
The Application Kit –1

2 The Application Kit

Introduction . 5
Messaging . 6

Messages . 6
Message Protocols 7
Message Ownership 7

Message Loops . 7
System Messages . 8

Specialized BLoopers 9
Message-Specific Dispatching 9
Picking a Handler and a Hook Function10

Application-Defined Messages11
Posting Messages11
Sending Messages 11
Dropping a Message 12
Two-Way Communication 13
Specifying the Target14
Preferred Handlers 14
Message Filters14

System Messages in the Application Kit 15
System Management Messages15
Application Messages. 16

Setting Up an Application . .17
Icons. .18
Application Information 18

Signatures. .18
Launch Information 19
Other Information 20

BApplication . .21
Overview .21

Derived Classes . .21
Constructing the Object and Running the Message Loop .22

be_app . .22
main(). .23
Configuration Messages Received on Launch23

2 – The Application Kit

Quitting . .24
Aborted Run .24

Locking .25
Hook Functions .25
Constructor and Destructor .26
Member Functions. .27

BClipboard . .43
Overview .43

Using the Clipboard. .43
Example 1: Adding Data to the Clipboard. 44
Example 2: Retrieving Data from the Clipboard . .44

Member Functions. .45

BHandler .49
Overview .49
Hook Functions .50
Constructor and Destructor .50
Member Functions. .50

BLooper . .55
Overview .55

Running the Loop . .55
Receiving and Dispatching Messages. 55
Acting as the Handler56
Eligible Handlers .56

Hook Functions .57
Constructor and Destructor .57
Member Functions. .58

BMessage .69
Overview .69

Message Contents . .69
Message Constants .70
Type Codes .71
Publishing Message Protocols 72
Error Reporting . .73

Data Members . .73
Constructor and Destructor .73
Member Functions. .74
Operators .87

BMessageFilter . .89
Overview .89
Hook Functions .89
Constructor and Destructor .90
Member Functions. .91

The Application Kit –3

BMessageQueue .93
Class Description .93
Constructor and Destructor .93
Member Functions. .94

BMessenger .97
Overview .97
Constructor and Destructor .97
Member Functions. .99
Operators . 102

BRoster . 103
Overview . 103
Constructor and Destructor 104
Member Functions. . 104

Global Variables, Constants, and Defined Types 109
Global Variables . 109
Constants . 110
Defined Types . 114

4 – The Application Kit

Application Kit Inheritance Hierarchy

BObject
(Support Kit)

BHandler

BWindow
(Interface Kit)

BLooper

BMessage

BApplication

BMessageQueue

BMessenger

BClipboard

BRoster

BMessageFilter

The Application Kit –5

2 The Application Kit

The Application Kit is the starting point for all applications. Its classes establish an
application as an identifiable entity—one that can cooperate and communicate with other
applications (including the Browser). It lays a foundation for the other kits. Before
designing and building your application, you should secure a breathing familiarity with
this basic Kit.

There are four parts to the Application Kit:

• Messaging. The Kit sets up a mechanism through which an application can easily
make itself multithreaded, and a messaging service that permits the threads to talk to
each other. This same service also delivers messages from one application to
another—it’s used for both inter- and intra-application communication.

The messaging mechanism is implemented by a set of collaborating classes:
BMessage objects bundle information so that it can be posted to a thread within the
same application or sent to a thread in another application. BLooper objects run
message loops in threads, getting messages as they arrive and dispatching them to
BHandler objects. The BHandler’s job is to respond to the message.

The system employs the messaging mechanism to carry basic input to
applications—from the keyboard and mouse, from the Browser, and from other
external sources; system messages drive what most applications do. Every
application will be on the receiving end of at least some of these messages and must
have handlers ready to respond to them.

Applications can also use the mechanism to create threads with a messaging
interface, arrange communication among the threads, or exchange information with
and issue commands to other applications.

• The BApplication class. Every application must have a single instance of the
BApplication class—or of a class derived from BApplication. This object provides
a number of essential services. Foremost among them is that it establishes a
connection to the Application Server. The Server is a background process that takes
over many of the fundamental tasks common to all applications. It renders images
in windows, controls the cursor, reports what the user is doing on the keyboard and
mouse, and, in general, keeps track of system resources.

The BApplication object also runs the application’s main message loop, where it
receives messages that concern the application as a whole. Externally, this object

Messaging

6 – The Application Kit

represents the application to other applications; internally, it’s the center where
application-wide services and global information can be found. Because of it’s
pivotal role, it’s assigned to a global variable,be_app, to make it easily accessible.

Other kits—the Interface Kit in particular—won’t work until a BApplication object
has been constructed.

• The BRoster class. The BRoster object keeps track of all running applications. It
can identify applications, launch them, and provide the information needed to set up
communications with them.

• The BClipboard class. The BClipboard object provides an interface to the clipboard
where cut and copied data can be stored, and from which it can be pasted.

The messaging framework and the fundamentals of setting up a Be application are
described in the following sections of this introduction. The BApplication class is
documented beginning on page 21. The other classes follow in alphabetical order.

Messaging

At minimum, a messaging service must provide the means for:

• Putting together a parcel of information that can be delivered to a destination. In the
Be model, these parcels are BMessage objects.

• Delivering messages to a destination. This is the job of a BMessenger object—
although local messages can be “posted” directly, without the aid of a messenger.
BMessengers mainly represent remote destinations.

• Processing messages as they arrive. This task is entrusted to BLooper objects.

• Letting applications define their own message-handling code. A BLooper
dispatches an arriving message by calling a “hook” function of a BHandler object.
Each application can implement these functions as it sees fit.

Messages

BMessage objects are parcels of information that can be transferred between threads. The
message source constructs a BMessage object, adds whatever information it wants to it,
and then passes the parcel to a function that delivers it to a destination.

A BMessage can hold structured data of any type or amount. When you add data to a
message, you assign it a name and a type code. If more than one item of data is added
with the same name and type, the BMessage creates an array of data for that name. The
name and an index into the array are used to retrieve the data from the message.

Messaging

The Application Kit –7

The object also contains acommand constant that says what the message is about. It’s
stored as a public data member (calledwhat). The constant may:

• Convey a request of some kind (such asB_ZOOM or BEGIN_ANIMATION),
• Announce an event (such asRECEIPT_ACKNOWLEDGED or B_WINDOW_RESIZED), or
• Label the information that’s being passed (such asPATIENT_INFO or NEW_COLOR).

Not all messages have data entries, but all should have a command constant. Sometimes
the constant is sufficient to convey the entire message.

Message Protocols

Both the source and the destination of a message must agree upon its format—the
command constant and the names and types of data entries. They must also agree on
details of the exchange—when the message can be sent, whether it requires a response,
what the format of the reply should be, what it means if an expected data item is omitted,
and so on.

None of this is a problem for messages that are used only within an application; the
application developer can keep track of the details. However, protocols must be published
for messages that communicate between applications. You’re urged to publish the
specifications for all messages your application is willing to accept from outside sources
and for all those that it can package for delivery to other applications. The more that
message protocols are shared, the easier it is for applications to cooperate with each other
and take advantage of each other’s special features.

The software kits define protocols for a number of messages. They’re discussed in the
Message Protocols appendix.

Message Ownership

Typically, when an application creates an object, it retains responsibility for it; it’s up to
the application to free the objects it allocates when they’re no longer needed. However,
BMessage objects are an exception to this rule. Whenever a BMessage is passed to the
messaging mechanism, ownership is passed with it. It’s a little like mailing a letter—once
you drop it at the post office, it no longer belongs to you.

The system takes responsibility for a delivered BMessage object and will eventually delete
it—after the receiver is finished responding to it. A message receiver can assert
responsibility for a message—essentially replacing the system as its owner—by detaching
it from the messaging mechanism (with BLooper’sDetachCurrentMessage() function).

Message Loops

In the Be model, messages are delivered to threads runningmessage loops. Arriving
messages are placed in a queue, and are then taken from the queue one at a time. After
getting a message from the queue, the thread decides how it should be handled and

Messaging

8 – The Application Kit

dispatches it to an object that can respond. When the response is finished, the thread
deletes the message and takes the next one from the queue—or, if the queue is empty,
waits until another message arrives.

The message loop therefore dominates the thread. The thread does nothing but get
messages and respond to them; it’s driven by message input.

BLooper objects set up these message loops. A BLooper spawns a thread and sets the
loop in motion. Posting a message to the BLooper delivers it to the thread (places it in the
queue). The BLooper removes messages from the queue and dispatches them to BHandler
objects. BHandlers are the objects ultimately responsible for received messages.
Everything that the thread does begins with a BHandler’s response to a message.

Two hook functions come into play in this process—one defined in the BLooper class and
one declared by BHandler:

• BLooper’sDispatchMessage() function is called to pass responsibility for a
message to a BHandler object. It’s fully implemented by BLooper (and kit classes
derived from BLooper) and is only rarely overridden by applications.

• MessageReceived() is the BHandler function thatDispatchMessage() calls by
default. It’s up to applications to implementMessageReceived() functions to
handle expected messages.

There’s a close relationship between the BLooper role of running a message loop and the
BHandler role of responding to messages. The BLooper class inherits from BHandler, so
the same object can fill both roles. The BLooper is the default handler for the messages it
receives.

To be notified of an arriving message, a BHandler must “belong” to the BLooper; it must
have been added to the BLooper’s list of eligible handlers. The list can contain any
number of objects, but at any given time a BHandler can belong to only one BLooper.

While a thread is responding to a message, it keeps the BLooper that dispatched the
message locked. The thread locks the BLooper before callingDispatchMessage() and
unlocks it afterDispatchMessage() returns.

System Messages

Special dispatching is provided for a subset of messages defined the system. Thesesystem
messages are dispatched not by callingMessageReceived(), but by calling a BHandler
hook function specific to the message.

System messages generally originate from within the Be operating system (from servers,
the kits, or the Browser). They notify applications of external events, usually something
the user has done—moved the mouse, pressed a key, resized a window, selected a
document to open, or some other action of a similar sort. The command constant of the
message names the event—for example,B_KEY_DOWN, B_SCREEN_CHANGED, or

Messaging

The Application Kit –9

B_REFS_RECEIVED—and the message may carry data describing the event. The receiver is
free to respond to the message (or to not respond) in any way that’s appropriate.

A few system messages name an action the receiver is expected to take, such asB_ZOOM
or B_ACTIVATE. The message tells the receiver what must be done. Even these messages
are prompted by an event of some kind—such as the user clicking the zoom button in a
window tab or picking an application to activate from the list of running applications.

System messages have a defined format. The command constant and the names and types
of data entries are fixed for each kind of message. For example, the system message that
reports a user keystroke on the keyboard—a “key-down” event—hasB_KEY_DOWN as the
command constant, a “when” entry for the time of the event, a “key” entry for the key that
was hit, a “modifiers” entry for the modifier keys that were down at the time, and so on.

Although the set of system-defined messages is small, they’re the most frequent messages
for most applications. For example, when the user types a sentence, the application
receives a series ofB_KEY_DOWN messages, one for each keystroke.

Specialized BLoopers

System messages aren’t delivered to just any BLooper object. The software kits derive a
few specialized classes from BLooper to give significant entities in the application their
own message loops. These are the objects that receive system messages and define how
they’re dispatched. Each message is matched to the specific kind of BLooper that’s
concerned with the particular event it reports or the particular instruction it delivers. Each
type of message is delivered to a specific class of object.

In particular, both the BApplication class in this kit and the BWindow class in the
Interface Kit derive from BLooper. The BApplication object runs a message loop in the
main thread and receives messages that concern the application as a whole—such as
requests to quit the application or to open a document. Each BWindow object runs in its
own thread and receives messages that report activity in the user interface—including
notifications that the user typed a particular character on the keyboard, moved the cursor
on-screen, or pressed a mouse button. Every window that the user sees is represented by a
separate BWindow object.

Each of these classes is concerned with only a subset of system messages—BApplication
with application messages (discussed on page 16 below) and BWindow objects with
interface messages (discussed in the chapter on the Interface Kit). In addition, the generic
BLooper class defines how a small number ofsystem management messages are
dispatched; these messages have to do with the messaging system itself (and are discussed
on page 15 of this chapter). Each class arranges for special handling of the system
messages it’s concerned with.

Message-Specific Dispatching

Every system message is dispatched by calling a specific virtual “hook” function, one
that’s matched to the message. For example, when the Application Server sends a

Messaging

10 – The Application Kit

B_KEY_DOWN message to the window where the user is typing, the BWindow determines
which object is responsible for displaying typed characters and calls that object’s
KeyDown() virtual function. Similarly, a message that reports a user decision to shut down
the application—a “quit-requested” event—is dispatched by calling the BApplication
object’sQuitRequested() function. Messages that report the movement of the cursor are
dispatched by callingMouseMoved(), those that report a change in the screen
configuration by callingScreenChanged(), and so on.

These hook functions are declared in classes derived from BHandler and are often
recognizable by their names. In the introductory chapter, it was explained that hook
functions fall into three groups:

• Those that are left to the application to implement. These functions are named for
what they announce—for what led to the function call rather than for what the
function might be implemented to do.KeyDown() is an example.

• Those that have a default implementation to cover the common case. Like those in
the first group, these functions also are named for the occurrence that prompted the
function call. ScreenChanged() is an example.

• Those that are fully implemented to perform a particular task. These are functions
that you can call, but they’re also hooks that are called for you. Like most ordinary
functions, they’re named for what they do—likeActivate()—not for what led to the
function call.

The hook functions that are matched to system messages can fall into any of these three
categories. Since most system messages report events, they mostly fall into the first two
categories. The function is named for the message, and the message for the event it
reports.

However, if a system message delivers an instruction for the application to do something
in particular, its hook function falls into the third group. The function is fully
implemented in system software, but can be overridden by the application. The function is
named for what it does, and the message is named for the function.

Picking a Handler and a Hook Function

A BLooper picks a BHandler for a system message based on what the message is. For
example, a BWindow calls upon the object that displays the current selection to handle a
B_KEY_DOWN message. It asks the object in charge of the area where the user clicked to
handle aB_MOUSE_DOWN message. And it handles messages that affect the window as a
whole—such as,B_WINDOW_RESIZED—itself.

The BLooper identifies system messages by their command constants alone (theirwhat
data members). If a message is received and its command constant matches the constant
for a system message, the BLooper will dispatch it by calling the message-specific hook
function—regardless what data entries the message may have.

Messaging

The Application Kit –11

If the constant doesn’t match a system message that the BLooper knows about, the
message is dispatched by callingMessageReceived(). MessageReceived() is, therefore,
reserved for application-defined messages. It’s typically implemented to distribute the
responsibility for received messages to other functions. That’s something that’s already
taken care of for system messages, since each of them is mapped to its own function.

Application-Defined Messages

Although the system creates and delivers most messages, an application can create
messages of its own and have them delivered to a chosen destination. There are three
ways to initiate a message:

• Messages can beposted to a thread of the same application,
• They can besent to a thread anywhere, generally one in a remote application, and
• They can be dragged anddropped.

Posting Messages

Messages are posted by calling a BLooper’sPostMessage() function. PostMessage()
inserts the message into the BLooper’s queue so that it will be handled in sequence along
with other messages the thread receives. Posting depends on the message source knowing
the address of the destination BLooper; it therefore works only for application-internal
messages.

Posting is how one thread of execution transfers control to another thread in the same
application. Suppose, for example, that the main thread of an application (the
BApplication object) receives a message requesting it to show something on-screen—
begin displaying a video, say. It can create a window for this purpose, then post a message
to the BWindow object telling it what to do. The BWindow receives the message and acts
on it within the window’s thread. After posting the message, the main thread is free to
receive and respond to other messages while the window thread is busy with the video.

A thread might also post messages to itself, and thereby take advantage of the messaging
mechanism to arrange its activity. This is what menu items and control devices do when
they’re invoked; they translate a message that reports a click or a keystroke into another,
more specific message—one they could post anywhere, but typically deliver to the same
thread.

Sending Messages

Messages can be posted only within an application—where the thread that calls
PostMessage() and the thread that responds to the message are in the same address space
(are part of the same “team”) and may even be the same thread.

Messaging

12 – The Application Kit

To send a message to another address space, it’s necessary to first set up a BMessenger
object as a local representative of the remote destination. BMessengers can be constructed
in two ways:

• By naming a particular instance of a running application. The BRoster object can
provide signatures and team identifiers for all running applications.

• By naming a particular BHandler object in your own application.

The first method constructs a BMessenger that can send messages to the main thread of the
remote application, where they’ll be received and handled by its BApplication object.

The second method constructs a BMessenger that’s tied to a BHandler in your own
application. However, you can place the BMessenger in a message and send it to a remote
application. That application can then employ the BMessenger to target messages to your
BHandler. The messages are delivered to whatever BLooper the BHandler belongs to; the
BLooper dispatches the message to the BHandler.

Thus, a BMessenger can be seen as a local identifier for a remote BLooper/BHandler pair.
Calling the object’sSendMessage() function delivers the message to the remote
destination.

(BMessengers can send messages to local destinations as well as to a remote ones.
However, it’s more efficient to post a local message than to send it.)

Dropping a Message

Through a service of the Interface Kit, users can drag messages from a source location and
drop them on a chosen destination, perhaps in another application. The source application
puts the message together and hands it over to the Application Server, which tracks where
the user drags it.

When the user drops the message inside a window somewhere, the Server delivers it to the
BWindow object and targets it to the BView (a kind of BHandler) that’s in charge of the
portion of the window where the message was dropped. The message is placed in the
BWindow’s queue and is dispatched like all other messages. In contrast to messages that
are posted or sent in application code, only the user determines the destination of a
dragged message.

A message receiver can discover whether and where a message was dropped by calling the
BMessage object’sWasDropped() andDropPoint() functions.

See “Drag and Drop” on page 235 inThe Interface Kit chapter for details on how to
initiate a drag-and-drop session.

Messaging

The Application Kit –13

Two-Way Communication

A delivered BMessage carries a return address with it < with the current exception of
messages that are posted >. The message receiver can reply to the message by calling the
BMessage’sSendReply() function. Replies can be synchronous or asynchronous:

• A message sender can ask for a synchronous reply when calling the sending
function. For example:

BMessage *reply;
myMessenger->SendMessage(message, &reply);
if (reply->what != B_NO_REPLY) {
 . . .
}

In this case,SendMessage() waits for the reply; it doesn’t return until one is
received. (In case the message receiver refuses to cooperate, a default reply is sent
when the original message is deleted.)

A message receiver can discover whether the sender is waiting for a synchronous
reply by calling the BMessage’sIsSourceWaiting() function.

• A message sender can provide for an asynchronous reply by designating a BHandler
object for the return message. For example:

myMessenger->SendMessage(message, someHandler);

In this case, the sending function doesn’t wait for the reply; the reply message will
be directed to the named BHandler. An asynchronous reply is always possible. If a
BHandler isn’t designated for it, the BApplication object will act as the default
handler.

BMessage’sSendReply() function has the same syntax asSendMessage(), so it’s possible
to ask for a synchronous reply to a message that is itself a reply,

BMessage *reply;
theMessage->SendReply(message, &reply);
if (reply->what != B_NO_REPLY) {
 . . .
}

or to designate a BHandler for an asynchronous reply to the reply:

theMessage->SendReply(message, someHandler);

In this way, two applications can maintain an ongoing exchange of messages.

You can also name a target BHandler for an asynchronous reply to a dragged message.
< There is currently no provision for replying to a posted message. >

Messaging

14 – The Application Kit

Specifying the Target

All messages have target BHandlers, whether explicitly or implicitly expressed.

• When posting a message to a BLooper, you can name a target BHandler for it. The
BLooper is the default target.

• Sending a message targets it to the remote BApplication object or to the particular
BHandler that was used to construct the BMessenger.

• Dropped messages are targeted to the object (a BView) that owns the piece of
window real estate where the cursor was located when the message was dropped.

The target is respected when the message is dispatched; the dispatcher always calls a hook
function belonging to the designated BHandler. If the message matches one that the
system defines and the target BHandler is the kind of object that’s expected to handle that
type of message, the dispatcher will call the target’s message-specific hook function.
However, if the designated target isn’t the handler of design for the message, the BLooper
will call its MessageReceived() function.

For example, if aB_KEY_DOWN message is posted to a BWindow object and a BView is
named as the target, the BWindow will dispatch the message by calling the BView’s
KeyDown() function. However, if the BWindow itself is named as the target, it will
dispatch the message by calling its ownMessageReceived() function. BView objects are
expected to handle keyboard messages; BWindows are not.

Preferred Handlers

By implementing aPreferredHandler() function, a BLooper can name the BHandler it
prefers to be the target of the messages it receives. You can follow this recommendation
when posting a message < but currently not when sending a message >, or you can ignore
it. The preferred handler typically changes from time to time. Choosing the preferred
handler is therefore a way of determining the message target at run time. For example, a
BWindow’s preferred handler is the object in charge of the current selection; it changes as
the user changes the selection.

Message Filters

Incoming messages can be filtered before they’re dispatched to a BHandler. You can
arrange to have a filtering function examine the message before the BHandler’s hook
function is called.

The filtering function is contained in a BMessageFilter object, which also holds the
criteria for when the filter should apply. The function, calledFilter(), is defined in classes
derived from BMessageFilter.

If a BMessageFilter is attached to a BHandler, it filters only messages destined for that
BHandler. It it’s attached as a common filter to a BLooper object, it can filter any message
that the BLooper dispatches, no matter what the handler. (In addition to the list of

System Messages in the Application Kit

The Application Kit –15

common filters, a BLooper can, like other BHandlers, maintain a list of filters specific to
its role as a target handler.)

System Messages in the Application Kit

Although the Application Kit implements the messaging mechanism and defines all the
system messages, it handles only a few of them itself. Each system message has a
particular import and falls within the scope of a particular kind of BLooper object. Most
are associated with BWindow objects in the Interface Kit. But there are two BLooper
classes in the Application Kit; each handles its own subset of system messages:

• The generic BLooper class handlessystem management messages that help run the
messaging mechanism. There are just two such messages.

