustn’t use it for any other purpose—
you mustn’t set fields that you didn’t define, or alter the new BStore in any way.

• Within the implementation of a store creation hook function, theonly BStore
function that you can call isRecord().

Constructor and Destructor

BStore()
protected:

BStore(void)

The BStore constructor is protected to prevent you from creating direct instances of the
class.

~BStore()
virtual ~BStore(void)

Although the BStore is public, you can’t actually use it. Since you can’t construct a
BStore object, you’ll never have the opportunity to destroy one.

Member Functions

CreationTime(), ModificationTime(), SetModificationTime()
long CreationTime(void)
long ModificationTime(void)
long SetModificationTime(const longtime)

The first two functions return the time the referred-to item was created and last modified,
measured in seconds since January 1, 1970. To convert the time value to a string, you can
use standard-C functionstrftime() or ctime() (as declared intime.h). If the object doesn’t
refer to a file (or directory), the functions returnB_ERROR.

Member Functions BStore

76 – The Storage Kit

SetModificationTime() lets you set the modification time for the item. The function returns
B_ERROR if the object’s ref isn’t set, if the item lives in a read-only file system, or if the
modification time couldn’t otherwise be set.

And a very special note to all you BFile users: These three functions work regardless of
the open state of the target object.

Error()
int Error(void)

Returns an error code that indicates the success of the previous BStore function call. The
possible codes are:

• B_ERROR; the requested operation couldn’t be performed, typically because the
object isn’t valid.

• B_NAME_IN_USE; this code is returned if, in an immediately preceding SetName()
call, you attempted to set the item’s name to one that identifies an existing item.

• B_NO_ERROR; the previous call succeeded.

TheError() functiondoesn’t record the success of the BStore operators.

GetName()
long GetName(char *name)

Copies the BStore’s name intoname. You must allocate the argument before you pass it
in. File names are never longer than the constantB_FILE_NAME_LENGTH; to be safe,name
should be at least that long. It’s the caller’s responsibility to free thename buffer.

If the BStore doesn’t refer to a file, this returnsNULL and sets theError() code toB_ERROR.

See also: SetName()

GetParent()
long GetParent(BDirectory *parent)

Sets the argument’s ref to the directory that contains this BStore. You must allocate the
argument before you pass it to the function; it’s the caller’s responsibility to delete the
argument object.

If this BStore represents a volume’s root directory (for which there is no parent), or if the
object is invalid, this function returnsB_ERROR; otherwise, it returnsB_NO_ERROR.

BStore Member Functions

The Storage Kit –77

GetPath()
long GetPath(char *buffer, longbufferSize)

Constructs the full path name to this object and copies the name intobuffer. You must
allocate the buffer before you pass it in; you pass the size of the buffer (in bytes) through
thebufferSize argument.

The path name is absolute and includes the volume name as its first element. You could,
for example, cache the name and then use it later as the argument to the global
get_ref_for_path() function. As long as the file system hasn’t changed, the latter function
would return the ref of the original item.

If the object doesn’t refer to a file system item, or if the buffer isn’t long enough to
accommodate the name,B_ERROR is returned and nothing is copied into the buffer.
Otherwise,B_NO_ERROR is returned.

See also: get_ref_for_path(), BDirectory::GetRefForPath()

MoveTo()
long MoveTo(BDirectory *dir,

const char *newName = NULL,
store_creation_hook *hookFunc = NULL,
void *hookData = NULL)

Removes the item from its present directory, and moves it to the directory represented by
dir. You can, optionally, rename the item at the same time by providing a value for the
newNameargument.

ThehookFunc andhookData arguments let you alter the file’s record before it’s
committed. This is exhaustively explained in the section “The Store Creation Hook” on
page 73 of the introduction to this class.

See also: SetName(), BFile::CopyTo(), BDirectory::Create()

Record()
BRecord *Record(void)

Returns a BRecord object that represents the record in the database that holds information
for the file system item that this BStore refers to. You can examine the values in the
BRecord (through functions defined by the BRecord class), but you should only set and
modify those fields that you’ve defined yourself (if any).

Any changes that you make to the BRecord must be explicitly committed by calling
BRecord’sCommit() function. Furthermore, you must commit your changesbefore
calling other BStore functions, even those that are seemingly innocuous.

Member Functions BStore

78 – The Storage Kit

More information on the use and meaning of a BStore’s record is given in the section
“Custom Files” on page 71 of the introduction to this class.

SetName()
long SetName(const char *name)

Sets the name of the item toname. If the item is the root directory for its volume, the
name of the volume is set to the argument as well.

Every item within a directory must have a different name; ifname conflicts with an
existing item in the same directory, the function fails and returnsB_NAME_IN_USE. Also,
you can’t change the name of a file that’s currently open;SetName() will return B_ERROR
in this case.B_ERROR is also returned if, for any other reason, the name couldn’t be
changed. Success is indicated by a return ofB_NO_ERROR.

See also: GetName(), MoveTo()

SetRef()
virtual longSetRef(record_refref)
virtual longSetRef(BVolume *volume, record_idid)

Sets the object’s record ref. By setting an BStore’s ref, you cause the object to refer to a
file in the file system.

The first version of the function sets the ref to the argument that you pass. This version of
the function is typically called in response to a ref being received by your application.

The second version induces the ref from the BVolume (which implies a specific database)
and record ID arguments. This version is useful if you’re finding files through a database
query.

More information on a BStore’s ref is given in the section “Files, Records, and BStores”
on page 69 of the introduction to this class.

VolumeID()
long VolumeID(void)

Returns the ID of the volume in which this item is stored. To turn the ID into a BVolume
object, pass it to BVolume’s SetID() function.

