
Introduction – 1

1 Introduction

Software Overview . 3
Servers . 4
Kits . 5

Contents . 8
Class Descriptions . 9
Programming Conventions .10

Responsibility for Allocated Memory 10
Object Allocation . .11
Virtual Functions .11
Multiple Threads .13

Protecting Data13
Avoiding Deadlocks 15

Naming Conventions .16

2 – Introduction

Introduction – 3

1 Introduction

The BeBox™ is an integrated package of hardware and software. The hardware supports
the innovative design of the software, and the software exploits the extraordinary
capabilities of the hardware. Among other things, the BeBox offers:

• Parallel processing on two high-performance CPUs.

• An operating system designed for efficient multithreading. It automatically splits
assignments between the CPUs and will give priority to threads that need
uninterrupted service.

• An architecture that supports the real-time processing of data for audio and video
applications.

• An interface that lets applications and users view everything that’s stored on-disk as
if it were in a relational database.

• Dynamically loaded device drivers, built-in networking, interapplication messaging,
shared libraries, protected and shared address spaces, an application framework that
implicitly assigns a separate thread of execution to each window, and many other
features.

Be system software is designed to make the features of the BeBox readily and efficiently
available to all applications. The application programming interface (API) is written in
the C++ language and takes advantage of the opportunities C++ offers for object-oriented
programming. It includes numerous class definitions from which you can take much of
the framework for your application.

Software Overview

System software on the BeBox lies in three “layers”:

• A microkernel that works directly with the hardware and device drivers.

• Several servers that can attend to the needs of any number of running applications.
The servers take over much of the low-level work that would normally have to be
done by each application.

Software Overview

4 – Introduction

• Dynamically linked libraries that provide an interface to the servers and encapsulate
facilities for building Be applications.

Applications are built on top of these layers, as illustrated below:

The API for all system software is organized into several “kits.” Each software kit has a
distinct domain—there’s a kit that contains the basic software you’ll need to run an
application on the BeBox, a kit for putting together a user interface, one for organizing
data stored on-disk, another for networking, and so on.

With the exception of the Kernel Kit and much of the Network Kit, which have ANSI C
interfaces, all the kits are written in the C++ language and make extensive use of class
definitions. Each kit defines an integrated set of classes that work together to structure a
framework for applications within its domain.

By incorporating kit classes in your application—directly creating instances of them,
deriving your own classes from them, and inventing your own classes to work with
them—you’ll be able to make use of all the facilities built into the BeBox. And you’ll find
that a good deal of the work of programming a Be application has already been done for
you by the engineers at Be.

Servers

Standing behind many of the software kits are servers—separate processes that run in the
background and carry out basic tasks for client applications. Servers serve Be
applications, not users; they have a programming interface (through the various kits) but
no user interface. They typically can serve any number of running applications at the
same time. A server can be viewed either as an extension of the kernel or as an adjunct to
an application. It’s really a little of both.

If you look inside the/system directory on the BeBox, you’ll see a number of servers
listed. The main ones that you should know about are the Storage Server and the
Application Server.

• TheStorage Server coordinates access to “persistent data”—data that lives on long-
term storage media, such as a hard disk or floppy diskette. The Server keeps track
of data by enumerating its qualities (its type, size, where it’s located, and so on) in

MICROKERNEL

SERVERS

SOFTWARE KITS
(LIBRARIES)

APPLICATIONS

Software Overview

Introduction – 5

an entry called arecord. In some cases, the record can hold the data itself; it can be
a way of retaining data, not just of recording information about it. Adatabase
contains a collection of records; each medium (each hard or floppy disk) has its own
database.

The Storage Server also manages the file system. A file, like any other distinct piece
of persistent data, is represented by a record in a database. Although you gain
access to files by referring to the records that represent them, Be software is
designed to make file access as “database-free” as possible.

An application can create new records, add them to a database, query a database and
access records, open files to read and write, traverse directories, and carry out other
storage and retrieval tasks through the classes defined in the Storage Kit. The Kit is
the programming interface to the Server.