• The BApplication class handlesapplication messages that are not the province any
particular window, but concern the application as a whole. The system defines nine
different application messages.

System Management Messages

The BLooper class takes care of just two system messages; both are concerned with
running the messaging mechanism:

• A B_QUIT_REQUESTED message asks the BLooper to quit the message loop and
destroy itself. Classes derived from BLooper reinterpret this message in their own
way. For the BApplication object, it’s a request to quit the application. For a
BWindow, it’s a request to close the window. However, generically, it’s simply a
request to get rid of a BLooper object.

• A B_HANDLERS_REQUESTED message asks a target BHandler to supply BMessenger
objects for other BHandlers. The correct response is to send aB_HANDLERS_INFO
message in reply—with the BMessengers installed in a “handlers” array or with an
error code in an “error” entry. The BMessengers can be used to target particular
objects within the responding application.

The BLooper object dispatches these messages by calling a hook function matched to the
message. The following table lists the hook functions that are called to initiate a response
to system management messages and the base classes where those functions are declared:

Message type Virtual function Class

B_QUIT_REQUESTED QuitRequested() BLooper
B_HANDLERS_REQUESTED HandlersRequested() BHandler

Although it defines how these messages are treated, nothing in the Be operating system
produces the message itself. It’s up to applications to create the messages and arrange for
their delivery.

System Messages in the Application Kit

16 – The Application Kit

See “System Management Messages” in theMessage Protocols appendix for information
on the content of system management messages, particularlyB_HANDLERS_REQUESTED.

Application Messages

The nine application messages are an assortment of various reports and requests. One
message delivers an instruction:

• A B_ACTIVATE instruction tells the application to activate itself—to become the
active application. This message permits one application (usually the Browser) to
activate another.

All the other application messages report events. Two of them notify the application of a
change in its status:

• A B_READY_TO_RUN message reports that the application has finished launching and
configuring itself and its main thread is ready to respond to messages.

• A B_APP_ACTIVATED message is delivered when the application becomes the active
application—the one that the user is currently engaged with—or when it
relinquishes that status to another application.

Two of the messages are requests that the application typically makes of itself:

• A B_QUIT_REQUESTED message is taken by the BApplication object to be a request to
shut the entire application down, not just one thread. An application that has a user
interface usually interprets some user action (such as clicking a “Quit” menu item)
as a request to quit and, in response, posts aB_QUIT_REQUESTED message to the
BApplication object. An application that is the servant of other applications may
get the request from a remote source.

• A B_ABOUT_REQUESTED message requests information about the application, usually
through an “About . . .” item in the application’s main menu. The application
should set up this item to post aB_ABOUT_REQUESTED message to the BApplication
object. In response, the BApplication object should display a window with general
information about the application.

Other application messages report information from remote sources:

• A B_ARGV_RECEIVED message is delivered either on-launch or after-launch when
the application receives strings of characters the user typed on the command line, or
when the application is launched by another application and is passed a similar array
of character strings.

• A B_REFS_RECEIVED message passes the application one or more references to
database records. Typically, this means the user has chosen some files from the file
panel, double-clicked a document icon in the Browser, or dragged the icon and
dropped in on the application icon.

Setting Up an Application

The Application Kit –17

• A B_PANEL_CLOSED message is sent by the file panel when the panel is removed
from the screen.

The system is the source of one repeated message:

• PeriodicB_PULSE messages are posted at regularly spaced intervals. They can be
used to arrange repeated actions when precise timing is not critical.

All application messages are received by the BApplication object in the main thread. The
BApplication object dispatches them all to itself; it doesn’t delegate them to any other
handler. The following chart lists the hook functions that are called to initiate the
application’s response to system messages and the base class where each function is
declared:

Message type Virtual function Class

B_ACTIVATE Activate() BApplication

B_READY_TO_RUN ReadyToRun() BApplication
B_APP_ACTIVATED AppActivated() BApplication

B_QUIT_REQUESTED QuitRequested() BLooper
B_ABOUT_REQUESTED AboutRequested() BApplication

B_ARGV_RECEIVED ArgvReceived() BApplication
B_REFS_RECEIVED RefsReceived() BApplication
B_PANEL_CLOSED FilePanelClosed() BApplication

B_PULSE Pulse() BApplication

QuitRequested() is first declared in the BLooper class. BApplication reinterprets it—and
reimplements it—to mean a request to quit the whole application, not just one of its
threads.

Only four application messages—B_APP_ACTIVATED, B_ARGV_RECEIVED,
B_REFS_RECEIVED, andB_PANEL_CLOSED—contain any data; the rest are empty. See
“Application Messages” in theMessage Protocols appendix for details on the content of
these messages.

Setting Up an Application

There are just a couple of things that an application must do if it’s to take its place as a
well-known and cooperative resident on the BeBox:

• Internally, it needs a BApplication object, and
• Externally, it needs to publicize information about itself.

Setting Up an Application

18 – The Application Kit

The BApplication object is essential; every application must have one to handle messages
from other applications, particularly the Browser. However, it’s not sufficient by itself. In
addition, the application must provide:

• Icons that represent the application, and represent documents and other files
associated with the application.

• An identifying signature for the application.

• Information about the application’s behavior, including a strategy for how it can be
launched.

The icons, signature, and behavioral information are all stored in the same resources file as
the executable binary. By locating them in resources, they become available even when
the application isn’t running.

Although these bits of information don’t strictly belong to the Application Kit, they’re
relevant to how parts of the Kit work and, possibly, to how you design your application.
They’re therefore discussed here.

Use the Icon World application to set up application resources, as described inThe Be
User’s Guide, published separately.

Icons

Every application needs an icon to represent it (in a Browser window, for example). It
should provide a large (32 pixel× 32 pixel) version of the icon and a smaller
(16 pixel× 16 pixel) version. This can be done by creating the icons in Icon World or by
importing icons created elsewhere. Either way, Icon World will construct highlighted
versions of both the small and large icons and install them all in resources of type ‘ICON’
(for the large version) and ‘MICN’ (for the “mini-icon”).

If an application opens documents or has other associated files, it should provide large and
small icons for them as well.

Application Information

An application-information resource (named “app info” and typed ‘APPI’) holds other
information that needs to be available—especially to the Browser—whether or not the
application is running. This resource advertises the application’s signature and its launch
behavior, and possibly other behavioral idiosyncrasies as well. You can create it in Icon
World’s App Info menu.

Signatures

A signature is simply along integer that identifies an application. No two applications
should have the same signature.

Setting Up an Application

The Application Kit –19

To make sure that the signature for your application is unique, you should register it
with—or obtain it from—Be’s Developer Support services (devsupport@be.com or, in a
pinch, 1 (415) 462-4103). We’ll try to make sure that no one else adopts the same
signature.

Use Icon World’s App Info menu to install the signature in the resource.

Launch Information

There are three possible launch behaviors that you can choose for your application. Each
possibility is represented by a constant:

B_MULTIPLE_LAUNCH Several instances of the application can be running at
once. It can be launched any number of times from the
same executable file.

This is the normal behavior for most utilities, such as
the compiler,tar, or Heap Watch. It’s also appropriate
for an application that can deal with only one document
at a time, and therefore must be launched anew each
time it’s asked to handle another file.

B_SINGLE_LAUNCH Normally, only one instance of the application can be
running. However, if the user copies the executable file
for the application, it can be launched once from each
copy.

This is the normal behavior for most applications,
including applications that can deal with more than one
document at a time.

B_EXCLUSIVE_LAUNCH When the application is running, no other instance of
the same application can be launched from any source.

This is appropriate for applications that require
exclusive ownership of a system resource, like the
telephone line.

In other words,B_EXCLUSIVE_LAUNCH applications are restricted by signature—only one
instance of an application with that particular signature can be running at any given time.
B_SINGLE_LAUNCH applications are restricted by executable file—there can be only one
instance of an application launched from that particular executable.B_MULTIPLE_LAUNCH
applications are unrestricted.

These categories affect how the Browser launches applications and communicates with
them. In the Browser, a user can launch an application by picking the application itself or
by picking one of its documents. Double-clicking an application icon picks the
application, and double-clicking a document icon picks the document. Dragging a
document icon and dropping it on the application icon picks both.

Setting Up an Application

20 – The Application Kit

Whenever the user picks aB_MULTIPLE_LAUNCH application or picks one of its documents,
the Browser always launches it anew. It doesn’t matter whether another instance of the
application is already running or not.

However, when the user picks aB_SINGLE_LAUNCH application, the Browser launches it
only if an application launched from the same executable file isn’t already running.
Otherwise, it activates the running application. Similarly, when the user picks a document
for aB_SINGLE_LAUNCH application, the Browser matches the document to an executable
file and launches it only if a running application hasn’t been launched from the same file.
If one has been launched from the file, the Browser merely activates it and sends it a
message identifying the document.

B_EXCLUSIVE_LAUNCH is even more restrictive thanB_SINGLE_LAUNCH. When the user
picks aB_EXCLUSIVE_LAUNCH application, or the document for aB_EXCLUSIVE_LAUNCH
application, the Browser launches it only if an application with the same signature isn’t
already running.

Most applications don’t need the extreme restrictiveness ofB_EXCLUSIVE_LAUNCH and
should choose betweenB_SINGLE_LAUNCH andB_MULTIPLE_LAUNCH. The choice should
be informed by whether the application can have more than one file open at a time,
whether multiple instances of the same application would make sense to the user, whether
windows belonging to one instance might be confused for windows belonging to another
instance, and similar considerations.

The best place to choose a launch behavior for your application is in IconWorld’s App Info
menu. If a choice isn’t made, IconWorld picksB_SINGLE_LAUNCH by default. If an
application doesn’t have an application information resource, it’s treated as being
B_MULTIPLE_LAUNCH by default.

Other Information

Resources can also publicize two other behaviors, similarly designated by constants:

B_ARGV_ONLY The application doesn’t participate in the messaging
system. Therefore, the only information it can receive
are command-line arguments,argc andargv, passed to
themain() function.

B_ARGV_ONLY is assumed if the application doesn’t
have a BApplication object.

B_BACKGROUND_APP The application doesn’t have a user interface and
therefore shouldn’t appear in the Browser’s application
list.

The Application Kit –21

BApplication

Derived from: public BLooper

Declared in: <app/Application.h>

Overview

The BApplication class defines an object that represents and serves the entire application.
Every Be application must have one (and only one) BApplication object. It’s usually the
first object the application constructs and the last one it deletes.

The BApplication object has these primary responsibilities:

• It makes a connection to the Application Server. Any application that puts a window
on-screen or relies on other system services needs this connection. It’s made
automatically when the BApplication object is constructed.

• It runs the application’s main message loop. The BApplication object is a kind of
BLooper, but instead of spawning an independent thread, it runs a message loop in
the application’s main thread (the thread that themain() function executes in). This
loop receives and processes messages that affect the entire application, including the
initial messages received from remote applications. It gets several messages from
the Browser (such as reports of what documents to open). Any application that’s
known to the Browser or that cooperates with other applications needs a main
message loop.

• It’s the home for application-wide elements of the user interface. For example, it
sets up the application’s main menu and runs the file panel, which permits users to
navigate the file system and pick files to open. It also lets you set, hide, and show
the application’s cursor. The ability to define the look of the cursor is provided by
BApplication’s SetCursor() function.

The user interface mainly centers on windows and is defined in the Interface Kit.
The BApplication object merely contains the elements that are common to all
windows and specific to the application.

Derived Classes

BApplication typically serves as the base class for a derived class that specializes it and
extends it in ways that are appropriate for a particular application. It declares (and inherits

Overview BApplication

22 – The Application Kit

declarations for) a number of hook functions that you can implement in a derived class to
augment and fine-tune what it does.

For example, your application might implement aRefsReceived() function to open a
document and display it in a window, or aReadyToRun() function to finish initializing the
application after it has been launched and has started to receive messages. These two
functions, like a handful of others, are called in response to system messages that have
application-wide import. Hook functions for application messages were discussed in the
introduction on page 17.

If you expect your application to get messages from remote sources, or its main thread to
get messages from other threads in the application, you should also implement a
MessageReceived() function to sort through them as they arrive.

A derived class is also a good place to record the global properties of your application and
to define functions that give other objects access to those properties.

Constructing the Object and Running the Message Loop

The BApplication object must be constructed before the application can begin running or
put a user interface on-screen. Other objects in other kits depend on the BApplication
object and its connection to the Application Server. In particular, you can’t construct
BWindow objects in the Interface Kit until the BApplication object is in place.

Simply constructing the BApplication object forms the connection to the Server. The
connection is severed when you quit the application and delete the object.

be_app

The BApplication constructor assigns the new object to a global variable,be_app. This
assignment is made automatically—you don’t have to create the variable or set its value
yourself. be_app is declared inapp/Application.h and can be used throughout the
code you write (or, more accurately, all code that directly or indirectly includes
Application.h).

Thebe_app variable is typed as a pointer to an instance of the BApplication class. If you
use a derived class instead—as most applications do—you have to cast thebe_app
variable when you call a function that’s implemented by the derived class.

((MyApplication *)be_app)->DoSomethingSpecial();

Casting isn’t required to call functions defined in the BApplication class (or in the
BHandler and BLooper classes it inherits from), nor is it required for virtual functions
defined in a derived class but declared by BApplication (or by the classes it inherits from).

BApplication Overview

The Application Kit –23

main()

Because of its pivotal role, the BApplication object is one of the first objects, if not the
very first object, the application creates. It’s typically created in themain() function.
The job ofmain() is to set up the application and turn over its operation to the various
message loops run by particular objects, including the main message loop run by the
BApplication object.

After constructing the BApplication object (and the other objects that your application
initially needs), you tell it to begin running the message loop by calling itsRun() function.
Like theRun() function defined in the BLooper class, BApplication’sRun() initiates a
message loop and begins processing messages. However, unlike the BLooper function, it
doesn’t spawn a thread; rather, it takes over the main application thread. Because it runs
the loop in the same thread in which it was called,Run() doesn’t return until the
application is told to quit.

At its simplest, themain() function of a Be application would look something like this:

#include <app/Application.h>

main()
{
 . . .
 new BApplication('abcd');
 . . .
 be_app->Run();
 delete be_app;
}

The number passed to the constructor (‘abcd’) sets the application’s signature. This is just
a precautionary measure. It’s more common (and much better) to set the signature at
compile time in a resource. If there is a resource, that signature is used and the one passed
to the constructor is ignored.

Themain() function shown above doesn’t allow for the usual command-line arguments,
argc andargv. It would be possible to havemain() parse theargv array, but these
arguments are also packaged in aB_ARGV_RECEIVED message that the application gets
immediately afterRun() is called. Instead of handling them withinmain(), applications
generally implement anArgvReceived() function to do the job. This function can also
handle command-line arguments that are passed to the application after it has been
launched; it can be called at any time while the application is running.

Configuration Messages Received on Launch

When an application is launched, it may be passed messages that affect how it
configures itself. These are the first messages that the BApplication object receives after
Run() is called.

For example, when the user double-clicks a document icon to launch an application, the
Browser passes the application aB_REFS_RECEIVED message with information about the

Overview BApplication

24 – The Application Kit

document. When launched from the command line, the application gets a
B_ARGV_RECEIVED message listing the command-line arguments. When launched by the
BRoster object, it might receive an arbitrary set of configuration messages.

After all the messages passed on-launch have been received and responded to, the
application gets aB_READY_TO_RUN message and itsReadyToRun() hook function is
called. This is the appropriate place to finish initializing the application before it begins
running in earnest. It’s the application’s last chance to present the user with its initial user
interface. For example, if a document has not already been opened in response to an on-
launchB_REFS_RECEIVED message,ReadyToRun() could be implemented to place a
window with an empty document on-screen.

ReadyToRun() is always called to mark the transition from the initial period when the
application is being launched to the period when it’s up and running—even if it’s launched
without any configuration messages. TheIsLaunching() function can let you know which
period the application is in.

Quitting

The main message loop terminates andRun() returns whenQuit() is called. Because
Run() doesn’t spawn a thread,Quit() merely breaks the loop; it doesn’t kill the thread or
destroy the object (unlike BLooper’s version of the function).

Quit() is usually called indirectly, as a byproduct of aB_QUIT_REQUESTED message posted
to the BApplication object. The application is notified of the message through a
QuitRequested() function call; it callsQuit() if QuitRequested() returnsTRUE.

WhenRun() returns, the application is well down the path of terminating itself.main()
simply deletesbe_app, cleans up anything else that might need attention, and exits.

Aborted Run

Applications with restricted launch behavior (B_EXCLUSIVE_LAUNCH and
B_SINGLE_LAUNCH) may be launched anyway in violation of those restrictions. When
this happens, theRun() function returns abruptly without processing any messages and
the application quits as it normally does whenRun() returns. Messages that carried on-
launch information for the aborted application are redirected to the instance of the
application that’s already running.

Applications should be prepared for theirmain() functions to be executed in this abortive
manner and guard against any undesired consequences.

BApplication Hook Functions

The Application Kit –25

Locking

You sometimes have to coordinate access to the BApplication object, since a single object
serves the entire application and different parts of the application (windows, in particular)
will be running in other threads. Locking ensures that one thread won’t change the state of
the application while another thread is changing the same aspect (or even just trying to
examine it).

The BApplication object is locked automatically while the main thread is responding to a
message, but it may have to be explicitly locked at other times.

This class inherits the locking mechanism—theLock(), Unlock(), andLockOwner()
functions—from BLooper. See that class for details.

Hook Functions

AboutRequested() Can be implemented to present the user with a window
containing information about the application.

Activate() Activates the application by making one of its windows the
active window; can be reimplemented to activate the
application in some other way.

AppActivated() Can be implemented to do whatever is necessary when the
application becomes the active application, or when it loses
that status.

ArgvReceived() Can be implemented to parse the array of command-line
arguments (or a similar array of argument strings).

FilePanelClosed() Can be implemented to take note when the file panel is
closed.

MenusWillShow() Can be implemented to update the menus in the
application’s main menu hierarchy, just before they’re
shown on-screen.

Pulse() Can be implemented to do something over and over again.
Pulse() is called repeatedly at roughly regular intervals in
the absence of any other activity in the main thread.

ReadyToRun() Can be implemented to set up the application’s running
environment. This function is called after all messages the
application receives on-launch have been responded to.

RefsReceived() Can be implemented to respond to a message that contains
references to database records. Typically, the records are
for documents that the application is being asked to open.

Constructor and Destructor BApplication

26 – The Application Kit

VolumeMounted() Can be implemented to take note when a new volume (a
floppy disk, for example) is mounted.

VolumeUnmounted() Can be implemented to take whatever action is necessary
just before a volume is unmounted.

Constructor and Destructor

BApplication()
BApplication(ulongsignature)

Establishes a connection to the Application Server, assignssignature as the application
identifier if one hasn’t already been set, and initializes the application-wide variable
be_app to point to the new object.

Thesignature that’s passed becomes the application identifier only if a signature hasn’t
been set in a resource file. It’s preferable to assign the signature in a resource at compile
time, since that enables the system to associate the signature with the application even
when it’s not running.

Every application must have one and only one BApplication object, typically an instance
of a derived class. It’s usually the first object that the application creates.

~BApplication()
virtual ~BApplication(void)

Closes the application’s windows, if it has any, without giving them a chance to disagree,
kills the window threads, frees the BWindow objects and the BViews they contain, and
severs the application’s connection to the Application Server.

You can delete the BApplication object only afterRun() has exited the main message loop.
In the normal course of events, all the application’s windows will already have been
closed and freed by then.

See also: the BWindow class in the Interface Kit,QuitRequested()

BApplication Member Functions

The Application Kit –27

Member Functions

AboutRequested()
virtual voidAboutRequested(void)

Implemented by derived classes to put a window on-screen that provides the user with
information about the application. The window typically displays copyright data, the
version number, license restrictions, the names of the application’s authors, a simple
description of what the application is for, and similar information.

This function is called when the user operates the “About . . .” item in the main menu and
a B_ABOUT_REQUESTED message is posted to the application as a result.

To set up the menu item, assign it a model message withB_ABOUT_REQUESTED as the
command constant and the BApplication object as the target, as illustrated in the
SetMainMenu() description on page 38. The default main menu includes such an item.

See also: SetMainMenu(), the BMenu class in the Interface Kit

Activate()
virtual voidActivate(void)

Makes the application the active application by arbitrarily picking one of its windows and
making it the active window. If the application doesn’t have any windows, or if the
chosen window happens to be hidden, the attempted activation will fail. < A surer method
of activation will be provided in a future release. >

This function is called when the main thread receives aB_ACTIVATE message, which any
application can send to any other application. The Browser uses this method to activate a
running application when, for example, the user double-clicks its icon or selects it from
the application menu.

However,Activate() is not called when the application is first launched or when the user
makes one of its windows the active window. Therefore don’t rely on it as a way of being
notified that the application has become active. Rely onAppActivated() instead.

See also: activate_app() andBWindow::Activate() in the Interface Kit,AppActivated()

AppActivated()
virtual voidAppActivated(bool isActive)

Implemented by derived classes to take note when the application becomes—or ceases to
be—the active application. The application has just attained that status if theisActive flag
is TRUE, and just lost it if the flag isFALSE. The active application is the one that owns the
current active window and whose main menu is accessible through the icon displayed at
the left top corner of the screen.

Member Functions BApplication

28 – The Application Kit

< Currently, this function is called only when the change in active application is a
consequence of a window being activated. It can be called while an application is being
launched, provided that the application puts a window on-screen. However, it’s always
called afterReadyToRun(), not before. >

See also: BWindow::WindowActivated() in the Interface Kit, “B_APP_ACTIVATED” on
page 5 in theMessage Protocols appendix

ArgvReceived()
virtual voidArgvReceived(int argc, char **argv)

Implemented by derived classes to respond to aB_ARGV_RECEIVED message that passes
the application an array of argument strings, typically arguments typed on the command
line. argv is a pointer to the strings andargc is the number of strings in the array. These
parameters are identical to those traditionally associated with themain() function.