See also: BVolume::SetID()

BStore Operators

The Storage Kit –79

Operators

= (assignment)
inline BStore&operator=(const BStore&)

Sets the ref of the left operand object to be the same as that of the right operand object.

== (equality)
bool operator==(BStore) const

Compares the two objects based on their refs. If the refs are the same, the objects are
judged to be the same.

!= (inequality)
bool operator!=(BStore) const

Compares the two objects based on their refs. If the refs are not the same, the objects are
judged to be not the same.

Operators BStore

80 – The Storage Kit

The Storage Kit –83

BTable

Derived from: public BObject

Declared in: <storage/Table.h>

Overview

The BTable class defines objects that representtables in a database.

A table is a template for arecord, where a record is a collection of data that describes
various aspects of a “thing.” As a template, the table characterizes the individual datums
that a record can contain. Each such characterization, which consists of a name and a data
type, is called afield of the table. To make an analogy, a table is like a class definition, its
fields are like data members, and records are instances of the class.

A table’s definition—the make-up of its fields—is persistent: The definition is stored in a
particular database. Within a database, tables are identified by name; the BDatabase class
provides a function,FindTable(), that lets you retrieve a table based on a name (more
accurately, the function returns a BTable object that represents the table that’s stored in the
database). To create a new table, you use BDatabase’sCreateTable(), passing the name
by which you want the table to be known (an example is given in the next section). The
reliance on BDatabase to find and create tables enforces two important BTable tenets:

• A table can only exist in reference to a particular database. You can’t, for example,
create a table andthen add or otherwise “apply” it to a database. The BDatabase
object that you use as the target of aCreateTable() invocation represents the
database that will own the newly created table.

• The Storage Kit manages the construction and freeing of BTables for you. You
obtain BTable objects—through BDatabase’sFindTable() andCreateTable()
(among others)—rather than construct them yourself.

A subtler point regarding tables is that they don’t actually contain the records that they
describe. For example, every file in the Be file system is represented by a record in the
database. File records contain information such as the file’s name, its size, when it was
created, and so on. These categories of information (in other words, the “name,” “size,”
“creation data,”) are enumerated as fields in the “File” table. But the “File” table doesn’t
contain the records themselves—it’s simply the template that’s used to create file records.

Overview BTable

84 – The Storage Kit

Creating a Table

As mentioned above, you create a new table (and retrieve the BTable that’s constructed to
represent it) through BDatabase’sCreateTable() function. The function takes two
arguments:

• The first argument (achar *) supplies a name for the table. Unfortunately, the
Storage Kit doesn’t force table names to be unique. Before you create a new table,
you should make sure your proposed name won’t collide with an existing table (as
demonstrated in the example below).

• The second argument is optional; it identifies a table—by name or by BTable
object—that will act as the new table’s “parent.” If you designate a parent, the new
table will automatically contain the parent’s field definitions (as well as its
grandparent’s, and so on).

In the following example, a new table named “Employee” is created; the example assumes
the existence and validity of thea_db BDatabase object:

BTable *employee_table;

/* It’s a good idea to synchronize the BDatabase before
 * creating a new table. This refreshes the object's table
 * list.
 */
a_db->Sync();

/* Make sure the database doesn't already have an
 * "Employee" table.
 */
if (a_db->FindTable("Employee") != NULL)

return; /* or whatever */
else

/* Create the table. */
 employee_table = a_db->CreateTable("Employee");

The table name that you choose should, naturally enough, fit the “things” that the table
describes. By convention, table names are singular, not plural.

Adding Fields to a Table

Having created a table, you’ll want to add fields to it by calling BTable’s field-adding
functions. A field has two properties: a name and a data type. You pass the name as an
argument to a field-creating function; the data type is implied by the function name:

• AddStringField() adds a field that represents(char *) data.

• AddLongField() does the same forlong data.

• AddRawField() is for buffers of unspecified data type (void *).

BTable Overview

The Storage Kit –85

• AddTimeField() adds fields that holddouble values. Despite the function’s name,
you use this forany double value, not just time values.

• AddRecordIDField() adds a record ID field. This is one of the trickier BTable
notions, and is fully explained in the BRecord class description. Briefly, the value
that a record ID field represents is an integer that uniquely identifies a specific
record in the database. By adding a record ID field to a BTable, you allow records to
point to each other. (Using database parlance, the field lets you “join” records.)

Typically, you add fields only when you’re creating a new table; however, you’re not
prevented from adding them to existing tables.

Here we add three fields to the “Employee” table; the first field gives the employee’s
name, the second gives the employee’s telephone extension, and the third identifies the
record that represents the employee’s manager (this is further explained in the BRecord
class description):

field_key name_key =
 employee_table->AddStringField("name", B_INDEXED_FIELD);

field_key extension_key =
 employee_table->AddLongField("extension");

field_key manager_key =
 employee_table->AddRecordIDField("manager");

Notice that theAdd...Field() functions don’t return objects. That’s because fields aren’t
represented by objects; instead, they’re identified by name or by field key, as explained in
the next section (a subsequent section explains the meaning of the B_INDEXED_FIELD
argument used in the example).

You can retrieve information about a field through BTable’sGetFieldInfo() functions.

Field Keys

A field key is an integer that identifies a field within its table. Field key values have the
data typefield_key, and are returned by theAdd...Field() functions. (You can also get a
field’s key through theFieldKey() function, passing the field’s name as an argument.)
Field keys are used, primarily, when you add and retrieve BRecord data; this is taken up in
the BRecord class description.

Field keys arenot unique across the entire database—a field key value doesn’t encode the
identity of the field’s table. Furthermore, a field’s key value is computed on the basis of
the field’s name and data type. If you add, to a table, two fields that have the same name
and data type (which you aren’t prevented from doing), the fields will have the same field
key value.