• TheApplication Server handles most of the low-level user interface work. It
provides applications with windows, manages the interactions among windows,
renders images in windows on instructions from the application, and monitors what
the user does on the keyboard and mouse. It’s the application’s conduit for both
drawing output and event input. In addition to being a “window provider,” the
Server also maintains the global environment shared by all applications.

An application connects itself to the Server when it constructs a BApplication object
(as defined in the Application Kit). This should be one of the first things that every
application does. Every BWindow object (defined in the Interface Kit) also makes a
connection to the Server when it’s constructed. Each window runs independently of
other windows—in its own thread and with its own connection to the Server.

In addition, thePrint Server manages the printer and printing tasks much as the
Application Server manages rendering on the screen. Various media servers take care of
the distribution of data to and from media devices. For example, theAudio Server
manages sound data that arrives through the microphone and line-in jacks, and sends
sound data to the speaker and line-out jacks. These servers will turn up in later chapters as
they discuss the architecture of system software. Most other servers will remain in the
background.

Kits

Some of the software kits will be used by all applications, others only by applications that
are concerned with the specific kinds of problems the kit addresses. Most applications
will need to open files and put windows on-screen, for example; fewer will want to
process audio data.

Software Overview

6 – Introduction

The kits currently available are summarized below:

• TheApplication Kit is a small amount of software that is nevertheless essential for
all applications. It gives an application the ability to communicate with other
applications, to become known to the Browser, and to use software in the other kits.
It defines a messaging service that the system uses to report events to applications,
and that an application can use to organize activity among its threads.

The Kit’s principal class is BApplication; every application must have one (and only
one) BApplication object to act as its global representative. Begin with this kit
before programming with any of the others.

• TheStorage Kit is an interface for storing data on-disk, retrieving it, and keeping
abreast of changes that are made to it. It’s the client interface to the Storage Server.
Information can be stored with various attached properties, so that it can be
retrieved, accessed, and organized according to those properties, not just according
to a file designation in a hierarchical directory structure.

The Storage kit has two parts: One set of classes (BDatabase, BTable, BRecord, and
BQuery) provides typical database access to stored information. Another set
(BVolume, BDirectory, and BFile) provides an interface to the file system. The file-
system classes are built on top of the database classes—files and directories have
records in the database—but can be used with a minimum of “database” overhead.
In the easiest (and most typical) case, an application doesn’t need to know anything
about database techniques to read and write files.

• TheInterface Kit is used to build and run a graphical and interactive user interface.
It structures the twin tasks of drawing in windows and handling the messages that
report user actions (like clicks and keystrokes) directed at what was drawn. Its
BWindow class encapsulates an interface to windows. Its BView class embodies a
complete graphics environment for drawing.

Each window on (and off) the screen is represented by a separate BWindow object
and is served by a separate thread. A BWindow has a hierarchy of associated
BView objects; each BView draws one portion of what’s displayed in the window
and responds to user actions prompted by the display. The Interface Kit defines a
number of specific BViews, such as BListView, BButton, BScrollBar, and
BTextView—as well as various supporting classes, such as BRegion, BBitmap, and
BPicture.

Every application that puts a window on-screen will need to make use of this kit.

• TheMedia Kit defines an architecture for the real-time processing of data—
especially audio and video data. It gives applications the ability to generate,
examine, manipulate, and realize (or “render”) medium-specific data in real time.
Applications can, for example, synchronize the transmission of data to different
media devices, so they can easily incorporate and coordinate audio and video
output.

Software Overview

Introduction – 7

• TheMidi Kit is designed specifically for processing music data in MIDI (Musical
Instrument Digital Interface) format.

• The3D Kit brings an object-oriented implementation of 3D concepts into the Be
software environment. Its goal is to make fairly sophisticated three-dimensional
representations available to ordinary applications—and to do so simply and
efficiently. With this Kit, an application can define three-dimensional objects (or
“models”), place the models in a three-dimensional setting, animate them in the
setting, and have the user interact them. < In addition to the 3D Kit, a future release
will provide an optimized implementation of the OpenGL library and tools for
developers who require a high-end 3D engine. >

• TheKernel Kit is the one kit that’s not object-oriented. It defines an interface for
creating threads (the basic units of scheduling and execution on the CPUs) and the
attendant facilities that regulate threads and coordinate their interaction (such as
ports, priorities, and semaphores). It also defines a system of memory management,
including reserved and shared areas of memory. Applications that rely on the
higher-level kits won’t need to use much of the kernel interface.