When an application is launched from the command line, the command-line arguments are
both passed tomain() and packaged in aB_ARGV_RECEIVED message that’s sent to the
application on-launch (beforeReadyToRun() is called). When BRoster’sLaunch()
function is passedargc andargv parameters, they’re similarly bundled in an on-launch
message.

An application might also getB_ARGV_RECEIVED messages after it’s launched. For
example, imagine a graphics program called “Splotch” that can handle multiple
documents and is therefore restricted so that it can’t be launched more than once (it’s a
B_SINGLE_LAUNCH or aB_EXCLUSIVE_LAUNCH application). If the user types

Splotch myArtwork

in a shell, it launches the application and passes it an on-launchB_ARGV_RECEIVED
message with the strings “Splotch” and “myArtwork”. Then, if the user types

Splotch yourArtwork

the running application is again informed with aB_ARGV_RECEIVED message. In both
cases, the BApplication object dispatches the message by calling this function.

To open either of the artwork files, the Splotch application will need to translate the
document pathname into a database reference. It can do this most easily by calling
get_ref_for_path(), defined in the Storage Kit.

See also: RefsReceived(), “B_ARGV_RECEIVED” on page 5 in theMessage Protocols
appendix

CloseFilePanel() see RunFilePanel()

BApplication Member Functions

The Application Kit –29

CountWindows()
long CountWindows(void) const

Returns the number of windows belonging to the application. The count includes only
windows that the application explicitly created. It omits, for example, the private
windows used by BBitmap objects.

See also: the BWindow class in the Interface Kit

DispatchMessage()
virtual voidDispatchMessage(BMessage *message, BHandler *target)

Augments the BLooper function to dispatch system messages by calling a specific hook
function. The set of system messages that the BApplication object receives and the hook
functions that it calls to respond to them are listed under “Application Messages” on
page 16 of the chapter introduction.

Other messages—those defined by the application rather than the Application Kit—are
forwarded to thetarget BHandler’sMessageReceived() function. Note that thetarget is
ignored for most system messages.

DispatchMessage() locks the BApplication object and keeps it locked until the main
thread has finished responding to the message.

You can override this function to dispatch your own messages differently.

See also: BLooper::DispatchMessage(), BHandler::MessageReceived()

FilePanelClosed()
virtual voidFilePanelClosed(BMessage *message)

Implemented by derived classes to take note when the file panel is closed. Themessage
argument contains information about how the panel was closed and its state at the time. It
hasB_PANEL_CLOSED as itswhat data member and may include entries under the names
“frame” (the last frame rectangle of the panel), “directory” (the last directory it displayed),
“marked” (the item that was marked in its list of filters), and “canceled” (whether the user
closed the panel). Some of this information can be retained to configure the panel the next
time it runs.

See also: “B_PANEL_CLOSED” on page 5 in theMessage Protocols appendix,
RunFilePanel()

Member Functions BApplication

30 – The Application Kit

GetAppInfo()
long GetAppInfo(app_info *theInfo) const

Writes information about the application into theapp_info structure referred to bytheInfo.
The structure contains the application signature, the identifier for its main thread, a
reference to its executable file in the database, and other information.

This function is the equivalent to the identically-named BRoster function—or, more
accurately, to BRoster’sGetRunningAppInfo()—except that it only provides information
about the current application. The following code

app_info info;
if (be_app->GetAppInfo(&info) == B_NO_ERROR)
 . . .

is simply a shorthand for:

app_info info;
if (be_roster->GetRunningAppInfo(be_app->Team(),
 &info) == B_NO_ERROR)
 . . .

GetAppInfo() returnsB_NO_ERROR if successful, and an error code if not.

See the BRoster function for the error codes and for a description of the information
contained in anapp_info structure.

See also: BRoster::GetAppInfo()

HandlersRequested()
virtual voidHandlersRequested(BMessage *message)

Responds to aB_HANDLERS_REQUESTED message by sending aB_HANDLERS_INFO reply.
The reply supplies a BMessenger object for each requested BHandler that’s associated
with the BApplication object. The BMessengers are placed in the reply message under the
name “handlers”.

This version ofHandlersRequested() interprets the request for handlers as a request for
BLoopers belonging to the application. If the requestmessage has an entry named “class”
containing the string “BWindow”, it limits the search for BLoopers to BWindow objects
belonging to the application. If the BWindow class isn’t specified, the search
encompasses all BLoopers belonging to the BApplication, including BWindow objects.

If the message has an entry named “index”, this function supplies a BMessenger for the
BLooper at that index in the list of the application’s BLoopers (or the BWindow at that
index in the application’s window list). If there’s no “index” entry, but there is one labeled
“name”, it supplies a BMessenger for the BLooper (or BWindow) with the specified name.

BApplication Member Functions

The Application Kit –31

If it can’t find a BLooper (or BWindow) at the specified “index” or with the requested
“name”, this function doesn’t supply any BMessengers, but rather puts theB_BAD_INDEX
or B_NAME_NOT_FOUND error constant in the reply message in an entry named “error”.

If neither an “index” nor a “name” is specified, it places BMessengers for all the
application’s BLoopers (or BWindows) in the “handlers” array. Failing that, it places
B_ERROR in an “error” entry.

You can override this function to use a different protocol for requesting handlers, or to
prevent the BApplication object from revealing information about any or all of its
BLoopers.

See also: BLooper::HandlersRequested()

HideCursor(), ShowCursor(), ObscureCursor()
void HideCursor(void)

void ShowCursor(void)

void ObscureCursor(void)

HideCursor() removes the cursor from the screen.ShowCursor() restores it.
ObscureCursor() hides it temporarily, until the user moves the mouse.

See also: SetCursor(), IsCursorHidden()

IsCursorHidden()
bool IsCursorHidden(void) const

ReturnsTRUE if the cursor is hidden (but not obscured), andFALSE if not.

See also: HideCursor()

IsFilePanelRunning() see RunFilePanel()

Member Functions BApplication

32 – The Application Kit

IsLaunching()
bool IsLaunching(void) const

ReturnsTRUE if the application is in the process of launching—of getting itself ready to
run—andFALSE once theReadyToRun() function has been called.

IsLaunching() can be called while responding to a message to find out whether the
message was received on-launch (to help the application configure itself) or after-launch
as an ordinary message.

See also: ReadyToRun()

MainMenu() see SetMainMenu()

MenusWillShow()
virtual voidMenusWillShow(void) const

Implemented by derived classes to make any necessary changes to the menus in the
hierarchy controlled by the application’s main menu before any of them is shown to the
user. MenusWillShow() is called each time the main menu is placed on-screen, just before
it’s made visible.

See also: BWindow::MenusWillShow() in the Interface Kit,SetMainMenu()

ObscureCursor() see HideCursor()

Pulse()
virtual voidPulse(void)

Implemented by derived classes to do something at regular intervals.Pulse() is called
regularly as the result ofB_PULSE messages, as long as no other messages are pending. By
default, pulsing is disabled—the pulse rate is set to 0.0—but you can enable it by calling
theSetPulseRate() function to set an actual rate.

You can implementPulse() to do whatever you want. However, pulse events aren’t
accurate enough for actions that require precise timing.

The default version of this function is empty.

See also: BWindow::Pulse() in the Interface Kit,SetPulseRate()

BApplication Member Functions

The Application Kit –33

Quit()
virtual voidQuit(void)

Kills the application by terminating the message loop and causing Run() to return. You
rarely call this function directly; it’s called for you when the application receives a
B_QUIT_REQUESTED message andQuitRequested() returnsTRUE to allow the application to
shut down.

BApplication’sQuit() differs from the BLooper function it overrides in four important
respects:

• It doesn’t kill the thread. It merely causes the message loop to exit after it finishes
with the current message.

• It therefore always returns, even when called from within the main thread.

• It returns immediately. It doesn’t wait for the message loop to exit.

• It doesn’t delete the object. It’s up to you to delete it afterRun() returns. (However,
for some reason,Quit() does delete the BApplication object if it’s called when no
message loop is running.)

Before shutting down, the BApplication object responds to every message it received prior
to theQuit() call.

See also: BLooper::Quit(), QuitRequested()

QuitRequested()
virtual boolQuitRequested(void)

Overrides the BLooper function to decide whether the application should really quit when
requested to do so.

BApplication’s implementation of this function tries to get the permission of the
application’s windows before agreeing to quit. It works its way through the list of
BWindow objects that belong to the application and forwards theQuitRequested() call to
each one. If a BWindow agrees to quit (itsQuitRequested() function returnsTRUE), the
BWindow version ofQuit() is called to destroy the window. If the window refuses to quit
(its QuitRequested() function returnsFALSE), the attempt to destroy the window fails and
no other windows are asked to quit.

If it’s successful in terminating all the application’s windows (or if the application didn’t
have any windows to begin with), this function returnsTRUE to indicate that the application
may quit; if not, it returnsFALSE.

An application can replace this window-by-window test of whether the application should
quit, or augment it by adding a more global test. It might, for example, put a modal
window on-screen that gives the user the opportunity to save documents, terminate on-
going operations, or cancel the quit request.

Member Functions BApplication

34 – The Application Kit

This hook function is called for you when the main thread receives aB_QUIT_REQUESTED
message; you never call it yourself. However, youdo have to post theB_QUIT_REQUESTED
message. Typically, the application’s main menu has an item labeled “Quit.” When the
user invokes the item, it should post aB_QUIT_REQUESTED message directly to the
BApplication object.

See also: BLooper::QuitRequested(), Quit(), SetMainMenu()

ReadyToRun()
virtual voidReadyToRun(void)

Implemented by derived classes to complete the initialization of the application. This is a
hook function that’s called after all messages that the application receives on-launch have
been handled. It’s called in response to aB_READY_TO_RUN message that’s posted
immediately after the last on-launch message. If the application isn’t launched with any
messages,B_READY_TO_RUN is the first message it receives.

This function is the application’s last opportunity to put its initial user interface on-screen.
If the application hasn’t yet displayed a window to the user (for example, if it hasn’t
opened a document in response to an on-launchB_REFS_RECEIVED or B_ARGV_RECEIVED
message), it should do so inReadyToRun().

The default version ofReadyToRun() is empty.

See also: Run(), IsLaunching()

RefsReceived()
virtual voidRefsReceived(BMessage *message)

Implemented by derived classes to do something with one or more database records that
have been referred to the application in amessage. The message hasB_REFS_RECEIVED as
its what data member and a single data entry named “refs” that contains one or more
record_ref (B_REF_TYPE) items.

Typically, the records are for documents that the application is requested to open. For
example, unless an alternative message is specified, the user’s selections in the file panel
are reported to the application in aB_REFS_RECEIVED message. Similarly, when the user
double-clicks a document icon in a Browser window, the Browser sends a
B_REFS_RECEIVED message to the application that owns the document. In each case, the
BApplication object dispatches the message by passing it to this function.

BApplication Member Functions

The Application Kit –35

You can use the Storage Kit’sdoes_ref_conform() function to discover what kind of
record each item in the “refs” entry refers to. For example:

void MyApplication::RefsReceived(BMessage *message)
{
 ulong type;
 long count;
 . . .
 message->GetInfo("refs", &type, &count);
 for (long i = --count; i >= 0; i--) {
 record_ref item = message->FindRef("refs", i);
 if (item.database >= 0 && item.record >= 0) {
 if (does_ref_conform(item, "File")) {
 BFile file;
 file.SetRef(item);
 if (file.Open() == B_NO_ERROR)
 . . .
 }
 else {
 BRecord *record = new BRecord(item);
 . . .
 }
 }
 }
 . . .
}

REFS_RECEIVED messages can be received both on-launch (while the application is
configuring itself) or after-launch (as ordinary messages received while the application is
running).

See also: does_ref_conform() in the Storage Kit,ArgvReceived(), ReadyToRun(),
IsLaunching(), “B_REFS_RECEIVED” on page 6 in theMessage Protocols appendix

Run()
virtual thread_idRun(void)

Runs a message loop in the application’s main thread. This function must be called from
main() to start the application running. The loop is terminated andRun() returns when
Quit() is called, or (potentially) when aQUIT_REQUESTED message is received. It returns
the identifier for the main thread (not that it’s of much use once the application has stopped
running).

This function overrides BLooper’sRun() function. Unlike that function, it doesn’t spawn
a thread for the message loop or return immediately.

See also: the “Overview” to this class above,BLooper::Run(), ReadyToRun(),
QuitRequested()

Member Functions BApplication

36 – The Application Kit

RunFilePanel(), CloseFilePanel(), IsFilePanelRunning()
long RunFilePanel(const char *windowTitle = NULL,

const char *openButtonLabel= NULL,
const char *cancelButtonLabel= NULL,
booldirectoriesOnly= FALSE,
BMessage *message= NULL)

void CloseFilePanel(void)

bool IsFilePanelRunning(void)

RunFilePanel() requests the Browser to display a window that lets the user navigate the file
system to find desired files and directories. Its arguments are all optional and are used to
configure the panel:

• If anotherwindowTitle is not specified, the title of the window will be “Open”
preceded by the name of the application. For example:

WishMaker : Open

This title reflects the fact that the panel is typically used to find files the application
should open and display to the user.

• If an openButtonLabel isn’t provided, the principal button in the panel (the default
button) will be labeled “Open”.

• If a cancelButtonLabel isn’t provided, the other button in the panel will be labeled
“Cancel”.

• If thedirectoriesOnly flag isTRUE, the user will be able to select only directories, not
files. If the flag isFALSE, as it is by default, the user won’t be able to select
directories. Instead, their contents will be displayed in the panel as the user
navigates the file system.

• If a message is passed, it can contain entries that further configure the panel. It also
serves as a model for the message the file panel will send to the application to report
which files and directories the user selected. If amessage isn’t provided, this
information will be reported in a standardB_REFS_RECEIVED message.

If the message has any of the following entries, they will be used to help set up the panel:

Data name Type code Description

“directory” B_REF_TYPE Therecord_ref for the directory that the
panel should display when it first comes
on-screen. If this entry is absent, the panel
will initially display the current directory
of the current volume.

“frame” B_RECT_TYPE A BRect that sets the size and position of
the panel in screen coordinates. If this

BApplication Member Functions

The Application Kit –37

entry is absent, the Browser will choose an
appropriate frame rectangle for the panel.

“filter” B_STRING_TYPE An array of labels for items that should be
displayed in a Filters pop-up menu. The
items will be listed in the menu in the same
order that they’re added to the array. If
this item is absent, the file panel won’t
display a Filters list.

“marked” B_STRING_TYPE The label that should be marked in the
Filters menu. If this item is absent, the first
item in the list will be marked.

If the panel is to have a Filters menu, themessage should have one additional entry for
each label in the “filter” array. This entry should list the file types associated with the label
and have the label as its name. For example:

BMessage *model = new BMessage(OPEN_THESE);

model->AddString("filter", "All files");
model->AddString("filter", "Picture files only");
model->AddString("filter", "Text files only");
model->AddString("filter", "Picture & text files");

model->AddLong("All files", 0);

model->AddLong("Picture files only", MY_IMAGE_A_FILE_TYPE);
model->AddLong("Picture files only", MY_IMAGE_B_FILE_TYPE);

model->AddLong("Text files only", MY_TEXT_FILE_TYPE);

model->AddLong("Picture & text files", MY_IMAGE_A_FILE_TYPE);
model->AddLong("Picture & text files", MY_IMAGE_B_FILE_TYPE);
model->AddLong("Picture & text files", MY_TEXT_FILE_TYPE);

be_app->RunFilePanel(NULL, NULL, FALSE, model);

When the user selects a particular filter item, the file panel eliminates files of other types
from the display. It shows only files with types associated with the selected item (and
directories).

If an item is associated with a file type of 0—as is “All files” in the example above—it
won’t restrict the display. When the item is selected, the file panel shows every file in the
directory. Generally, “All files” should be the first item in the menu and the one that’s
initially marked.

When the user operates the “Open” (oropenButtonLabel) button, the file panel sends a
message to the BApplication object. If a customizedmessage is provided, it’s used as the

Member Functions BApplication

38 – The Application Kit

model for the message that’s sent. If amessage isn’t provided, a standard
B_REFS_RECEIVED message is sent instead. It has one data entry:

Data name Type code Description

“refs” B_REF_TYPE References to the database records for the
files or directories selected by the user.

If the user selects more than one file or directory, there will be more than onerecord_ref
item in the “refs” array.

A customizedmessage works much like the model messages assigned to BControl objects
and BMenuItems in the Interface Kit. The file panel makes a copy of the model, adds a
“refs” entry (as described above) to the copy, and delivers the copy to the BApplication
object. All other entries, including those used to configure the panel, remain unchanged.
The message can have any command constant you choose, includingB_REFS_RECEIVED.

The file panel automatically disappears when the user operates the “Open” (or
openButtonLabel) button—provided that the message hasB_REFS_RECEIVED as the
command constant. If it has a customized constant, it remains on-screen until
CloseFilePanel() is called (or until the application quits). You can choose to close the
panel if the user makes a valid selection, or you can leave it on-screen so the user can
continue making selections.IsFilePanelRunning() will report whether the file panel is
currently displayed on-screen.

The user can close the file panel by operating the “Cancel” (orcancelButtonLabel) button.
Whenever the panel is closed, by the user or the application, aB_PANEL_CLOSED message
is sent to the application and theFilePanelClosed() hook function is called.

RunFilePanel() returnsB_NO_ERROR if it succeeds in getting the Browser to put the file
panel on-screen. If the Browser isn’t running or the file panel is already on-screen, it
returnsB_ERROR. If the Browser is running but the application can’t communicate with it,
it returns an error code that indicates what went wrong; these codes are the same as those
documented for BMessenger’sError() function.

See also: RefsReceived(), FilePanelClosed()

SetMainMenu(), MainMenu()
void SetMainMenu(BPopUpMenu *menu)

BPopUpMenu *MainMenu(void)

These functions set and return the application’s main menu, the menu that’s accessible
through the icon that the Browser displays at the left top corner of the screen while the
application is the current active application. Because it isn’t under the control of a
BMenuBar, this menu must be a kind of BPopUpMenu (but one that doesn’t operate in
radio mode or mark the selected item).

The main menu contains items that affect the application as a whole, rather than ones that
affect operations within a particular window. The first item in the menu should be labeled

BApplication Member Functions

The Application Kit –39

“About” plus the name of the application and the three dots of an ellipsis. The last item
should be “Quit”. A default main menu with just these two items is provided for every
application. You can set up your own menu in the following manner:

BMenuItem *item;
BPopUpMenu *menu = new BPopUpMenu("", FALSE, FALSE);

item = new BMenuItem("About <application name> ...",
 new BMessage(B_ABOUT_REQUESTED));
item->SetTarget(be_app);
menu->AddItem(item);

item = new BMenuItem("Preferences",
 new BMessage(SET_PREFERENCES));
item->SetTarget(be_app);
menu->AddItem(item);

item = new BMenuItem("Open", new BMessage(SHOW_FILE_PANEL));
item->SetTarget(be_app);
menu->AddItem(item);

item = new BMenuItem("Quit", new BMessage(B_QUIT_REQUESTED));
item->SetTarget(be_app);
menu->AddItem(item);

be_app->SetMainMenu(menu);

B_ABOUT_REQUESTED andB_QUIT_REQUESTED are system messages that are dispatched by
calling theAboutRequested() andQuitRequested() hook functions. The other messages
in this example would be dispatched by callingMessageReceived().

See also: AboutRequested(), QuitRequested()

SetCursor()
void SetCursor(const void *cursor)

Sets the cursor image to the bitmap specified incursor. Each application has control over
its own cursor, and can set and reset it as often as necessary. The cursor on-screen will
have the shape specified incursor as long as the application remains the active
application. If it loses that status and then regains it again, its current cursor is
automatically restored.

The first four bytes ofcursor data is a preamble that gives information about the image, as
follows:

• The first byte sets the size of the cursor image. The cursor bitmap is a square and
this byte states the number of pixels on one side. Currently, only 16-pixel-by-16-
pixel images are acceptable.

• The second byte specifies the depth of the cursor image, in bits per pixel. Currently,
only monochrome one-bit-per-pixel images are acceptable.

Member Functions BApplication

40 – The Application Kit

• The third and fourth bytes set thehot spot, the pixel within the cursor image that’s
used to report the cursor’s location. For example, if the cursor is located over a
button on-screen so that the hot spot is within the button rectangle, the cursor is said
to point to the button. However, if the hot spot lies outside the button rectangle,
even if most of the cursor image is within the rectangle, the cursor doesn't point to
the button.

To locate the hot spot, assume that the pixel in the upper left corner of the cursor
image is at (0, 0). Identify the verticaly coordinate first, then the horizontal
x coordinate. For example, a hot spot 5 pixels to the right of the upper left corner
and 8 pixels down—at (5, 8)—would be specified as “8, 5.”

Image data follows these four bytes. Pixel values are specified from left to right in rows
starting at the top of the image and working downward. First comes data specifying the
color value of each pixel in the image. In a one-bit-per-pixel image, 1 means black and 0
means white.

Following the color data is a mask that indicates which pixels in the image square are
transparent and which are opaque. Transparent pixels are marked 0; they let whatever is
underneath that part of the cursor bitmap show through. Opaque pixels are marked 1.

The Application Kit defines two standard cursor images. Each is represented by a
constant that you can pass toSetCursor():

B_HAND_CURSOR The hand image that’s seen when the computer is first
turned on. This is the default cursor.

B_I_BEAM_CURSOR The standard I-beam image for selecting text.

See also: HideCursor()

SetPulseRate()
void SetPulseRate(doublemicroseconds)

Sets how oftenPulse() is called (how oftenB_PULSE messages are posted). The interval set
should be a multiple of 100,000.0 microseconds (0.1 second); differences less than
100,000.0 microseconds will not be noticeable. A finer granularity can’t be guaranteed.