Overview BTable

86 – The Storage Kit

Field Flags

The optional second argument to theAdd...Field() functions is a list of flags that you want
to apply to the field. Currently, there’s only one flag (B_INDEXED_FIELD), so the second
argument is either that or it’s excluded.

The presence of theB_INDEXED_FIELD flag means that the field will be considered when the
database generates its index (which it does automatically). Indexing makes data-retrieval
somewhat faster, but it also makes data-addition somewhat slower; the more fields that are
indexed, the greater the difference on either side. In general, you should only index fields
that you think will be most frequently used when data is retrieved (orfetched).

In the example, the “name” field is indexed; this implies the predication that employee
data will most likely be fetched on the basis of the employee’s name. (See the BQuery
class for examples of how data is fetched.)

Table Inheritance

A table can inherit fields from another table. For example, let’s say you want to create a
“Temp” table that inherits from “Employee”. To the “Temp” table you add fields named
“agency” and “termination” (date):

BTable *temp_table;

a_db->Sync();

/* This time, we perform the name-collision check AND test
 * to ensure that the parent exists.
 */
if (a_db->FindTable("Temp") != NULL ||

a_db->FindTable("Employee") == NULL)
return;

/* Now create the table... */
temp_table = a_db->CreateTable("Temp", "Employee");

/* ... and add the new fields. First we check to make sure
 * we didn't inherit these fields from "Employee". The checks
 * allow similarly named fields with different types, but not
 * fields that are identical in name -and- type. You can
 * tighten the check to disallow fields with identical names
 * by omitting the FieldType() check.
 */
if (temp_table->FieldKey("agency") != B_ERROR)

if (temp_table->FieldType("agency") != B_STRING_TYPE)
field_key agency_key =

 temp_table->AddStringField("agency");

if (temp_table->FieldKey("termination") != B_ERROR)
if (temp_table->FieldType("termination") != B_TIME_TYPE)

BTable Overview

The Storage Kit –87

field_key term_key =
 temp_table->AddTimeField("termination");

The checks that accompany the field additions in the example are, perhaps, a bit overly-
scrupulous, but they can be important in some situations, such as if you’re letting a user
define tables through manipulation of the user interface.

A table hierarchy can be arbitrarily deep. However, all tables within a particular hierarchy
must belong to the same database—table inheritance can’t cross databases. Also, there’s
no “multiple inheritance” for tables.

If you want your tables to show up in a Browser query window, the table must inherit,
however remotely, from “BrowserItem”. Furthermore, only those fields that start with a
capital letter are displayed in the letter. Uncapitalized field names are considered
private.

Note: Table hierarchies have nothing to do with the C++ class hierarchy. You can’t
manufacture a table hierarchy by deriving classes based on BTable, for example.

Type and App

When the user double-clicks an icon that’s displayed by the Browser, the Browser
launches (or otherwise finds) a particular app and then sends the clicked icon’s record to
the app. How does the Browser know which app to launch? If the icon represents a file,
then the Browser can simply ask the file for the app’s signature through the representative
BFile object’sGetTypeAndApp() message.

However, if the icon doesn’t represent a file—if it represents a “pure” database record—
then the Browser asks the record’s table forits app, through BTable’sGetTypeAndApp()
function. When you create a new table, you set the type and app through
SetTypeAndApp(). The “type” information for a table means the same thing as the “type”
of a file: It’s an application-specific identifier that describes the content of some data.

The type and app information for a table doesn’t belong to the Browser. Any application
can set and query this information.

Using a BTable

BTable objects are used in the definitions and operations of BRecord and BQuery objects.
These topics are examined fully in the descriptions of those classes, and are summarized
here.

BTables and BRecords

A table defines a structure for data, but it doesn’t, by itself, supply or contain the actual
data. To add data to a database, you must create and add one or more records. Records
are created in reference to a particular table; specifically, the amount and types of data

Constructor and Destructor BTable

88 – The Storage Kit

that a record can hold is determined by the fields of the table through which it’s created.
The record is said to “conform” to the table.

In your application, you create a record for a particular table by passing the representative
BTable object to the BRecord constructor:

/* Create a record for the "Employee" table. */
BRecord *an_employee = new BRecord(employee_table);

So constructed, thean_employee object will accept data for the fields that are contained
in theemployee_table object. Adding data to a BRecord, and examining the data that it
contains, is performed through BRecord’sSet...() andFind...() functions; the set of these
functions complements BTable’sAdd...Field() set.

BTable and BQuery

A BQuery object represents a request to fetch records from the database. The definition
of a BQuery includes references to one or more BTable objects. To add a BTable
reference to a BQuery, you use the BQueryAddTable() or AddTree() function. The
former adds a single BTable (passed as an argument), the latter includes the argument
BTable and all its descendants.

When the BQuery performs a fetch, it only considers records that conform to its
BTables’ tables. You can further restrict the domain of candidate records as described in
the BQuery class description. Anticipating that description, here’s what you do to fetch
all the records that confrom to a particular table:

/* Fetch all Employee records. */
BQuery *employee_query = new BQuery();

employee_query->AddTable(employee_table);
employee_query->PushOp(B_ALL);
employee_query->Fetch();

To fetch all “Employee” records—including those that conform to “Temp” as well as to
any other table that descends from “Employee”—we add the “Employee” table as a tree:

employee_query->AddTree(employee_table);
employee_query->PushOp(B_ALL);
employee_query->Fetch();

Constructor and Destructor

The BTable class doesn’t declare a constructor or destructor. You never explicitly create
or destroy BTable objects; you use, primarily, a BDatabase object to find such objects for
you. See the BDatabase class description.