• TheDevice Kit has two parts. One part provides programming interfaces for the
various connectors on the BeBox; it currently consists of classes that represent the
serial ports, the joystick ports, and the GeekPort™. The other part of the Kit is the
API for creating loadable device drivers. Drivers for graphics cards run as
extensions of the Application Server; printer drivers run in the Print Server. All
other drivers are loaded by the kernel.

• TheGame Kit is a collection of software that’s especially useful for developing
games, though it can be used by any application. It currently consists of just one
class—BWindowScreen—which gives an application direct access to the graphics
card driver for the screen. With that access, the application can set up a game-
specific graphics environment on the card, take direct charge of the frame buffer,
and call driver functions for accelerated drawing.

• TheNetwork Kit contains global C functions that let you identify remote machines
that are connected to the network, and communicate with those machines through
the TCP and UDP message protocols. The Kit also contains API (including the
BMailMessage class) that enables applications to talk to the Be mail daemon, and
send and receives SMTP and POP mail messages.

• TheSupport Kit is a collection of various defined types, error codes, and other
facilities that support Be application development and the work of the other kits. It
includes basic type definitions, the BList class for organizing ordered collections of
data, and a system for having objects retain class information that they can reveal at
run time. You can pick and choose the parts of this kit that you want to adopt for
your application.

Contents

8 – Introduction

Contents

This manual documents system software for which a public API is currently available.
The present version covers the eleven kits summarized above. Later releases will
document more software as the API is codified.

After the introductory chapter you’re now reading, there’s a chapter for each kit, followed
by two appendices. The table of contents is:

1 Introduction

2 The Application Kit

3 The Storage Kit

4 The Interface Kit

5 The Media Kit

6 The Midi Kit

7 The 3D Kit

8 The Kernel Kit

9 The Device Kit

10 The Game Kit

11 The Network Kit

12 The Support Kit

A Message Protocols

B Application APIs

We may, from time to time, issue updated versions of one chapter or another, as well as
add new chapters for new kits. So that page numbers won’t become totally confusing as
new documentation arrives, each chapter numbers its pages independently of the others.
Each chapter begins on page 1 and has its own table of contents.

Where it can, the documentation tries to let you know what might be changing. It encloses
temporary comments in angle brackets, <such as this>. Bracketed information is
sometimes speculative, anticipating planned changes to the software that have yet to be
implemented. Angle brackets sometimes also enclose information that’s true about the
present release, but is scheduled to change. Hopefully, language and context are enough
to distinguish the two cases.

Just as the software tries to simplify the work of programming an application for the
BeBox, this documentation tries to make it easy for you to understand the software. Your
comments on it, as on the software, are appreciated. Suggestions, bug reports, and notes
on what you found helpful or unhelpful, clear or unclear, are all welcome.

Class Descriptions

Introduction – 9

Class Descriptions

Since most Be software is organized into classes, much of the documentation you’ll be
reading in this manual will be about classes and their member functions. Each class
description is divided into the following sections:

Overview An introductory description of the class. The
overview is usually brief, but for the main
architectural classes, it can be lengthy. Start here
to learn about the class.

Data Members A list of the public and protected data members
declared by the class, if there are any. If this
section is missing, the class declares only private
data members, or doesn’t declare any data
members at all. Most data members are private, so
this section is usually absent.

Hook Functions A list of the virtual functions that you’re invited to
override (re-implement) in a derived class. Hook
functions are called by the kit at critical junctures;
they “hook” application-specific code into the
generic workings of the kit. Looking through the
list will give you an idea of how to adapt the kit
class to the needs of your application.

Constructor and Destructor The class constructor and destructor. Only
documented constructors produce valid members
of a class. Don’t rely on the default constructors
promised by the C++ compiler.