The default pulse rate is 0.0, which disables the pulsing mechanism. Setting a different
rate enables it.

See also: Pulse()

ShowCursor() see HideCursor()

BApplication Member Functions

The Application Kit –41

VolumeMounted(), VolumeUnmounted()
virtual voidVolumeMounted(longvolume)

virtual voidVolumeUnmounted(longvolume)

Implemented by derived classes to take action when avolume (typically a floppy disk) is
mounted or unmounted. The volume is mounted just beforeVolumeMounted() is called
and unmounted just afterVolumeUnmounted() returns.

Thevolume identifier can be passed to the BVolume constructor to get an object
corresponding to the volume.

Currently, there’s no way to prevent a volume from being mounted or unmounted.

See also: the BVolume class in the Storage Kit

WindowAt()
BWindow *WindowAt(long index) const

Returns the BWindow object recorded in the list of the application’s windows atindex, or
NULL if index is out-of-range. Indices begin at 0, and there are no gaps in the list.
Windows aren’t listed in any particular order (such as the order they appear on-screen), so
the value ofindex has no ulterior meaning. The window list excludes the private windows
used by BBitmaps and other objects, but it doesn’t distinguish main windows that display
documents from palettes, panels, and other supporting windows.

This function can be used to iterate through the window list:

BWindow *window;
long i = 0;

while (window = be_app->WindowAt(i++)) {
 if (window->Lock()) {
 . . .
 window->Unlock();
 }
}

This works as long as windows aren’t being created or deleted while the listindex is being
incremented. Locking the BApplication object doesn’t lock the window list.

It’s best for an application to maintain its own window list, one that arranges windows in a
logical order, keeps track of any contingencies among them, and can be locked while it’s
being read.

See also: CountWindows()

Member Functions BApplication

42 – The Application Kit

The Application Kit –43

BClipboard

Derived from: none

Declared in: <app/Clipboard.h>

Overview

The clipboard is a single, system-wide, temporary repository of data. In its normal use,
the clipboard is a vehicle for transferring data between applications, or between different
parts of the same application. An application adds some amount of data to the clipboard,
then some other application (or the same application) retrieves (or “finds”) that data. This
mechanism permits, most notably, the ability to cut, copy, and paste data items. For
example, the BTextView object, in the Interface Kit, uses the clipboard to perform just
such operations on text.

The BClipboard class represents the clipboard. As there is but a single clipboard per
system, the BClipboard class allows only one BClipboard object. You don’t create this
object directly in your application; it’s created automatically when you boot the machine
(so there’s no public constructor or destructor for the class). Each application knows this
object asbe_clipboard. Thebe_clipboard variable in your application points
(ultimately) to the same object as does every otherbe_clipboard in all other applications.

Using the Clipboard

The central BClipboard functions are these:

• AddData() lets you add a new item of data to the clipboard. The data that’s added is
copied from an argument passed to the function. Each clipboard item is identified
(primarily) by its data type (which is represented by one of the standard type
constants, such asB_ASCII_TYPE or B_REF_TYPE, that are defined inapp/AppDefs.h).

• FindData() retrieves data from the clipboard by providing the caller with a pointer to
a specific item. This pointer points to data that resides on the clipboard—the
function doesn’t copy the data.

You must bracket calls to AddData() andFindData() with calls toLock() andUnlock().
This prevents other applications from accessing the clipboard while your application is
using it. Conversely, if some other application (or if another thread in your application)
holds the lock to the clipboard when you callLock(), your application (or thread) will hang
until the current lock holder callsUnlock()—in other words,Lock() will always succeed,
even if it has to wait forever to do so. Currently, unfortunately, there’s no way to tell if the

Overview BClipboard

44 – The Application Kit

clipboard is already locked, nor can you specify a time limit beyond which you won’t wait
for the lock.

AddData() calls should also be bracketed by calls toClear() andCommit() (see the
example below for the calling sequence). Clearing the clipboard removes all data that it
currently holds. This may seem harsh, but somebody has to keep the clipboard tidy. The
Commit() function tells the clipboard that you’re serious about the item-additions that you
requested in the previousAddData() calls. If you don’t commit your additions, they’ll be
lost.

TheLock()/Unlock() andClear()/Commit() calls can bracket groups ofAddData() and
FindData() calls. The following code fragments demonstrate the expected sequences of
function calls with regard to adding and retrieving clipboard data (the arguments to
FindData() andAddData() aren’t fully shown in the examples; see the function
descriptions, below, for argument details).

Example 1: Adding Data to the Clipboard

/* Lock the clipboard. */
be_clipboard->Lock();

/* Clear the clipboard. */
be_clipboard->Clear();

/* Add some items. */
be_clipboard->AddData(B_DOUBLE_TYPE, . . .);
be_clipboard->AddData(B_FLOAT_TYPE, . . .);

/* Commit the additions and unlock the clipboard. */
be_clipboard->Commit();
be_clipboard->Unlock();

Example 2: Retrieving Data from the Clipboard

/* Lock the clipboard. */
be_clipboard->Lock();

/* Find a bool. */
bool *bp = (bool *)be_clipboard->FindData(B_BOOL_TYPE, . . .);

/* Copy the bool value (for reasons that are explained in the
 * FindData() description).
 */
bool yesOrNo = *bp;

/* Unlock the clipboard */
be_clipboard->Unlock();

It’s possible to mixAddData() andFindData() calls within the same “session,” but such a
pursuit doesn’t correspond to traditional manipulations on selected data.

BClipboard Member Functions

The Application Kit –45

Member Functions

AddData(), AddText()
void AddData(ulongtype, const void *data, longnumBytes)

void AddText(const char *string)

These functions add a buffer of data to the clipboard. TheAddData() function copies
numBytes bytes of data starting atdata. The clipboard thinks this data is of the type given
by thetype argument (one of the data type constants—B_BOOL_TYPE, B_DOUBLE_TYPE,
B_FLOAT_TYPE, and so on—declared inAppDefs.h).

AddText() is a convenience function that adds a copy ofstring to the clipboard. Text items
are declared to beB_ASCII_TYPE.

You must call Lock() before callingAddData() or AddText(). If you don’t, your
application will visit the debugger. Furthermore, you must callUnlock() after you’ve
added your items. Multiple invocations ofAddData() or AddText() (or both) can be
performed within the sameLock()/Unlock() pair. You can add any number of items of the
same or different types while you have the clipboard locked.

By convention, you should callClear() immediately before callingAddData() or
AddText() (but after callingLock()). This will remove all items that the clipboard is
currently holding.

After you’ve added your items to the clipboard (but before you callUnlock()), you must
commit the additions by callingCommit(). If you don’t commit before you unlock, your
additions won’t be recorded.

TheFindData() andFindText() functions retrieve data that’s been added through
AddData() andAddText() calls.

Clear()
void Clear(void)

Erases all items that are currently on the clipboard. Normally, you callClear() just before
you add new data to the clipboard (through invocations ofAddData() andAddText()).
You must callLock() before calling Clear(); if you don’t, the debugger will tap you on the
shoulder.

Member Functions BClipboard

46 – The Application Kit

Commit()
void Commit(void)

Forces the clipboard to notice the items you added. All calls (or sequence of calls) to
AddData() or AddText() must be followed by a call toCommit(), or you’ll lose the
additions. The call toCommit() must precede the call toUnlock() that balances the call to
Lock() that preceded the call toClear() that worried the cat that killed the rat that ate the
malt . . .

CountEntries()
long CountEntries(ulongtype)

Returns the number of items on the clipboard that are of the specified type. Thetype
argument must be one of the data type constants defined inapp/AppDefs.h. If type is
B_ANY_TYPE, the function returns the total number of current clipboard items.

You must callLock() before invoking this function; if you don’t, it returnsNULL.

DataOwner()
BMessengerDataOwner(void)

Returns a BMessenger object for the application that last committed data to the clipboard.
The BMessenger targets that application’s BApplication object.

FindData(), FindText()
void *FindData(ulongtype, long *numBytes)
void *FindData(ulongtype, long index, long *numBytes)

const char *FindText(long *numBytes)

These functions return a pointer to a particular item on the clipboard.

FindData() returns an item of the requestedtype, which can be any of the data type
constants defined in AppDefs.h or an application-defined type code. If anindex is
provided, it returns the item at that index; indices begin at 0 and count only items of the
specified type. If an index isn’t supplied,FindData() finds the first item on the clipboard
matching the requested type.

FindText() always searches for the first item of typeB_ASCII_TYPE.

If the item is found, a pointer to it is returned directly by the function, and the number of
bytes of data that comprise the item is returned by reference innumBytes. Keep in mind
that this pointer points to data that lies on the clipboard; if you want a permanent copy of
the data, you must copy the data that the pointer points to before you unlock the clipboard
(as shown in the example in the section “Using the Clipboard” on page 43).

BClipboard Member Functions

The Application Kit –47

An individual call or sequence of calls toFindData() andFindText() must be bracketed by
invocations ofLock() andUnlock().

If the function can’t find the specified item—for example, if the clipboard doesn’t have
data of the requestedtype or theindex passed to FindData() is out-of-range—it returns a
NULL pointer and, perhaps more telling, setsnumBytes to 0. If you don’t lock the clipboard
before invoking eitherFindData() or FindText(), you’ll find the debugger.

Lock(), Unlock()
bool Lock(void)

void Unlock(void)

These functions lock and unlock the clipboard. Locking the clipboard gives your
application exclusive permission to invoke the other BClipboard functions. (More
accurately, the permission extends only to the very thread in whichLock() is called.) If
some other thread already has the clipboard locked when your thread callsLock(), your
thread will wait until the lock-holding thread callsUnlock(). Your thread should also
invokeUnlock() when you’re done manipulating the clipboard.

Lock() should invariably be successful and returnTRUE.

See also: BLooper::Lock()

Member Functions BClipboard

48 – The Application Kit

The Application Kit –49

BHandler

Derived from: public BObject

Declared in: <app/Handler.h>

Overview

BHandlers are the objects that respond to messages received in message loops. The class
declares a hook function—MessageReceived()—that derived classes must implement to
handle expected messages. BLooper’sDispatchMessage() function calls
MessageReceived() to pass incoming messages from the BLooper to the BHandler.

All messages are passed to BHandler objects—even system messages, which are passed
by calling a message-specific function, notMessageReceived(). These specific functions
are declared in classes derived from BHandler—especially BWindow and BView in the
Interface Kit and BLooper and BApplication in this Kit. For example, the BApplication
class declares aReadyToRun() function to respond toB_READY_TO_RUN messages, and the
BView class declares aKeyDown() function to respond toB_KEY_DOWN messages.
(BHandler itself declares the function that responds toB_HANDLERS_REQUESTED system
messages,HandlersRequested().)

All messages that aren’t matched to a specific hook function—messages defined by
applications rather than the kits—are dispatched by callingMessageReceived().

BHandlers can be chained together in a linked list. The default behavior for
MessageReceived() is simply to pass the message to the next handler in the chain.
However, system messages are not passed from handler to handler.

To be eligible to get messages from a BLooper, a BHandler must be in the BLooper’s
circle of handlers. At any given time, a BHandler can belong to only one BLooper.

A target BHandler can be designated for a message when calling BLooper’s
PostMessage() function to post it. Messages that a BMessenger object sends are targeted
to the BHandler that was named when constructing the BMessenger. Messages that a user
drags and drops are targeted to the object (a BView) that controls the part of the window
where the message was dropped. The messaging mechanism eventually passes the target
BHandler toDispatchMessage(), so that the message can be delivered to its designated
destination.

Hook Functions BHandler

50 – The Application Kit

Hook Functions

HandlersRequested() Can be implemented to supply BMessengers for other
BHandler objects associated with this BHandler.

MessageReceived() Implemented to handle received messages.

Constructor and Destructor

BHandler()
BHandler(const char *name = NULL)

Initializes the BHandler by assigning it aname and registering it with the messaging
system.

~BHandler()
virtual ~BHandler(void)

Removes the BHandler’s registration and frees the memory allocated for its name.

Member Functions

AddFilter() see SetFilterList()

FilterList() see SetFilterList()

HandlersRequested()
virtual voidHandlersRequested(BMessage *message)

Implemented by derived classes to send aB_HANDLERS_INFO message in reply to the
receivedB_HANDLERS_REQUESTED message passed as an argument. The request is for
BMessenger objects corresponding to BHandler objects in the application; the
BMessengers will permit the requester to direct messages to those BHandlers. This
function should place the BMessengers in a “handlers” entry in the reply message—or,
failing that, to place an error code in an entry named “error”.

Since, by default, BHandlers are not associated with other BHandlers, this base version of
the function doesn’t supply any BMessengers; it simply puts theB_ERROR constant in an
“error” entry and sends the reply.

BHandler Member Functions

The Application Kit –51

For more information on the protocols that the kits currently use forB_HANDLERS_INFO
andB_HANDLERS_REQUESTED messages, see the versions of this function defined in
derived classes.

See also: BLooper::HandlersRequested(), BApplication::HandlersRequested(),
BWindow::HandlersRequested(), BView::HandlersRequested(),
“B_HANDLERS_REQUESTED” on page 4 in theMessage Protocols appendix

Looper()
virtual BLooper *Looper(void) const

Returns the BLooper object that the BHandler is associated with, orNULL if it’s not
associated with any BLooper. A BHandler must be associated with a BLooper before the
BLooper can call upon it to handle any messages it dispatches. (However, strictly
speaking, this restriction is imposed when the message is posted or when the BMessenger
that will send it is constructed, rather than when it’s dispatched.)

BLooper objects are automatically associated with themselves; they can act as handlers
only for messages that they receive in their own message loops. All other BHandlers must
be explicitly tied to a particular BLooper by calling that BLooper’sAddHandler()
function. A BHandler can be associated with only one BLooper at a time.

In the Interface Kit, when a BView is added to a window’s view hierarchy, it’s also added
as a BHandler to the BWindow object.

See also: BLooper::AddHandler(), BLooper::PostMessage(), the BMessenger constructor

MessageReceived()
virtual voidMessageReceived(BMessage *message)

Implemented by derived classes to respond to messages that are dispatched to the
BHandler. The default (BHandler) implementation of this function doesn’t respond to any
messages; it simply calls the next handler’s version ofMessageReceived() to pass it the
message.

You must implementMessageReceived() to handle the variety of messages that might be
dispatched to the BHandler. It can distinguish between messages by the value recorded in
thewhat data member of the BMessage object. For example:

void MyHandler::MessageReceived(BMessage *message)
{
 switch (message->what) {
 case COMMAND_ONE:
 . . .
 break;
 case COMMAND_TWO:
 . . .
 break;

Member Functions BHandler

52 – The Application Kit

 case COMMAND_THREE:
 . . .
 break;
 default:
 inherited::MessageReceived(message);
 break;
 . . .
 }
}

When defining a version ofMessageReceived(), it’s always a good idea to incorporate
the inherited version as well, as shown in the example above. This ensures, first, that any
messages handled by base versions of the function are not overlooked and, second, that the
message is passed to the BHandler’s next handler if even the inherited functions don’t
recognize it.

If the message comes to the end of the line—if it’s not recognized and there is no next
handler—the BHandler version of this function sends aB_MESSAGE_NOT_UNDERSTOOD
reply to notify the message source.

See also: SetNextHandler(), BLooper::PostMessage(), BLooper::DispatchMessage()

NextHandler() see SetNextHandler()

SetFilterList(), FilterList(), AddFilter(), RemoveFilter()
virtual voidSetFilterList(BList * list)

BList *FilterList(void) const

virtual voidAddFilter(BMessageFilter *filter)

virtual boolRemoveFilter(BMessageFilter *filter)

These functions manage a list of BMessageFilter objects associated with the BHandler.

SetFilterList() assigns the BHandler a newlist, replacing any list previously assigned. The
list must contain pointers to instances of the BMessageFilter class or, more usefully, to
instances of classes that derive from BMessageFilter. Iflist is NULL, the current list is
removed.FilterList() returns the current list of filters.

AddFilter() adds afilter to the end of the BHandler’s list of filters. It creates the BList
object if it doesn’t already exist. By default, BHandlers don’t maintain a BList of filters
until one is assigned or the first BMessageFilter is added.RemoveFilter() removes afilter
from the list. It returnsTRUE if successful, andFALSE if it can’t find the specified filter in
the list (or the list doesn’t exist). It leaves the BList in place even after removing the last
filter.

BHandler Member Functions

The Application Kit –53

ForSetFilterList(), AddFilter(), andRemoveFilter() to work, the BHandler must be assigned
to a BLooper object and the BLooper must be locked.

See also: BLooper::SetCommonFilterList(), BLooper::Lock(), the BMessageFilter class

SetName(), Name()
void SetName(const char *string)

const char *Name(void) const

These functions set and return the name that identifies the BHandler. The name is
originally set by the constructor.SetName() assigns the BHandler a new name, and
Name() returns the current name. The string returned byName() belongs to the BHandler
object; it shouldn’t be altered or freed.

See also: the BHandler constructor,BView::FindView() in the Interface Kit

SetNextHandler(), NextHandler()
void SetNextHandler(BHandler *handler)

BHandler *NextHandler(void) const

These functions set and return the BHandler object that’s linked to this BHandler. By
default, theMessageReceived() function passes any messages that a BHandler can’t
understand to its next handler.

When a BHandler object is added to a BLooper, the BLooper becomes its next handler by
default. The default next handler for a BLooper is the BApplication object; the next
handler for the BApplication object isNULL. The handler chain for an ordinary BHandler
object is therefore BHandler to BLooper to BApplication object.

However, when a BView object is added to a window, the Interface Kit assigns the
BView’s parent as its next handler (unless the parent is the window’s top view, in which
case the BWindow object is assigned as the next handler). The handler chain for BViews
is therefore BView to BView, up the view hierarchy, to the BWindow to the BApplication
object.

SetNextHandler() can alter any of these default assignments. For it to work, the BHandler
must be assigned to a BLooper object and the BLooper must be locked.

See also: MessageReceived()

Member Functions BHandler

54 – The Application Kit

The Application Kit –55

BLooper

Derived from: public BHandler

Declared in: <app/Looper.h>

Overview

A BLooper object runs a message loop in a thread that it spawns for that purpose. It offers
applications a simple way of creating a thread with a message interface.

Various classes in the Be software kits derive from BLooper in order to associate threads
with significant entities in the application and to set up message loops with special
handling for system messages. In the Application Kit, the BApplication object runs a
message loop in the application’s main thread. (Unlike other BLoopers, the BApplication
object doesn’t spawn a separate thread, but takes over the thread in which the application
was launched.) In the Interface Kit, each BWindow object runs a loop to handle messages
that report activity in the user interface.

Running the Loop

Constructing a BLooper object gets it ready to work, but doesn’t actually begin the
message loop. ItsRun() function must be called to spawn the thread and initiate the loop.
Some derived classes may choose to callRun() within the class constructor,

MyLooper::MyLooper(const char *name, long priority)
 : BLooper(name, priority)
{
 . . .
 Run();
}

so that simply constructing the object yields a fully functioning message loop. Other
classes may need to keep object initialization separate from loop initiation. (The
BWindow class in the Interface Kit is an example of the former approach, BApplication of
the latter.)

Receiving and Dispatching Messages

Messages are posted to the BLooper’s thread by calling itsPostMessage() function. This
simply puts the message in a queue. Messages can also be delivered to the BLooper’s

Overview BLooper

56 – The Application Kit

queue—somewhat more indirectly—by a BMessenger object or by theSendReply()
function of a BMessage object.

No matter how they get there, the thread takes messages from the queue one at a time, in
the order that they arrive, and callsDispatchMessage() for each one.DispatchMessage()
hands the message to a BHandler object; the BHandler kicks off the thread’s specific
response to the message.

Posting or sending a message to a thread initiates activity within that thread, beginning
with theDispatchMessage() function. SinceDispatchMessage() immediately transfers
responsibility for incoming messages to BHandler objects, BHandlers determine what
happens in the BLooper’s thread. Everything that the thread does, it does through
BHandlers responding to messages. The BLooper merely runs the posting and
dispatching mechanism.

The BLooper object is locked whenDispatchMessage() is called; it stays locked until the
thread has finished responding to the message.

Acting as the Handler

When a message is posted to a thread, a target BHandler can be named for it. Messages
that aren’t posted to a specific target are handled by the BLooper itself—in other words,
the BLooper acts as the default handler. (The BLooper class derives from BHandler for
just this reason.)

Thus, a BLooper object can play both roles—the BLooper role of running the message
loop and the BHandler role of responding to messages. For it to act as a handler, you must
derive a class from BLooper and define aMessageReceived() function that can respond
to the messages dispatched to it.

However, the BLooper class can also be used without change, as it’s defined in the Kit—as
long as all messages are targeted to a another handler.

Eligible Handlers

A BLooper keeps a list of the BHandler objects that are eligible for the messages it
dispatches.AddHandler() places a BHandler in the list, andRemoveHandler() removes
it. A BHandler can be associated with only one BLooper at a time. (The BLooper is an
automatic member of the list; it cannot be removed and associated with another BLooper.)

A BHandler’sLooper() function will reveal which BLooper it currently belongs to. The
BLooper itself doesn’t reveal the membership of its list.

A BHandler can’t get messages dispatched by any BLooper except the one it’s associated
with. However, this eligibility constraint is imposed not byDispatchMessage(), but by
the BMessenger constructor when a target BHandler is proposed for the messages it will

BLooper Hook Functions

The Application Kit –57

send and byPostMessage() when a BHandler is named as the target of a message posted
to the BLooper.

Hook Functions

DispatchMessage() Passes incoming messages to a BHandler; can be
overridden to change the way certain messages or classes
of messages are dispatched.

QuitRequested() Can be implemented to decide whether a request to
terminate the message loop and destroy the BLooper
should be honored or not.

Constructor and Destructor

BLooper()
BLooper(const char *name = NULL, longpriority = B_NORMAL_PRIORITY)

Assigns the BLooper object aname and sets up its message queue, but doesn’t spawn a
thread or begin the message loop. CallRun() to spawn the thread that the BLooper will
oversee. Run() creates the thread at the specifiedpriority level and initiates its message
loop.