BTable Member Functions

The Storage Kit –89

Member Functions

AddLongField(), AddRawField(), AddRecordIDField(),
AddStringField(), AddTimeField()

field_keyAddLongField(char *field_name, longflags = 0)
field_keyAddRawField(char *field_name, longflags= 0)
field_keyAddRecordIDField(char *field_name, longflags= 0)
field_keyAddStringField(char *field_name, longflags = 0)
field_keyAddTimeField(char *field_name, longflags = 0)

Adds a new field to the BTable and returns thefield_key value that identifies it. You
supply a name for the field through thefield_name argument. Theflags argument gives
additional information about the field; currently, the only flag value that the functions
recognize isB_INDEXED_FIELD. See the section “Field Keys” on page 85 for more
information about indexing.

You declare the type of data that the field will hold by selecting the appropriate function:

• AddRawField() declares untyped data (void *).
• AddLongField() declareslong data.
• AddRecordIDField() declaresrecord_id values.
• AddStringField() declares (char *) data.
• AddTimeField() declares double data.

Note: You useAddTimeField() to add any double-bearing field, not just fields that will
hold time values. The names will be fixed in a subsequent release.

Note that the functions don’t force fields names to be unique within a BTable; you can add
any number of fields with the same name. Furthermore (and slightly more concerning),
you aren’t prevented from adding fields that have identical namesand types. Since field
keys are based on a combination of name and type, this means that any number of fields in
a table can have the same field key value.

See also: GetFieldInfo()

ChildAt()
BTable *ChildAt(long index)

Returns the BTable that sits in theindex’th slot of the target BTable’s “child table” list.
Only those BTables that are direct descendants of the target are considered; in other words,
a BTable doesn’t know about its grandchildren. The function returnsNULL if the index is
out-of-bounds.

See also: CountChildren()

Member Functions BTable

90 – The Storage Kit

CountChildren()
 longCountChildren(void)

Returns the number of BTables that directly inherit from this BTable.

See also: ChildAt()

CountFields()
long CountFields(void)

Returns the number of fields in the BTable; the count includes inherited fields.

See also: GetFieldInfo()

Database()
BDatabase *Database(void)

Returns the BDatabase object that represents the database that owns the table that’s
represented by this BTable. This is the object that was the target of theFindTable() or
CreateTable() function that manufactured this BTable object.

See also: BDatabase::FindTable(), BDatabase::CreateTable()

FieldKey()
field_keyFieldKey(char *name)
field_keyFieldKey(char *name, long type)

Returns the field key for the named field. The second version of the function is in case you
have two fields with the same name, but different types (two fields with the same name
and type can’t be distinguished). The type argument must be one of the following
constants:

B_LONG_TYPE
B_RAW_TYPE
B_RECORD_TYPE
B_STRING_TYPE
B_TIME_TYPE

Note: You use theB_TIME_TYPE for all double-field searches.

If the named field isn’t found,B_ERROR is returned.

See also: FieldType(), GetFieldInfo()

BTable Member Functions

The Storage Kit –91

FieldType()
long FieldType(field_keykey)
long FieldType(char *name)

Returns a constant that represents the type of data that the designated field holds. The
possible return values are:

B_RAW_TYPE
B_LONG_TYPE
B_RECORD_TYPE
B_STRING_TYPE
B_TIME_TYPE

Note: TheB_TIME_TYPE is used for alldouble-bearing fields.

If the field isn’t found,B_ERROR is returned.

See also: FieldKey(), GetFieldInfo()

GetFieldInfo()
bool GetFieldInfo(long index,

char *name,
field_key *key,
long *type,
long *flags)

bool GetFieldInfo(char *name,
field_key *key,
long *type,
long *flags)

bool GetFieldInfo(field_keykey,
char *name,
long *type,
long *flags)

Finds the field designated by the first argument and returns, in the other arguments,
information about it. The first version identifies the field by index into the BTable’s list of
fields, the second by its name, and the third by its field key.

The value returned in thetype argument is one of the following constants:

• B_LONG_TYPE
• B_RAW_TYPE
• B_RECORD_TYPE
• B_TRING_TYPE
• B_TIME_TYPE

Note: TheB_TIME_TYPE is used for alldouble-bearing fields.

Member Functions BTable

92 – The Storage Kit

Theflags value will either beB_INDEXED_FIELD or 0. (See “Field Keys” on page 85 for
more information about field flags.)

If the field isn’t found, the functions returnsFALSE; otherwise they returnTRUE.

See also: AddLongField()...

HasAncestor()
bool HasAncestor(BTable *a_table)

ReturnsTRUE if the target BTable inherits (however remotely) froma_table. Otherwise
returnsFALSE.

See also: BDatabase::Parent(), BDatabase::CreateTable()

Name()
char *Name(void)

Returns the table’s name. The name is set when the table is created.

See also: BDatabase::CreateTable()

Parent()
BTable *Parent(void)

Returns the table’s parent, orNULL if none. A table’s parent is designated when the table is
created.

See also: BDatabase::CreateTable()

The Storage Kit –93

BVolume

Derived from: public BObject

Declared in: <storage/Volume.h>

Overview

A BVolume object represents avolume, an entity that contains a single, hierarchical file
system and a single database. The data in a volume (the file system and database) is
persistent: It’s stored on a medium such as a hard disk, floppy disk, CD-ROM, or other
storage device.

When a volume’s existence is made known to the computer—when the volume is
mounted—the system automatically constructs a BVolume (for your application) to
represent it. When the volume is unmounted, the representative object is automatically
destroyed. You can retrieve these BVolume objects directly through global functions, or
construct your own BVolume objects that point to the objects that are created by the Kit.
This is described in the next section.