Member Functions A full description of all public and protected
member functions, including hook functions.

Operators A description of any operators that are overloaded
to handle the class type.

If a section isn’t relevant for a particular class—if the class doesn’t define any hook
functions or overload any operators, for example—that section is omitted.

Rely only on the documented API. You may occasionally find a public function declared
in a header file but not documented in the class description. The reason it’s not
documented is probably because it’s not supported and not safe; don’t use it.

Programming Conventions

10 – Introduction

Programming Conventions

The software kits were designed with some conventions in mind. Knowing a few of these
conventions will help you write efficient code and avoid unexpected pitfalls. The
conventions for memory allocation, object creation, and virtual functions are described
below.

Responsibility for Allocated Memory

The general rule is that whoever allocates memory is responsible for freeing it:

• If your application allocates memory, it should free it.

• If a kit allocates memory and passes your application a pointer to it, the kit retains
responsibility for freeing it.

For example, aText() function like this one,

char *text = someObject->Text();

would return a pointer to a string of characters residing in memory that belongs to the
object that allocated it. The object will free the string; you shouldn’t free it.

You should also not expect the string pointer to be valid for long. It will stay valid as long
as you hold a lock that prevents others from changing the string or deleting the object. But
once you release the lock that protects the data, something may happen to modify it,
change its location in memory, or free it at any time. If your application needs continued
access to the string, it should make a copy for itself or callText() each time the string is
needed.

In contrast, aGetText() function would copy the string into memory that your application
provides:

char *text = (char *)malloc(someObject->TextLength() + 1);
someObject->GetText(text);

Your application is responsible for the copy.

In some cases, you’re asked to allocate an object that kit functions fill in with data:

BPicture *picture = new BPicture;
someViewObject->BeginPicture(picture);
. . .
someViewObject->EndPicture();

Because your application allocated the object, it’s responsible for freeing it.

Be system software tries always to keep allocation and deallocation paired in the same
body of code—if you allocated the memory, free it; if you didn’t, don’t.

Programming Conventions

Introduction – 11

This general rule is followed wherever possible, but there are some exceptions to it.
BMessage objects (in the Application Kit) are a prominent exception. Messages are like
packages you put together and then mail to someone else. Although you create the
package, once you mail it, it no longer belongs to you.

Another exception isFindResource() in the BResourceFile class of the Storage Kit. This
function allocates memory on the caller’s behalf and copies resource data to it; it then
passes responsibility for the memory to the caller:

long numBytes;
void *res = someFile.FindResource(B_RAW_TYPE, "name", &numBytes);

The BResourceFile object allocates the memory in this case because it knows better than
the caller how much resource data there is and, therefore, how much memory to allocate.

Exceptions like this are rare and are clearly stated in the documentation.

Object Allocation

All objects can be dynamically allocated (using thenew operator). Some, but not all, can
also be statically allocated (put on the stack). Static allocation is appropriate for certain
kinds of objects, especially those that serve as temporary containers for transient data.

However, many objects may not work correctly unless they’re allocated in dynamic
memory. The general rule is this:

If you assign one object to another (as, for example, a child BView in the Interface
Kit is assigned to its parent BView or a BMessage is assigned to a BMessenger), you
should dynamically allocate the assigned object.

This is because there may be circumstances which would cause the other object to get rid
of the object you assigned it. For example, a parent BView deletes its children when it is
itself deleted. In the Be software kits, all such deletions are done with thedelete operator.
Therefore, the original allocation should always be done withnew.

Virtual Functions

The software kits declare functions virtual for a variety of reasons. Most of the reasons
simply boil down to this: Declaring a function virtual lets you reuse its name in a derived
class. You can, for example, implement a special version of a function for one kind of
object and give it the same name as the version defined in the kit for other objects. Or, if
you always take certain steps when you call a particular kit function, you can reimplement
the function to include those steps. You don’t have to package your additions under a
different name.

However, there’s another, more important reason why some functions are declared virtual.
These functions reverse the usual pattern for library functions: Instead of being
implemented in the kit and called by the application, they’re called by the kit and

Programming Conventions

12 – Introduction

implemented in the application. They’re “hooks” where you can hang your own code and
introduce it into the on-going operations of the kit.