Thepriority determines how much attention the thread will receive from the scheduler,
and consequently how much CPU time it will get relative to other threads. You must
choose one of the discrete priority levels defined inkernel/OS.h; intermediate priorities
are not possible. The defined priorities, from lowest to highest, are:

B_LOW_PRIORITY For threads running in the background that
shouldn’t interrupt other threads.

B_NORMAL_PRIORITY For all ordinary threads, including the main
thread.

B_DISPLAY_PRIORITY For threads associated with objects in the
user interface, including window threads.

B_URGENT_DISPLAY_PRIORITY For interface threads that deserve more
attention than ordinary windows.

B_REAL_TIME_DISPLAY_PRIORITY For threads that animate the on-screen
display.

Member Functions BLooper

58 – The Application Kit

B_URGENT_PRIORITY For threads performing time-critical
computations.

B_REAL_TIME_PRIORITY For threads that control real-time processes
that need unfettered access to the CPUs.

Some derived classes may want to callRun() in the constructor, so that the object is set in
motion at the time it’s created. This is what the BWindow class in the Interface Kit does.
Other derived classes might want to keep a separation between constructing the object and
running it. The BApplication class maintains this distinction.

BLooper objects should always be dynamically allocated (withnew), never statically
allocated on the stack.

See also: Run(), BHandler::SetName()

~BLooper()
virtual ~BLooper(void)

Frees the message queue and all pending messages, stops the message loop, and destroys
the thread in which it ran. BHandlers that have been added to the BLooper are not deleted.

With the exception of the BApplication object, BLoopers should be destroyed by calling
theQuit() function (orQuitRequested()), not by using thedelete operator.

See also: Quit()

Member Functions

AddCommonFilter() see SetCommonFilterList()

AddHandler(), RemoveHandler()
virtual voidAddHandler(BHandler *handler)

virtual boolRemoveHandler(BHandler *handler)

AddHandler() addshandler to the BLooper’s list of BHandler objects, and
RemoveHandler() removes it. Only BHandlers that have been added to the list are
eligible to respond to the messages the BLooper dispatches. (However, this constraint is
imposed not byDispatchMessage(), but byPostMessage() and the BMessenger
constructor.) A BHandler can belong to no more than one BLooper, but can change its
affiliation from time to time.

BLooper Member Functions

The Application Kit –59

AddHandler() also calls thehandler’s SetNextHandler() function to assign it the BLooper
as its default next handler.RemoveHandler() calls the same function to set thehandler’s
next handler toNULL.

AddHandler() fails if thehandler already belongs to a BLooper.RemoveHandler()
returnsTRUE if it succeeds in removing the BHandler from the BLooper, andFALSE if not or
if thehandler doesn’t belong to the BLooper in the first place. For either function to work,
the BLooper must be locked.

See also: BHandler::Looper(), BHandler::SetNextHandler(), PostMessage(), the
BMessenger class

CommonFilterList() see SetCommonFilterList()

CurrentMessage(), DetachCurrentMessage()
BMessage *CurrentMessage(void) const

BMessage *DetachCurrentMessage(void)

Both these functions return a pointer to the message that the BLooper’s thread is currently
processing, orNULL if it’s currently between messages. That’s all thatCurrentMessage()
does. DetachCurrentMessage() also detaches the message from the message loop, so
that:

• It will no longer be the current message. The current message will beNULL until the
thread gets another message from the queue.

• The thread won’t automatically delete the message when the message cycle ends
and it’s ready to get the next message. It becomes the caller’s responsibility to
delete the message later (or to post it once more so that it will again be subject to
automatic deletion).

Since the message won’t be deleted automatically, you have time to reply to it later.
However, if the thread that initiated the message is waiting for a reply, you should send
one (or get rid of the BMessage) without much delay. If a reply hasn’t already been sent
by the time the message is deleted, the BMessage destructor sends back a default
B_NO_REPLY message to indicate that a real reply won’t be forthcoming. But if the
message isn’t deleted and a reply isn’t sent, the initiating thread will continue to wait.
(BMessage’sIsSourceWaiting() function will let you know whether the message source is
waiting for a reply.)

Detaching a message is useful only when you want to stretch out the response to it beyond
the end of the message cycle, perhaps passing responsibility for it to another thread while
the BLooper’s thread continues to get and respond to other messages.

Member Functions BLooper

60 – The Application Kit

Since the current message is passed as an argument to BLooper’sDispatchMessage() and
BHandler’sMessageReceived() hook functions, you may never need to call
CurrentMessage() to get hold of it.

However, classes derived from BLooper (BApplication and BWindow, in particular)
dispatch system messages by calling a message-specific function, not
MessageReceived(). Typically, these functions are passed only part of the information
contained in the BMessage. In such a case, you will have to callCurrentMessage() to get
complete information about the instruction or event the BMessage object reports.

For example, in the Interface Kit, aKeyDown() function might check whether the Control
key was pressed at the time of the key-down event as follows:

void MyView::KeyDown(ulong key)
{
 BMessage *message = Window()->CurrentMessage();
 if (message->FindLong("modifiers") & B_CONTROL_KEY) {
 . . .
 }
 . . .
}

See also: BHandler::MessageReceived(), BMessage::WasSent()

DispatchMessage()
virtual voidDispatchMessage(BMessage *message, BHandler *target)

Dispatches messages as they’re received by the BLooper’s thread. Precisely how they’re
dispatched depends on themessage and the designatedtarget BHandler. The BWindow
and BApplication classes that derive from BLooper implement their own versions of this
function to provide for special dispatching for system messages. Each class defines its
own set of such messages.

Thetarget may be the BHandler object that was named when themessage was posted, the
BHandler that was passed when the BMessenger was constructed, the handler that was
designated as the target for a reply message, or (for a BWindow) the BView where the
message was dropped. Or it might be the BLooper itself, acting in its capacity as the
default handler. For system messages it may beNULL; if so, the dispatcher must figure out
a target for the message based on the contents of the BMessage object.

DispatchMessage() is the first stop in the message-handling mechanism. The BLooper’s
thread calls it automatically as it reads messages from the queue—you never call it
yourself.

BLooper’s version ofDispatchMessage() dispatchesB_QUIT_REQUESTED messages that
are targeted to the BLooper itself by calling its ownQuitRequested() function. It
dispatchesB_HANDLERS_REQUESTED messages by calling thetarget’s
HandlersRequested() function. All other messages are forwarded to thetarget’s
MessageReceived() function.

BLooper Member Functions

The Application Kit –61

You can override this function to dispatch the messages that your own application defines
or recognizes. Of course, you can also just wait for these messages to fall through to
MessageReceived()—the choice is yours. If you do overrideDispatchMessage(), you
should:

• Call the base class version of the functionafter you’ve handled your own messages,
• Exclude all messages that you’ve handled yourself from the base version call, and
• Lock the BLooper while the message is being handled.

For example:

void MyLooper::DispatchMessage(BMessage *msg, BHandler *target)
{
 switch (msg->what) {
 case MY_MESSAGE1:
 . . .
 break;
 case MY_MESSAGE2:
 . . .
 break;
 default:
 inherited::DispatchMessage(msg, target);
 break;
 }
}

Don’t delete the messages you handle when you’re through with them; they’re deleted for
you.

The system locks the BLooper before callingDispatchMessage() and keeps it locked for
the duration of the thread’s response to the message (untilDispatchMessage() returns).

See also: the BMessage class,BHandler::MessageReceived(), QuitRequested()

HandlersRequested()
virtual voidHandlersRequested(BMessage *message)

Responds to aB_HANDLERS_REQUESTED message by sending aB_HANDLERS_INFO
message in reply. The request is for BMessenger objects that can deliver messages
targeted to BHandlers that have been added to the BLooper.

The incomingmessage may ask for a particular BHandler associated with the BLooper, or
it may ask for all of them. If it has an entry named “index”, the BLooper looks for the
BHandler at that index in its list of eligible handlers. Otherwise, if the message has an
entry labeled “name”, the BLooper looks for the associated BHandler with that name. If it
finds a BHandler object at the requested index or with the requested name, it places a
BMessenger for that object in theB_HANDLERS_INFO reply under the name “handlers”.
However, if it can’t find the requested object, it adds theB_BAD_INDEX or
B_NAME_NOT_FOUND error constant to the reply message under the name “error”.

Member Functions BLooper

62 – The Application Kit

If the incomingB_HANDLERS_REQUESTED message doesn’t request a particular BHandler
by index or name, the BLooper adds BMessengers for all eligible BHandlers to the
“handlers” array of the reply. The array should contain at least one BMessenger, the one
corresponding to the BLooper itself.

See also: BHandler::HandlersRequested()

IsLocked() see LockOwner()

Lock(), Unlock()
bool Lock(void)

void Unlock(void)

These functions provide a mechanism for locking data associated with the BLooper, so
that one thread can’t alter the data while another thread is in the middle of doing
something that depends on it. Only one thread can have the BLooper locked at any given
time. Lock() waits until it can lock the object, then returnsTRUE. It returnsFALSE only if
the BLooper can’t be locked at all—for example, if it was destroyed by another thread.

Calls toLock() andUnlock() can be nested. IfLock() is called more than once from the
same thread, it will take an equal number ofUnlock() calls from that thread to unlock the
BLooper. (IfLock() is called from another thread, it waits until the thread that owns the
lock unlocks the BLooper. It then obtains the lock and returnsTRUE.)

Locking is the basic mechanism for operating safely in a multithreaded environment. It’s
especially important for the kit classes derived from BLooper—BApplication and
BWindow.

However, it’s generally not necessary to lock a BLooper when calling functions defined in
the class itself or in a derived class. For example, BApplication and BWindow functions
are implemented to callLock() andUnlock() when necessary. Moreover, the BLooper is
locked for you whenever it dispatches a message. It remains locked until the response to
the message is complete.

Functions you define in classes derived from BLooper (or from BApplication and
BWindow) should also callLock() andUnlock(). In addition, you should employ the
locking mechanism when calling functions of a class that’s closely associated with a
BLooper—for example, when calling functions of a BView that’s attached to a BWindow.

Although locking is important and useful, you shouldn’t be too blithe about it. While
you hold a BLooper’s lock, no other thread can acquire it. If another thread calls a
function that tries to lock, the thread will hang until you unlock. Each thread should
hold the lock as briefly as possible.

See also: LockOwner()

BLooper Member Functions

The Application Kit –63

LockOwner(), IsLocked()
inline thread_idLockOwner(void) const

inline boolIsLocked(void) const

LockOwner() returns the thread that currently has the BLooper locked, or –1 if the
BLooper isn’t locked.

IsLocked() returnsTRUE if the calling thread has the BLooper locked (if it’s the lock
owner) andFALSE if not (if some other thread is the owner or the BLooper isn’t locked).

See also: Lock()

Looper()
virtual BLooper *Looper(void) const

Overrides the BHandler version of this function to return the BLooper object itself. This
prevents the BLooper from acting as a handler for messages posted to any other thread. A
BLooper can take on the role of BHandler only for messages delivered to its own thread.

See also: BHandler::Looper(), PostMessage()

MessageQueue()
BMessageQueue *MessageQueue(void) const

Returns the queue that holds messages posted or sent to the BLooper’s thread. You rarely
need to examine the message queue directly; it’s made available so you can cheat fate by
looking ahead.

See also: the BMessageQueue class

PostMessage()
long PostMessage(BMessage *message, BHandler *target = NULL)
long PostMessage(ulongcommand, BHandler *target = NULL)

Places amessage in the BLooper’s message queue and arranges for it to be dispatched to
thetarget BHandler. If atarget isn’t mentioned, the message will be dispatched to the
BLooper. The BLooper acts as the default handler for all messages not specifically
targeted to another object.

However, if the namedtarget is associated with a different BLooper (if thetarget’s
Looper() function returnsNULL or some other BLooper object), the posting fails and the
message is deleted. (A BHandler must be associated with a particular BLooper before it
can be the target for messages posted to that object. It can’t get messages from any other

Member Functions BLooper

64 – The Application Kit

BLooper except the one it belongs to. For example, BViews in the Interface Kit are
restricted to receiving messages posted to the BWindows to which they’re attached.)

Once posted, the BMessage object belongs to the BLooper’s thread, so you should not
modify it, post it again, assign it to some other object, or delete it. It will be deleted
automatically after it has been received and responded to.

If a command is passed rather than a message,PostMessage() creates a BMessage object,
initializes itswhat data member tocommand, and posts it. This simply saves you the step
of constructing a BMessage when it won’t contain any data. For example, this code

myWindow->PostMessage(command, target);

is equivalent to:

myWindow->PostMessage(new BMessage(command), target);

To post the message, thecommand version of this function calls the version that takes a
full BMessage argument. Thus, if you override just themessage version, you’ll affect how
both operate.

This function returnsB_NO_ERROR if successful,B_MISMATCHED_VALUES if the posting
fails because the proposed handler is invalid, andB_ERROR if it fails because the BLooper
itself is invalid.

See also: BHandler::Looper(), DispatchMessage()

PreferredHandler()
virtual BHandler *PreferredHandler(void) const

Implemented by derived classes to return a preferred BHandler for messages posted to the
BLooper. This function simply informs those who are about to post messages to the
BLooper who they might name as the message handler. For example:

myLooper->PostMessage(msg, myLooper->PreferredHandler());

The BLooper class itself doesn’t do anything with the preferred handler; it’s not a default
value for any BLooper operation.

In the Interface Kit, BWindow objects name the current focus view as the preferred
handler. This makes it possible for other objects—such as BMenuItems and BButtons—to
target messages to the BView that’s currently in focus, whatever view that may happen to
be at the time. For example, by posting its messages to the window’s preferred handler, a
“Cut” menu item can make sure that it always acts on whatever view contains the current
selection. See the chapter on the Interface Kit for information on windows, views, and the
role of the focus view.

The BLooper version of this function simply returnsNULL, to indicate that generic
BLoopers don’t have a preferred handler. Note, however, that when aNULL handler is
passed toPostMessage(), that function designates the BLooper itself as the target. For

BLooper Member Functions

The Application Kit –65

example, ifPreferredHandler() returnedNULL in the line of code shown above, the
message would be dispatched tomyLooper by default. Thus, in effect, a generic BLooper
is its own preferred handler, even thoughPreferredHandler() returnsNULL.

See also: BControl::SetTarget() andBMenuItem::SetTarget() in the Interface Kit,
PostMessage()

Quit()
virtual voidQuit(void)

Exits the message loop, frees the message queue, kills the thread, and deletes the BLooper
object.

When called from the BLooper’s thread, all this happens immediately. Any pending
messages are ignored and destroyed. Because the thread dies,Quit() doesn’t return.

However, when called from another thread,Quit() waits until all previously posted
messages (all messages already in the queue) work their way through the message loop
and are handled. It then destroys the BLooper and returns only after the loop, queue,
thread, and object no longer exist.

Quit() therefore terminates the BLooper synchronously; when it returns, you know that
everything has been destroyed. To quit the BLooper asynchronously, you can post a
B_QUIT_REQUESTED message to the thread (that is, a BMessage withB_QUIT_REQUESTED as
its what data member).PostMessage() places the message in the queue and returns
immediately.

When it gets aB_QUIT_REQUESTED message, the BLooper calls theQuitRequested() virtual
function. IfQuitRequested() returnsTRUE, as it does by default, it then callsQuit().

See also: QuitRequested()

QuitRequested()
virtual boolQuitRequested(void)

Implemented by derived classes to determine whether the BLooper should quit when
requested to do so. The BLooper calls this function to respond toB_QUIT_REQUESTED
messages. If it returnsTRUE, the BLooper callsQuit() to exit the message loop, kill the
thread, and delete itself. If it returnsFALSE, the request is denied and no further action is
taken.

BLooper’s default implementation ofQuitRequested() always returnsTRUE.

A request to quit that’s delivered to the BApplication object is, in fact, a request to quit the
entire application, not just one thread. BApplication therefore overridesQuitRequested()
to pass the request on to each window thread before shutting down.

Member Functions BLooper

66 – The Application Kit

For BWindow objects in the Interface Kit, a request to quit might come from the user
clicking the window’s close button (a quit-requested event for the window), from the
user’s decision to quit the application (a quit-requested event for the application), from a
“Close” menu item, or from some other occurrence that forces the window to close.

Classes derived from BWindow typically implementQuitRequested() to give the user a
chance to save documents before the window is destroyed, or to cancel the request.

If an application can be launched more than once (B_MULTIPLE_LAUNCH) and its entire
interface is essentially contained in one window, quitting the window might be tantamount
to quitting the application. In this case, the window’sQuitRequested() function should
pass the request along to the BApplication object. For example:

bool MyWindow::QuitRequested()
{
 . . .
 be_app->PostMessage(B_QUIT_REQUESTED);
 return TRUE;
}

After asking the application to quit,QuitRequested() returnsTRUE to immediately dispose
of the window. If it returnsFALSE, BApplication’s version of the function will again
request the window to quit.

If you call QuitRequested() from your own code, be sure to also provide the code that
callsQuit():

if (myLooper->QuitRequested())
 myLooper->Quit();

See also: BApplication::QuitRequested(), Quit()

RemoveCommonFilter() see SetCommonFilterList()

Run()
virtual thread_idRun(void)

Spawns a thread at the priority level that was specified when the BLooper was constructed
and begins running a message loop in that thread. If successful, this function returns the
thread identifier. If unsuccessful, it returnsB_NO_MORE_THREADS or B_NO_MEMORY to
indicate why.

A BLooper can be run only once. If called a second time,Run() returnsB_ERROR, but
doesn’t disrupt the message loop already running. < Currently, it drops into the debugger
so you can correct the error. >

BLooper Member Functions

The Application Kit –67

The message loop is terminated whenQuit() is called, or (potentially) when a
B_QUIT_REQUESTED message is received. This also kills the thread and deletes the
BLooper object.

See also: the BLooper constructor, the BApplication class,Quit()

SetCommonFilterList(), CommonFilterList(), AddCommonFilter(),
RemoveCommonFilter()

virtual voidSetCommonFilterList(BList * list)

BList *CommonFilterList(void) const

virtual voidAddCommonFilter(BMessageFilter *filter)

virtual voidRemoveCommonFilter(BMessageFilter *filter)

These functions manage a list of filters that can apply to any message the BLooper
receives, regardless of its target BHandler. They complement a similar set of functions
defined in the BHandler class. When a filter is associated with a BHandler, it applies only
to messages targeted to that BHandler. When it’s associated with a BLooper as a common
filter, it applies to all messages that the BLooper dispatches, regardless of the target.

In addition to the list of common filters, a BLooper can maintain a filter list in its role as a
BHandler. As for other BHandlers, these filters apply only if the BLooper is the target of
the message.

SetCommonFilterList() assigns the BLooper a newlist of common filters, replacing any list
previously assigned. The list must contain pointers to instances of the BMessageFilter
class or, more usefully, instances of classes that derive from BMessageFilter. Iflist is
NULL, the current list is removed without a replacement.CommonFilterList() returns the
current list of common filters.

AddCommonFilter() adds afilter to the end of the list of common filters. It creates the
BList object if it doesn’t already exist. By default, BLoopers don’t keep a BList of
common filters until one is assigned orAddCommonFilter() is called for the first time.
RemoveCommonFilter() removes afilter from the list. It returnsTRUE if successful, and
FALSE if it can’t find the specified filter in the list (or the list doesn’t exist). It leaves the
BList in place even after removing the last filter.

For SetCommonFilterList(), AddCommonFilter(), andRemoveCommonFilter() to work,
the BLooper must be locked.

See also: BHandler::SetFilterList(), Lock(), the BMessageFilter class

Member Functions BLooper

68 – The Application Kit

Thread(), Team()
thread_idThread(void) const

team_idTeam(void) const

These functions identify the thread that runs the message loop and the team to which it
belongs.Thread() returnsB_ERROR if Run() hasn’t yet been called to spawn the thread and
begin the loop.Team() should always return the application’steam_id.

Unlock() see Lock()

The Application Kit –69

BMessage

Derived from: public BObject

Declared in: <app/Message.h>

Overview

A BMessage bundles information so that it can be conveyed from one application to
another, one thread of execution to another, or even one object to another. Servers use
BMessage objects to notify applications about events. An application can use them to
communicate with other applications or to initiate activity in a different thread of the same
application. In the Interface Kit, BMessages package information that the user can drag
from one location on-screen and drop on another. They also hold data that’s copied to the
clipboard. Behind the scenes in the Storage Kit, they convey queries and hand back
requested information.

A BMessage is simply a container. The class defines functions that let you put
information into a message, determine what kinds of information are present in a message
that’s been delivered to you, and get the information out. It also has a function that let’s
you reply to a message once it’s received. But it doesn’t have functions that can make the
initial delivery. For that it depends on the help of other classes in the Application Kit,
particularly BLooper and BMessenger. See “Messaging” on page 6 of the chapter
introduction for an overview of the messaging mechanism and how BMessage objects
work with these other classes.

Message Contents

When information is added to a BMessage, it’s copied into dynamically allocated memory
and stored under a name. If more than one piece of information is added under the same
name, the BMessage sets up an array of data for that name. The name (along with an
optional index into the array) is then used to retrieve the data.

For example, this code adds a floating-point number to a BMessage under the name “pi”,

BMessage *msg = new BMessage;
msg->AddFloat("pi", 3.1416);

and this code locates it:

float pi = msg->FindFloat("pi");

Overview BMessage

70 – The Application Kit

Names can be arbitrarily assigned. There’s no limit on the number of named entries a
message can contain or on the size of an entry. However, since the search is linear,
combing through a very long list of names to find a particular piece of data may be
inefficient. Also, because of the amount of data that must be moved, an extremely large
message (over 100,000 bytes, say) can slow the delivery mechanism. It’s sometimes
better to put some of the information in a file and just refer to the file in the message.