Through a BVolume object you can retrieve information such as the volume’s name, its
storage capacity, how much of the volume is available, and so on. None of the BVolume
functions manipulate or alter the volume—for example, you can’t unmount a volume by
calling a BVolume function (and rightly so, mounting and unmounting isn’t an activity
that’s expected of an application).

Retrieving a BVolume

There are three ways to retrieve BVolume objects:

• Retrieve the “boot volume” directly. The boot volume contains the executables for
the kernel and servers that are running on your machine. To retrieve the BVolume
that corresponds to the boot volume, call the globalboot_volume() function:

BVolume myBootVol = boot_volume();

• Step through your application’s list of BVolume objects.· You do this through the
globalvolume_at() function. The function takes an index argument (along), and
returns the BVolume object at that position in the list. The first BVolume is at index
0; others (if any) follow at monotonically increasing index numbers. To test the
success of the function, you invokeError() upon the returned object. The following
example demonstrates this:

Overview BVolume

94 – The Storage Kit

/* Print the name of every mounted volume. */
void VolumeNamePrinter()
{

BVolume this_vol;
char vol_name[B_OS_NAME_LENGTH];
long counter = 0;
while((this_vol = volume_at(counter++)))
{

if (this_vol.Error() != B_NO_ERROR)
break;

this_vol.GetName(vol_name);
printf("Volume %s is available\n", vol_name);

}
}

• Construct an object based on a volume ID. A volume is identified globally by a
unique integer (along). By passing a valid volume identifier as the argument to the
BVolume constructor, you can retrieve a BVolume object that corresponds to the
volume. As explained in the next section, volume ID numbers are passed to your
application through BApplication hook functions that are called when volumes are
mounted and unmounted. (Also, see theID() function for more information on
volume ID numbers.)

• Retrieve a BVolume from a BDatabase. As mentioned earlier, every volume
contains a single database. Given a BDatabase object (which represents a specific
database) you can retrieve the corresponding BVolume by passing the BDatabase
object to the globalvolume_for_database() function.

Mounting and Unmounting

As mentioned above, BVolume objects are automatically constructed as volumes are
mounted. Similarly, the system frees the BVolume object for a volume that’s been
unmounted. The system informs your application of these events through BApplication’s
VolumeMounted() andVolumeUnmounted() hook functions. Both functions provide a
BMessage as an argument; in the “volume_id” field of the BMessage you’ll find the
volume ID of the affected volume. To turn the volume ID into a BVolume object, you pass
it as an argument to the BVolume constructor .

In the following example implementation of these functions, information is printed as
volumes are mounted and unmounted:

void MyApp::VolumeMounted(BMessage *msg)
{

BVolume *new_vol;
char vol_name[B_OS_NAME_LENGTH];

/* Get the volume ID and turn it into an object. */
new_vol = new BVolume(msg->FindLong("volume_id"));
new_vol->GetName(vol_name);

/* Print information about the volume. */

BVolume Overview

The Storage Kit –95

printf("Volume %s mounted; %f bytes available.\n",
vol_name, new_vol->FreeBytes());

}

void MyApp::VolumeUnmounted(BMessage *msg)
{

BVolume *old_vol;
char vol_name[B_OS_NAME_LENGTH];

new_vol = new BVolume(msg->FindLong("volume_id"));
new_vol->GetName(vol_name);

/* Print information about the volume. */
printf("Volume %s unmounted.\n", vol_name);

}

As implied by the example,VolumeMounted() is called after the BVolume is constructed;
VolumeUnmounted() is called before the object is destroyed. Thus, within the
implementations of these functions, you can assume that the BVolume object is still valid.

Important: If you want your application’s volume list to be updated as volumes are
mounted and unmounted, youmust have a runningbe_app object. This is so even if you
don’t implementVolumeMounted() andVolumeUnmounted(). Furthermore, your
application mustn’t be an “Argv Only” app.

The File System

Every volume encapsulates the hierarchy of directories and files for a single file system.
The “bridge” between a volume and the file system hierarchy is the volume’sroot
directory. As its name implies, a root directory stands at the root of a file hierarchy such
that all files (and directories) in the hierarchy can be traced back to it.

Every volume has a single root directory; to retrieve a volume’s root directory (in the form
of a BDirectory object), you pass an allocated BDirectory to BVolume’s
GetRootDirectory() function:

/* Get the root directory for the first mounted volume. */
BVolume *first_vol;
BDirectory root_dir;

first_vol = volume_at(0);
new_vol->GetRootDirectory(&root_dir);

TheGetRootDirectory() “fills in” the BDirectory that you pass so that it refers to the root
directory.

Volumes in Path Names

The Storage Kit’s implementation of the file system obviates the need for path names.
Specific files aren’t identified by a concatenation of slash-separated subdirectories, but

Constructor and Destructor BVolume

96 – The Storage Kit

by objects. However, path names are still displayed in terminal windows, and are used
by command-line programs. To identify a volume in a path name, you use this format:

/volumeName/directoryName/directoryName/...

The volume name itselfdoesn’t include the surrounding slashes. In other words, a volume
name might be “fido” but not “/fido/” (nor “/fido” nor “fido/”).

You can’t set a volume’s name directly—BVolume doesn’t have a name-setting function.
A volume takes its name from that of its root directory. To change a volume’s name, you
have to retrieve the root directory and changeits name (by invokingSetName() on the
BDirectory).

The Database

You can retrieve a volume’s database through the BVolumeDatabase() function. The
function returns the BDatabase object that represents the database. As described in the
BDatabase class description, BDatabase objects are created for you in much the same way
as are BVolume objects: As volumes are mounted and unmounted, BDatabase objects that
represent the contained databases are constructed and destroyed.