Hook functions are called at critical junctures as the application runs. They serve to notify
the application that something has happened, or is about to happen, and they give the
application a chance to respond.

For example, the BApplication class (in the Application Kit) declares aReadyToRun()
function that’s called as the application is getting ready to run after being launched. It can
be implemented to finish configuring the application before it starts responding to the user.
The BWindow class (in the Interface Kit) declares aWindowActivated() function that can
be implemented to make any necessary changes when the window becomes the active
window. By implementing these functions, you fit application-specific code into the
generic framework of the kit.

It’s possible to divide hook functions into three groups:

• Most hook functions are empty. As implemented by the declaring class, they don’t
do anything. It’s up to derived classes to give them substance. Like
WindowActivated() andReadyToRun(), these functions are named for what they
announce—for what led to the function call—rather than for what they might be
implemented to do. They can be implemented to do almost anything you want.

• Some hook functions are given default implementations to cover the general case.
Like the functions in the first group, these functions are also named for the
occurrence that prompts the function call—for example,ScreenChanged() and
QuitRequested(). If you decide to implement your own version of the function, you
can choose either toreplace the kit’s default version or toaugment it, as discussed
below.

• A few hook functions are implemented to perform a particular task. You can call
these functions just as you would any ordinary nonhook function, but they’re also
called at pivotal points within the framework of the kits. They therefore do double
duty: They serve both as functions that you might call and as hooks that are called
for you. These functions are generally named for what they do—likeMakeFocus()
or SetValue(). If you override any of them, you should always augment the original
version, never replace it.

If you override a hook function that has been implemented—either by the class that
declares it or by a derived class—it’s generally best to preserve what the function already
does by incorporating the old version in the new. For example:

void MyWindow::ScreenChanged(BRect grid, color_space mode)
{
 . . .
 BWindow::ScreenChanged(grid, mode);
 . . .
}

In this way, the new function augments the inherited version, rather than replaces it. It
builds on what has already been implemented. In some cases, each class in a branch of the

Programming Conventions

Introduction – 13

inheritance hierarchy will contribute a bit of code to a function. Because each version
incorporates the inherited version, the function has its implementation spread vertically
throughout the inheritance hierarchy.

Multiple Threads

A Be application is inherently multithreaded; it runs as ateam of separately scheduled
threads of execution that share a common address space. In addition to themain thread in
which the application starts up and in which itsmain() function executes, each window is
provided with its own thread. An application becomes multithreaded simply by creating a
window.

Applications might explicitly create other threads for a variety of reasons—a thread might
monitor a data channel, for example, or some less important processes might be put in a
thread with a low priority to keep the user interface responsive. In addition, some kits
(such as the Media Kit) have architectures that invite you to use multiple threads, and
some spawn threads that work behind the scenes (like the thread that keeps live queries
alive).

Each thread runs independently of the others, but the main thread has a special status. It’s
the first thread in the team, and it should also be the last. All other threads should be killed
before the main thread and the application team are laid to rest.

The following sections discuss some considerations that come up when programming in a
multithreaded environment. You may want to defer reading them until you see how the Be
operating system defines and makes use of threads.

Protecting Data

Because all threads in a team live in the same address space, more than one of them might
try to access the same data at the same time. If a data structure is static, unchanging, and
certain to remain in place until the application quits, this won’t be much of a problem. But
that’s generally not the case. If it’s possible for one thread to alter some shared data, or
delete it, while another thread is reading it (or worse, while the other thread is also altering
the data, but in a different way), obvious problems result. Data could be left in an
internally inconsistent state, pointers could be invalid, and so on.

There are various ways to avoid these problems—to keep critical data “multithread-safe”.
One maneuver is to put a single thread in charge of a data structure (or object). From the
point of view of the data, the application isn’t multithreaded; only one thread can read,
alter, or delete it. Functions that deal with the data could simply return an error if the
calling thread lacks authorized access.