Message Constants

In addition to named data, a BMessage carries a coded constant that indicates what kind of
message it is. The constant is stored in the object’s one public data member, calledwhat.
For example, a message that notifies an application that the user pressed a key on the
keyboard hasB_KEY_DOWN as thewhat data member (and information about the event
stored under names like “key”, “char”, and “modifiers”). An application-defined message
that delivers a command to do something might have a constant such asSORT_ITEMS,
CORRECT_SPELLING, or SCROLL_TO_BOTTOM in thewhat field. Simple messages can
consist of just a constant and no data. A constant likeRECEIPT_ACKNOWLEDGED or
CANCEL may be enough to convey a complete message.

By convention, the constant alone is sufficient to identify a message. It’s assumed that all
messages with the same constant are used for the same purpose and contain the same kinds
of data.

Thewhat constant must be defined in a protocol known to both sender and receiver. The
constants for system messages are defined inapp/AppDefs.h. Each constant names a
kind of event—such asB_KEY_DOWN, B_REFS_RECEIVED, B_PULSE, B_QUIT_REQUESTED,
andB_VALUE_CHANGED—or it carries an instruction to do something (such asB_ZOOM
andB_ACTIVATE).

It’s important that the constants you define for your own messages not be confused with
the constants that identify system messages. For this reason, we’ve adopted a strict
convention for assigning values to all Be-defined message constants. The value assigned
will always be formed by combining four characters into a multicharacter constant; the
characters are limited to uppercase letters and the underbar. For example,B_KEY_DOWN
andB_VALUE_CHANGED are defined as follows:

enum {
 . . .
 B_KEY_DOWN = '_KYD',
 B_VALUE_CHANGED = '_VCH',
 . . .
};

Use a different convention to define your own message constants (or you’ll risk having
your message misinterpreted as a report of, say, a mouse-moved event). Include some
lowercase letters, numerals, or symbols (other than the underbar) in your multicharacter
constants, or assign numeric values that can’t be confused with the value of four
concatenated characters.

BMessage Overview

The Application Kit –71

Type Codes

Data added to a BMessage is associated with a name and stored with two relevant pieces
of information:

• The number of bytes in the data, and
• A type code indicating what kind of data it is.

Type codes are defined inapp/AppDefs.h for the common data types listed below:

B_CHAR_TYPE A single character
B_SHORT_TYPE A short integer
B_LONG_TYPE A long integer
B_UCHAR_TYPE An unsigned char (theuchar defined type)
B_USHORT_TYPE An unsigned short (theushort defined type)
B_ULONG_TYPE An unsigned long (theulong defined type)
B_BOOL_TYPE A boolean value (thebool defined type)
B_FLOAT_TYPE A float
B_DOUBLE_TYPE A double
B_POINTER_TYPE A pointer of some type (includingvoid *)
B_OBJECT_TYPE An object pointer (such as BMessage *)
B_MESSENGER_TYPE A BMessenger object
B_POINT_TYPE A BPoint object
B_RECT_TYPE A BRect object
B_RGB_COLOR_TYPE An rgb_color structure
B_PATTERN_TYPE A pattern structure
B_ASCII_TYPE Text in ASCII format
B_RTF_TYPE Text in Rich Text Format
B_STRING_TYPE A null-terminated character string
B_MONOCHROME_1_BIT_TYPE Raw data for a monochrome bitmap (1 bit/pixel)
B_GRAYSCALE_8_BIT_TYPE Raw data for a grayscale bitmap (8 bits per pixel)
B_COLOR_8_BIT_TYPE Raw bitmap data in theB_COLOR_8_BIT color space
B_RGB_24_BIT_TYPE Raw bitmap data in theB_RGB_32_BIT color space
B_TIFF_TYPE Bitmap data in the Tag Image File Format
B_REF_TYPE A record_ref
B_RECORD_TYPE A record_id
B_TIME_TYPE A representation of a date
B_MONEY_TYPE A monetary amount
B_RAW_TYPE Raw, untyped data—a stream of bytes

You can add data to a message even if its type isn’t on this list. A BMessage will accept
any kind of data; you must simply invent your own codes for unlisted types.

To prevent confusion, the values you assign to the type codes you invent shouldn’t match
any values assigned to the standard type codes listed above—nor should they match any
codes that might be added to the list in the future. The value assigned to all Be-defined
type codes is a multicharacter constant, with the characters restricted to uppercase letters

Overview BMessage

72 – The Application Kit

and the underbar. For example,B_DOUBLE_TYPE andB_POINTER_TYPE are defined as
follows:

enum {
 . . .
 B_DOUBLE_TYPE = 'DBLE',
 B_POINTER_TYPE = 'PNTR',
 . . .
};

This is the same convention used for message constants. Be reserves all such
combinations of uppercase letters and underbars for its own use.

Assign values to your constants that can’t be mistaken for values that might be assigned in
system software. If you assign multicharacter values, make sure at least one of the
characters is a lowercase letter, a numeral, or some kind of symbol (other than an
underbar). If you assign numeric values, make sure they don’t fall in the range
0x41414141 through 0x5f5f5f5f. For example, you might safely define constants like
these:

#define PRIVATE_TYPE 0x1f3d
#define OWN_TYPE 'Rcrd'

Publishing Message Protocols

The messaging system is most interesting—and most useful—when data types are shared
by a variety of applications. Shared types open avenues for applications to cooperate with
each other. You are therefore encouraged to publish the data types that your application
defines and can accept in a BMessage, along with their assigned type codes.

Contact Be (devsupport@be.com) to register any types you intend to publish, so that you
can be sure to choose a code that hasn’t already been adopted by another developer, and
we’ll endeavor to make sure that no one else usurps the code you’ve chosen.

If your application can respond to certain kinds of remote messages, you should publish
the message protocol—the constant that should initialize thewhat data member of the
BMessage, the names of expected data entries, the types of data they contain, the number
of data items allowed in each entry, and so on. If your application sends replies to these
messages, you should publish the reply protocols as well.

By making the specifications for your messages public, you encourage other applications
to make use of the services your application offers, and you contribute to an integrated set
of applications on the BeBox.

BMessage Data Members

The Application Kit –73

Error Reporting

BMessage functions that add, find, replace, or get information about message data set a
descriptive error code for the object, which theError() function returns. The code is set to
B_NO_ERROR if all is well; otherwise it indicates what went wrong during the last function
call. Some functions also return the error code directly, but some do not.

Before proceeding with the next operation, it’s a good idea to callError() to be sure there
was no error on the last one.

Data Members

ulongwhat A coded constant that captures what the message is about.
For example, a message that's delivered as the result of a
mouse-down event will haveB_MOUSE_DOWN as itswhat
data member. An application that requests information
from another application might put aTRANSMIT_DATA or
SEND_INFO command in thewhat field. A message that’s
posted as the result of the user clicking a Cancel button
might simply haveCANCEL as thewhat data member and
include no other information.

Constructor and Destructor

BMessage()
BMessage(ulongcommand)
BMessage(BMessage *message)
BMessage(void)

Assignscommand as the BMessage’swhat data member, and ensures that the object
otherwise starts out empty. Given the definition of a message constant such as,

#define RECEIPT_ACKNOWLEDGED 0x80

a complete message can be created as simply as this:

BMessage *msg = new BMessage(RECEIPT_ACKNOWLEDGED);

As a public data member,what can also be set explicitly. The following two lines of code
are equivalent to the one above:

BMessage *msg = new BMessage;
msg->what = RECEIPT_ACKNOWLEDGED;

Member Functions BMessage

74 – The Application Kit

Other information can be added to the message by callingAddData() or a kindred
function.

A BMessage can also be constructed as a copy of anothermessage. It’s necessary to copy
any messages you receive that you want to keep, since the thread that receives the message
automatically deletes it before getting the next message. (More typically, you’d copy any
data you want to save from the message, but not the BMessage itself.)

As an alternative to copying a received message, you can sometimes detach it from the
message loop so that it won’t be deleted (seeDetachCurrentMessage() in the BLooper
class).

Messages should be dynamically allocated with thenew operator, as shown in the
examples above, rather than statically allocated on the stack (since they must live on after
the functions that send them return).

See also: BLooper::DetachCurrentMessage()

~BMessage()
virtual ~BMessage(void)

Frees all memory allocated to hold message data. If the message sender is expecting a
reply but hasn’t received one, a default reply (withB_NO_REPLY as thewhat data member)
is sent before the message is destroyed.

Don’t delete the messages that you post to a thread, send to another application, or assign
to another object. Like letters or parcels sent through the mail, BMessage objects become
the property of the receiver. Each message loop routinely deletes the BMessages it
receives after the application is finished responding to them.

Member Functions

AddData(), AddBool(), AddLong(), AddFloat(), AddDouble(),
AddRef(), AddMessenger(), AddPoint(), AddRect(), AddObject(),
AddString()

long AddData(const char *name, ulongtype, const void *data, longnumBytes)

long AddBool(const char *name, boolaBool)

long AddLong(const char *name, longaLong)

long AddFloat(const char *name, floataFloat)

long AddDouble(const char *name, doubleaDouble)

BMessage Member Functions

The Application Kit –75

long AddRef(const char *name, record_refaRef)

long AddMessenger(const char *name, BMessengeraRef)

long AddPoint(const char *name, BPointaPoint)

long AddRect(const char *name, BRectaRect)

long AddObject(const char *name, BObject *anObject)

long AddString(const char *name, const char *aString)

These functions put data in the BMessage.AddData() copiesnumBytes of data into the
object, and assigns the data aname and atype code. Thetype must be a specific data type;
it should not beB_ANY_TYPE.

AddData() copies whatever thedata pointer points to. For example, if you want to add a
string of characters to the message,data should be the string pointer (char *). If you want
to add only the string pointer, not the characters themselves,data should be a pointer to
the pointer (char **).

The other functions—AddBool(), AddLong(), AddFloat(), and so on—are simplified
versions ofAddData(). They each add a particular type of data to the message and
register it under the appropriate type code, as shown below:

Function Adds type Assigns type code

AddBool() a bool B_BOOL_TYPE
AddLong() a long or ulong B_LONG_TYPE
AddFloat() a float B_FLOAT_TYPE
AddDouble() a double B_DOUBLE_TYPE
AddRef() a record_ref B_REF_TYPE
AddMessenger() a BMessenger object B_MESSENGER_TYPE
AddPoint() a BPoint object B_POINT_TYPE
AddRect() a BRect object B_RECT_TYPE
AddObject() a pointer to an object B_OBJECT_TYPE
AddString() a character string B_STRING_TYPE

Each of these ten type-specific functions calculates the number of bytes in the data they
add. AddString(), like AddData(), takes a pointer to the data it adds. The string must be
null-terminated; the null character is counted and copied into the message. The other
functions are simply passed the data directly. For example,AddLong() takes along and
AddRef() a record_ref, whereasAddData() would be passed a pointer to along and a
pointer to arecord_ref. AddObject() adds the object pointer it’s passed to the message,
not the object data structure;AddData() would take a pointer to the pointer.

If more than one item of data is added under the same name, the BMessage creates an
array of data for that name. Each successive call appends another data element to the end

Member Functions BMessage

76 – The Application Kit

of the array. For example, the following code creates an array named “primes” with 37
stored at index 0, 223 stored at index 1, and 1,049 stored at index 2.

BMessage *msg = new BMessage(NUMBERS);
long x = 37;
long y = 223;
long z = 1049;

msg->AddLong("primes", x);
msg->AddFloat("pi", 3.1416);
msg->AddLong("primes", y);
msg->AddData("primes", B_LONG_TYPE, &z, sizeof(long));

Note that entering other data between some of the elements of an array—in this case,
“pi”—doesn’t increment the array index.

All elements in a named array must be of the same type; it’s an error to try to mix types
under the same name.

These functions returnB_ERROR if the data is too massive to be added to the message,
B_BAD_TYPE if the data can’t be added to an existing array because it’s the wrong type, or
B_NO_ERROR if the operation was successful.

See also: FindData(), GetInfo()

CountNames()
long CountNames(ulongtype)

Returns the number of named entries in the BMessage that store data of the specifiedtype.
An array of information held under a single name counts as one entry; each name is
counted only once, no matter how many data items are stored under that name.

If type is B_ANY_TYPE, this function counts all named entries. Iftype is a specific type, it
counts only entries that store data registered as that type.

See also: GetInfo()

BMessage Member Functions

The Application Kit –77

Error()
long Error(void)

Returns an error code that specifies what went wrong with the last BMessage operation, or
B_NO_ERROR if there wasn’t an error. It's important to check for an error before
continuing with any code that depends on the result of a BMessage function. For
example:

float pi = msg->FindFloat("pi");
if (msg->Error() == B_NO_ERROR) {
 float circumference = pi * diameter;
 . . .
}

The error code is reset each time a BMessage function is called that adds, finds, alters, or
provides information about message data. It’s also reset toB_NO_ERROR wheneverError()
itself is called. Cache the return value if you write code that needs to check the current
error code more than once.

Possible error returns include the following:

Error code Is set when

B_NAME_NOT_FOUND Trying to find, or get information about, data stored
under an invalid name

B_BAD_INDEX Trying to find, or get information about, data stored at
an index that’s out-of-range

B_BAD_TYPE Attempting to add data of the wrong type to an existing
array, or asking about named data of a given type when
the name and type don’t match

B_BAD_REPLY Trying to send a reply to a message that hasn’t itself
been sent.

B_DUPLICATE_REPLY Trying to send a reply when one has already been sent
and received

< B_MESSAGE_TO_SELF Attempting to send a reply when the source and
destination threads are the same >

B_BAD_THREAD_ID Attempting to send a reply to a thread that no longer
exists

B_ERROR Attempting to add too much data to a message

See also: AddData(), FindData(), HasData(), GetInfo()

Member Functions BMessage

78 – The Application Kit

FindData(), FindBool(), FindLong(), FindFloat(), FindDouble(),
FindRef(), FindMessenger(), FindPoint(), FindRect(), FindObject(),
FindString()

void *FindData(const char *name, ulongtype, long *numBytes)
void *FindData(const char *name, ulongtype, long index, long *numBytes)

bool FindBool(const char *name, long index = 0)

long FindLong(const char *name, long index = 0)

float FindFloat(const char *name, long index = 0)

doubleFindDouble(const char *name, long index = 0)

record_refFindRef(const char *name, long index = 0)

BMessengerFindMessengerconst char *name, long index = 0)

BPointFindPoint(const char *name, long index = 0)

BRectFindRect(const char *name, long index = 0)

BObject *FindObject(const char *name, long index = 0)

const char *FindString(const char *name, long index = 0)

These functions retrieve data from the BMessage. Each looks for data stored under the
specifiedname. If more than one data item has the same name, anindex can be provided
to tell the function which item in thename array it should find. Indices begin at 0. If an
index isn’t provided, the function will find the first, or only, item in the array.

FindData() returns a pointer to the requested data item and records the size of the item (the
number of bytes it takes up) in the variable referred to bynumBytes. It asks for data of a
specifiedtype. If thetype is B_ANY_TYPE, it returns a pointer to the data no matter what
type it actually is. But iftype is a specific data type, it returns the data only if thename
entry holds data of that particular type.

It’s important to keep in mind thatFindData() always returns a pointer to the data, never
the data itself. If the datais a pointer—for example, a pointer to an object—it returns a
pointer to the pointer. The variable that’s assigned the returned pointer must be doubly
indirect. For example:

MyClass **object;
long numBytes;
object = (MyClass **)message->FindData("name",
 B_OBJECT_TYPE, &numBytes);
if (message->Error() == B_NO_ERROR) {
 (*object)->GetSomeInformation();
 . . .
}

BMessage Member Functions

The Application Kit –79

The other functions similarly return the requested item—but do so as a specifically
declared data type. They match the correspondingAdd...() functions and search for
named data of the declared type, as described below:

Function Finds data Registered as type

FindBool() a bool B_BOOL_TYPE
FindLong() a long or ulong B_LONG_TYPE
FindFloat() a float B_FLOAT_TYPE
FindDouble) a double B_DOUBLE_TYPE
FindRef() a record_ref B_REF_TYPE
FindMessenger() a BMessenger object B_MESSENGER_TYPE
FindPoint() a BPoint object B_POINT_TYPE
FindRect() a BRect object B_RECT_TYPE
FindObject() a pointer to an object B_OBJECT_TYPE
FindString() a character string B_STRING_TYPE

FindString() returns a pointer to a null-terminated string of characters (as would
FindData()); it expects the null-terminator to have been copied into the message. The rest
of the functions return the data directly, not through a pointer. For example,FindLong()
returns along, whereasFindData() would return a pointer to along. FindObject() returns
a pointer to an object, whereasFindData(), as illustrated above, would return a pointer to
the pointer to the object.

If you want to keep the data returned byFindData() andFindString(), you must copy it; it
will be destroyed when the BMessage is deleted.

If these functions can’t find any data associated withname, or if they can’t find data in the
name array atindex, or if they can’t findname data of the requestedtype (or the type the
function returns), they register an error. You can rely on the values they return only if
Error() reportsB_NO_ERROR and the data was correctly recorded when it was added to the
message.

When they fail,FindData(), FindString(), andFindObject() returnNULL pointers.
FindRect() returns an invalid rectangle andFindRef() returns an invalidrecord_ref with
both data members set to –1. The other functions return values set to 0, which may be
indistinguishable from valid values.

Finding a data item doesn’t remove it from the BMessage.

See also: GetInfo(), AddData()

Flatten(), Unflatten()
void Flatten(char **stream, long *numBytes)

void Unflatten(const char *stream)

These functions write the data stored in a BMessage to a “flat” (untyped) stream of bytes,
and reconstruct a BMessage object from such a stream.

Member Functions BMessage

80 – The Application Kit

Flatten() allocates enough memory to hold all the information stored in the BMessage
object, then copies the information to that memory. It places a pointer to the allocated
memory in the variable referred to by thestream argument, and writes the number of bytes
that were allocated to the variable referred to bynumBytes. It’s the responsibility of the
caller to free the memory thatFlatten() allocates when it’s no longer needed. (Since the
stream is allocated bymalloc(), call free() to get rid of it.)

Unflatten() empties the BMessage of any information it may happen to contain, then
initializes the object from information stored instream. The pointer passed toUnflatten()
must be to the start of astream thatFlatten() allocated and initialized. Neither function
frees the stream.

GetInfo()
bool GetInfo(const char *name, ulong *typeFound, long *countFound = NULL)
bool GetInfo(ulongtype, long index,

char **nameFound,
ulong *typeFound,
long *countFound = NULL)

Provides information about the data entries stored in the BMessage.

When passed aname that matches a name within the BMessage,GetInfo() places the type
code for data stored under that name in the variable referred to bytypeFound and writes
the number of data items with that name into the variable referred to bycountFound. It
then returnsTRUE. If it can’t find aname entry within the BMessage, it registers an error,
sets thecountFound variable to 0, and returnsFALSE (without modifying thetypeFound
variable).

When passed atype and anindex, GetInfo() looks only at entries that store data of the
requested type and provides information about the entry at the requested index. Indices
begin at 0 and are type specific. For example, if the requestedtype is B_LONG_TYPE and
the BMessage contains a total of three named entries that storelong data, the first entry
would be atindex 0, the second at 1, and the third at 2—no matter what other types of data
actually separate them in the BMessage, and no matter how many data items each entry
contains. (Note that the index in this case ranges over entries, each with a different name,
not over the data items within a particular named entry.) If the requested type is
B_ANY_TYPE, this function looks at all entries and gets information about the one atindex
whatever its type.

If successful in finding data of thetype requested atindex, GetInfo() returnsTRUE. It
provides information about the entry through the last three arguments:

• It places a pointer to the name of the data entry in the variable referred to by
nameFound.

• It puts the code for the type of data the entry contains in the variable referred to by
typeFound. This will be the same as thetype requested, unless the requested type is
B_ANY_TYPE, in which casetypeFound will be the actual type stored under the name.

BMessage Member Functions

The Application Kit –81

• It records the number of data items stored within the entry in the variable referred to
by countFound.

If GetInfo() can’t find data of the requestedtype at index, it registers an error, sets the
countFound variable to 0, and returnsFALSE.

This version ofGetInfo() can be used to iterate through all the BMessage’s data. For
example:

char *name;
ulong type;
long count;

for (long i = 0;
 msg->GetInfo(B_ANY_TYPE, i, &name, &type, &count);
 i++) {
 . . .
}

If the index is incremented from 0 in this way, all data of the requested type will have been
read whenGetInfo() returnsFALSE. If the requested type isB_ANY_TYPE, as shown above,
it will reveal the name and type of every entry in the BMessage.

See also: HasData(), AddData(), FindData()

HasData(), HasBool(), HasLong(), HasFloat(), HasDouble(), HasRef(),
HasMessenger(), HasPoint(), HasRect(), HasObject(), HasString()

bool HasData(const char *name, ulongtype, long index = 0)

bool HasBool(const char *name, long index = 0)

bool HasLong(const char *name, long index = 0)

bool HasFloat(const char *name, long index = 0)

bool HasDouble(const char *name, long index = 0)

bool HasRef(const char *name, long index = 0)

bool HasMessengerconst char *name, long index = 0)

bool HasPoint(const char *name, long index = 0)

bool HasRect(const char *name, long index = 0)

bool HasObject(const char *name, long index = 0)

bool HasString(const char *name, long index = 0)

These functions test whether the BMessage contains data of a given name and type.

If type is B_ANY_TYPE and noindex is provided,HasData() returnsTRUE if the BMessage
stores any data at all under the specifiedname, regardless of its type, andFALSE if the name
passed doesn’t match any within the object.

Member Functions BMessage

82 – The Application Kit

If type is a particular type code,HasData() returnsTRUE only if the BMessage has aname
entry that stores data of that type. If thetype andname don’t match, it returnsFALSE.

If an index is supplied,HasData() returnsTRUE only if the BMessage has aname entry that
stores a data item of the specifiedtype at that particularindex. If the index is out of range,
it returnsFALSE.