In general, you only need to access a volume’s database if you’re creating an application
that performs database activities (as opposed to an application that uses the Storage Kit
simply to access the file system).

Constructor and Destructor

BVolume()
BVolume(void)
BVolume(longvolume_id)

The first version of the constructor creates an “abstract” object that doesn’t correspond to
an actual volume. To create this correspondence, you invoke theSetID() function.

The second version creates a BVolume that corresponds to the volume identified by the
argument.

~BVolume()
virtual ~BVolume(void)

Destroys the object.

BVolume Member Functions

The Storage Kit –97

Member Functions

Capacity()
doubleCapacity(void)

Returns the number of bytes of data that the volume can hold. This is the total of used and
unused data—for an assessment of available storage, use theFreeBytes() function.

See also: FreeBytes()

Database()
BDatabase *Database(void)

Returns the BDatabase object that represents the volume’s database. Every volume
contains exactly one database (and each database is contained in exactly one volume).

See also: BDatabase::Volume()

FreeBytes()
doubleFreeBytes(void)

Returns a measure, in bytes, of the available storage in the volume.

See also: Capacity()

GetName()
 longGetName(char *name)

Copies the volume’s name into the argument. The argument should be at least
B_OS_NAME_LENGTH bytes long. The name returned here is that which, for example,
shows up in the Browser’s “volume window.”

Setting the name is typically (and most politely) the user’s responsibility (a task that’s
performed, most easily, through the Browser). If you really want to set the name of the
volume programmatically, you do so by renaming the volume’s root directory.

Currently, this function always returnsB_NO_ERROR.

See also: GetRootDirectory()

Member Functions BVolume

98 – The Storage Kit

GetRootDirectory()
long GetRootDirectory(BDirectory *dir)

Returns, indir, a BDirectory object that’s set to the volume’sroot directory. This is the
directory that lies at the root of the volume’s file system, and from which all other files and
directories descend.

You have to allocate the argument that you pass to this function; for example:

BDirectory root_dir;

a_volume->GetRootDirectory(&root_dir);

Some of the BDirectory (and, through inheritance, BStore) functions are treated specially
for the root directory:

• SetName() not only sets the name of the root directory, it also sets the name of the
volume.

• Remove() andMoveTo() always fail for a root directory—you’re not allowed to
remove or move a root directory.

• Parent() returnsB_ERROR. By definition, root directories don’t have parents.
(Admittedly, the error code returned byParent() is less than helpful; you can’t tell
the difference between an asked-for-the-root’s-parentB_ERROR, and a something-is-
terribly-wrongB_ERROR.)

Currently, this function always returnsB_NO_ERROR.

GetDevice()
long GetDevice(char *deviceName)

Copies the name of the device upon which the volume is mounted intodeviceName. The
argument should be allocated to hold at leastB_OS_NAME_LENGTH characters. If the
BVolume corresponds to an actual volume (if its ID is set), this returnsB_NO_ERROR.
Otherwise, it returnsB_ERROR.

ID()
long ID(void)

Returns the volume’s identification number. This number is unique among all volumes
that arecurrently mounted, and is only valid for as long as the volume is mounted.

The value returned by this function is used, primarily, when you’re communicating the
identity of a volume to some other application.

See also: volume_at() in “Global Functions”

BVolume Global Functions

The Storage Kit –99

IsReadOnly()
bool IsReadOnly(void)

ReturnsTRUE if the volume is declared to be read-only.

IsRemovable()
bool IsRemovable(void)

ReturnsTRUE if the volume’s media is removable (if it’s a floppy disk).

Global Functions

The following functions are declared as global functions (instorage/Volume.h). Since
they’re global, they don’t rightfully belong in the BVolume class specification. But since
they pertain specifically to volumes, their place, here, is justified.

boot_volume()
BVolumeboot_volume(void)

Returns the BVolume object that represents the “boot volume.” This is the volume that
contains the kernel and other system resources.

volume_at()
BVolumevolume_at(long index)

Returns theindex’th BVolume in your application’s volume list (counting from 0). The
list is created and administered for you by the Storage Kit. See the class description,
above, for an example of how the function is used.

If index is out-of-bounds, the function sets the returned object’sError() code toB_ERROR.

volume_for_database()
BVolumevolume_for_database(BDatabase *db)

Returns the BVolume that corresponds to the volume that contains the database identified
by the argument.

If db is invalid, the function sets the returned object’sError() code toB_ERROR.

Global Functions BVolume

100 – The Storage Kit

The Storage Kit –99

Global Functions, Constants, and
Defined Types

This section lists parts of the Storage Kit that aren’t contained in classes.

Global Functions

boot_volume()
<storage/Volume.h>

BVolumeboot_volume(void)

Returns the BVolume object that represents the machine’s “boot” volume. This is the
volume that contains the exectuables for the kernel, app server, net server, and so on, that
are currently running.

See also: “BVolume” on page 91

database_for()
<storage/Database.h>

BDatabase *database_for(longdatabaseID)

Returns the BDatabase object that represents the database that’s identified bydatabaseID.
Database ID numbers are unique and persistent (within a practical estimation of eternity).

If databaseID is invalid—if it doesn’t identify an available database—the function returns
NULL.

See also: “BDatabase” on page 7

does_ref_conform()
<storage/Record.h>

bool does_ref_conform(record_refref, const char *tableName)

ReturnsTRUE if the record referred to byref conforms to the table identified bytableName,
either directly or through table-inheritance; otherwise returnsFALSE. Although you can
use this function anywhere, it’s particularly useful when testing refs that you are passed to
your application in a BMessage object. Most commonly, you test to see if the refs you

Global Functions Global Functions, Constants, and Defined Types

100 – The Storage Kit

have received represent files, directories, or either. The table names that you use for each
of these is listed below:

• The “File” table is used for files.
• The “Folder” table is used for directories.
• The “FSItem” table is used for file system items (files and directories).