Programming Conventions

14 – Introduction

The Be operating system provides two additional mechanisms that you can use to keep
data multithread-safe:

• You can institute a locking procedure for the data. Locks are based on semaphores,
which the Kernel Kit provides. Threads, in effect, wait in line to acquire a
semaphore that gives them permission to access the data. When one thread releases
the semaphore, the next thread can acquire it.

Classes in some kits defineLock() andUnlock() functions that utilize semaphores,
so it makes sense to talk about “locking” and “unlocking” an object—a window, for
example.

As long as all parties abide by the rules, semaphores and locks guarantee that only
one thread at a time will be admitted to the data. Without this mechanism, one
thread could not safely access data controlled by another thread.

• You can use the high-level messaging system, which the Application Kit defines.
Messages asynchronously transfer control from one thread to another. They can
make sure that a particular thread deals with particular data. For example, instead of
locking an object and directly modifying its state, you can post a message to the
thread that’s associated with the object, and have that thread make the modification.
If window A posts a message that concerns windowB, windowB will receive and
respond to the message in its own thread.

Using messages to communicate between threads ensures that each thread operates
on just its “own” data. For example, a window thread might accept messages that
affect the window data structure (really a BWindow object) and other objects
associated with the window. As long as other threads post messages rather than try
for direct access, these objects will be accessed only from one thread.

In the Be operating system, locks and messages are bound together in one important
respect: When a thread receives a message, it automatically locks the object associated
with the thread. For example, when a window thread gets a message, it locks the window
data structure (the BWindow object). The lock remains in place until the thread is finished
responding to the message.

This makes it possible for locks and messages to be used in combination in a
multithreaded world. The choice of which to use depends on the situation and the design
of your application.

The locking and messaging mechanisms are themselves multithread-safe on the BeBox.
The system handles all the tricky cases—such as a destination thread disappearing while a
message is being posted to it or a data structure being deleted while it’s being locked. The
functions that acquire a semaphore or a lock and those that post messages are designed to
fail gracefully and return an error if the objects of their attention have been destroyed.

Programming Conventions

Introduction – 15

Avoiding Deadlocks

A deadlock occurs when one thread tries to acquire a lock that another thread holds, while
the other thread tries to acquire a lock that the first thread holds. This is diagrammed
below:

Each thread blocks waiting to acquire the lock that the other thread holds. Neither will
succeed because neither will release the lock it holds while it waits for the other thread to
release its lock. They both wait forever—a deadlock. (Deadlocks can also involve a
combination of three or more threads, but two are sufficient. The essential ingredient is
that each thread holds a lock while it waits for another lock.)

As the diagram above indicates, there are two necessary conditions for a deadlock to
occur. A deadlock can’t happen unless:

• A thread that holds a lock tries for another one. If threads hold only one lock at a
time, deadlocks can’t occur.

• Two or more threads must try to acquire the same locks, but in a different sequence.
In the illustration, thread one acquires lockA first, then tries forB, while thread two
works in the opposite order. It acquiresB first, then tries forA. If all threads always
acquire locks in the same order, deadlocks can’t occur.

If you structure your code to avoid either or both of these conditions, you won’t
experience deadlocks.

As mentioned earlier, when a thread receives a message it locks the object that owns the
thread. Therefore, as a thread responds to a message it implicitly holds one lock. If it tries
for another one, it will meet the first condition for a deadlock stated above.

At times this may be unavoidable. When it is, it’s important to structure the code so that
all threads try for the locks in the same order. For example, if windowX and windowY
need to share data, and windowX can lock windowY and windowY can lock windowX,
there’s a distinct possibility that a deadlock will sometime occur. If the information that
each window needs from the other is moved to some third object under the supervision of
another lock, a deadlock could be avoided. If more than one additional object is needed
and more than one lock, both windows could acquire the external locks in the same order,
avoiding a deadlock.

thread
two

A B

thread
one

ho
ld

s

wants

ho
ld

s

wants

Naming Conventions

16 – Introduction

Sometimes the solution to a deadlock is to avoid locking and rely on messages instead.
The two windows in the example above might send each other messages rather than use
locks to access the data directly.