The other functions—HasBool(), HasFloat(), HasPoint(), and so on—are specialized
versions ofHasData(). They test for a particular type of data stored under the specified
name.

An error code is set (whichError() will return) whenever any of these functions returns
FALSE.

See also: GetInfo()

IsEmpty() see MakeEmpty()

IsReply() see WasSent()

IsSourceRemote() see WasSent()

IsSourceWaiting() see WasSent()

IsSystem()
bool IsSystem(void)

ReturnsTRUE if the what data member of the BMessage object identifies it as a system-
defined message, andFALSE if not.

Unlike theGetInfo() andHasData() functions, a return ofFALSE does not indicate an error.
IsSystem() resets the error code thatError() returns toB_NO_ERROR whether the BMessage
is a system message or not.

MakeEmpty(), IsEmpty()
long MakeEmpty(void)

bool IsEmpty(void)

MakeEmpty() removes and frees all data that has been added to the BMessage, without
altering thewhat constant. It returnsB_NO_ERROR.

IsEmpty() returnsTRUE if the BMessage has no data (whether or not it was emptied by
MakeEmpty()), andFALSE if it has some.

BMessage Member Functions

The Application Kit –83

Both functions reset the error code toB_NO_ERROR in all cases.

See also: RemoveName()

Previous() see WasSent()

PrintToStream()
void PrintToStream(void) const

Prints information about the BMessage to the standard output stream (stdout). Each entry
of named data is reported in the following format,

#entry name, type = type , count = count

wherename is the name that the data is registered under,type is the constant that indicates
what type of data it is, andcount is the number of data items in the named array.

RemoveName()
bool RemoveName(const char *name)

Removes all data entered in the BMessage undername, frees the memory that was
allocated to hold the data, and returnsTRUE. If there is no data entered undername, this
function registers an error (B_NAME_NOT_FOUND) and returnsFALSE.

See also: MakeEmpty()

ReplaceData(), ReplaceBool(), ReplaceLong(), ReplaceFloat(),
ReplaceDouble(), ReplaceRef(), ReplaceMessenger(),
ReplacePoint(), ReplaceRect(), ReplaceObject(), ReplaceString()

long ReplaceData(const char *name, ulongtype,
const void *data, longnumBytes)

long ReplaceData(const char *name, ulongtype, long index,
const void *data, longnumBytes)

long ReplaceBool(const char *name, boolaBool)
long ReplaceBool(const char *name, long index, boolaBool)

long ReplaceLong(const char *name, longaLong)
long ReplaceLong(const char *name, long index, longaLong)

long ReplaceFloat(const char *name, floataFloat)
long ReplaceFloat(const char *name, long index, floataFloat)

long ReplaceDouble(const char *name, doubleaDouble)
long ReplaceDouble(const char *name, long index, doubleaDouble)

Member Functions BMessage

84 – The Application Kit

long ReplaceRef(const char *name, record_refaRef)
long ReplaceRef(const char *name, long index, record_refaRef)

long ReplaceMessenger(const char *name, BMessengeraMessenger)
longReplaceMessenger(const char *name, longindex, BMessengeraMessenger)

long ReplacePoint(const char *name, BPointaPoint)
long ReplacePoint(const char *name, long index, BPointaPoint)

long ReplaceRect(const char *name, BRectaRect)
long ReplaceRect(const char *name, long index, BRectaRect)

long ReplaceObject(const char *name, BObject *anObject)
long ReplaceObject(const char *name, long index, BObject *anObject)

long ReplaceString(const char *name, const char *aString)
long ReplaceString(const char *name, long index, const char *aString)

These functions replace a data item in thename entry with another item passed as an
argument. If anindex is provided, they replace the item in thename array at that index; if
an index isn’t mentioned, they replace the first (or only) item stored undername. If an
index is provided but it’s out-of-range, the replacement fails.

ReplaceData() replaces an item in thename entry withnumBytes of data, but only if the
type code that’s specified for the data matches the type of data that’s already stored in the
entry. Thetype must be specific; it can’t beB_ANY_TYPE.

The other functions are simplified versions ofReplaceData(). They each handle the
specific type of data declared for their last arguments. They succeed if this type matches
the type of data already in thename entry, and fail if it does not.

If successful, all these functions returnB_NO_ERROR. If unsuccessful, they register and
return an error code—B_BAD_INDEX if the index is out-of-range,B_NAME_NOT_FOUND if
thename entry doesn’t exist, orB_BAD_TYPE if the entry doesn’t contain data of the
specified type.

See also: AddData()

ReturnAddress() see WasSent()

BMessage Member Functions

The Application Kit –85

SendReply()
long SendReply(BMessage *message, BMessage **reply)
long SendReply(ulongcommand, BMessage **reply)
long SendReply(BMessage *message, BHandler *replyTarget= NULL)
long SendReply(ulongcommand, BHandler *replyTarget= NULL)

Sends a replymessage back to the sender of the BMessage (in the case of a synchronous
reply) or to a target BHandler (in the case of an asynchronous reply). Whether the reply is
synchronous or asynchronous depends on how the message it replies to was sent:

• The reply is delivered synchronously if the message sender is waiting for it to arrive.
The function that sent the BMessage doesn’t return until it receives the reply. If an
expected reply has not been sent by the time the BMessage object is deleted, a
defaultB_NO_REPLY message is returned to the sender.

• The reply is delivered asynchronously if the message sender isn’t waiting for a
reply. In this case, the sending function designates a target BHandler (and, through
the BHandler, a target BLooper) for any replies that might be sent, then returns
immediately after putting the BMessage in the pipeline. The default target for a
reply is the sender’s BApplication object.

SendReply() works only for BMessage objects that have been processed through a
message loop and delivered to you. However, it doesn’t work for messages that were
posted to the loop, only for those that were sent or dragged. If it’s called when a reply isn’t
allowed, themessage is deleted and an error is recorded.

Themessage that’s passed toSendReply() should not be modified, passed to another
messaging function, used as a model message, or deleted. It becomes the responsibility of
the messaging service and the eventual receiver.

If a command is passed rather than amessage, SendReply() constructs the reply
BMessage, initializes itswhat data member with thecommand constant, and sends it just
like any other reply.

If you want to delay sending a reply and keep the BMessage object beyond the time it’s
scheduled to be deleted, you may be able to detach it from the message loop. See
DetachCurrentMessage() in the BLooper class.

SendReply() sends a message—a reply message, to be sure, but a message nonetheless. It
therefore is just another message-sending function. It behaves exactly like the other
message-sending function, BMessenger’sSendMessage():

• By passing it areply argument, you can ask for a synchronous reply to the reply
message it sends. It won’t return until it receives the reply.

• By supplying atargetHandler argument, you can arrange for an expected
asynchronous reply. If a specific target isn’t specified, the BApplication object will
handle the reply if one is sent.

Member Functions BMessage

86 – The Application Kit

This function returnsB_NO_ERROR if the reply is successfully sent. If not, it returns one of
the error codes explained under theError() function.

See also: BMessenger::SendMessage(), BLooper::DetachCurrentMessage(), WasSent(),
Error()

Unflatten() see Flatten()

WasDropped(), DropPoint()
bool WasDropped(void)

BPointDropPoint(BPoint *offset = NULL)

WasDropped() returnsTRUE if the user delivered the BMessage by dragging and dropping
it, andFALSE if the message was posted or sent in application code or if it hasn’t yet been
delivered at all.

DropPoint() reports the point where the cursor was located when the message was dropped
(when the user released the mouse button). It directly returns the point in the screen
coordinate system and, if anoffset argument is provided, returns it by reference in
coordinates based on the image or rectangle the user dragged. Theoffset assumes a
coordinate system with (0.0, 0.0) at the left top corner of the dragged rectangle or image.

Since any value can be a valid coordinate,DropPoint() produces reliable results only if
WasDropped() returnsTRUE.

See also: BView::DragMessage()

WasSent(), IsSourceRemote(), IsSourceWaiting(), IsReply(),
Previous(), ReturnAddress()

bool WasSent(void)

bool IsSourceRemote(void)

bool IsSourceWaiting(void)

bool IsReply(void)

BMessage *Previous(void)

BMessengerReturnAddress(void)

These functions can help if you’re engaged in an exchange of messages or managing an
ongoing communication.

WasSent() indicates whether it’s possible to send a reply to a message. It returnsTRUE for
a BMessage that was sent or dropped, andFALSE for a message that was posted or has not
yet been delivered by any means. (When, in a future release, it’s possible to reply to a

BMessage Operators

The Application Kit –87

posted message, this function would be more clearly namedWasDelivered().) Regardless
of the return value,WasSent() sets the current error code toB_NO_ERROR.

IsSourceRemote() returnsTRUE if the message had its source in another application, and
FALSE if the source is local or the message hasn’t been delivered yet. It resets the error
code toB_NO_ERROR in both cases.

IsSourceWaiting() returnsTRUE if the message sender is waiting for a synchronous reply,
andFALSE if not. The sender can request and wait for a reply when calling either
BMessenger’sSendMessage() or BMessage’sSendReply() function.

IsReply() returnsTRUE if the BMessage is a reply to a previous message (if it was sent by
theSendReply() function), andFALSE if not. It resets the error code toB_NO_ERROR in
either case.

Previous() returns the previous message, orNULL if the BMessage isn’t a reply.

ReturnAddress() returns a BMessenger that can be used to reply to the BMessage. Calling
the BMessenger’sSendMessage() function is equivalent to callingSendReply(), except
that the return message won’t be marked as a reply. If a reply isn’t allowed (if the
BMessage wasn’t sent or dropped), aB_BAD_VALUE error is registered to indicate that the
returned BMessenger is invalid. CallError() to check. If the BMessenger is valid,Error()
will return B_NO_ERROR.

If you want to use theReturnAddress() BMessenger to send a synchronous reply, you must
do so before the BMessage is deleted and default reply is sent.

See also: BMessenger::SendMessage(), SendReply()

Operators

new
void *operator new(size_tnumBytes)

Allocates memory for a BMessage object, or takes the memory from a previously
allocated cache. The caching mechanism is an efficient way of managing memory for
objects that are created frequently and used for short periods of time, as BMessages
typically are.

delete
void operator delete(void *memory, size_tnumBytes)

Frees memory allocated by the BMessage version ofnew, which may mean restoring the
memory to the cache.

Operators BMessage

88 – The Application Kit

The Application Kit –89

BMessageFilter

Derived from: public BObject

Declared in: <app/MessageFilter.h>

Overview

A BMessageFilter is an object that holds a hook function,Filter(), that can look at
incoming messages before they’re dispatched to their designated handlers. The object
also keeps the conditions that must be met for the function to be called. Applications
implement theFilter() function in classes derived from BMessageFilter.

A BMessageFilter can be attached to a message loop in one of two ways:

• If assigned to a BHandler object, the filter will be applied only to messages targeted
to the BHandler.

• If assigned to a BLooper object as a common filter, it can be applied to any message
regardless of the designated target. (A BLooper can also be assigned specific filters
in its role as a BHandler.)

All applicable filters in both categories are applied to a message before it’s dispatched to
the target BHandler. Common filters are applied before handler-specific filters.

The same BMessageFilter object can be assigned to more than one BHandler or BLooper
object; it will not be destroyed when the BHandler or BLooper is deleted.

See also: BHandler::SetFilterList(), BLooper::SetCommonFilterList()

Hook Functions

Filter() Implemented by derived classes to respond to a incoming
message before the message is dispatched to a target
BHandler.

Constructor and Destructor BMessageFilter

90 – The Application Kit

Constructor and Destructor

BMessageFilter()
BMessageFilter(message_deliverydelivery, message_sourcesource)
BMessageFilter(message_deliverydelivery, message_sourcesource,

ulongcommand)

Initializes the BMessageFilter object so that itsFilter() function will be called for every
incoming message that meets the specifieddelivery, source, andcommand criteria. The
first argument,delivery, is a constant that specifies how the message must arrive:

B_DROPPED_DELIVERY Only messages that were dragged and dropped
should be filtered.

B_PROGRAMMED_DELIVERY Only messages that were posted or sent in
application code (by callingPostMessage() or
a Send...() function) should be filtered.

B_ANY_DELIVERY All messages, no matter how they were
delivered, should be filtered.

The second argument,source, specifies where the message must originate:

B_LOCAL_SOURCE Only messages that originate locally, from
within the application, should be filtered.

B_REMOTE_SOURCE Only messages that are delivered from a
remote source should be filtered.

B_ANY_SOURCE All messages, no matter what their source,
should be filtered.

Filtering can also be limited to a particular type of message. If acommand constant is
specified, only messages that havewhat data members matching the constant will be
filtered. If acommand isn’t specified, the command constant won’t be a criterion in
selecting which messages to filter; any message that meets the other criteria will be
filtered, no matter what itswhat data member may be.

The filtering criteria are conjunctive; an arriving message must meet all the criteria
specified forFilter() to be called.

See also: Filter()

~BMessageFilter()
virtual ~BMessageFilter(void)

Does nothing.

BMessageFilter Member Functions

The Application Kit –91

Member Functions

Command(), FiltersAnyCommand()
inline ulongCommand(void)

inline boolFiltersAnyCommand(void)

Command() returns the command constant (what data member) that an arriving message
must match for the filter to apply.FiltersAnyCommand() returnsTRUE if the filter applies
to messages regardless of theirwhat data members, andFALSE if it’s limited to a certain
type of message.

Because all command constants are valid, including negative numbers and 0,Command()
returns a reliable result only ifFiltersAnyCommand() returnsFALSE.

See also: the BMessageFilter constructor, the BMessage class

Filter()
virtual filter_resultFilter(BMessage *message, BHandler **target)

Implemented by derived classes to examine an arriving message just before it’s
dispatched. Themessage is passed as the first argument; the second argument indirectly
points to thetarget BHandler object that’s slated to respond to the message.

You can implement this function to do anything you please with themessage, including
replace the designatedtarget with another BHandler object. For example:

filter_result MyFilter::Filter(BMessage *msg, BHandler **target)
{
 . . .
 if (*target->IsIndisposed())
 *target = *target->FindReplacement();
 . . .
 return B_DISPATCH_MESSAGE;
}

The replacement target must be associated with the same BLooper as the original target. If
the new target has filters that apply to themessage, those filtering functions will be called
before the message is dispatched.

This function should return a constant that instructs the BLooper whether or not to
dispatch the message as planned:

B_DISPATCH_MESSAGE Dispatch the message.

B_SKIP_MESSAGE Don’t dispatch the message and don’t filter it
any further; this function took care of handling
it.

Member Functions BMessageFilter

92 – The Application Kit

The default (BMessageFilter) version of this function does nothing but return
B_DISPATCH_MESSAGE.

See also: the BMessageFilter constructor

FiltersAnyCommand() see Command()

MessageDelivery()
inline message_deliveryMessageDelivery(void)

Returns the constant, set when the BMessageFilter object was constructed, that describes
the category of messages that can be filtered, based on how they were delivered.

See also: the BMessageFilter constructor

MessageSource()
inline message_sourceMessageSource(void)

Returns the constant, set when the BMessageFilter object was constructed, that describes
the category of messages that can be filtered, based on the source of the message.

See also: the BMessageFilter constructor

The Application Kit –93

BMessageQueue

Derived from: public BObject

Declared in: <app/MessageQueue.h>

Class Description

A BMessageQueue maintains a queue where messages (BMessage objects) are
temporarily stored as they wait to be received in a message loop. Every BLooper object
uses a BMessageQueue to manage the flow of incoming messages; all messages delivered
to the BLooper’s thread are placed in the queue. The BLooper removes the oldest
message from the queue, passes it to a BHandler, waits for the thread to finish its response,
deletes the message, then returns to the queue to get the next message.

For the most part, applications can ignore the queue—that is, they can treat it as an
implementation detail. Messages are posted to a thread (placed in the queue) by calling
BLooper’sPostMessage() function. Or they can be sent to the main thread of another
application by constructing a BMessenger object and callingSendMessage().

A BLooper calls upon a BHandler’sMessageReceived() function—and other, message-
specific hook functions—to handle the messages it takes from the queue. Applications
can simply implement the functions that are called to respond to received messages and
not bother about the mechanics of the message loop and queue.

However, if necessary, you can manipulate the queue directly, or perhaps just look ahead
to see what messages are coming. The BLooper has aMessageQueue() function that
returns its BMessageQueue object.

See also: the BMessage class,BLooper::MessageQueue()

Constructor and Destructor

BMessageQueue()
BMessageQueue(void)

Ensures that the queue starts out empty. Messages are placed in the queue by calling
AddMessage() and are removed by callingNextMessage().

Member Functions BMessageQueue

94 – The Application Kit

BMessageQueues are constructed by BLooper objects.

See also: AddMessage(), NextMessage()

~BMessageQueue()
virtual ~BMessageQueue(void)

Deletes all the objects in the queue and all the data structures used to manage the queue.

Member Functions

AddMessage()
void AddMessage(BMessage *message)

Addsmessage to the queue.

See also: NextMessage()

CountMessages()
long CountMessages(void) const

Returns the number of messages currently in the queue.

FindMessage()
BMessage *FindMessage(ulongwhat, long index= 0) const
BMessage *FindMessage(long index) const

Returns a pointer to the BMessage that’s positioned in the queue atindex, where indices
begin at 0 and count only those messages that havewhat data members matching thewhat
value passed as an argument. If awhat argument is omitted, indices count all messages in
the queue. If anindex is omitted, the first message that matches thewhat constant is
found. The lower the index, the longer the message has been in the queue.

If no message matches the specifiedwhat andindex criteria, this function returnsNULL.

The returned message is not removed from the queue.

See also: NextMessage()

BMessageQueue Member Functions

The Application Kit –95

IsEmpty()
bool IsEmpty(void) const

ReturnsTRUE if the BMessageQueue contains no messages, andFALSE if it has at least one.

See also: CountMessages()

Lock(), Unlock()
bool Lock(void)

void Unlock(void)

These functions lock and unlock the BMessageQueue, so that another thread won’t alter
the contents of the queue while it’s being read.Lock() doesn’t return until it has the queue
locked; it always returnsTRUE. Unlock() releases the lock so that someone else can lock
it. Calls to these functions can be nested.

See also: BLooper::Lock()

NextMessage()
BMessage *NextMessage(void)

Returns the next message—the message that has been in the queue the longest—and
removes it from the queue. If the queue is empty, this function returnsNULL.

RemoveMessage()
void RemoveMessage(BMessage *message)

Removes a particularmessage from the queue and deletes it.

See also: FindMessage()

Unlock() see Lock()

Member Functions BMessageQueue

96 – The Application Kit

The Application Kit –97

BMessenger

Derived from: public BObject

Declared in: <app/Messenger.h>

Overview

A BMessenger object is an agent for sending messages to a particular destination. Each
BMessenger knows about a BLooper object and a specific BHandler for that BLooper.
The messages it sends are delivered to the BLooper and—provided they’re not system
messages—dispatched by the BLooper to the BHandler. The destination objects can
belong to the same application as the message sender, but typically are in a remote
application. It’s more efficient to post a message within the same application than to ask a
BMessenger to send it.

BMessenger objects can be transported across application boundaries. You can create one
for a particular BLooper/BHandler combination in your application, then pass it by value
to a remote application. That application can then use the BMessenger to target the
BHandler in your application. This is, in fact, the only way for an application to get a
BMessenger that can target a remote object other than a BApplication object.

Constructor and Destructor

BMessenger()
BMessenger(ulongsignature, team_idteam = –1)
BMessenger(const BHandler *target)
BMessenger(const BMessenger &messenger)
BMessenger(void)

Initializes the BMessenger so that it can send messages to an application identified by its
signature or by itsteam. The application must be running when the BMessenger is
constructed.

If the signature passed isNULL, the application is identified by its team only. If theteam
specified is –1, as it is by default, the application is identified by its signature only. If both
a realsignature and a validteam identifier are passed, they must match—theteam must be
for the application that thesignature identifies. If more than one instance of thesignature
application happens to be running, theteam picks out a particular instance as the

Constructor and Destructor BMessenger

98 – The Application Kit

BMessenger’s target. Without a validteam argument, the constructor arbitrarily picks
one of the instances.

BMessengers constructed in this way send messages to the main thread of the remote
application, where they’re received and handled by that application’s BApplication object.
This type of messenger is needed to initiate communication with another application.

A BMessenger can also be an agent for atarget BHandler object. It sends messages to the
BLooper associated with the BHandler, and the BLooper dispatches them to the BHandler.

Thetarget BHandler object must be able to tell the BMessenger (through itsLooper()
function) which BLooper object it’s associated with. The BMessenger asks for this
information at the time of construction. Therefore, thetarget must either be a BLooper
itself or have been added to a BLooper’s list of eligible handlers. < For the BMessenger to
remain valid, thetarget BHandler must retain its affiliation with the same BLooper. >

The purpose of constructing a BMessenger for a local target is to give a remote application
access to that object. You can add the BMessenger to a message and send the message to
the remote application. That application can then use the BMessenger to target the
BHandler in your application.

A BMessenger can also be constructed as a copy of another BMessenger,

BMessenger newOne(anotherMessenger);

or be assigned from another object:

BMessenger newOne = anotherMessenger;

If the constructor can’t make a connection to thesignature application—possibly because
no such application is running—it registers aB_BAD_VALUE error, which theError()
function will return. If passed an invalidteam identifier, it registers aB_BAD_TEAM_ID
error. If theteam and thesignature don’t match, it registers aB_MISMATCHED_VALUES
error. If it can’t discover a BLooper from thetarget BHandler, it registers a
B_BAD_HANDLER error.

It’s a good idea to check for an error before asking the new BMessenger to send a
message. For example:

BMessenger *outlet = new BMessenger(some_signature);
if (outlet->Error() == B_NO_ERROR) {
 BMessage *msg = new BMessage(CHANGE_NAME);
 msg->AddString("old", formerName);
 msg->AddString("new", currentName);
 outlet->SendMessage(msg);
 if (outlet->Error() == B_NO_ERROR)
 . . .
}

A BMessenger can send messages to only one destination. Once constructed, you can
cache it and reuse it repeatedly to communicate with that object. It should be freed after
it’s no longer needed (or if there’s a long delay between messages and it’s possible that the

BMessenger Member Functions

The Application Kit –99

user might have quit the destination application and restarted it again, or that the
application may have destroyed the target BHandler).