The Be software defines a number of other tables that you can use in the
does_ref_confrom() test (the names listed above are by far the most useful). The complete
list of Be-defined table names can be found in the section “System Tables” on page 107.

get_ref_for_path()
<storage/Store.h>

long get_ref_for_path(const char *pathName, record_ref *ref)

This function finds the file (or directory) that’s designated bypathName, and returns the
file’s ref by reference inref. The path name should be absolute, and should include the
volume name as its first element. (Althoughget_ref_for_path() will try to interpret a
relative pathname as branching from the current working directory, you shouldn’t rely on
this; the identity of the current working directory isn’t guaranteed.)

Note that BDirectory provides aGetRefForPath() member function that accepts absolute
or relative path names.

update_query()
<storage/Query.h>

void update_query(BMessage *aMessage)

Used to forward messages from the Storage Server to a live BQuery object. You use this
function as part of a derived-class implementation of BApplication’sMessageReceived()
function; you never call it elsewhere in your application.

See also: “BQuery” on page 35

volume_at()
<storage/Volume.h>

BVolumevolume_at(long index)

Returns theindex’th BVolume in your application’s volume list (counting from 0). The
list is created and administered for you by the Storage Kit.

If index is out-of-bounds, the function sets the returned object’sError() code toB_ERROR.

See also: “BVolume” on page 91

Global Functions, Constants, and Defined Types Constants

The Storage Kit –101

volume_for_database()
<storage/Volume.h>

BVolumevolume_for_database(BDatabase*db)

Returns the BVolume object that corresponds to the argument database (as represented by
a BDatabase object).

If db is invalid—if it doesn’t identify a database—the function sets the returned object’s
Error() code toB_ERROR.

Constants

File Open Modes
<storage/StorageDefs.h>

Constant Meaning

B_READ_ONLY The file is open for reading only.

B_READ_WRITE The file is open for reading and writing.

B_EXCLUSIVE The file is open for reading and writing, and no one else can
open the file until its closed.

B_FILE_NOT_OPEN The file isn’t open.

The first three constants are used by BFile’sOpen() function to describe the mode in
which the object should open its file. Add the fourth and you have the set of value that can
be returned by BFile’sOpenMode() function.

See also: BFile::Open()

File Seek Constants
<storage/StorageDefs.h>

Constant Meaning

B_FILE_TOP Seek from the first byte in the file.

B_FILE_MIDDLE Seek from the currently-pointed to position.

B_FILE_BOTTOM Seek from the last byte in the file.

These constants are used as arguments to BFile’sSeek() function to describe where a file
seek should start from.

See also: BFile::Seek()

Constants Global Functions, Constants, and Defined Types

102 – The Storage Kit

Live Query Messages
<storage/Query.h>

Constant Meaning

B_RECORD_ADDED A record ref needs to be added to the BQuery’s ref list.

B_RECORD_REMOVED A ref needs to be removed from the list.

D_RECORD_MODIFIED Data has changed in a record referred to by one of the refs
in the ref list.

These constants are the potentialwhat values of a BMessage that’s sent from the Storage
Server to your application.

See also: BQuery::MessageReceived()

query_op Constants
<storage/Query.h>

Constant Meaning

B_EQ equal
B_NE not equal
B_GT greater than
B_GE greater than or equal to
B_LT less than or equal to
B_LE less than or equal to
B_AND logically AND the previous two elements
B_OR logically OR the previous two elements
B_NOT negate the previous element
B_ALL wildcard; matches all records

These query_op constants are the operator values that can be used in the construction of a
BQuery’s predicate.

See also: PushOp() in the BQuery class

Table Field Flags
<storage/Table.h>

Constant Meaning

B_INDEXED_FIELD Create an index based on the values taken by this field.

Each field that you add to a BTable takes a set of flags. Currently, the only flag that is
recognized is B_INDEXED_FIELD.

See also: BTable::AddLongField()

Global Functions, Constants, and Defined Types Defined Types

The Storage Kit –103

Defined Types

database_id
<storage/StorageDefs.h>

typedef longdatabase_id

Thedatabase_id type represents values that uniquely identify individual databases.

See also: record_id, the BDatabase class description

field_key
<storage/StorageDefs.h>

typedef longfield_key

Thefield_key type represents fields in a BTable.

See also: the BTable class description

query_op
<storage/StorageDefs.h>

typedef long enum {...}query_op

Therecord_ref type represents a set of constants that can be used in a BQuery’s predicate.

See also: Query Operator Constants

record_id
<storage/StorageDefs.h>

typedef longrecord_id

Therecord_id type represents values that uniquely identify records in a known database.

See also: record_ref, the BRecord class description

record_ref
<storage/StorageDefs.h>

typedef struct {
record_idrecord;

Defined Types Global Functions, Constants, and Defined Types

104 – The Storage Kit

database_iddatabase;
} record_ref

Therecord_ref type is a structure that uniquely identifies a particular record among all
records in all currently available databases. The structure also defines the == and !=
operators, thus allowingrecord_ref structures to be compared as values.

See also: the BRecord class description

The Storage Kit –107

System Tables and Resources

System Tables

This section lists the names of the tables that are defined by the Storage Kit, as well as
the names (and types) of the tables’ fields. You should never need to use these tables,
except to create other tables that inherit from them—you certainly shouldn’t take
advantage of the field definitions presented here in order to set record values yourself.
They’re listed, primarily, so you can avoid name collisions. Note that none of these
names (whether of the tables or their fields) are defined as constants, nor are they
published in any of the header files.