Naming Conventions

As Be continues to develop system software and the API grows, there’s a chance that the
names of some new classes, constants, types, or functions added in future releases will
clash with names you’re already using in the code you’ve written.

To minimize the possibility of such clashes, we’ve adopted some strict naming
conventions that will guide all future additions to the Be API. By stating these
conventions here, we hope to give you a way of avoiding namespace conflicts in the
future.

Most Be data structures and functions are defined as members of C++ classes, so class
names will be quite prominent in application code. All our class names begin with the
prefix “B”; the prefix marks the class as one that Be provides. The rest of the name is in
mixed case—the body of the name is lowercase, but an uppercase letter marks the
beginning of each separate word that’s joined to form the name. For example:

BTextView BFile
BRecord BMessageQueue
BScrollBar BList
BAudioSubscriber BDatabase

The simplest thing you can do to prevent namespace clashes is to refrain from putting the
“B” prefix on names you invent. Choose another prefix for your own classes, or use no
prefix at all.

Other names associated with a class—the names of data members and member
functions—are also in mixed case. (The names of member functions begin with an
uppercase letter—for example,AddResource() andUpdateIfNeeded(). The names of
data members begin with a lowercase letter—what andbottom, for example.) Member
names are in a protected namespace and won’t clash with the names you assign in your
own code; they therefore don’t have—or need—a “B” prefix.

All other names in the Be API are single case—either all uppercase or all lowercase—and
use underbars to mark where separate words are joined into a single name.

The names of constants are all uppercase and begin with the prefix “B_”. For example:

B_NAME_NOT_FOUND B_BACKSPACE
B_OP_OVER B_LONG_TYPE
B_BAD_THREAD_ID B_FOLLOW_TOP_BOTTOM
B_REAL_TIME_PRIORITY B_PULSE

Naming Conventions

Introduction – 17

It doesn’t matter whether the constant is defined by a preprocessor directive (#define), in
an enumeration (enum), or with theconst qualifier. They’re all uniformly uppercase, and
all have a prefix. The only exceptions are common constants not specific to the Be
operating system. For example, these four don’t have a “B_” prefix:

TRUE NIL
FALSE NULL

Other names of whatever stripe—global variables, macros, nonmember functions,
members of structures, and defined types—are all lowercase. Global variables generally
begin with “be_”,

be_app
be_roster
be_clipboard

but other names lack a prefix. They’re distinguished only by being lowercase. For
example:

rgb_color pattern
system_time() acquire_sem()
does_ref_conform() bytes_per_row
app_info get_screen_size()

There are few such names in the API. The software will grow mainly by adding classes
and member functions, and the necessary constants to support those functions.

To briefly summarize:

Category Prefix Spelling

Class names B Mixed case
Member functions none Mixed case, beginning with an uppercase letter
Data members none Mixed case, beginning with a lowercase letter

Constants B_ All uppercase

Global variables be_ All lowercase
Everything else none All lowercase

If you adopt other conventions for your own code—perhaps mixed-case names, or
possibly a prefix other than “B”—your names shouldn’t conflict with any new ones we
add in the future.

In addition, you can rely on our continuing to follow the lexical conventions established in
the current API. For example, we never abbreviate “point” or “message,” but always
abbreviate “rectangle” as “rect” and “information” as “info.” We use “begin” and “end,”
never “start” or “finish,” in function names, and so on.

Occasionally, private names are visible in public header files. These names are marked
with both pre- and postfixed underbars—for example,_entry_ and_remove_volume_().
Don’t rely on these names in the code you write. They’re neither documented nor
supported, and may change or disappear without comment in the next release.

Naming Conventions

18 – Introduction

Pre- and postfixed underbars are also used for kit-internal names that may intrude on an
application’s namespace, even though they don’t show up in a header file. For example,
the kits use some behind-the-scenes threads and give them names like “_pulse_task_” and
they may put kit-internal data in public messages under names like “_button_”. If you
were to assign the same names to your threads and data entries, they might conflict with
kit code. Since you can’t anticipate every name used internally by the kits, it’s best to
avoid all names that begin and end in underbars.