The BRoster object can provide signature and team information about possible
destinations.

See also: the BRoster and BMessage classes,Error()

~BMessenger()
~BMessenger(void)

Frees all memory allocated by the BMessenger, if any was allocated at all.

Member Functions

Error()
long Error(void)

Returns an error code that describes what went wrong with the attempt to construct the
BMessenger or to have it send a message, orB_NO_ERROR if nothing went wrong.
Possible errors include:

B_BAD_VALUE The constructor can’t connect the BMessenger to the
remote application, most likely because an
application with the specified signature isn’t running.

B_MISMATCHED_VALUES The constructor failed because the specified signature
and team arguments designated two different
applications.

B_BAD_TEAM_ID The constructor can’t establish a connection to the
specified team, most likely because there is no such
team.

B_BAD_HANDLER The BHandler passed to the constructor was not
associated with a BLooper.

B_BAD_PORT_ID SendMessage() can’t deliver the message, most
likely because the destination application has been
killed.

Calling this function resets the error code toB_NO_ERROR, so you must cache the value
returned if you need to check the current error more than once.

Member Functions BMessenger

100 – The Application Kit

FindHandler(), FindAllHandlers()
BMessengerFindHandler(BMessage *message)
BMessengerFindHandler(long index, const char *class= NULL)
BMessengerFindHandler(const char *name, const char *class= NULL)

BMessage *FindAllHandlers(const char *class= NULL)

These functions send aB_HANDLERS_REQUESTED message and wait for a
B_HANDLERS_INFO reply.

Themessage is passed toFindHandler() should haveB_HANDLERS_REQUESTED as thewhat
data member and should ask for a BMessenger for just one BHandler. If anindex or a
name is passed instead of amessage, FindHandler() creates the message and adds that
information in an entry named “index” or “name”. If the index or name is restricted to a
class, it adds the class name in an entry labeled “class”.

When it gets the reply,FindHandler() returns the requested BMessenger. It may register a
B_ERROR, B_NAMED_NOT_FOUND, or B_BAD_INDEX error taken from the reply, or a
B_BAD_PORT_ID error if there’s a problem sending the message. In the case of any error,
the BMessenger is not to be trusted.

FindAllHandlers() requests BMessengers for a group of BHandlers, which may be
restricted to a particularclass. It returns theB_HANDLERS_INFO reply, orNULL if there’s an
error in sending a message.

See the variousHandlersRequested() functions for information on the protocols that the
software kits currently expect theB_HANDLERS_REQUESTED andB_HANDLERS_INFO
messages to follow.

See also: BHandler::HandlersRequested()

IsValid()
bool IsValid(void)

ReturnsTRUE if the destination BLooper object to which the BMessenger sends messages
remains valid, andFALSE if not (if, for example, it has been deleted).

This function doesn’t check whether the target BHandler is still valid; it reports only on
the status of the destination BLooper.

BMessenger Member Functions

The Application Kit –101

SendMessage()
long SendMessage(BMessage *message, BMessage **reply)
long SendMessage(ulongcommand, BMessage **reply)
long SendMessage(BMessage *message, BHandler *replyTarget= NULL)
long SendMessage(ulongcommand, BHandler *replyTarget= NULL)

Sends amessage. The BMessage object becomes the responsibility of the BMessenger.
You shouldn’t try to modify it, post it, send it again, use it as a model message, or free it; it
will be freed automatically when it’s no longer needed.

If a command is passed instead of a fullmessage, this function constructs a BMessage
object withcommand as itswhat data member and sends it just like any other message.
This is simply a convenience for sending messages that contain no data. The following
two lines of code are roughly equivalent:

myMessenger->SendMessage(NEVERMORE);
myMessenger->SendMessage(new BMessage(NEVERMORE));

This function can ask for a synchronous reply to the message or designate a BHandler for
an asynchronous reply:

• Supplying areply argument requests a message back from the destination. Before
returning,SendMessage() waits for the reply and places a pointer to the BMessage
it receives in the variable thatreply refers to.

The caller is responsible for deleting thereply message. If the destination doesn’t
send a reply, the system sends one withB_NO_REPLY as thewhat data member.
Check the reply message before proceeding. If there’s an error in sending the
message, the variable thatreply refers to is set toNULL.

• If a reply isn’t requested,SendMessage() returns immediately; any reply to the
message will be received asynchronously. If areplyTarget is specified, the reply
will be directed to that BHandler object. If one isn’t specified, it will be directed to
the BApplication object.

ThereplyTarget is subject to the same restriction as a target BHandler passed to the
BMessenger constructor: It must be associated with a BLooper object (or be a
BLooper itself) < and it must retain that association until the reply arrives >.

If all goes well,SendMessage() returnsB_NO_ERROR. If not, it returns an error code,
typically B_BAD_PORT_ID. The return value is also registered with theError() function; see
that function for more information.

(It’s an error for a thread to send a message to itself and expect a synchronous reply. The
thread can’t respond to the message and wait for a reply at the same time.)

See also: BMessage::SendReply()

Operators BMessenger

102 – The Application Kit

Team()
inline team_idTeam(void)

Returns the identifier for the team that receives the messages the BMessenger sends.

Operators

= (assignment)
BMessenger &operator =(const BMessenger &messenger)

Assigns one BMessenger to another. After the assignment the two objects are identical
and independent copies of each other, with no shared data.

new
void *operator new(size_tnumBytes)

Prevents confusion with a private version of thenew operator used internally by the
Application Kit. This version ofnew is no different from the operator used with other
classes.

The Application Kit –103

BRoster

Derived from: none

Declared in: <app/Roster.h>

Overview

The BRoster object keeps a roster of all applications currently running on the BeBox. It
can provide information about any of those applications, add another application to the
roster by launching it, or get information about an application to help you decide whether
to launch it.

There’s just one roster and it’s shared by all applications. When an application starts up, a
global variable,be_roster, is initialized to point to the shared object. You always access
the roster through this variable; you never directly instantiate a BRoster in application
code.

The BRoster identifies applications in three ways:

• By record_ref references to the executable files where they reside.

• By their signatures. The signature is a unique identifier for the application assigned
in a resource at compile time or by the BApplication constructor at run time. You
can obtain signatures for the applications you develop by contacting Be’s developer
support staff. They can also tell you what the signatures of other applications are.
(See the introduction to this chapter for more on signatures.)

• At run time, by theirteam_ids. A team is a group of threads sharing an address
space; every application is a team.

If an application is launched more than once, the roster will include one entry for each
instance of the application that’s running. These instances will have the same signature,
but different team identifiers.

Constructor and Destructor BRoster

104 – The Application Kit

Constructor and Destructor

The BRoster class doesn’t have a public constructor or destructor. This is because an
application doesn’t need to construct or destroy a BRoster of its own. The system
constructs one BRoster object for all applications and assigns it to thebe_roster global
variable. A BRoster is therefore readily available from the time the application is
launched until the time it quits.

Member Functions

GetAppInfo(), GetRunningAppInfo(), GetActiveAppInfo()
long GetAppInfo(ulongsignature, app_info *appInfo) const
long GetAppInfo(record_refexecutable, app_info *appInfo) const

long GetRunningAppInfo(team_idteam, app_info *appInfo) const

long GetActiveAppInfo(app_info *appInfo) const

These functions provide information about the application identified by itssignature, by a
database reference to itsexecutable file, by itsteam, or simply by its status as the current
active application. They place the information in the structure referred to byappInfo.

GetRunningAppInfo() reports on a particular instance of a running application, the one
that was assigned theteam identifier at launch.GetActiveAppInfo() similarly reports on a
running application, the one that happens to be the current active application.

If it can,GetAppInfo() also tries to get information about an application that’s running. If
a running application has thesignature identifier or was launched from theexecutable file,
GetAppInfo() queries it for the information. If more than one instance of thesignature
application is running, or if more than one instance was launched from the same
executable file, it arbitrarily picks one of the instances to report on.

Even if the application isn’t running—if none of the applications currently in the roster are
identified bysignature or were launched from theexecutable file—GetAppInfo() can still
provide some information about it, perhaps enough information for you to callLaunch() to
get it started.

If they’re able to fill in theapp_info structure with meaningful values, these functions
returnB_NO_ERROR. However,GetActiveAppInfo() returnsB_ERROR if there’s no active
application.GetRunningAppInfo() returnsB_BAD_TEAM_ID if team isn’t, on the face of it,
a valid team identifier for a running application.GetAppInfo() returnsB_BAD_VALUE if the
signature doesn’t correspond to an application on-disk, and simplyB_ERROR if the
executable doesn’t refer to a valid record in the database or doesn’t refer to a record for an
executable file.

BRoster Member Functions

The Application Kit –105

Theapp_info structure contains the following fields:

ulongsignature The signature of the application. (This will be the
same as thesignature passed toGetAppInfo().)

thread_idthread The identifier for the application’s main thread of
execution, or –1 if the application isn’t running.
(The main thread is the thread in which the
application is launched and in which itsmain()
function runs.)

team_idteam The identifier for the application’s team, or –1 if
the application isn’t running. (This will be the
same as theteam passed toGetRunningAppInfo().)

port_idport The port where the application’s main thread
receives messages, or –1 if the application isn’t
running.

record_refref A reference to the file that was, or could be,
executed to run the application. (This will be the
same as theexecutable passed toGetAppInfo().)

ulongflags A mask that contains information about the
behavior of the application.

Theflags mask can be tested (with the bitwise& operator) against these two constants:

B_BACKGROUND_APP The application won’t appear in the Browser’s
application menu (because it doesn’t have a user
interface).

B_ARGV_ONLY The application can’t receive messages.
Information can be passed to it at launch only, in an
array of argument strings (as on the command
line).

Theflags mask also contains a value that explains the application’s launch behavior. This
value must be filtered out offlags by combiningflags with theB_LAUNCH_MASK constant.
For example:

ulong behavior = theInfo.flags & B_LAUNCH_MASK;

The result will match one of these three constants:

B_EXCLUSIVE_LAUNCH The application can be launched only if an
application with the same signature isn’t already
running.

B_SINGLE_LAUNCH The application can be launched only once from
the same executable file. However, an application

Member Functions BRoster

106 – The Application Kit

with the same signature might be launched from a
different executable. For example, if the user
copies an executable file to another directory, a
separate instance of the application can be
launched from each copy.

B_MULTIPLE_LAUNCH There are no restrictions. The application can be
launched any number of times from the same
executable file.

These flags affect BRoster’sLaunch() function. Launch() can always start up a
B_MULTIPLE_LAUNCH application. However, it can’t launch aB_SINGLE_LAUNCH
application if a running application was already launched from the same executable file. It
can’t launch aB_EXCLUSIVE_LAUNCH application if an application with the same signature
is already running.

See also: “Launch Information” on page 19 of the chapter introduction,Launch(),
BApplication::GetAppInfo()

GetAppList()
void GetAppList(BList *teams) const
void GetAppList(ulongsignature, BList *teams) const

Fills in theteams BList with team identifiers for applications in the roster. Each item in
the list will be of typeteam_id. It must be cast to that type when retrieving it from the list,
as follows:

team_id who = (team_id)teams->ItemAt(someIndex);

The list will contain one item for each instance of an application that’s running. For
example, if the same application has been launched three times, the list will include the
team_ids for all three running instances of that application.

If a signature is passed, the list identifies only applications running under that signature. If
asignature isn’t specified, the list identifies all running applications.

See also: TeamFor(), the BMessenger constructor

IsRunning() see TeamFor()

BRoster Member Functions

The Application Kit –107

Launch()
long Launch(ulongsignature, BMessage *message= NULL,

team_id *team= NULL)
long Launch(ulongsignature, BList *messages,

team_id *team= NULL)
long Launch(ulongsignature, longargc, char **argv,

team_id *team= NULL)

long Launch(record_refexecutable, BMessage *message= NULL,
team_id *team= NULL)

long Launch(record_refexecutable, BList *messages,
team_id *team= NULL)

long Launch(record_refexecutable, longargc, char **argv,
team_id *team= NULL)

Launches the application identified by itssignature or by a reference to itsexecutable file
in the database.

If a message is specified, it will be sent to the application on-launch where it will be
received and responded to before the application is notified that it’s ready to run.
Similarly, if a list ofmessages is specified, each one will be delivered on-launch. The
BMessage objects (and the container BList) will be deleted for you.

Sending an on-launch message is appropriate only if it helps the launched application
configure itself before it starts getting other messages. To launch an application and send
it an ordinary message, callLaunch() to get it running, then set up a BMessenger object
for the application and call BMessenger’sSendMessage() function.

Instead of messages, you can launch an application with an array of argument strings that
will be passed to itsmain() function. argv contains the array andargc counts the number
of strings. If the application accepts messages, this information will also be packaged in a
B_ARGV_RECEIVED message that the application will receive on-launch.

If successful,Launch() places the identifier for the newly launched application in the
variable referred to byteam and returnsB_NO_ERROR. If unsuccessful, it sets theteam
variable to –1, destroys all the messages it was passed (and the BList that contained them),
and returns one of the following error codes:

B_BAD_VALUE Thesignature passed is not valid or it doesn’t
designate an available application.

This return value may also signify that an attempt
is being made to send an on-launch message to an
application that doesn’t accept messages (that is, to
a B_ARGV_ONLY application).

B_ERROR Theexecutable file can’t be found.

Member Functions BRoster

108 – The Application Kit

B_ALREADY_RUNNING The application is already running and can’t be
launched again (it’s aB_SINGLE_LAUNCH or
B_EXCLUSIVE_LAUNCH application).

B_LAUNCH_FAILED The attempt to launch the application failed for
some other reason, such as insufficient memory.

See also: the BMessenger class,GetAppInfo()

RemoveApp()
void RemoveApp(team_idteam)

Removes the application identified byteam from the roster of running applications.

TeamFor(), IsRunning()
team_idTeamFor(ulongsignature) const
team_idTeamFor(record_refexecutable) const

bool IsRunning(ulongsignature) const
bool IsRunning(record_refexecutable) const

Both these functions query whether the application identified by itssignature, or by a
reference to itsexecutable file in the database, is running.TeamFor() returns its team
identifier if it is, andB_ERROR if it’s not. IsRunning() returnsTRUE if it is, andFALSE if it’s
not.

If the application is running, you probably will want its team identifier (to set up a
BMessenger, for example). Therefore, it’s most economical to simply callTeamFor() and
foregoIsRunning().

If more than one instance of thesignature application is running, or if more than one
instance was launched from the sameexecutable file, TeamFor() arbitrarily picks one of
the instances and returns itsteam_id.

See also: GetAppList()

The Application Kit –109

Global Variables,
Constants, and Defined Types

This section lists the global variables, constants, and defined types that are defined by the
Application Kit. There’s just a few defined types, three global variables—be_app,
be_roster, andbe_clipboard—and a handful of constants. Error codes are documented in
the chapter on the Support Kit.

Although the Application Kit defines the constants for all system messages (such as
B_REFS_RECEIVED, B_ACTIVATE, andB_KEY_DOWN), only those that mark system
management and application messages are listed here. Those that designate interface
messages are documented in the chapter on the Interface Kit.

Global Variables

be_app
<app/Application.h>

BApplication *be_app

This variable provides global access to your application’s BApplication object. It’s
initialized by the BApplication constructor.

See also: the BApplication class

be_clipboard
<app/Clipboard.h>

BClipboard *be_clipboard

This variable gives applications access to the shared repository of data for cut, copy, and
paste operations. It’s initialized at startup; an application has just one BClipboard object.

See also: the BClipboard class

Constants Global Variables, Constants, and Defined Types

110 – The Application Kit

be_roster
<app/Roster.h>

BRoster *be_roster

This variable points to the global BRoster object that’s shared by all applications. The
BRoster keeps a roster of all running applications and can add applications to the roster by
launching them.

See also: the BRoster class

Constants

Application Flags
<app/Roster.h>

Defined constant

B_BACKGROUND_APP
B_ARGV_ONLY
B_LAUNCH_MASK

These constants are used to get information from theflags field of anapp_info structure.

See also: BRoster::GetAppInfo(), “Launch Constants” below

Application Messages
<app/AppDefs.h>

Enumerated constant Enumerated constant

B_ACTIVATE B_ARGV_RECEIVED
B_READY_TO_RUN B_REFS_RECEIVED
B_APP_ACTIVATED B_PANEL_CLOSED
B_ABOUT_REQUESTED B_PULSE
B_QUIT_REQUESTED

These constants represent the system messages that are received and recognized by the
BApplication class. Application messages concern the application as a whole, rather than
any particular window thread. See the introduction to this chapter and the BApplication
class for details.

See also: “Application Messages” on page 16 of the chapter introduction, “System
Management Messages” on page 113 below

Global Variables, Constants, and Defined Types Constants

The Application Kit –111

Cursor Constants
<app/AppDefs.h>

const unsigned charB_HAND_CURSOR[]
const unsigned charB_I_BEAM_CURSOR[]

These constants contain all the data needed to set the cursor to the default hand image or to
the standard I-beam image for text selection.

See also: BApplication::SetCursor()

Data Type Codes
<app/AppDefs.h>

Enumerated constant Enumerated constant

B_BOOL_TYPE B_ASCII_TYPE
B_CHAR_TYPE B_STRING_TYPE
B_UCHAR_TYPE B_RTF_TYPE
B_SHORT_TYPE B_PATTERN_TYPE
B_USHORT_TYPE B_RGB_COLOR_TYPE
B_LONG_TYPE B_RECORD_TYPE
B_ULONG_TYPE B_TIME_TYPE
B_FLOAT_TYPE B_MONEY_TYPE
B_DOUBLE_TYPE B_RAW_TYPE
B_POINTER_TYPE B_MONOCHROME_1_BIT_TYPE
B_OBJECT_TYPE B_GRAYSCALE_8_BIT_TYPE
B_POINT_TYPE B_COLOR_8_BIT_TYPE
B_RECT_TYPE B_RGB_24_BIT_TYPE [sic]
B_MESSENGER_TYPE B_TIFF_TYPE
B_REF_TYPE B_ANY_TYPE

These constants are used in a BMessage object to describe the types of data the message
holds. B_ANY_TYPE refers to all types; the others refer only to a particular type. See the
BMessage class for more information on what they mean.

See also: “Type Codes” on page 71 of the BMessage class overview

Constants Global Variables, Constants, and Defined Types

112 – The Application Kit

filter_result Constants
<app/MessageFilter.h>

Enumerated constant

B_SKIP_MESSAGE
B_DISPATCH_MESSAGE

These constants list the possible return values of a filter function.

See also: BMessageFilter::Filter()

Launch Constants
<app/Roster.h>

Defined constant

B_MULTIPLE_LAUNCH
B_SINGLE_LAUNCH
B_EXCLUSIVE_LAUNCH

These constants explain whether an application can be launched any number of times,
only once from a particular executable file, or only once for a particular application
signature. This information is part of theflags field of anapp_info structure and can be
extracted using theB_LAUNCH_MASK constant.

See also: BRoster::GetAppInfo(), “Application Flags” above

Message Constants
<app/AppDefs.h>

Enumerated constant

B_NO_REPLY
B_MESSAGE_NOT_UNDERSTOOD

B_HANDLERS_INFO

B_SIMPLE_DATA

B_CUT
B_COPY
B_PASTE

These constants mark messages that the system sometimes puts together, but that aren’t
dispatched like system messages. See “Standard Messages” in theMessage Protocols
appendix for details.

See also: BMessage::SendReply(), the BTextView class in the Interface Kit,
BHandler::HandlersRequested()

Global Variables, Constants, and Defined Types Constants

The Application Kit –113

message_delivery Constants
<app/MessageFilter.h>

Enumerated constant

B_ANY_DELIVERY
B_DROPPED_DELIVERY
B_PROGRAMMED_DELIVERY

These constants distinguish the delivery criterion for the application of a BMessageFilter.

See also: the BMessageFilter constructor

message_source Constants
<app/MessageFilter.h>

Enumerated constant

B_ANY_SOURCE
B_REMOTE_SOURCE
B_LOCAL_SOURCE

These constants list the possible constraints on the message source for the application of a
BMessageFilters.

See also: the BMessageFilter constructor

System Management Messages
<app/AppDefs.h>

Enumerated constant

B_QUIT_REQUESTED
B_HANDLERS_REQUESTED

These constants represent system messages that are used to help run the messaging
system. They’re received and recognized by generic BLooper objects.

See also: “System Management Messages” on page 15 of the introduction, “Application
Messages” on page 110 above

Defined Types Global Variables, Constants, and Defined Types

114 – The Application Kit

Defined Types

app_info
<app/Roster.h>

typedef struct {
ulongsignature;
thread_idthread;
team_idteam;
port_idport;
record_refref;
ulongflags;

} app_info

This structure is used by BRoster’sGetAppInfo(), GetRunningAppInfo(), and
GetActiveAppInfo() functions to report information about an application. See those
functions for a description of its various fields.

See also: BRoster::GetAppInfo()

filter_result
<app/MessageFilter.h>

typedef enum { . . . }filter_result

This type distinguishes between theB_SKIP_MESSAGE andB_DISPATCH_MESSAGE return
values for a filter function.

See also: BMessageFilter::Filter()

message_delivery
<app/MessageFilter.h>

typedef enum { . . . }message_delivery

This type enumerates the delivery criteria for filtering a message.

See also: the BMessageFilter constructor

Global Variables, Constants, and Defined Types Defined Types

The Application Kit –115

message_source
<app/MessageFilter.h>

typedef enum { . . . }message_source

This type enumerates the source criteria for filtering a message.

See also: the BMessageFilter constructor

Defined Types Global Variables, Constants, and Defined Types

116 – The Application Kit