If you want your tables to show up in a Browser query window, the table must inherit,
however remotely, from “BrowserItem”. Furthermore, only those fields that start with a
capital letter are displayed in the letter. Uncapitalized field names are considered
private.

“Icon”
Parent table: (none)

Field Name Field Type

“creator” LONG_TYPE
“type” LONG_TYPE
“largeBits” RAW_TYPE
“smallBits” RAW_TYPE

“Dock”
Parent table: (none)

Field Name Field Type

“dbType” LONG_TYPE
“dock_mode” LONG_TYPE
“big_origin” RAW_TYPE
“mini_origin” RAW_TYPE

System Tables System Tables and Resources

108 – The Storage Kit

“BrowserItem”
Parent table: (none)

Field Name Field Type

“Name” STRING_TYPE
“Size” LONG_TYPE
“Created” TIME_TYPE
“Modified” TIME_TYPE
“parentID” LONG_TYPE
“dbType” LONG_TYPE
“fsType” LONG_TYPE
“fsCreator” LONG_TYPE
“parentRef” RECORD_TYPE
“flags” LONG_TYPE
“xLoc” LONG_TYPE
“yLoc” LONG_TYPE
“iconRef” RECORD_TYPE
“dock_index” LONG_TYPE
“openOnMount” LONG_TYPE
“inited” LONG_TYPE
“invisible” LONG_TYPE

“FSItem”
Parent table: “BrowserItem”

Field Name Field Type

“appFlags” LONG_TYPE
“version” LONG_TYPE

“File”
Parent table: “FSItem”

Field Name Field Type

“Project” STRING_TYPE
“Description” STRING_TYPE

System Tables and Resources System Tables

The Storage Kit –109

“Folder”
Parent table: “FSItem”

Field Name Field Type

“sortProperty” LONG_TYPE
“sortReverse” LONG_TYPE
“dirID” LONG_TYPE
“viewMode” LONG_TYPE
“lastIconMode” LONG_TYPE
“numProperties” LONG_TYPE
“propertyList” RAW_TYPE
“windRect” RAW_TYPE
“iconOrigin” RAW_TYPE
“listOrigin” RAW_TYPE

“Proxy”
Parent table: “BrowserItem”

Field Name Field Type

“realItem” RECORD_TYPE

“Volume”
Parent table: “Folder”

Field Name Field Type

“Volume Size” LONG_TYPE
“isLocal” LONG_TYPE

“Machine”
Parent table: “Folder”

Field Name Field Type

(none)

“Query”
Parent table: “Folder”

Field Name Field Type

“QueryString” STRING_TYPE
“flatQuery” RAW_TYPE
“database_id” LONG_TYPE

System Tables System Tables and Resources

110 – The Storage Kit

“Person”
Parent table: “BrowserItem”

Field Name Field Type

“Company” STRING_TYPE
“Address” STRING_TYPE
“Phone” STRING_TYPE
“City” STRING_TYPE
“State” STRING_TYPE
“Zip” STRING_TYPE
“E-mail” STRING_TYPE
“Fax” STRING_TYPE
“Comments” STRING_TYPE

“E-Mail”
Parent table: “BrowserItem”

Field Name Field Type

“Status” STRING_TYPE
“Priority” LONG_TYPE
“From” STRING_TYPE
“Subject” STRING_TYPE
“Reply” STRING_TYPE
“When” DOUBLE_TYPE
“Enclosures” LONG_TYPE
“header” RAW_TYPE
“content” RAW_TYPE
“content_file” RECORD_TYPE
“enclosures” RAW_TYPE
“mail_flags” LONG_TYPE

“Message”
Parent table: “BrowserItem”

Field Name Field Type

“Status” LONG_TYPE
“Kind” LONG_TYPE
“From” STRING_TYPE
“When” TIME_TYPE
“Length” LONG_TYPE
“dataFile” STRING_TYPE
“At” STRING_TYPE
“outbound” LONG_TYPE
“Forum” STRING_TYPE

System Tables and Resources System Resources

The Storage Kit –111

“Preference”
Parent table: “BrowserItem”

Field Name Field Type

“appSignature” LONG_TYPE
“version” LONG_TYPE
“User Name” STRING_TYPE

System Resources

This section lists the resource types that the Be software uses. To be specific, the Icon
World application adds resources of the following types to the applications that you
create; the Browser looks for and recognizes these resource types when it displays file
information and icons.

As with the table listings, above, the following is provided primarily so you can avoid
unintentional collisions—in general, you shouldn’t add resources by the types listed
below. However, it isn’t inconceivable that someone might try adding an ‘ICON’
resource directly (for example).

‘APPI’

The resource that’s identified by the type ‘APPI’ stores information about the
application. The data in the resource is a singleapp_info structure. This structure is
described in Chapter 2, “The Application Kit.” The name of the ‘APPI’ resource is “app
info”.

‘ICON’

The ‘ICON’-type resource holds data that creates the application’s large icons. The data
for the resource is a 32x32 pixel bitmap inCOLOR_8_BIT color space. For the exact
representation of such data, see the BBitmap class in the Interface Kit.

There can be more than one ‘ICON’-typed resource:

• The ‘ICON’ resource that’s named “BAPP” holds the icon that’s displayed for the
application.

• The ‘ICON’ that takes, as a name, the application’s signature converted to a string
holds the data that’s displayed for documents created by the application.

‘MICN’

System Resources System Tables and Resources

112 – The Storage Kit

The ‘MICN’ type resource holds “mini-icon” data. The details are the same as the
‘ICON’ type described above, except that a mini-icon is a 16x16 pixel bitmap.

